WO2016009078A1 - A tunable microlens with a variable structure element - Google Patents
A tunable microlens with a variable structure element Download PDFInfo
- Publication number
- WO2016009078A1 WO2016009078A1 PCT/EP2015/066490 EP2015066490W WO2016009078A1 WO 2016009078 A1 WO2016009078 A1 WO 2016009078A1 EP 2015066490 W EP2015066490 W EP 2015066490W WO 2016009078 A1 WO2016009078 A1 WO 2016009078A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical device
- structure element
- transparent cover
- bendable
- transparent optical
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 102
- 238000000034 method Methods 0.000 claims abstract description 43
- 239000012528 membrane Substances 0.000 claims description 43
- 238000000151 deposition Methods 0.000 claims description 36
- 239000000463 material Substances 0.000 claims description 16
- 229920000642 polymer Polymers 0.000 claims description 16
- 238000002161 passivation Methods 0.000 claims description 14
- 239000003921 oil Substances 0.000 claims description 6
- 238000000059 patterning Methods 0.000 claims description 6
- 239000000758 substrate Substances 0.000 claims description 6
- 229910020776 SixNy Inorganic materials 0.000 claims description 4
- 229910020781 SixOy Inorganic materials 0.000 claims description 4
- 238000005229 chemical vapour deposition Methods 0.000 claims description 4
- 229920006037 cross link polymer Polymers 0.000 claims description 4
- 238000002835 absorbance Methods 0.000 claims description 3
- 230000004888 barrier function Effects 0.000 claims description 3
- 238000005240 physical vapour deposition Methods 0.000 claims description 3
- 238000007493 shaping process Methods 0.000 claims description 2
- 238000007736 thin film deposition technique Methods 0.000 claims description 2
- 230000000284 resting effect Effects 0.000 description 10
- 230000002829 reductive effect Effects 0.000 description 7
- 230000008901 benefit Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 230000008021 deposition Effects 0.000 description 4
- 238000000429 assembly Methods 0.000 description 3
- 230000000712 assembly Effects 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- 238000001505 atmospheric-pressure chemical vapour deposition Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000000869 ion-assisted deposition Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005334 plasma enhanced chemical vapour deposition Methods 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 230000009972 noncorrosive effect Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000003678 scratch resistant effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/12—Fluid-filled or evacuated lenses
- G02B3/14—Fluid-filled or evacuated lenses of variable focal length
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
- G02B1/041—Lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0055—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
- G02B13/0075—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having an element with variable optical properties
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/0081—Simple or compound lenses having one or more elements with analytic function to create variable power
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/028—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/20—Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/88—Mounts; Supports; Enclosures; Casings
- H10N30/883—Additional insulation means preventing electrical, physical or chemical damage, e.g. protective coatings
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/20—Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
- H10N30/204—Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
- H10N30/2047—Membrane type
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/20—Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
- H10N30/204—Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
- H10N30/2047—Membrane type
- H10N30/2048—Membrane type having non-planar shape
Definitions
- the present invention relates to a transparent optical device element comprising a microlens and a method for tuning mechanical strength and curvature of a tunable microlens.
- lens systems for such applications requires fulfilment of a large number of requirements, from production standards to ease of operation when fitting the lens on top of a camera module.
- tuneable parameters such as encountered in auto focus lenses, wherein the focal length must be adjusted, for example, to fit the distance from the lens to the object to be photographed.
- Such lenses are usually complex designs comprising movable parts that can make it difficult to assemble the lens in a simple manner.
- a further challenge with such designs is the ever-increasing requirements to provide suitable lens assemblies for such use.
- the basic idea of the invention is to provide a tunable microlens with a structure that provides mechanical and thermal stability and tunability of the curvature of a bendable transparent cover member located on a deformable lens body, where the shape, size and position, i.e. extension of the structure over the underneath layers determine the tunability of the curvature of the deformable lens body.
- the structure of the invention is a variable structure that has a critical function in being able to change the curvature of the bendable transparent cover member located on a deformable lens body to define the resting focal strength of a transparent optical device element
- the resting focal strength is the focal strength in the state of rest, i.e. when an actuator is not imposing a curvature to the bendable transparent cover member.
- the actuators located on a top surface of the bendable transparent cover member; the piezoelectric actuators defining an optical aperture of the at least one deformable lens body on the bendable transparent cover member; at least one structure element located onto the piezoelectric actuators and surrounding the optical aperture; wherein said at least one structure element has an external diameter between the diameter of the bendable transparent cover member and the diameter of the optical aperture; and wherein said bendable transparent cover member is adapted to provide
- the lens body is deformable so as to be adjusted to achieve a desired curvature and thus a desired optical power or focal length.
- the deformable lens body may comprise polymers or liquids.
- the deformable lens body may comprise polymer, e.g. deformable polymer materials, such as a polymer network of cross-linked or partly cross-linked polymers.
- the deformable lens body comprises a polymer network of cross-linked or partly cross-linked polymers and a miscible oil or combination of oils.
- the one deformable lens body may have an elastic modulus larger than 300 Pa, a refractive index is above 1.35, and an absorbance in the visible range less than 10% per millimeter thickness.
- the deformable polymer lens body has a certain degree of mechanical stability provided within the chemical structure of the polymer network.
- the desired mechanical stability of the transparent optical element is provided through the presence of a bendable transparent cover member.
- the bendable transparent cover member may be made out of a transparent material providing a mechanical and structural reinforcement of the deformable lens body attached to the bendable transparent cover member.
- the bendable transparent cover member may be made from a transparent material selected from the group of glasses, inorganic oxides and rigid polymeric materials such as carbonates, acrylates, and epoxies.
- the bendable transparent cover member may be a thin, e.g. less than 1 mm, such as less than 0,75 mm, such as less than 0,5 mm glass or transparent polymeric material.
- the bendable transparent cover member is made of glass and has a thickness in the range of 10 to 50 Mm.
- the bendable transparent cover member has a degree of stiffness imposed by the deformable lens body used.
- the degree of stiffness of the bendable transparent cover member is determined by the stiffness/softness of the deformable polymer lens body.
- the at least one structure element may provide stress compensation to the transparent optical device element.
- the at least one structure element may provide thermal compensation to the transparent optical device element.
- the at least one structure element provides stress and thermal compensation to the transparent optical device element.
- the at least one structure element may be or comprise an annular structure element having boundaries defined by polygonal, circular or ellipses.
- the at least one structure element may have an area bounded by two concentric polygons, circles or ellipses. Thus the area of the at least one structure element is a region in between two concentric polygons. In some embodiments the at least one structure element is a ring structure element. Thus, the area of the at least one structure element is a region in between or is bounded by two concentric circles or ellipses. In general, shape of external or outer and internal or inner diameter of the structure element may be different.
- the at least one structure element has an external diameter defined by a polygon or ellipse and an internal diameter defined by a circle.
- the at least one structure element or the ring structure element has an external diameter between the diameter of the bendable transparent cover member and the diameter of the optical aperture. This indicates the absolute value of the diameter and the location of the structure element as the structure element and the bendable transparent member and the at least one deformable lens body are coaxial, i.e. located around the same central axis.
- the structure element and the bendable transparent member and the at least one deformable lens body are concentric.
- the width of the at least one structure element i.e. the annular structure element between its internal and its external diameter may vary between the diameter of the bendable transparent cover member and the diameter of the optical aperture.
- the at least one structure element is variable in size covering the area over the bendable transparent cover member which typically excepts the optical aperture for improved transmittance over the bendable transparent cover member.
- the at least one structure element is at least partially located onto the bendable transparent cover member. In some other embodiments the at least one structure element has an internal diameter exceeding the diameter of an optical aperture diameter.
- the internal or inner diameter of the at least one structure element is larger than the diameter of the optical aperture diameter.
- the external diameter may be larger than an external diameter of the piezoelectric actuators.
- the at least one structure element may at least partially overlap the optical aperture.
- the internal diameter of the at least one structure element may be smaller than the diameter of the optical aperture.
- Partially overlapping is defined as a condition where at least part of the optical aperture is not covered by the at least one structure element.
- Partially overlap between the at least one structure element and the optical aperture is defined as the at least one structure element overlaps only partially, thus not fully, the optical aperture.
- the least one structure element overlaps only partially the optical aperture.
- the at least one structure element is a closed structure element thus characterized by one single structure element.
- the at least one structure element is an open structure element, thus comprising more than one sub-structure that once deposited onto the piezoelectric actuators would provide the at least one structure element.
- the at least one structure element is two or more structure elements.
- the two or more structure elements may be concentric ring structures
- the two or more structure element may be three concentric ring structures.
- the two or more structure elements may all be located onto the piezoelectric actuators.
- the three concentric ring structures may all be located onto the piezoelectric actuators.
- the two or more structure element are concentric annular ellipses.
- the two or more structure element are overlapping at least in some areas with each other.
- the at least one structure element has a thickness between 0.03 Mm and 10 Mm.
- the specific thickness and shape of the at least one structure element improve the mechanical strength of the bendable transparent cover member.
- the tuning of the curvature is between a concave and a convex resting curvature, i.e. the curvature of the bendable transparent cover member in its resting state.
- the tuning of the curvature is between a radius of curvature of - 200 mm and + 200 mm. In some other embodiments, the tuning of the curvature is between a radius of curvature of - 100 mm and + 100 mm.
- the radius of curvature at a given point is the radius of a circle that mathematically best fits the curve at that point.
- the specific structure element of the invention is able to increase the maximum optical range by minimizing the membrane curvature.
- the structure element is able to tune the curvature of the bendable cover member and thus in turn the optical power of the transparent optical device element.
- Thickness, shape and size of the structure element are designed so as to exhibit a stress opposite in magnitude to the existing forces acting upon the bendable transparent cover member so as to affect a reduction in size of the bending or a reversal of the bending direction of the bendable transparent cover membrane in its resting state.
- the shape of the ring structure element is not limited to a circular shape but may be an annular structure element having boundaries defined by polygonal, circular or ellipses profiles.
- the specific structure element of the invention may be a tunable stress compensation layer having the function of providing compensation to the stress induced by the multiple layers structure of the transparent optical device element.
- the specific structure element is thus not a strengthening layer but may be a stress compensation layer that can be tuned to provide stress compensation to the transparent optical device element.
- the at least one structure element is a stress compensation layer.
- the compensation stress layer may vary in stress from -600 to +600 MPa and thickness of 0.01 to 10 ⁇ (micrometers).
- the at least one stress compensation layer is tuneable, i.e. can be tuned depending on the stress compensation needed.
- Location and appropriate size of the structure element are designed so that the initial radius of curvature of the bendable transparent cover member is reduced or increased to a minimum of 50 mm, preferably in the area of 100 mm.
- Location of the ring structure may also influence the mechanical strength of the bendable transparent cover member.
- the mechanical strength is defined by the shear load, e.g. in grams required to break the bendable transparent cover member when applied as uniform force from the backside of the bendable transparent cover member.
- the increase in mechanical strength maybe from 50 gr. to at least 60-70 gr, resulting in a minimum strength improvement of at least 20%.
- the at least one structure element consists of a hard and dense material.
- the at least one structure element consists of a hard, dense and inert material. In some other embodiments, the at least one structure element comprises a hard material .
- the at least one structure element comprises a dense material .
- the at least one structure element comprises an inert material .
- Hard material is defined as having a Mohs hardness greater than 9. A hard material is thus scratch resistant.
- Dense material is defined as having percentage of porosity lower than 0.5%.
- Inert material is defined as a material not reactive towards chemicals encountered in a typical semiconductor based processing environment, such as inorganic acids, e.g . sulphuric acid, bases, amines or amides, such as ammonia, dimethylamine or dimethylacetamide, under processing conditions. This may include also chemicals in ambient conditions e.g . H2O, O2 and N2.
- inorganic acids e.g . sulphuric acid
- bases amines or amides
- ammonia dimethylamine or dimethylacetamide
- a non-corrosive, protective barrier or diffusion barrier layer is thus formed .
- the at least one structure element comprises or consists of a Si x N y , SixO y N z , Si x C y , or Si x O y or a combination thereof, wherein x, y or z are numbers with a value between 0 and 5.
- the at least one structure element comprises or consists of a S13N4, S12ON2, SiC, or S1O2 or a combination thereof.
- the at least one structure element may also have an impact on the thermal behaviour and optical response of the device, i.e. the optical power variation as a function of temperature of partial or fully assembled optical devices to the extent that it can define the requirements for other parts of the fully assembled device, thereby controlling the cost and requirements of the parts needed for the assembled lens.
- the specific structure element of the invention may be a thermal
- compensation layer having the function of providing compensation to the thermal expansion induced by temperature changes in the multiple layers structure of the transparent optical device element.
- the specific structure element is thus not a strengthening layer but may be a thermal compensation layer that can be tuned to provide thermal compensation to the transparent optical device element.
- the at least one structure element is a thermal compensation layer.
- the at least one thermal compensation layer is tuneable, i.e. can be tuned depending on the thermal compensation needed.
- the at least one structure element is a stress and a thermal compensation layer.
- the at least one structure element may combine both functions of stress compensation and thermal compensation.
- thermal effect on the transparent optical device element may cause expansions or contractions of the lens body producing stress on the structure of the transparent optical device element.
- the materials of the deformable lens body determine the stress induced by thermal effects on the deformable lens body.
- deformable lens body comprising polymer induced by thermal expansion or constrictions
- the stress produced on deformable lens body comprising fluids, such as liquids is undoubtly different from the one that would be produced on deformable lens body comprising fluids, such as liquids.
- the at least one structure element may be adapted to correct the curvature of the bendable transparent cover member necessary for thermal compensation of other components in the final product where the transparent optical device element have to be included, e.g. camera module.
- the at least one structure element or stress and thermal compensation layer has thus the function of compensating stress and thermal effect on a transparent optical device element comprising deformable lens body that comprises polymers.
- the deformable lens body may thus preferably be made of solid matter, such as polymers.
- a solid matter means in this context that it has a non-zero plastic or elastic modulus, meaning that it will resist deformation when exposed to a given stress.
- the at least one structure element is a structure element that can tune the resting focal strength of the transparent optical device element.
- the resting curvature of the bendable transparent cover member may be concave or convex.
- the at least one structure element may be used to tune the resting focal strength of transparent optical device element to focus from a starting concave or convex curvature.
- the at least one structure element is adapted to tune the resting curvature of the bendable transparent cover member starting from concave or convex curvature.
- the invention relates to a method for tuning mechanical strength and curvature of a bendable transparent cover member in a transparent optical device element, the method comprising : depositing, bonding or attaching a bendable transparent cover membrane on a substrate, such as silicon wafer; depositing bonding or attaching of one or more piezoelectric elements on top of the bendable transparent cover membrane; patterning of the piezoelectric element deposited on top of the bendable transparent cover membrane;
- the sequence of the steps of the method is different.
- sequence of the first four steps of the method is different, while the deposition of the at least one structure onto the bendable transparent cover member occurs always as a last step.
- the depositing of the passivation layer and/or said depositing at least one structure is achieved through thin film deposition methods. In some embodiments, the depositing of the passivation layer and/or said depositing at least one structure is achieved through chemical vapour deposition or physical vapour deposition.
- methods based on chemical vapour deposition may be plasma- enhanced chemical vapour deposition (PECVD), sub-atmospheric chemical vapour deposition (SACVD), low pressure chemical vapour deposition (LPCVD) or atmospheric pressure chemical vapour deposition (APCVD).
- PECVD plasma- enhanced chemical vapour deposition
- SACVD sub-atmospheric chemical vapour deposition
- LPCVD low pressure chemical vapour deposition
- APCVD atmospheric pressure chemical vapour deposition
- Method based on physical vapour deposition may be sputtering, evaporation or ion assisted deposition (IAD).
- the passivation layer has the function to protect the piezoelectric actuator and bendable transparent cover membrane from humidity and the atmosphere, thus thickness and shape are tuned so has to achieve optimized protection of the underneath layers.
- the invention in its second aspect is particularly, but not exclusively,
- Another advantage of the method is that it can be able to improve the mechanical strength of the bendable transparent cover member and increase the maximum optical range via minimizing the curvature of the bendable transparent cover membrane.
- a further advantage of the method is that the deposition of the at least one ring may have an impact on the thermal behaviour and optical response, i.e. optical power variation as a function of temperature of the fully assembled optical device and thus in turn define the requirements for other parts of the fully assembled device, thereby controlling the cost and requirements of the parts needed for the assembled lens.
- the a method according to the second aspect is a method for tuning mechanical strength and curvature of a bendable transparent cover member in a transparent optical device element, wherein the transparent optical device element is the transparent optical device element according to the first aspect of the invention.
- the invention relates to a method for tuning mechanical strength and curvature of a bendable transparent cover member in a transparent optical device element, the method comprising : depositing, bonding or attaching a bendable transparent cover membrane on a substrate; depositing, bonding or attaching of one or more piezoelectric elements on top of the bendable
- the transparent cover membrane patterning of the piezoelectric element positioned on top of the bendable transparent cover membrane; depositing a passivation layer over the patterned piezoelectric element; depositing a at least one structure element onto the bendable transparent cover member, wherein the at least one structure element is a structure element as disclosed in relation to the first aspect of the invention.
- FIG. 1 is the cross-section of a graphical representation of a micro lens according to some embodiments of the invention.
- Figure 2 shows the tensile membrane with reduction a) and reversal b) of stress after application of compressive variable ring structure element layer to tune membrane curvature.
- Figure 3 shows the compressive membrane with reduction a) and reversal b) of stress before and after application of tensile variable ring structure element layer to tune membrane curvature.
- Figure 4 is a flow-chart of a method according to the invention.
- Figure 5 and figure 6 are top-view illustration of a tunable microlens according to some embodiments of the invention.
- Figure 1 is the cross-section of a graphical representation of a micro lens, according to some embodiments of the invention.
- Figure 1 shows a transparent optical device element 5 comprising a bendable transparent cover member 1 having width between 0.1mm to 50 mm (f), supported over a cavity 2 of width (e) being less, e.g. at least 20 Mm less than the width of the bendable transparent cover membrane (f), for a deformable lens body (not shown) surrounded by a sidewall 35.
- Piezoelectric actuator element 3 of width (b) being less, e.g. at least 20 Mm less than the width of the bendable transparent cover membrane (f) is located onto the bendable transparent cover member 1.
- the ring structure element 6 has a corresponding opening diameter 7 of width (c) varying from 0.01 mm to 49 mm which may differ to the width (d) of the opening (4) of the piezoelectric actuator element 3, which may also vary from 0.01 mm to 49 mm in width.
- the optical aperture of the lens usually defined by the smallest width of either openings (c) or (d), assuming both layers are unsuitable for the optical path in the optical aperture.
- Figure 2a and figure 2b are graphical cross-section illustrations of the effect of a ring structure element on the tensile bulge of a bendable transparent cover membrane.
- Figure 2a is a graphical illustration of the tensile bulge 8 when a ring structure element 9 is deposited on it. It can be seen that, due to the ring structure element 9, the curvature of the membrane is significantly reduced .
- the tensile bulge 10 is reversed due to the ring structure element 11.
- the curvature of the membrane may significantly be reduced or even reversed depending on the characteristics of the ring structure element. For example, if the tensile bulge is countered by a highly compressive ring structure element that is at a minimum 30% more compressive than other passivation layers, the curvature of the membrane is significantly reduced or even reversed.
- a typical value would be between -250 to -300 MPa for a ⁇ thickness Si x N y ring.
- Other typical value would be between -100 to -600 MPa for a ⁇ thickness SixNy ring.
- the values may be well above -lOOMpa in
- Figure 3a and figure 3b are graphical cross-section illustrations of the effect of a ring structure element on the tensile bulge of a bendable transparent cover membrane according to other embodiments of the invention.
- Figure 3a and figure 3b illustrates the opposite scenario of figure 2a and figure 2b.
- the compressive bulge 12 in the bendable transparent cover member is reduced in magnitude after the application of a tensile layer due to the presence of ring structure element 13.
- FIG 3b the compressive bulge 14 in the bendable transparent cover membrane is reversed after the application of a tensile layer, thus due to the presence of ring structure element 15.
- Figure 4 is a flow-chart 21 of a method according to the invention.
- Figure 4 shows the method for tuning mechanical strength and curvature of a bendable transparent cover member in a transparent optical device element, according to the second aspect of the invention.
- the method comprises the steps of: depositing, attaching or bonding 16 a bendable transparent cover membrane on a substrate; depositing, attaching or bonding 17 of one or more piezoelectric elements on top of the bendable transparent cover membrane; patterning 18 of the piezoelectric element positioned on top of the bendable transparent cover membrane; depositing 19 a passivation or optical layer over the patterned piezoelectric element; depositing 20 a ring structure onto the bendable
- the ring structure element is a ring structure element according to the first aspect of the invention.
- the sequence of the steps 16-19 may be different than the one shown by figure 4. Furthermore, deposition of a passivation layer or further deposition of passivation layers may occur in between different steps of the method or at different stages of the process.
- Figure 5 is top-view illustration of a tunable microlens according to some embodiments of the invention.
- Figure 5b - 5d shows some example of designs of the variable ring structure element.
- Figure 5a shows the bendable transparent cover membrane 22 provides the surface upon which the piezoelectric actuator element 23 is positioned leaving the optical aperture 24 in the centre of the device.
- the variable ring structure may cover only a portion of the piezoelectric actuator element either on the outer (Fig. 5b) or inner (Fig . 5c) part of the piezoelectric element.
- the variable ring structure may also cover the complete portion of the piezoelectric element or even overlap partially the optical aperture 24 as illustrated in Fig 5d.
- the ring structure element may not necessarily be limited to one individual element.
- Figure 6 provides further examples of different designs of a tunable microlens with a variable ring structure element as illustrated from the top-view.
- the bendable transparent cover membrane 32 provides the surface upon which the piezoelectric actuator element 33 may be positioned leaving the optical aperture 34 in the middle of the device.
- the ring structure element may comprise two or more ring structure elements 26, 27 and 28 as illustrated in fig. 6b.
- Figure 6c illustrates a structure element 29 that positioned with a reduced number of axes of symmetry. In figure 6c, the structure element 29 has the shape of an annular ellipse surrounding the optical aperture 34, which and is positioned onto the piezoelectric actuator element 33.
- Figure 6d illustrates an example of the transparent optical device element according to some embodiments of the invention comprising a combination of multiple such structure elements that when combined provide a unique curvature profile of the transparent cover membrane.
- the structure element 30 and the structure element 31 have both the shape of an annular ellipse surrounding the optical aperture 34.
- Structure element 30 overlap the structure element 31 in some areas and both structure elements are positioned onto the piezoelectric actuator element 33.
- the benefits of adding a variable structure element with the symmetry reduced from that of circle is to help the ability to deform the membrane deform in non- spherical and non-uniform modes. This allows the lens to create or accommodate for optical aberrations by providing a non-uniform bending curvature in a controlled manner.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
- Lens Barrels (AREA)
- Mounting And Adjusting Of Optical Elements (AREA)
- Surface Treatment Of Optical Elements (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017502245A JP6767357B2 (en) | 2014-07-18 | 2015-07-17 | Adjustable microlens with variable structural elements |
EP15741156.2A EP3170038B1 (en) | 2014-07-18 | 2015-07-17 | A tunable microlens with a variable structure element |
AU2015289046A AU2015289046B2 (en) | 2014-07-18 | 2015-07-17 | A tunable microlens with a variable structure element |
KR1020177004693A KR102432488B1 (en) | 2014-07-18 | 2015-07-17 | A tunable microlens with a variable structure element |
US15/325,706 US10473900B2 (en) | 2014-07-18 | 2015-07-17 | Tunable microlens with a variable structure element |
CA2955734A CA2955734C (en) | 2014-07-18 | 2015-07-17 | A tunable microlens with a variable structure element |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14177684.9 | 2014-07-18 | ||
EP14177684 | 2014-07-18 | ||
EP14177688 | 2014-07-18 | ||
EP14177688.0 | 2014-07-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016009078A1 true WO2016009078A1 (en) | 2016-01-21 |
Family
ID=53673097
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2015/066490 WO2016009078A1 (en) | 2014-07-18 | 2015-07-17 | A tunable microlens with a variable structure element |
PCT/EP2015/066491 WO2016009079A1 (en) | 2014-07-18 | 2015-07-17 | Piezoelectrically actuated optical lens |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2015/066491 WO2016009079A1 (en) | 2014-07-18 | 2015-07-17 | Piezoelectrically actuated optical lens |
Country Status (15)
Country | Link |
---|---|
US (2) | US10001629B2 (en) |
EP (2) | EP3170037B1 (en) |
JP (1) | JP6767357B2 (en) |
KR (1) | KR102432488B1 (en) |
CN (1) | CN106687830B (en) |
AU (1) | AU2015289046B2 (en) |
BR (1) | BR112017000999B1 (en) |
CA (1) | CA2955734C (en) |
DK (1) | DK3170037T3 (en) |
EA (1) | EA032785B1 (en) |
ES (1) | ES2737705T3 (en) |
HU (1) | HUE041523T2 (en) |
PT (1) | PT3170038T (en) |
TR (1) | TR201910972T4 (en) |
WO (2) | WO2016009078A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018154139A1 (en) | 2017-02-27 | 2018-08-30 | Polight As | Low wavefront error piezoelectrically actuated optical element |
WO2019002448A1 (en) * | 2017-06-30 | 2019-01-03 | Polight As | Adaptive lens |
WO2019224367A1 (en) * | 2018-05-24 | 2019-11-28 | Polight Asa | Optical element with stress distributing supporting structure |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7017775B2 (en) | 1999-08-10 | 2006-03-28 | S.C. Johnson & Son, Inc. | Container lid including venting and denesting features, and container having such a lid |
EP2781939B1 (en) * | 2013-03-18 | 2015-11-04 | poLight AS | Deformable polymeric lens |
ITUB20159497A1 (en) | 2015-12-24 | 2017-06-24 | St Microelectronics Srl | PIEZOELECTRIC MEMS DEVICE AND ITS MANUFACTURING PROCEDURE |
LU93084B1 (en) * | 2016-05-24 | 2017-12-22 | Luxembourg Inst Science & Tech List | Transparent piezoelectric device and method for manufacturing the same |
US11107630B2 (en) * | 2018-09-26 | 2021-08-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integration scheme for breakdown voltage enhancement of a piezoelectric metal-insulator-metal device |
CN110132502B (en) * | 2019-05-22 | 2021-05-25 | 北京航天试验技术研究所 | Active material capable of indicating existence of hydrogen through color change |
US11693295B2 (en) * | 2019-06-28 | 2023-07-04 | Taiwan Semiconductor Manufacturing Co., Ltd. | Auto-focusing device and method of fabricating the same |
TWI701474B (en) | 2019-07-17 | 2020-08-11 | 大立光電股份有限公司 | Optical imaging lens assembly, image capturing unit and electronic device |
TWI704389B (en) | 2019-08-14 | 2020-09-11 | 大立光電股份有限公司 | Optical photographing lens assembly, image capturing unit and electronic device |
EP4031691A4 (en) * | 2019-09-20 | 2022-11-09 | National University of Singapore | ELECTRONIC DEVICE WITH ONE OR MORE SINGLE-LAYER AMORPHOUS FILMS AND METHOD FOR PRODUCTION THEREOF |
RU2746857C1 (en) * | 2020-10-23 | 2021-04-21 | федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") | Method for controlling pulsed optical radiation |
US20240184100A1 (en) * | 2021-03-29 | 2024-06-06 | Polight Asa | Thermal expansion compensation in tunable lenses |
CN117320998A (en) * | 2021-11-17 | 2023-12-29 | 麦斯卓微电子(南京)有限公司 | MEMS assembly and process flow |
JP2024048194A (en) | 2022-09-27 | 2024-04-08 | 日亜化学工業株式会社 | Light Emitting Module |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070284971A1 (en) * | 2006-06-12 | 2007-12-13 | Kabushiki Kaisha Toshiba | Electronic device |
US20100118413A1 (en) * | 2008-11-10 | 2010-05-13 | Samsung Electronics Co., Ltd. | Micro-shutter device and method of manufacturing the same |
US20100165475A1 (en) * | 2008-12-30 | 2010-07-01 | Samsung Electronics Co., Ltd | Varifocal lens |
US20100208357A1 (en) * | 2005-05-14 | 2010-08-19 | Holochip Corporation | Fluidic lens with reduced optical aberration |
EP2246717A1 (en) * | 2009-04-29 | 2010-11-03 | Hand Held Products, Inc. | Focusing apparatus and terminal comprising variable focus lens assembly |
EP2465816A1 (en) * | 2010-12-16 | 2012-06-20 | Samsung Electronics Co., Ltd | Varifocal lens structure and method of manufacturing the same |
CN103558654A (en) * | 2013-03-18 | 2014-02-05 | 珀莱特公司 | Transparent optical device component |
US20140104696A1 (en) * | 2009-09-15 | 2014-04-17 | Commissariat A L'energie Atomique Et Aux Ene Alt | Optical device with a piezoelectrically actuated deformable membrane shaped as a continuous crown |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4344942B2 (en) | 2004-12-28 | 2009-10-14 | セイコーエプソン株式会社 | Inkjet recording head and piezoelectric actuator |
WO2009120152A1 (en) | 2008-04-23 | 2009-10-01 | Innovative Nano Systems Pte. Ltd. | Variable optical systems and components |
FR2950153B1 (en) * | 2009-09-15 | 2011-12-23 | Commissariat Energie Atomique | OPTICAL DEVICE WITH DEFORMABLE MEMBRANE WITH PIEZOELECTRIC ACTUATION |
US20120309761A1 (en) * | 2009-10-27 | 2012-12-06 | Agency For Science, Technology And Research | Fast-response photochromic nanostructured contact lenses |
US20120300171A1 (en) | 2011-05-27 | 2012-11-29 | Pixeloptics, Inc. | Programmable Ophthalmic Lenses |
US9405089B2 (en) * | 2014-05-22 | 2016-08-02 | Texas Instruments Incorporated | High-temperature isotropic plasma etching process to prevent electrical shorts |
CN205809412U (en) * | 2016-05-16 | 2016-12-14 | 中国科学院紫金山天文台 | A kind of with beam type piezoelectric actuator for the distorting lens driven |
-
2015
- 2015-07-17 WO PCT/EP2015/066490 patent/WO2016009078A1/en active Application Filing
- 2015-07-17 ES ES15738685T patent/ES2737705T3/en active Active
- 2015-07-17 EP EP15738685.5A patent/EP3170037B1/en active Active
- 2015-07-17 EA EA201790226A patent/EA032785B1/en not_active IP Right Cessation
- 2015-07-17 TR TR2019/10972T patent/TR201910972T4/en unknown
- 2015-07-17 DK DK15738685.5T patent/DK3170037T3/en active
- 2015-07-17 US US15/325,681 patent/US10001629B2/en active Active
- 2015-07-17 US US15/325,706 patent/US10473900B2/en active Active
- 2015-07-17 CN CN201580049250.7A patent/CN106687830B/en active Active
- 2015-07-17 PT PT15741156T patent/PT3170038T/en unknown
- 2015-07-17 AU AU2015289046A patent/AU2015289046B2/en active Active
- 2015-07-17 JP JP2017502245A patent/JP6767357B2/en active Active
- 2015-07-17 BR BR112017000999-4A patent/BR112017000999B1/en active IP Right Grant
- 2015-07-17 KR KR1020177004693A patent/KR102432488B1/en active Active
- 2015-07-17 CA CA2955734A patent/CA2955734C/en active Active
- 2015-07-17 HU HUE15741156A patent/HUE041523T2/en unknown
- 2015-07-17 EP EP15741156.2A patent/EP3170038B1/en active Active
- 2015-07-17 WO PCT/EP2015/066491 patent/WO2016009079A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100208357A1 (en) * | 2005-05-14 | 2010-08-19 | Holochip Corporation | Fluidic lens with reduced optical aberration |
US20070284971A1 (en) * | 2006-06-12 | 2007-12-13 | Kabushiki Kaisha Toshiba | Electronic device |
US20100118413A1 (en) * | 2008-11-10 | 2010-05-13 | Samsung Electronics Co., Ltd. | Micro-shutter device and method of manufacturing the same |
US20100165475A1 (en) * | 2008-12-30 | 2010-07-01 | Samsung Electronics Co., Ltd | Varifocal lens |
EP2246717A1 (en) * | 2009-04-29 | 2010-11-03 | Hand Held Products, Inc. | Focusing apparatus and terminal comprising variable focus lens assembly |
US20140104696A1 (en) * | 2009-09-15 | 2014-04-17 | Commissariat A L'energie Atomique Et Aux Ene Alt | Optical device with a piezoelectrically actuated deformable membrane shaped as a continuous crown |
EP2465816A1 (en) * | 2010-12-16 | 2012-06-20 | Samsung Electronics Co., Ltd | Varifocal lens structure and method of manufacturing the same |
CN103558654A (en) * | 2013-03-18 | 2014-02-05 | 珀莱特公司 | Transparent optical device component |
Non-Patent Citations (1)
Title |
---|
ALEX C M KUO: "Poly(dimethylsiloxane)", POLYMER DATA HANDBOOK, 1999, XP055230838, Retrieved from the Internet <URL:http://www.rubloffgroup.umd.edu/teaching/enma490fall03/resources/current/publications_etc/pdh-735(pdms).pdf> [retrieved on 20151124] * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018154139A1 (en) | 2017-02-27 | 2018-08-30 | Polight As | Low wavefront error piezoelectrically actuated optical element |
WO2019002448A1 (en) * | 2017-06-30 | 2019-01-03 | Polight As | Adaptive lens |
CN110998374A (en) * | 2017-06-30 | 2020-04-10 | 珀莱特股份有限公司 | Adaptive lens |
US11693159B2 (en) | 2017-06-30 | 2023-07-04 | Polight Asa | Adaptive lens |
WO2019224367A1 (en) * | 2018-05-24 | 2019-11-28 | Polight Asa | Optical element with stress distributing supporting structure |
CN112166361A (en) * | 2018-05-24 | 2021-01-01 | 珀莱特股份有限公司 | Optical element with stress distribution support structure |
US11448849B2 (en) | 2018-05-24 | 2022-09-20 | Polight Asa | Optical element with stress distributing supporting structure |
Also Published As
Publication number | Publication date |
---|---|
JP6767357B2 (en) | 2020-10-14 |
BR112017000999B1 (en) | 2021-02-17 |
DK3170037T3 (en) | 2019-07-29 |
EA201790226A1 (en) | 2017-07-31 |
EP3170037B1 (en) | 2019-04-24 |
US10001629B2 (en) | 2018-06-19 |
AU2015289046A1 (en) | 2017-02-02 |
EP3170037A1 (en) | 2017-05-24 |
BR112017000999A2 (en) | 2017-11-14 |
KR20170041754A (en) | 2017-04-17 |
US20170199357A1 (en) | 2017-07-13 |
ES2737705T3 (en) | 2020-01-15 |
EA032785B1 (en) | 2019-07-31 |
WO2016009079A9 (en) | 2017-01-12 |
EP3170038A1 (en) | 2017-05-24 |
US20170160442A1 (en) | 2017-06-08 |
KR102432488B1 (en) | 2022-08-12 |
WO2016009079A1 (en) | 2016-01-21 |
EP3170038B1 (en) | 2018-09-26 |
JP2017521718A (en) | 2017-08-03 |
CA2955734A1 (en) | 2016-01-21 |
CN106687830B (en) | 2019-05-10 |
AU2015289046B2 (en) | 2020-09-17 |
CN106687830A (en) | 2017-05-17 |
US10473900B2 (en) | 2019-11-12 |
HUE041523T2 (en) | 2019-05-28 |
PT3170038T (en) | 2018-12-24 |
TR201910972T4 (en) | 2019-08-21 |
CA2955734C (en) | 2023-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2015289046B2 (en) | A tunable microlens with a variable structure element | |
JP6254563B2 (en) | Optical device with piezoelectrically actuable deformable membrane | |
CN112166361B (en) | Optical element with stress distribution support structure | |
US9869802B2 (en) | Optical device with focal length variation | |
KR100956250B1 (en) | Wafer scale lens assembly manufacturing method and wafer scale lens assembly manufactured thereby | |
US8300317B2 (en) | Varifocal lens | |
KR20120045517A (en) | Optical apparatus | |
JP2008122909A (en) | Optical lens and manufacturing method thereof | |
US8411379B2 (en) | Optical device and associated methods | |
KR101375984B1 (en) | Method for producing a structure, optical component, optical layer stack | |
EP2192425A1 (en) | Varifocal lens and method of manufacturing the same | |
US10795136B2 (en) | Wafer level lens stack, optical system, electronic device and method | |
KR101675108B1 (en) | Varifocal lens and method for manufacturing the same | |
WO2014154646A1 (en) | Steerable moems device comprising a micro mirror | |
US20110170158A1 (en) | Optical shuttering device and method of manufacturing the same | |
US7623303B2 (en) | Solid tunable micro optical device and method | |
US9753245B2 (en) | Optical lens device | |
WO2022103464A1 (en) | Actively deformable metamirror | |
WO2018167738A1 (en) | Fast adaptive lens for the correction of optical aberrations | |
Lee et al. | A 4 bit digital liquid lens for variable focal length | |
KR20110079290A (en) | Image sensor and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15741156 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15325706 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2017502245 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2955734 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2015289046 Country of ref document: AU Date of ref document: 20150717 Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015741156 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015741156 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20177004693 Country of ref document: KR Kind code of ref document: A |