WO2016016257A1 - Procédé intégré d'oxydation catalytique partielle à temps de contact court pour la production de gaz de synthèse - Google Patents
Procédé intégré d'oxydation catalytique partielle à temps de contact court pour la production de gaz de synthèse Download PDFInfo
- Publication number
- WO2016016257A1 WO2016016257A1 PCT/EP2015/067300 EP2015067300W WO2016016257A1 WO 2016016257 A1 WO2016016257 A1 WO 2016016257A1 EP 2015067300 W EP2015067300 W EP 2015067300W WO 2016016257 A1 WO2016016257 A1 WO 2016016257A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- partial oxidation
- catalytic partial
- compounds
- process according
- synthesis gas
- Prior art date
Links
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 100
- 238000003786 synthesis reaction Methods 0.000 title claims abstract description 98
- 238000000034 method Methods 0.000 title claims abstract description 74
- 230000008569 process Effects 0.000 title claims abstract description 70
- 150000001875 compounds Chemical class 0.000 claims abstract description 47
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 47
- 230000003197 catalytic effect Effects 0.000 claims abstract description 46
- 230000003647 oxidation Effects 0.000 claims abstract description 46
- 239000007788 liquid Substances 0.000 claims abstract description 22
- 239000007789 gas Substances 0.000 claims description 115
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 51
- 150000002430 hydrocarbons Chemical class 0.000 claims description 44
- 229930195733 hydrocarbon Natural products 0.000 claims description 39
- 238000004519 manufacturing process Methods 0.000 claims description 31
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 30
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 25
- 238000002407 reforming Methods 0.000 claims description 24
- 229910052760 oxygen Inorganic materials 0.000 claims description 20
- 239000001301 oxygen Substances 0.000 claims description 20
- 239000004215 Carbon black (E152) Substances 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 18
- 239000003345 natural gas Substances 0.000 claims description 18
- 238000011144 upstream manufacturing Methods 0.000 claims description 13
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 12
- 239000002006 petroleum coke Substances 0.000 claims description 11
- 238000001816 cooling Methods 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 10
- 238000011282 treatment Methods 0.000 claims description 9
- 239000003245 coal Substances 0.000 claims description 8
- 239000012530 fluid Substances 0.000 claims description 7
- 239000000295 fuel oil Substances 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 238000002156 mixing Methods 0.000 claims description 6
- 239000012808 vapor phase Substances 0.000 claims description 6
- 229910021529 ammonia Inorganic materials 0.000 claims description 5
- 239000012809 cooling fluid Substances 0.000 claims description 5
- 239000003921 oil Substances 0.000 claims description 5
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 4
- 239000004202 carbamide Substances 0.000 claims description 4
- 238000006477 desulfuration reaction Methods 0.000 claims description 3
- 238000004064 recycling Methods 0.000 claims description 3
- -1 "vacuum" residues Substances 0.000 claims description 2
- 150000003464 sulfur compounds Chemical class 0.000 claims description 2
- 239000002028 Biomass Substances 0.000 claims 3
- 230000023556 desulfurization Effects 0.000 claims 1
- 239000000376 reactant Substances 0.000 claims 1
- 238000005516 engineering process Methods 0.000 description 22
- 229910002092 carbon dioxide Inorganic materials 0.000 description 18
- 238000002453 autothermal reforming Methods 0.000 description 13
- 238000000629 steam reforming Methods 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000007670 refining Methods 0.000 description 5
- 239000003575 carbonaceous material Substances 0.000 description 4
- 238000006555 catalytic reaction Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 238000001193 catalytic steam reforming Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 230000009849 deactivation Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000007037 hydroformylation reaction Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000005102 attenuated total reflection Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000004517 catalytic hydrocracking Methods 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000003077 lignite Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/386—Catalytic partial combustion
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/36—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/382—Multi-step processes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/025—Processes for making hydrogen or synthesis gas containing a partial oxidation step
- C01B2203/0255—Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a non-catalytic partial oxidation step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/025—Processes for making hydrogen or synthesis gas containing a partial oxidation step
- C01B2203/0261—Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/06—Integration with other chemical processes
- C01B2203/061—Methanol production
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/06—Integration with other chemical processes
- C01B2203/062—Hydrocarbon production, e.g. Fischer-Tropsch process
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0838—Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
- C01B2203/0844—Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel the non-combustive exothermic reaction being another reforming reaction as defined in groups C01B2203/02 - C01B2203/0294
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
- C01B2203/1211—Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
- C01B2203/1211—Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
- C01B2203/1235—Hydrocarbons
- C01B2203/1241—Natural gas or methane
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
- C01B2203/1211—Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
- C01B2203/1235—Hydrocarbons
- C01B2203/1247—Higher hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/14—Details of the flowsheet
- C01B2203/141—At least two reforming, decomposition or partial oxidation steps in parallel
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/14—Details of the flowsheet
- C01B2203/142—At least two reforming, decomposition or partial oxidation steps in series
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
Definitions
- the present invention relates to a process for producing synthesis gas through a process that integrates Short Contact Time - Catalytic Partial Oxidation SCT-CPO technology with non-catalytic Partial Oxidation POx technology.
- Synthesis gas is produced with Steam Reforming (SR) technology and with Non-Catalytic Partial Oxidation (POx) and AutoThermal Reforming (ATR) technology.
- SR Steam Reforming
- POx Non-Catalytic Partial Oxidation
- ATR AutoThermal Reforming
- a relatively recent variation of the SR process is Gas Heated Reforming (GHR) which at least partially replaces the radiant heat needed for endothermic reactions with a convective source: typically the hot gas produced by combustion reactions and/or the same synthesis gas produced by ATR at a high temperature.
- GHR Gas Heated Reforming
- ATR and SR or GHR technologies are integrated within processes known as Combined Reforming (CR).
- CR Combined Reforming
- Synthesis gas is used in a large number of industrial processes including Ammonia and Urea synthesis, production of H 2 for refining and obtaining fuels, synthesis of Methanol and its derivatives and synthesis of liquid hydrocarbons with the Fischer-Tropsch (F-T) process. Synthesis gas is also used in fine chemical processes and in the electronic, metal refining, glass and food industries. These numerous industrial uses require the synthesis gas to be produced with very different compositions from one another so as to minimize recycling and improve overall yields.
- Table 1 shows the main reactions involved in the synthesis gas production processes and Table 2 the compositional characteristics of the synthesis gas required for its main uses. Table 1
- CPO Catalytic Partial Oxidation
- EP 2142467 describes a combined process in which a gaseous hydrocarbon mixture reacts with steam in an endothermic adiabatic pre-reformer and the pre-reformed product is split into three streams fed to a Steam Methane Reformer (SMR), to a Gas Heated Reformer (GHR) and to an Autothermal Reformer (ATR) that operate in parallel.
- SMR Steam Methane Reformer
- GHR Gas Heated Reformer
- ATR Autothermal Reformer
- EP 1403216 describes a procedure for the production of synthesis gas by catalytic steam reforming in parallel in an AutoThermal Steam Reformer in series.
- the heat required by the SR steps is, also in this case, provided by the combination of effluents from the different SRs and ATRs.
- the final mixture of effluents obtained by adding the synthesis gas produced by the convectively heated SR and ATR processes has a H 2 /CO ratio comprised between 1.8 and 2.3 v/v.
- WO 2008017741 describes a process for the production of liquid hydrocarbons starting from biomasses, coal, lignite and crude oil residues that boil at a temperature of over 340°C, said process comprising at least:
- FT Fischer-Tropsch
- Endothermic adiabatic "pre-reforming" reactors are often inserted upstream of the SR and ATR reactors. These reactors are described in various documents in literature including "T.S. Christensen, Appl. Catal. A: 138(1996)285" and “I. Dybkjaer, Fuel Process. Techn. 42(1995)85".
- the pre-reformers allow the C2+ hydrocarbons contained in the gaseous hydrocarbon streams to be converted at relatively low temperatures (about 550°C) into CO, H 2 and CH 4 reducing the possibility of parasite reactions taking place forming coal [7- 9] in the subsequent SR or ATR steps.
- reactions [10 - 1 1] are performed that accompany the Water Gas Shift (WGS) reaction
- Endothermic adiabatic pre-reforming reactors are typically fed with a mixture of gaseous reagents and steam pre-heated in an oven to about 550°C.
- a Ni based catalyst is used (in most cases) for completing reactions [10-1 1 ].
- the pre-reformed gas mixture is then sent to the reforming reactor and has a lower thermodynamic affinity to reactions forming carbonaceous residues through reactions [7-9]. This allows the steam/carbon (Steam/C v/v) and/or Oxygen/Carbon (0 2 /C) ratios fed to the SR or ATR reactors to be reduced, improving the energy efficiency (W.D. Verduijin Ammonia Plant Saf. 33(1993)165).
- pre-reforming units also allows the flexibility of the SR and ATR technologies to be increased with respect to the composition of the feedstock; for example, it allows feedstock to be used that range from refinery gases to fuel oils.
- endothermic adiabatic pre- reforming technology can increase the production capacity of plants without requiring significant changes to the characteristics of the reforming unit.
- synthesis gas production technologies are used in a large number of industrial procedures to produce different products. It is therefore appropriate to be able to have a flexible synthesis gas production process both with respect to the composition of the reagent feedstock, with respect to the production capacity and with respect to the quality of synthesis gas produced. At the same time it is very important to use high energy efficiency procedures, with low carbon dioxide emissions and that require lower capital costs with respect to traditionally exploited technologies.
- an integrated process that combines the catalytic partial oxidation technology, particularly Short Contact Time (SCT- CPO), with the non-catalytic partial oxidation technology (POx).
- SCT- CPO Short Contact Time
- POx non-catalytic partial oxidation technology
- the applicant has designed an integrated process for producing synthesis gas from carbonaceous compounds, liquid feedstock, gaseous feedstock, or combinations thereof which comprises the step of conducting in parallel one stage of short contact time catalytic partial oxidation (SCT-CPO) and a stage of non-catalytic partial oxidation (POx).
- SCT-CPO short contact time catalytic partial oxidation
- POx non-catalytic partial oxidation
- hydrocarbon gaseous streams among these preferably natural gas and/or refinery gas, or gaseous compounds also deriving from bio-masses; or ii) carbonaceous compounds selected from coal, heavy residues from oil cycle processing, such as fuel oils, "vacuum” residues , and petroleum coke (petcoke) or iii) liquid compounds containing hydrocarbon compounds and/or compounds of various nature deriving from biomasses; and combinations thereof.
- the subject matter of the present patent application is an integrated process for producing synthesis gas from carbonaceous compounds, liquid feedstock, gaseous feedstock, or combinations thereof which comprises the step of conducting in parallel one stage of short contact time catalytic partial oxidation (SCT-CPO) and a stage of non- catalytic partial oxidation (POx).
- SCT-CPO short contact time catalytic partial oxidation
- POx non- catalytic partial oxidation
- the feedstock that can be used in said process are:
- hydrocarbon gaseous streams among these preferably natural gas and/or refinery gas, or gaseous compounds also deriving from bio-masses; or
- carbonaceous compounds selected from coal, heavy residues from oil processing cycles, such as fuel oils, "vacuum” residues and petroleum coke (petcoke) or iii) liquid compounds containing hydrocarbon compounds and/or compounds of various nature deriving from biomasses; and combinations thereof.
- the feedstock of the integrated process may be pre-treated in one or more pre-reforming stages, which may preferably be exothermic adiabatic or endothermic adiabatic.
- pre-reforming stages are upstream of the SCT-CPO section.
- hydrocarbon gaseous streams among these preferably natural gas and/or refinery gas can be fed to an endothermic adiabatic pre-reformer or to an exothermic adiabatic pre-reformer placed upstream of an SCT-CPO reactor.
- gaseous compounds wherein said gaseous compounds are different hydrocarbons from natural gas and/or refinery gas, or gaseous compounds also deriving from biomasses, can be fed either to an exothermic adiabatic pre-reformer or to an endothermic adiabatic pre- reformer placed upstream of an SCT-CPO.
- liquid compounds containing hydrocarbon compounds and/or compounds of various nature deriving from bio-masses can be fed only to an exothermic adiabatic pre- reformer placed upstream of an SCT-CPO.
- the pre-reforming stage generates a reformed stream that is subsequently fed to the SCT-CPO section.
- exothermic adiabatic pre-reforming stages exploit the same principles as an SCT- CPO process; an example is described in ITMI20120418.
- exothermic adiabatic pre-reforming stages also allow liquid hydrocarbon and gaseous feedstock to be pre-treated even with high olefin content and/or feedstock obtained from bio-masses that cannot be treated by endothermic adiabatic pre-reforming processes since they would cause:
- a gaseous hydrocarbon stream into a first and a second stream, preferably containing natural gas and/or refinery gas, and/or a gas also deriving from bio- masses,
- the stream containing oxygen may be oxygen, air or enriched air.
- Said embodiment is advantageous since it allows an increase in the H 2 /CO ratio produced by the POx reactor from Natural Gas and from other light gaseous
- Coupling with an SCT-CPO reactor allows the H 2 /CO ratio to be adjusted to more suitable values for the subsequent uses and in particular to the F-T process and synthesis process of MeOH and its derivatives.
- gaseous hydrocarbons preferably natural gas
- other gaseous compounds other than gaseous hydrocarbons also derived from biomasses, liquid compounds containing hydrocarbons and/or compounds of various nature deriving from biomasses; and combinations thereof
- SCT-CPO catalytic partial oxidation section
- the stream containing oxygen may be oxygen, air or enriched air.
- Said embodiment is advantageous in contexts in which there is low availability of Natural Gas, good availability of carbonaceous materials such as coal, heavy residues from crude oil processing cycles such as, for example, vacuum residues, fuel oils and petcoke, for obtaining synthesis gas to be used in the synthesis of F-T, MeOH, Ammonia and hydrogen.
- POx reactors fed with these carbonaceous compounds produce a synthesis gas very rich in CO and C0 2 (typically if using petcoke with a H 2 /CO ratio of 0.6 v/v) which must be initially purified from the pollution of the catalysts of processes that use the synthesis gas (sulfured and nitrogenous compounds but also of other kinds according to the hydrocarbon feedstock used) and generally from some carbonaceous residues.
- the synthesis gas with low H 2 /CO ratio must then be subjected to WGS [5] treatments and treatments for removing C0 2 before being sent to the processes that use it.
- a gaseous hydrocarbon stream such as, for example, natural gas or refinery gas
- Both preferred embodiments of the process therefore exploit the possibilities offered by SCT-CPO technology to use, while maintaining the high energy efficiency typical of catalytic transformations, different types of feedstock for producing synthesis gas which, integrated with the production of synthesis gas of POx reactors, allows the H 2 /CO ratio to be adjusted to more suitable values for the processes that use it, by improving the overall energy efficiency of supply chains via synthesis gas.
- POx technology is able to treat a very wide feedstock range, its energy consumptions are, in fact, higher than those of CPO technology since its non-catalytic reactions are less selective and take place at 300°C-600°C higher temperatures than those of catalytic technologies and in particular than SCT-CPO technology, which does not use either a burner or a combustion chamber.
- the first and second stream of synthesis gas produced can be sent separately to two heat exchange devices for cooling to a temperature below 400°C generating co-production of steam; or can be mixed and the resulting mixture is sent to a single heat exchange device for cooling to temperature values below 400°C for generating steam.
- the steam generated can be used partly as a reagent in the POx section and partly fed to the SCT-CPO section.
- the gaseous hydrocarbon stream contains sulfured compounds, it can be subjected to a hydro-desulfurization treatment before being sent to the pre-reforming section, or before being sent to the POx and SCT-CPO sections. If necessary, the impurities that could pollute the processes downstream of the reactors producing synthesis gas, can also be removed in a sulfide or impurity removal unit downstream of the POx and SCT-CPO reactors.
- the heat exchange device that cools the synthesis gas in the process according to the present invention is a syngas cooler which comprises:
- the heat exchange device that cools the synthesis gas in the process according to the present invention is a syngas cooler which comprises:
- said device containing in a single apparatus all the heat exchange surfaces and said surfaces being completely immersed in the fluid bath and being fluidly connected to the hot and cold sources external to said system through flows of material.
- the synthesis gas streams can be sent to separate Water Gas Shift (WGS) sections in which reaction [2] of Table 1 can take place; or they can be sent to a single WGS section, hence forming in both cases a gas stream mainly containing H 2 , CO and C0 2 from which through a
- WGS Water Gas Shift
- H 2 stream with a high degree of purity can be obtained.
- the stream of gas containing H 2 , CO and C0 2 can be cooled generating steam which is used partly to feed the sections of POx and SCT-CPO and partly can be exported for other uses.
- the synthesis gas produced in both sections of POx and SCT-CPO can be used for the synthesis of liquid hydrocarbons via Fischer Tropsch.
- the synthesis gas produced both by POx and by SCT-CPO can be used in a process for the synthesis of methanol.
- the integrated production of synthesis gas through POx and SCT-CPO can also be used in many other via-syngas processes such as, for example, the reduction of ferrous minerals, hydroformylations and synthesis of acetic acid.
- the synthesis gas produced by POx and SCT-CPO can also be sent to one or more water gas shift (WGS) reactors and enriched in Hydrogen which can then be separated and used in various refining or hydro-treatment processes.
- WGS water gas shift
- Integration between POX and SCT-CPO sections allows operational and economic advantages in the production of synthesis gas and in the procedures that use it.
- said configuration allows both increasing the production limits in existing POx plants, and using reagents with different compositions and producing syngas mixtures suitable for the different production supply chains.
- the adiabatic oxidative "pre-reforming" stages allow reducing the energy consumptions in the subsequent reaction stages and further increase the flexibility of the synthesis gas production processes.
- exothermic pre-reformers also allow using complex gaseous hydrocarbon feedstock rich in olefin content present in some refinery gases, and in general those gaseous, liquid feedstock and oxygenated compounds that an endothermic pre-reformer would otherwise not be able to use, since they would cause the deactivation of catalytic systems and the formation of carbonaceous deposits.
- FIG. 1 - 6 describe some preferred embodiments according to the present invention.
- a stream of natural gas (2) is desulfurized in a hydro-desulfurization treatment unit (5), then it is split into two streams.
- Each stream is mixed with steam (1 ,4) and a stream containing oxygen (3) before being sent to a POx section or to an SCT-CPO section each producing a synthesis gas (12, 13) which is cooled in two heat exchangers (8,9). Cooling allows steam to be generated which is sent for feeding (1 ,4) or exported for other uses (10,1 1 ). After cooling the two streams of synthesis gas are reunited (14) producing a synthesis gas suitable for various uses.
- Figure 2 reproduces the diagram of Figure 1 in addition to an exothermic adiabatic pre- reformer (15).
- Part of the natural gas (2) is mixed with a share of stream containing oxygen (3) and a stream containing liquid hydrocarbons and compounds deriving from bio-masses (4).
- the mixture thus formed is fed to the exothermic adiabatic pre-reformer placed upstream of an SCT-CPO.
- a hydro-desulfurized (5) gaseous hydrocarbon stream (2) is mixed with other liquid feedstock chosen from hydrocarbons and/or compounds deriving from bio-masses (4), with a stream containing oxygen (3) and with steam (1 1 ) forming a mixture that is fed to an exothermic adiabatic pre-reforming reactor (15).
- the pre-reformed gas leaving (15) is then fed to SCT-CPO in the presence of a stream containing oxygen (3) forming a second synthesis gas.
- the first and the second synthesis gases are cooled in two separate syngas coolers (8,9) generating steam which is both used by the synthesis gas production processes (1 , 1 1 ) and exported (10, 1 1 ).
- the stream of synthesis gas produced by the POx reactor after cooling is subjected to a treatment (16) for removing sulfur compounds and washing carbonaceous particles and other impurities contained in heavy hydrocarbon feedstock or in coke, before being mixed with the synthesis gas produced by the SCT-CPO process to form the final product (14).
- synthesis gas streams are produced with the same diagram shown in Figure 3.
- the synthesis gas produced in POx after cooling (8) is subjected to treatment for removing (16) the sulfured compounds, carbonaceous residues and all the impurities contained in the heavy hydrocarbon feedstock or in the coke, and is subsequently sent to a Water Gas Shift reactor (17) along with the steam (28).
- the synthesis gas "shifted" and that coming from the SCT-CPO reactor are reunited (14) producing a stream that is compressed (22) and sent to a Methanol synthesis reactor (24), whose effluents are distilled (25) to produce Methanol (26).
- Figure 6 reproduces the diagram of Figure 5 but the synthesis gas leaving from SCT- CPO is made to react with steam (27) in a water gas shift (29).
- the shifted gas is reunited (30) and sent to a C0 2 removal stage (31 ) producing two streams of pure hydrogen (33) and one very rich in C0 2 (32).
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
La présente invention concerne un procédé intégré de production de gaz de synthèse à partir de composés carbonés, de charge d'alimentation liquide, de charge d'alimentation gazeuse ou de combinaisons de ceux-ci, qui comprend l'étape consistant à conduire en parallèle une phase d'oxydation catalytique partielle à temps de contact court et une phase d'oxydation partielle non catalytique.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ITMI20141371 | 2014-07-29 | ||
ITMI2014A001371 | 2014-07-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016016257A1 true WO2016016257A1 (fr) | 2016-02-04 |
Family
ID=51589401
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2015/067300 WO2016016257A1 (fr) | 2014-07-29 | 2015-07-28 | Procédé intégré d'oxydation catalytique partielle à temps de contact court pour la production de gaz de synthèse |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016016257A1 (fr) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT202100011189A1 (it) | 2021-05-03 | 2022-11-03 | Nextchem S P A | Processo a basso impatto ambientale per la riduzione di minerali ferrosi in altoforno impiegante gas di sintesi |
IT202100012551A1 (it) | 2021-05-14 | 2022-11-14 | Rosetti Marino S P A | Processo per la conversione della co2 |
WO2022263409A1 (fr) | 2021-06-14 | 2022-12-22 | NextChem S.p.A. | Procédé de production de catalyseurs pour procédés chimiques à haute température et catalyseurs ainsi obtenus |
WO2024165142A1 (fr) | 2023-02-07 | 2024-08-15 | NextChem S.p.A. | Procédé de réduction directe de minerais de fer au moyen d'un gaz de synthèse produit avec une oxydation catalytique partielle |
EP4471111A1 (fr) | 2023-05-30 | 2024-12-04 | NEXTCHEM TECH S.p.A. | Procédé de production de composés hydrocarbonés synthétiques à l'aide d'une charge d'alimentation riche en dioxyde de carbone |
WO2024245540A1 (fr) | 2023-05-30 | 2024-12-05 | Nextchem Tech S.P.A. | Procédé de production d'acides carboxyliques et de composés carbonyle à l'aide d'une charge riche en dioxyde de carbone |
WO2024245821A1 (fr) | 2023-05-30 | 2024-12-05 | Nextchem Tech S.P.A. | Processus de production de combustible et de produits chimiques à partir de déchets au moyen d'une charge riche en dioxyde de carbone |
WO2025021301A1 (fr) | 2023-07-26 | 2025-01-30 | NextChem S.p.A. | Procédé amélioré pour la réduction par fusion de minerais de fer |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0640559A1 (fr) | 1993-08-27 | 1995-03-01 | SNAMPROGETTI S.p.A. | Procédé pour l'oxydation partielle de gaz naturel pour obtenir le gaz de synthèse et le formaldehyde |
EP0725038A1 (fr) | 1995-02-03 | 1996-08-07 | SNAMPROGETTI S.p.A. | Matériau de type hydrotalcite ayant une structure en couches et son utilisation |
WO1997037929A1 (fr) | 1996-04-11 | 1997-10-16 | Snamprogetti S.P.A. | Materiel destine a des reactions d'oxydation partielle |
EP1097105A1 (fr) | 1998-07-21 | 2001-05-09 | Haldor Topsoe A/S | Production de gaz de synthese par reformage vapeur |
DE10232970A1 (de) | 2001-07-20 | 2003-02-27 | Snam Progetti | Verfahren zur Synthese von Ammoniak |
US20040014826A1 (en) * | 2002-07-16 | 2004-01-22 | Conoco Inc. | Reactor for temperature moderation |
EP1403216A1 (fr) | 2002-09-26 | 2004-03-31 | Haldor Topsoe A/S | Procédé pour la préparation de gaz de synthèse |
WO2005023710A2 (fr) | 2003-09-11 | 2005-03-17 | Eni S.P.A. | Procede d'oxydation partielle catalytique permettant d'obtenir un gaz de synthese |
US20050211604A1 (en) | 2002-05-24 | 2005-09-29 | Snamprogetti S.P.A. | Process for catalytic partial oxidation reactions |
EP1622827A1 (fr) | 2003-04-15 | 2006-02-08 | Shell Internationale Researchmaatschappij B.V. | Reacteur pour accomplir une reaction de reformage a la vapeur et procede de preparation de gaz de synthese |
WO2006034868A1 (fr) | 2004-09-30 | 2006-04-06 | Eni S.P.A. | Equipement permettant la pulverisation d'un flux de liquide au moyen d'un flux gazeux de dispersion et le melange du produit pulverise avec un flux gazeux adequat additionnel dans un dispositif d'oxydation catalytique partielle et procede connexe d'oxydation catalytique partielle |
WO2006037782A1 (fr) * | 2004-10-04 | 2006-04-13 | Shell Internationale Research Maatschappij B.V. | Procede integre de synthese d'hydrocarbures |
WO2007045457A1 (fr) | 2005-10-21 | 2007-04-26 | Eni S.P.A. | Dispositif de mélange de fluide inséré dans ou combiné avec un réacteur |
WO2008017741A1 (fr) | 2006-08-08 | 2008-02-14 | Ifp | Procédé de production de gaz de synthèse avec oxydation partielle et vaporeformage |
US20090127512A1 (en) | 2007-11-21 | 2009-05-21 | Eni S.P.A. | Enhanced process for the production of synthesis gas starting from oxygenated compounds deriving from biomasses |
WO2009065559A1 (fr) | 2007-11-23 | 2009-05-28 | Eni S.P.A. | Procédé de production de gaz de synthèse et d'hydrogène à partir d'hydrocarbures liquides ou gazeux |
EP2142467A1 (fr) | 2007-04-04 | 2010-01-13 | Saudi Basic Industries Corporation | Procédé de reformage combiné pour la production de méthanol |
WO2011072877A1 (fr) | 2009-12-16 | 2011-06-23 | Eni S.P.A. | Procédé de production d'hydrogène à partir d'hydrocarbures liquides, gazeux et/ou de composés oxygénés également issus de biomasses |
WO2011151082A1 (fr) | 2010-06-03 | 2011-12-08 | Eni S.P.A. | Système catalytique pour traitements catalytiques d'oxydation partielle à courte durée de contact |
-
2015
- 2015-07-28 WO PCT/EP2015/067300 patent/WO2016016257A1/fr active Application Filing
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0640559A1 (fr) | 1993-08-27 | 1995-03-01 | SNAMPROGETTI S.p.A. | Procédé pour l'oxydation partielle de gaz naturel pour obtenir le gaz de synthèse et le formaldehyde |
EP0725038A1 (fr) | 1995-02-03 | 1996-08-07 | SNAMPROGETTI S.p.A. | Matériau de type hydrotalcite ayant une structure en couches et son utilisation |
WO1997037929A1 (fr) | 1996-04-11 | 1997-10-16 | Snamprogetti S.P.A. | Materiel destine a des reactions d'oxydation partielle |
EP1097105A1 (fr) | 1998-07-21 | 2001-05-09 | Haldor Topsoe A/S | Production de gaz de synthese par reformage vapeur |
DE10232970A1 (de) | 2001-07-20 | 2003-02-27 | Snam Progetti | Verfahren zur Synthese von Ammoniak |
US20050211604A1 (en) | 2002-05-24 | 2005-09-29 | Snamprogetti S.P.A. | Process for catalytic partial oxidation reactions |
US20040014826A1 (en) * | 2002-07-16 | 2004-01-22 | Conoco Inc. | Reactor for temperature moderation |
EP1403216A1 (fr) | 2002-09-26 | 2004-03-31 | Haldor Topsoe A/S | Procédé pour la préparation de gaz de synthèse |
EP1622827A1 (fr) | 2003-04-15 | 2006-02-08 | Shell Internationale Researchmaatschappij B.V. | Reacteur pour accomplir une reaction de reformage a la vapeur et procede de preparation de gaz de synthese |
WO2005023710A2 (fr) | 2003-09-11 | 2005-03-17 | Eni S.P.A. | Procede d'oxydation partielle catalytique permettant d'obtenir un gaz de synthese |
WO2006034868A1 (fr) | 2004-09-30 | 2006-04-06 | Eni S.P.A. | Equipement permettant la pulverisation d'un flux de liquide au moyen d'un flux gazeux de dispersion et le melange du produit pulverise avec un flux gazeux adequat additionnel dans un dispositif d'oxydation catalytique partielle et procede connexe d'oxydation catalytique partielle |
WO2006037782A1 (fr) * | 2004-10-04 | 2006-04-13 | Shell Internationale Research Maatschappij B.V. | Procede integre de synthese d'hydrocarbures |
WO2007045457A1 (fr) | 2005-10-21 | 2007-04-26 | Eni S.P.A. | Dispositif de mélange de fluide inséré dans ou combiné avec un réacteur |
WO2008017741A1 (fr) | 2006-08-08 | 2008-02-14 | Ifp | Procédé de production de gaz de synthèse avec oxydation partielle et vaporeformage |
EP2142467A1 (fr) | 2007-04-04 | 2010-01-13 | Saudi Basic Industries Corporation | Procédé de reformage combiné pour la production de méthanol |
US20090127512A1 (en) | 2007-11-21 | 2009-05-21 | Eni S.P.A. | Enhanced process for the production of synthesis gas starting from oxygenated compounds deriving from biomasses |
EP2072459A1 (fr) * | 2007-11-21 | 2009-06-24 | ENI S.p.A. | Procédé amélioré pour la production d'un gaz de synthèse en partant de composés oxygénés dérivés de biomasses |
WO2009065559A1 (fr) | 2007-11-23 | 2009-05-28 | Eni S.P.A. | Procédé de production de gaz de synthèse et d'hydrogène à partir d'hydrocarbures liquides ou gazeux |
WO2011072877A1 (fr) | 2009-12-16 | 2011-06-23 | Eni S.P.A. | Procédé de production d'hydrogène à partir d'hydrocarbures liquides, gazeux et/ou de composés oxygénés également issus de biomasses |
WO2011151082A1 (fr) | 2010-06-03 | 2011-12-08 | Eni S.P.A. | Système catalytique pour traitements catalytiques d'oxydation partielle à courte durée de contact |
Non-Patent Citations (9)
Title |
---|
AASBERG-PETERSEN, K.; BAK HANSEN, J. -H.; CHRISTENSEN, T. S.; DYBKJAER, I.; CHRISTENSEN, P. SEIER; STUB NIELSEN, C.; WINTER MADSEN: "Technologies for large-scale gas conversion", APPLIED CATALYSIS A: GENERAL, vol. 221, no. 1-2, November 2001 (2001-11-01), pages 379, XP004326656, DOI: doi:10.1016/S0926-860X(01)00811-0 |
BASINI, LUCA, CATALYSIS TODAY, vol. 106, no. 1-4, October 2005 (2005-10-01), pages 34 |
CHRISTENSEN ET AL: "Adiabatic prereforming of hydrocarbons - an important step in syngas production", APPLIED CATALYSIS A: GENERAL, ELSEVIER SCIENCE, AMSTERDAM, NL, vol. 138, no. 2, 9 May 1996 (1996-05-09), pages 285 - 309, XP022250773, ISSN: 0926-860X, DOI: 10.1016/0926-860X(95)00302-9 * |
I. DYBKJAER, FUEL PROCESS. TECHN., vol. 42, 1995, pages 85 |
J.R. ROSTRUP-NIELSEN; J. SEHESTED; J.K. NOSKOV, ADV. CATAL., vol. 47, 2002, pages 65 - 139 |
JOHN R. ANDERSON AND MICHEL BOUDART: "Catalysis", vol. 5, article ROSTRUP-NIELSEN J.R.: "Catalytic Steam Reforming", pages: 1 - 117 |
L.E. BASINI E A. GUARINONI: "Short Contact Time Catalytic Partial Oxidation (SCT-CPO) for Synthesis Gas Processes and Olefins Production", IND. ENG. CHEM. RES., vol. 52, 2013, pages 17023 - 17037 |
T.S. CHRISTENSEN, APPL. CATAL. A, vol. 138, 1996, pages 285 |
W.D. VERDUIJIN, AMMONIA PLANT SAF., vol. 33, 1993, pages 165 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT202100011189A1 (it) | 2021-05-03 | 2022-11-03 | Nextchem S P A | Processo a basso impatto ambientale per la riduzione di minerali ferrosi in altoforno impiegante gas di sintesi |
WO2022233769A1 (fr) | 2021-05-03 | 2022-11-10 | NextChem S.p.A. | Procédé d'utilisation de gaz de synthèse pour améliorer l'impact environnemental de la réduction de minerai de fer dans des hauts fourneaux |
IT202100012551A1 (it) | 2021-05-14 | 2022-11-14 | Rosetti Marino S P A | Processo per la conversione della co2 |
WO2022263409A1 (fr) | 2021-06-14 | 2022-12-22 | NextChem S.p.A. | Procédé de production de catalyseurs pour procédés chimiques à haute température et catalyseurs ainsi obtenus |
WO2024165142A1 (fr) | 2023-02-07 | 2024-08-15 | NextChem S.p.A. | Procédé de réduction directe de minerais de fer au moyen d'un gaz de synthèse produit avec une oxydation catalytique partielle |
EP4471111A1 (fr) | 2023-05-30 | 2024-12-04 | NEXTCHEM TECH S.p.A. | Procédé de production de composés hydrocarbonés synthétiques à l'aide d'une charge d'alimentation riche en dioxyde de carbone |
WO2024245540A1 (fr) | 2023-05-30 | 2024-12-05 | Nextchem Tech S.P.A. | Procédé de production d'acides carboxyliques et de composés carbonyle à l'aide d'une charge riche en dioxyde de carbone |
WO2024245821A1 (fr) | 2023-05-30 | 2024-12-05 | Nextchem Tech S.P.A. | Processus de production de combustible et de produits chimiques à partir de déchets au moyen d'une charge riche en dioxyde de carbone |
WO2024245542A1 (fr) | 2023-05-30 | 2024-12-05 | Nextchem Tech S.P.A. | Processus de production de combustible et de produits chimiques à partir de déchets au moyen d'une matière première riche en dioxyde de carbone |
WO2024245818A1 (fr) | 2023-05-30 | 2024-12-05 | Nextchem Tech S.P.A. | Procédé de production de composés hydrocarbonés synthétiques à l'aide d'une charge d'alimentation riche en dioxyde de carbone |
WO2024245538A1 (fr) | 2023-05-30 | 2024-12-05 | Nextchem Tech S.P.A. | Procédé de production de composés d'hydrocarbures synthétiques à l'aide d'une charge d'alimentation riche en dioxyde de carbone |
WO2025021301A1 (fr) | 2023-07-26 | 2025-01-30 | NextChem S.p.A. | Procédé amélioré pour la réduction par fusion de minerais de fer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016016251A1 (fr) | Procédé de production sct-cpo/sr intégré pour la production de gaz de synthèse | |
WO2016016257A1 (fr) | Procédé intégré d'oxydation catalytique partielle à temps de contact court pour la production de gaz de synthèse | |
WO2016016256A1 (fr) | Procédé intégré d'oxydation catalytique partielle à temps de contact court/reformage autotherme (sct-cpo/atr) pour la production de gaz de synthèse | |
CN104411625B (zh) | 重整烃的方法 | |
CN100381353C (zh) | 制备合成气的方法 | |
EP3953295A1 (fr) | Installation de synthèse chimique | |
CA2939769C (fr) | Procede de production de gaz de synthese | |
US9353022B2 (en) | Process for conversion of natural gas to hydrocarbon products and a plant for carrying out the process | |
WO2016016253A1 (fr) | Procédé intégré de reformage par oxydation catalytique partielle/chauffé au gaz à temps de contact court pour la production de gaz de synthèse | |
CN105820036B (zh) | 使用部分氧化生产甲醇的方法和系统 | |
WO2014176022A1 (fr) | Procédé et système de production de méthanol faisant appel à un système de reformage basé sur une membrane de transport d'oxygène | |
ZA200508859B (en) | Production of hydrocarbons by steam reforming and Fischer-Tropsch reaction | |
KR102349885B1 (ko) | 합성가스의 제조방법 | |
EP1492725A1 (fr) | Procede et appareil de production d'un gaz de synthese | |
WO2013038140A1 (fr) | Gaz de synthèse et procédé intégré de fischer-tropsch | |
KR20120054632A (ko) | 메탄올 생산을 위한 복합 개질 방법 | |
EA030740B1 (ru) | Способ для производства богатых водородом газовых смесей | |
US9701535B2 (en) | Process for producing a syngas intermediate suitable for the production of hydrogen | |
CA3171759A1 (fr) | Production d'hydrocarbures | |
BR112014027974A2 (pt) | melhoramento do processo de fischer-tropsch para formulação de combustível de hidrocarboneto em um ambiente gtl | |
US11453827B1 (en) | Syngas generation for gas-to-liquid fuel conversion | |
WO2015128456A1 (fr) | Procédé de production de gaz de synthèse | |
GB2633451A (en) | A method and system for forming syngas | |
WO2025052088A1 (fr) | Procédé et système de formation de gaz de synthèse | |
WO2023083661A1 (fr) | Système et procédé de production d'un combustible |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15750950 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15750950 Country of ref document: EP Kind code of ref document: A1 |