[go: up one dir, main page]

WO2016020148A1 - Verfahren zur herstellung von warmumgeformten bauteilen - Google Patents

Verfahren zur herstellung von warmumgeformten bauteilen Download PDF

Info

Publication number
WO2016020148A1
WO2016020148A1 PCT/EP2015/066007 EP2015066007W WO2016020148A1 WO 2016020148 A1 WO2016020148 A1 WO 2016020148A1 EP 2015066007 W EP2015066007 W EP 2015066007W WO 2016020148 A1 WO2016020148 A1 WO 2016020148A1
Authority
WO
WIPO (PCT)
Prior art keywords
semifinished product
insulating device
heating
tool
component
Prior art date
Application number
PCT/EP2015/066007
Other languages
English (en)
French (fr)
Inventor
Jürgen Becker
Bernd Kupetz
Original Assignee
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke Aktiengesellschaft filed Critical Bayerische Motoren Werke Aktiengesellschaft
Priority to EP15736513.1A priority Critical patent/EP3177416B1/de
Priority to CN201580022824.1A priority patent/CN106457337B/zh
Publication of WO2016020148A1 publication Critical patent/WO2016020148A1/de
Priority to US15/424,228 priority patent/US10876179B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/201Work-pieces; preparation of the work-pieces, e.g. lubricating, coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/208Deep-drawing by heating the blank or deep-drawing associated with heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article

Definitions

  • the invention relates to a method for the production of hot-formed components.
  • the structural components of the body are not only significantly involved in the stability of the vehicle, but also play a crucial role in safety in the event of a crash.
  • Hot forming processes are also described in the literature as mold hardening or press hardening.
  • mold hardening or press hardening For producing mold-hardened components, in particular for the production of body components, two principally different methods are known. In the direct hot forming process, first a board in an oven is heated to a temperature above the austenitizing temperature of the steel and then simultaneously formed in a tool and cooled ie form hardened.
  • a finished molded and trimmed steel component is first produced from a board by cold forming. This is then heated in a heating plant to a temperature above the austenitizing temperature of the steel and then mold hardened in a tool by rapid cooling.
  • the blank or an already finished and trimmed steel part is thermo-mechanically deformed following heating to the austenitizing temperature in the tool, with thermo-mechanical forming preferably at a temperature above the final austinitization temperature Ac3 (about 830 ° C) between 900 and 1100 ° C takes place.
  • the cooling of the formed workpieces by means of a cooling unit, which is located in a closed tool body.
  • the patent DE 19723655 B4 shows a method for producing steel sheet products by heating a measured steel sheet, hot working the steel sheet in a pair of tools, hardening the formed product by rapidly cooling from an austenitic temperature while still being held in the pair of tools and then working the product ,
  • the invention teaches a method for producing a hot-formed component, in particular a sheet-metal component made of steel, aluminum, magnesium or a combination of these materials with the steps:
  • Cooling of the semifinished product in the mold wherein at least in a section a change in the material structure is performed, characterized in that prior to introduction of the semifinished product in the mold in at least one predetermined region of the semifinished product an insulating device is applied, the form-, Stoff- and / or non-positively connected to the semifinished product.
  • the insulating device By the insulating device, the heat transfer from the semifinished product to the environment or from the environment to the semifinished product is locally changed in the predetermined
  • Predetermined areas are those areas in which the finished component should have softer, more ductile properties than the remaining areas. In the predetermined areas, the component has a ductile deformation behavior.
  • components for example vehicle structural components, are created whose mechanical properties, in particular their hardness, are not homogeneous. The production of soft, ductile areas can be achieved with the invention
  • the insulating device is applied to the semifinished product before heating. This ensures that the semifinished product undergoes a lower heat input in the predetermined region and does not reach a temperature above the austenitizing temperature AC3. Thus, after hardening in this predetermined region, a microstructure with a lower ductility arises than in the rest of the component.
  • the insulating device can be removed again after the heating of the semifinished product before the semifinished product is inserted into a hardening tool. Alternatively, the insulating device can also remain on the semifinished product while the semifinished product is hardened in the hardening tool.
  • the insulating device is applied to the semi-finished product only after the heating of the semifinished product in the predetermined area. As a result, the semi-finished product is completely over its entire extent to a temperature above the
  • Austenitizing temperature AC3 heated. It is then introduced into the hardening tool with the insulating device arranged thereon and hardened. In the predetermined area, the hot semi-finished product is cooled more slowly than in the other areas, since the insulating device slows the heat flow from the semi-finished product into the tool.
  • a martensitic microstructure is produced in the component, which is characterized by high mechanical hardness.
  • a ferritic-pearlitic structure sets in which is more ductile than the one
  • the position of the insulating device can be changed on the semi-finished product.
  • the insulating device covers the area of the semifinished product, which is not too high in the finished component
  • Insulating devices that vary in thickness or in their material
  • Isolation device be designed as a permanent magnet and are positively connected to the semifinished product. Since the semi-finished products are preferably formed as metal sheets, magnets are particularly suitable for use as an insulating device, since they adhere to the semifinished product automatically. Another advantage of permanent magnets is that they can be removed without residue after curing of the component and a cleaning or preparation of the components is not necessary. According to a second embodiment of the invention is a
  • Insulating device which is designed as a film or tape, applied to the semifinished product. Due to their low thickness, tapes or films offer the advantage that they can be applied without changes to the tools or with only minor tool changes in the manufacturing process. Thus, they are particularly well suited for the subsequent use in the manufacturing process during an already started production of series components. Such tapes or films may be formed in layers with a small layer thickness. For attachment to the semifinished product, the tapes or film can be connected to the semifinished product via an adhesion-promoting layer, for example an adhesive. Such a material connection advantageously results in a good hold of the insulating device on the
  • an insulating device which is formed as a paste, applied in a predetermined region of the semifinished product on this.
  • pastes may be, for example, copper pastes or similar pastes having a low heat transfer coefficient. Pastes are also suitable for subsequent use in already started series production.
  • an insulating device which is designed as a form-fitting coating, applied in a predetermined region of the semifinished product.
  • This coating may be formed of various materials that are temperature resistant accordingly.
  • such a coating may be formed from an additional sheet metal that can be brought into engagement with the semifinished product in the predetermined area.
  • the coating may also be formed of a temperature-resistant plastic, which can be brought into positive engagement with the predetermined region of the semifinished product.
  • a plurality of insulating devices can be arranged on the semifinished product. These can all be arranged on a first side of the semifinished product or on a side of the semifinished product opposite the first side.
  • the insulating means can also be provided on both sides of the semifinished product. They may be offset from each other or be arranged in the predetermined area on both sides of the semifinished product.
  • Fig. 2a to 2c process steps according to the second
  • Fig. 3 is an exemplary structural component.
  • FIGS. 1 a to 1 c illustrate the method steps that are carried out in direct hot forming according to a first variant of the method.
  • the heating step is shown, in which a semifinished product 17, shown here as a board is heated.
  • the heating can take place in an oven or by means of another heat source.
  • the insulating device 15 is already mounted at a predetermined position and shields a predetermined area of the board 17 from.
  • the heat, shown as s-shaped curved arrows reaches in this area only to a lesser extent to the board 17 and heats them in the predetermined range to a lower temperature than in the remaining areas of the board 17th
  • FIG. 1 b shows a molding tool 10 which can be used in presses for hot-forming sheet metal blanks into sheet metal components 17.
  • the molding tool 10 has a lower tool half 12u, which is seated on a base plate 1.
  • the lower mold half 12u cooperates with an upper mold half 12o.
  • the mutually facing active surfaces of the upper mold half 12 o and the lower mold half 12 u are formed correspondingly, so that they act as a die and die of a press tool.
  • the tool half 12o as a punch and the tool half 12u is formed as a die.
  • the upper and lower mold halves can be reversed in their arrangement, such that the upper tool acts as a die and the lower tool acts as a punch.
  • the upper tool half 12 o and the lower tool half 12 u are movable relative to each other.
  • the mold halves 12 o, 12 u shown in FIG. 1 b can be moved apart and back together.
  • the semifinished product 17, ie a piece of sheet metal or a sheet metal blank 17 gets between the mold halves and is encompassed and formed by the active surfaces.
  • the state shown in Fig. 1b corresponds to an open position of the tool halves 12u, 12o in a forming process in which the component 17 is completely reshaped and can be removed from the mold 10.
  • the insulating device 15 is removed after heating of the sheet metal blank 17.
  • an insert 13 in which a cooling system having a plurality of cooling channels or cooling lines 14 is integrated.
  • the use of such inserts 13 offers, on the one hand, the advantage that different component contours can be embossed with a lower forming tool 12u in that the insert 13 can be replaced in accordance with the desired component shape.
  • the cooling lines 14 are substantially parallel to the surface of the Component 17 and thus also substantially parallel to the active surface of the mold halves 12u, 12o. The cooling lines 14 thus follow the component surface at a certain distance in the insert 13 of the lower mold half 12u. With the cooling channels targeted cooling of the semifinished product 17 in the region of the cooling channels 14 is made possible, so that the component is cured and a microstructure is realized in the component, with high mechanical strength.
  • FIG. 1c a known mold 10 is shown in FIG. 1b, but in a closed position. In this state, the sheet metal part 17 is deformed and is cured. In this case, heat is removed from the component 17 and dissipated via the cooling channels 14.
  • FIGS. 2a to 2c show a second variant of the method.
  • the board 17 is completely heated, as shown in Fig. 2a.
  • the insulating device 15 is applied to the board 17 in a predetermined area, for example, on a lower, ie the lower mold half 12u facing side of the semifinished product 17 before the introduction of the board 17 in the mold 10 thereafter, the board 17 is arranged thereon with the insulating device 15th introduced into the mold 10, as shown in Figure 2b.
  • the insulating device 15 influences the heat exchange between the semifinished product 17 and the tool 10.
  • the region of the semifinished product 17 in which the insulating device 15 is arranged corresponds to a predetermined region in which high mechanical characteristics are not desired are. Instead, an area with comparatively high ductility is to be realized here.
  • the semi-finished product 17 undergoes a slower cooling in the predetermined range, as in the other areas.
  • a pearlitic-ferritic material structure is formed here, which gives the area a higher ductility.
  • FIGS. 1 a to 2 c and 2 a to 2 c describe the invention by means of the direct hot forming method, the invention can also be used in the indirect method.
  • the sheet metal blank is first cold formed into a three-dimensional semi-finished product.
  • either the first or the second variant can be used as described above, wherein the insulating device 15 is applied to a predetermined region of the three-dimensional semifinished product before heating or before curing.
  • cooling channels 14 In the figures, only the lower mold half 12u is provided with cooling channels 14. In further embodiments of the invention, alternatively, the arrangement of cooling lines may also be arranged in the upper tool half 12o. In a further alternative embodiment, cooling channels 14 may be provided both in the upper tool half 12o and in the lower tool half 12u.
  • FIG. 3 shows a plan view of a tool lower part 12u of the molding tool 10.
  • a semifinished product 17 for producing a B-pillar 18 is formed here.
  • the semi-finished product 17 is trimmed along the dashed contour to obtain the B-pillar 18 as a component. This can be done either before or after hot forming.
  • other vehicle components or vehicle structural components can be manufactured. Such can be in particular A- or C-pillars, roof side frames, roof hoops, sills, longitudinal or transverse beams. LIST OF REFERENCE NUMBERS

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung eines warmumgeformten Bauteils (17), insbesondere eines Blechbauteils aus Stahl, Aluminium, Magnesium oder einer Kombination dieser Materialien mit den Schritten: Erwärmen eines Halbzeugs (16), insbesondere einer Blechplatine oder eines vorgeformten Blechbauteils, Einbringen des Halbzeugs (16) in ein Formwerkzeug (10), und Abkühlen der Halbzeugs (16) in dem Formwerkzeug (10), wobei zumindest in einem Abschnitt eine Änderung des Werkstoffgefüges durchgeführt wird, dadurch gekennzeichnet, dass vor dem Einbringen des Halbzeugs (16) in das Formwerkzeug (10) in mindestens einem vorbestimmten Bereich des Halbzeugs (16) eine Isoliereinrichtung (15) aufgebracht wird, die form-, stoff- und/oder kraftschlüssig mit dem Halbzeug (16) verbunden ist.

Description

Verfahren zur Herstellung von warm umgeformten Bauteilen
Die Erfindung betrifft ein Verfahren zur Herstellung von warmumgeformten Bauteilen.
Im heutigen Automobilbau erhöht sich der Komfort für die Fahrzeuginsassen zunehmend, durch den Einsatz von Sonderausstattungen. Diese umfassen viele elektromechanische Bauteile wie Sensoren, Motoren, Aktuatoren, und dienen dazu dem Fahrer die Fahraufgabe zu erleichtern. Gleichzeitig mit dem Komfortzuwachs erhöht sich jedoch auch das Fahrzeuggewicht. Um dem entgegen zu wirken, wird im Stand der Technik versucht, die Strukturbauteile der Karosserie gewichtsreduziert auszugestalten.
Die Strukturbauteile der Karosserie sind nicht nur maßgeblich an der Stabilität des Fahrzeugs beteiligt, sondern spielen auch eine entscheidende Rolle bei der Sicherheit im Crash-Fall. Um diesen Zielkonflikt zwischen Reduktion des Bauteilgewichts von Strukturbauteilen bei gleichzeitiger Beibehaltung bzw. Realisierung hoher mechanischer Kennwerte aufzulösen, hat es sich in der Vergangenheit bewährt, Strukturbauteile mittels Warmumformung herzustellen. Warmumformprozesse sind in der Literatur auch als Formhärten oder Presshärten beschrieben. Zur Herstellung form gehärteter Bauteile, insbesondere zur Herstellung von Karosseriebauteilen sind zwei prinzipiell unterschiedliche Verfahren bekannt. Bei dem direkten Warmumformverfahren wird zunächst eine Platine in einem Ofen auf eine Temperatur oberhalb der Austenitisierungstemperatur des Stahls erwärmt und anschließend in einem Werkzeug zeitgleich umgeformt und abgekühlt d.h. formgehärtet. In dem indirekten Warmumformverfahren wird aus einer Platine zuerst durch Kaltumformen ein fertig geformtes und beschnittenes Bauteil aus Stahl erzeugt. Dieses wird dann in einer Erwärmungsanlage auf eine Temperatur oberhalb der Austenitisierungstemperatur des Stahls erwärmt und in einem Werkzeug anschließend durch rasches Abkühlen formgehärtet. In beiden Warmumformverfahren, wird die Platine oder ein bereits fertig geformtes und beschnittenes Bauteil aus Stahl im Anschluss an die Erwärmung auf die Austenitisierungstemperatur in dem Werkzeug thermomechanisch umgeformt, wobei die thermomechanische Umformung bei einer Temperatur oberhalb der Austinitisierungsendtemperatur Ac3 (ca. 830°C) bevorzugt zwischen 900 und 1100°C erfolgt. Die Abkühlung der umgeformten Werkstücke erfolgt mittels einer Kühlungseinheit, die sich in einem geschlossenen Werkzeugkörper befindet. Dadurch können Bauteile mit besonders hohen mechanischen Eigenschaften, insbesondere mit hohen Festigkeiten erzeugt werden.
Die Patentschrift DE 19723655 B4 zeigt ein Verfahren zur Herstellung von Stahlblechprodukten durch Erwärmen eines abgemessenen Stahlblechs, Warmverformung des Stahlblechs in einem Werkzeugpaar, Härten des gebildeten Produkts durch schnelles Abkühlen von einer austenitischen Temperatur, während es weiterhin in dem Werkzeugpaar gehalten ist und anschließende Bearbeitung des Produkts.
Die DE 197 23 655 A1 beschreibt ein Verfahren zur Herstellung von gehärteten Bauteilen, die Bereiche mit niedrigerer Härte und Bereich mit höherer Härte aufweisen. In diesen weicheren Bereichen soll eine nachträgliche Bearbeitung stattfinden. Zur Erzeugung der weicheren Bereichen sind in den Bearbeitungswerkzeugen Einsätze vorgesehen oder Spalte zwischen Werkzeug und Werkstück vorgesehen sind. Derartige Systeme weisen jedoch Nachteile dahingehend auf, dass damit komplexe Geometrien nur schwer herstellbar sind. Falls sich die Bauteilgeometrie ändert oder falls andere Bereich des Bauteils ungehärtet bleiben sollen bedingt dies Änderungen an den Herstellungswerkzeugen. Dies ist jedoch mit hohen Änderungsaufwand und hohen Kosten verbunden. Während der Fertigung von Serienbauteil in hoher Stückzahl ist das Werkzeug einem hohen Verschleiß unterworfen. Durch Verschleißerscheinungen ändern sich jedoch auch die Eigenschaften der produzierten Bauteile. Um die Anforderungen an Maßhaltigkeit und Qualität zu erfüllen, müssen die Werkzeug überarbeitet werden. Dies ist mit hohen Kosten verbunden und führt darüber hinaus zu einer Unterbrechung des Herstellungsprozess.
Ausgehend von diesem Stand der Technik macht es sich die vorliegende Erfindung zur Aufgabe, ein Verfahren anzugeben zur Herstellung von warmumgeformten Bauteilen, bei dem in einem Bauteil verschiedene Bereiche mit unterschiedlichen mechanischen Werten ausgebildet werden können. Es ist eine spezielle Aufgabe der Erfindung ein Verfahren anzugeben, mit dem Änderungen der gewünschten mechanischen Kennwerten in einem Bauteil besonders rasch umsetzbar sind.
Diese Aufgabe wird mit einem Verfahren gemäß dem unabhängigen Anspruch 1 gelöst. Vorteilhafte Ausführungsformen des Verfahrens sind in den Unteransprüchen angegeben.
Zur Lösung dieser Aufgabe lehrt die Erfindung ein Verfahren zur Herstellung eines warmumgeformten Bauteils, insbesondere eines Blechbauteils aus Stahl, Aluminium, Magnesium oder einer Kombination dieser Materialien mit den Schritten:
Erwärmen eines Halbzeugs, insbesondere einer Blechplatine oder eines vorgeformten Blechbauteils, Einbringen des Halbzeugs in ein Formwerkzeug, und
Abkühlen der Halbzeugs in dem Formwerkzeug, wobei zumindest in einem Abschnitt eine Änderung des Werkstoffgefüges durchgeführt wird, dadurch gekennzeichnet, dass vor dem Einbringen des Halbzeugs in das Formwerkzeug in mindestens einem vorbestimmten Bereich des Halbzeugs eine Isoliereinrichtung aufgebracht wird, die form-, Stoff- und/oder kraftschlüssig mit dem Halbzeug verbunden ist. Durch die Isoliereinrichtung wird der Wärmeübergang von dem Halbzeug an die Umgebung bzw. von der Umgebung an das Halbzeug lokal verändert in den vorbestimmten
Bereichen. Vorbestimmte Bereich sind solche Bereich in denen das fertige Bauteil weichere, duktilere Eigenschaften aufweisen soll, als die übrigen Bereiche. In den vorbestimmten Bereichen weist das Bauteil ein duktiles Deformationsverhalten auf. Erfindungsgemäß werden somit Bauteile, beispielsweise Fahrzeugstrukturbauteile geschaffen, deren mechanische Eigenschaften, insbesondere deren Härte nicht homogen ist. Die Erzeugung von weichen, duktilen Bereichen kann mit dem erfindungsgemäßen
Verfahren ohne hohe Investitionskosten erfolgen. Dadurch eignet sich das Verfahren sehr gut zum nachträglichen Anpassen der Bauteileigenschaften, selbst wenn eine Serienfertigung bereits im Gange ist.
In einer ersten Variante des Verfahrens wird die Isoliereinrichtung vor dem Erwärmen auf das Halbzeug aufgebracht. Dadurch wird sichergestellt, dass das Halbzeug in dem vorbestimmten Bereich einen geringeren Wärmeeintrag erfährt und nicht eine Temperatur oberhalb der Austenitisierungstemperatur AC3 erreicht. Somit stellt sich nach dem Härten in diesem vorbestimmten Bereich ein Gefüge ein mit einer niedrigeren Duktilität als in dem Rest des Bauteils. Die Isoliereinrichtung kann nach dem Erwärmen des Halbzeugs wieder entfernt werden, bevor das Halbzeug in ein Härtewerkzeug eingelegt wird. Alternativ dazu kann die Isoliereinrichtung auch an dem Halbzeug verbleiben, während das Halbzeug in dem Härtewerkzeug gehärtet wird. In einer zweiten Variante des Verfahrens wird die Isoliereinrichtung erst nach dem Erwärmen des Halbzeugs in dem vorbestimmten Bereich auf das Halbzeug aufgebracht. Dadurch wird das Halbzeug vollständig über seine gesamte Erstreckung auf eine Temperatur oberhalb der
Austenitisierungstemperatur AC3 erwärmt. Anschließend wird es mit der daran angeordneten Isoliereinrichtung in das Härtewerkzeug eingebracht und gehärtet. In dem vorbestimmten Bereich wird das warme Halbzeug langsamer abgekühlt als in den übrigen Bereichen, da die Isoliereinrichtung den Wärmefluss aus dem Halbzeug in das Werkzeug verlangsamt.
In beiden Verfahrensvarianten wird ein martensitisches Gefüge in dem Bauteil erzeugt, dass sich durch hohe mechanische Härte auszeichnet. In den durch die Isoliereinrichtung abgedeckten Bereichen stellt sich ein ferritisch-perlitisches Gefüge ein, welches duktiler ist als der/die
martensitische/en Bereich/e.
In Abhängigkeit davon, an welcher Position des Halbzeugs duktilere
Bereiche eingestellt werden sollen, kann die Position der Isoliereinrichtung auf dem Halbzeug verändert werden. Die Isoliereinrichtung deckt den Bereich des Halbzeugs ab, der im fertigen Bauteil nicht zu hohe
Festikeitskennwerte erreichen darf. Darüber hinaus können in Abhängigkeit der zu erzielenden mechanischen Kennwerte verschiedene
Isoliereinrichtungen, die sich in ihrer Dicke oder in ihrem Material
unterscheiden auf das Halbzeug aufgebracht werden.
Gemäß einer ersten Ausführungsform der Erfindung kann die
Isoliereinrichtung als Permanentmagnet ausgebildet sein und kraftschlüssig mit dem Halbzeug verbunden werden. Da die Halbzeuge bevorzugt als metallische Bleche ausgebildet sind, eignen sich Magnete besonders gut zur Verwendung als Isoliereinrichtung, da sie an dem Halbzeug selbsttätig haften. Ein weiterer Vorteil von Permanentmagneten ist, dass diese rückstandsfrei nach dem Härten von dem Bauteil entfernt werden können und eine Reinigung bzw. Aufbereitung der Bauteile nicht notwendig ist. Gemäß einer zweiten Ausführungsform der Erfindung wird eine
Isoliereinrichtung, die als Folie oder Tape ausgebildet ist, auf das Halbzeug aufgebracht. Aufgrund ihrer niedriger Dicke, bieten Tapes oder Folien den Vorteil, dass sie ohne Änderungen an den Werkzeugen bzw. mit nur geringen Werkzeugänderungen in dem Hersteilungsverfahren angewendet werden können. Somit eignen sie sich besonders gut auch für den nachträglichen Einsatz in dem Herstellungsverfahren während einer bereits angelaufenen Produktion von Serienbauteilen. Solche Tapes oder Folien können schichtförmig mit einer geringen Schichtdicke ausgebildet sein. Zur Befestigung an dem Halbzeug können die Tapes oder Folie über eine haftvermittelnde Schicht, beispielsweise einem Klebstoff mit dem Halbzeug verbunden werden. Durch eine derartige stoffschiüssige Verbindung ergibt sich vorteilhafterweise ein guter Halt der Isoliereinrichtung auf dem
Halbzeug.
Gemäß einer dritten Ausführungsform wird eine Isoliereinrichtung, die als Paste ausgebildet ist, in einem vorbestimmten Bereich des Halbzeugs auf dieses aufgebracht. Solche Pasten können beispielsweise Kupferpasten oder ähnliche Pasten sein, die einen niedrigen Wärmeübergangskoeffizient aufweisen. Auch Pasten eignen sich zur nachträglichen Verwendung in bereits angelaufenen Serienfertigungen.
Gemäß einer vierten Ausführungsform wird eine Isoliereinrichtung, die als formschlüssiger Überzug ausgebildet ist, in einem vorbestimmten Bereich des Halbzeugs aufgebracht. Dieser Überzug kann aus verschiedenen Materialien ausgebildet sein, die entsprechend temperaturfest sind.
Beispielsweise kann ein derartiger Überzug aus einem zusätzlichen Blech ausgebildet sein, dass in dem vorbestimmten Bereich mit dem Halbzeug in Eingriff gebracht werden kann. Alternativ dazu kann der Überzug auch aus einem temperaturbeständigen Kunststoff ausgebildet sein, der formschlüssig mit dem vorbestimmten Bereich des Halbzeugs in Eingriff gebracht werden kann. In allen beschriebenen Ausführungsformen können mehrere Isoliereinrichtungen an dem Halbzeug angeordnet werden. Diese können allesamt auf einer ersten Seite des Halbzeug oder auf einer der ersten Seite gegenüberliegenden Seite des Halbzeugs angeordnet sein. Weiterhin können die Isoliereinrichtungen auch beidseitig an dem Halbzeug vorgesehen werden. Dabei können sie zueinander versetzt sein oder in dem vorbestimmten Bereich beidseitig an dem Halbzeug angeordnet werden.
Im Folgenden wird die Erfindung anhand der Figurenbeschreibung näher erläutert. Die Figurenbeschreibung, die Ansprüche sowie die Zeichnungen enthalten Merkmale, die ein Fachmann ggf. auch in anderer Kombination in Betracht ziehen würde, um sie an entsprechende Anwendungsfälle der Erfindung anzupassen.
Es zeigen in schematischer Darstellung
Fig. 1a bis 1c Verfahrensschritte gemäß der ersten Verfahrensvariante
Fig. 2a bis 2c Verfahrensschritte gemäß der zweiten
Verfahrensvariante, und
Fig. 3 ein beispielhaftes Strukturbauteil.
In den Figuren 1 a bis 1c sind die Verfahrensschritte abgebildet, die bei dem direkten Warmumformen gemäß einer ersten Variante des Verfahrens durchgeführt werden. In Fig. 1a ist der Erwärmungsschritt dargestellt, bei dem ein Halbzeug 17, hier dargestellt als Platine erwärmt wird. Die Erwärmung kann in einem Ofen oder mit Hilfe einer sonstigen Wärmequelle erfolgen. Die Isoliereinrichtung 15 ist bereits angebracht an einer vorbestimmten Position und schirmt einen vorbestimmten Bereich der Platine 17 ab. Die Wärme, dargestellt als s-förmig gekrümmte Pfeile gelangt in diesem Bereich nur in geringerem Maße an die Platine 17 und erwärmt diese in dem vorbestimmten Bereich auf eine niedrigere Temperatur als in den restlichen Bereichen der Platine 17. Fig. 1b zeigt ein Formwerkzeug 10, das in Pressen einsetzbar ist zur Warmumformung von Blechplatinen zu Blechbauteilen 17. Das Formwerkzeug 10 weist eine untere Werkzeughälfte 12u auf, die auf einer Grundplatte 1 aufsitzt. Die untere Formwerkzeughälfte 12u wirkt mit einer oberen Formwerkzeughälfte 12o zusammen. Die einander zugewandten Wirkflächen der oberen Formwerkzeughälfte 12o und der unteren Formwerkzeughälfte 12u sind korrespondierend ausgebildet, so dass sie wie Matrize und Stempel eines Pressenwerkzeugs fungieren. Bei dem in Fig. 1 b dargestellten Beispiel ist die Werkzeughälfte 12o als Stempel und die Werkzeug hälfte 12u als Matrize ausgebildet. Ohne den Bereich der Erfindung zu verlassen, können die obere und die untere Formwerkzeughälfte ihre Anordnung betreffend vertauscht werden, so dass das Oberwerkzeug als Matrize und das Unterwerkzeug als Stempel fungiert. Die obere Werkzeug hälfte 12o und die untere Werkzeug hälfte 12u sind relativ zueinander beweglich. Die in Fig. 1 b dargestellten Formwerkzeughälften 12o, 12u können auseinander- und wieder zusammengefahren werden. Beim Zusammenfahren der Formwerkzeughälften gerät das Halbzeug 17, d.h. ein Blechstück bzw. eine Blechplatine 17 zwischen die Formwerkzeughälften, und wird von den Wirkflächen umfasst und umgeformt. Der in Fig. 1b dargestellte Zustand entspricht einer geöffneten Position der Werkzeughälften 12u, 12o bei einem Umformvorgang in der das Bauteil 17 fertig umgeformt ist und aus dem Formwerkzeug 10 entnommen werden kann. In der Darstellung wird die Isoliereinrichtung 15 nach dem Erwärmen von der Blechplatine 17 entfernt.
In der unteren Formwerkzeughälfte 12u ist ein Einsatz 13 vorgesehen, in dem ein Kühlsystem, das mehrere Kühlkanäle oder Kühlleitungen 14 aufweist, integriert ist. Die Verwendung derartiger Einsätze 13 bietet zum einen den Vorteil, dass verschiedene Bauteilkonturen geprägt werden können mit einem unteren Formwerkzeug 12u, indem der Einsatz 13 entsprechend der gewünschten Bauteilform ausgewechselt werden kann. Die Kühlleitungen 14 verlaufen im Wesentlichen parallel zu der Oberfläche des Bauteils 17 und damit auch im Wesentlichen parallel zu der Wirkfläche der Formwerkzeughälften 12u, 12o. Die Kühlleitungen 14 folgen damit der Bauteiloberfläche in einem gewissen Abstand in den Einsatz 13 der unteren Formwerkzeughälfte 12u. Mit den Kühlkanälen wird eine gezielte Abkühlung des Halbzeugs 17 im Bereich der Kühlkanäle 14 ermöglicht, so dass das Bauteil gehärtet wird und ein Gefüge in dem Bauteil realisiert wird, mit hohen mechanischen Festigkeiten.
In Figur 1c ist aus Fig. 1 b bekannte Formwerkzeug 10 dargestellt jedoch in einer geschlossenen Position. In diesem Zustand ist das Blechteil 17 umgeformt und wird gehärtet. Dabei wird dem Bauteil 17 Wärme entzogen und über die Kühlkanäle 14 abgeführt.
!n den Figuren 2a bis 2c ist eine zweite Variante des Verfahrens dargestellt. Bei dieser Variante wird die Platine 17 vollständig erwärmt, wie in der Fig. 2a dargestellt. Die Isoliereinrichtung 15 wird vor dem Einbringen der Platine 17 in das Formwerkzeug 10 in einem vorbestimmten Bereich auf die Platine 17 aufgebracht, beispielsweise auf einer unteren, d.h. der unteren Werkzeughälfte 12u zugewandten Seite des Halbzeugs 17. Danach wird die Platine 17 mit daran angeordneter Isoliereinrichtung 15 in das Formwerkzeug 10 eingebracht, wie in Figur 2b abgebildet. Beim Umformen und Härten, dargestellt in Figur 2c beeinflusst die Isoliereinrichtung 15 den Wärmeaustausch zwischen dem Halbzeug 17 und dem Werkzeug 10. Der Bereich des Halbzeugs 17, in dem die Isoliereinrichtung 15 angeordnet ist, entspricht einem vorbestimmten Bereich in dem hohe mechanische Kennwerte, nicht erwünscht sind. Stattdessen soll hier ein Bereich mit vergleichsweise hoher Duktilität realisiert werden. Durch die Isoliereinrichtung 15 erfährt das Halbzeug 17 in dem vorbestimmten Bereich eine langsamere Abkühlung, als in den übrigen Bereichen. Dadurch bildet sich hier ein perlitisch-ferritisches Materialgefüge aus, das dem Bereich eine höhere Duktilität verleiht. Obwohl die Figuren 1 a bis 2c und 2a bis 2c die Erfindung anhand des direkten Warmumformverfahrens beschreiben, lässt sich die Erfindung auch in dem indirekten Verfahren anwenden. Dabei wird die Blechplatine zuerst kaltumgeformt zu einem dreidimensionalen Halbzeug. Dieses wird danach erwärmt und dann ohne weitere Umformung oder gegebenenfalls mit nur geringerer Umformung gehärtet. Nach dem Kaltumformen kann wahlweise die erste oder die zweite Variante wie oben beschrieben angewendet werden, wobei die Isoliereinrichtung 15 vor dem Erwärmen oder vor dem Härten auf einen vorbestimmten Bereich des dreidimensionalen Halbzeug aufgebracht wird.
In den Figuren ist lediglich die untere Werkzeughälfte 12u mit Kühlkanälen 14 versehen. In weiteren Ausführungsformen der Erfindung, kann alternativ dazu die Anordnung von Kühlleitungen auch in der oberen Werkzeughälfte 12o angeordnet sein. In einer weiteren alternativen Ausführungsform können sowohl in der oberen Werkzeughälfte 12o als auch in der unteren Werkzeughälfte 12u Kühlkanäle 14 vorgesehen sein.
Figur 3 zeigt eine Draufsicht auf ein Werkzeugunterteil 12u des Formwerkzeugs 10. Beispielshaft ist hier ein Halbzeug 17 zur Herstellung einer B-Säule 18 ausgebildet. Das Halbzeug 17 wird entlang der gestrichelten Kontur beschnitten, um die B-Säule 18 als Bauteil zu erhalten. Dies kann wahlweise vor oder nach der Warmumformung durchgeführt werden. Alternativ dazu können auch andere Fahrzeugbauteile oder Fahrzeugstrukturbauteilen hergestellt werden. Solche können insbesondere A- oder C-Säulen, Dachseitenrahmen, Dachspriegel, Schweller, Längs- oder Querträger sein. Bezugszeichenliste
10 Formwerkzeug
1 1 Werkzeug Grundplatte 12u Werkzeugunterteil 12o Werkzeugoberteil
13 Werkzeugeinsatz
14 Kühlleitungen
15 Isoliereinrichtung
16 Bauteil
17 Halbzeug

Claims

Patentansprüche
1. Verfahren zur Herstellung eines warmumgeformten Bauteils (17), insbesondere eines Blechbauteils aus Stahl, Aluminium, Magnesium oder einer Kombination dieser Materialien mit den Schritten:
Erwärmen eines Halbzeugs (16), insbesondere einer
Blechplatine oder eines vorgeformten Blechbauteils,
Einbringen des Halbzeugs (16) in ein Formwerkzeug (10), und Abkühlen der Halbzeugs (16) in dem Formwerkzeug (10), wobei zumindest in einem Abschnitt eine Änderung des Werkstoffgefüges durchgeführt wird,
dadurch gekennzeichnet, dass
vor dem Einbringen des Halbzeugs (16) in das Formwerkzeug (10) in mindestens einem vorbestimmten Bereich des Halbzeugs (16) eine Isoliereinrichtung ( 5) aufgebracht wird, die form-, Stoff- und/oder kraftschlüssig mit dem Halbzeug (16) verbunden ist.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass
die Isoliereinrichtung (15) vor dem Erwärmen an dem Halbzeug (17) angeordnet wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Isoliereinrichtung (15) vor dem Erwärmen an dem Halbzeug (17) angeordnet wird und nach dem Erwärmen von dem Halbzeug (17) entfernt wird.
4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Isoliereinrichtung (15) vor dem Erwärmen an dem Halbzeug (17) angeordnet wird und nach dem Erwärmen von dem Halbzeug (17) sowie während des Härtens an dem Halbzeug belassen wird.
5. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Isoliereinrichtung (15) nach dem Erwärmen an dem Halbzeug (17) angeordnet wird und während des Härtens an dem Halbzeug (17) verbleibt.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch
gekennzeichnet, dass
die Isoliereinrichtung (15) als Permanentmagnet ausgebildet ist und kraftschlüssig mit dem Halbzeug (16) verbindbar ist.
7. Verfahren nach einem der Ansprüche 1 bis 5, dadurch
gekennzeichnet, dass
die Isoliereinrichtung (15) als Folie oder Tape ausgebildet ist.
8. Verfahren nach einem der Ansprüche 1 bis 5, dadurch
gekennzeichnet, dass
die Isoliereinrichtung (15) als Paste ausgebildet ist.
9. Verfahren nach einem der Ansprüche 1 bis 5, dadurch
gekennzeichnet, dass
die Isoliereinrichtung (15) als formschlüssiger Überzug ausgebildet ist.
PCT/EP2015/066007 2014-08-05 2015-07-14 Verfahren zur herstellung von warmumgeformten bauteilen WO2016020148A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15736513.1A EP3177416B1 (de) 2014-08-05 2015-07-14 Verfahren zur herstellung von warmumgeformten bauteilen
CN201580022824.1A CN106457337B (zh) 2014-08-05 2015-07-14 用于制造热成形构件的方法
US15/424,228 US10876179B2 (en) 2014-08-05 2017-02-03 Method for producing hot-formed components

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014215365.4 2014-08-05
DE102014215365.4A DE102014215365A1 (de) 2014-08-05 2014-08-05 Verfahren zur Herstellung von warmumgeformten Bauteilen

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/424,228 Continuation US10876179B2 (en) 2014-08-05 2017-02-03 Method for producing hot-formed components

Publications (1)

Publication Number Publication Date
WO2016020148A1 true WO2016020148A1 (de) 2016-02-11

Family

ID=53541674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/066007 WO2016020148A1 (de) 2014-08-05 2015-07-14 Verfahren zur herstellung von warmumgeformten bauteilen

Country Status (5)

Country Link
US (1) US10876179B2 (de)
EP (1) EP3177416B1 (de)
CN (1) CN106457337B (de)
DE (1) DE102014215365A1 (de)
WO (1) WO2016020148A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017222485A2 (en) * 2016-06-20 2017-12-28 Tofas Turk Otomobil Fabrikasi Anonim Sirketi A material improvement method
DE102018103143A1 (de) * 2018-02-13 2019-08-14 GEDIA Gebrüder Dingerkus GmbH Vorrichtung zur Herstellung eines Metallbauteiles
DE102018103141A1 (de) * 2018-02-13 2019-08-14 GEDIA Gebrüder Dingerkus GmbH Vorrichtung zur Herstellung eines Metallbauteiles
DE102018104326B3 (de) 2018-02-26 2018-12-27 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung eines Leichtmetallumformbauteils
CN108994135B (zh) * 2018-07-11 2020-01-21 北京航星机器制造有限公司 一种热成形淬火一体化成形方法
GB2590052B (en) * 2019-09-25 2021-12-08 Imp College Innovations Ltd Aluminium forming method
CN117625892A (zh) * 2023-11-03 2024-03-01 卡斯马汽车系统(上海)有限公司 一种热冲压件的局部软化方法及工装

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19723655A1 (de) * 1996-06-07 1997-12-11 Ssab Hardtech Ab Verfahren zur Herstellung von Stahlblechprodukten
WO2010139664A1 (de) * 2009-06-03 2010-12-09 Thyssenkrupp Steel Europe Ag Warmumformung mit einlegematerial
WO2011054575A1 (de) * 2009-11-06 2011-05-12 Voestalpine Automotive Gmbh Verfahren zum herstellen von bauteilen mit bereichen unterschiedlicher duktilität

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001159497A (ja) * 1999-09-22 2001-06-12 Toyox Co Ltd 断熱材
DE20014361U1 (de) * 2000-08-19 2000-10-12 Benteler Ag, 33104 Paderborn B-Säule für ein Kraftfahrzeug
DE10162415A1 (de) * 2001-12-19 2003-07-03 Siempelkamp Pressen Sys Gmbh Verfahren zum Herstellen eines Werkstückes aus Metall sowie Rohling für die Herstellung eines Werkstückes im Wege einer Warmumformung
SE526078C2 (sv) * 2003-02-21 2005-06-28 Grindfill Ab Passivt magnetisk folie, anslagsanordning och användning av anslagsanordning
DE10339350B4 (de) * 2003-08-25 2011-06-30 ISE Automotive GmbH, 51702 Verfahren zum Halbwarm-oder Warmumformen von Blechen
US7501921B2 (en) * 2005-05-13 2009-03-10 Magnetnotes, Ltd. Temperature controlled magnetic roller
DE102009015013B4 (de) * 2009-03-26 2011-05-12 Voestalpine Automotive Gmbh Verfahren zum Herstellen partiell gehärteter Stahlbauteile
DE102009023195B4 (de) * 2009-05-29 2018-12-20 Bayerische Motoren Werke Aktiengesellschaft Herstellung eines partiell pressgehärteten Blechbauteils
CN201455073U (zh) * 2009-06-05 2010-05-12 天津市天锻液压有限公司 一种单动薄板热冲压液压机
CN102304612B (zh) * 2011-09-20 2013-07-17 山东建筑大学 超高强钢高温拼接淬火成形工艺及装置
DE202012007777U1 (de) * 2012-06-22 2012-09-18 Steinhoff & Braun's Gmbh Vorrichtung zur Herstellung eines Metallbauteils
DE102013212816B4 (de) * 2013-07-01 2016-03-24 Volkswagen Aktiengesellschaft Verfahren zur Herstellung eines partiell pressgehärteten Blechformteils durch direktes Presshärten
CN203459536U (zh) * 2013-09-26 2014-03-05 哈尔滨工业大学(威海) 一种模块化差温成形热冲压模具

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19723655A1 (de) * 1996-06-07 1997-12-11 Ssab Hardtech Ab Verfahren zur Herstellung von Stahlblechprodukten
WO2010139664A1 (de) * 2009-06-03 2010-12-09 Thyssenkrupp Steel Europe Ag Warmumformung mit einlegematerial
WO2011054575A1 (de) * 2009-11-06 2011-05-12 Voestalpine Automotive Gmbh Verfahren zum herstellen von bauteilen mit bereichen unterschiedlicher duktilität

Also Published As

Publication number Publication date
CN106457337A (zh) 2017-02-22
DE102014215365A1 (de) 2016-02-11
EP3177416A1 (de) 2017-06-14
US20170145530A1 (en) 2017-05-25
EP3177416B1 (de) 2024-05-22
US10876179B2 (en) 2020-12-29
CN106457337B (zh) 2019-12-17

Similar Documents

Publication Publication Date Title
EP3177416B1 (de) Verfahren zur herstellung von warmumgeformten bauteilen
EP1536898B1 (de) Verfahren zur herstellung eines pressgehärteten bauteils
EP2496371B1 (de) Verfahren zum herstellen von bauteilen mit bereichen unterschiedlicher duktilität
DE102010011368B4 (de) Verfahren zur Herstellung von pressgehärteten Formbauteilen
EP1809776B1 (de) Verfahren zur herstellung von blechbauteilen sowie karosseriebauteil
EP3160667B1 (de) Verfahren und umformwerkzeug zum warmumformen sowie entsprechendes werkstück
EP2414551B1 (de) Verfahren zur herstellung eines bauteils, insbesondere eines karosserieteiles, sowie fertigungsstrasse zur durchführung des verfahrens
EP2062664B1 (de) Verfahren zur Herstellung eines gehaerteten Blechprofils
DE10254695B3 (de) Verfahren zur Herstellung eines metallischen Formbauteils
EP3041674A1 (de) Halbzeug und verfahren zur herstellung eines dreidimensional geformten hybridbauteils im metall/kunststoffverbund sowie verwendung eines solchen halbzeugs
DE102006015666B4 (de) Verfahren zur Herstellung eines metallischen Formbauteils durch Warmumformen mit simultaner Beschneideoperation
DE102006020623B4 (de) Verfahren zum Herstellen von Bauteilen aus tailored blanks
DE102009025821A1 (de) Verfahren zur Herstellung eines Metallbauteils
DE102011054865A1 (de) Verfahren zur Herstellung eines warmumgeformten und pressgehärteten Kraftfahrzeugkarosseriebauteils sowie Kraftfahrzeugkarosseriebauteil
DE112015000385T5 (de) Halbwarmumformung von kaltverfestigten Blechlegierungen
DE102008044693B4 (de) Verfahren zur Herstellung gehärteter Bauteile mit mehrfachem Erwärmen
DE102017201674B3 (de) Verfahren zur Herstellung eines pressgehärteten Bauteils sowie Pressform
DE102014213196A1 (de) Formwerkzeug zur Herstellung von warmumgeformten Bauteilen
EP3678795A1 (de) Verfahren zur herstellung eines bauteils und werkzeug dafür
DE102008034596A1 (de) Verfahren zum Herstellen von gehärteten Bauteilen aus Stahlblech
EP3212346B1 (de) Formwerkzeug zur herstellung von warmumgeformten bauteilen
DE102011009891A1 (de) Verfahren zum Herstellen von Blechbauteilen sowie Vorrichtung zur Durchführung des Verfahrens
DE102014203767A1 (de) Verfahren zur Herstellung von Fahrzeugbauteilen
DE102012009744A1 (de) Struktur eines Fahrzeugsitzteils
DE102016202087A1 (de) Verfahren zur Herstellung eines Verbundbauteils sowie ein dieses Verbundbauteil aufweisendes Fahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15736513

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015736513

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015736513

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE