WO2015198408A1 - Optical switch device and information processing device using same - Google Patents
Optical switch device and information processing device using same Download PDFInfo
- Publication number
- WO2015198408A1 WO2015198408A1 PCT/JP2014/066762 JP2014066762W WO2015198408A1 WO 2015198408 A1 WO2015198408 A1 WO 2015198408A1 JP 2014066762 W JP2014066762 W JP 2014066762W WO 2015198408 A1 WO2015198408 A1 WO 2015198408A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical switch
- scale
- optical
- small
- scale optical
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 389
- 230000010365 information processing Effects 0.000 title claims abstract description 10
- 230000005540 biological transmission Effects 0.000 claims abstract description 73
- 238000000034 method Methods 0.000 description 8
- 238000004220 aggregation Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000013307 optical fiber Substances 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000005685 electric field effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/27—Arrangements for networking
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q3/00—Selecting arrangements
- H04Q3/42—Circuit arrangements for indirect selecting controlled by common circuits, e.g. register controller, marker
- H04Q3/52—Circuit arrangements for indirect selecting controlled by common circuits, e.g. register controller, marker using static devices in switching stages, e.g. electronic switching arrangements
Definitions
- the present invention relates to an optical switch device and an information processing device used in an optical communication network or a server.
- a data center is generally composed of a plurality of servers mounted on a rack, and the servers are connected to each other within the server rack or between server racks.
- Application of optical switches as well as electrical switches is being considered for connections between servers.
- the reason for introducing an optical switch is to increase the network capacity and increase the speed.
- the optical switch can eliminate the conversion between electricity / light and light / electricity, which is required for the electrical switch, power saving is also expected.
- there are some problems for application of optical switches For example, it is necessary to examine the configuration and control method of the optical switch, and there are still problems to be solved for full-scale practical use.
- Non-Patent Document 1 shows an application example of an optical switch to a data center network and a study for improving efficiency.
- An optical switch using a MEMS (Micro Electro Mechanical System) mirror has a large number of ports, and a single unit can connect a plurality of servers. If a plurality of servers can be freely interconnected, the network configuration in the data center can be freely changed.
- the large number of ports of the MEMS type optical switch is attractive in that respect, and the MEMS type optical switch is one of optical switches expected to be applied to a data center network.
- the MEMS type optical switch has a problem, and the switch time is as slow as 10 to 100 milliseconds. When controlling an optical switch, a transmission delay corresponding to the overhead of software or a control plane occurs.
- the delay required for path switching is said to be about 1 second.
- the delay required for this switching means that data transmission is impossible during that time, which causes deterioration in transmission efficiency of the network. Therefore, it is necessary to examine a method for shortening the switching time by devising a control method, and the present invention is also assumed to be used in this technical field.
- Non-Patent Document 2 realizes a large-scale switch having 300 ports or more. ing. However, the switch speed depends on the operating speed of the mirror and is as slow as about milliseconds.
- PLZT Pb, La, Zr, Ti
- Si optical switches enable high-speed switching in nanoseconds. However, it is difficult to increase the scale of the waveguide type optical switch.
- FIG. 1 shows the correlation between the switching time of the optical switch and the number of ports.
- optical switches used for optical connections between servers. If the number of ports of the optical switch is large, a plurality of devices (for example, servers) mounted inside and outside the rack can be connected to each other using one optical switch. In the case of a small scale, it is necessary to increase the number of optical switches, so that an installation space is required. Further, in order to freely connect a plurality of servers, it is necessary to connect small-scale optical switches in multiple stages. When the servers are connected by an optical switch, it is necessary to increase the switching speed of the optical switch in order to increase the efficiency of communication between the servers. Since the data transmission cannot be performed while the optical switch is switched, the data transmission unavailable time becomes long when the switching speed is low.
- An object of the present invention is to provide an information processing apparatus using an optical switch device that achieves both high-efficiency by large-scale and high-speed switching.
- the present invention adopts the structure described in the claims.
- the detailed structure of a large-scale and highly efficient optical switch device utilizing a small-scale high-speed switch optical switch and a large-scale low-speed switch optical switch will be described later.
- a typical invention of the present application will be described as follows. is there.
- a large-scale optical switch In a plurality of optical paths connecting a plurality of optical transmitters and a plurality of optical receivers mounted on a plurality of servers, etc., connected to a large-scale optical switch forming a plurality of paths and an input port of the large-scale optical switch Connected to an output port of a large-scale optical switch and a small-scale optical switch of k (k is an integer of 1 or more and n or less) ⁇ n (n is an integer of 2 or more) connecting the optical transmitter and the large-scale optical switch, It consists of an n ⁇ k small-scale optical switch that connects an optical receiver and a large-scale optical switch.
- Each of the small-scale optical switches is m (m is an integer of 1 or more), and the number of input / output ports of the large-scale optical switch is each nm or more.
- An optical signal from a certain optical transmitter is transmitted to a certain optical receiver through one optical path formed by a small-scale optical switch and a large-scale optical switch.
- the large-scale optical switch means an optical switch having a large number of input and output ports, and the number of input / output ports (nm) is preferably 8 or more, for example. Further, a non-blocking optical switch in which switching between the ports does not interfere with each other is preferable.
- the small-scale optical switch means an optical switch having a small number of input and output ports.
- the number of input / output ports is preferably less than 8, for example, and the number of input and output ports, that is, k and n. The number may be different.
- k is defined as 1 or more and n or less, and n is defined as 2 or more.
- the small-scale optical switch is 1 ⁇ n or n ⁇ 1.
- the small-scale optical switch selects an input / output port that constitutes a route preset by the large-scale optical switch.
- the path switching time between the first and second optical signals depends on the switching speed of the small-scale optical switch, but the small-scale optical switch can be switched at a higher speed than the large-scale optical switch. Transmission by switching becomes possible.
- the number of optical transceivers that can be connected is determined by the number of ports of the large-scale optical switch. When the number of ports of the small-scale optical switch is n and the number is m, the number of input / output ports of the large-scale optical switch is required to be nm or more.
- a small-scale optical switch capable of high-speed switching and a large-scale optical switch capable of large-scale switching are combined with each other, and a low-speed large-scale optical switch is used as a tool for configuring a plurality of paths.
- a high-speed small-scale optical switch is used as a tool for selecting a route to be used.
- the slow switching speed of the large-scale optical switch can be concealed, so the switching speed of the small-scale optical switch determines the transmission efficiency, and the transmission efficiency can be improved.
- a configuration in which a large-scale optical switch and a small-scale optical switch are combined as in the present invention may be applied to an optical path cross-connect device as described in Patent Document 1.
- the optical path cross-connect device is configured to connect a small-scale optical switch to a spare large-scale optical switch in preparation for failure of a large-scale optical switch.
- the large-scale optical switch is not used as a backup route, but is used as a reserved route, so that the configuration and effects including the controller and control method are different. Will be specified in advance.
- FIG. 4 is a schematic diagram of data transmission and route reservation / switching from the same transmitter, and shows a conventional large-scale optical switch.
- FIG. 3 is a schematic diagram of data transmission from the same transmitter and path reservation / switching, and shows the optical switch of the present invention.
- FIG. 4 is a schematic diagram of data transmission from the same transmitter and path reservation / switching, and shows an optical switch of the present invention (data transmission time> reservation + large-scale optical switch path switching time).
- the figure which shows the optical switch structure and route reservation at the time of n 3.
- FIG. 2 shows the configuration of the optical switch presented in the present invention.
- the input port of one nm ⁇ nm large-scale optical switch 10 is connected to m 1 ⁇ n small-scale optical switches 20, and the output port of the large-scale optical switch 10 is m n ⁇ 1 small-scale switches. 21 is connected. Furthermore, each small-scale optical switch 20, 21 is connected to a transmitter 30 and a receiver 31, respectively.
- n 2.
- 10 is nm ⁇ nm large-scale optical switch
- 30 is An optical transmitter 31 is an optical receiver.
- each switch during data transmission is a path connecting the 1 ⁇ 2 small-scale optical switch and the large-scale optical switch
- 12 is a path connecting the large-scale optical switch and the 2 ⁇ 1 small-scale optical switch
- 41 is a transmission path of the optical signal.
- the optical switch 20 1 can select either of the route 11 11 or path 11 12, wherein the selecting the path 11 11.
- the large-scale optical switch 10 by leaving to establish a path between the paths 11 11 and the path 12 11, the optical signal from the path 11 11 is transmitted to the path 12 11.
- the route 12 11 or the route 12 12 can be selected.
- the route 12 11 is selected. Therefore, the signal from the path 12 11 is transmitted to the optical receiver 31 1 through the 2 ⁇ 1 small-scale optical switch 21 1 .
- the large-scale optical switch 10 establishes a path for connecting the optical transceivers 30 and 31, and the small-scale optical switches 20 and 21 play a role of selecting a path established in the large-scale switch 10.
- 1 ⁇ 2 small-scale optical switch 20 1 , the 2 ⁇ 1 small-scale optical switch 21 1, and the large-scale optical switch 10 have unused paths.
- 1 ⁇ 2 is a path 12 12 of the small optical switch 20 1 of the route 11 12 and 2 ⁇ 1 small optical switch 21 1.
- there is only one path through which an optical signal can be transmitted so there is always one unused path.
- FIG. 4 shows an optical switch configuration at the time of route reservation.
- Reference numeral 42 denotes a reserved route. If the optical transmitter 30 1 transmits data to the optical receiver 31 m after transmitting the data to the optical receiver 31 1, 1 ⁇ 2 unused paths of the optical switch 20 1 at the time of data transmission to the optical receiver 31 1 11 12 and the unused path of 2 ⁇ 1 optical switch 21 m , for example, 12 m2 are used to reserve path 42 of large-scale optical switch 10.
- FIG. 5 shows repetition of route switching and reservation. As shown in FIG. 5, the unused route is used for route reservation corresponding to the next destination. For example, in FIG. 5, a route to the optical receiver 31 m-1 is reserved. Since the route reservation is executed simultaneously with the data transmission, it is possible to save time in comparison with the conventional procedure for executing the route reservation / switching after the data transmission.
- FIG. 6 shows a schematic diagram of data transmission and route reservation / switching from the same transmitter, that is, a relationship in time axis of data transmission, reservation, and route switching.
- FIG. 6A shows a conventional case in which only the large-scale optical switch 10 is used. Reservation and path switching to destination 2 are executed after data transmission to destination 1, and data is transmitted to destination 2 after the path is established. Thereafter, the procedure for establishing the next route after data transmission is always repeated.
- the reservation means that the right to use the path is obtained by confirming whether or not data transmission to the destination is possible, and the path switching means that the optical path of the large-scale optical switch 10 is switched. In the conventional example, data transmission cannot be performed at the time of reservation and path switching.
- FIG. 6B shows a time series in the optical switch of the present invention.
- data transmission to destination 1 reservation to destination 2 and path switching of the large-scale optical switch are executed simultaneously.
- the paths of the small-scale optical switches 20 and 21 are switched, and data is transmitted to the destination 2.
- reservation and path switching of destination 3 are executed, and data transmission and path reservation are always executed simultaneously. This is a concealment of transmission unavailable time in the conventional example. As shown in FIG.
- the data transmission unavailable time is defined by the switching time 54 of the small-scale optical switch.
- a small-scale optical switch is configured with a waveguide-type high-speed switching optical switch (LiNbO 3 , PLZT, compound semiconductor, Si, etc.), high-speed switching in the nanosecond order is possible, so the data transmission unavailable time is short, The optical switch system has good transmission efficiency.
- FIG. 6C shows the case of the optical switch of the present invention (data transmission time ⁇ reservation + large-scale optical switch path switching time).
- the data transmission time 51 is a data transmission time
- 52 is a reservation
- 53 is a large-scale optical switch path switch
- 54 is a small-scale optical switch path switch.
- the data transmission time 51 may be shorter than the total time of the reservation 52 and the large-scale optical switch path switching 53.
- the data transmission unavailable time at this time is a time obtained by adding the small-scale optical switch path switching time 54 to the time obtained by subtracting the data transmission time from the total time of the reservation 52 and the large-scale optical switch path switching 53. If the small-scale optical switch path switching time 54 is short, even in this case, the data transmission disabled time can be made shorter than in the conventional case (FIG. 6A). In order to obtain the effect of the present invention, it is ideal to make the small-scale optical switch path switching time 54 as short as possible, but it is necessary to make it at least shorter than the large-scale optical switch path switching time 53.
- the path switching timing of the small optical switches 20 and 21 is when the path reservation is completed and the previous data transmission is completed, and it is desirable to switch the two small optical switches 20 and 21 simultaneously.
- the reservation of the route using the large-scale optical switch 10 means that the optical path switching of the optical switch is advanced in advance and the route is established, and if it is a spatial non-blocking optical switch such as a MEMS switch, all routes Can be set without interfering with each other. Even if the large-scale optical switch 10 has reserved a route in advance, the route between the 1 ⁇ 2 small-scale optical switch 20 and the 2 ⁇ 1 small-scale optical switch 21 has not been established. The light is blocked and leakage is suppressed.
- the number of routes that can be reserved can be increased, and a plurality of reserved routes can be established simultaneously.
- Data transmission unavailable time can be further shortened. For example, as shown in FIG. 6C, even when the data transmission time 51 is shorter than the sum of the reservation 52 and the large-scale optical switch route switching time 54, the route reservation for the destinations 2 and 3 can be started almost simultaneously.
- the data transmission unavailable time from the destination 1 to the destination 2 is equivalent to that in FIG. 6C, but the data transmission unavailable time from the destination 2 to the destination 3 can be equivalent to that in FIG. 6B.
- n is increased, the optical loss in the small-scale optical switches 20 and 21 increases, and the number of ports of the large-scale optical switch 10 required when the required number of optical transceivers does not change.
- n has an upper limit, and 1 ⁇ n ⁇ 10 is considered to be a realistic value.
- the number of ports nm of the large-scale optical switch 10 is determined by the number of small-scale optical switches 20 and 21 to be connected (m) and the number of ports of the small-scale optical switches 20 and 21 (n).
- the number of ports of the large-scale optical switch 10 is nm, but it may be greater than or equal to nm in consideration of additionally installing the optical transceivers 30 and 31.
- the optical transmission apparatus in which the optical switch of the present invention is introduced is assumed to be used in a data center or an HPC (High Performance Computer), and needs to be scalable to support the addition of the transceivers 30 and 31.
- FIG. 8 shows an optical switch configuration when l> m. As shown in FIG. 8, by setting the number of ports of the large-scale optical switch 10 to nl (l> m), even when m optical transceivers 30 and 31 are initially connected, (lm) The number of optical transceivers 30 and 31 can be increased.
- the large-scale optical switch 10 is characterized by a large number of ports, and the small-scale optical switches 20 and 21 are characterized by a high switching speed.
- the large-scale optical switch 10 is preferably constituted by a spatial optical switch such as MEMS, and the small-scale optical switches 20 and 21 are preferably constituted by waveguide-type optical switches.
- a waveguide type optical switch using a quartz PLC Planar Lightwave Circuit
- the small-scale optical switches 20 and 21 may be inserted between the optical transceivers 30 and 31 and the large-scale optical switch 10. For example, when it is installed on the optical transceiver 30 or 31 side, when it is installed on the large-scale optical switch 10 side, or when it is installed as a single device without being incorporated in either of them, there is any mounting place. Think.
- FIG. 9 shows management by the controller.
- FIG. 9 specifically shows a configuration in which the controller 60 is mounted.
- Reference numeral 61 denotes a SW control signal line
- 62 denotes a communication line between the transceiver and the controller.
- the controller 60 is connected by a signal line 61 for controlling the large-scale optical switch 10 and the small-scale optical switches 20 and 21.
- a route reservation (including switching) of the large-scale optical switch 10 and a route switch of the small-scale optical switches 20 and 21 are instructed.
- the controller 60 By grasping the usage status of the large-scale optical switch 10 and the small-scale optical switches 20 and 21 collectively by the controller 60, it is possible to avoid a collision in the route reservation to the next destination. Since the controller 60 needs to communicate with the optical transceivers 30 and 31, the controller 60 is connected by a communication line 62. Transmission information such as destination and data amount is transmitted from the optical transmitter 30 to the controller 60. The controller executes path reservation and path switching of the large-scale optical switch 10 based on the information. After confirming that the previous data transmission has been completed and that the path switching of the large-scale optical switch 10 has been completed, the controller gives the optical transmitter 30 permission for the next data transmission. At the same time, the small-scale optical switches 20 and 21 are instructed to switch routes. On the other hand, it is preferable that the optical receivers 31 be connected to each other so that they can be known to the controller when a failure or the like occurs such as when a transmission signal error occurs.
- the optical transmission apparatus of the present invention can be functioned as a part of an information processing apparatus by being mounted inside or outside a server rack, for example.
- FIG. 10 shows a mounting image inside and outside the server rack.
- FIG. 10 shows a specific example mounted on the server rack 70.
- a plurality of servers 71 are mounted in the server rack 70.
- Reference numeral 72 denotes a Top of Rack SW (optical switch or electrical switch), 73 denotes an aggregation SW (optical switch or electrical switch), and 74 denotes an optical fiber.
- a ToR (Top of rack) switch 72 that enables connection between the servers 71 and the inside and outside of the rack is mounted.
- the optical switch of the present invention can be applied to connect a plurality of servers 71.
- the optical fiber 74 is used for wiring between the server 71 and the ToR switch 72.
- An aggregation switch 73 generally exists as a switch for connecting the racks, and an electrical switch or a low-speed switching optical switch is used. It is possible to apply the optical switch of the present invention to such an aggregation switch 73 as well.
- storage etc. are also mounted in the server rack 70, only the server 71 was described here in order to simplify description.
- the following effects are obtained by the optical switch unit using a large-scale optical switch that forms multiple paths and a plurality of small-scale optical switches connected to the input / output ports of the large-scale optical switch, and the control system that controls each optical switch It is done.
- a small-scale optical switch capable of high-speed switching and a large-scale optical switch capable of high-speed switching but having a low switching speed are combined with each other.
- a large-scale and high-speed switchable optical switch can be configured.
- SW control Signal line 62 Communication line between transceiver and controller, 70 ... Server rack, 71 ... Server, 72 ... Top of Rack SW (optical switch or electrical switch), 73 ... Aggregation SW (optical switch) 74 or optical fiber.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Computing Systems (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Signal Processing (AREA)
- Optical Communication System (AREA)
Abstract
In the present invention, an optical transmission device has a plurality of optical transmitters, a plurality of optical receptors and a plurality of optical paths for connecting each of the optical transmitters and optical receptors. The optical paths are formed by large-scale optical switches equipped with a plurality of input and output ports; small-scale optical switches with a fewer number of ports than the number of ports on the large-scale switches are connected between the optical transmitters and the input ports of the large-scale optical switches; and small-scale optical switches with a fewer number of ports than the number of ports on the large-scale switches are connected between the output ports of the large-scale optical switches and the optical receptors. By using this optical transmission device, an information processing device that uses optical switches and that achieves both large scale and increased use efficiency due to high-speed switching is realized.
Description
本発明は、光通信ネットワークやサーバなどで用いる光スイッチ装置及び情報処理装置に関する。
The present invention relates to an optical switch device and an information processing device used in an optical communication network or a server.
モバイル端末の普及やクラウドをベースとしたストレージやコンピューティングの急速な普及に伴い、通信ネットワークだけでなく、データセンタ内のネットワークの大容量化、高速化が求められている。データセンタは一般的にラックに搭載された複数のサーバから構成されており、サーバラック内やサーバラック間で各サーバが相互に接続されている。各サーバ間の接続には電気スイッチだけでなく、光スイッチの適用が検討されている。光スイッチを導入する理由は、ネットワーク容量の増大と高速化であるが、光スイッチによって電気スイッチで必要とされる電気/光と光/電気の変換を省くことができるため、省電力化も期待されている。しかしながら、光スイッチの適用に向けてはいくつかの課題がある。例えば、光スイッチの構成や制御方式を検討する必要があり、本格的な実用化に向けて解決すべき課題が残っている。
With the spread of mobile terminals and the rapid spread of cloud-based storage and computing, there is a need for not only communication networks but also large-capacity and high-speed networks in data centers. A data center is generally composed of a plurality of servers mounted on a rack, and the servers are connected to each other within the server rack or between server racks. Application of optical switches as well as electrical switches is being considered for connections between servers. The reason for introducing an optical switch is to increase the network capacity and increase the speed. However, since the optical switch can eliminate the conversion between electricity / light and light / electricity, which is required for the electrical switch, power saving is also expected. Has been. However, there are some problems for application of optical switches. For example, it is necessary to examine the configuration and control method of the optical switch, and there are still problems to be solved for full-scale practical use.
非特許文献1にはデータセンタネットワークへの光スイッチの適用事例とともに高効率化を図るための検討が示されている。MEMS(Micro Electro Mechanical System)ミラーを使った光スイッチはポート数が多く、1台で複数のサーバを接続することが可能である。複数のサーバ間を自由に相互接続することが出来れば、データセンタ内のネットワーク構成が自由に変えられる。MEMS型光スイッチの大規模なポート数はその点で魅力があり、MEMS型光スイッチはデータセンタネットワークへの適用が期待されている光スイッチの1つである。しかしながら、MEMS型光スイッチにも課題があり、スイッチ時間が10-100ミリ秒と遅いことである。光スイッチを制御する上ではソフトウエアやコントロールプレーンのオーバーヘッド分の伝送遅延が発生するため、経路切替に要する遅延は、約1秒とも言われている。この切替に要する遅延は、その間はデータ伝送が不可能であることを意味しており、ネットワークの伝送効率の劣化原因となる。そこで、制御方式の工夫により切替時間を短縮させる方法を検討する必要があり、本発明もこの技術分野での活用を想定している。
Non-Patent Document 1 shows an application example of an optical switch to a data center network and a study for improving efficiency. An optical switch using a MEMS (Micro Electro Mechanical System) mirror has a large number of ports, and a single unit can connect a plurality of servers. If a plurality of servers can be freely interconnected, the network configuration in the data center can be freely changed. The large number of ports of the MEMS type optical switch is attractive in that respect, and the MEMS type optical switch is one of optical switches expected to be applied to a data center network. However, the MEMS type optical switch has a problem, and the switch time is as slow as 10 to 100 milliseconds. When controlling an optical switch, a transmission delay corresponding to the overhead of software or a control plane occurs. Therefore, the delay required for path switching is said to be about 1 second. The delay required for this switching means that data transmission is impossible during that time, which causes deterioration in transmission efficiency of the network. Therefore, it is necessary to examine a method for shortening the switching time by devising a control method, and the present invention is also assumed to be used in this technical field.
MEMSミラーによる反射や、ピエゾによる偏向を用いて空間的な光路変換が可能な光スイッチはスイッチポート数を増やすことが可能であり、たとえば非特許文献2では300ポート以上の大規模スイッチを実現している。しかしながら、スイッチ速度はミラーの動作速度等に依存し、ミリ秒程度と遅い。一方で導波路型の光スイッチで電界効果を用いた屈折率変化を利用した場合、高速切替が可能である。たとえば、PLZT (Pb, La, Zr, Ti)やSiの光スイッチではナノ秒での高速切替が可能になっている。しかしながら、導波路型の光スイッチは大規模化が難しい。導波路構造で大規模な光スイッチを実現する場合、2×2の小規模な光スイッチを多段に接続して大規模化を実現するのが一般的である。使用される2×2小規模光スイッチの数は大規模光スイッチのポート数の増加とともに増加する。すなわち、伝播する小規模光スイッチの数が増加するため、光の伝播損失が増大する。図1に光スイッチの切替時間とポート数の相関を示す。現段階では高速切替が可能かつポート数が多い大規模光スイッチは実現していない。
An optical switch capable of spatial optical path conversion using reflection by a MEMS mirror or deflection by a piezo can increase the number of switch ports. For example, Non-Patent Document 2 realizes a large-scale switch having 300 ports or more. ing. However, the switch speed depends on the operating speed of the mirror and is as slow as about milliseconds. On the other hand, when a refractive index change using the electric field effect is used in a waveguide type optical switch, high-speed switching is possible. For example, PLZT (Pb, La, Zr, Ti) and Si optical switches enable high-speed switching in nanoseconds. However, it is difficult to increase the scale of the waveguide type optical switch. When a large-scale optical switch is realized with a waveguide structure, it is common to realize a large scale by connecting 2 × 2 small-scale optical switches in multiple stages. The number of 2 × 2 small-scale optical switches used increases as the number of ports of the large-scale optical switch increases. That is, since the number of small-scale optical switches that propagate is increased, the propagation loss of light increases. FIG. 1 shows the correlation between the switching time of the optical switch and the number of ports. At present, large-scale optical switches that can be switched at high speed and have a large number of ports have not been realized.
サーバ間の光接続に使用される光スイッチにも大規模化が求められている。光スイッチのポート数が多ければ、ラック内外に搭載する複数の装置(例えばサーバ)を1台の光スイッチを使って相互に接続することが可能である。小規模である場合は光スイッチ台数を増やす必要があり、設置スペースが必要となり、更に複数のサーバを自由につなげるには小規模光スイッチを多段に接続する必要がある。サーバ間を光スイッチで接続した時に、サーバ間の通信の利用効率をあげるためには光スイッチの切替速度を速くする必要がある。光スイッチが切り替わっている間はデータ伝送が出来ないため、切替速度が遅い場合はデータ伝送不可時間が長くなる。
Large scale is also required for optical switches used for optical connections between servers. If the number of ports of the optical switch is large, a plurality of devices (for example, servers) mounted inside and outside the rack can be connected to each other using one optical switch. In the case of a small scale, it is necessary to increase the number of optical switches, so that an installation space is required. Further, in order to freely connect a plurality of servers, it is necessary to connect small-scale optical switches in multiple stages. When the servers are connected by an optical switch, it is necessary to increase the switching speed of the optical switch in order to increase the efficiency of communication between the servers. Since the data transmission cannot be performed while the optical switch is switched, the data transmission unavailable time becomes long when the switching speed is low.
本発明は、大規模かつ高速切替による高利用効率化を両立する光スイッチ装置を利用した情報処理装置を提供することを目的とする。
An object of the present invention is to provide an information processing apparatus using an optical switch device that achieves both high-efficiency by large-scale and high-speed switching.
上記目的を達成するために、本発明は特許請求の範囲に記載の構成を採用する。小規模高速切替光スイッチと大規模低速切替光スイッチを活用した大規模かつ利用効率の高い光スイッチ装置についての詳細な構造は後述するが、本願についての代表的な発明を説明すると下記のとおりである。
In order to achieve the above object, the present invention adopts the structure described in the claims. The detailed structure of a large-scale and highly efficient optical switch device utilizing a small-scale high-speed switch optical switch and a large-scale low-speed switch optical switch will be described later. A typical invention of the present application will be described as follows. is there.
複数のサーバ等に搭載された複数の光送信器と複数の光受信器を各々接続する複数の光経路において、複数の経路を形成する大規模光スイッチと該大規模光スイッチの入力ポートに接続され、光送信器と大規模光スイッチをつなぐk(kは1以上n以下の整数)×n(nは2以上の整数)の小規模光スイッチと大規模光スイッチの出力ポートに接続され、光受信器と大規模光スイッチをつなぐn×kの小規模光スイッチで構成されている。小規模光スイッチはそれぞれm(mは1以上の整数)台あり、大規模光スイッチの入出力のポート数はそれぞれnm以上である。ある光送信器からの光信号はある光受信器まで小規模光スイッチと大規模光スイッチで形成される1つの光経路を通じて伝送される。ここで、大規模光スイッチとは入力と出力のポート数が多い光スイッチのことを意味し、入出力ポート数 (nm)は例えば8以上が好ましい。更に各ポート間の切り替えが互いに干渉しない非閉塞型光スイッチが好ましい。小規模光スイッチとは入力と出力のポート数が少ない光スイッチのことを意味し、入出力ポート数(k及びn)は例えば8未満が好ましく、なおかつ入力と出力ポート数、すなわちkとnの数が異なっても良い。本発明でkは1以上n以下、nは2以上と定義し、以下の説明では小規模光スイッチを1×nやn×1としている。
In a plurality of optical paths connecting a plurality of optical transmitters and a plurality of optical receivers mounted on a plurality of servers, etc., connected to a large-scale optical switch forming a plurality of paths and an input port of the large-scale optical switch Connected to an output port of a large-scale optical switch and a small-scale optical switch of k (k is an integer of 1 or more and n or less) × n (n is an integer of 2 or more) connecting the optical transmitter and the large-scale optical switch, It consists of an n × k small-scale optical switch that connects an optical receiver and a large-scale optical switch. Each of the small-scale optical switches is m (m is an integer of 1 or more), and the number of input / output ports of the large-scale optical switch is each nm or more. An optical signal from a certain optical transmitter is transmitted to a certain optical receiver through one optical path formed by a small-scale optical switch and a large-scale optical switch. Here, the large-scale optical switch means an optical switch having a large number of input and output ports, and the number of input / output ports (nm) is preferably 8 or more, for example. Further, a non-blocking optical switch in which switching between the ports does not interfere with each other is preferable. The small-scale optical switch means an optical switch having a small number of input and output ports. The number of input / output ports (k and n) is preferably less than 8, for example, and the number of input and output ports, that is, k and n. The number may be different. In the present invention, k is defined as 1 or more and n or less, and n is defined as 2 or more. In the following description, the small-scale optical switch is 1 × n or n × 1.
本構成によって高速切替と大規模化を両立できる主な理由は下記のとおりである。1台の光送信器から異なる光受信器に光信号を逐次伝送する場合について簡単に説明する。光送信器に接続されている1×nの小規模光スイッチの1つの出力ポート、大規模光スイッチの1つの入力ポート、大規模光スイッチの1つの出力ポート及びn×1の小規模光スイッチの1つの入力ポートによって光経路が形成され、1番目の光信号が所望の光受信器へ伝送されている。2番目の光信号の宛先(送信先の受信器)が1番目の光信号の宛先と異なる場合、大規模光スイッチの未使用の異なる入出力ポートを使って、2番目の光信号用の経路を予め設定しておく。1番目の光信号の伝送の完了後、小規模光スイッチは大規模光スイッチにて予め設定した経路を構成している入出力ポートを選択する。この時、1番目と2番目の光信号間の経路切替時間は小規模光スイッチの切替速度に依存するが、小規模光スイッチは大規模光スイッチよりも高速に切替が可能であるため、高速切替による伝送が可能になる。接続可能な光送受信器の数は大規模光スイッチのポート数で決まる。小規模光スイッチのポート数をnとし、台数をmとした場合は、大規模光スイッチの入出力ポート数はそれぞれnm以上必要となる。
The main reasons that this configuration can achieve both high-speed switching and large scale are as follows. A case where optical signals are sequentially transmitted from one optical transmitter to different optical receivers will be briefly described. One output port of 1 × n small-scale optical switch connected to the optical transmitter, one input port of large-scale optical switch, one output port of large-scale optical switch, and n × 1 small-scale optical switch An optical path is formed by one input port, and the first optical signal is transmitted to a desired optical receiver. If the destination of the second optical signal (destination receiver) is different from the destination of the first optical signal, the path for the second optical signal using a different unused input / output port of the large-scale optical switch Is set in advance. After the transmission of the first optical signal is completed, the small-scale optical switch selects an input / output port that constitutes a route preset by the large-scale optical switch. At this time, the path switching time between the first and second optical signals depends on the switching speed of the small-scale optical switch, but the small-scale optical switch can be switched at a higher speed than the large-scale optical switch. Transmission by switching becomes possible. The number of optical transceivers that can be connected is determined by the number of ports of the large-scale optical switch. When the number of ports of the small-scale optical switch is n and the number is m, the number of input / output ports of the large-scale optical switch is required to be nm or more.
本発明では高速切替可能な小規模光スイッチと切替速度は低速だが大規模化が可能な大規模光スイッチを相互に組み合わせ、複数の経路を構成するツールとして低速大規模光スイッチを利用し、複数の経路の内、使用する経路を選択するツールとして高速小規模光スイッチを利用することを特徴としている。更に予め経路を予約することで、大規模光スイッチの遅い切替速度を隠蔽できるため、小規模光スイッチの切替速度が伝送効率を決定し、伝送効率を向上させることが出来る。本発明のように大規模光スイッチと小規模光スイッチを組み合わせた構成は、特許文献1にも記載されるような光パスクロスコネクト装置に適用されている場合がある。光パスクロスコネクト装置では大規模光スイッチの故障に備え、小規模光スイッチを予備の大規模光スイッチにも接続する構成となる。本発明の構成に類似しているものの、本発明では大規模光スイッチを予備系の経路として使用するのではなく、予約経路として使用するため、コントローラや制御方式を含めその構成及び効果が異なることを予め明示しておくことにする。
In the present invention, a small-scale optical switch capable of high-speed switching and a large-scale optical switch capable of large-scale switching are combined with each other, and a low-speed large-scale optical switch is used as a tool for configuring a plurality of paths. Among these routes, a high-speed small-scale optical switch is used as a tool for selecting a route to be used. Furthermore, by reserving the route in advance, the slow switching speed of the large-scale optical switch can be concealed, so the switching speed of the small-scale optical switch determines the transmission efficiency, and the transmission efficiency can be improved. A configuration in which a large-scale optical switch and a small-scale optical switch are combined as in the present invention may be applied to an optical path cross-connect device as described in Patent Document 1. The optical path cross-connect device is configured to connect a small-scale optical switch to a spare large-scale optical switch in preparation for failure of a large-scale optical switch. Although it is similar to the configuration of the present invention, in the present invention, the large-scale optical switch is not used as a backup route, but is used as a reserved route, so that the configuration and effects including the controller and control method are different. Will be specified in advance.
本発明によれば、大規模かつ高速切替による高利用効率化を両立する光スイッチ装置を利用した情報処理装置が実現できる。
According to the present invention, it is possible to realize an information processing apparatus that uses an optical switch device that achieves both large-scale and high utilization efficiency by high-speed switching.
以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。また、以下の実施の形態では、特に必要なときを除き、同一または同様な部分の説明を原則として繰り返さない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments, and the repetitive description thereof will be omitted. Also, in the following embodiments, the description of the same or similar parts will not be repeated in principle unless particularly necessary.
本発明で提示する光スイッチの構成を図2に示す。1台のnm×nm大規模光スイッチ10の入力ポートがm台の1×nの小規模光スイッチ20に接続され、大規模光スイッチ10の出力ポートがm台のn×1の小規模スイッチ21に接続されている。更に各小規模光スイッチ20、21はそれぞれ送信器30及び受信器31に接続されている。図2ではn=2としている。10はnm×nm大規模光スイッチ、20はk×n 小規模光スイッチ(k=1,n=2)、21はn×k 小規模光スイッチ(k=1,n=2)、30は光送信器、31は光受信器を示す。
FIG. 2 shows the configuration of the optical switch presented in the present invention. The input port of one nm × nm large-scale optical switch 10 is connected to m 1 × n small-scale optical switches 20, and the output port of the large-scale optical switch 10 is m n × 1 small-scale switches. 21 is connected. Furthermore, each small-scale optical switch 20, 21 is connected to a transmitter 30 and a receiver 31, respectively. In FIG. 2, n = 2. 10 is nm × nm large-scale optical switch, 20 is k × n small-scale optical switch (k = 1, n = 2), 21 is n × k small-scale optical switch (k = 1, n = 2), 30 is An optical transmitter 31 is an optical receiver.
図3を用いてデータ伝送時の各スイッチの役割を説明する。11は1×2小規模光スイッチと大規模光スイッチをつなぐ経路、12は大規模光スイッチと2×1小規模光スイッチをつなぐ経路、41は光信号の伝送経路を示す。データを送信器301から受信器311に伝送する場合、光送信器301からの光信号は1×2小規模光スイッチ201に接続される。光スイッチ201は経路1111もしくは経路1112のどちらかを選択できるが、ここでは経路1111を選択する。大規模光スイッチ10は経路1111と経路1211間の経路を確立しておくことで、経路1111からの光信号は経路1211に伝送される。2×1小規模光スイッチ211では経路1211もしくは経路1212を選択できるが、ここでは経路1211を選択する。したがって経路1211からの信号は2×1小規模光スイッチ211を通じて光受信器311に送信される。大規模光スイッチ10は光送受信器30、31を接続するための経路を確立し、小規模光スイッチ20、21はその大規模スイッチ10で確立されている経路を選択する役割を担っている。
The role of each switch during data transmission will be described with reference to FIG. 11 is a path connecting the 1 × 2 small-scale optical switch and the large-scale optical switch, 12 is a path connecting the large-scale optical switch and the 2 × 1 small-scale optical switch, and 41 is a transmission path of the optical signal. When transmitting data to the receiver 31 1 from the transmitter 30 1, the optical signal from the optical transmitter 30 1 is connected to the 1 × 2 small optical switch 20 1. Although the optical switch 20 1 can select either of the route 11 11 or path 11 12, wherein the selecting the path 11 11. The large-scale optical switch 10 by leaving to establish a path between the paths 11 11 and the path 12 11, the optical signal from the path 11 11 is transmitted to the path 12 11. In the 2 × 1 small-scale optical switch 21 1 , the route 12 11 or the route 12 12 can be selected. Here, the route 12 11 is selected. Therefore, the signal from the path 12 11 is transmitted to the optical receiver 31 1 through the 2 × 1 small-scale optical switch 21 1 . The large-scale optical switch 10 establishes a path for connecting the optical transceivers 30 and 31, and the small-scale optical switches 20 and 21 play a role of selecting a path established in the large-scale switch 10.
ここで、1×2小規模光スイッチ201、2×1小規模光スイッチ211及び大規模光スイッチ10には未使用経路があることが分かる。1×2小規模光スイッチ201の経路1112と2×1小規模光スイッチ211の経路1212である。その他の小規模光スイッチにおいても光信号を伝送できる経路は1つであるため、必ず未使用経路が1つずつ存在している。この未使用経路を利用して予め次の経路を確保することで、大規模光スイッチ10の切替時間に起因した伝送遅延を軽減する。
Here, it can be seen that the 1 × 2 small-scale optical switch 20 1 , the 2 × 1 small-scale optical switch 21 1, and the large-scale optical switch 10 have unused paths. 1 × 2 is a path 12 12 of the small optical switch 20 1 of the route 11 12 and 2 × 1 small optical switch 21 1. In other small-scale optical switches, there is only one path through which an optical signal can be transmitted, so there is always one unused path. By securing the next route in advance using this unused route, the transmission delay due to the switching time of the large-scale optical switch 10 is reduced.
図4に経路予約時の光スイッチ構成を示す。42は予約経路を示す。光送信器301が光受信器311へデータを伝送した後に光受信器31mへデータを伝送する場合、光受信器311へのデータ伝送時に1×2光スイッチ201の未使用経路1112と2×1光スイッチ21mの未使用経路、例えば12m2を使って大規模光スイッチ10の経路42を予約する。光受信器311へのデータ伝送が完了し、光送信器301の宛先が光受信器31mへと変更になった場合、1×2小規模光スイッチ201と2×1小規模光スイッチ21mの経路をそれぞれ経路1112及び経路12m2に切替えることで、光受信器31mへの伝送経路が確立でき、データ伝送が可能になる。この時、経路1111と経路1211には光信号が伝送されなくなるため、未使用経路が再び出来る。図5は経路切替と予約の繰り返しを示しており、図5に示すとおり、未使用経路は次の宛先に対応した経路予約に使用される。例えば、図5では光受信器31m-1への経路を予約している。データ伝送と同時に経路予約が実行されるため、データ伝送後に経路予約/切替を実行する従来の手順よりも時間的な無駄を省くことが可能である。
FIG. 4 shows an optical switch configuration at the time of route reservation. Reference numeral 42 denotes a reserved route. If the optical transmitter 30 1 transmits data to the optical receiver 31 m after transmitting the data to the optical receiver 31 1, 1 × 2 unused paths of the optical switch 20 1 at the time of data transmission to the optical receiver 31 1 11 12 and the unused path of 2 × 1 optical switch 21 m , for example, 12 m2 are used to reserve path 42 of large-scale optical switch 10. Completed data transmission to the optical receiver 31 1, if the destination of the optical transmitter 30 1 is changed to the optical receiver 31 m, 1 × 2 small optical switches 20 1 and 2 × 1 Small light by switching the path of the switch 21 m to the path 11 12 and the path 12 m @ 2 respectively, transmission path to the optical receiver 31 m can be established, allowing data transmission. At this time, since the optical signal is not transmitted to the path 11 11 and the path 12 11 , an unused path can be formed again. FIG. 5 shows repetition of route switching and reservation. As shown in FIG. 5, the unused route is used for route reservation corresponding to the next destination. For example, in FIG. 5, a route to the optical receiver 31 m-1 is reserved. Since the route reservation is executed simultaneously with the data transmission, it is possible to save time in comparison with the conventional procedure for executing the route reservation / switching after the data transmission.
図6に同一の送信器からのデータ伝送と経路予約/切替の模式図、即ち、データ伝送、予約、経路切替の時間軸における関係を示す。図6(a)は大規模光スイッチ10のみを使用した従来の場合である。宛先1へデータ伝送後に宛先2への予約及び経路切替が実行され、経路を確立した後に宛先2へデータが伝送される。その後も同様に常にデータ伝送後に次の経路を確立する手順が繰り替えされる。ここで、予約とは宛先へのデータ伝送の可否を確認して経路を使用する権利を得ることで、経路切替は大規模光スイッチ10の光路を切替ることを意味している。従来例では、予約と経路切替時にはデータ伝送が出来ないため、この2つの工程に時間がかかると伝送効率が悪い光スイッチシステムとなる。現にMEMSスイッチ等の大規模光スイッチ10は経路切替時間がミリ秒オーダーである。図6(b)には本発明の光スイッチにおける時系列を示す。宛先1へのデータ伝送中に宛先2への予約と大規模光スイッチの経路切替が同時に実行されている。両工程終了後に小規模光スイッチ20、21の経路が切替り、宛先2へデータが伝送される。宛先2へのデータ伝送開始と同時に宛先3の予約及び経路切替が実行され、常にデータ伝送と経路予約が同時に実行されている。これは、従来例における伝送不可時間の隠蔽である。図6(b)のようにデータ伝送時間51が予約52と大規模光スイッチ経路切替53の時間の総和よりも長ければ、データ伝送不可時間は小規模光スイッチの切替時間54で規定される。小規模光スイッチを導波路型の高速切替光スイッチ(LiNbO3、PLZT、化合物半導体、Si等)で構成すれば、ナノ秒オーダーでの高速切替が可能であるため、データ伝送不可時間が短く、伝送効率が良い光スイッチシステムとなる。図6(c)に本発明の光スイッチ(データ伝送時間<予約+大規模光スイッチ経路切替時間)の場合を示す。51はデータ伝送時間、52は予約、53は大規模光スイッチ経路切替、54は小規模光スイッチ経路切替を示す。図6(c)に示すように、データ伝送時間51が予約52と大規模光スイッチ経路切替53の時間の総和よりも短い場合もある。この時のデータ伝送不可時間は、予約52と大規模光スイッチ経路切替53の時間の総和からデータ伝送時間を差し引いた時間に小規模光スイッチ経路切替時間54を足した時間である。小規模光スイッチ経路切替時間54が短ければ、この場合でも従来(図6(a))よりもデータ伝送不可時間が短くすることできる。本発明の効果を得るためには、小規模光スイッチ経路切替時間54を出来るだけ短くすることが理想的ではあるが、少なくとも大規模光スイッチ経路切替時間53よりも短くする必要がある。
FIG. 6 shows a schematic diagram of data transmission and route reservation / switching from the same transmitter, that is, a relationship in time axis of data transmission, reservation, and route switching. FIG. 6A shows a conventional case in which only the large-scale optical switch 10 is used. Reservation and path switching to destination 2 are executed after data transmission to destination 1, and data is transmitted to destination 2 after the path is established. Thereafter, the procedure for establishing the next route after data transmission is always repeated. Here, the reservation means that the right to use the path is obtained by confirming whether or not data transmission to the destination is possible, and the path switching means that the optical path of the large-scale optical switch 10 is switched. In the conventional example, data transmission cannot be performed at the time of reservation and path switching. Therefore, if these two processes take time, an optical switch system with poor transmission efficiency is obtained. Actually, a large-scale optical switch 10 such as a MEMS switch has a path switching time on the order of milliseconds. FIG. 6B shows a time series in the optical switch of the present invention. During data transmission to destination 1, reservation to destination 2 and path switching of the large-scale optical switch are executed simultaneously. After both processes are completed, the paths of the small-scale optical switches 20 and 21 are switched, and data is transmitted to the destination 2. At the same time as the start of data transmission to destination 2, reservation and path switching of destination 3 are executed, and data transmission and path reservation are always executed simultaneously. This is a concealment of transmission unavailable time in the conventional example. As shown in FIG. 6B, if the data transmission time 51 is longer than the sum of the times of the reservation 52 and the large-scale optical switch path switching 53, the data transmission unavailable time is defined by the switching time 54 of the small-scale optical switch. If a small-scale optical switch is configured with a waveguide-type high-speed switching optical switch (LiNbO 3 , PLZT, compound semiconductor, Si, etc.), high-speed switching in the nanosecond order is possible, so the data transmission unavailable time is short, The optical switch system has good transmission efficiency. FIG. 6C shows the case of the optical switch of the present invention (data transmission time <reservation + large-scale optical switch path switching time). 51 is a data transmission time, 52 is a reservation, 53 is a large-scale optical switch path switch, and 54 is a small-scale optical switch path switch. As shown in FIG. 6C, the data transmission time 51 may be shorter than the total time of the reservation 52 and the large-scale optical switch path switching 53. The data transmission unavailable time at this time is a time obtained by adding the small-scale optical switch path switching time 54 to the time obtained by subtracting the data transmission time from the total time of the reservation 52 and the large-scale optical switch path switching 53. If the small-scale optical switch path switching time 54 is short, even in this case, the data transmission disabled time can be made shorter than in the conventional case (FIG. 6A). In order to obtain the effect of the present invention, it is ideal to make the small-scale optical switch path switching time 54 as short as possible, but it is necessary to make it at least shorter than the large-scale optical switch path switching time 53.
小規模光スイッチ20、21の経路切替のタイミングは経路予約が完了し、なおかつ前のデータ伝送が完了した時であり、2つの小規模光スイッチ20、21を同時に切替ることが望ましい。大規模光スイッチ10を使った経路の予約は光スイッチの光路切替を事前に進め、経路を確立しておくことを意味し、MEMSスイッチ等の空間型の非閉塞光スイッチであれば、全て経路を互いに干渉することなく設定することが可能である。大規模光スイッチ10が予め経路予約をしていても、1×2小規模光スイッチ20と2×1小規模光スイッチ21の経路が確立されていないため、予約経路先の光受信器31への光は遮断されており、漏洩は抑制されている。
The path switching timing of the small optical switches 20 and 21 is when the path reservation is completed and the previous data transmission is completed, and it is desirable to switch the two small optical switches 20 and 21 simultaneously. The reservation of the route using the large-scale optical switch 10 means that the optical path switching of the optical switch is advanced in advance and the route is established, and if it is a spatial non-blocking optical switch such as a MEMS switch, all routes Can be set without interfering with each other. Even if the large-scale optical switch 10 has reserved a route in advance, the route between the 1 × 2 small-scale optical switch 20 and the 2 × 1 small-scale optical switch 21 has not been established. The light is blocked and leakage is suppressed.
図3-5では小規模光スイッチ20、21のポート数(n)が2の時の事例を示したが、nは2以上であれば3や4でも構わない。図7において、43は予約経路である。図7にn=3の時の光スイッチ構成と経路予約を示す事例を示すが、nが大きければ大きいほど、予約できる経路数を増やすことができ、更に複数の予約経路を同時に確立できることで、データ伝送不可時間をより短くすることができる。例えば、図6(c)で示したようにデータ伝送時間51が予約52と大規模光スイッチ経路切替時間54の総和よりも短い場合でも、宛先2と3の経路予約をほぼ同時に開始していれば、宛先1から宛先2でのデータ伝送不可時間は図6(c)と同等だが、宛先2から宛先3でのデータ伝送不可時間は図6(b)と同等にすることも可能である。ただし、nを大きくすればするほど、小規模光スイッチ20、21での光損失が増加すること、更に必要な光送受信器数が変わらない場合に必要とされる大規模光スイッチ10のポート数が増加することを考慮すると、nには上限があり、1<n≦10が現実的な値だと考える。一方、大規模光スイッチ10のポート数nmは接続する小規模光スイッチ20、21の数(m)と小規模光スイッチ20、21のポート数(n)で決まる。
3-5 shows an example in which the number of ports (n) of the small-scale optical switches 20 and 21 is 2, but 3 or 4 may be used if n is 2 or more. In FIG. 7, reference numeral 43 denotes a reserved route. FIG. 7 shows an example of an optical switch configuration and route reservation when n = 3. As n is larger, the number of routes that can be reserved can be increased, and a plurality of reserved routes can be established simultaneously. Data transmission unavailable time can be further shortened. For example, as shown in FIG. 6C, even when the data transmission time 51 is shorter than the sum of the reservation 52 and the large-scale optical switch route switching time 54, the route reservation for the destinations 2 and 3 can be started almost simultaneously. For example, the data transmission unavailable time from the destination 1 to the destination 2 is equivalent to that in FIG. 6C, but the data transmission unavailable time from the destination 2 to the destination 3 can be equivalent to that in FIG. 6B. However, as n is increased, the optical loss in the small-scale optical switches 20 and 21 increases, and the number of ports of the large-scale optical switch 10 required when the required number of optical transceivers does not change. In view of the increase of n, n has an upper limit, and 1 <n ≦ 10 is considered to be a realistic value. On the other hand, the number of ports nm of the large-scale optical switch 10 is determined by the number of small-scale optical switches 20 and 21 to be connected (m) and the number of ports of the small-scale optical switches 20 and 21 (n).
大規模光スイッチ10のポート数はnmとなるが、光送受信器30、31を追加で設置することを考慮するとnm以上でも良い。本発明の光スイッチを導入する光伝送装置はデータセンタやHPC(High Performance Computer)での使用を想定しており、送受信器30、31の増設等に対応できるスケーラビリティーが必要である。図8にl > mの時の光スイッチ構成を示す。図8に示すとおり、大規模光スイッチ10のポート数をnlとすることで(l > m)、初期はm台の光送受信器30、31を接続した場合でも、その後、(l-m)台の光送受信器30、31を増設することが可能になる。
The number of ports of the large-scale optical switch 10 is nm, but it may be greater than or equal to nm in consideration of additionally installing the optical transceivers 30 and 31. The optical transmission apparatus in which the optical switch of the present invention is introduced is assumed to be used in a data center or an HPC (High Performance Computer), and needs to be scalable to support the addition of the transceivers 30 and 31. FIG. 8 shows an optical switch configuration when l> m. As shown in FIG. 8, by setting the number of ports of the large-scale optical switch 10 to nl (l> m), even when m optical transceivers 30 and 31 are initially connected, (lm) The number of optical transceivers 30 and 31 can be increased.
大規模光スイッチ10はポート数が多いことを特徴とし、小規模光スイッチ20、21は高速な切替速度を有することを特徴とする。大規模光スイッチ10はMEMS等の空間型光スイッチによって構成され、小規模光スイッチ20、21は導波路型の光スイッチで構成されるのが良いと考える。ただし、大規模光スイッチ10のポート数がそれほど多くなく、例えば、~64ポート程度であれば、石英PLC(Planar Lightwave Circuit)を使った導波路型光スイッチを大規模光スイッチ10として利用しても問題はない。以上の組合わせ以外でも、大規模であること、高速切替が可能であることを特徴とした光スイッチを使用するのであれば、本発明の効果が得られることは言うまでもない。また、小規模光スイッチ20、21の搭載場所にも言及しておく。小規模光スイッチ20、21は光送受信器30、31と大規模光スイッチ10の間に挿入されていればよい。例えば、光送受信器30、31側に組み入れる場合、大規模光スイッチ10側に組み入れる場合、もしくはそのどちらにも組み入れず単体の装置として設置する場合のいずれかに限らず、あらゆる搭載場所があると考える。
The large-scale optical switch 10 is characterized by a large number of ports, and the small-scale optical switches 20 and 21 are characterized by a high switching speed. The large-scale optical switch 10 is preferably constituted by a spatial optical switch such as MEMS, and the small-scale optical switches 20 and 21 are preferably constituted by waveguide-type optical switches. However, if the number of ports of the large-scale optical switch 10 is not so large, for example, up to about 64 ports, a waveguide type optical switch using a quartz PLC (Planar Lightwave Circuit) is used as the large-scale optical switch 10. There is no problem. It goes without saying that the effects of the present invention can be obtained if an optical switch characterized by being large-scale and capable of high-speed switching is used in addition to the above combinations. In addition, a place where the small-scale optical switches 20 and 21 are mounted is also mentioned. The small-scale optical switches 20 and 21 may be inserted between the optical transceivers 30 and 31 and the large-scale optical switch 10. For example, when it is installed on the optical transceiver 30 or 31 side, when it is installed on the large-scale optical switch 10 side, or when it is installed as a single device without being incorporated in either of them, there is any mounting place. Think.
大規模光スイッチ10、小規模光スイッチ20、21はコントローラ60で一括管理されていることが好ましい。図9にコントローラによる管理を示す。図9にコントローラ60を搭載した構成を具体的に示す。61はSW制御信号線、62は送受信器とコントローラ間の通信線を示す。コントローラ60は大規模光スイッチ10と小規模光スイッチ20、21を制御するための信号線61によってつながっている。大規模光スイッチ10の経路予約(切替含む)や小規模光スイッチ20、21の経路切替を指示する。コントローラ60で大規模光スイッチ10と小規模光スイッチ20、21の使用状況を一括して把握しておくことで、次の宛先への経路予約での衝突を回避することができる。コントローラ60は光送受信器30、31と通信する必要があるため、通信線62でつながっている。光送信器30からは宛先、データ量等の伝送情報をコントローラ60に送信する。コントローラはその情報を元に経路予約と大規模光スイッチ10の経路切替を実行する。コントローラは前のデータ伝送が完了したことと大規模光スイッチ10の経路切替が完了したことをそれぞれ確認した後に、光送信器30に次のデータ伝送の許可を与える。それと同時に小規模光スイッチ20、21にも経路切替を指示する。一方、光受信器31からは伝送信号のエラーが発生している場合など、不具合等が発生した場合にコントローラに周知できるよう相互に接続した方が良いと考える。
It is preferable that the large-scale optical switch 10 and the small-scale optical switches 20 and 21 are collectively managed by the controller 60. FIG. 9 shows management by the controller. FIG. 9 specifically shows a configuration in which the controller 60 is mounted. Reference numeral 61 denotes a SW control signal line, and 62 denotes a communication line between the transceiver and the controller. The controller 60 is connected by a signal line 61 for controlling the large-scale optical switch 10 and the small-scale optical switches 20 and 21. A route reservation (including switching) of the large-scale optical switch 10 and a route switch of the small-scale optical switches 20 and 21 are instructed. By grasping the usage status of the large-scale optical switch 10 and the small-scale optical switches 20 and 21 collectively by the controller 60, it is possible to avoid a collision in the route reservation to the next destination. Since the controller 60 needs to communicate with the optical transceivers 30 and 31, the controller 60 is connected by a communication line 62. Transmission information such as destination and data amount is transmitted from the optical transmitter 30 to the controller 60. The controller executes path reservation and path switching of the large-scale optical switch 10 based on the information. After confirming that the previous data transmission has been completed and that the path switching of the large-scale optical switch 10 has been completed, the controller gives the optical transmitter 30 permission for the next data transmission. At the same time, the small-scale optical switches 20 and 21 are instructed to switch routes. On the other hand, it is preferable that the optical receivers 31 be connected to each other so that they can be known to the controller when a failure or the like occurs such as when a transmission signal error occurs.
本発明の光伝送装置は例えばサーバラック内外に実装することで、情報処理装置の一部として機能させることが可能である。図10にサーバラック内外への搭載イメージを示す。図10にサーバラック70に搭載した具体例を示す。サーバラック70の中にはサーバ71が複数搭載されている。72はTop of Rack SW (光スイッチもしくは電気スイッチ)、73はAggregation SW(光スイッチもしくは電気スイッチ)、74は光ファイバを示す。サーバラック70の上段にはサーバ71間やラック内外との接続を可能にするToR (Top of rack)スイッチ72が搭載されている。現在のToRスイッチ72は電気スイッチで構成されているが、本発明の光スイッチを適用して、複数のサーバ71間を接続することも可能である。その際は、サーバ71とToRスイッチ72間を光ファイバ74で配線する。各ラック間を接続するためのスイッチとしてAggregationスイッチ73が一般的に存在しており、電気スイッチや低速切替の光スイッチが使われている。このようなAggregationスイッチ73にも本発明の光スイッチを適用することが可能である。なお、サーバラック70にはストレージ等も搭載されるがここでは説明を簡易にするためにサーバ71のみを表記した。
The optical transmission apparatus of the present invention can be functioned as a part of an information processing apparatus by being mounted inside or outside a server rack, for example. FIG. 10 shows a mounting image inside and outside the server rack. FIG. 10 shows a specific example mounted on the server rack 70. A plurality of servers 71 are mounted in the server rack 70. Reference numeral 72 denotes a Top of Rack SW (optical switch or electrical switch), 73 denotes an aggregation SW (optical switch or electrical switch), and 74 denotes an optical fiber. On the upper stage of the server rack 70, a ToR (Top of rack) switch 72 that enables connection between the servers 71 and the inside and outside of the rack is mounted. Although the current ToR switch 72 is composed of an electrical switch, the optical switch of the present invention can be applied to connect a plurality of servers 71. In that case, the optical fiber 74 is used for wiring between the server 71 and the ToR switch 72. An aggregation switch 73 generally exists as a switch for connecting the racks, and an electrical switch or a low-speed switching optical switch is used. It is possible to apply the optical switch of the present invention to such an aggregation switch 73 as well. In addition, although storage etc. are also mounted in the server rack 70, only the server 71 was described here in order to simplify description.
複数の経路を形成する大規模光スイッチと大規模光スイッチの入出力ポートに接続される複数の小規模光スイッチを利用した光スイッチ部と各光スイッチを制御する制御方式によって以下の効果が得られる。
1)高速切替が可能な小規模光スイッチと切替速度は低速だが大規模化が可能な大規模光スイッチを相互に組み合わせ、複数の経路を構成するツールとして低速大規模光スイッチを利用し、複数の経路の内、使用する経路を選択するツールとして高速小規模光スイッチを利用することで、大規模かつ高速切替が可能な光スイッチを構成できる。
2)小規模光スイッチの未使用経路につながっている大規模光スイッチの各ポートを利用して予め次の経路を確保することで、切替速度の遅い大規模光スイッチの切替時間に起因した伝送遅延を軽減することができる。大規模光スイッチの経路切替を先行して実行することで、大規模光スイッチの切替時間を隠蔽していることになり、データ伝送不可時間が短い利用効率の高い伝送が可能となる。
3)大規模光スイッチのポート数を小規模光スイッチの台数とポート数の積よりも多く準備することで、送受信器を増設した場合でも、同一のスイッチを適用することができるスケーラビリティーを有している。 The following effects are obtained by the optical switch unit using a large-scale optical switch that forms multiple paths and a plurality of small-scale optical switches connected to the input / output ports of the large-scale optical switch, and the control system that controls each optical switch It is done.
1) A small-scale optical switch capable of high-speed switching and a large-scale optical switch capable of high-speed switching but having a low switching speed are combined with each other. By using a high-speed and small-scale optical switch as a tool for selecting a path to be used, a large-scale and high-speed switchable optical switch can be configured.
2) By using each port of the large-scale optical switch connected to the unused path of the small-scale optical switch, the next path is secured in advance, thereby transmitting due to the switching time of the large-scale optical switch having a slow switching speed. Delay can be reduced. By performing path switching of the large-scale optical switch in advance, the switching time of the large-scale optical switch is concealed, and transmission with high utilization efficiency is possible with a short data transmission unavailable time.
3) By providing more ports for the large-scale optical switch than the product of the number of small-scale optical switches and the number of ports, the scalability is such that the same switch can be applied even when additional transceivers are added. is doing.
1)高速切替が可能な小規模光スイッチと切替速度は低速だが大規模化が可能な大規模光スイッチを相互に組み合わせ、複数の経路を構成するツールとして低速大規模光スイッチを利用し、複数の経路の内、使用する経路を選択するツールとして高速小規模光スイッチを利用することで、大規模かつ高速切替が可能な光スイッチを構成できる。
2)小規模光スイッチの未使用経路につながっている大規模光スイッチの各ポートを利用して予め次の経路を確保することで、切替速度の遅い大規模光スイッチの切替時間に起因した伝送遅延を軽減することができる。大規模光スイッチの経路切替を先行して実行することで、大規模光スイッチの切替時間を隠蔽していることになり、データ伝送不可時間が短い利用効率の高い伝送が可能となる。
3)大規模光スイッチのポート数を小規模光スイッチの台数とポート数の積よりも多く準備することで、送受信器を増設した場合でも、同一のスイッチを適用することができるスケーラビリティーを有している。 The following effects are obtained by the optical switch unit using a large-scale optical switch that forms multiple paths and a plurality of small-scale optical switches connected to the input / output ports of the large-scale optical switch, and the control system that controls each optical switch It is done.
1) A small-scale optical switch capable of high-speed switching and a large-scale optical switch capable of high-speed switching but having a low switching speed are combined with each other. By using a high-speed and small-scale optical switch as a tool for selecting a path to be used, a large-scale and high-speed switchable optical switch can be configured.
2) By using each port of the large-scale optical switch connected to the unused path of the small-scale optical switch, the next path is secured in advance, thereby transmitting due to the switching time of the large-scale optical switch having a slow switching speed. Delay can be reduced. By performing path switching of the large-scale optical switch in advance, the switching time of the large-scale optical switch is concealed, and transmission with high utilization efficiency is possible with a short data transmission unavailable time.
3) By providing more ports for the large-scale optical switch than the product of the number of small-scale optical switches and the number of ports, the scalability is such that the same switch can be applied even when additional transceivers are added. is doing.
10…nm×nm大規模光スイッチ、11…1×2小規模光スイッチと大規模光スイッチをつなぐ経路、12…大規模光スイッチと2×1小規模光スイッチをつなぐ経路、20…k×n 小規模光スイッチ(k=1,n=2)、21…n×k 小規模光スイッチ(k=1,n=2)、30…光送信器、31…光受信器、41…光信号の伝送経路、42…予約経路、43…予約経路、51…データ伝送時間、52…予約、53…大規模光スイッチ経路切替、54…小規模光スイッチ経路切替、60…コントローラ、61…SW制御信号線、62…送受信器とコントローラ間の通信線、70…サーバラック、71…サーバ、72…Top of Rack SW (光スイッチもしくは電気スイッチ)、73…Aggregation SW(光スイッチもしくは電気スイッチ)、74…光ファイバ。
DESCRIPTION OF SYMBOLS 10 ... nm * nm large-scale optical switch, 11 ... path | route which connects 1 * 2 small scale optical switch and large scale optical switch, 12 ... path | route which connects large scale optical switch and 2 * 1 small scale optical switch, 20 ... k * n Small optical switch (k = 1, n = 2), 21 ... n × k Small optical switch (k = 1, n = 2), 30 ... Optical transmitter, 31 ... Optical receiver, 41 ... Optical signal 42 ... Reserved route, 43 ... Reserved route, 51 ... Data transmission time, 52 ... Reserved, 53 ... Large-scale optical switch route switching, 54 ... Small-scale optical switch route switching, 60 ... Controller, 61 ... SW control Signal line 62 ... Communication line between transceiver and controller, 70 ... Server rack, 71 ... Server, 72 ... Top of Rack SW (optical switch or electrical switch), 73 ... Aggregation SW (optical switch) 74 or optical fiber.
Claims (14)
- 複数の光送信器と、複数の光受信器と、これらを各々接続する複数の光経路とを有し、該光経路は入力と出力のポート数を複数具備した大規模光スイッチで形成され、該大規模光スイッチのポート数よりもポート数が少ない小規模光スイッチが前記光送信器と前記大規模光スイッチの入力ポートの間に接続され、前記大規模光スイッチのポート数よりもポート数が少ない小規模光スイッチが前記大規模光スイッチの出力ポートと前記光受信器との間に接続されていることを特徴とする光伝送装置。 A plurality of optical transmitters, a plurality of optical receivers, and a plurality of optical paths connecting them, each of which is formed by a large-scale optical switch having a plurality of input and output ports; A small-scale optical switch having a smaller number of ports than the large-scale optical switch is connected between the optical transmitter and an input port of the large-scale optical switch, and the number of ports is larger than the number of ports of the large-scale optical switch. An optical transmission device characterized in that a small-scale optical switch with a small number of switches is connected between an output port of the large-scale optical switch and the optical receiver.
- 前記光送信器と前記大規模光スイッチの入力ポートの間に接続される前記小規模光スイッチのポート数がk(kは1以上n以下の整数)×n(nは2以上の整数)であり、前記大規模光スイッチの出力ポートと前記光受信器との間に接続される前記小規模光スイッチのポート数がn×kであり、前記小規模光スイッチは各m(mは1以上の整数)台具備され、前記大規模光スイッチのポート数はnm以上であることを特徴とする請求項1記載の光伝送装置。 The number of ports of the small-scale optical switch connected between the optical transmitter and the input port of the large-scale optical switch is k (k is an integer of 1 to n) × n (n is an integer of 2 or more). The number of ports of the small-scale optical switch connected between the output port of the large-scale optical switch and the optical receiver is n × k, and each of the small-scale optical switches is m (m is 1 or more). The optical transmission apparatus according to claim 1, wherein the number of ports of the large-scale optical switch is not less than nm.
- 前記光送信器、前記小規模光スイッチ及び前記大規模光スイッチがコントローラによって一括管理されていることを特徴とする請求項1記載の光伝送装置。 The optical transmission apparatus according to claim 1, wherein the optical transmitter, the small-scale optical switch, and the large-scale optical switch are collectively managed by a controller.
- 前記小規模光スイッチの切替時間が前記大規模光スイッチの切替時間よりも短いことを特徴とする請求項1記載の光伝送装置。 The optical transmission device according to claim 1, wherein the switching time of the small-scale optical switch is shorter than the switching time of the large-scale optical switch.
- 前記小規模光スイッチが導波路型もしくは空間型の光スイッチで構成され、前記大規模光スイッチが空間型の光スイッチで構成されていることを特徴とする請求項1記載の光伝送装置。 2. The optical transmission apparatus according to claim 1, wherein the small-scale optical switch is constituted by a waveguide type or a spatial type optical switch, and the large-scale optical switch is constituted by a spatial type optical switch.
- 複数の光送信器と、複数の光受信器と、これらを各々接続する複数の光経路とを有し、該光経路は入力と出力のポート数が複数ある大規模光スイッチで形成され、該大規模光スイッチの入力ポートに接続され、前記光送信器と前記大規模光スイッチをつなぐk(kは1以上n以下の整数)×n(nは2以上の整数)の小規模光スイッチと、前記大規模光スイッチの出力ポートに接続され、前記光受信器と前記大規模光スイッチをつなぐn×kの前記小規模光スイッチで構成され、1台のk×n及びn×kの前記小規模光スイッチにつながっている前記大規模光スイッチの各ポートを前記小規模光スイッチが選択して経路を決定し、前記大規模光スイッチの各ポートは複数の光経路の内、1つの経路を選択し光経路を決定することを特徴とする光伝送装置。 A plurality of optical transmitters, a plurality of optical receivers, and a plurality of optical paths connecting them, each of which is formed by a large-scale optical switch having a plurality of input and output ports, A small-scale optical switch of k (k is an integer from 1 to n) × n (n is an integer of 2 or more) connected to the input port of the large-scale optical switch and connecting the optical transmitter and the large-scale optical switch; The n × k small-scale optical switch connected to the output port of the large-scale optical switch and connecting the optical receiver and the large-scale optical switch, and one k × n and n × k The small-scale optical switch selects a port by selecting each port of the large-scale optical switch connected to the small-scale optical switch, and each port of the large-scale optical switch has one path among a plurality of optical paths. The light path is determined by selecting Transmission equipment.
- 1台のk×n及びn×kの前記小規模光スイッチにつながっている前記大規模光スイッチの各ポートにおいて、光信号は1ポートのみに伝送され、n-1の未使用ポートには同時に光信号が伝送されていないことを特徴とする請求項6記載の光伝送装置。 In each port of the large-scale optical switch connected to one k × n and n × k small-scale optical switch, an optical signal is transmitted to only one port and simultaneously to n−1 unused ports. The optical transmission apparatus according to claim 6, wherein no optical signal is transmitted.
- n-1の前記未使用ポートは前記光送信器から伝送している信号の伝送先とは異なる、次の伝送先をつなぐための経路を予め予約していることを特徴とする請求項7記載の光伝送装置。 8. The n-1 unused port reserves a route for connecting a next transmission destination different from a transmission destination of a signal transmitted from the optical transmitter in advance. Optical transmission equipment.
- m(mは1以上の整数)台の前記小規模光スイッチの内、光信号が伝送されているポートから伝送されていないポートへの切替を一括して、コントローラが制御していることを特徴とする請求項6記載の光伝送装置。 Of the m small-scale optical switches (m is an integer of 1 or more), the controller controls the switching from the port through which the optical signal is transmitted to the port through which the optical signal is not transmitted. The optical transmission device according to claim 6.
- 複数の光送信器と、複数の光受信器と、これらを各々接続する複数の光経路とを有し、該光経路は入力と出力のポート数を複数具備した大規模光スイッチで形成され、該大規模光スイッチのポート数よりもポート数が少ない小規模光スイッチが前記光送信器と前記大規模光スイッチの入力ポートの間に接続され、前記大規模光スイッチのポート数よりもポート数が少ない小規模光スイッチが前記大規模光スイッチの出力ポートと前記光受信器との間に接続されている光伝送装置をサーバラック内やサーバラック外に設置していることを特徴とする情報処理装置。 A plurality of optical transmitters, a plurality of optical receivers, and a plurality of optical paths connecting them, each of which is formed by a large-scale optical switch having a plurality of input and output ports; A small-scale optical switch having a smaller number of ports than the large-scale optical switch is connected between the optical transmitter and an input port of the large-scale optical switch, and the number of ports is larger than the number of ports of the large-scale optical switch. An optical transmission device connected between an output port of the large-scale optical switch and the optical receiver is installed in a server rack or outside the server rack. Processing equipment.
- 前記光送信器と前記大規模光スイッチの入力ポートの間に接続される前記小規模光スイッチのポート数がk(kは1以上n以下の整数)×n(nは2以上の整数)であり、前記大規模光スイッチの出力ポートと前記光受信器との間に接続される前記小規模光スイッチのポート数がn×kであり、前記小規模光スイッチは各m(mは1以上の整数)台具備され、前記大規模光スイッチのポート数はnm以上であることを特徴とする請求項10記載の情報処理装置。 The number of ports of the small-scale optical switch connected between the optical transmitter and the input port of the large-scale optical switch is k (k is an integer of 1 to n) × n (n is an integer of 2 or more). The number of ports of the small-scale optical switch connected between the output port of the large-scale optical switch and the optical receiver is n × k, and each of the small-scale optical switches is m (m is 1 or more). The information processing apparatus according to claim 10, wherein the number of ports of the large-scale optical switch is greater than or equal to nm.
- 前記光送信器、前記小規模光スイッチ及び前記大規模光スイッチがコントローラによって一括管理されていることを特徴とする請求項10記載の情報処理装置。 11. The information processing apparatus according to claim 10, wherein the optical transmitter, the small-scale optical switch, and the large-scale optical switch are collectively managed by a controller.
- 前記小規模光スイッチの切替時間が前記大規模光スイッチの切替時間よりも短いことを特徴とする請求項10記載の情報処理装置。 11. The information processing apparatus according to claim 10, wherein a switching time of the small-scale optical switch is shorter than a switching time of the large-scale optical switch.
- 前記小規模光スイッチが導波路型もしくは空間型の光スイッチで構成され、前記大規模光スイッチが空間型の光スイッチで構成されていることを特徴とする請求項10記載の情報処理装置。 11. The information processing apparatus according to claim 10, wherein the small-scale optical switch is configured by a waveguide type or a spatial type optical switch, and the large-scale optical switch is configured by a spatial type optical switch.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/066762 WO2015198408A1 (en) | 2014-06-25 | 2014-06-25 | Optical switch device and information processing device using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/066762 WO2015198408A1 (en) | 2014-06-25 | 2014-06-25 | Optical switch device and information processing device using same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015198408A1 true WO2015198408A1 (en) | 2015-12-30 |
Family
ID=54937543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/066762 WO2015198408A1 (en) | 2014-06-25 | 2014-06-25 | Optical switch device and information processing device using same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015198408A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022123686A1 (en) * | 2020-12-09 | 2022-06-16 | 日本電信電話株式会社 | Connection optimization device, connection optimization method, and program |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1066112A (en) * | 1996-08-15 | 1998-03-06 | Oki Electric Ind Co Ltd | Optical matrix switch |
JP2004242149A (en) * | 2003-02-07 | 2004-08-26 | Mitsubishi Electric Corp | Method for increasing optical switch |
JP2013005056A (en) * | 2011-06-13 | 2013-01-07 | Fujitsu Ltd | Optical communication device and signal adjustment method |
-
2014
- 2014-06-25 WO PCT/JP2014/066762 patent/WO2015198408A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1066112A (en) * | 1996-08-15 | 1998-03-06 | Oki Electric Ind Co Ltd | Optical matrix switch |
JP2004242149A (en) * | 2003-02-07 | 2004-08-26 | Mitsubishi Electric Corp | Method for increasing optical switch |
JP2013005056A (en) * | 2011-06-13 | 2013-01-07 | Fujitsu Ltd | Optical communication device and signal adjustment method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022123686A1 (en) * | 2020-12-09 | 2022-06-16 | 日本電信電話株式会社 | Connection optimization device, connection optimization method, and program |
JP7460934B2 (en) | 2020-12-09 | 2024-04-03 | 日本電信電話株式会社 | Connection optimization device, connection optimization method, and program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11190859B2 (en) | Photonic switches, photonic switching fabrics and methods for data centers | |
Sato | Realization and application of large-scale fast optical circuit switch for data center networking | |
US9621967B2 (en) | Methods and systems for passive optical switching | |
US10212497B2 (en) | Hybrid circuit-packet switch | |
Baziana | Optical Data Center Networking: A Comprehensive Review on Traffic, Switching, Bandwidth Allocation, and Challenges | |
CN105323660B (en) | The cross system of optical signal, cross processing method and device | |
WO2016051442A1 (en) | Optical switch path selection system and information communication device using same | |
Sato | How optical-circuit/electrical-packet hybrid switching will create high performance and cost-effective data center networks | |
WO2015198408A1 (en) | Optical switch device and information processing device using same | |
Yang et al. | An optical interconnect network design for dynamically composable data centers | |
Zhou et al. | An optical circuit switching network architecture and reconfiguration schemes for datacenter | |
Rastegarfar et al. | A high-performance network architecture for scalable optical datacenters | |
Sun et al. | Software defined optical network based on multi-level WDM ring topology for intra data center switching | |
Sowailem et al. | Contention resolution strategy in optical burst switched datacenters | |
Ji | Hybrid optical-electrical data center networks | |
Γεωργίου-Αναστασάκης | Διπλωματική εργασία.“ | |
Shen | Reconfigurable Optically Interconnected Systems | |
Ishii et al. | Toward exa-scale photonic switch system for the future datacenter | |
Yamakami et al. | Assessment of node-and link-level blocking and creating cost-effective networks in the era of large bandwidth services | |
Lohmann et al. | Adaptive Optical Interconnect for Digital Systems using Integrated MOEMS Technology | |
Kong et al. | MMTD net-A Novel Optical Circuit Switch Architecture for Data Center Networks | |
Indre et al. | Towards all-optical packet networks | |
TERZENIDIS et al. | Performance Analysis of a 1024-port Hipolaos OPS in DCN, HPC and 5G Fronthauling Ethernet Applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14895572 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14895572 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |