WO2015194557A1 - Gas barrier film and method for producing same - Google Patents
Gas barrier film and method for producing same Download PDFInfo
- Publication number
- WO2015194557A1 WO2015194557A1 PCT/JP2015/067324 JP2015067324W WO2015194557A1 WO 2015194557 A1 WO2015194557 A1 WO 2015194557A1 JP 2015067324 W JP2015067324 W JP 2015067324W WO 2015194557 A1 WO2015194557 A1 WO 2015194557A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas barrier
- film
- water vapor
- vapor permeability
- layer
- Prior art date
Links
- 230000004888 barrier function Effects 0.000 title claims abstract description 324
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 47
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 211
- 238000011156 evaluation Methods 0.000 claims abstract description 120
- 229910052751 metal Inorganic materials 0.000 claims abstract description 97
- 239000002184 metal Substances 0.000 claims abstract description 97
- 230000005540 biological transmission Effects 0.000 claims abstract description 49
- 239000007789 gas Substances 0.000 claims description 397
- 230000035699 permeability Effects 0.000 claims description 136
- 238000009826 distribution Methods 0.000 claims description 62
- 229910052799 carbon Inorganic materials 0.000 claims description 59
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 56
- 238000000034 method Methods 0.000 claims description 55
- 238000010438 heat treatment Methods 0.000 claims description 53
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 45
- 229910052760 oxygen Inorganic materials 0.000 claims description 45
- 239000001301 oxygen Substances 0.000 claims description 45
- 230000008859 change Effects 0.000 claims description 43
- 230000003287 optical effect Effects 0.000 claims description 41
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 38
- 238000005259 measurement Methods 0.000 claims description 34
- 239000000758 substrate Substances 0.000 claims description 34
- 229910052710 silicon Inorganic materials 0.000 claims description 29
- 239000010703 silicon Substances 0.000 claims description 28
- 238000005229 chemical vapour deposition Methods 0.000 claims description 15
- 125000004432 carbon atom Chemical group C* 0.000 claims description 14
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 12
- 125000004429 atom Chemical group 0.000 claims description 5
- 239000000470 constituent Substances 0.000 claims description 4
- 238000005452 bending Methods 0.000 abstract description 38
- 238000012545 processing Methods 0.000 abstract description 36
- 239000000463 material Substances 0.000 abstract description 19
- 230000006866 deterioration Effects 0.000 abstract description 12
- 239000010408 film Substances 0.000 description 371
- 239000010410 layer Substances 0.000 description 272
- 239000002585 base Substances 0.000 description 86
- 230000015572 biosynthetic process Effects 0.000 description 43
- 238000005755 formation reaction Methods 0.000 description 43
- 238000003384 imaging method Methods 0.000 description 31
- 239000000523 sample Substances 0.000 description 29
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 27
- 229920005989 resin Polymers 0.000 description 23
- 239000011347 resin Substances 0.000 description 23
- 239000000853 adhesive Substances 0.000 description 21
- 230000001070 adhesive effect Effects 0.000 description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 20
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 19
- UQEAIHBTYFGYIE-UHFFFAOYSA-N hexamethyldisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)C UQEAIHBTYFGYIE-UHFFFAOYSA-N 0.000 description 19
- 230000007797 corrosion Effects 0.000 description 18
- 238000005260 corrosion Methods 0.000 description 18
- 238000005286 illumination Methods 0.000 description 16
- 238000012360 testing method Methods 0.000 description 16
- 238000004364 calculation method Methods 0.000 description 15
- -1 acrylic ester Chemical class 0.000 description 13
- 239000002994 raw material Substances 0.000 description 13
- 239000011575 calcium Substances 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 12
- 238000000576 coating method Methods 0.000 description 11
- 230000000875 corresponding effect Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 238000005530 etching Methods 0.000 description 11
- 238000004804 winding Methods 0.000 description 11
- 238000002834 transmittance Methods 0.000 description 10
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 9
- 229910052791 calcium Inorganic materials 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 9
- 239000012044 organic layer Substances 0.000 description 9
- 230000002265 prevention Effects 0.000 description 9
- 239000000377 silicon dioxide Substances 0.000 description 9
- 239000010409 thin film Substances 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 8
- 239000000919 ceramic Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 229920001709 polysilazane Polymers 0.000 description 8
- 239000012495 reaction gas Substances 0.000 description 8
- 238000007740 vapor deposition Methods 0.000 description 8
- 238000005401 electroluminescence Methods 0.000 description 7
- 239000010419 fine particle Substances 0.000 description 7
- 150000003961 organosilicon compounds Chemical class 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000012790 adhesive layer Substances 0.000 description 6
- 238000004891 communication Methods 0.000 description 6
- 238000001723 curing Methods 0.000 description 6
- 238000000151 deposition Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000009477 glass transition Effects 0.000 description 6
- 229910000000 metal hydroxide Inorganic materials 0.000 description 6
- 150000004692 metal hydroxides Chemical class 0.000 description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 description 6
- 239000005020 polyethylene terephthalate Substances 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 5
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 5
- 238000007872 degassing Methods 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 229920001721 polyimide Polymers 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229920001187 thermosetting polymer Polymers 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 238000011088 calibration curve Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 4
- 150000002367 halogens Chemical class 0.000 description 4
- 150000002894 organic compounds Chemical class 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 150000001721 carbon Chemical group 0.000 description 3
- 239000012159 carrier gas Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- NEXSMEBSBIABKL-UHFFFAOYSA-N hexamethyldisilane Chemical compound C[Si](C)(C)[Si](C)(C)C NEXSMEBSBIABKL-UHFFFAOYSA-N 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- KWEKXPWNFQBJAY-UHFFFAOYSA-N (dimethyl-$l^{3}-silanyl)oxy-dimethylsilicon Chemical compound C[Si](C)O[Si](C)C KWEKXPWNFQBJAY-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- OBNDGIHQAIXEAO-UHFFFAOYSA-N [O].[Si] Chemical compound [O].[Si] OBNDGIHQAIXEAO-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000000016 photochemical curing Methods 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000005368 silicate glass Substances 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 2
- 230000000930 thermomechanical effect Effects 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- QNODIIQQMGDSEF-UHFFFAOYSA-N (1-hydroxycyclohexyl)-phenylmethanone Chemical compound C=1C=CC=CC=1C(=O)C1(O)CCCCC1 QNODIIQQMGDSEF-UHFFFAOYSA-N 0.000 description 1
- JHPBZFOKBAGZBL-UHFFFAOYSA-N (3-hydroxy-2,2,4-trimethylpentyl) 2-methylprop-2-enoate Chemical compound CC(C)C(O)C(C)(C)COC(=O)C(C)=C JHPBZFOKBAGZBL-UHFFFAOYSA-N 0.000 description 1
- QRIMLDXJAPZHJE-UHFFFAOYSA-N 2,3-dihydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(O)CO QRIMLDXJAPZHJE-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- JCLFHZLOKITRCE-UHFFFAOYSA-N 4-pentoxyphenol Chemical compound CCCCCOC1=CC=C(O)C=C1 JCLFHZLOKITRCE-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- OBOXTJCIIVUZEN-UHFFFAOYSA-N [C].[O] Chemical compound [C].[O] OBOXTJCIIVUZEN-UHFFFAOYSA-N 0.000 description 1
- VEBCLRKUSAGCDF-UHFFFAOYSA-N ac1mi23b Chemical compound C1C2C3C(COC(=O)C=C)CCC3C1C(COC(=O)C=C)C2 VEBCLRKUSAGCDF-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- GVFOJDIFWSDNOY-UHFFFAOYSA-N antimony tin Chemical compound [Sn].[Sb] GVFOJDIFWSDNOY-UHFFFAOYSA-N 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- UCXUKTLCVSGCNR-UHFFFAOYSA-N diethylsilane Chemical compound CC[SiH2]CC UCXUKTLCVSGCNR-UHFFFAOYSA-N 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- UBHZUDXTHNMNLD-UHFFFAOYSA-N dimethylsilane Chemical compound C[SiH2]C UBHZUDXTHNMNLD-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- GCSJLQSCSDMKTP-UHFFFAOYSA-N ethenyl(trimethyl)silane Chemical compound C[Si](C)(C)C=C GCSJLQSCSDMKTP-UHFFFAOYSA-N 0.000 description 1
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- UIUXUFNYAYAMOE-UHFFFAOYSA-N methylsilane Chemical compound [SiH3]C UIUXUFNYAYAMOE-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- HMMGMWAXVFQUOA-UHFFFAOYSA-N octamethylcyclotetrasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 HMMGMWAXVFQUOA-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- PARWUHTVGZSQPD-UHFFFAOYSA-N phenylsilane Chemical compound [SiH3]C1=CC=CC=C1 PARWUHTVGZSQPD-UHFFFAOYSA-N 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 1
- UIDUKLCLJMXFEO-UHFFFAOYSA-N propylsilane Chemical compound CCC[SiH3] UIDUKLCLJMXFEO-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- ZNOCGWVLWPVKAO-UHFFFAOYSA-N trimethoxy(phenyl)silane Chemical compound CO[Si](OC)(OC)C1=CC=CC=C1 ZNOCGWVLWPVKAO-UHFFFAOYSA-N 0.000 description 1
- PQDJYEQOELDLCP-UHFFFAOYSA-N trimethylsilane Chemical compound C[SiH](C)C PQDJYEQOELDLCP-UHFFFAOYSA-N 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0209—Pretreatment of the material to be coated by heating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/401—Oxides containing silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/42—Silicides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/54—Apparatus specially adapted for continuous coating
- C23C16/545—Apparatus specially adapted for continuous coating for coating elongated substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
- B32B2307/7246—Water vapor barrier
Definitions
- a gas barrier layer is formed by applying a vacuum ultraviolet light to a coating film formed by applying and drying a coating solution for forming a gas barrier layer containing polysilazane and drying it.
- Methods, CVD methods using silicon-containing compounds, etc. are known.
- the gas barrier layer preferably has (ii) the carbon distribution curve has at least two extreme values.
- the gas barrier layer more preferably has at least three extreme values in the carbon distribution curve, more preferably at least four extreme values, and may have five or more extreme values.
- the extreme value of the carbon distribution curve is one or less, the gas barrier property may be insufficient when the obtained gas barrier film is bent.
- the upper limit of the number of extreme values in the carbon distribution curve is not particularly limited. For example, it is preferably 30 or less, more preferably 25 or less, but the number of extreme values is also caused by the film thickness of the gas barrier layer. Therefore, it cannot be specified in general.
- the effect of the present invention is that carbon atoms are formed in a gas barrier layer formed by a plasma chemical vapor deposition method using a plasma generated by applying a voltage between opposed roller electrodes having a magnetic field generating member that generates a magnetic field.
- a plasma chemical vapor deposition method using a plasma generated by applying a voltage between opposed roller electrodes having a magnetic field generating member that generates a magnetic field.
- the base film is preheated before the film formation process by the plasma chemical vapor deposition method (hereinafter also referred to as plasma CVD method).
- plasma CVD method plasma chemical vapor deposition method
- the said heat processing is a preferable embodiment which controls the standard deviation ((sigma)) of the water-vapor permeability which concerns on this invention within the range prescribed
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Laminated Bodies (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Chemical Vapour Deposition (AREA)
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Abstract
Description
(1)水分不透過基板と、水分と反応して腐食する腐食性金属層と、評価試料とをこの順に設けた水蒸気透過度評価セルを作製するステップ。
(2)水蒸気に曝す前後において、前記水蒸気透過度評価セルの一方の面側から光を入射して前記腐食性金属層の光学的特性の変化を測定するステップ。
(3)前記腐食性金属層の指定した範囲を、それぞれ一定の単位面積で10等分以上の一定の分割数に分割し、相互に対応する各部分の光学的特性の変化量を測定するステップ。(4)前記測定で得た光学的特性の変化量から腐食部分の体積を算出し、当該体積に基づき水蒸気透過度を算出するステップ。
(5)前記ステップ(4)において得られた各部分の水蒸気透過度に基づき、平均値と標準偏差を算出するステップ。 Formula (I) 0.01 ≦ σ ≦ 0.40
(1) A step of producing a water vapor permeability evaluation cell in which a moisture-impermeable substrate, a corrosive metal layer that reacts with moisture and corrodes, and an evaluation sample are provided in this order.
(2) A step of measuring a change in optical characteristics of the corrosive metal layer by entering light from one side of the water vapor permeability evaluation cell before and after exposure to water vapor.
(3) dividing the designated range of the corrosive metal layer into a fixed number of divisions equal to or greater than 10 in each fixed unit area, and measuring a change in optical characteristics of each corresponding part . (4) A step of calculating the volume of the corroded portion from the amount of change in optical characteristics obtained by the measurement and calculating the water vapor transmission rate based on the volume.
(5) A step of calculating an average value and a standard deviation based on the water vapor permeability of each part obtained in the step (4).
3.第1項又は第2項に記載のガスバリアーフィルムを製造するガスバリアーフィルムの製造方法であって、前記ガスバリアー層が構成元素に炭素、ケイ素、及び酸素を含み、少なくとも磁場を発生させる磁場発生部材を有する対向ローラー電極間に、電圧を印加して発生させたプラズマを用いたプラズマ化学気相成長法により成膜処理されており、当該ガスバリアー層が、下記要件(i)~(iii)までを全て満たすことを特徴とするガスバリアーフィルムの製造方法。 Formula (II) 0.03 ≦ σ ≦ 0.30
3. A method for producing a gas barrier film according to
(ii)前記炭素分布曲線が少なくとも二つの極値を有する;
(iii)前記炭素分布曲線における炭素の原子比の最大値及び最小値の差の絶対値が3at%以上である。 (I) the distance (L) from the gas barrier layer surface in the film thickness direction of the gas barrier layer, and the ratio of the amount of silicon atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms (atomic ratio of silicon); The silicon distribution curve showing the relationship of L, the oxygen distribution curve showing the relationship between the L and the ratio of the amount of oxygen atoms to the total amount of silicon atoms, oxygen atoms and carbon atoms (atomic ratio of oxygen), and the L and silicon In the carbon distribution curve showing the relationship with the ratio of the amount of carbon atoms to the total amount of atoms, oxygen atoms, and carbon atoms (carbon atomic ratio), 90% or more (upper limit: from the surface of the film thickness of the gas barrier layer) 100%) in the order of (atomic ratio of carbon), (atomic ratio of silicon), (atomic ratio of oxygen) (atomic ratio is C <Si <O);
(Ii) the carbon distribution curve has at least two extreme values;
(Iii) The absolute value of the difference between the maximum value and the minimum value of the atomic ratio of carbon in the carbon distribution curve is 3 at% or more.
アーフィルム全体のガスバリアー性及び面内のばらつき(標準偏差(σ))に優れ、かつガスバリアー性の折り曲げ耐性を向上する観点から、好ましい製造方法である。 The method for producing a gas barrier film for producing a gas barrier film according to the present invention includes a gas barrier layer containing carbon, silicon, and oxygen as constituent elements, and at least a voltage between opposing roller electrodes having a magnetic field generating member that generates a magnetic field. A method for producing a gas barrier film, which is formed by a plasma chemical vapor deposition method using plasma generated by applying a gas, and the gas barrier layer satisfies all of the requirements (i) to (iii) It is a preferable production method from the viewpoints of excellent gas barrier properties and in-plane variation (standard deviation (σ)) of the entire gas barrier film and improving the bending resistance of the gas barrier properties.
本発明のガスバリアーフィルムは、基材フィルム上にガスバリアー層がロールtoロールで形成されたガスバリアーフィルムであって、
前記ガスバリアーフィルムから試料を複数採取して評価試料とし、少なくとも下記ステップ(1)~(5)によって評価した水蒸気透過度の標準偏差(σ)が、下記式(I)を満たすことを特徴とする。 << Outline of Gas Barrier Film of the Present Invention >>
The gas barrier film of the present invention is a gas barrier film in which a gas barrier layer is formed by roll-to-roll on a base film,
A plurality of samples are collected from the gas barrier film as evaluation samples, and at least the standard deviation (σ) of water vapor permeability evaluated by the following steps (1) to (5) satisfies the following formula (I): To do.
(1)水分不透過基板と、水分と反応して腐食する腐食性金属層と、評価試料とをこの順に設けた水蒸気透過度評価セルを作製するステップ。
(2)水蒸気に曝す前後において、前記水蒸気透過度評価セルの一方の面側から光を入射して前記腐食性金属層の光学的特性の変化を測定するステップ。
(3)前記腐食性金属層の指定した範囲を、それぞれ一定の単位面積で10等分以上の一定の分割数に分割し、相互に対応する各部分の光学的特性の変化量を測定するステップ。(4)前記測定で得た光学的特性の変化量から腐食部分の体積を算出し、当該体積に基づき水蒸気透過度を算出するステップ。
(5)前記ステップ(4)において得られた各部分の水蒸気透過度に基づき、平均値と標準偏差を算出するステップ。 Formula (I) 0.01 ≦ σ ≦ 0.40
(1) A step of producing a water vapor permeability evaluation cell in which a moisture-impermeable substrate, a corrosive metal layer that reacts with moisture and corrodes, and an evaluation sample are provided in this order.
(2) A step of measuring a change in optical characteristics of the corrosive metal layer by entering light from one side of the water vapor permeability evaluation cell before and after exposure to water vapor.
(3) dividing the designated range of the corrosive metal layer into a fixed number of divisions equal to or greater than 10 in each fixed unit area, and measuring a change in optical characteristics of each corresponding part . (4) A step of calculating the volume of the corroded portion from the amount of change in optical characteristics obtained by the measurement and calculating the water vapor transmission rate based on the volume.
(5) A step of calculating an average value and a standard deviation based on the water vapor permeability of each part obtained in the step (4).
〔1.1〕評価方法
本発明に係る水蒸気透過度評価方法は、腐食性金属を有する水蒸気透過度評価セルによって少なくとも前記(1)~(5)のステップにて、ガスバリアーフィルム等の水蒸気透過度及び水蒸気透過度のばらつき(標準偏差(σ))を評価する水蒸気透過度評価方法である。 [1] Water vapor permeability evaluation method [1.1] Evaluation method The water vapor permeability evaluation method according to the present invention includes at least the steps (1) to (5) described above using a water vapor permeability evaluation cell having a corrosive metal. This is a water vapor permeability evaluation method for evaluating the water vapor permeability of a gas barrier film or the like and the variation in water vapor permeability (standard deviation (σ)).
このステップは、水分不透過基板と、水分と反応して腐食する腐食性金属層と、評価試料とをこの順に設けた水蒸気透過度評価セルを作製するステップである。 (1) Step for Producing Water Vapor Permeability Evaluation Cell This step produces a water vapor permeation evaluation cell in which a moisture impermeable substrate, a corrosive metal layer that reacts with moisture and corrodes, and an evaluation sample are provided in this order. It is a step to do.
接着剤の光透過率は、全光透過率で80%以上が好ましく、より好ましくは85%以上、さらに好ましくは90%以上である。全光透過率が80%未満となると入射した光のロスが大きくなり評価に支障を生じる。全光線透過率は、JIS K 7375:2008「プラスチック-全光線透過率及び全光線反射率の求め方」に従って測定することができる。 Water vapor permeability in the thickness 50μm of the adhesive layer, 40 ° C., at a relative humidity of 90%, preferably 25g /
The light transmittance of the adhesive is preferably 80% or more in terms of total light transmittance, more preferably 85% or more, and further preferably 90% or more. When the total light transmittance is less than 80%, the loss of incident light is increased, which hinders evaluation. The total light transmittance can be measured according to JIS K 7375: 2008 “Plastics—Determination of total light transmittance and total light reflectance”.
ステップ(2)は、水蒸気に曝す前後において、前記水蒸気透過度評価セルの一方の面側から光を入射して前記腐食性金属層の光学的特性の変化を測定するステップであり、後述する水蒸気透過度評価装置の照明装置及び測定装置によって、腐食性金属層の腐食部分の光学的特性の変化を測定するステップである。 (2) Step of measuring change in optical characteristics of corrosive metal layer In step (2), before and after exposure to water vapor, light is incident from one side of the water vapor permeability evaluation cell and the corrosive metal This is a step of measuring a change in the optical characteristics of the layer, and is a step of measuring a change in the optical characteristics of the corroded portion of the corrosive metal layer by an illumination device and a measuring device of a water vapor transmission rate evaluation apparatus described later.
ステップ(3)は、前記腐食性金属層の指定した範囲内を、それぞれ一定の単位面積で10等分以上の一定の分割数に分割し、相互に対応する各部分の光学的特性の変化量を測定するステップである。 (3) Step of measuring optical property change amount by data processing Step (3) divides the specified range of the corrosive metal layer into a fixed number of divisions equal to or greater than 10 in each unit area. In this step, the amount of change in the optical characteristics of the portions corresponding to each other is measured.
ステップ(4)は、後述する水蒸気透過度算出部14bにおいて、前記データ処理によって得た光学的特性の変化量から腐食部分の厚さを算出し、腐食部分の面積に乗じることで腐食部分の体積を算出し、当該データに基づき水蒸気透過度を算出するステップである。 (4) Water vapor permeability calculating step In step (4), the water vapor
モデル実験においては、限定されるものではないが、光学的特性の変化量を精度良く測定することが必要であるので、測定環境の光反射等による影響(ノイズ)を考慮しなくてもよい、透過光を撮影して画像を得る方法であることが、好ましい。 Corrosion rate (%) = (thickness of corroded metal layer / thickness of previously formed corrosive metal layer) × 100
In model experiments, although not limited, it is necessary to accurately measure the amount of change in optical characteristics, so it is not necessary to consider the influence (noise) due to light reflection in the measurement environment, A method of obtaining an image by photographing transmitted light is preferable.
よって水蒸気透過量は、恒温恒湿処理時間、水蒸気透過度評価セルの腐食性金属層の表面積と処理後の腐食された金属表面積、腐食した腐食性金属層の厚さ、腐食性金属の腐食部分の厚さ補正係数、腐食後の金属水酸化物の密度から求めることができる(式3)。 (Equation 1) M + aH 2 O → M (OH) a + (a / 2)
Therefore, the amount of water vapor permeation is the constant temperature and humidity treatment time, the surface area of the corrosive metal layer of the water vapor permeability evaluation cell and the corroded metal surface area after treatment, the thickness of the corroded corrosive metal layer, and the corroded portion of the corrosive metal. Can be obtained from the thickness correction coefficient and the density of the metal hydroxide after corrosion (Formula 3).
(式2) X=(δ×t×d(MOH))/M(MOH)
水蒸気透過度(g/m2/day):
(式3) 水蒸気透過度(g/m2/day)=X×18×m×(104/A)×(24/T)
恒温恒湿処理時間 : T(hour)
腐食性金属層の表面積 : A(cm2)
腐食した腐食性金属層の厚さ : t(cm)
腐食された金属表面積 : δ(cm2)
腐食後の金属水酸化物分子量 : M(MOH)
腐食後の金属水酸化物密度 : d(MOH)(g/cm3)
腐食性金属の価数 : m
ここで、腐食した腐食性金属層の厚さは、前記光学的特性の変化量から腐食率を求め厚さに換算したものである。 Molar amount of metal hydroxide after constant temperature and humidity treatment (X):
(Formula 2) X = (δ × t × d (MOH) ) / M (MOH)
Water vapor transmission rate (g / m 2 / day):
(Formula 3) Water vapor permeability (g / m 2 / day) = X × 18 × m × (10 4 / A) × (24 / T)
Constant temperature and humidity treatment time: T (hour)
Surface area of corrosive metal layer: A (cm 2 )
Corrosive corrosive metal layer thickness: t (cm)
Corroded metal surface area: δ (cm 2 )
Metal hydroxide molecular weight after corrosion: M (MOH)
Metal hydroxide density after corrosion: d (MOH) (g / cm 3 )
Corrosion metal valence: m
Here, the thickness of the corroded corrosive metal layer is obtained by calculating the corrosion rate from the amount of change in the optical characteristics and converting it to the thickness.
ステップ(5)は、前記ステップ(4)において得られた、一定の単位面積で10等分以上の一定の分割数に分割した各部分の水蒸気透過度のデータに基づき、後述するデータ処理部14cで、平均値と標準偏差を算出するステップである。平均値及び標準偏差ともに常法によって求めることができ、平均値は算術平均値である。また、ばらつきを表現するのにヒストグラムを用いることも好ましいため、データ処理部14cでヒストグラムを作成することも好ましい。 (5) Step of calculating average value and standard deviation of water vapor transmission rate Step (5) is obtained by dividing each of the divided units obtained in step (4) into a certain number of divisions equal to or more than 10 equal parts in a certain unit area. This is a step of calculating an average value and a standard deviation in the
標準偏差は、水蒸気透過度の値を対数に変換した値から、下記に示す方法で算出する。
水蒸気透過度の値を対数に変換したN個のデータ x1, x2, ..., xNを母集団とし、その母集団の相加平均(母平均)mを下記数式1によって求める:
The standard deviation is calculated by the method shown below from the value obtained by converting the value of water vapor permeability into a logarithm.
N pieces of data x1, x2,. . . , XN is a population, and an arithmetic mean (population mean) m of the population is obtained by the following
以下、本発明に好ましい水蒸気透過度評価装置及びシステムについて、その一例を説明する。 [1.2] Water vapor permeability evaluation apparatus and system Hereinafter, an example of the water vapor permeability evaluation apparatus and system preferable for the present invention will be described.
本発明の水蒸気透過度評価装置は、前記(1)~(5)のステップを順次行うことができる装置であって、水蒸気透過度評価セルの一方の面に対して斜め方向又は法線方向から照明光を照射する手段と、前記水蒸気透過度評価セルからの反射光又は反対側の面から出射する透過光のいずれかを測定する手段と、前記腐食性金属層の指定した範囲内を、それぞれ一定の単位面積で10等分以上の一定の分割数に分割し、相互に対応する各部分の光学的特性の変化量から、腐食部分のデータ解析をして面積と厚さを算出する手段と、得られた腐食部分の面積と厚さから水蒸気透過度及び水蒸気透過度のばらつきを計算する手段と、を具備することが好ましい。 [1.2.1] Structure of Water Vapor Permeability Evaluation Apparatus and System The water vapor permeability evaluation apparatus of the present invention is an apparatus capable of sequentially performing the steps (1) to (5), One of the means for irradiating illumination light to the one surface of the evaluation cell from an oblique direction or a normal direction, and the reflected light from the water vapor permeability evaluation cell or the transmitted light emitted from the opposite surface are measured. The specified range of the corrosive metal layer is divided into a predetermined number of divisions equal to or greater than 10 in each unit area, and the amount of change in the optical characteristics of the corresponding parts It is preferable to comprise means for calculating the area and thickness by analyzing the data of the part, and means for calculating the water vapor permeability and the variation in water vapor permeability from the area and thickness of the obtained corroded part.
データ処理装置10は、撮像調整装置20及び撮像装置30と相互に通信可能に接続されている。以下において、データ処理装置10の各構成について説明する。 [Data processing device]
The
Access Memory)11bと、CPU11aが読み出して実行するプログラムや固定データが記憶されたプログラムメモリー11cなどを備えている。プログラムメモリー11cは、ROMなどにより構成されている。 The
(Access Memory) 11b, a program that is read and executed by the
撮像調整装置20は、データ処理装置10から受信した測定条件に基づいて撮像装置30を調整する。 [Imaging adjustment device]
The
照明装置60を水蒸気透過度評価セルCの法線方向に配置し、照明光を水蒸気透過度評価セルCに当て、透過する光を撮像装置30にて撮影する。水蒸気透過度評価セルCの腐食による透過光の変化を感度良く撮影するため、照明装置60、水蒸気透過度評価セルC、撮像装置30の位置を設定する。 [Imaging device]
The
照明装置60としては、撮像装置30で反射光又は透過光を撮影するのに十分な面積が必要で、輝度はできる限り均一であることが好ましい。 [Lighting device]
It is preferable that the
試験片観察台40は、例えば、試験片固定台41、二軸電動ステージ42及び装置フレーム43を備える態様が好ましい。前記透過光を撮影する場合は、試験片固定台41は、透過光を遮らないように、その部分が中空であるか透明であることが必要である。 [Specimen observation table]
For example, the test
データ処理装置10は、データ処理装置10と通信可能に接続される外部出力装置50を備えていてもよい。外部出力装置50は、一般的なPC(Personal Computer)であってもよいし、画像形成装置等であってもよい。また、外部出力装置50は、データ処理装置10の操作表示部15の代わりに操作表示部として機能してもよい。 [External output device]
The
次いで、ガスバリアーフィルムの水蒸気透過度算出方法についての測定例を、図4に示すフローチャートを参照しながら説明する。 [1.2.2] Flow Chart of Water Vapor Permeability Calculation Method Next, a measurement example of the water vapor permeability calculation method of the gas barrier film will be described with reference to the flowchart shown in FIG.
Rate)の略号である。Aは定数をあらかじめ計算したもので、A=(3.3445×10-2)である。 In the formula, WVTR is water vapor transmission rate (Water Vapor Transmission).
(Rate). A is a constant calculated in advance, and A = (3.3445 × 10 −2) .
透過系の場合は、透過光による腐食金属層膜厚を計算し、得られた透過光による腐食金属層膜厚から、同様に下記計算式(ii)から透過WVTRの計算を行う(S8)。 (I) Reflected WVTR (g / m 2 / day) = A × corrosion metal layer thickness by reflected light: 0 hr) (nm) × corrosion rate (%) / current measurement time (hr)
In the case of a transmission system, the thickness of the corroded metal layer by transmitted light is calculated, and the transmitted WVTR is calculated from the following calculation formula (ii) in the same manner from the obtained thickness of the corroded metal layer by transmitted light (S8).
以上求めた各ピクセル(等分した分割部位)ごとの各水蒸気透過度のデータを用いて、水蒸気透過度分布算出部14cにおいて、反射WVTR又は透過WVTRの平均値及び標準偏差を算出する(S7)。この時に各ピクセルでの水蒸気透過度のヒストグラムを作成することもできる。 (Ii) Transmitted WVTR (g / m 2 / day) = A × corrosion metal layer thickness by transmitted light: 0 hr) (nm) × corrosion rate (%) / current measurement time (hr)
The average value and standard deviation of the reflected WVTR or the transmitted WVTR are calculated in the water vapor transmission
本発明の水蒸気透過度評価方法を用いて、ガスバリアーフィルムのガスバリアー性の質を評価するモデル評価例を、図5に示した。 [1.2.3] Model Evaluation Example FIG. 5 shows a model evaluation example for evaluating the quality of the gas barrier property of the gas barrier film using the water vapor permeability evaluation method of the present invention.
〔2.1〕ガスバリアーフィルムの概要
本発明のガスバリアーフィルムは、基材フィルム上にガスバリアー層がロールtoロールで形成されたガスバリアーフィルムであって、前記ガスバリアーフィルムから試料を複数採取して評価試料とし、少なくとも前記ステップ(1)~(5)によって評価した水蒸気透過度の標準偏差(σ)が、下記式(I)を満たすことを特徴とする。 [2] Gas Barrier Film [2.1] Outline of Gas Barrier Film The gas barrier film of the present invention is a gas barrier film in which a gas barrier layer is formed by roll-to-roll on a base film, and the gas barrier film A plurality of samples are collected from the film to be used as evaluation samples, and at least a standard deviation (σ) of water vapor permeability evaluated by the steps (1) to (5) satisfies the following formula (I).
標準偏差(σ)は好ましくは、下記式(II)を満たす。 Formula (I) 0.01 ≦ σ ≦ 0.40
The standard deviation (σ) preferably satisfies the following formula (II).
ガスバリアーフィルムの前記標準偏差(σ)が、0.40を超えると、当該ガスバリアーフィルムを具備するデバイスに局所的な欠点やデバイス間での性能ばらつきが発生するため好ましくない。また、前記標準偏差(σ)が0.01を下回ると、折り曲げを繰り返したときの応力を分散することができず、ガスバリアー性に劣化がみられ、好ましくない。したがって、上記式(I)の範囲を満たす場合に、折り曲げ時に生じる応力が適度に分散され、層内で「ひずみ」の発生を抑制することでガスバリアー性と折り曲げ耐性を両立することができる。 Formula (II) 0.03 ≦ σ ≦ 0.30
When the standard deviation (σ) of the gas barrier film exceeds 0.40, it is not preferable because a local defect or a performance variation among devices occurs in the device including the gas barrier film. On the other hand, when the standard deviation (σ) is less than 0.01, it is not preferable because the stress when the bending is repeated cannot be dispersed and the gas barrier property is deteriorated. Therefore, when the range of the above formula (I) is satisfied, the stress generated at the time of bending is appropriately dispersed, and by suppressing the occurrence of “strain” in the layer, both gas barrier properties and bending resistance can be achieved.
ガスバリアーフィルム101を構成する基材フィルム101aとしては、可撓性を有する折り曲げ可能な樹脂フィルムが挙げられる。 [2.2] Base Film As the
平滑層101cは、微小な突起等が存在する基材フィルム101aの粗面を平坦化し、基材フィルム101a表面の突起等によって基材フィルム101a上に成膜するガスバリアー層101dなどに凹凸やピンホールが生じないようにするためや、ガスバリアー層から拡散してくるアミン触媒やアンモニア、又は基材フィルム101aからガスバリアー層101dに拡散してくる水分等をトラップする機能を有し、各層間の密着性を向上させる役割を付与した層である。 [2.3] Smooth Layer The
ブリードアウト防止層101bとは、基材フィルムを構成する熱可塑性樹脂の原料であるモノマーやオリゴマー等の低分子成分が基材フィルム表面へ拡散し、接触する表面を汚染する現象、いわゆるブリードアウトを抑制する目的で、基材フィルムの表面上に設けられる。 [2.4] Bleed-out prevention layer The bleed-
OPSTAR(登録商標)シリーズ(シリカ微粒子に重合性不飽和基を有する有機化合物を結合させてなる化合物)等を用いることができる。 Examples of the photocurable resin include a composition containing an acrylate compound, a composition containing an acrylate compound and a mercapto compound containing a thiol group, epoxy acrylate, urethane acrylate, polyester acrylate, polyether acrylate, polyethylene glycol acrylate And a composition containing a polyfunctional acrylate monomer such as glycerol methacrylate. Specifically, curable bifunctional acrylate NK ester A-DCP (tricyclodecane dimethanol diacrylate) from Shin-Nakamura Chemical Co., Ltd., UV curable organic / inorganic hybrid hard coat material OPSTAR (registered by JSR Corporation) Trademark) series (compounds obtained by bonding an organic compound having a polymerizable unsaturated group to silica fine particles) and the like can be used.
〔2.5.1〕ガスバリアー層の概要
本発明に係るガスバリアー層は、特に限定されるものではなく、ポリシラザンを含有する塗布液を塗布して乾燥した層に改質処理を施してなる層や、少なくともケイ素を含む層を、真空プラズマCVD法等の化学気相成長法(Chemical Vapor Deposition)やスパッタ法等の物理気相成長法(Physical Vapor Deposition、PVD法)によって形成したガスバリアー層であってもよい。 [2.5] Gas Barrier Layer [2.5.1] Outline of Gas Barrier Layer The gas barrier layer according to the present invention is not particularly limited, and is a layer obtained by applying a coating liquid containing polysilazane and drying it. A layer formed by applying a modification treatment to the layer, or a layer containing at least silicon, is subjected to a chemical vapor deposition method such as a vacuum plasma CVD method or a physical vapor deposition method such as a sputtering method, PVD. The gas barrier layer formed by the above method may be used.
れることが、好ましい。 Among them, the gas barrier film of the present invention is a gas barrier layer from the viewpoint of achieving both flexibility (flexibility, bending resistance), mechanical strength, durability during conveyance by roll-to-roll, and gas barrier performance. Is formed by a plasma chemical vapor deposition method using plasma generated by applying a voltage between opposing roller electrodes that include carbon, silicon, and oxygen as constituent elements and having a magnetic field generating member that generates at least a magnetic field. It is preferable that the gas barrier layer that has been treated is manufactured by a method for manufacturing a gas barrier film that satisfies all of the following requirements (i) to (iii).
(ii)前記炭素分布曲線が少なくとも二つの極値を有する;
(iii)前記炭素分布曲線における炭素の原子比の最大値及び最小値の差の絶対値(以下、単に「Cmax-Cmin差」とも称する。)が3at%以上である。 (I) the distance (L) from the gas barrier layer surface in the film thickness direction of the gas barrier layer, and the ratio of the amount of silicon atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms (atomic ratio of silicon); The silicon distribution curve showing the relationship of L, the oxygen distribution curve showing the relationship between the L and the ratio of the amount of oxygen atoms to the total amount of silicon atoms, oxygen atoms and carbon atoms (atomic ratio of oxygen), and the L and silicon In the carbon distribution curve showing the relationship with the ratio of the amount of carbon atoms to the total amount of atoms, oxygen atoms, and carbon atoms (carbon atomic ratio), 90% or more (upper limit: from the surface of the film thickness of the gas barrier layer) 100%) in the order of (atomic ratio of carbon), (atomic ratio of silicon), (atomic ratio of oxygen) (atomic ratio is C <Si <O);
(Ii) the carbon distribution curve has at least two extreme values;
(Iii) The absolute value of the difference between the maximum value and the minimum value of the atomic ratio of carbon in the carbon distribution curve (hereinafter also simply referred to as “C max −C min difference”) is 3 at% or more.
エッチングイオン種:アルゴン(Ar+)
エッチング速度(SiO2熱酸化膜換算値):0.05nm/sec
エッチング間隔(SiO2換算値):10nm
X線光電子分光装置:Thermo Fisher Scientific社製、機種名“VG Theta Probe”
照射X線:単結晶分光AlKα
X線のスポット及びそのサイズ:800×400μmの楕円形。 (Measurement condition)
Etching ion species: Argon (Ar + )
Etching rate (SiO 2 thermal oxide equivalent value): 0.05 nm / sec
Etching interval (SiO 2 equivalent value): 10 nm
X-ray photoelectron spectrometer: Model name “VG Theta Probe” manufactured by Thermo Fisher Scientific
Irradiation X-ray: Single crystal spectroscopy AlKα
X-ray spot and size: 800 × 400 μm oval.
本発明に係るガスバリアー層が要件(i)~(iii)までを全て満たすためには、以下
説明するプラズマCVD法を行える成膜装置を用いることが好ましい。 [2.5.2] Method of forming gas barrier layer by plasma CVD method In order for the gas barrier layer according to the present invention to satisfy all the requirements (i) to (iii), a plasma CVD method described below can be performed. It is preferable to use a membrane device.
手段(2):対向空間に膨らんだ無終端のトンネル状の磁場を形成する磁場発生装置
手段(3):対向空間にプラズマを発生させる電源
手段(4):基材フィルム上に薄膜層を形成する一対の対向ローラー電極
手段(5):対向空間の成膜ガスを排気する排気口
また、本発明に係るガスバリアー層の製造方法は、真空チャンバー内において、基材フィルムを対向配置させ、当該可撓性基材上に薄膜層を形成する成膜方法であって、少なくとも一組の下記工程(1)~(5)を有することが好ましい。 Means (1): Supply port for supplying a film forming gas to the opposing space between the base films to be opposed to each other Means (2): Magnetic field generator for forming an endless tunnel-like magnetic field swelled in the opposing space Means (3 ): Power source for generating plasma in the opposing space Means (4): A pair of opposing roller electrodes for forming a thin film layer on the base film Means (5): Exhaust port for exhausting the film forming gas in the opposing space The gas barrier layer manufacturing method according to the present invention is a film forming method in which a base film is disposed oppositely in a vacuum chamber and a thin film layer is formed on the flexible base material, and includes at least one set of the following steps ( It is preferable to have 1) to (5).
工程(2):対向空間に膨らんだ無終端のトンネル状の磁場を形成する工程
工程(3):対向空間にプラズマを発生させる工程
工程(4):可撓性基材を対向配置させ、当該可撓性基材上に薄膜層を形成する工程
工程(5):対向空間の成膜ガスを排気する工程
ちなみに、従来の平坦電極(水平搬送タイプ)を用いた大気圧プラズマ放電でのCVD法(以下、大気圧プラズマCVD法という場合がある。)では、ガスバリアー層内の炭素原子成分の濃度勾配の連続的な変化が起こらないため、本願の課題であるガスバリアー性及び折り曲げ耐性の両立は困難である。本発明による効果は、磁場を発生させる磁場発生部材を有する対向ローラー電極間に電圧を印加して発生させたプラズマを用いたプラズマ化学気相成長法で形成されるガスバリアー層内において、炭素原子成分の濃度勾配が連続的に変化することによって、ガスバリアー性及び折り曲げ耐性を両立するものである。 Step (1): Step of supplying a film forming gas to the facing space between the flexible substrates to be opposed to each other Step (2): Step of forming an endless tunnel-like magnetic field swelled in the facing space Step (3) Step for generating plasma in the facing space Step (4): Step for forming a thin film layer on the flexible substrate by facing the flexible substrate Step (5): Film forming gas in the facing space By the way, in the conventional CVD method using atmospheric pressure plasma discharge using a flat electrode (horizontal transport type) (hereinafter sometimes referred to as atmospheric pressure plasma CVD method), the carbon atom component in the gas barrier layer Since a continuous change in the concentration gradient does not occur, it is difficult to achieve both gas barrier properties and bending resistance, which are the problems of the present application. The effect of the present invention is that carbon atoms are formed in a gas barrier layer formed by a plasma chemical vapor deposition method using a plasma generated by applying a voltage between opposed roller electrodes having a magnetic field generating member that generates a magnetic field. By continuously changing the concentration gradient of the component, both gas barrier properties and bending resistance are achieved.
このような製造装置に用いる送り出しローラー131及び搬送ローラー132、135、136、137、138、139、145、146としては適宜公知のローラーを用いることができる。また、巻取りローラー47としても、基材フィルムF上に本発明に係るガスバリアー層を形成したガスバリアーフィルムを巻取ることが可能なものであればよく、特に制限されず、適宜公知のローラーを用いることができる。 The temperature of the film forming roller affects the formation rate of the gas barrier layer, but is preferably in the range of −20 to 60 ° C., more preferably 40 to 60 ° C., from the viewpoint of preventing heat loss and wrinkling of the base material. Range.
As the
このような反応においては、ヘキサメチルジシロキサン1モルを完全酸化するのに必要な酸素量は12モルである。そのため、成膜ガス中に、ヘキサメチルジシロキサン1モルに対して酸素を12モル以上含有させて完全に反応させた場合には、均一な二酸化ケイ素膜が形成されてしまう(炭素分布曲線が存在しない。)ため、上記条件(i)を満たす本発明に係るガスバリアー層を形成することができなくなってしまう。そのため、本発明において、本発明に係るガスバリアー層を形成する際には、上記反応式(1)の反応が完全に進行してしまわないように、ヘキサメチルジシロキサン1モルに対して酸素量を化学量論比の12モルより少なくすることが好ましい。なお、実際のプラズマCVDチャンバー内の反応では、原料のヘキサメチルジシロキサンと反応ガスの酸素とは、ガス供給部から成膜領域へ供給されて成膜されるので、反応ガスの酸素のモル量(流量)が原料のヘキサメチルジシロキサンのモル量(流量)の12倍のモル量(流量)であったとしても、現実には完全に反応を進行させることはできず、酸素の含有量を化学量論比に比して大過剰に供給して初めて反応が完結すると考えられる(例えば、CVDにより完全酸化させて酸化ケイ素を得るために、酸素のモル量(流量)を原料のヘキサメチルジシロキサンのモル量(流量)の20倍以上程度とする場合もある。)。そのため、原料のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)は、化学量論比である12倍量以下(より好ましくは、10倍以下)の量であることが好ましい。このような比でヘキサメチルジシロキサン及び酸素を含有させることにより、完全に酸化されなかったヘキサメチルジシロキサン中の炭素原子や水素原子がガスバリアー層中に取り込まれ、上記条件(i)を満たす本発明に係るガスバリアー層を形成することが可能となって、得られるガスバリアーフィルムにおいて優れたガスバリアー性及び折り曲げ耐性を発揮させることが可能となる。なお、有機EL素子や太陽電池などのような透明性を必要とするデバイス用のフレキシブル基板への利用の観点から、成膜ガス中のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)の下限は、ヘキサメチルジシロキサンのモル量(流量)の0.1倍より多い量とすることが好ましく、0.5倍より多い量とすることがより好ましい。 Equation (1) (CH 3) 6 Si 2 O +
In such a reaction, the amount of oxygen required to completely oxidize 1 mol of hexamethyldisiloxane is 12 mol. Therefore, a uniform silicon dioxide film is formed when oxygen is contained in the film forming gas in an amount of 12 moles or more per mole of hexamethyldisiloxane and a uniform silicon dioxide film is formed (a carbon distribution curve exists). Therefore, the gas barrier layer according to the present invention that satisfies the above condition (i) cannot be formed. Therefore, in the present invention, when the gas barrier layer according to the present invention is formed, the amount of oxygen relative to 1 mol of hexamethyldisiloxane is set so that the reaction of the reaction formula (1) does not proceed completely. Is preferably less than the stoichiometric ratio of 12 moles. In the actual reaction in the plasma CVD chamber, the raw material hexamethyldisiloxane and the reaction gas oxygen are supplied from the gas supply unit to the film formation region to form a film, so the molar amount of oxygen in the reaction gas Even if the (flow rate) is 12 times the molar amount (flow rate) of the raw material hexamethyldisiloxane (flow rate), the reaction cannot actually proceed completely, and the oxygen content is reduced. It is considered that the reaction is completed only when a large excess is supplied compared to the stoichiometric ratio (for example, in order to obtain silicon oxide by complete oxidation by CVD, the molar amount (flow rate) of oxygen is changed to the hexamethyldioxide raw material. (It may be about 20 times or more the molar amount (flow rate) of siloxane.) Therefore, the molar amount (flow rate) of oxygen with respect to the molar amount (flow rate) of the raw material hexamethyldisiloxane is preferably an amount of 12 times or less (more preferably 10 times or less) which is the stoichiometric ratio. . By containing hexamethyldisiloxane and oxygen at such a ratio, carbon atoms and hydrogen atoms in hexamethyldisiloxane that have not been completely oxidized are taken into the gas barrier layer and satisfy the above condition (i). The gas barrier layer according to the present invention can be formed, and excellent gas barrier properties and bending resistance can be exhibited in the obtained gas barrier film. From the viewpoint of use as a flexible substrate for devices that require transparency, such as organic EL elements and solar cells, the molar amount of oxygen relative to the molar amount (flow rate) of hexamethyldisiloxane in the deposition gas The lower limit of (flow rate) is preferably greater than 0.1 times the molar amount (flow rate) of hexamethyldisiloxane, more preferably greater than 0.5 times.
本発明において、前記プラズマCVD法によるガスバリアー層の上に、塗布方式でポリシラザン含有液の塗膜を設け、波長200nm以下の真空紫外光(VUV光)を照射して改質処理することにより形成される第2のガスバリアー層を設けることも好ましい。上記第2のガスバリアー層を前記プラズマCVD法で設けたガスバリアー層の上に設けることにより、ガスバリアー層に残存する微小な欠陥を、上部からポリシラザンのガスバリアー成分で埋めることができ、全体のガスバリアー性及び当該ガスバリアー性のばらつき(標準偏差(σ)の低減と屈曲性をさらに向上できるので、好ましい。 [2.5.3] Second Gas Barrier Layer In the present invention, a coating film of a polysilazane-containing liquid is provided on the gas barrier layer by the plasma CVD method by a coating method, and vacuum ultraviolet light (VUV having a wavelength of 200 nm or less) It is also preferable to provide a second gas barrier layer formed by performing modification treatment by irradiating light. By providing the second gas barrier layer on the gas barrier layer provided by the plasma CVD method, minute defects remaining in the gas barrier layer can be filled with a gas barrier component of polysilazane from above, This is preferable because the gas barrier property and variation in the gas barrier property (reduction in standard deviation (σ) and flexibility can be further improved.
上記のように本発明のガスバリアーフィルムは、透明であり、優れたガスバリアー性及び折り曲げ耐性を有する。このため、本発明のガスバリアーフィルムは、電子デバイス等のパッケージ、光電変換素子(太陽電池素子)や有機エレクトロルミネッセンス(EL)素子、液晶表示素子等の等の電子デバイスに用いられるガスバリアーフィルムなど、様々な用途に使用することができる。 [3] Electronic Device As described above, the gas barrier film of the present invention is transparent and has excellent gas barrier properties and bending resistance. For this reason, the gas barrier film of the present invention is a gas barrier film used for electronic devices such as packages such as electronic devices, photoelectric conversion elements (solar cell elements), organic electroluminescence (EL) elements, liquid crystal display elements, and the like. Can be used for various purposes.
《基材フィルムの準備》
可撓性基材(基材フィルム)として、両面に易接着加工された厚さ125μm、幅1000mmのロール状のポリエステルフィルム(帝人デュポンフィルム株式会社製、ポリエチレンテレフタレートフィルム、KDL86WA)を基材フィルム1として用いた。 Example 1
<< Preparation of base film >>
As a flexible base material (base film), a roll-like polyester film having a thickness of 125 μm and a width of 1000 mm (manufactured by Teijin DuPont Films, Ltd., polyethylene terephthalate film, KDL86WA) that is easily bonded on both surfaces is used as the base film Used as.
下記のクリアハードコート層形成用塗布液1を、基材フィルム1のガスバリアー層設置側に、乾燥後の層厚が4μmになるようにワイヤーバーで塗布して、平滑層として機能するクリアハードコート層(CHC層という。)を形成した後、80℃で3分間乾燥し、次いで、硬化条件として0.5J/cm2の光量で、空気下高圧水銀ランプを使用して硬化を行い、クリアハードコート層付基材フィルムFを作製した。 << Preparation of Base Film F with Clear Hard Coat Layer >>
The following clear hard coat layer forming
DIC(株)製のUV硬化型樹脂ユニディックV-4025に、AGCセイミケミカル株式会社製のフッ素オリゴマー:サーフロンS-651を固形分(質量比率)でUV硬化型樹脂/S-651=99.8/0.2になるように添加し、更に、光重合開始剤としてイルガキュア184(BASFジャパン社製)を、固形分比(質量比率)でUV硬化型樹脂/光重合開始剤=95/5になるように添加して、更に溶媒としてメチルエチルケトン(MEK)で希釈して、クリアハードコート層形成用塗布液1(固形分量30質量%)を調製した。 <Preparation of clear hard coat layer forming
DIC Corporation UV curable resin Unidic V-4025 and AGC Seimi Chemical Co., Ltd. fluorine oligomer: Surflon S-651 in solid content (mass ratio) UV curable resin / S-651 = 99. Furthermore, Irgacure 184 (manufactured by BASF Japan) is added as a photopolymerization initiator, and UV curable resin / photopolymerization initiator = 95/5 as a solid content ratio (mass ratio). And further diluted with methyl ethyl ketone (MEK) as a solvent to prepare a clear hard coat layer forming coating solution 1 (
〔ガスバリアーフィルム101の作製〕
図7に記載の磁場を発生させる磁場発生部材を有する対向ローラー電極間に電圧を印加して発生させたプラズマを用いるプラズマCVD装置を用いて、クリアハードコート層付基材フィルムFのクリアハードコート層を形成した面にガスバリアー層を形成して、ガスバリアーフィルム101を作製した。成膜はロールtoロールで行った(表中、RtoRと記載する。)。 <Production of gas barrier film>
[Production of gas barrier film 101]
Clear hard coat of base film F with a clear hard coat layer using a plasma CVD apparatus using plasma generated by applying a voltage between opposed roller electrodes having a magnetic field generating member for generating a magnetic field as shown in FIG. A gas barrier layer was formed on the surface on which the layer was formed to produce a
図7の成膜装置の送り出しローラーにクリアハードコート層付基材フィルムFを元巻きのままセットし、A室の真空引きをした。そして、真空度が5×10-3Paに達してから、加熱ローラー133、134を80℃に設定した。その後、クリアハードコート層付基材フィルムFを以下の成膜条件の搬送速度で搬送して加熱処理を行い、成膜空間(B室)にクリアハードコート層付基材フィルムFを搬送し、次いで以下のプラズマ条件で成膜を実施した。なお、真空度が5×10-3Paに達するまでの時間は3時間、加熱ローラーが所定の温度になるまでの時間は0.5時間であった。 [Heat treatment (degassing treatment) conditions]
The base film F with a clear hard coat layer was set on the delivery roller of the film forming apparatus in FIG. 7 as it was, and the A chamber was evacuated. Then, after the degree of vacuum reached 5 × 10 −3 Pa, the
成膜ガスの混合比(ヘキサメチルジシロキサン(HMDSO)/酸素):1/10(モル比)
真空チャンバー内の真空度:2.0Pa
プラズマ発生用電源からの印加電力:25W/cm
プラズマ発生用電源の周波数:80kHz
基材搬送速度:10m/min
・成膜ローラー直径:300mmφ
・成膜ローラー温度:60℃
・製膜回数:6回
〔ガスバリアーフィルム102の作製:大気圧プラズマCVD法〕
クリアハードコート層付基材フィルムFを用いて、下記の条件に従って、平板電極を用いたプラズマ放電方式により、クリアハードコート層付基材フィルムFのCHC層を形成した面に、第1のセラミック層及び第2のセラミック層から構成される厚さ約200nmのガスバリアー層を有するガスバリアーフィルム102を作製した。この成膜方法を、表1中、大気圧プラズマCVD法と表記する。この際、基材フィルム1の加熱処理(脱ガス処理)は行わなかった。 [Film formation conditions]
Deposition gas mixing ratio (hexamethyldisiloxane (HMDSO) / oxygen): 1/10 (molar ratio)
Degree of vacuum in the vacuum chamber: 2.0Pa
Applied power from the power source for plasma generation: 25 W / cm
Frequency of power source for plasma generation: 80 kHz
Substrate conveyance speed: 10 m / min
・ Drawing roller diameter: 300mmφ
・ Film roller temperature: 60 ℃
-Number of times of film formation: 6 times [Production of gas barrier film 102: atmospheric pressure plasma CVD method]
The first ceramic is formed on the surface of the base film F with the clear hard coat layer formed by the plasma discharge method using the flat plate electrode using the base film F with the clear hard coat layer according to the following conditions. A gas barrier film 102 having a gas barrier layer having a thickness of about 200 nm composed of the layer and the second ceramic layer was produced. This film forming method is expressed as an atmospheric pressure plasma CVD method in Table 1. Under the present circumstances, the heat processing (degassing process) of the
〈第1のセラミック層形成用の混合ガス組成物〉
放電ガス:窒素ガス 94.9体積%
薄膜形成ガス:テトラエトキシシラン 0.5体積%
添加ガス:酸素ガス 5.0体積%
(第1のセラミック層の成膜条件)
第1電極側 電源種類 応用電機製 80kHz
周波数 80kHz
出力密度 8W/cm2
電極温度 120℃
第2電極側 電源種類 パール工業製 13.56MHz CF-5000-13M
周波数 13.56MHz
出力密度 10W/cm2
電極温度 90℃
(第2のセラミック層の形成)
〈第2のセラミック層形成用の混合ガス組成物〉
放電ガス:窒素ガス 94.9体積%
薄膜形成ガス:テトラエトキシシラン 0.1体積%
添加ガス:酸素ガス 5.0体積%
〈第2のセラミック層の成膜条件〉
第1電極側 電源種類 ハイデン研究所 100kHz(連続モード) PHF-6k
周波数 100kHz
出力密度 10W/cm2
電極温度 120℃
第2電極側 電源種類 パール工業 13.56MHz CF-5000-13M
周波数 13.56MHz
出力密度 10W/cm2
電極温度 90℃
〔ガスバリアーフィルム103~107の作製〕
ガスバリアーフィルム101の作製において、表1記載のように、加熱処理(脱ガス処理)の有無、成膜繰り返し回数及び基材フィルムの搬送速度を変化させた以外は同様にして、ロールtoロールでガスバリアーフィルム103~107を作製した。 (Formation of the first ceramic layer)
<A mixed gas composition for forming the first ceramic layer>
Discharge gas: Nitrogen gas 94.9% by volume
Thin film forming gas: Tetraethoxysilane 0.5% by volume
Additive gas: Oxygen gas 5.0% by volume
(Deposition conditions for the first ceramic layer)
1st electrode side Power supply type
Frequency 80kHz
Output density 8W / cm 2
Electrode temperature 120 ° C
Second electrode side Power supply type Pearl Industrial 13.56MHz CF-5000-13M
Frequency 13.56MHz
Output density 10W / cm 2
(Formation of second ceramic layer)
<A mixed gas composition for forming the second ceramic layer>
Discharge gas: Nitrogen gas 94.9% by volume
Thin film forming gas: Tetraethoxysilane 0.1% by volume
Additive gas: Oxygen gas 5.0% by volume
<Deposition conditions for the second ceramic layer>
1st electrode side Power supply type HEIDEN Laboratory 100kHz (continuous mode) PHF-6k
Frequency 100kHz
Output density 10W / cm 2
Electrode temperature 120 ° C
Second electrode side Power supply type Pearl Industry 13.56MHz CF-5000-13M
Frequency 13.56MHz
Output density 10W / cm 2
[Production of gas barrier films 103 to 107]
In the production of the
クリアハードコート層付基材フィルムFをG4サイズにカットして基材フィルムを準備した。 [Production of gas barrier film 108: atmospheric pressure plasma CVD method]
The base film F with a clear hard coat layer was cut into a G4 size to prepare a base film.
《ガスバリアーフィルムの特性値の測定及び評価》
〔原子分布プロファイル(XPSデータ)測定〕
下記条件にて、作製したガスバリアーフィルム101のXPSデプスプロファイル測定を行い、ケイ素原子分布、酸素原子分布、及び炭素原子分布を得た。 ≪Evaluation≫
<Measurement and evaluation of characteristic values of gas barrier film>
[Atom distribution profile (XPS data) measurement]
The XPS depth profile of the produced
エッチングレート(SiO2熱酸化膜換算値):0.05nm/sec
エッチング間隔(SiO2換算値):10nm
X線光電子分光装置:Thermo Fisher Scientific社製、機種名「VG Theta Probe」
照射X線:単結晶分光AlKα
X線のスポット及びそのサイズ:800×400μmの楕円形。 Etching ion species: Argon (Ar + )
Etching rate (SiO 2 thermal oxide equivalent value): 0.05 nm / sec
Etching interval (SiO 2 equivalent value): 10 nm
X-ray photoelectron spectrometer: Model “VG Theta Probe”, manufactured by Thermo Fisher Scientific
Irradiation X-ray: Single crystal spectroscopy AlKα
X-ray spot and size: 800 × 400 μm oval.
(ii)前記炭素分布曲線が少なくとも二つの極値を有する;
(iii)前記炭素分布曲線における炭素の原子比の最大値及び最小値の差の絶対値が3
at%以上である、ことが確認された。 From FIG. 8, (i) in the region of 90% or more from the surface of the film thickness of the gas barrier layer, (atomic ratio of carbon), (atomic ratio of silicon), and (atomic ratio of oxygen) increase in order (atomic ratio). Is C <Si <O);
(Ii) the carbon distribution curve has at least two extreme values;
(Iii) The absolute value of the difference between the maximum value and the minimum value of the atomic ratio of carbon in the carbon distribution curve is 3
It was confirmed that it was at% or more.
上記作製したガスバリアーフィルム101~108を用いて、以下の水蒸気透過度評価方法によって、フィルム全体の水蒸気透過度、及び水蒸気透過度の標準偏差(σ)を測定した。 ≪Water vapor permeability evaluation≫
Using the
ガスバリアーフィルム101~106については、成膜先頭及び後尾の位置から、基材幅手方向に100mm間隔及び50mm□の面積で各4か所、計8か所の試料を採取した。 (1) Measurement of water vapor permeability immediately after production and standard deviation (σ) of water vapor permeability For the
(1)と同様にしてガスバリアーフィルム101~108から評価試料を採取した。 (2) Measurement of water vapor transmission rate after bending test and standard deviation (σ) of water vapor transmission rate Evaluation samples were collected from the
1 水分不透過基板
2 腐食性金属層
3 接着剤層
4 基材フィルム
5 ガスバリアー層
6 評価試料
100 水蒸気透過度評価システム
10 データ処理装置
11 制御部
12 記録部
13 通信部
14 データ処理部
14a 局所水蒸気透過度算出部
14b 水蒸気透過度算出部
14c 水蒸気透過度分布算出部
15 操作表示部
20 撮像調整装置
30、31 撮像装置
40 試験片観察台
41 試験片固定台
42 二軸電動ステージ
43 装置フレーム
60、61 照明装置
101 ガスバリアーフィルム
101a 基材フィルム
101b ブリードアウト防止層
101c 平滑層
101d ガスバリアー層
F 基材フィルム(クリアハードコート層付基材フィルム)
130 プラズマCVD製造装置
131 送り出しローラー
132、135、136、137、138、139、145、146 搬送ローラー
133、134 加熱ローラー
140、141 成膜ローラー
142、143、磁場発生装置
144 ガス供給管
147 巻取りローラー
148 温調装置
149、150、151 温度モニター
152 プラズマ発生用電源 C Water vapor
130 Plasma
Claims (4)
- 基材フィルム上にガスバリアー層がロールtoロールで形成されたガスバリアーフィルムであって、
前記ガスバリアーフィルムから試料を複数採取して水蒸気透過度評価用試料とし、少なくとも下記ステップ(1)~(5)によって評価した水蒸気透過度(WVTR)の標準偏差(σ)が、下記式(I)を満たすことを特徴とするガスバリアーフィルム。
式(I) 0.01≦σ≦0.40
(1)水分不透過基板と、水分と反応して腐食する腐食性金属層と、評価試料とをこの順に設けた水蒸気透過度評価セルを作製するステップ。
(2)水蒸気に曝す前後において、前記水蒸気透過度評価セルの一方の面側から光を入射して前記腐食性金属層の光学的特性の変化を測定するステップ。
(3)前記腐食性金属層の指定した範囲を、それぞれ一定の単位面積で10等分以上の一定の分割数に分割し、相互に対応する各部分の光学的特性の変化量を測定するステップ。(4)前記測定で得た光学的特性の変化量から腐食部分の体積を算出し、当該体積に基づき水蒸気透過度を算出するステップ。
(4)前記測定で得た光学的特性の変化量から腐食部分の体積を算出し、当該体積に基づき水蒸気透過度を算出するステップ。
(5)前記ステップ(4)において得られた各部分の水蒸気透過度に基づき、平均値と標準偏差を算出するステップ。 A gas barrier film in which a gas barrier layer is formed by roll-to-roll on a base film,
A plurality of samples are collected from the gas barrier film to obtain a water vapor permeability evaluation sample, and the standard deviation (σ) of the water vapor permeability (WVTR) evaluated at least by the following steps (1) to (5) is expressed by the following formula (I Gas barrier film characterized by satisfying
Formula (I) 0.01 ≦ σ ≦ 0.40
(1) A step of producing a water vapor permeability evaluation cell in which a moisture-impermeable substrate, a corrosive metal layer that reacts with moisture and corrodes, and an evaluation sample are provided in this order.
(2) A step of measuring a change in optical characteristics of the corrosive metal layer by entering light from one side of the water vapor permeability evaluation cell before and after exposure to water vapor.
(3) dividing the designated range of the corrosive metal layer into a fixed number of divisions equal to or greater than 10 in each fixed unit area, and measuring a change in optical characteristics of each corresponding part . (4) A step of calculating the volume of the corroded portion from the amount of change in optical characteristics obtained by the measurement and calculating the water vapor transmission rate based on the volume.
(4) A step of calculating the volume of the corroded portion from the amount of change in optical characteristics obtained by the measurement and calculating the water vapor transmission rate based on the volume.
(5) A step of calculating an average value and a standard deviation based on the water vapor permeability of each part obtained in the step (4). - 前記水蒸気透過度の標準偏差(σ)が、下記式(II)を満たすことを特徴とする請求項1に記載のガスバリアーフィルム。
式(II) 0.03≦σ≦0.30 The gas barrier film according to claim 1, wherein a standard deviation (σ) of the water vapor permeability satisfies the following formula (II).
Formula (II) 0.03 ≦ σ ≦ 0.30 - 請求項1又は請求項2に記載のガスバリアーフィルムを製造するガスバリアーフィルムの製造方法であって、前記ガスバリアー層が構成元素に炭素、ケイ素、及び酸素を含み、少なくとも磁場を発生させる磁場発生部材を有する対向ローラー電極間に、電圧を印加して発生させたプラズマを用いたプラズマ化学気相成長法により成膜処理されており、当該ガスバリアー層が、下記要件(i)~(iii)までを全て満たすことを特徴とするガスバ
リアーフィルムの製造方法。
(i)ガスバリアー層の膜厚方向における前記ガスバリアー層表面からの距離(L)と、ケイ素原子、酸素原子、及び炭素原子の合計量に対するケイ素原子の量の比率(ケイ素の原子比)との関係を示すケイ素分布曲線、前記Lとケイ素原子、酸素原子、及び炭素原子の合計量に対する酸素原子の量の比率(酸素の原子比)との関係を示す酸素分布曲線、並びに前記Lとケイ素原子、酸素原子、及び炭素原子の合計量に対する炭素原子の量の比率(炭素の原子比)との関係を示す炭素分布曲線において、前記ガスバリアー層の膜厚の表面から90%以上(上限:100%)の領域で、(炭素の原子比)、(ケイ素の原子比)、(酸素の原子比)の順で多い(原子比がC<Si<O);
(ii)前記炭素分布曲線が少なくとも二つの極値を有する;
(iii)前記炭素分布曲線における炭素の原子比の最大値及び最小値の差の絶対値が3
at%以上である。 The method for producing a gas barrier film according to claim 1 or 2, wherein the gas barrier layer contains carbon, silicon, and oxygen as constituent elements and generates at least a magnetic field. A film is formed by plasma chemical vapor deposition using plasma generated by applying a voltage between opposed roller electrodes having members, and the gas barrier layer has the following requirements (i) to (iii) A method for producing a gas barrier film characterized by satisfying all of the above.
(I) the distance (L) from the gas barrier layer surface in the film thickness direction of the gas barrier layer, and the ratio of the amount of silicon atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms (atomic ratio of silicon); The silicon distribution curve showing the relationship of L, the oxygen distribution curve showing the relationship between the L and the ratio of the amount of oxygen atoms to the total amount of silicon atoms, oxygen atoms and carbon atoms (atomic ratio of oxygen), and the L and silicon In the carbon distribution curve showing the relationship with the ratio of the amount of carbon atoms to the total amount of atoms, oxygen atoms, and carbon atoms (carbon atomic ratio), 90% or more (upper limit: from the surface of the film thickness of the gas barrier layer) 100%) in the order of (atomic ratio of carbon), (atomic ratio of silicon), (atomic ratio of oxygen) (atomic ratio is C <Si <O);
(Ii) the carbon distribution curve has at least two extreme values;
(Iii) The absolute value of the difference between the maximum value and the minimum value of the atomic ratio of carbon in the carbon distribution curve is 3
It is at% or more. - 前記プラズマ化学気相成長法による成膜処理前に、前記基材フィルムを加熱処理することを特徴とする請求項3に記載のガスバリアーフィルムの製造方法。 The method for producing a gas barrier film according to claim 3, wherein the base film is subjected to a heat treatment before the film forming process by the plasma chemical vapor deposition method.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016529376A JP6635032B2 (en) | 2014-06-17 | 2015-06-16 | Gas barrier film and method for producing the same |
CN201580032527.5A CN106457765B (en) | 2014-06-17 | 2015-06-16 | Gas barrier film and its manufacturing method |
KR1020167034991A KR101946132B1 (en) | 2014-06-17 | 2015-06-16 | Gas barrier film and method for producing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014124113 | 2014-06-17 | ||
JP2014-124113 | 2014-06-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015194557A1 true WO2015194557A1 (en) | 2015-12-23 |
Family
ID=54935540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/067324 WO2015194557A1 (en) | 2014-06-17 | 2015-06-16 | Gas barrier film and method for producing same |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6635032B2 (en) |
KR (1) | KR101946132B1 (en) |
CN (1) | CN106457765B (en) |
WO (1) | WO2015194557A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018101026A1 (en) * | 2016-11-30 | 2018-06-07 | コニカミノルタ株式会社 | Gas barrier film |
JP2018129225A (en) * | 2017-02-09 | 2018-08-16 | 住友化学株式会社 | Method for manufacturing organic electronic device |
CN108603826A (en) * | 2016-02-03 | 2018-09-28 | 国立研究开发法人产业技术综合研究所 | Standard gas barrier film |
WO2019049618A1 (en) * | 2017-09-08 | 2019-03-14 | コニカミノルタ株式会社 | Gas barrier film, water vapor barrier property evaluation test piece, and method for evaluating vapor barrier properties of gas barrier film |
JP2019089311A (en) * | 2017-11-14 | 2019-06-13 | 株式会社神戸製鋼所 | Gas barrier layer, gas barrier film, organic electroluminescence element, electronic paper and production method of gas barrier film |
JP2019163500A (en) * | 2018-03-19 | 2019-09-26 | 株式会社神戸製鋼所 | Plasma CVD apparatus and film manufacturing method |
WO2024127931A1 (en) * | 2022-12-13 | 2024-06-20 | 富士フイルム株式会社 | Method for producing gas barrier film packaging material |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7198607B2 (en) * | 2017-08-25 | 2023-01-04 | 住友化学株式会社 | laminated film |
CN109778149B (en) * | 2017-11-14 | 2020-12-29 | 株式会社神户制钢所 | Gas barrier film, organic electroluminescent element, electronic paper, and method for producing gas barrier film |
JP7054055B2 (en) * | 2018-05-23 | 2022-04-13 | 住友金属鉱山株式会社 | Outgassing rolls, their manufacturing methods, and processing equipment using outgassing rolls |
CN114096406B (en) * | 2019-05-08 | 2024-11-29 | 株式会社力森诺科 | Barrier material and product provided with same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010261078A (en) * | 2009-05-08 | 2010-11-18 | Toppan Printing Co Ltd | Vacuum film forming apparatus, method for producing polymer film laminate, and polymer film laminate |
WO2012046778A1 (en) * | 2010-10-08 | 2012-04-12 | 住友化学株式会社 | Method for producing laminate by forming film by means of plasma cvd |
WO2012176824A1 (en) * | 2011-06-21 | 2012-12-27 | 住友化学株式会社 | Method for inspecting laminated film and method for producing laminated film |
WO2014061627A1 (en) * | 2012-10-19 | 2014-04-24 | コニカミノルタ株式会社 | Gas barrier film and method for manufacturing gas barrier film |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012046767A1 (en) | 2010-10-08 | 2012-04-12 | 住友化学株式会社 | Layered film |
TWI552883B (en) * | 2011-07-25 | 2016-10-11 | Lintec Corp | Gas barrier film laminates and electronic components |
JP2013160632A (en) * | 2012-02-06 | 2013-08-19 | Toppan Printing Co Ltd | Gas permeability test piece, preparation method thereof, preparation device thereof, and gas barrier permeability evaluation device |
-
2015
- 2015-06-16 JP JP2016529376A patent/JP6635032B2/en active Active
- 2015-06-16 KR KR1020167034991A patent/KR101946132B1/en active Active
- 2015-06-16 WO PCT/JP2015/067324 patent/WO2015194557A1/en active Application Filing
- 2015-06-16 CN CN201580032527.5A patent/CN106457765B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010261078A (en) * | 2009-05-08 | 2010-11-18 | Toppan Printing Co Ltd | Vacuum film forming apparatus, method for producing polymer film laminate, and polymer film laminate |
WO2012046778A1 (en) * | 2010-10-08 | 2012-04-12 | 住友化学株式会社 | Method for producing laminate by forming film by means of plasma cvd |
WO2012176824A1 (en) * | 2011-06-21 | 2012-12-27 | 住友化学株式会社 | Method for inspecting laminated film and method for producing laminated film |
WO2014061627A1 (en) * | 2012-10-19 | 2014-04-24 | コニカミノルタ株式会社 | Gas barrier film and method for manufacturing gas barrier film |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108603826A (en) * | 2016-02-03 | 2018-09-28 | 国立研究开发法人产业技术综合研究所 | Standard gas barrier film |
WO2018101026A1 (en) * | 2016-11-30 | 2018-06-07 | コニカミノルタ株式会社 | Gas barrier film |
JPWO2018101026A1 (en) * | 2016-11-30 | 2019-10-17 | コニカミノルタ株式会社 | Gas barrier film |
JP2018129225A (en) * | 2017-02-09 | 2018-08-16 | 住友化学株式会社 | Method for manufacturing organic electronic device |
CN110268803A (en) * | 2017-02-09 | 2019-09-20 | 住友化学株式会社 | Manufacturing method of organic electronic device |
US10950825B2 (en) | 2017-02-09 | 2021-03-16 | Sumitomo Chemical Company, Limited | Method for manufacturing organic electronic device |
WO2019049618A1 (en) * | 2017-09-08 | 2019-03-14 | コニカミノルタ株式会社 | Gas barrier film, water vapor barrier property evaluation test piece, and method for evaluating vapor barrier properties of gas barrier film |
JPWO2019049618A1 (en) * | 2017-09-08 | 2020-10-29 | コニカミノルタ株式会社 | Gas barrier film, water vapor barrier evaluation test piece, and water vapor barrier evaluation method for gas barrier film |
JP7006694B2 (en) | 2017-09-08 | 2022-01-24 | コニカミノルタ株式会社 | Water vapor barrier property evaluation method for gas barrier film, water vapor barrier property evaluation test piece and gas barrier property film |
JP2019089311A (en) * | 2017-11-14 | 2019-06-13 | 株式会社神戸製鋼所 | Gas barrier layer, gas barrier film, organic electroluminescence element, electronic paper and production method of gas barrier film |
JP2019163500A (en) * | 2018-03-19 | 2019-09-26 | 株式会社神戸製鋼所 | Plasma CVD apparatus and film manufacturing method |
WO2024127931A1 (en) * | 2022-12-13 | 2024-06-20 | 富士フイルム株式会社 | Method for producing gas barrier film packaging material |
Also Published As
Publication number | Publication date |
---|---|
KR101946132B1 (en) | 2019-02-08 |
KR20170007797A (en) | 2017-01-20 |
JPWO2015194557A1 (en) | 2017-04-20 |
CN106457765A (en) | 2017-02-22 |
CN106457765B (en) | 2019-01-11 |
JP6635032B2 (en) | 2020-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015194557A1 (en) | Gas barrier film and method for producing same | |
JP6638182B2 (en) | Laminated films and flexible electronic devices | |
US20160049609A1 (en) | Method for manufacturing gas barrier film, gas barrier film and electronic device | |
WO2014178332A1 (en) | Gas barrier film and method for producing same | |
JP6720964B2 (en) | Gas barrier film | |
JP6354302B2 (en) | Gas barrier film | |
CN107531016A (en) | Strip gas barrier film and its manufacture method and short strip shape gas barrier film and its manufacture method | |
WO2015083706A1 (en) | Gas barrier film and method for producing same | |
WO2015025782A1 (en) | Device for producing gas barrier film and method for producing gas barrier film | |
JP2016097500A (en) | Gas barrier film, method for producing the same and base material for plasma chemical vapor deposition method | |
JP6277883B2 (en) | Method and apparatus for producing gas barrier film | |
CN111065515B (en) | Gas barrier film, test piece for evaluating water vapor barrier property, and method for evaluating water vapor barrier property of gas barrier film | |
WO2015053189A1 (en) | Gas barrier film and process for manufacturing same | |
JPWO2016152488A1 (en) | Gas barrier film | |
WO2016159206A1 (en) | Gas barrier film and method for manufacturing same | |
JP2018154012A (en) | Functional film and method for manufacturing electronic device | |
JP6874775B2 (en) | Electronic device | |
JP6705375B2 (en) | Electronic device | |
CN109415805B (en) | Method for producing gas barrier film | |
JP6222224B2 (en) | Method for producing gas barrier film | |
WO2020085248A1 (en) | Laminated body, flexible electronic device, and laminated-body manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15809080 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016529376 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20167034991 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15809080 Country of ref document: EP Kind code of ref document: A1 |