WO2015190536A1 - Optical reflection film, and optical reflection body - Google Patents
Optical reflection film, and optical reflection body Download PDFInfo
- Publication number
- WO2015190536A1 WO2015190536A1 PCT/JP2015/066788 JP2015066788W WO2015190536A1 WO 2015190536 A1 WO2015190536 A1 WO 2015190536A1 JP 2015066788 W JP2015066788 W JP 2015066788W WO 2015190536 A1 WO2015190536 A1 WO 2015190536A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- film
- optical reflection
- heat dissipation
- optical
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 144
- 239000002105 nanoparticle Substances 0.000 claims abstract description 107
- 230000017525 heat dissipation Effects 0.000 claims abstract description 79
- 230000001737 promoting effect Effects 0.000 claims abstract description 63
- 239000000758 substrate Substances 0.000 claims abstract description 32
- 229920005989 resin Polymers 0.000 claims description 73
- 239000011347 resin Substances 0.000 claims description 73
- 239000002245 particle Substances 0.000 claims description 60
- 238000010521 absorption reaction Methods 0.000 claims description 53
- 239000000463 material Substances 0.000 claims description 41
- 229910044991 metal oxide Inorganic materials 0.000 claims description 41
- 150000004706 metal oxides Chemical class 0.000 claims description 41
- 229920000642 polymer Polymers 0.000 claims description 40
- 229920001709 polysilazane Polymers 0.000 claims description 22
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 16
- 229920003169 water-soluble polymer Polymers 0.000 claims description 14
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 11
- 229910001887 tin oxide Inorganic materials 0.000 claims description 11
- 239000011787 zinc oxide Substances 0.000 claims description 8
- SKRWFPLZQAAQSU-UHFFFAOYSA-N stibanylidynetin;hydrate Chemical compound O.[Sn].[Sb] SKRWFPLZQAAQSU-UHFFFAOYSA-N 0.000 claims description 4
- 238000004227 thermal cracking Methods 0.000 abstract description 13
- 239000010410 layer Substances 0.000 description 386
- 239000010408 film Substances 0.000 description 200
- 238000000576 coating method Methods 0.000 description 66
- 239000011248 coating agent Substances 0.000 description 56
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 54
- -1 polyethylene Polymers 0.000 description 49
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 47
- 238000000034 method Methods 0.000 description 46
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 44
- 229920001577 copolymer Polymers 0.000 description 34
- 239000012790 adhesive layer Substances 0.000 description 32
- 239000000243 solution Substances 0.000 description 32
- 150000001875 compounds Chemical class 0.000 description 27
- 229920001296 polysiloxane Polymers 0.000 description 26
- 239000011521 glass Substances 0.000 description 25
- 125000000217 alkyl group Chemical group 0.000 description 23
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 21
- 239000004925 Acrylic resin Substances 0.000 description 20
- 230000001070 adhesive effect Effects 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 239000000853 adhesive Substances 0.000 description 19
- 229920000728 polyester Polymers 0.000 description 18
- 229910052710 silicon Inorganic materials 0.000 description 18
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 17
- 238000001035 drying Methods 0.000 description 17
- 239000010703 silicon Substances 0.000 description 17
- 239000000203 mixture Substances 0.000 description 16
- 230000005855 radiation Effects 0.000 description 16
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 13
- 229920002451 polyvinyl alcohol Polymers 0.000 description 13
- 239000002904 solvent Substances 0.000 description 13
- 239000006096 absorbing agent Substances 0.000 description 12
- 239000002585 base Substances 0.000 description 12
- 239000006185 dispersion Substances 0.000 description 12
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 12
- 239000004372 Polyvinyl alcohol Substances 0.000 description 11
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 11
- 239000011112 polyethylene naphthalate Substances 0.000 description 11
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 10
- 238000001723 curing Methods 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 230000004048 modification Effects 0.000 description 10
- 238000012986 modification Methods 0.000 description 10
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 10
- 125000003118 aryl group Chemical group 0.000 description 9
- 150000002148 esters Chemical class 0.000 description 9
- 238000011156 evaluation Methods 0.000 description 9
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 9
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 9
- 229920000139 polyethylene terephthalate Polymers 0.000 description 9
- 239000005020 polyethylene terephthalate Substances 0.000 description 9
- 239000000377 silicon dioxide Substances 0.000 description 9
- 238000002834 transmittance Methods 0.000 description 9
- 229920000178 Acrylic resin Polymers 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 8
- 230000001133 acceleration Effects 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 8
- 235000014692 zinc oxide Nutrition 0.000 description 8
- 108010010803 Gelatin Proteins 0.000 description 7
- 239000000470 constituent Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 229920000159 gelatin Polymers 0.000 description 7
- 239000008273 gelatin Substances 0.000 description 7
- 235000019322 gelatine Nutrition 0.000 description 7
- 235000011852 gelatine desserts Nutrition 0.000 description 7
- 239000005340 laminated glass Substances 0.000 description 7
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 7
- 239000004094 surface-active agent Substances 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 229910052787 antimony Inorganic materials 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 239000002131 composite material Substances 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 238000005336 cracking Methods 0.000 description 6
- 150000002009 diols Chemical class 0.000 description 6
- 238000001125 extrusion Methods 0.000 description 6
- 150000004676 glycans Chemical class 0.000 description 6
- 230000031700 light absorption Effects 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 6
- 239000004926 polymethyl methacrylate Substances 0.000 description 6
- 229920001282 polysaccharide Polymers 0.000 description 6
- 239000005017 polysaccharide Substances 0.000 description 6
- 229920001187 thermosetting polymer Polymers 0.000 description 6
- 125000005369 trialkoxysilyl group Chemical group 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 5
- 229920001283 Polyalkylene terephthalate Polymers 0.000 description 5
- 206010037660 Pyrexia Diseases 0.000 description 5
- 229910010413 TiO 2 Inorganic materials 0.000 description 5
- ORLQHILJRHBSAY-UHFFFAOYSA-N [1-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1(CO)CCCCC1 ORLQHILJRHBSAY-UHFFFAOYSA-N 0.000 description 5
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 5
- 239000005357 flat glass Substances 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 239000003999 initiator Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 229920006267 polyester film Polymers 0.000 description 5
- 230000000638 stimulation Effects 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 239000004721 Polyphenylene oxide Substances 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 4
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 4
- 229920000570 polyether Polymers 0.000 description 4
- 229920005862 polyol Polymers 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 229920002050 silicone resin Polymers 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 3
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 3
- 229920002799 BoPET Polymers 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 229920000877 Melamine resin Polymers 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000003522 acrylic cement Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 125000003545 alkoxy group Chemical group 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 239000012965 benzophenone Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 229920002301 cellulose acetate Polymers 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 239000005038 ethylene vinyl acetate Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- 239000011256 inorganic filler Substances 0.000 description 3
- 229910003475 inorganic filler Inorganic materials 0.000 description 3
- 239000012948 isocyanate Substances 0.000 description 3
- 150000002513 isocyanates Chemical class 0.000 description 3
- 229910052746 lanthanum Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- IYVLHQRADFNKAU-UHFFFAOYSA-N oxygen(2-);titanium(4+);hydrate Chemical compound O.[O-2].[O-2].[Ti+4] IYVLHQRADFNKAU-UHFFFAOYSA-N 0.000 description 3
- ZQBAKBUEJOMQEX-UHFFFAOYSA-N phenyl salicylate Chemical compound OC1=CC=CC=C1C(=O)OC1=CC=CC=C1 ZQBAKBUEJOMQEX-UHFFFAOYSA-N 0.000 description 3
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 229920001228 polyisocyanate Polymers 0.000 description 3
- 239000005056 polyisocyanate Substances 0.000 description 3
- 150000003077 polyols Chemical class 0.000 description 3
- 229920002689 polyvinyl acetate Polymers 0.000 description 3
- 239000011118 polyvinyl acetate Substances 0.000 description 3
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 3
- 239000005060 rubber Substances 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- RBGUKBSLNOTVCD-UHFFFAOYSA-N 1-methylanthracene-9,10-dione Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2C RBGUKBSLNOTVCD-UHFFFAOYSA-N 0.000 description 2
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- 239000001856 Ethyl cellulose Substances 0.000 description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 239000004640 Melamine resin Substances 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 239000000020 Nitrocellulose Substances 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 244000028419 Styrax benzoin Species 0.000 description 2
- 235000000126 Styrax benzoin Nutrition 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 235000008411 Sumatra benzointree Nutrition 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 2
- RXJXTXRFAGYCIY-UHFFFAOYSA-N [W+2]=O.[O-2].[Zr+4].[Sn+2]=O.[O-2].[Ti+4] Chemical compound [W+2]=O.[O-2].[Zr+4].[Sn+2]=O.[O-2].[Ti+4] RXJXTXRFAGYCIY-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- 238000007611 bar coating method Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 229960002130 benzoin Drugs 0.000 description 2
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 238000002788 crimping Methods 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- 238000007607 die coating method Methods 0.000 description 2
- LRCFXGAMWKDGLA-UHFFFAOYSA-N dioxosilane;hydrate Chemical compound O.O=[Si]=O LRCFXGAMWKDGLA-UHFFFAOYSA-N 0.000 description 2
- 239000012776 electronic material Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 229920001249 ethyl cellulose Polymers 0.000 description 2
- 235000019325 ethyl cellulose Nutrition 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000007756 gravure coating Methods 0.000 description 2
- 235000019382 gum benzoic Nutrition 0.000 description 2
- 238000013007 heat curing Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229920001220 nitrocellulos Polymers 0.000 description 2
- 229940105570 ornex Drugs 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 229960000969 phenyl salicylate Drugs 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 229920005906 polyester polyol Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000003505 polymerization initiator Substances 0.000 description 2
- 229920000193 polymethacrylate Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 125000005372 silanol group Chemical group 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 2
- 230000008719 thickening Effects 0.000 description 2
- 150000003609 titanium compounds Chemical class 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- XKSUVRWJZCEYQQ-UHFFFAOYSA-N 1,1-dimethoxyethylbenzene Chemical compound COC(C)(OC)C1=CC=CC=C1 XKSUVRWJZCEYQQ-UHFFFAOYSA-N 0.000 description 1
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- MYWOJODOMFBVCB-UHFFFAOYSA-N 1,2,6-trimethylphenanthrene Chemical compound CC1=CC=C2C3=CC(C)=CC=C3C=CC2=C1C MYWOJODOMFBVCB-UHFFFAOYSA-N 0.000 description 1
- MSAHTMIQULFMRG-UHFFFAOYSA-N 1,2-diphenyl-2-propan-2-yloxyethanone Chemical compound C=1C=CC=CC=1C(OC(C)C)C(=O)C1=CC=CC=C1 MSAHTMIQULFMRG-UHFFFAOYSA-N 0.000 description 1
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 1
- PXGZQGDTEZPERC-UHFFFAOYSA-N 1,4-cyclohexanedicarboxylic acid Chemical compound OC(=O)C1CCC(C(O)=O)CC1 PXGZQGDTEZPERC-UHFFFAOYSA-N 0.000 description 1
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 description 1
- LNBMZFHIYRDKNS-UHFFFAOYSA-N 2,2-dimethoxy-1-phenylethanone Chemical class COC(OC)C(=O)C1=CC=CC=C1 LNBMZFHIYRDKNS-UHFFFAOYSA-N 0.000 description 1
- ZXDDPOHVAMWLBH-UHFFFAOYSA-N 2,4-Dihydroxybenzophenone Chemical compound OC1=CC(O)=CC=C1C(=O)C1=CC=CC=C1 ZXDDPOHVAMWLBH-UHFFFAOYSA-N 0.000 description 1
- BRKORVYTKKLNKX-UHFFFAOYSA-N 2,4-di(propan-2-yl)thioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(C(C)C)=CC(C(C)C)=C3SC2=C1 BRKORVYTKKLNKX-UHFFFAOYSA-N 0.000 description 1
- BTJPUDCSZVCXFQ-UHFFFAOYSA-N 2,4-diethylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(CC)=CC(CC)=C3SC2=C1 BTJPUDCSZVCXFQ-UHFFFAOYSA-N 0.000 description 1
- UUINYPIVWRZHAG-UHFFFAOYSA-N 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-methoxyphenol Chemical compound OC1=CC(OC)=CC=C1C1=NC(C=2C=CC=CC=2)=NC(C=2C=CC=CC=2)=N1 UUINYPIVWRZHAG-UHFFFAOYSA-N 0.000 description 1
- NBBXSWKUFZWAMU-UHFFFAOYSA-N 2-[2-(dimethylamino)ethyl]benzoic acid Chemical compound CN(C)CCC1=CC=CC=C1C(O)=O NBBXSWKUFZWAMU-UHFFFAOYSA-N 0.000 description 1
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 1
- FDSUVTROAWLVJA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol;prop-2-enoic acid Chemical class OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OCC(CO)(CO)COCC(CO)(CO)CO FDSUVTROAWLVJA-UHFFFAOYSA-N 0.000 description 1
- KMNCBSZOIQAUFX-UHFFFAOYSA-N 2-ethoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OCC)C(=O)C1=CC=CC=C1 KMNCBSZOIQAUFX-UHFFFAOYSA-N 0.000 description 1
- SJEBAWHUJDUKQK-UHFFFAOYSA-N 2-ethylanthraquinone Chemical compound C1=CC=C2C(=O)C3=CC(CC)=CC=C3C(=O)C2=C1 SJEBAWHUJDUKQK-UHFFFAOYSA-N 0.000 description 1
- FEWFXBUNENSNBQ-UHFFFAOYSA-N 2-hydroxyacrylic acid Chemical compound OC(=C)C(O)=O FEWFXBUNENSNBQ-UHFFFAOYSA-N 0.000 description 1
- GWZMWHWAWHPNHN-UHFFFAOYSA-N 2-hydroxypropyl prop-2-enoate Chemical compound CC(O)COC(=O)C=C GWZMWHWAWHPNHN-UHFFFAOYSA-N 0.000 description 1
- BQZJOQXSCSZQPS-UHFFFAOYSA-N 2-methoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OC)C(=O)C1=CC=CC=C1 BQZJOQXSCSZQPS-UHFFFAOYSA-N 0.000 description 1
- JQXYBDVZAUEPDL-UHFFFAOYSA-N 2-methylidene-5-phenylpent-4-enoic acid Chemical compound OC(=O)C(=C)CC=CC1=CC=CC=C1 JQXYBDVZAUEPDL-UHFFFAOYSA-N 0.000 description 1
- HZUFHXJTSDPZGB-UHFFFAOYSA-N 2-methylidene-5-phenylpent-4-enoic acid;prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C(=C)CC=CC1=CC=CC=C1 HZUFHXJTSDPZGB-UHFFFAOYSA-N 0.000 description 1
- UMWZLYTVXQBTTE-UHFFFAOYSA-N 2-pentylanthracene-9,10-dione Chemical compound C1=CC=C2C(=O)C3=CC(CCCCC)=CC=C3C(=O)C2=C1 UMWZLYTVXQBTTE-UHFFFAOYSA-N 0.000 description 1
- MTNFAXLGPSLYEY-UHFFFAOYSA-N 3-(2-ethenylnaphthalen-1-yl)prop-2-enoic acid Chemical compound C1=CC=C2C(C=CC(=O)O)=C(C=C)C=CC2=C1 MTNFAXLGPSLYEY-UHFFFAOYSA-N 0.000 description 1
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 description 1
- NEQFBGHQPUXOFH-UHFFFAOYSA-N 4-(4-carboxyphenyl)benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1C1=CC=C(C(O)=O)C=C1 NEQFBGHQPUXOFH-UHFFFAOYSA-N 0.000 description 1
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- LPEKGGXMPWTOCB-UHFFFAOYSA-N 8beta-(2,3-epoxy-2-methylbutyryloxy)-14-acetoxytithifolin Natural products COC(=O)C(C)O LPEKGGXMPWTOCB-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 125000004648 C2-C8 alkenyl group Chemical group 0.000 description 1
- DQEFEBPAPFSJLV-UHFFFAOYSA-N Cellulose propionate Chemical compound CCC(=O)OCC1OC(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C1OC1C(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C(COC(=O)CC)O1 DQEFEBPAPFSJLV-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000004812 Fluorinated ethylene propylene Substances 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- FCSHMCFRCYZTRQ-UHFFFAOYSA-N N,N'-diphenylthiourea Chemical compound C=1C=CC=CC=1NC(=S)NC1=CC=CC=C1 FCSHMCFRCYZTRQ-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 229920001774 Perfluoroether Polymers 0.000 description 1
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 229920002614 Polyether block amide Polymers 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- UAKWLVYMKBWHMX-UHFFFAOYSA-N SU4312 Chemical compound C1=CC(N(C)C)=CC=C1C=C1C2=CC=CC=C2NC1=O UAKWLVYMKBWHMX-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 description 1
- MPIAGWXWVAHQBB-UHFFFAOYSA-N [3-prop-2-enoyloxy-2-[[3-prop-2-enoyloxy-2,2-bis(prop-2-enoyloxymethyl)propoxy]methyl]-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C MPIAGWXWVAHQBB-UHFFFAOYSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 125000004062 acenaphthenyl group Chemical group C1(CC2=CC=CC3=CC=CC1=C23)* 0.000 description 1
- 125000004054 acenaphthylenyl group Chemical group C1(=CC2=CC=CC3=CC=CC1=C23)* 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- ATMLPEJAVWINOF-UHFFFAOYSA-N acrylic acid acrylic acid Chemical compound OC(=O)C=C.OC(=O)C=C ATMLPEJAVWINOF-UHFFFAOYSA-N 0.000 description 1
- 238000007718 adhesive strength test Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229920003180 amino resin Polymers 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- 230000003373 anti-fouling effect Effects 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- CZJCMXPZSYNVLP-UHFFFAOYSA-N antimony zinc Chemical compound [Zn].[Sb] CZJCMXPZSYNVLP-UHFFFAOYSA-N 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000000010 aprotic solvent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- QCLQZCOGUCNIOC-UHFFFAOYSA-N azanylidynelanthanum Chemical compound [La]#N QCLQZCOGUCNIOC-UHFFFAOYSA-N 0.000 description 1
- 125000003828 azulenyl group Chemical group 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- 150000008366 benzophenones Chemical class 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- 125000002529 biphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C12)* 0.000 description 1
- XITRBUPOXXBIJN-UHFFFAOYSA-N bis(2,2,6,6-tetramethylpiperidin-4-yl) decanedioate Chemical compound C1C(C)(C)NC(C)(C)CC1OC(=O)CCCCCCCCC(=O)OC1CC(C)(C)NC(C)(C)C1 XITRBUPOXXBIJN-UHFFFAOYSA-N 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical class C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 229920006218 cellulose propionate Polymers 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 125000002676 chrysenyl group Chemical group C1(=CC=CC=2C3=CC=C4C=CC=CC4=C3C=CC12)* 0.000 description 1
- 229940088516 cipro Drugs 0.000 description 1
- MYSWGUAQZAJSOK-UHFFFAOYSA-N ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000006165 cyclic alkyl group Chemical group 0.000 description 1
- 150000001924 cycloalkanes Chemical class 0.000 description 1
- QYQADNCHXSEGJT-UHFFFAOYSA-N cyclohexane-1,1-dicarboxylate;hydron Chemical compound OC(=O)C1(C(O)=O)CCCCC1 QYQADNCHXSEGJT-UHFFFAOYSA-N 0.000 description 1
- QSAWQNUELGIYBC-UHFFFAOYSA-N cyclohexane-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCCCC1C(O)=O QSAWQNUELGIYBC-UHFFFAOYSA-N 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 150000001983 dialkylethers Chemical class 0.000 description 1
- VPXSRGLTQINCRV-UHFFFAOYSA-N dicesium;dioxido(dioxo)tungsten Chemical compound [Cs+].[Cs+].[O-][W]([O-])(=O)=O VPXSRGLTQINCRV-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- ODQWQRRAPPTVAG-GZTJUZNOSA-N doxepin Chemical compound C1OC2=CC=CC=C2C(=C/CCN(C)C)/C2=CC=CC=C21 ODQWQRRAPPTVAG-GZTJUZNOSA-N 0.000 description 1
- MCPKSFINULVDNX-UHFFFAOYSA-N drometrizole Chemical compound CC1=CC=C(O)C(N2N=C3C=CC=CC3=N2)=C1 MCPKSFINULVDNX-UHFFFAOYSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- CYKDLUMZOVATFT-UHFFFAOYSA-N ethenyl acetate;prop-2-enoic acid Chemical compound OC(=O)C=C.CC(=O)OC=C CYKDLUMZOVATFT-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 125000003914 fluoranthenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC=C4C1=C23)* 0.000 description 1
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000009998 heat setting Methods 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- NJWNEWQMQCGRDO-UHFFFAOYSA-N indium zinc Chemical compound [Zn].[In] NJWNEWQMQCGRDO-UHFFFAOYSA-N 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910021331 inorganic silicon compound Inorganic materials 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000006224 matting agent Substances 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- 229940117841 methacrylic acid copolymer Drugs 0.000 description 1
- CRVGTESFCCXCTH-UHFFFAOYSA-N methyl diethanolamine Chemical compound OCCN(C)CCO CRVGTESFCCXCTH-UHFFFAOYSA-N 0.000 description 1
- 229940057867 methyl lactate Drugs 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- KHARCSTZAGNHOT-UHFFFAOYSA-N naphthalene-2,3-dicarboxylic acid Chemical compound C1=CC=C2C=C(C(O)=O)C(C(=O)O)=CC2=C1 KHARCSTZAGNHOT-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 239000000025 natural resin Substances 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- 150000003961 organosilicon compounds Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- DXGLGDHPHMLXJC-UHFFFAOYSA-N oxybenzone Chemical compound OC1=CC(OC)=CC=C1C(=O)C1=CC=CC=C1 DXGLGDHPHMLXJC-UHFFFAOYSA-N 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- DCKVFVYPWDKYDN-UHFFFAOYSA-L oxygen(2-);titanium(4+);sulfate Chemical compound [O-2].[Ti+4].[O-]S([O-])(=O)=O DCKVFVYPWDKYDN-UHFFFAOYSA-L 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- FZUGPQWGEGAKET-UHFFFAOYSA-N parbenate Chemical compound CCOC(=O)C1=CC=C(N(C)C)C=C1 FZUGPQWGEGAKET-UHFFFAOYSA-N 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 238000001935 peptisation Methods 0.000 description 1
- 229920009441 perflouroethylene propylene Polymers 0.000 description 1
- 125000001828 phenalenyl group Chemical group C1(C=CC2=CC=CC3=CC=CC1=C23)* 0.000 description 1
- 125000005561 phenanthryl group Chemical group 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001485 poly(butyl acrylate) polymer Polymers 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 1
- 229920001483 poly(ethyl methacrylate) polymer Polymers 0.000 description 1
- 229920000205 poly(isobutyl methacrylate) Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920005644 polyethylene terephthalate glycol copolymer Polymers 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- ZAKVZVDDGSFVRG-UHFFFAOYSA-N prop-1-en-2-ylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CC(=C)C1=CC=CC=C1 ZAKVZVDDGSFVRG-UHFFFAOYSA-N 0.000 description 1
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 125000001725 pyrenyl group Chemical group 0.000 description 1
- 239000007870 radical polymerization initiator Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000013464 silicone adhesive Substances 0.000 description 1
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000012321 sodium triacetoxyborohydride Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 229920000638 styrene acrylonitrile Polymers 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 229920005792 styrene-acrylic resin Polymers 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 125000001935 tetracenyl group Chemical group C1(=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C12)* 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- YRHRIQCWCFGUEQ-UHFFFAOYSA-N thioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3SC2=C1 YRHRIQCWCFGUEQ-UHFFFAOYSA-N 0.000 description 1
- 229910000348 titanium sulfate Inorganic materials 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- 125000003960 triphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C3=CC=CC=C3C12)* 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- RNWHGQJWIACOKP-UHFFFAOYSA-N zinc;oxygen(2-) Chemical class [O-2].[Zn+2] RNWHGQJWIACOKP-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/023—Optical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/027—Thermal properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/22—Absorbing filters
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
Definitions
- the present invention has been made in view of the above circumstances, and an object thereof is to provide an optical reflection film and an optical reflector that can suppress and prevent thermal cracking.
- Another object of the present invention is to provide an optical reflective film and an optical reflector having improved scratch resistance.
- the above object is an optical reflection film having a base material, an optical reflection layer, an infrared absorption nanoparticle layer, and a heat dissipation acceleration layer, wherein the heat dissipation acceleration layer is disposed on the outermost layer on the light incident side, and the heat dissipation acceleration is achieved.
- the ratio (d1 / d2) of the film thickness (d1) of the infrared absorbing nanoparticle layer to the film thickness (d2) of the layer is 1 to 100, and the film thickness of the heat dissipation promoting layer is 0.1 ⁇ m or more and less than 1 ⁇ m It can be achieved by an optical reflection film characterized by being.
- the optical reflective film of the present invention is an optical reflective film having a base material, an optical reflective layer, an infrared absorption nanoparticle layer, and a heat radiation promoting layer, wherein the heat radiation promoting layer is disposed on the outermost layer on the light incident side,
- the ratio (d1 / d2) of the film thickness (d1) of the infrared absorbing nanoparticle layer to the film thickness (d2) of the heat dissipation promoting layer is 1 to 100, and the film thickness of the heat dissipation promoting layer is 0.1 ⁇ m or more and 1 ⁇ m. It is characterized by being less than.
- the optical reflection film of this invention has an infrared absorption nanoparticle layer, the heat dissipation promotion layer can thermally radiate
- the optical reflective film of this invention can suppress and prevent the problem of the thermal crack by the infrared-light absorption of a metal oxide nanoparticle.
- the infrared light reflective multilayer film of Patent Document 1 has an infrared light absorbing nanoparticle layer containing specific metal oxide particles.
- the infrared light reflective multilayer film of Patent Document 1 may cause a phenomenon (heat cracking) that the glass on which the film is stuck is broken during use.
- the inventor of the present application diligently studied the above phenomenon, and as a result, the metal oxide nanoparticles in the infrared light absorbing nanoparticle layer absorb infrared light to generate heat, and the infrared light absorbing nanoparticle layer is released. It was thought that a phenomenon (thermal cracking) that caused a temperature difference in the glass due to the heat generated was broken.
- Patent Document 1 describes that a silica-based hard coat layer having a thickness of 1 to 20 ⁇ m is provided on the infrared light absorbing nanoparticle layer (paragraph “0041”).
- the hard coat layer cannot sufficiently release the heat of the layer, and as a result, a phenomenon (thermal cracking) that the glass on which the film is stuck is broken by the heat released from the infrared light absorbing nanoparticle layer still occurs. It has been found. Moreover, the hard coat layer having the above thickness is also inferior in scratch resistance.
- the heat dissipation promoting layer according to the present invention is characterized by being thin at a specific ratio as compared with the film thickness of the infrared absorbing nanoparticle layer.
- fever which an infrared absorption nanoparticle layer emits is efficiently discharge
- thermal cracking hardly occurs or does not occur at all.
- stimulation layer based on this invention functions also as a protective layer, it is excellent also in scratch resistance.
- the heat dissipation promoting layer includes a material having a metalloxane skeleton (particularly a material having a polysilazane-derived metalloxane skeleton).
- the “optical reflection film” is a film that can block all or a part of light having a desired wavelength by reflecting light having a desired wavelength (for example, near infrared rays). is there.
- X to Y indicating a range means “X or more and Y or less”. Unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
- polyesters terephthalic acid, 2,6-naphthalenedicarboxylic acid, and diol component, ethylene glycol and 1,4-cyclohexanedimethanol, are mainly used from the viewpoints of transparency, mechanical strength and dimensional stability.
- Polyester as a constituent component is preferable.
- polyesters mainly composed of polyethylene terephthalate and polyethylene naphthalate, copolymerized polyesters composed of terephthalic acid, 2,6-naphthalenedicarboxylic acid and ethylene glycol, and mixtures of two or more of these polyesters are mainly used.
- Polyester as a constituent component is preferable.
- the thickness of the substrate is preferably 10 to 300 ⁇ m, more preferably 20 to 150 ⁇ m.
- the base material may be a laminate of two or more, and in this case, the type may be the same or different.
- the resin base material can be manufactured by a conventionally known general method.
- the resin substrate may be an unstretched film, a stretched film stretched on one side, or a biaxially stretched film.
- a stretched film is preferable from the viewpoint of strength improvement and thermal expansion suppression.
- the optical reflective film of the present invention has an optical reflective layer in addition to the substrate.
- the optical reflection layer is usually formed on the substrate, but the arrangement of the optical reflection layer and the substrate is not limited to the form in which the optical reflection layer is directly provided on the substrate, An intermediate layer is provided, and an optical reflective layer is provided on the intermediate layer, or another intermediate layer (for example, an adhesive layer) is provided on the opposite surface of the substrate to the optical reflective layer.
- a form including an intermediate layer is also included.
- the optical reflection layer may be a single layer or a plurality of layers. When there are a plurality of optical reflection layers, the optical reflection layers are not only stacked adjacent to each other. , They may exist at physically separated positions.
- the optical reflection layer is a laminate of layers having different refractive indexes, but is preferably a laminate in which high refractive index layers and low refractive index layers are alternately laminated.
- the terms “high refractive index layer” and “low refractive index layer” mean that the refractive index layer with the higher refractive index is the high refractive index layer when comparing the refractive index difference between two adjacent layers. It means that the lower refractive index layer is a low refractive index layer. Therefore, the terms “high refractive index layer” and “low refractive index layer” mean that each refractive index layer has the same refractive index when attention is paid to two adjacent refractive index layers. All forms other than the forms having the above are included.
- n ⁇ d wavelength / 4 when viewed as a single layer film
- the reflected light is controlled to be strengthened by the phase difference.
- reflectivity can be increased.
- n is the refractive index
- d is the physical film thickness of the layer
- n ⁇ d is the optical film thickness.
- the thickness of the optical reflection layer is not particularly limited, and can be appropriately designed so that a desired function is exhibited.
- the thickness of the optical reflection layer is usually about 1 to 100 ⁇ m.
- metal oxide material examples include TiO 2 , ZrO 2 , Ta 2 O 5 and the like as high refractive index materials, SiO 2 and MgF 2 as low refractive index materials, and Al 2 as medium refractive index material. O 3 etc. are mentioned. These metal oxide materials can be formed by a dry film forming method such as vapor deposition or sputtering.
- the optical reflection layer may be in any form, but the high refractive index layer including the first water-soluble polymer and the first metal oxide particles, and the second water-soluble polymer.
- low refractive index layers containing second metal oxide particles are alternately stacked (first form) or a third polymer layer containing a third polymer, and a fourth polymer containing a fourth polymer. It is preferable that the four polymer layers are alternately laminated (second form).
- the first water-soluble polymer and the second water-soluble polymer can be applied in an aqueous system without using an organic solvent, so that there is little environmental load and flexibility. Since it is high, the durability of the film during bending is improved, which is preferable.
- water-soluble polymer examples include polyvinyl alcohols, polyvinyl pyrrolidones, polyacrylic acid, acrylic acid-acrylonitrile copolymer, potassium acrylate-acrylonitrile copolymer, vinyl acetate-acrylic ester copolymer, Or acrylic resin such as acrylic acid-acrylic acid ester copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-methacrylic acid-acrylic acid ester copolymer, styrene- ⁇ -methylstyrene -Styrene acrylic resin such as acrylic acid copolymer or styrene- ⁇ -methylstyrene-acrylic acid-acrylic acid ester copolymer, styrene-sodium styrenesulfonate copolymer, styrene-2-hydroxyethyl acrylate copolymer Co
- particularly preferred examples include polyvinyl alcohol, polyvinylpyrrolidones and copolymers containing them, gelatin, thickening polysaccharides (particularly celluloses) from the viewpoint of handling during production and film flexibility. Is mentioned. These water-soluble polymers may be used alone or in combination of two or more.
- Polyvinyl alcohol includes modified polyvinyl alcohol in addition to ordinary polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate.
- modified polyvinyl alcohol include cation-modified polyvinyl alcohol, anion-modified polyvinyl alcohol, nonion-modified polyvinyl alcohol, and vinyl alcohol polymers.
- polyvinyl alcohol examples include those described in [0075] to [0079] of International Publication No. 2013-054912.
- a curing agent for curing polyvinyl alcohol may be used.
- an applicable curing agent for example, boric acid and its salt are preferable.
- Specific examples of the other curing agent include those described in [0091] to [0096] of International Publication No. 2013-054912.
- gelatin in addition to lime-processed gelatin, acid-processed gelatin may be used, and gelatin hydrolyzate and gelatin enzyme-decomposed product can also be used. Further, the hardeners described in [0081] to [0082] of International Publication No. 2013-054912 may be used.
- thickening polysaccharides examples include natural simple polysaccharides, natural complex polysaccharides, synthetic simple polysaccharides and synthetic complex polysaccharides that are generally known. Reference can be made to the encyclopedia (2nd edition), Tokyo Kagaku Doujin Publishing, “Food Industry”, Vol. 31 (1988), p. 21.
- both the high refractive index layer and the low refractive index layer constituting the optical reflection layer contain metal oxide particles. That is, the high refractive index layer includes first metal oxide particles in addition to the first water-soluble polymer, and the low refractive index layer includes the second metal in addition to the second water-soluble polymer. Contains oxide particles.
- the first and second metal oxide particles may be the same or different.
- the metal oxide particles preferably have an average particle size of 100 nm or less, 1 to 50 nm, or 4 to 40 nm in order of preference.
- the average particle diameter refers to the primary average particle diameter.
- the content of the metal oxide particles in each refractive index layer is preferably 20 to 90% by mass, and more preferably 40 to 80% by mass with respect to the total mass of the refractive index layer.
- silicon dioxide silicon dioxide
- acidic colloidal silica sol acidic colloidal silica sol
- high refractive index metal oxide fine particles such as titanium and zirconia, that is, titanium oxide fine particles, Zirconium oxide fine particles are preferred, and rutile (tetragonal) titanium oxide fine particles are more preferred.
- titanium oxide particles those obtained by modifying the surface of the aqueous titanium oxide sol to stabilize the dispersion state may be used.
- titanium oxide sol a titanium oxide sol particle described in JP-A-2008-266043 is used as a core, and a plurality of coating layers made of hydrated oxides of silicon, tin, and antimony are provided around the titanium oxide sol.
- a transparent titanium oxide sol in which the sum oxide is the outermost coating layer may be used.
- acidic oxidation in which the particle surface is coated with colloidal particles of an oxide oxide using a titanium oxide-tin oxide-zirconium oxide-tungsten oxide composite colloidal particle as a core described in International Publication No. 2009/044879. It is also possible to use a product-coated titanium oxide-tin oxide-zirconium oxide-tungsten oxide composite colloidal particle and a sol in which these composite colloidal particles are dispersed.
- core-shell particles produced by a known method can be used as the metal oxide particles contained in the high refractive index layer.
- any conventionally known method can be used as the method for preparing the aqueous titanium oxide sol.
- JP-A-63-17221, JP-A-7-819, JP-A-9-165218 Reference can be made to the matters described in Japanese Laid-Open Patent Publication No. 11-43327.
- the titanium oxide particles may be coated with a silicon-containing hydrated oxide.
- the “coating” means a state in which a silicon-containing hydrated oxide is attached to at least a part of the surface of the titanium oxide particles. That is, the surface of the titanium oxide particles used as the metal oxide particles may be completely covered with a silicon-containing hydrated oxide, and a part of the surface of the titanium oxide particles is a silicon-containing hydrated oxide. It may be coated. From the viewpoint that the refractive index of the coated titanium oxide particles is controlled by the coating amount of the silicon-containing hydrated oxide, it is preferable that a part of the surface of the titanium oxide particles is coated with the silicon-containing hydrated oxide. .
- the “silicon-containing hydrated oxide” in the present specification may be any of a hydrate of an inorganic silicon compound, a hydrolyzate and / or a condensate of an organosilicon compound, and preferably has a silanol group.
- silica hydrate is preferable. Titanium oxide coated with silica hydrate is hereinafter also referred to as silica-coated titanium oxide or silica-modified titanium oxide, referred to as silica-attached titanium oxide. ).
- the titanium oxide of the titanium oxide particles coated with the silicon-containing hydrated oxide may be a rutile type or an anatase type.
- the titanium oxide particles coated with a silicon-containing hydrated oxide are more preferably rutile-type titanium oxide particles coated with a silicon-containing hydrated oxide. This is because the rutile type titanium oxide particles have lower photocatalytic activity than the anatase type titanium oxide particles, and therefore the weather resistance of the high refractive index layer and the adjacent low refractive index layer is increased, and the refractive index is further increased. Because.
- the coating amount of the silicon-containing hydrated oxide is 2 to 30% by mass, preferably 3 to 10% by mass, more preferably 4 to 8% by mass. This is because when the coating amount is 30% by mass or less, a desired refractive index of the high refractive index layer can be obtained, and when the coating amount is 2% by mass or more, particles can be stably formed.
- titanium oxide particles with a silicon-containing hydrated oxide it can be produced by a conventionally known method.
- JP-A-10-158015 Si / Al hydration to rutile titanium oxide) Oxide treatment
- a method of producing a titanium oxide sol in which a hydrous oxide of silicon and / or aluminum is deposited on the surface of titanium oxide after peptization in the alkali region of the titanate cake JP 2000-204301 A (A sol in which a rutile-type titanium oxide is coated with a complex oxide of Si and Zr and / or Al.
- JP 2007-246351 Oxidation obtained by peptizing hydrous titanium oxide
- titanium to hydrosol
- R 1 n SiX 4-n wherein R 1 as stabilizer C 1 -C 8 alkyl group, glycidyloxy substituted C 1 -C Alkyl or C 2 -C 8 alkenyl group, X is an alkoxy group, n is 1 or 2.
- the high refractive index layer and / or the low refractive index layer may further include an ultraviolet absorber described in JP-A-57-74193, JP-A-57-87988, and JP-A-62-261476, Various surfactants such as anionic surfactant, cationic surfactant, nonionic surfactant, amphoteric surfactant, sulfuric acid, phosphoric acid, acetic acid, citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate, etc.
- Various surfactants such as anionic surfactant, cationic surfactant, nonionic surfactant, amphoteric surfactant, sulfuric acid, phosphoric acid, acetic acid, citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate, etc.
- PH adjusters such as diethylene glycol, preservatives, antifungal agents, antistatic agents, matting agents, antioxidants, flame retardants, infrared absorbers, dyes, pigments, and various other known additives Etc. may be included.
- the optical reflective layer contains a water-soluble polymer
- aqueous coating is possible.
- a sequential multilayer coating method using a water-soluble polymer and an aqueous solvent in addition to the above-described melt extrusion and stretching methods, a sequential multilayer coating method using a water-soluble polymer and an aqueous solvent; International Publication No. 2013-054912 [0144] to [0156] Examples thereof include the simultaneous multilayer coating method described above.
- the total number of layers of the high refractive index layer and the low refractive index layer is 100 layers or less, 12 layers or more, more preferably 45 layers or less, 15 layers or more, and further preferably 45 layers. Below are 21 layers or more.
- the preferred range of the total number of high refractive index layers and low refractive index layers is applicable even when laminated on only one side of the substrate, and when laminated simultaneously on both sides of the substrate. Is also applicable.
- the total number of high refractive index layers and low refractive index layers on one surface of the substrate and the other surface may be the same or different.
- the lowermost layer (the layer that contacts the substrate) and the outermost layer may be either a high refractive index layer or a low refractive index layer.
- the low refractive index layer is located in the lowermost layer and the outermost layer (uppermost layer)
- adhesion to the base material of the lowermost layer, blowing resistance of the outermost layer, and hard to the outermost layer Excellent coating properties such as coat layer and adhesion.
- the layer structure whose lowermost layer and outermost layer are low refractive index layers is preferable.
- the third polymer and the fourth polymer are used to adjust the refractive index difference of each layer to obtain an optical reflection layer.
- one of the alternating third polymer layer and fourth polymer layer is birefringent and oriented, and the other is isotropic.
- the polymer (third polymer and fourth polymer) contained in the optical reflection layer is not particularly limited, and is not particularly limited as long as the polymer can form the optical reflection layer.
- resins described in JP-T-2002-509279 and JP-T-2008-528313 can be used as the polymer.
- polyethylene naphthalate (PEN) and its isomers for example, 2,6-, 1,4-, 1,5-, 2,7-, and 2,3-PEN
- polyalkylene terephthalate for example, polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, and poly-1,4-cyclohexanedimethylene terephthalate
- polyimide eg, polyacrylimide
- polyetherimide atactic polystyrene
- polycarbonate polymethacrylate (eg, Polyisobutyl methacrylate, polypropyl methacrylate, polyethyl methacrylate, and polymethyl methacrylate)
- poly (meth) acrylates eg, polybutyl acrylate and polymethyl acrylate
- Loose derivatives eg, ethyl cellulose, cellulose acetate, cellulose propionate, cellulose acetate butyrate, and cellulose nitrate
- a copolymer for example a copolymer of PEN (for example 2,6-, 1,4-, 1,5-, 2,7- and / or 2,3-naphthalenedicarboxylic acid or an ester thereof; Acid or ester thereof, (b) isophthalic acid or ester thereof, (c) phthalic acid or ester thereof, (d) alkylene glycol (eg, ethylene glycol, propylene glycol), (e) cycloalkylene glycol (eg, cyclohexanedimethanol) Diol), (f) alkanedicarboxylic acid, and / or (g) a copolymer with cycloalkanedicarboxylic acid (eg, 1,4-, 1,2-cyclohexanedicarboxylic acid), a copolymer of polyalkylene terephthalate (eg, terephthalate) Acid or its ester (B) isophthalic acid or ester thereof, (c) phthalic acid or
- each individual layer may include a blend of two or more of the above polymers or copolymers (eg, a blend of a copolymer of polyalkylene terephthalate and a copolymer of PEN).
- a polymer described in JP 2010-184493 may be used as the polymer. Specifically, a polyester (hereinafter referred to as polyester A) and a polyester (hereinafter referred to as polyester B) containing residues derived from at least three diols of ethylene glycol, spiroglycol and butylene glycol, Can be used.
- Polyester A is not particularly limited as long as it has a structure obtained by polycondensation of a dicarboxylic acid component and a diol component.
- the polyester B contains residues derived from at least three kinds of diols, ethylene glycol, spiroglycol and butylene glycol.
- the optical reflection layer is composed of a third polymer layer containing polyethylene terephthalate (PET) or a copolymer of polyethylene terephthalate (coPET), and poly (methyl methacrylate) (PMMA) or poly (methyl methacrylate).
- PET polyethylene terephthalate
- coPET copolymer of polyethylene terephthalate
- PMMA poly (methyl methacrylate)
- a third polymer layer comprising cyclohexanedimethanol (PETG) or a copolymer of cyclohexanedimethanol (coPETG) and polyethylene naphthalate (PEN) or polyethylene naphthalate.
- Copolymer (coPEN) Formed of alternating layers with a fourth polymer layer comprising; or a third polymer layer comprising polyethylene naphthalate or a copolymer of polyethylene naphthalate and poly (methyl methacrylate) or poly (methyl methacrylate) It is preferably formed from alternating layers with a fourth polymer layer comprising a copolymer.
- the combination described in US Pat. No. 6,352,761 is also preferable.
- the optical reflection layer can also be formed from the above polymer by melt extrusion and stretching of the polymer as described in US Pat. No. 6,049,419.
- each refractive index layer material is melted at 100 to 400 ° C. so as to have an appropriate viscosity for extrusion, and various additives are added as necessary, so that both polymers are alternately formed into two layers.
- the extruded laminated film is cooled and solidified by a cooling drum to obtain a laminated body.
- the laminate is heated and then stretched in two directions to obtain an optical reflection layer.
- the film When stretching in the film transport direction or the direction perpendicular to the film transport direction, the film is preferably stretched at a magnification of 1.5 to 5.0 times, more preferably in the range of 2.0 to 4.0 times.
- heat processing can be performed subsequent to stretching.
- the thermal processing means is not particularly limited and can be generally performed with hot air, infrared rays, a heating roll, microwave, or the like, but is preferably performed with hot air in terms of simplicity.
- the heat-processed film is usually cooled to Tg or less, and clip holding portions at both ends of the film are cut and wound.
- the means for cooling is not particularly limited, and can be performed by a conventionally known means. In particular, it is preferable to perform these treatments while sequentially cooling in a plurality of temperature ranges in terms of improving the dimensional stability of the film.
- the range of the total number of high refractive index layers and low refractive index layers is preferably 10 to 5000 layers, more preferably 20 to 2000 layers.
- the laminate After forming a laminate of a high refractive index layer and a low refractive index layer by simultaneous extrusion of the resin, the laminate is stretched to form a film, and then an optical reflective layer is bonded by thermocompression bonding or adhesion using an adhesive. It can be formed on a substrate.
- the optical reflective film of the present invention has an infrared absorbing nanoparticle layer in addition to the substrate and the optical reflective layer.
- the infrared absorption nanoparticle layer is usually formed on the optical reflection layer, but not only the form in which the infrared absorption nanoparticle layer is directly provided on the optical reflection layer, but also the optical reflection layer and the infrared absorption nanoparticle layer. Another intermediate layer may be provided between the particle layer.
- the infrared absorption nanoparticle layer may be a single layer or a plurality of layers, and when there are a plurality of infrared absorption nanoparticle layers, the infrared absorption nanoparticle layers are adjacent to each other.
- the intermediate layer is not particularly limited and is appropriately selected depending on a desired function.
- the intermediate layer includes an adhesive layer, a conductive layer, an antistatic layer, a gas barrier layer, an easy adhesion layer (adhesion layer), an antifouling layer, a deodorant layer, a droplet layer, an easy slip layer, Examples include an abrasion layer, an antireflection layer, an electromagnetic wave shielding layer, a printing layer, a fluorescent light emitting layer, a hologram layer, a release layer, and a colored layer.
- the thickness of the infrared absorption nanoparticle layer can be appropriately designed so that a desired function (infrared absorption ability) is exhibited.
- the thickness of the infrared absorption nanoparticle layer is usually 1 to 20 ⁇ m, preferably 1 to 15 ⁇ m, more preferably 3 to 10 ⁇ m, and particularly preferably about 5 to 10 ⁇ m.
- the configuration of the infrared absorption nanoparticle layer is not particularly limited, and may be the same as that of the infrared absorption nanoparticle layer applied to a known optical reflection film.
- the infrared absorbing nanoparticle layer includes metal oxide nanoparticles and a resin.
- the metal oxide nanoparticles are nanoparticles, transparency of visible light is ensured.
- the material constituting the metal oxide nanoparticles is not particularly limited as long as it can absorb infrared light.
- tin oxide, antimony oxide, indium oxide, indium doped tin oxide, indium doped zinc oxide indium zinc composite oxide: IZO
- antimony doped indium tin oxide, antimony tin oxide, antimony doped tin oxide ATO
- Antimony doped zinc oxide antimony zinc composite oxide: AZO
- gallium doped zinc oxide gallium zinc composite oxide: GZO
- titanium oxide, zinc oxide, silicon oxide, alumina, zirconia, lanthanum boride, cerium oxide, oxidation Examples include vanadium, nickel oxide, tungsten oxide, cesium tungsten oxide, or a mixture thereof.
- oxide nanoparticles containing Cd / Se, GaN, Y 2 O 3 , Au, Ag, and Cu can also be used.
- antimony-doped zinc oxide, antimony tin oxide, antimony-doped tin oxide, and indium-doped tin oxide are preferable.
- the metal oxide nanoparticles may be used alone or in the form of a mixture of two or more.
- the compound doped with another metal means both a state where another metal is mixed in the compound or a state where the compound and another metal (oxide) are bonded. Point to.
- the content of the metal oxide nanoparticles in the infrared absorption nanoparticle layer is not particularly limited, but is 30 to 80% by mass with respect to the total amount of the components of the infrared absorption nanoparticle layer (in terms of solid content). It is preferably 45 to 70% by mass. When the content of the metal oxide nanoparticles is in such a range, the infrared absorption nanoparticle layer can exhibit sufficient infrared light absorption (infrared light shielding).
- the infrared absorption nanoparticle layer essentially contains metal oxide nanoparticles, but from the viewpoint of weather resistance and absorption spectrum, other infrared absorbers other than the metal oxide nanoparticles are used as long as the effects of the present invention are not impaired. You may mix.
- the infrared absorber is not particularly limited, and a known infrared absorber can be used, and examples thereof include lanthanum boride, nickel complex compounds, imonium compounds, phthalocyanine compounds, and aminium compounds.
- the amount of the other infrared absorber in the infrared absorbing nanoparticle layer when the infrared absorbing nanoparticle layer contains another infrared absorber is not particularly limited as long as the effect of the present invention is not impaired, but preferably 0 mass. % And 5% by mass or less, more preferably 0% by mass and 3% by mass or less.
- the “nanoparticle” in the metal oxide nanoparticle refers to a particle having an average (secondary) particle size of 1000 nm or less.
- the size of the metal oxide nanoparticles is not particularly limited, but in view of visible light transmittance, the average particle size is more preferably in the range of 1 to 500 nm, and more preferably in the range of 1 to 200 nm. Those in the range of 5 to 100 nm are particularly preferred.
- the particle diameter means the maximum distance among the distances between any two points on the outline of the particle (observation surface) observed using an observation means such as a transmission electron microscope.
- As the value of the average particle size a value calculated as the number average value of the particle sizes of particles observed in several to several tens of fields using an observation means such as a transmission electron microscope is used.
- the resin constituting the infrared absorbing nanoparticle layer is not particularly limited, and examples thereof include a thermosetting resin and an active energy ray curable resin. Of these, active energy ray-curable resins are preferred because they are easy to mold. Such curable resins can be used singly or in combination of two or more. As the curable resin, a commercially available product may be used, or a synthetic product may be used.
- the active energy ray resin refers to a resin that is cured through a crosslinking reaction or the like by irradiation with active energy rays such as ultraviolet rays or electron beams.
- the active energy ray curable resin a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and the active energy ray curable resin layer is cured by irradiation with an active energy ray such as an ultraviolet ray or an electron beam. Is formed.
- an active energy ray curable resin include an ultraviolet curable resin, an electron beam curable resin, and the like, and an ultraviolet curable resin that is cured by ultraviolet irradiation is preferable.
- the infrared absorption nanoparticle layer preferably contains an ultraviolet curable resin and at least one selected from the group consisting of aluminum-doped zinc oxide, antimony tin oxide, antimony-doped tin oxide, and indium-doped tin oxide.
- the ultraviolet curable resin examples include an ultraviolet curable acrylate resin such as an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, and an ultraviolet curable polyol acrylate resin, or an ultraviolet curable epoxy. Resins and the like are preferably used. Among these, UV curable acrylate resins, particularly UV curable urethane acrylate resins and UV curable polyol acrylate resins are preferred.
- the UV curable urethane acrylate resin is generally a product obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer and further adding 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate (hereinafter, acrylate includes methacrylate).
- acrylate includes methacrylate.
- a mixture of 100 parts Unidic 17-806 (manufactured by Dainippon Ink Co., Ltd.) and 1 part of Coronate L (manufactured by Nippon Polyurethane Co., Ltd.) described in JP-A-59-151110 is preferably used. It is done.
- UV curable urethane acrylate resin examples include Beamset (registered trademark) 575 and 577 (manufactured by Arakawa Chemical Industry Co., Ltd.), and Murasaki (registered trademark) UV series. be able to.
- UV curable polyester acrylate resin examples include those generally formed by reacting polyester polyol with 2-hydroxyethyl acrylate and 2-hydroxy acrylate monomers, and disclosed in JP-A-59-151112. Those described can be used.
- an epoxy acrylate is used as an oligomer, and a reactive diluent and a photopolymerization initiator are added to the oligomer and reacted, and JP-A-1-1057738 discloses. Those described can be used.
- UV curable polyol acrylate resin examples include ethylene glycol (meth) acrylate, polyethylene glycol di (meth) acrylate, glycerin tri (meth) acrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, and dipentaerythritol. Examples include pentaacrylate, dipentaerythritol hexaacrylate, and alkyl-modified dipentaerythritol pentaacrylate.
- Commercially available products may be used as the ultraviolet curable polyol acrylate resin, and examples of commercially available products include Sartomer SR295, SR399 (manufactured by Sartomer).
- a polymerizable silicone compound may be used in combination (or alone) with an ultraviolet curable resin.
- the polymerizable silicone compound is preferably used in combination with the ultraviolet curable resin.
- the polymerizable silicone compound is a compound having a main skeleton (silicone skeleton) with a siloxane bond and a polymerizable group in the molecule.
- the polymerizable group is a group polymerizable with the ultraviolet curable resin, and examples thereof include a group having a polymerizable double bond such as a (meth) acryloyl group and a (meth) acryloyloxy group.
- a (meth) acryloyl group is preferred. Therefore, it is preferable that a preferable polymerizable silicone compound is silicone (meth) acrylate or silicone (meth) acrylate oligomer (hereinafter collectively referred to as silicone (meth) acrylate).
- the polymerizable silicone compound is an organically modified polymerizable silicone compound containing a site that improves the compatibility with the ultraviolet curable resin in the molecule from the viewpoint of improving the compatibility with the ultraviolet curable resin described above.
- organically modified polymerizable silicone compounds include urethane modification, amino modification, alkyl modification, epoxy modification, carboxyl modification, alcohol modification, fluorine modification, alkylaralkyl polyether modification, epoxy / polyether modification or polyether modification. And polymerizable silicone compounds.
- the polymerizable silicone compound is preferably urethane-modified silicone (meth) acrylate.
- the urethane-modified silicone (meth) acrylate is obtained by, for example, reacting a polyisocyanate with a silicone compound in which both ends are OH to obtain a terminal isocyanate silicone compound, and the terminal isocyanate silicone compound and the hydroxyl group-containing (meth) acrylate It is obtained by reacting.
- the polymerizable silicone compound also forms a polymer, and thus becomes a polymerizable component of the resin.
- the resin may be obtained by synthesis or a commercially available product.
- commercially available products include EBECRYL1360, EBECRYL350, KRM8495 (manufactured by Daicel Ornex), CN9800, CN990 (manufactured by Arkema), and the like.
- Photopolymerization initiators include benzoin and its alkyl ethers such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzylmethyl ketal; acetophenone, 2,2-dimethoxy Acetophenones such as -2-phenylacetophenone and 1-hydroxycyclohexyl phenyl ketone; anthraquinones such as methylanthraquinone, 2-ethylanthraquinone and 2-amylanthraquinone; thioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, etc.
- benzoin and its alkyl ethers such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzylmethyl ketal
- Thioxanthones such as acetophenone dimethyl ketal and benzyl dimethyl ketal; benzophenones such as benzophenone and 4,4-bismethylaminobenzozonone And azo compounds can be used. These may be used alone or in combination of two or more.
- tertiary amines such as triethanolamine and methyldiethanolamine
- photoinitiators such as 2-dimethylaminoethylbenzoic acid and benzoic acid derivatives such as ethyl 4-dimethylaminobenzoate can be used in combination. it can.
- Commercially available photopolymerization initiators may be used.
- Irgacure (registered trademark) -184, 819, 907, 651, 1700, 1800, 819, 369, 261, DAROCUR-TPO (manufactured by BASF Japan Ltd.), Darocur (Registered trademark) -1173 (manufactured by Merck), Ezacure-KIP150, TZT (manufactured by DKSH Japan), Kayacure (registered trademark) BMS, DMBI (manufactured by Nippon Kayaku Co., Ltd.) and the like.
- the amount of the photopolymerization initiator used is preferably 0.5 to 30 parts by mass, more preferably 1 to 25 parts by mass with respect to 100 parts by mass of the polymerizable component of the resin.
- the blending amount of the resin in the infrared absorbing nanoparticle layer is not particularly limited as long as the effects of the present invention are not impaired, and can be suitably set depending on the purpose.
- the blending amount of the resin in the infrared absorbing nanoparticle layer is preferably 20 to 70% by mass, preferably 30 to 70% by mass with respect to the total amount (in terms of solid content) of the constituent components of the infrared absorbing nanoparticle layer. More preferably, it is 55 mass%.
- the infrared absorbing nanoparticle layer may contain a surfactant as necessary.
- a surfactant as necessary.
- leveling property, water repellency, slipperiness, etc. can be provided.
- the type of the surfactant is not particularly limited, and an acrylic surfactant, a silicone surfactant, a fluorine surfactant, or the like can be used.
- a fluorosurfactant is preferably used from the viewpoint of leveling properties, water repellency, and slipperiness.
- the fluorosurfactant include, for example, Megafac (registered trademark) F series (F-430, F-477, F-552 to F-559, F-561, F-562, etc., manufactured by DIC Corporation.
- the content of the surfactant in the infrared absorption nanoparticle layer is preferably 0.001 to 0.5% by mass with respect to the total amount of the constituent components of the infrared absorption nanoparticle layer (in terms of solid content).
- the method for forming the infrared absorbing nanoparticle layer is not particularly limited, and a known method can be applied in the same manner or appropriately modified.
- coating the coating liquid for infrared absorption nanoparticle layer formation on an optical reflection layer can be used.
- the solvent used for forming the coating solution for forming the infrared absorbing nanoparticle layer is not particularly limited.
- hydrocarbons toluene, xylene
- alcohols methanol, ethanol, isopropanol, butanol
- Cyclohexanol ketones
- ketones acetone, methyl ethyl ketone, methyl isobutyl ketone
- esters methyl acetate, ethyl acetate, methyl lactate
- glycol ethers etc.
- the amount of the solvent is not particularly limited, and is appropriately set in an amount capable of dissolving and dispersing the cured resin.
- the concentration (total solid content) of the metal oxide nanoparticles and the resin in the coating solution for forming the infrared absorbing nanoparticle layer is preferably 10 to 60% by mass, and 20 to 50% by mass. Is more preferable.
- the coating method of the coating solution for forming the infrared absorbing nanoparticle layer is not particularly limited, and examples thereof include conventionally known coating methods such as a bar coating method, a gravure coating method, a reverse coating method, and a die coating method. Can do.
- the coating film is dried and then cured by heating or irradiation with active energy rays.
- the drying conditions are appropriately set at a temperature at which the solvent used can be removed, but is usually 40 to 120 ° C.
- the heating condition is not limited as long as the sufficient curing treatment can be performed, but the heat treatment may be performed for 30 minutes to several days within a temperature range of 50 to 150 ° C. preferable.
- the active energy ray irradiation conditions in the case of performing the said hardening process by active energy ray irradiation are not restrict
- the illuminance is preferably 50 ⁇ 1500mW / cm 2.
- the amount of irradiation energy is preferably 50 to 1500 mJ / cm 2 .
- the optical reflective film of the present invention has a heat dissipation promoting layer in addition to the substrate, the optical reflective layer, and the infrared absorbing nanoparticle layer.
- the heat radiation promoting layer is disposed on the outermost layer on the light incident side.
- the structure of the optical reflection film is not limited as long as it is installed so that sunlight is incident from the heat radiation promoting layer side of the optical reflection film.
- the heat radiation promoting layer is disposed on the outermost layer, and the adhesive layer is disposed on the other outermost layer. In such a form, for example, when the optical reflection film is bonded to the window glass surface on the outdoor (outdoor) side via the adhesive layer, the heat radiation promoting layer is arranged on the sunlight incident side.
- stimulation layer is arrange
- the heat dissipation promotion layer is usually formed on the infrared absorption nanoparticle layer, but not only in the form of providing the heat dissipation promotion layer directly on the infrared absorption nanoparticle layer, but also the infrared absorption nanoparticle layer and the heat dissipation promotion Another intermediate layer may be provided between the layers.
- the heat dissipation promoting layer is formed on the infrared absorbing nanoparticle layer, that is, the infrared absorbing nanoparticle layer and the heat dissipation promoting layer are disposed adjacent to each other.
- the metal oxide nanoparticle in an infrared light absorption nanoparticle layer can discharge
- the heat dissipation promotion layer may be a single layer or a plurality of layers, and when there are a plurality of heat dissipation promotion layers, not only the form in which each heat dissipation promotion layer is laminated adjacently. , They may exist at physically separated positions.
- the intermediate layer is not particularly limited and is appropriately selected depending on a desired function. Specifically, examples of the intermediate layer include the same layers as those described in the infrared absorption nanoparticle layer.
- the ratio (d1 / d2) of the film thickness (d1) of the infrared absorption nanoparticle layer to the film thickness (d2) of the heat dissipation promoting layer is 1 to 100. That is, the film thickness of the heat dissipation promoting layer is equal to or less than the film thickness of the infrared absorption nanoparticle layer.
- the heat radiation promotion layer can efficiently release the heat generated by the metal oxide nanoparticles by absorption of infrared light to the outside.
- the ratio (d1 / d2) is less than 1 (that is, the heat dissipation promoting layer is thicker)
- the heat dissipation promoting layer is too thick and the heat generated by the infrared absorption nanoparticle layer is sufficiently dissipated outside the film. This is not preferable because heat cracking occurs.
- the ratio (d1 / d2) exceeds 100 (that is, the heat dissipation promoting layer is too thin)
- the heat dissipation promoting layer is too thin and directly receives the heat generated by the infrared absorption nanoparticle layer, and is also an optical reflective film. The heat cracking phenomenon cannot be prevented.
- the ratio (d1 / d2) of the film thickness (d1) of the infrared absorption nanoparticle layer to the film thickness (d2) of the heat dissipation promoting layer is preferably 3-50. Preferably it is 5-20.
- the film thickness (dry film thickness) of the heat dissipation promoting layer is 0.1 ⁇ m or more and less than 1 ⁇ m.
- the heat radiation promoting layer is too thin and directly receives the heat generated by the infrared absorption nanoparticle layer, causing thermal cracks in the optical reflective film. The phenomenon cannot be prevented. Further, in this case, the heat dissipation promoting layer cannot exhibit sufficient film protection characteristics and cannot exhibit sufficient scratch resistance.
- fever of an infrared absorption nanoparticle layer cannot fully radiate heat outside a film in the film thickness (dry film thickness) of a heat dissipation acceleration
- stimulation layer being 1 micrometer or more, it will produce a thermal crack.
- the heat radiation promoting layer is formed using a material having a metalloxane skeleton derived from polysilazane described later, it is not preferable because cracking occurs during coating and drying.
- the film thickness of the whole film will be restrained if it is the film thickness of the above heat dissipation promotion layer, the film can exhibit the outstanding softness
- the film thickness (dry film thickness) of the heat dissipation promoting layer is preferably more than 0.1 ⁇ m and not more than 0.9 ⁇ m, more preferably 0.2 to 0.8 ⁇ m. .
- the material for forming the heat dissipation promoting layer is not particularly limited as long as it can exhibit heat dissipation, but is preferably a material that can exhibit transparency, scratch resistance, weather resistance, hardness, mechanical strength, and the like.
- an inorganic filler is added to a resin as a heat conductive composition for heat dissipation of electronic parts and the like.
- a resin an acrylic resin, a urethane resin, a melamine resin, an epoxy resin, an organic silicate compound, a silicone resin, or the like can be used.
- silicone resins and acrylic resins are preferable in terms of hardness and durability. Further, in terms of curability, flexibility, and productivity, those made of an active energy ray-curable acrylic resin or a thermosetting acrylic resin are preferable.
- the inorganic filler include alumina, aluminum nitride, boron nitride, silicon carbide, silicon nitride, magnesium oxide, and zinc oxide.
- a material having a metalloxane skeleton (an organic silicate compound or a silicone resin) is particularly preferably used from the viewpoint of heat dissipation and scratch resistance. That is, it is preferable that the heat dissipation promoting layer includes a material having a metalloxane skeleton.
- a partially hydrolyzed oligomer of an alkoxysilane compound synthesized by a known method can be used for the thermosetting silicone-based heat dissipation promoting layer.
- An example of the synthesis method is as follows. First, tetramethoxysilane or tetraethoxysilane is used as an alkoxysilane compound, and a predetermined amount of water is added to the alkoxysilane compound in the presence of an acid catalyst such as hydrochloric acid or nitric acid to remove by-produced alcohol from room temperature to 80 ° C. React with.
- an acid catalyst such as hydrochloric acid or nitric acid
- the alkoxysilane is hydrolyzed, and further, a partially hydrolyzed oligomer of the alkoxysilane compound having an average polymerization degree of 4 to 8 having two or more silanol groups or alkoxy groups in one molecule is obtained by the condensation reaction.
- a curing catalyst such as acetic acid or maleic acid is added to this and dissolved in an alcohol or glycol ether organic solvent to obtain a thermosetting silicone hard coat liquid.
- the heat dissipation promoting layer is made of an inorganic material, it can be formed by depositing, for example, silicon oxide, aluminum oxide, silicon nitride, aluminum nitride, lanthanum oxide, lanthanum nitride, or the like by a vacuum film forming method.
- the vacuum film forming method include a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, an ion beam assisted vacuum deposition method, and a sputtering method.
- the heat dissipation promoting layer includes a material having a metalloxane skeleton
- the material it is possible to form a heat radiation promoting layer having high thermal conductivity while maintaining flexibility (flexibility).
- stimulation layer formed using the said material shows a glass-like characteristic, it is excellent also in scratch resistance.
- the method for producing such a heat dissipation promoting layer is not particularly limited.
- a glass-like solution can be obtained by applying and drying a solution to which a catalyst is added in an organic solvent containing polysilazane represented by the following general formula (1), if necessary, and then heating (removing the solvent by evaporation).
- a transparent heat dissipation promoting layer can be formed.
- R 1 , R 2 and R 3 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group. .
- R 1 , R 2 and R 3 may be the same or different.
- examples of the alkyl group include linear, branched or cyclic alkyl groups having 1 to 8 carbon atoms.
- the aryl group include aryl groups having 6 to 30 carbon atoms.
- non-condensed hydrocarbon groups such as phenyl group, biphenyl group, terphenyl group; pentarenyl group, indenyl group, naphthyl group, azulenyl group, heptaenyl group, biphenylenyl group, fluorenyl group, acenaphthylenyl group, preadenenyl group , Condensed polycyclic hydrocarbon groups such as acenaphthenyl group, phenalenyl group, phenanthryl group, anthryl group, fluoranthenyl group, acephenanthrenyl group, aceantrirenyl group, triphenylenyl group, pyrenyl group, chrysenyl group, naphthacenyl group, etc.
- non-condensed hydrocarbon groups such as phenyl group, biphenyl group, terphenyl group; pentarenyl group, indenyl group, nap
- the (trialkoxysilyl) alkyl group includes an alkyl group having 1 to 8 carbon atoms having a silyl group substituted with an alkoxy group having 1 to 8 carbon atoms. More specific examples include 3- (triethoxysilyl) propyl group and 3- (trimethoxysilyl) propyl group.
- the substituent optionally present in R 1 to R 3 is not particularly limited, and examples thereof include an alkyl group, a halogen atom, a hydroxyl group (—OH), a mercapto group (—SH), a cyano group (—CN), There are a sulfo group (—SO 3 H), a carboxyl group (—COOH), a nitro group (—NO 2 ) and the like. Note that the optionally present substituent is not the same as R 1 to R 3 to be substituted. For example, when R 1 to R 3 are alkyl groups, they are not further substituted with an alkyl group.
- R 1 , R 2 and R 3 are preferably a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a phenyl group, a vinyl group, 3 -(Triethoxysilyl) propyl group or 3- (trimethoxysilylpropyl) group.
- n is an integer
- the polysilazane having the structure represented by the general formula (1) may be determined to have a number average molecular weight of 150 to 150,000 g / mol. preferable.
- perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms is preferred.
- the heat dissipation promoting layer contains at least one polysilazane represented by the following general formula (2).
- R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, An aryl group, a vinyl group or a (trialkoxysilyl) alkyl group.
- R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ may be the same or different.
- the substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group in the above is the same as the definition in the general formula (1), and thus the description thereof is omitted.
- n ′ and p ′ are integers so that the polysilazane having the structure represented by the general formula (2) has a number average molecular weight of 150 to 150,000 g / mol. Preferably, it is defined. Note that n ′ and p ′ may be the same or different.
- R 1 ′ , R 3 ′ and R 6 ′ each represent a hydrogen atom, and R 2 ′ , R 4 ′ and R 5 ′ each represent a methyl group;
- R 1 ' , R 3' and R 6 ' each represents a hydrogen atom, R 2' , R 4 ' each represents a methyl group, and R 5' represents a vinyl group;
- R 1 ' , R 3' , R 4 A compound in which ' and R 6' each represent a hydrogen atom and R 2 ' and R 5' each represents a methyl group is preferred.
- the heat dissipation promoting layer contains at least one polysilazane represented by the following general formula (3).
- R 1 ′′ , R 2 ′′ , R 3 ′′ , R 4 ′′ , R 5 ′′ , R 6 ′′ , R 7 ′′ , R 8 ′′ and R 9 ′′ are each independently A hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group, wherein R 1 ′′ , R 2 ′′ , R 3 ′′ , R 4 ′′ , R 5 ′′ , R 6 ′′ , R 7 ′′ , R 8 ′′ and R 9 ′′ may be the same or different.
- the substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group in the above is the same as the definition in the general formula (1), and thus the description thereof is omitted.
- n ′′, p ′′ and q ′′ are integers, and the polysilazane having the structure represented by the general formula (3) has a number average molecular weight of 150 to 150,000 g / mol.
- n ′′, p ′′ and q ′′ may be the same or different.
- R 1 ′′ , R 3 ′′ and R 6 ′′ each represent a hydrogen atom
- R 2 ′′ , R 4 ′′ , R 5 ′′ and R 8 ′′ each represent a methyl group.
- R 9 ′′ represents a (triethoxysilyl) propyl group
- R 7 ′′ represents an alkyl group or a hydrogen atom.
- the organopolysilazane in which a part of the hydrogen atom portion bonded to Si is substituted with an alkyl group or the like has improved adhesion to the base material as a base by having an alkyl group such as a methyl group and is hard.
- the ceramic film made of brittle polysilazane can be toughened, and there is an advantage that the occurrence of cracks can be suppressed even when the (average) film thickness is increased. For this reason, perhydropolysilazane and organopolysilazane may be selected as appropriate according to the application, and may be used in combination.
- Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings.
- the number average molecular weight (Mn) is about 600 to 2000 (polystyrene conversion), and there are liquid or solid substances, and the state varies depending on the molecular weight.
- Polysilazane is commercially available in a solution state dissolved in an organic solvent, and the commercially available product can be used as it is as the first barrier layer forming coating solution.
- Commercially available polysilazane solutions include NN120-10, NN120-20, NAX120-20, NN110, NN310, NN320, NL110A, NL120, NL120A, NL120-20, NL150A, NP110, NP140, manufactured by AZ Electronic Materials Co., Ltd. SP140 etc. are mentioned.
- the method of forming the heat dissipation promotion layer is not particularly limited, but a coating solution for forming a heat dissipation promotion layer containing polysilazane is applied, A method of curing the coating film by heating is preferred.
- the coating method is not particularly limited, and examples thereof include conventionally known coating methods such as a bar coating method, a gravure coating method, a reverse coating method, and a die coating method.
- the ratio of polysilazane in the solvent is generally 1 to 80% by mass of polysilazane.
- water and a reactive group for example, a hydroxy group or an amine group
- an organic system that is inert to polysilazane and preferably an aprotic solvent is preferable.
- binders such as those conventionally used in the production of paints can be used.
- cellulose ethers and cellulose esters such as ethyl cellulose, nitrocellulose, cellulose acetate or cellulose acetobutyrate, natural resins such as rubber or rosin resins, or synthetic resins such as polymerized resins or condensed resins such as aminoplasts, in particular Urea resins and melamine formaldehyde resins, alkyd resins, acrylic resins, polyesters or modified polyesters, epoxides, polyisocyanates or blocked polyisocyanates, or polysiloxanes.
- the coating film is dried and then cured by heating.
- the drying conditions are not particularly limited as long as a sufficient amount of solvent can be evaporated from the coating film (a coating film can be formed).
- the drying temperature is preferably 10 to 90 ° C, more preferably 20 to 50 ° C.
- the drying time is preferably 0.5 to 10 minutes, more preferably 1 to 5 minutes.
- the curing conditions may be any conditions that allow a sufficient curing process (a heat dissipation promoting layer can be formed), but it is preferable to perform a heat treatment for 10 minutes to 5 hours within a temperature range of 50 to 150 ° C.
- the optical reflective film of the present invention can suppress and prevent thermal cracking due to infrared light absorption of metal oxide nanoparticles. Moreover, the optical reflective film of this invention is excellent in scratch resistance. Furthermore, the optical reflective film of the present invention satisfies at least one of high visible light transmittance, excellent infrared shielding properties, high flexibility, and peeling inhibition properties. Specifically, the optical reflective film of the present invention has a visible light transmittance (T vis ) of usually 50% or more, preferably 70% or more (upper limit: 100%) in the region of 400 nm to 780 nm. In the present specification, “visible light transmittance (T vis )” means a value measured by the method described in the Examples below.
- optical reflective film of the present invention can be applied to a wide range of fields.
- a preferred embodiment of the present invention is an optical reflector formed by providing the optical reflective film on at least one surface of a substrate.
- film for window pasting such as heat ray reflecting film that gives heat ray reflection effect, film for agricultural greenhouses, etc. Etc., mainly for the purpose of improving the weather resistance.
- it is suitable for a member in which the optical reflection film according to the present invention is bonded to glass or a glass substitute resin base material directly or via an adhesive.
- the substrate include, for example, glass, polycarbonate resin, polysulfone resin, acrylic resin, polyolefin resin, polyether resin, polyester resin, polyamide resin, polysulfide resin, unsaturated polyester resin, epoxy resin, melamine resin, and phenol.
- examples thereof include resins, diallyl phthalate resins, polyimide resins, urethane resins, polyvinyl acetate resins, polyvinyl alcohol resins, styrene resins, vinyl chloride resins, metal plates, and ceramics.
- the type of resin may be any of a thermoplastic resin, a thermosetting resin, and an ionizing radiation curable resin, and two or more of these may be used in combination.
- the substrate can be produced by a known method such as extrusion molding, calendar molding, injection molding, hollow molding, compression molding or the like.
- the thickness of the substrate is not particularly limited, but is usually 0.1 mm to 5 cm.
- the adhesive layer or the adhesive layer that bonds the optical reflecting film and the substrate is disposed on the sunlight (heat ray) incident surface side. Further, it is preferable to sandwich the optical reflection film between the window glass and the substrate because it can be sealed from surrounding gas such as moisture and has excellent durability. Even if the optical reflective film according to the present invention is installed outdoors or outside a car (for external application), it is preferable because of environmental durability.
- the adhesive layer (adhesive layer) preferably has an immediate adhesive force of 2 to 8 N / 25 mm at the time of application to the substrate (eg, glass), and the immediate adhesive force is 4 to 8 N / 25 mm.
- Immediate adhesive strength refers to the adhesive strength of the adhesive layer measured 24 hours after the optical reflective film was attached to glass. The adhesive strength of the adhesive layer can be adjusted by appropriately selecting the material constituting the adhesive layer.
- the adhesive strength between the adhesive layer and the glass at the time of application is 4 to 8 N / 25 mm, and the adhesive layer and the glass at the time of being left for 1 week at 30 ° C. and 60% humidity in the applied state.
- An adhesive strength with time is preferably 7 to 15 N / 25 mm from the viewpoint of curved surface adhesion. Further, the adhesive strength with time is preferably 10 to 15 N / 25 mm from the viewpoint of improving durability and reducing adhesive residue.
- the adhesive strength with time refers to the adhesive strength of the adhesive layer measured after a certain period of time when the optical reflective film is attached to glass.
- the optical reflective film of the present invention When the optical reflective film of the present invention is bonded to a window glass, water is sprayed on the window, and a method for bonding the adhesive layer of the optical control film to the wet glass surface, the so-called water bonding method is re-stretched, repositioned, etc. From the viewpoint of, it is preferably used. For this reason, a pressure-sensitive adhesive having a low adhesive strength in the presence of water is preferable.
- an adhesive mainly composed of a photocurable or thermosetting resin can be used as the pressure-sensitive adhesive (adhesive) applicable to the present invention.
- the adhesive preferably has durability against ultraviolet rays, and is preferably an acrylic adhesive or a silicone adhesive. Furthermore, an acrylic adhesive is preferable from the viewpoint of adhesive properties and cost. In particular, since the peel strength can be easily controlled, a solvent system is preferable among the solvent system and the emulsion system in the acrylic adhesive. When a solution polymerization polymer is used as the acrylic solvent-based pressure-sensitive adhesive, known monomers can be used as the monomer.
- an ultraviolet absorber an antioxidant, an antistatic agent, a heat stabilizer, a lubricant, a filler, a colorant, an adhesion adjusting agent, and the like can be appropriately added to the adhesive layer.
- an adhesion layer contains a ultraviolet absorber.
- the ultraviolet absorber is not particularly limited, and a known ultraviolet absorber can be used.
- benzophenone ultraviolet absorbers such as 2,4-dihydroxy-benzophenone and 2-hydroxy-4-methoxy-benzophenone; 2- (2′-hydroxy-5-methylphenyl) benzotriazole, 2- (2′-hydroxy Benzotriazole UV absorbers such as -3 ', 5'-di-t-butylphenyl) benzotriazole; phenyl salicylate, 2-4-di-t-butylphenyl-3,5-di-t-butyl Phenyl salicylate UV absorbers such as -4-hydroxybenzoate; hindered amine UV absorbers such as bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate; 2,4-diphenyl-6- ( 2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2 Triazine-based UV
- the ultraviolet absorber includes a compound having a function of converting the energy held by ultraviolet rays into vibrational energy in the molecule and releasing the vibrational energy as thermal energy.
- an ultraviolet absorber individually or in mixture of 2 or more types.
- a synthetic product or a commercially available product may be used. Examples of commercially available products include, for example, Tinuvin (registered trademark) 320, Tinuvin (registered trademark) 328, Tinuvin (registered trademark) 234, Tinuvin (registered trademark) 477, Tinuvin (registered trademark) 1577, and Tinuvin (registered trademark) 622.
- ADK STAB registered trademark LA-31 (above, manufactured by ADEKA CORPORATION)
- SEESORB registered trademark 102
- SESORB registered trademark
- SEESORB registered trademark
- the addition amount of the ultraviolet absorber (in terms of solid content) is preferably 0.1 to 10% by mass, more preferably 0.5 to 5% by mass with respect to the pressure-sensitive adhesive. If it is such a range, the sunlight absorption amount of a heat ray absorption layer can be reduced more effectively.
- the thickness of the pressure-sensitive adhesive layer is preferably 1 to 100 ⁇ m, and more preferably 3 to 50 ⁇ m. If it is 1 micrometer or more, there exists a tendency for adhesiveness to improve and sufficient adhesive force is acquired. On the contrary, if the thickness is 100 ⁇ m or less, not only the transparency of the optical control film is improved, but also when the optical control film is attached to the window glass and then peeled off, no cohesive failure occurs between the adhesive layers, and adhesion to the glass surface There is a tendency that there is no remaining agent.
- the method for forming the adhesive layer on the substrate is not particularly limited, but after the adhesive layer coating liquid is applied on the substrate or separator and dried to form the adhesive layer, the adhesive layer and the reflective layer are bonded together.
- the method is preferred.
- Examples of the separator used at this time include a silicone-coated release PET film and a silicone-coated PE film.
- the method of applying the coating solution for the adhesive layer on the separator is not particularly limited, and examples thereof include a method of applying the coating solution by wire bar coating, spin coating, dip coating, etc., and forming a film. It is possible to apply and form a film using a continuous coating apparatus such as a coater or a comma coater.
- the “adhesive strength” is obtained by measuring according to JIS A 5759: 2008 6.8 adhesive strength test, and more specifically, measured according to the method described in the following examples. Is done.
- the polyalkylene terephthalate used, 2,6-naphthalenedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid (mass ratio 7: 3) as the dicarboxylic acid component, and ethylene glycol as the glycol component (dicarboxylic acid component: glycol component 1: 1 (molar ratio)) is melted at 320 ° C., and a layer formed from polyalkylene terephthalate is formed from 200 layers of multi-layer extrusion dies so that one side is 1640 nm and the other side is 2460 nm.
- Tilt and extrude The layer formed from the copolymer of PEN is inclined so that the other side is 1230 nm and the other side is 1840 nm, and the extruded film is alternately extruded, and the extruded film is stretched about 3.3 times in length and about 3.3 times in width. Then, heat setting and cooling were performed to produce an optical reflection layer (thickness: 72 ⁇ m) having a reflection wavelength center at a wavelength of 1000 nm.
- the optically reflective layer obtained above is a polyethylene terephthalate film (A4300, double-sided easy-adhesive layer, thickness: 50 ⁇ m, length 200 m ⁇ width 210 mm, manufactured by Toyobo Co., Ltd., hereinafter abbreviated as PET film).
- PET film polyethylene terephthalate film
- the optical reflective layer was formed on the substrate.
- the thermocompression bonding temperature was 130 ° C.
- the crimping force was 500 N / cm 2
- the crimping speed was 5 m / min.
- An AZO dispersion (product name: Celnax CX-Z610M-F2, average particle size 15 nm, manufactured by Nissan Chemical Industries, Ltd.) is diluted with methanol to an AZO concentration of 40% by mass, and an ultraviolet curable hard coat agent.
- KRM8495 manufactured by Daicel Ornex Co., Ltd., a mixture of an acrylate-based cured resin and a polymerization initiator
- the total solid content is 30% by mass
- the AZO concentration is 50% by mass
- the cured resin is 50% by mass.
- % (Including polymerization initiator) to prepare a coating liquid 1 for forming an infrared absorbing nanoparticle layer.
- the infrared absorbing nanoparticle layer forming coating solution 1 is applied on the optical reflective layer so that the dry film thickness becomes 1 ⁇ m, and the constant rate drying zone temperature is 50 ° C. and the decreasing rate drying zone temperature is 90 °.
- the irradiance of the irradiated part is 100 mW / cm 2
- the irradiation amount is 0.2 J / cm 2
- the coating layer is cured, and an infrared absorbing nanoparticle layer having a dry film thickness of 1 ⁇ m is formed. It formed on the optical reflection layer.
- the above infrared absorbing nanoparticle layer is bar-coated using a 3% by weight perhydropolysilazane liquid (NL120 manufactured by AZ Electronic Materials) in dibutyl ether so that the film thickness after drying is 800 nm. After natural drying for 3 minutes, the film was heat-cured (annealed) in an oven at 90 ° C. for 30 minutes to form a heat dissipation promoting layer having a dry film thickness of 800 nm on the infrared absorption nanoparticle layer.
- a 3% by weight perhydropolysilazane liquid NL120 manufactured by AZ Electronic Materials
- the obtained resin mixture was mixed with 2.0 parts by mass of Tinuvin 477 (UV absorber manufactured by BASF Japan Ltd.) to prepare a coating solution 1 for forming an adhesive layer.
- Tinuvin 477 UV absorber manufactured by BASF Japan Ltd.
- a wire bar was applied to the opposite side of the heat dissipation promoting layer (the substrate surface on the side where the heat dissipation promoting layer was not formed) and dried.
- the film thickness of the adhesive layer after drying was 8 ⁇ m.
- a 25 ⁇ m thick polyester film (Therapel, manufactured by Toyo Metallizing Co., Ltd.) was bonded as a separator film to the surface of the pressure-sensitive adhesive layer of the film with the pressure-sensitive adhesive layer to produce an optical reflective film 1.
- Examples 2 to 13 Production of optical reflection films 2 to 13 In Example 1, except that the thicknesses of the infrared absorption nanoparticle layer and the heat dissipation promoting layer were changed to the thicknesses shown in Table 1 below, respectively. In the same manner as in Example 1, optical reflection films 2 to 13 were produced.
- Comparative Examples 1 to 5 Production of optical reflection films 14 to 18 In Example 1, except that the thicknesses of the infrared absorption nanoparticle layer and the heat dissipation promoting layer were changed to the thicknesses shown in Table 1 below, respectively. In the same manner as in Example 1, optical reflection films 14 to 18 were produced.
- optical reflective films 1 to 18 obtained in the above examples and comparative examples were evaluated for thermal cracking, flexibility, visible light transmittance and scratch resistance according to the following methods. The results are shown in Table 1.
- the optical reflection films 1 to 18 produced above were cut to a width of 15 cm and a length of 30 cm, respectively, and then the adhesive layer side was pasted on a commercially available laminated glass plate having a thickness of 3 mm (dry intermediate layer 6 mm) by a water pasting method. Combined. Next, the laminated glass plate on which the optical reflective film was bonded was used on a roll having a diameter of 15.2 cm (6 inches) and a width of 25 cm, and a steel roller covered with rubber having a thickness of 6 mm. An evaluation sample was prepared by pressure bonding the film and glass with a roller so that only its own weight was applied to the window pasting film surface.
- T vis The average visible light transmittance (T vis ) in the region of 400 nm to 780 nm of each optical reflection film sample was measured using a spectrophotometer (using an integrating sphere, manufactured by Hitachi, Ltd., U-4100 type).
- the optical reflective film of the present invention can effectively suppress and prevent thermal cracking. It is considered that this is because the heat dissipation promoting layer sufficiently releases the heat generated by the infrared absorption nanoparticle layer. Therefore, by using the optical reflective film of the present invention, it is expected that the film is less likely to be cracked even when pasted on laminated glass. In addition, since the heat dissipation promotion layer of the film 17 was too thick, minute cracks occurred in the heat dissipation promotion layer itself during coating and drying.
- Example 14 Production of optical reflection film 19
- a PET film (A4300, double-sided easy-adhesion layer, thickness: 50 ⁇ m, length 200 m ⁇ width 210 mm, manufactured by Toyobo Co., Ltd.) was prepared as a transparent resin film.
- a coating solution 1 for a high refractive index layer was prepared according to the following procedure.
- a dispersion of silica-coated titanium oxide particles was prepared according to the following method, and a solvent or the like was added thereto.
- a dispersion of silica-coated titanium oxide particles was prepared as follows.
- the titanium sulfate aqueous solution was thermally hydrolyzed by a known method to obtain titanium oxide hydrate.
- the obtained titanium oxide hydrate was suspended in water to obtain 10 L of an aqueous suspension of titanium oxide hydrate (TiO 2 concentration: 100 g / L).
- 30 L of an aqueous sodium hydroxide solution (concentration 10 mol / L) was added with stirring, the temperature was raised to 90 ° C., and the mixture was aged for 5 hours.
- the obtained solution was neutralized with hydrochloric acid, filtered and washed with water to obtain a base-treated titanium compound.
- the base-treated titanium compound was suspended in pure water and stirred so that the TiO 2 concentration was 20 g / L. Under stirring, it was added citric acid in an amount of 0.4 mol% with respect to TiO 2 weight. The temperature was raised to 95 ° C., concentrated hydrochloric acid was added so that the hydrochloric acid concentration was 30 g / L, and the solution temperature was maintained, followed by stirring for 3 hours.
- the pH and zeta potential of the obtained mixed liquid were measured, the pH at 25 ° C. was 1.4, and the zeta potential was +40 mV.
- the particle size was measured by Zetasizer Nano (manufactured by Malvern), the volume average particle size was 35 nm and the monodispersity was 16%.
- ⁇ Preparation of coating solution> The following constituent materials were sequentially added at 45 ° C. to the sol dispersion of silica-coated titanium oxide particles prepared above, and finally finished with 1000 parts of pure water to prepare a coating solution 1 for a high refractive index layer.
- the above-prepared coating solution 1 for the low refractive index layer and coating solution 1 for the high refractive index layer are kept on the transparent resin film while keeping the temperature at 40 ° C. Fifteen layers were applied.
- cold air of 5 ° C. was blown and set. At this time, even if the surface was touched with a finger, the time until the finger was lost (set time) was 5 minutes.
- warm air of 80 ° C. was blown and dried to form an optical reflection layer having a dry film thickness of 2.09 ⁇ m on the transparent resin film.
- the lowermost layer and the uppermost layer were low refractive index layers.
- the low refractive index layer and the high refractive index layer were alternately laminated.
- the coating amount was adjusted so that the layer thickness during drying was 150 nm for each low refractive index layer and 130 nm for each high refractive index layer.
- the thickness of each layer was confirmed by cutting the produced optical reflection film and observing the cut surface with an electron microscope. At this time, when the interface between the two layers could not be clearly observed, the interface was determined by the XPS depth profile in the thickness direction of TiO 2 contained in the layer obtained by the XPS surface analyzer.
- Example 2 In the same manner as in Example 1, a coating liquid 1 for forming an infrared absorbing nanoparticle layer was prepared.
- the infrared absorbing nanoparticle layer-forming coating solution 1 thus prepared was applied onto the optical reflective layer in the same manner as in Example 1 to form an infrared absorbing nanoparticle layer having a dry film thickness of 1 ⁇ m. It formed on the optical reflection layer.
- the above infrared absorbing nanoparticle layer is bar-coated using a 3% by weight perhydropolysilazane liquid (NL120, manufactured by AZ Electronic Materials) in dibutyl ether so that the thickness of the dried film becomes 800 nm. After natural drying for 3 minutes, the film was heat-cured (annealed) in an oven at 90 ° C. for 30 minutes to form a heat dissipation promoting layer having a dry film thickness of 800 nm on the infrared absorption nanoparticle layer.
- a 3% by weight perhydropolysilazane liquid NL120, manufactured by AZ Electronic Materials
- Example 2 In the same manner as in Example 1, a coating solution 1 for forming an adhesive layer was prepared.
- a wire bar was applied to the side opposite to the heat dissipation promoting layer (the substrate surface on the side where the heat dissipation promoting layer was not formed) and dried.
- the film thickness of the adhesive layer after drying was 8 ⁇ m.
- a 25 ⁇ m-thick polyester film (Therapel, manufactured by Toyo Metallizing Co., Ltd.) was bonded as a separator film to the surface of the pressure-sensitive adhesive layer of the film with the pressure-sensitive adhesive layer to prepare an optical reflective film 19.
- Examples 15 to 26 Production of optical reflection films 20 to 31 In Example 14, except that the thicknesses of the infrared absorption nanoparticle layer and the heat dissipation promoting layer were changed to the thicknesses shown in Table 2 below, respectively. In the same manner as in Example 14, optical reflective films 20 to 31 were produced.
- Comparative Examples 6 to 10 Production of optical reflection films 32 to 36 In Example 14, except that the thicknesses of the infrared absorption nanoparticle layer and the heat dissipation promotion layer were changed to the thicknesses shown in Table 2 below, respectively. In the same manner as in Example 14, optical reflection films 32 to 36 were produced.
- the optical reflection films 19 to 36 produced above were cut to a width of 15 cm and a length of 30 cm, and then the adhesive layer side was bonded to a commercially available laminated glass plate having a thickness of 3 mm (dry intermediate layer 6 mm) by a water bonding method.
- the laminated glass plate on which the optical reflecting film is bonded is used on a roll having a diameter of 15.2 cm (6 inches) and a width of 25 cm, and a steel roller coated with rubber having a thickness of 6 mm.
- An evaluation sample was prepared by pressure-bonding the film and glass with a roller so that only the optical reflective film surface was applied.
- the sample for evaluation thus produced was clamped and fixed to the stand, and a commercially available 40 W halogen lamp was placed 30 cm away from the glass side (the one where the film of the present invention was not applied) and irradiated at 40 W.
- pure water was sprayed on the opposite side for 1 minute, and naturally dried for 29 minutes intermittently for 24 hours. At this time, the time until cracking (cracking) started to occur on the glass surface was measured, and the time was classified as follows. Further, the state of film peeling after 24 hours was visually observed, and the results were classified as follows. These results are shown in Table 2.
- the optical reflective film of the present invention can effectively suppress and prevent thermal cracking. It is considered that this is because the heat dissipation promoting layer sufficiently releases the heat generated by the infrared absorption nanoparticle layer. Therefore, by using the optical reflective film of the present invention, it is expected that the film is less likely to be cracked even when pasted on laminated glass.
- Table 2 also shows that the optical reflective film of the present invention can more effectively suppress film peeling. This is presumed to be due to the improved water resistance since the wettability of the film surface was improved and the water did not collect easily by providing the heat dissipation diffusion layer. In addition, since the heat dissipation promoting layer was too thick in the film 35, minute cracks occurred in the heat dissipation promoting layer itself during coating and drying.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Thermal Sciences (AREA)
- Laminated Bodies (AREA)
- Optical Filters (AREA)
Abstract
The present invention provides an optical reflection body and an optical reflection film that can inhibit and prevent thermal cracking. The optical reflection film according to the present invention comprises a substrate, an optical reflection layer, an infrared-absorbing nanoparticle layer, and a heat dissipation promoting layer, and is characterised in that: the heat dissipation promoting layer is disposed on the outermost layer on the light-incident side; the ratio (d1/d2) of the film thickness (d1) of the infrared-absorbing nanoparticle layer relative to the film thickness (d2) of the heat dissipation promoting layer is 1-100; and the film thickness of the heat dissipation promoting layer is at least 0.1μm but less than 1μm.
Description
本発明は、光学反射フィルムおよび光学反射体に関する。
The present invention relates to an optical reflection film and an optical reflector.
近年、省エネルギー対策の一環として、冷房設備にかかる負荷を減らす観点から、建物や車両の窓ガラスに装着させて、太陽光の熱線の透過を遮蔽する赤外遮蔽フィルム等の光学反射フィルムへの要望が高まってきている。
In recent years, as part of energy conservation measures, from the viewpoint of reducing the load on cooling equipment, there is a need for optical reflection films such as infrared shielding films that are attached to window glass of buildings and vehicles and shield the transmission of sunlight heat rays. Is growing.
光学反射フィルムの形成方法としては、高屈折率層と低屈折率層とを交互に積層させた構成からなる積層体(反射層)を、蒸着法、スパッタ法などのドライ製膜法を用いて形成する方法が提案されている。また、近年では、ドライ製膜法に代えて、湿式塗布法を用いて光学反射フィルムの反射層を形成する方法の検討も盛んになされている。
As a method for forming an optical reflective film, a laminate (reflective layer) having a structure in which a high refractive index layer and a low refractive index layer are alternately laminated is formed by using a dry film forming method such as a vapor deposition method or a sputtering method. A method of forming has been proposed. In recent years, a method for forming a reflective layer of an optical reflective film using a wet coating method instead of a dry film forming method has been actively studied.
例えば、特許文献1には、第一のポリマー種及び第二のポリマー種の交互層を有する赤外光反射多層フィルムと、金属酸化物ナノ粒子として酸化スズまたはドープト酸化スズを含む赤外光吸収ナノ粒子層とを含む多層フィルム製品が開示されている。かような構成とすることによって太陽光制御多層フィルムは高い可視光透過率及び低い赤外透過率を有することが記載されている。
For example, Patent Document 1 discloses an infrared light absorption including an infrared light reflective multilayer film having alternating layers of a first polymer species and a second polymer species, and tin oxide or doped tin oxide as metal oxide nanoparticles. A multilayer film product comprising a nanoparticle layer is disclosed. It is described that the solar control multilayer film has a high visible light transmittance and a low infrared transmittance by adopting such a configuration.
しかしながら、上記特許文献1に記載の太陽光制御多層フィルムは、金属酸化物ナノ粒子の赤外光吸収により発生する熱で、フィルムを貼ったガラスに熱割れが発生してしまうことがあった。また、上記特許文献1に記載の太陽光制御多層フィルムは、耐傷性に劣る。
However, in the solar control multilayer film described in Patent Document 1, heat cracks may occur in the glass on which the film is attached due to heat generated by infrared light absorption of the metal oxide nanoparticles. Moreover, the solar control multilayer film of the said patent document 1 is inferior to scratch resistance.
したがって、本発明は、上記事情を鑑みてなされたものであり、熱割れを抑制・防止できる光学反射フィルムおよび光学反射体を提供することを目的とする。
Therefore, the present invention has been made in view of the above circumstances, and an object thereof is to provide an optical reflection film and an optical reflector that can suppress and prevent thermal cracking.
本発明の他の目的は、耐傷性が向上した光学反射フィルムおよび光学反射体を提供することである。
Another object of the present invention is to provide an optical reflective film and an optical reflector having improved scratch resistance.
本発明者は、上記の問題を解決すべく、鋭意研究を行った結果、特定の膜厚を有する放熱促進層を設けることによって上記課題を解決できることを見出し、本発明を完成させた。
As a result of intensive studies to solve the above problems, the present inventor has found that the above problem can be solved by providing a heat dissipation promoting layer having a specific film thickness, and has completed the present invention.
すなわち、上記目的は、基材、光学反射層、赤外吸収ナノ粒子層および放熱促進層を有する光学反射フィルムであって、前記放熱促進層が光入射側の最表層に配置され、前記放熱促進層の膜厚(d2)に対する前記赤外吸収ナノ粒子層の膜厚(d1)の比(d1/d2)が1~100であり、前記放熱促進層の膜厚が0.1μm以上1μm未満であることを特徴とする光学反射フィルムによって達成できる。
That is, the above object is an optical reflection film having a base material, an optical reflection layer, an infrared absorption nanoparticle layer, and a heat dissipation acceleration layer, wherein the heat dissipation acceleration layer is disposed on the outermost layer on the light incident side, and the heat dissipation acceleration is achieved. The ratio (d1 / d2) of the film thickness (d1) of the infrared absorbing nanoparticle layer to the film thickness (d2) of the layer is 1 to 100, and the film thickness of the heat dissipation promoting layer is 0.1 μm or more and less than 1 μm It can be achieved by an optical reflection film characterized by being.
本発明の光学反射フィルムは、基材、光学反射層、赤外吸収ナノ粒子層および放熱促進層を有する光学反射フィルムであって、前記放熱促進層が光入射側の最表層に配置され、前記放熱促進層の膜厚(d2)に対する前記赤外吸収ナノ粒子層の膜厚(d1)の比(d1/d2)が1~100であり、前記放熱促進層の膜厚が0.1μm以上1μm未満であることを特徴とする。上記構成とすることにより、本発明の光学反射フィルムは、赤外吸収ナノ粒子層を有していても、放熱促進層が当該熱を効率よく放熱できる。このため、本発明の光学反射フィルムは、金属酸化物ナノ粒子の赤外光吸収による熱割れの問題を抑制・防止できる。
The optical reflective film of the present invention is an optical reflective film having a base material, an optical reflective layer, an infrared absorption nanoparticle layer, and a heat radiation promoting layer, wherein the heat radiation promoting layer is disposed on the outermost layer on the light incident side, The ratio (d1 / d2) of the film thickness (d1) of the infrared absorbing nanoparticle layer to the film thickness (d2) of the heat dissipation promoting layer is 1 to 100, and the film thickness of the heat dissipation promoting layer is 0.1 μm or more and 1 μm. It is characterized by being less than. By setting it as the said structure, even if the optical reflection film of this invention has an infrared absorption nanoparticle layer, the heat dissipation promotion layer can thermally radiate | emit the said heat | fever efficiently. For this reason, the optical reflective film of this invention can suppress and prevent the problem of the thermal crack by the infrared-light absorption of a metal oxide nanoparticle.
上記特許文献1の赤外光反射多層フィルムは、特定の金属酸化物粒子を含む赤外光吸収ナノ粒子層を有する。しかしながら、上記特許文献1の赤外光反射多層フィルムは、使用中にフィルムを貼ったガラスが割れる現象(熱割れ)を生じることがあることを見出した。本願発明者は、上記現象について鋭意検討を行ったところ、赤外光吸収ナノ粒子層中の金属酸化物ナノ粒子が赤外光を吸収して発熱し、この赤外光吸収ナノ粒子層の放出する熱でガラスに温度差が生じ割れる現象(熱割れ)を引き起こすと考えられた。詳細には、赤外光吸収ナノ粒子層の放熱によりガラス温度も上昇し、日光のあたる部分と当らない部分や、フィルムを貼った部分と貼らない部分とで、ガラスに温度差が生じ応力が発生し、これによりガラスが割れると考えた。また、当該現象は、ガラス、特に複層ガラスや網入りガラスにフィルムを貼ると起こりやすい。特許文献1には、当該赤外光吸収ナノ粒子層上に、厚さが1~20μmのシリカ系ハードコート層などを設けることが記載されている(段落「0041」)。しかし、上記ハードコート層では十分当該層の熱を放出できず、その結果、赤外光吸収ナノ粒子層の放出する熱により、フィルムを貼ったガラスが割れる現象(熱割れ)が依然として生じてしまうことが判明した。また、上記厚みのハードコート層は、耐傷性にも劣る。
The infrared light reflective multilayer film of Patent Document 1 has an infrared light absorbing nanoparticle layer containing specific metal oxide particles. However, it has been found that the infrared light reflective multilayer film of Patent Document 1 may cause a phenomenon (heat cracking) that the glass on which the film is stuck is broken during use. The inventor of the present application diligently studied the above phenomenon, and as a result, the metal oxide nanoparticles in the infrared light absorbing nanoparticle layer absorb infrared light to generate heat, and the infrared light absorbing nanoparticle layer is released. It was thought that a phenomenon (thermal cracking) that caused a temperature difference in the glass due to the heat generated was broken. Specifically, the glass temperature also rises due to the heat radiation of the infrared light absorbing nanoparticle layer, and there is a temperature difference between the part that is exposed to sunlight and the part that does not hit the film, and the part where the film is applied and the part that is not applied. It was thought that this caused the glass to break. In addition, this phenomenon is likely to occur when a film is pasted on glass, in particular, multi-layer glass or netted glass. Patent Document 1 describes that a silica-based hard coat layer having a thickness of 1 to 20 μm is provided on the infrared light absorbing nanoparticle layer (paragraph “0041”). However, the hard coat layer cannot sufficiently release the heat of the layer, and as a result, a phenomenon (thermal cracking) that the glass on which the film is stuck is broken by the heat released from the infrared light absorbing nanoparticle layer still occurs. It has been found. Moreover, the hard coat layer having the above thickness is also inferior in scratch resistance.
これに対して、本発明に係る放熱促進層は、赤外吸収ナノ粒子層の膜厚に比して特定の比率で薄いことを特徴とする。このような厚みとすることによって、赤外吸収ナノ粒子層が発する熱を効率よく光学反射フィルム外に放出する。このため、本発明の光学反射フィルムでは、長時間太陽光に暴露させても、熱割れがほとんど起こらないまたは全く起こらない。また、本発明に係る放熱促進層は、保護層としても機能するため、耐傷性にも優れる。このため、例えば、水貼り施行時にスキージによる擦り傷の発生を有効に抑制・防止できる。上記効果は、放熱促進層がメタロキサン骨格を有する材料(特にポリシラザン由来のメタロキサン骨格を有する材料)を含む場合に特に顕著に達成できる。
On the other hand, the heat dissipation promoting layer according to the present invention is characterized by being thin at a specific ratio as compared with the film thickness of the infrared absorbing nanoparticle layer. By setting it as such thickness, the heat | fever which an infrared absorption nanoparticle layer emits is efficiently discharge | released out of an optical reflection film. For this reason, in the optical reflective film of the present invention, even when exposed to sunlight for a long time, thermal cracking hardly occurs or does not occur at all. Moreover, since the heat radiation acceleration | stimulation layer based on this invention functions also as a protective layer, it is excellent also in scratch resistance. For this reason, for example, it is possible to effectively suppress / prevent the generation of scratches caused by a squeegee when water is applied. The above effect can be achieved particularly remarkably when the heat dissipation promoting layer includes a material having a metalloxane skeleton (particularly a material having a polysilazane-derived metalloxane skeleton).
なお、上記は推測であって、本発明は上記によって何ら限定されるものではない。
Note that the above is a guess, and the present invention is not limited to the above.
以下、本発明に係る光学反射フィルムの構成要素、および本発明を実施するための形態等について詳細な説明をする。なお、本明細書において、「光学反射フィルム」とは、所望の波長の光(例えば、近赤外線)を反射することにより、当該所望の波長の光の全部または一部を遮ることができるフィルムである。また、本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%の条件で測定する。
Hereinafter, constituent elements of the optical reflection film according to the present invention, and modes for carrying out the present invention will be described in detail. In the present specification, the “optical reflection film” is a film that can block all or a part of light having a desired wavelength by reflecting light having a desired wavelength (for example, near infrared rays). is there. In this specification, “X to Y” indicating a range means “X or more and Y or less”. Unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
≪光学反射フィルム≫
本発明に係る光学反射フィルムは、基材と、光学反射層と、赤外吸収ナノ粒子層と、放熱促進層と、を含む。 ≪Optical reflection film≫
The optical reflection film according to the present invention includes a base material, an optical reflection layer, an infrared absorption nanoparticle layer, and a heat dissipation promotion layer.
本発明に係る光学反射フィルムは、基材と、光学反射層と、赤外吸収ナノ粒子層と、放熱促進層と、を含む。 ≪Optical reflection film≫
The optical reflection film according to the present invention includes a base material, an optical reflection layer, an infrared absorption nanoparticle layer, and a heat dissipation promotion layer.
(基材)
基材は、特に制限されるものではないが、屈曲性などの観点から樹脂基材であることが好ましく、透明であっても不透明であってもよい。自動車用途など、意匠性の点から可視光で透明であることが求められる用途では、可視光領域において透明であることが好ましい。 (Base material)
The substrate is not particularly limited, but is preferably a resin substrate from the viewpoint of flexibility, and may be transparent or opaque. For applications that are required to be transparent with visible light from the viewpoint of design, such as automotive applications, it is preferably transparent in the visible light region.
基材は、特に制限されるものではないが、屈曲性などの観点から樹脂基材であることが好ましく、透明であっても不透明であってもよい。自動車用途など、意匠性の点から可視光で透明であることが求められる用途では、可視光領域において透明であることが好ましい。 (Base material)
The substrate is not particularly limited, but is preferably a resin substrate from the viewpoint of flexibility, and may be transparent or opaque. For applications that are required to be transparent with visible light from the viewpoint of design, such as automotive applications, it is preferably transparent in the visible light region.
樹脂基材としては、例えば、ポリオレフィンフィルム(ポリエチレン、ポリプロピレン等)、ポリエステルフィルム(ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート等)、ポリ塩化ビニル、3酢酸セルロース等を用いることができ、好ましくはポリエステルフィルムである。ポリエステルフィルム(以降ポリエステルと称す)としては、特に限定されるものではないが、ジカルボン酸成分とジオール成分を主要な構成成分とするフィルム形成性を有するポリエステルであることが好ましい。ポリエステルの中でも透明性、機械的強度、寸法安定性などの点から、ジカルボン酸成分として、テレフタル酸や2,6-ナフタレンジカルボン酸、ジオール成分として、エチレングリコールや1,4-シクロヘキサンジメタノールを主要な構成成分とするポリエステルが好ましい。中でも、ポリエチレンテレフタレートやポリエチレンナフタレートを主要な構成成分とするポリエステルや、テレフタル酸と2,6-ナフタレンジカルボン酸とエチレングリコールからなる共重合ポリエステル、およびこれらのポリエステルの2種以上の混合物を主要な構成成分とするポリエステルが好ましい。
As the resin substrate, for example, polyolefin film (polyethylene, polypropylene, etc.), polyester film (polyethylene terephthalate (PET), polyethylene naphthalate, etc.), polyvinyl chloride, cellulose acetate, etc. can be used, preferably polyester film. It is. Although it does not specifically limit as a polyester film (henceforth polyester), It is preferable that it is polyester which has the film formation property which has a dicarboxylic acid component and a diol component as main structural components. Among polyesters, terephthalic acid, 2,6-naphthalenedicarboxylic acid, and diol component, ethylene glycol and 1,4-cyclohexanedimethanol, are mainly used from the viewpoints of transparency, mechanical strength and dimensional stability. Polyester as a constituent component is preferable. Among these, polyesters mainly composed of polyethylene terephthalate and polyethylene naphthalate, copolymerized polyesters composed of terephthalic acid, 2,6-naphthalenedicarboxylic acid and ethylene glycol, and mixtures of two or more of these polyesters are mainly used. Polyester as a constituent component is preferable.
基材の厚みとしては、10~300μmであることが好ましく、20~150μmであることがより好ましい。また、基材は、2枚以上重ねたものであっても良く、この場合、その種類が同じでも異なってもよい。
The thickness of the substrate is preferably 10 to 300 μm, more preferably 20 to 150 μm. Moreover, the base material may be a laminate of two or more, and in this case, the type may be the same or different.
樹脂基材は、従来公知の一般的な方法により製造することが可能である。樹脂基材は、未延伸フィルムでもよく、一方に延伸された延伸フィルム、または二軸延伸フィルムでもよい。強度向上、熱膨張抑制の点から延伸フィルムが好ましい。
The resin base material can be manufactured by a conventionally known general method. The resin substrate may be an unstretched film, a stretched film stretched on one side, or a biaxially stretched film. A stretched film is preferable from the viewpoint of strength improvement and thermal expansion suppression.
(光学反射層)
本発明の光学反射フィルムは、上記基材に加えて、光学反射層を有する。ここで、光学反射層は、通常、基材上に形成されるが、光学反射層および基材の配置形態は、基材上に直接光学反射層を設ける形態のみならず、基材に他の中間層が設けられ、該中間層上に光学反射層を設ける形態や、基材の光学反射層との反対面に他の中間層(例えば、粘着層)を有する形態、光学反射層上に他の中間層を含む形態なども含む。また、光学反射層は1層であっても、複数層存在していてもよく、光学反射層が複数層存在する場合には、各光学反射層が隣接して積層されている形態のみならず、物理的に離れた位置に存在していてもよい。 (Optical reflection layer)
The optical reflective film of the present invention has an optical reflective layer in addition to the substrate. Here, the optical reflection layer is usually formed on the substrate, but the arrangement of the optical reflection layer and the substrate is not limited to the form in which the optical reflection layer is directly provided on the substrate, An intermediate layer is provided, and an optical reflective layer is provided on the intermediate layer, or another intermediate layer (for example, an adhesive layer) is provided on the opposite surface of the substrate to the optical reflective layer. A form including an intermediate layer is also included. Further, the optical reflection layer may be a single layer or a plurality of layers. When there are a plurality of optical reflection layers, the optical reflection layers are not only stacked adjacent to each other. , They may exist at physically separated positions.
本発明の光学反射フィルムは、上記基材に加えて、光学反射層を有する。ここで、光学反射層は、通常、基材上に形成されるが、光学反射層および基材の配置形態は、基材上に直接光学反射層を設ける形態のみならず、基材に他の中間層が設けられ、該中間層上に光学反射層を設ける形態や、基材の光学反射層との反対面に他の中間層(例えば、粘着層)を有する形態、光学反射層上に他の中間層を含む形態なども含む。また、光学反射層は1層であっても、複数層存在していてもよく、光学反射層が複数層存在する場合には、各光学反射層が隣接して積層されている形態のみならず、物理的に離れた位置に存在していてもよい。 (Optical reflection layer)
The optical reflective film of the present invention has an optical reflective layer in addition to the substrate. Here, the optical reflection layer is usually formed on the substrate, but the arrangement of the optical reflection layer and the substrate is not limited to the form in which the optical reflection layer is directly provided on the substrate, An intermediate layer is provided, and an optical reflective layer is provided on the intermediate layer, or another intermediate layer (for example, an adhesive layer) is provided on the opposite surface of the substrate to the optical reflective layer. A form including an intermediate layer is also included. Further, the optical reflection layer may be a single layer or a plurality of layers. When there are a plurality of optical reflection layers, the optical reflection layers are not only stacked adjacent to each other. , They may exist at physically separated positions.
光学反射層は、屈折率の異なる層の積層体であるが、高屈折率層および低屈折率層が交互に積層された積層体であることが好ましい。ここで、「高屈折率層」および「低屈折率層」なる用語は、隣接した2層の屈折率差を比較した場合に、屈折率が高い方の屈折率層を高屈折率層とし、低い方の屈折率層を低屈折率層とすることを意味する。したがって、「高屈折率層」および「低屈折率層」なる用語は、フィルムを構成する各屈折率層において、隣接する2つの屈折率層に着目した場合に、各屈折率層が同じ屈折率を有する形態以外のあらゆる形態を含むものである。
The optical reflection layer is a laminate of layers having different refractive indexes, but is preferably a laminate in which high refractive index layers and low refractive index layers are alternately laminated. Here, the terms “high refractive index layer” and “low refractive index layer” mean that the refractive index layer with the higher refractive index is the high refractive index layer when comparing the refractive index difference between two adjacent layers. It means that the lower refractive index layer is a low refractive index layer. Therefore, the terms “high refractive index layer” and “low refractive index layer” mean that each refractive index layer has the same refractive index when attention is paid to two adjacent refractive index layers. All forms other than the forms having the above are included.
隣接した層界面での反射は、層間の屈折率比に依存するのでこの屈折率比が大きいほど、反射率が高まる。また、単層膜でみたとき層表面における反射光と、層底部における反射光の光路差を、n・d=波長/4、で表される関係にすると位相差により反射光を強めあうよう制御出来、反射率を上げることができる。ここで、nは屈折率、また、dは層の物理膜厚、n・dは光学膜厚である。この光路差を利用することで、反射を制御出来る。この関係を利用して、各層の屈折率と膜厚を制御して、可視光や、近赤外光の反射を制御する。即ち、各層の屈折率、各層の膜厚、各層の積層のさせ方で、特定波長領域の反射率をアップさせることができる。
Since reflection at the interface between adjacent layers depends on the refractive index ratio between layers, the larger this refractive index ratio, the higher the reflectance. In addition, when the optical path difference between the reflected light on the surface of the layer and the reflected light on the bottom of the layer is a relationship expressed by n · d = wavelength / 4 when viewed as a single layer film, the reflected light is controlled to be strengthened by the phase difference. And reflectivity can be increased. Here, n is the refractive index, d is the physical film thickness of the layer, and n · d is the optical film thickness. By using this optical path difference, reflection can be controlled. Using this relationship, the refractive index and film thickness of each layer are controlled to control the reflection of visible light and near infrared light. That is, the reflectance in a specific wavelength region can be increased by the refractive index of each layer, the film thickness of each layer, and the way of stacking each layer.
光学反射層の厚さは、特に制限されず、所望の機能が発揮されるように適宜設計されうる。光学反射層の厚さは、通常、1~100μm程度である。
The thickness of the optical reflection layer is not particularly limited, and can be appropriately designed so that a desired function is exhibited. The thickness of the optical reflection layer is usually about 1 to 100 μm.
光学反射層を形成する材料としては従来公知の材料を用いることができ、例えば、金属酸化物材料、ポリマー、その他の添加剤およびこれらの組み合わせ等などが挙げられる。
Conventionally known materials can be used as the material for forming the optical reflection layer, and examples thereof include metal oxide materials, polymers, other additives, and combinations thereof.
金属酸化物材料には、高屈折率材料として、TiO2、ZrO2、Ta2O5等が挙げられ、低屈折率材料としてSiO2、MgF2等が挙げられ、中屈折率材料としてAl2O3等が挙げられる。これらの金属酸化物材料を、蒸着法、スパッタなどのドライ製膜法によって製膜させることができる。
Examples of the metal oxide material include TiO 2 , ZrO 2 , Ta 2 O 5 and the like as high refractive index materials, SiO 2 and MgF 2 as low refractive index materials, and Al 2 as medium refractive index material. O 3 etc. are mentioned. These metal oxide materials can be formed by a dry film forming method such as vapor deposition or sputtering.
上記したように、光学反射層は、いずれの形態であってもよいが、第1の水溶性高分子および第1の金属酸化物粒子を含む高屈折率層、ならびに第2の水溶性高分子および第2の金属酸化物粒子を含む低屈折率層が交互に積層されてなる(第1形態)または第3の高分子を含む第3の高分子層、および第4の高分子を含む第4の高分子層が交互に積層されてなる(第2形態)ことが好ましい。
As described above, the optical reflection layer may be in any form, but the high refractive index layer including the first water-soluble polymer and the first metal oxide particles, and the second water-soluble polymer. And low refractive index layers containing second metal oxide particles are alternately stacked (first form) or a third polymer layer containing a third polymer, and a fourth polymer containing a fourth polymer. It is preferable that the four polymer layers are alternately laminated (second form).
以下では、上記形態について詳述するが、本発明は、下記形態に限定されない。
Hereinafter, although the above-described embodiment will be described in detail, the present invention is not limited to the following embodiment.
第1形態は、例えば、国際公開第2013/054912号(US 2014/0233092 A1)、特開2013-148849号公報、特開2013-142089号などに記載されるのと同様の材料などが使用される。
As the first form, for example, the same materials as described in International Publication No. 2013/054912 (US 2014/0233092 A1), JP2013-148849A, JP2013-142089A, and the like are used. The
具体的には、第1形態において、第1の水溶性高分子及び第2の水溶性高分子は、有機溶剤を用いない水系塗布が可能であるため、環境負荷が少なく、また、柔軟性が高いため、屈曲時の膜の耐久性が向上するため好ましい。水溶性高分子としては、例えば、ポリビニルアルコール類、ポリビニルピロリドン類、ポリアクリル酸、アクリル酸-アクリルニトリル共重合体、アクリル酸カリウム-アクリルニトリル共重合体、酢酸ビニル-アクリル酸エステル共重合体、若しくはアクリル酸-アクリル酸エステル共重合体などのアクリル系樹脂、スチレン-アクリル酸共重合体、スチレン-メタクリル酸共重合体、スチレン-メタクリル酸-アクリル酸エステル共重合体、スチレン-α-メチルスチレン-アクリル酸共重合体、若しくはスチレン-α-メチルスチレン-アクリル酸-アクリル酸エステル共重合体などのスチレンアクリル酸樹脂、スチレン-スチレンスルホン酸ナトリウム共重合体、スチレン-2-ヒドロキシエチルアクリレート共重合体、スチレン-2-ヒドロキシエチルアクリレート-スチレンスルホン酸カリウム共重合体、スチレン-マレイン酸共重合体、スチレン-無水マレイン酸共重合体、ビニルナフタレン-アクリル酸共重合体、ビニルナフタレン-マレイン酸共重合体、酢酸ビニル-マレイン酸エステル共重合体、酢酸ビニル-クロトン酸共重合体、酢酸ビニル-アクリル酸共重合体などの酢酸ビニル系共重合体及びそれらの塩などの合成水溶性高分子;ゼラチン、増粘多糖類などの天然水溶性高分子などが挙げられる。これらの中で、特に好ましい例としては、製造時のハンドリングと膜の柔軟性の点から、ポリビニルアルコール、ポリビニルピロリドン類及びそれを含有する共重合体、ゼラチン、増粘多糖類(特にセルロース類)が挙げられる。これらの水溶性高分子は、1種単独で用いてもよいし、2種以上併用して用いてもよい。
Specifically, in the first embodiment, the first water-soluble polymer and the second water-soluble polymer can be applied in an aqueous system without using an organic solvent, so that there is little environmental load and flexibility. Since it is high, the durability of the film during bending is improved, which is preferable. Examples of the water-soluble polymer include polyvinyl alcohols, polyvinyl pyrrolidones, polyacrylic acid, acrylic acid-acrylonitrile copolymer, potassium acrylate-acrylonitrile copolymer, vinyl acetate-acrylic ester copolymer, Or acrylic resin such as acrylic acid-acrylic acid ester copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-methacrylic acid-acrylic acid ester copolymer, styrene-α-methylstyrene -Styrene acrylic resin such as acrylic acid copolymer or styrene-α-methylstyrene-acrylic acid-acrylic acid ester copolymer, styrene-sodium styrenesulfonate copolymer, styrene-2-hydroxyethyl acrylate copolymer Coalescence, styrene-2 -Hydroxyethyl acrylate-potassium styrene sulfonate copolymer, styrene-maleic acid copolymer, styrene-maleic anhydride copolymer, vinyl naphthalene-acrylic acid copolymer, vinyl naphthalene-maleic acid copolymer, vinyl acetate -Synthetic water-soluble polymers such as maleic acid ester copolymers, vinyl acetate-crotonic acid copolymers, vinyl acetate copolymers such as vinyl acetate-acrylic acid copolymers and their salts; gelatin, thickened And natural water-soluble polymers such as saccharides. Among these, particularly preferred examples include polyvinyl alcohol, polyvinylpyrrolidones and copolymers containing them, gelatin, thickening polysaccharides (particularly celluloses) from the viewpoint of handling during production and film flexibility. Is mentioned. These water-soluble polymers may be used alone or in combination of two or more.
ポリビニルアルコールには、ポリ酢酸ビニルを加水分解して得られる通常のポリビニルアルコールの他に、変性ポリビニルアルコールも含まれる。変性ポリビニルアルコールとしては、カチオン変性ポリビニルアルコール、アニオン変性ポリビニルアルコール、ノニオン変性ポリビニルアルコール、ビニルアルコール系ポリマーが挙げられる。
Polyvinyl alcohol includes modified polyvinyl alcohol in addition to ordinary polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate. Examples of the modified polyvinyl alcohol include cation-modified polyvinyl alcohol, anion-modified polyvinyl alcohol, nonion-modified polyvinyl alcohol, and vinyl alcohol polymers.
ポリビニルアルコールの具体的例示としては、国際公開第2013-054912号の[0075]~[0079]の記載のものが挙げられる。
Specific examples of polyvinyl alcohol include those described in [0075] to [0079] of International Publication No. 2013-054912.
また、ポリビニルアルコールを硬化させるための硬化剤を使用してもよい。適用可能な硬化剤としては、例えば、ホウ酸及びその塩が好ましい。その他の硬化剤の具体例としては、国際公開第2013-054912号の[0091]~[0096]に記載のものが挙げられる。
Further, a curing agent for curing polyvinyl alcohol may be used. As an applicable curing agent, for example, boric acid and its salt are preferable. Specific examples of the other curing agent include those described in [0091] to [0096] of International Publication No. 2013-054912.
ゼラチンとしては、石灰処理ゼラチンのほか、酸処理ゼラチンを使用してもよく、さらにゼラチンの加水分解物、ゼラチンの酵素分解物を用いることもできる。また、国際公開第2013-054912号の[0081]~[0082]に記載の硬膜剤を用いてもよい。
As the gelatin, in addition to lime-processed gelatin, acid-processed gelatin may be used, and gelatin hydrolyzate and gelatin enzyme-decomposed product can also be used. Further, the hardeners described in [0081] to [0082] of International Publication No. 2013-054912 may be used.
増粘多糖類としては、例えば、一般に知られている天然単純多糖類、天然複合多糖類、合成単純多糖類及び合成複合多糖類に挙げることができ、これら多糖類の詳細については、「生化学事典(第2版),東京化学同人出版」、「食品工業」第31巻(1988)21頁等を参照することができる。
Examples of thickening polysaccharides include natural simple polysaccharides, natural complex polysaccharides, synthetic simple polysaccharides and synthetic complex polysaccharides that are generally known. Reference can be made to the encyclopedia (2nd edition), Tokyo Kagaku Doujin Publishing, “Food Industry”, Vol. 31 (1988), p. 21.
本形態では、光学反射層を構成する高屈折率層および低屈折率層のいずれもが金属酸化物粒子を含む。すなわち、高屈折率層は、第1の水溶性高分子に加えて、第1の金属酸化物粒子を含み、低屈折率層は、第2の水溶性高分子に加えて、第2の金属酸化物粒子を含む。ここで、第1及び第2の金属酸化物粒子は、同じであってもまたは異なるものであってもよい。
In this embodiment, both the high refractive index layer and the low refractive index layer constituting the optical reflection layer contain metal oxide particles. That is, the high refractive index layer includes first metal oxide particles in addition to the first water-soluble polymer, and the low refractive index layer includes the second metal in addition to the second water-soluble polymer. Contains oxide particles. Here, the first and second metal oxide particles may be the same or different.
金属酸化物粒子としては、金属酸化物を構成する金属が、Li、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Rb、Sr、Y、Nb、Zr、Mo、Ag、Cd、In、Sn、Sb、Cs、Ba、La、Ta、Hf、W、Ir、Tl、Pb、Bi及び希土類金属からなる群より選ばれる1種または2種以上の金属の酸化物を用いることができる。
As the metal oxide particles, the metal constituting the metal oxide is Li, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Y, Nb, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, La, Ta, Hf, W, Ir, Tl, Pb, Bi and a rare earth metal One or more metal oxides can be used.
金属酸化物粒子は、平均粒径が好ましい順に100nm以下、1~50nm、4~40nmであることが好ましい。ここで、平均粒径は、一次平均粒径を指す。金属酸化物粒子の平均粒径は、金属酸化物粒子が被覆処理されている場合(例えば、シリカ付着酸化チタン等)、金属酸化物粒子の平均粒径とは母体(シリカ付着酸化チタンの場合は、処理前の酸化チタン)の平均粒径を指すものとする。
The metal oxide particles preferably have an average particle size of 100 nm or less, 1 to 50 nm, or 4 to 40 nm in order of preference. Here, the average particle diameter refers to the primary average particle diameter. When the metal oxide particles are coated (for example, silica-attached titanium oxide), the average particle diameter of the metal oxide particles is the matrix (in the case of silica-attached titanium oxide). , Titanium oxide before treatment).
各屈折率層における金属酸化物粒子の含有量は、屈折率層の全質量に対して、20~90質量%であることが好ましく、40~80質量%であることがより好ましい。
The content of the metal oxide particles in each refractive index layer is preferably 20 to 90% by mass, and more preferably 40 to 80% by mass with respect to the total mass of the refractive index layer.
低屈折率層においては、金属酸化物粒子として二酸化ケイ素(シリカ)を用いることが好ましく、酸性のコロイダルシリカゾルを用いることが特に好ましい。
In the low refractive index layer, it is preferable to use silicon dioxide (silica) as the metal oxide particles, and it is particularly preferable to use acidic colloidal silica sol.
高屈折率層に含有される金属酸化物としては、透明でより屈折率の高い高屈折率層を形成するために、チタン、ジルコニア等の高屈折率金属酸化物微粒子、すなわち、酸化チタン微粒子、酸化ジルコニア微粒子であることが好ましく、ルチル型(正方晶形)酸化チタン微粒子であることがより好ましい。
As the metal oxide contained in the high refractive index layer, high refractive index metal oxide fine particles such as titanium and zirconia, that is, titanium oxide fine particles, Zirconium oxide fine particles are preferred, and rutile (tetragonal) titanium oxide fine particles are more preferred.
また、酸化チタン粒子としては、水系の酸化チタンゾルの表面を変性して分散状態を安定にしたものを用いてもよい。
Further, as the titanium oxide particles, those obtained by modifying the surface of the aqueous titanium oxide sol to stabilize the dispersion state may be used.
酸化チタンゾルとしては、特開2008-266043号公報に記載の、酸化チタンゾル粒子を核とし、そのまわりにケイ素、スズおよびアンチモンの各水和酸化物よりなる複数の被覆層を有し、アンチモンの水和酸化物が最外側被覆層である透明酸化チタンゾルを用いてもよい。また、酸化チタンゾルとしては、国際公開2009/044879号に記載の、酸化チタン-酸化スズ-酸化ジルコニウム-酸化タングステン複合コロイド粒子を核として、酸性酸化物のコロイド粒子により粒子表面が被覆された酸性酸化物被覆酸化チタン-酸化スズ-酸化ジルコニウム-酸化タングステン複合コロイド粒子、並びにこれらの複合コロイド粒子が分散されたゾルを用いてもよい。
As the titanium oxide sol, a titanium oxide sol particle described in JP-A-2008-266043 is used as a core, and a plurality of coating layers made of hydrated oxides of silicon, tin, and antimony are provided around the titanium oxide sol. A transparent titanium oxide sol in which the sum oxide is the outermost coating layer may be used. In addition, as the titanium oxide sol, acidic oxidation in which the particle surface is coated with colloidal particles of an oxide oxide using a titanium oxide-tin oxide-zirconium oxide-tungsten oxide composite colloidal particle as a core described in International Publication No. 2009/044879. It is also possible to use a product-coated titanium oxide-tin oxide-zirconium oxide-tungsten oxide composite colloidal particle and a sol in which these composite colloidal particles are dispersed.
また、高屈折率層に含まれる金属酸化物粒子としては、公知の方法で製造されたコアシェル粒子を用いることもできる。水系の酸化チタンゾルの調製方法としては、従来公知のいずれの方法も用いることができ、たとえば、特開昭63-17221号公報、特開平7-819号公報、特開平9-165218号公報、特開平11-43327号公報等に記載された事項を参照にすることができる。
In addition, as the metal oxide particles contained in the high refractive index layer, core-shell particles produced by a known method can be used. As the method for preparing the aqueous titanium oxide sol, any conventionally known method can be used. For example, JP-A-63-17221, JP-A-7-819, JP-A-9-165218, Reference can be made to the matters described in Japanese Laid-Open Patent Publication No. 11-43327.
さらに、酸化チタン粒子を含ケイ素の水和酸化物で被覆してもよい。ここで、「被覆」とは、酸化チタン粒子の表面の少なくとも一部に、含ケイ素の水和酸化物が付着されている状態を意味する。すなわち、金属酸化物粒子として用いられる酸化チタン粒子の表面が、完全に含ケイ素の水和酸化物で被覆されていてもよく、酸化チタン粒子の表面の一部が含ケイ素の水和酸化物で被覆されていてもよい。被覆された酸化チタン粒子の屈折率が含ケイ素の水和酸化物の被覆量により制御される観点から、酸化チタン粒子の表面の一部が含ケイ素の水和酸化物で被覆されることが好ましい。本明細書における「含ケイ素の水和酸化物」とは、無機ケイ素化合物の水和物、有機ケイ素化合物の加水分解物および/または縮合物のいずれでもよいが、シラノール基を有することが好ましい。特に、含ケイ素の水和酸化物としてはシリカの水和物が好ましく、シリカの水和物で被覆した酸化チタンを、以下、シリカ付着酸化チタンと称するシリカコート酸化チタン、シリカ変性酸化チタンともいう)。
Further, the titanium oxide particles may be coated with a silicon-containing hydrated oxide. Here, the “coating” means a state in which a silicon-containing hydrated oxide is attached to at least a part of the surface of the titanium oxide particles. That is, the surface of the titanium oxide particles used as the metal oxide particles may be completely covered with a silicon-containing hydrated oxide, and a part of the surface of the titanium oxide particles is a silicon-containing hydrated oxide. It may be coated. From the viewpoint that the refractive index of the coated titanium oxide particles is controlled by the coating amount of the silicon-containing hydrated oxide, it is preferable that a part of the surface of the titanium oxide particles is coated with the silicon-containing hydrated oxide. . The “silicon-containing hydrated oxide” in the present specification may be any of a hydrate of an inorganic silicon compound, a hydrolyzate and / or a condensate of an organosilicon compound, and preferably has a silanol group. In particular, as the silicon-containing hydrated oxide, silica hydrate is preferable. Titanium oxide coated with silica hydrate is hereinafter also referred to as silica-coated titanium oxide or silica-modified titanium oxide, referred to as silica-attached titanium oxide. ).
含ケイ素の水和酸化物で被覆された酸化チタン粒子の酸化チタンはルチル型であってもアナターゼ型であってもよい。含ケイ素の水和酸化物で被覆された酸化チタン粒子は、含ケイ素の水和酸化物で被覆されたルチル型の酸化チタン粒子がより好ましい。これは、ルチル型の酸化チタン粒子が、アナターゼ型の酸化チタン粒子より光触媒活性が低いため、高屈折率層や隣接した低屈折率層の耐候性が高くなり、さらに屈折率が高くなるという理由からである。
The titanium oxide of the titanium oxide particles coated with the silicon-containing hydrated oxide may be a rutile type or an anatase type. The titanium oxide particles coated with a silicon-containing hydrated oxide are more preferably rutile-type titanium oxide particles coated with a silicon-containing hydrated oxide. This is because the rutile type titanium oxide particles have lower photocatalytic activity than the anatase type titanium oxide particles, and therefore the weather resistance of the high refractive index layer and the adjacent low refractive index layer is increased, and the refractive index is further increased. Because.
含ケイ素の水和酸化物の被覆量は2~30質量%、好ましくは3~10質量%、より好ましくは4~8質量%である。被覆量が30質量%以下であると、高屈折率層の所望の屈折率化が得られ、被覆量が2質量%以上であると粒子を安定に形成することができるからである。
The coating amount of the silicon-containing hydrated oxide is 2 to 30% by mass, preferably 3 to 10% by mass, more preferably 4 to 8% by mass. This is because when the coating amount is 30% by mass or less, a desired refractive index of the high refractive index layer can be obtained, and when the coating amount is 2% by mass or more, particles can be stably formed.
酸化チタン粒子を含ケイ素の水和酸化物で被覆する方法としては、従来公知の方法により製造することができ、例えば、特開平10-158015号公報(ルチル型酸化チタンへのSi/Al水和酸化物処理;チタン酸ケーキのアルカリ領域での解膠後酸化チタンの表面にケイ素および/又はアルミニウムの含水酸化物を析出させて表面処理する酸化チタンゾルの製造方法)、特開2000-204301号公報(ルチル型酸化チタンにSiとZrおよび/またはAlの酸化物との複合酸化物を被覆したゾル。水熱処理。)、特開2007-246351号公報(含水酸化チタンを解膠して得られる酸化チタンのヒドロゾルへ、安定剤として式R1
nSiX4-n(式中R1はC1-C8アルキル基、グリシジルオキシ置換C1-C8アルキル基またはC2-C8アルケニル基、Xはアルコキシ基、nは1または2である。)のオルガノアルコキシシランまたは酸化チタンに対して錯化作用を有する化合物を添加、アルカリ領域でケイ酸ナトリウムまたはシリカゾルの溶液へ添加・pH調整・熟成することにより、ケイ素の含水酸化物で被覆された酸化チタンヒドロゾルを製造する方法)等に記載された事項を参照にすることができる。
As a method of coating titanium oxide particles with a silicon-containing hydrated oxide, it can be produced by a conventionally known method. For example, JP-A-10-158015 (Si / Al hydration to rutile titanium oxide) Oxide treatment; a method of producing a titanium oxide sol in which a hydrous oxide of silicon and / or aluminum is deposited on the surface of titanium oxide after peptization in the alkali region of the titanate cake), JP 2000-204301 A (A sol in which a rutile-type titanium oxide is coated with a complex oxide of Si and Zr and / or Al. Hydrothermal treatment), JP 2007-246351 (Oxidation obtained by peptizing hydrous titanium oxide) titanium to hydrosol, wherein R 1 n SiX 4-n (wherein R 1 as stabilizer C 1 -C 8 alkyl group, glycidyloxy substituted C 1 -C Alkyl or C 2 -C 8 alkenyl group, X is an alkoxy group, n is 1 or 2. Sodium silicate added in the alkaline range the compound having a complexing effect on organoalkoxysilanes or titanium oxide) Alternatively, it is possible to refer to matters described in, for example, a method for producing a titanium oxide hydrosol coated with a hydrous oxide of silicon by adding, adjusting pH, and aging a silica sol solution.
また、高屈折率層および/または低屈折率層は、さらに特開昭57-74193号公報、特開昭57-87988号公報、および特開昭62-261476号公報に記載の紫外線吸収剤、アニオン性界面活性剤、カチオン性界面活性剤、ノニオン性界面活性剤、両性界面活性剤等の各種界面活性剤、硫酸、リン酸、酢酸、クエン酸、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等のpH調整剤、消泡剤、ジエチレングリコール等の潤滑剤、防腐剤、防黴剤、帯電防止剤、マット剤、酸化防止剤、難燃剤、赤外線吸収剤、色素、顔料等の公知の各種添加剤などを含んでもよい。
In addition, the high refractive index layer and / or the low refractive index layer may further include an ultraviolet absorber described in JP-A-57-74193, JP-A-57-87988, and JP-A-62-261476, Various surfactants such as anionic surfactant, cationic surfactant, nonionic surfactant, amphoteric surfactant, sulfuric acid, phosphoric acid, acetic acid, citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate, etc. PH adjusters, antifoaming agents, lubricants such as diethylene glycol, preservatives, antifungal agents, antistatic agents, matting agents, antioxidants, flame retardants, infrared absorbers, dyes, pigments, and various other known additives Etc. may be included.
水溶性高分子を光学反射層が含む場合には、水系塗布が可能となる。光学反射層の形成方法としては、上記溶融押出、延伸による形成方法の他、水溶性高分子および水系溶剤を用いた逐次重層塗布法;国際公開第2013-054912号[0144]~[0156]に記載の同時重層塗布法;などの方法が挙げられる。
When the optical reflective layer contains a water-soluble polymer, aqueous coating is possible. As a method for forming the optical reflection layer, in addition to the above-described melt extrusion and stretching methods, a sequential multilayer coating method using a water-soluble polymer and an aqueous solvent; International Publication No. 2013-054912 [0144] to [0156] Examples thereof include the simultaneous multilayer coating method described above.
第1形態では、生産性の観点から、高屈折率層および低屈折率層の総層数の範囲は、100層以下12層以上、より好ましくは45層以下15層以上、さらに好ましくは45層以下21層以上である。なお、前記の好ましい高屈折率層および低屈折率層の総層数の範囲は、基材の片面にのみ積層される場合においても適応可能であり、基材の両面に同時に積層される場合においても適応可能である。基材の両面に積層される場合において、基材一の面と他の面との高屈折率層および低屈折率層の総層数は、同じであってもよく、異なっていてもよい。また、本発明の近赤外遮蔽フィルムにおいて、最下層(基材と接触する層)および最表層は、高屈折率層および低屈折率層のいずれであってもよい。しかしながら、低屈折率層が最下層および最表層(最上層)に位置する層構成とすることにより、最下層の基材への密着性、最表層の吹かれ耐性、さらには最表層へのハードコート層等の塗布性や密着性に優れる。このため、本発明の光学反射フィルム(近赤外遮蔽フィルム)としては、最下層および最表層が低屈折率層である層構成が好ましい。
In the first embodiment, from the viewpoint of productivity, the total number of layers of the high refractive index layer and the low refractive index layer is 100 layers or less, 12 layers or more, more preferably 45 layers or less, 15 layers or more, and further preferably 45 layers. Below are 21 layers or more. The preferred range of the total number of high refractive index layers and low refractive index layers is applicable even when laminated on only one side of the substrate, and when laminated simultaneously on both sides of the substrate. Is also applicable. When laminated on both surfaces of the substrate, the total number of high refractive index layers and low refractive index layers on one surface of the substrate and the other surface may be the same or different. In the near-infrared shielding film of the present invention, the lowermost layer (the layer that contacts the substrate) and the outermost layer may be either a high refractive index layer or a low refractive index layer. However, by adopting a layer structure in which the low refractive index layer is located in the lowermost layer and the outermost layer (uppermost layer), adhesion to the base material of the lowermost layer, blowing resistance of the outermost layer, and hard to the outermost layer Excellent coating properties such as coat layer and adhesion. For this reason, as an optical reflection film (near infrared shielding film) of this invention, the layer structure whose lowermost layer and outermost layer are low refractive index layers is preferable.
第2形態では、第3の高分子及び第4の高分子を用いて各層の屈折率差を調整して光学反射層とする。例えば、交互する第3の高分子層及び第4の高分子層の一方が複屈折性でかつ配向しており、他方が等方性である。ここで、光学反射層に含まれる高分子(第3の高分子及び第4の高分子)には特に制限はなく、光学反射層を形成できるポリマーであれば特に制限されない。例えば、ポリマーとしては、特表2002-509279号公報や特表2008-528313号公報に記載の樹脂を用いることができる。具体的には、ポリエチレンナフタレート(PEN)およびその異性体(例えば、2,6-、1,4-、1,5-、2,7-、および2,3-PEN)、ポリアルキレンテレフタレート(例えば、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、およびポリ-1,4-シクロヘキサンジメチレンテレフタレート)、ポリイミド(例えば、ポリアクリル酸イミド)、ポリエーテルイミド、アタクチックポリスチレン、ポリカーボネート、ポリメタクリレート(例えば、ポリイソブチルメタクリレート、ポリプロピルメタクリレート、ポリエチルメタクリレート、およびポリメチルメタクリレート)、ポリ(メタ)アクリレート(例えば、ポリブチルアクリレートおよびポリメチルアクリレート)、セルロース誘導体(例えば、エチルセルロース、酢酸セルロース、プロピオン酸セルロース、酢酸セルロースブチレート、および硝酸セルロース)、ポリアルキレンポリマー(例えば、ポリエチレン、ポリプロピレン、ポリブチレン、ポリイソブチレン、およびポリ(4-メチル)ペンテン)、フッ素化ポリマー(例えば、パーフルオロアルコキシ樹脂、ポリテトラフルオロエチレン、フッ素化エチレン-プロピレンコポリマー、ポリフッ化ビニリデン、およびポリクロロトリフルオロエチレン)、塩素化ポリマー(例えば、ポリ塩化ビニリデンおよびポリ塩化ビニル)、ポリスルホン、ポリエーテルスルホン、ポリアクリロニトリル、ポリアミド、シリコーン樹脂、エポキシ樹脂、ポリ酢酸ビニル、ポリエーテルアミド、アイオノマー樹脂、エラストマー(例えば、ポリブタジエン、ポリイソプレン、およびネオプレン)、ならびにポリウレタンが挙げられる。コポリマー、例えば、PENのコポリマー(例えば、2,6-、1,4-、1,5-、2,7-、および/または2,3-ナフタレンジカルボン酸あるいはそれらのエステルと、(a)テレフタル酸もしくはそのエステル、(b)イソフタル酸もしくはそのエステル、(c)フタル酸もしくはそのエステル、(d)アルキレングリコール(例えば、エチレングリコール、プロピレングリコール)、(e)シクロアルキレングリコール(例えば、シクロヘキサンジメタノールジオール)、(f)アルカンジカルボン酸、および/または(g)シクロアルカンジカルボン酸(例えば、1,4-、1,2-シクロヘキサンジカルボン酸)とのコポリマー)、ポリアルキレンテレフタレートのコポリマー(例えば、テレフタル酸もしくはそのエステルと、(a)ナフタレンジカルボン酸もしくはそのエステル、(b)イソフタル酸もしくはそのエステル、(c)フタル酸もしくはそのエステル、(d)アルキレングリコール(例えば、エチレングリコール、プロピレングリコール)、(e)シクロアルカングリコール(例えば、シクロヘキサンジメタノール)、(f)アルカンジカルボン酸、および/または(g)シクロアルカンジカルボン酸(例えば、シクロヘキサンジカルボン酸)とのコポリマー)、スチレンコポリマー(例えば、スチレン-ブタジエンコポリマーおよびスチレン-アクリロニトリルコポリマー)、ならびに4,4’-二安息香酸およびエチレングリコールのコポリマーなども利用できる。更に、個々の層にはそれぞれ、2つ以上の上記のポリマーまたはコポリマーのブレンド(例えば、ポリアルキレンテレフタレートのコポリマーとPENのコポリマーとのブレンド)が含まれていてもよい。さらに、ポリマーとして、特開2010-184493号に記載のポリマーを用いてもよい。具体的には、ポリエステル(以下、ポリエステルAとする)と、エチレングリコール、スピログリコールおよびブチレングリコールの少なくとも3種のジオール由来の残基を含んでいるポリエステル(以下、ポリエステルBとする)とを、用いることができる。ポリエステルAは、ジカルボン酸成分とジオール成分とが重縮合して得られる構造を有するものであれば特に限定されない。また、上記ポリエステルBは、エチレングリコール、スピログリコールおよびブチレングリコールの少なくとも3種のジオール由来の残基を含んでいる。
In the second embodiment, the third polymer and the fourth polymer are used to adjust the refractive index difference of each layer to obtain an optical reflection layer. For example, one of the alternating third polymer layer and fourth polymer layer is birefringent and oriented, and the other is isotropic. Here, the polymer (third polymer and fourth polymer) contained in the optical reflection layer is not particularly limited, and is not particularly limited as long as the polymer can form the optical reflection layer. For example, as the polymer, resins described in JP-T-2002-509279 and JP-T-2008-528313 can be used. Specifically, polyethylene naphthalate (PEN) and its isomers (for example, 2,6-, 1,4-, 1,5-, 2,7-, and 2,3-PEN), polyalkylene terephthalate ( For example, polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, and poly-1,4-cyclohexanedimethylene terephthalate), polyimide (eg, polyacrylimide), polyetherimide, atactic polystyrene, polycarbonate, polymethacrylate (eg, Polyisobutyl methacrylate, polypropyl methacrylate, polyethyl methacrylate, and polymethyl methacrylate), poly (meth) acrylates (eg, polybutyl acrylate and polymethyl acrylate), Loose derivatives (eg, ethyl cellulose, cellulose acetate, cellulose propionate, cellulose acetate butyrate, and cellulose nitrate), polyalkylene polymers (eg, polyethylene, polypropylene, polybutylene, polyisobutylene, and poly (4-methyl) pentene), fluorine Polymer (eg, perfluoroalkoxy resin, polytetrafluoroethylene, fluorinated ethylene-propylene copolymer, polyvinylidene fluoride, and polychlorotrifluoroethylene), chlorinated polymer (eg, polyvinylidene chloride and polyvinyl chloride), polysulfone , Polyethersulfone, polyacrylonitrile, polyamide, silicone resin, epoxy resin, polyvinyl acetate, polyetheramide, ionomer resin, Elastomer (such as polybutadiene, polyisoprene, and neoprene), and polyurethanes. A copolymer, for example a copolymer of PEN (for example 2,6-, 1,4-, 1,5-, 2,7- and / or 2,3-naphthalenedicarboxylic acid or an ester thereof; Acid or ester thereof, (b) isophthalic acid or ester thereof, (c) phthalic acid or ester thereof, (d) alkylene glycol (eg, ethylene glycol, propylene glycol), (e) cycloalkylene glycol (eg, cyclohexanedimethanol) Diol), (f) alkanedicarboxylic acid, and / or (g) a copolymer with cycloalkanedicarboxylic acid (eg, 1,4-, 1,2-cyclohexanedicarboxylic acid), a copolymer of polyalkylene terephthalate (eg, terephthalate) Acid or its ester (B) isophthalic acid or ester thereof, (c) phthalic acid or ester thereof, (d) alkylene glycol (for example, ethylene glycol, propylene glycol), (e) cycloalkane glycol (Eg, cyclohexanedimethanol), (f) alkanedicarboxylic acid, and / or (g) copolymer with cycloalkanedicarboxylic acid (eg, cyclohexanedicarboxylic acid)), styrene copolymer (eg, styrene-butadiene copolymer and styrene-acrylonitrile). Copolymers), and copolymers of 4,4'-dibenzoic acid and ethylene glycol. Further, each individual layer may include a blend of two or more of the above polymers or copolymers (eg, a blend of a copolymer of polyalkylene terephthalate and a copolymer of PEN). Further, as the polymer, a polymer described in JP 2010-184493 may be used. Specifically, a polyester (hereinafter referred to as polyester A) and a polyester (hereinafter referred to as polyester B) containing residues derived from at least three diols of ethylene glycol, spiroglycol and butylene glycol, Can be used. Polyester A is not particularly limited as long as it has a structure obtained by polycondensation of a dicarboxylic acid component and a diol component. The polyester B contains residues derived from at least three kinds of diols, ethylene glycol, spiroglycol and butylene glycol.
上記のうち、光学反射層は、ポリエチレンテレフタラート(PET)またはポリエチレンテレフタラートのコポリマー(coPET)を含む第3の高分子層と、ポリ(メチルメタクリラート)(PMMA)またはポリ(メチルメタクリラート)のコポリマー(coPMMA)を含む第4の高分子層との交互層から形成される;ポリエチレンテレフタラートを含む第3の高分子層と、ポリ(メチルメタクリラートおよびエチルアクリラート)のコポリマーを含む第4の高分子層との交互層から形成される;シクロヘキサンジメタノール(PETG)またはシクロヘキサンジメタノールのコポリマー(coPETG)を含む第3の高分子層と、ポリエチレンナフタラート(PEN)またはポリエチレンナフタラートのコポリマー(coPEN)を含む第4の高分子層との交互層から形成される;またはポリエチレンナフタラートまたはポリエチレンナフタラートのコポリマーを含む第3の高分子層と、ポリ(メチルメタクリラート)またはポリ(メチルメタクリラート)のコポリマーを含む第4の高分子層との交互層から形成されることが好ましい。また、交互する第3の高分子層及び第4の高分子層の有用な組合せとしては、米国特許第6,352,761号明細書に記載される組み合わせもまた好ましい。
Among the above, the optical reflection layer is composed of a third polymer layer containing polyethylene terephthalate (PET) or a copolymer of polyethylene terephthalate (coPET), and poly (methyl methacrylate) (PMMA) or poly (methyl methacrylate). Formed of alternating layers with a fourth polymer layer comprising a copolymer of (coPMMA); a third polymer layer comprising polyethylene terephthalate and a copolymer comprising poly (methyl methacrylate and ethyl acrylate). A third polymer layer comprising cyclohexanedimethanol (PETG) or a copolymer of cyclohexanedimethanol (coPETG) and polyethylene naphthalate (PEN) or polyethylene naphthalate. Copolymer (coPEN) Formed of alternating layers with a fourth polymer layer comprising; or a third polymer layer comprising polyethylene naphthalate or a copolymer of polyethylene naphthalate and poly (methyl methacrylate) or poly (methyl methacrylate) It is preferably formed from alternating layers with a fourth polymer layer comprising a copolymer. In addition, as a useful combination of the alternating third and fourth polymer layers, the combination described in US Pat. No. 6,352,761 is also preferable.
上記ポリマーを、米国特許第6,049,419号に記載のように、ポリマーの溶融押出しおよび延伸により、光学反射層を形成することもできる。
The optical reflection layer can also be formed from the above polymer by melt extrusion and stretching of the polymer as described in US Pat. No. 6,049,419.
一実施形態として、各屈折率層材料を100~400℃で押出しに適当な粘度になるように溶融させ、必要に応じて各種添加剤を添加し、両方のポリマーを交互に二層になるように押出し機によって押し出すことができる。次に、押し出された積層膜を、冷却ドラムにより冷却固化し、積層体を得る。その後、この積層体を加熱してから二方向に延伸し、光学反射層を得ることができる。
In one embodiment, each refractive index layer material is melted at 100 to 400 ° C. so as to have an appropriate viscosity for extrusion, and various additives are added as necessary, so that both polymers are alternately formed into two layers. Can be extruded by an extruder. Next, the extruded laminated film is cooled and solidified by a cooling drum to obtain a laminated body. Thereafter, the laminate is heated and then stretched in two directions to obtain an optical reflection layer.
フィルム搬送方向またはフィルム搬送方向に直交する方向に延伸する場合は、1.5~5.0倍の倍率で延伸することが好ましく、より好ましくは2.0~4.0倍の範囲である。
When stretching in the film transport direction or the direction perpendicular to the film transport direction, the film is preferably stretched at a magnification of 1.5 to 5.0 times, more preferably in the range of 2.0 to 4.0 times.
また、延伸に引き続き熱加工することもできる。熱加工手段は特に制限なく、一般的に熱風、赤外線、加熱ロール、マイクロ波等で行うことができるが、簡便さの点で、熱風で行うことが好ましい。熱加工されたフィルムは通常Tg以下まで冷却され、フィルム両端のクリップ把持部分をカットし巻き取られる。冷却する手段は特に限定はなく、従来公知の手段で行えるが、特に複数の温度領域で順次冷却しながらこれらの処理を行うことがフィルムの寸法安定性向上の点で好ましい。
Also, heat processing can be performed subsequent to stretching. The thermal processing means is not particularly limited and can be generally performed with hot air, infrared rays, a heating roll, microwave, or the like, but is preferably performed with hot air in terms of simplicity. The heat-processed film is usually cooled to Tg or less, and clip holding portions at both ends of the film are cut and wound. The means for cooling is not particularly limited, and can be performed by a conventionally known means. In particular, it is preferable to perform these treatments while sequentially cooling in a plurality of temperature ranges in terms of improving the dimensional stability of the film.
本形態では、生産性の観点から、高屈折率層および低屈折率層の総層数の範囲は、10~5000層であることが好ましく、より好ましくは20~2000層である。
In this embodiment, from the viewpoint of productivity, the range of the total number of high refractive index layers and low refractive index layers is preferably 10 to 5000 layers, more preferably 20 to 2000 layers.
上記樹脂の同時押し出しにより高屈折率層および低屈折率層の積層体を形成後、該積層体を延伸してフィルムを形成した後、熱圧着や接着剤を用いた接着により、光学反射層を基材上に形成することができる。
After forming a laminate of a high refractive index layer and a low refractive index layer by simultaneous extrusion of the resin, the laminate is stretched to form a film, and then an optical reflective layer is bonded by thermocompression bonding or adhesion using an adhesive. It can be formed on a substrate.
(赤外吸収ナノ粒子層)
本発明の光学反射フィルムは、上記基材及び光学反射層に加えて、赤外吸収ナノ粒子層を有する。ここで、赤外吸収ナノ粒子層は、通常、光学反射層上に形成されるが、光学反射層上に直接赤外吸収ナノ粒子層を設ける形態のみならず、光学反射層と赤外吸収ナノ粒子層との間に他の中間層が設けられてもよい。また、赤外吸収ナノ粒子層は1層であっても、複数層存在していてもよく、赤外吸収ナノ粒子層が複数層存在する場合には、各赤外吸収ナノ粒子層が隣接して積層されている形態のみならず、物理的に離れた位置に存在していてもよい。ここで、中間層は、特に制限されず、所望の機能によって適宜選択される。具体的には、中間層としては、粘着剤層、導電性層、帯電防止層、ガスバリア層、易接着層(接着層)、防汚層、消臭層、流滴層、易滑層、耐摩耗性層、反射防止層、電磁波シールド層、印刷層、蛍光発光層、ホログラム層、剥離層、着色層などが挙げられる。 (Infrared absorbing nanoparticle layer)
The optical reflective film of the present invention has an infrared absorbing nanoparticle layer in addition to the substrate and the optical reflective layer. Here, the infrared absorption nanoparticle layer is usually formed on the optical reflection layer, but not only the form in which the infrared absorption nanoparticle layer is directly provided on the optical reflection layer, but also the optical reflection layer and the infrared absorption nanoparticle layer. Another intermediate layer may be provided between the particle layer. In addition, the infrared absorption nanoparticle layer may be a single layer or a plurality of layers, and when there are a plurality of infrared absorption nanoparticle layers, the infrared absorption nanoparticle layers are adjacent to each other. It may exist not only in a stacked form but also in physically separated positions. Here, the intermediate layer is not particularly limited and is appropriately selected depending on a desired function. Specifically, the intermediate layer includes an adhesive layer, a conductive layer, an antistatic layer, a gas barrier layer, an easy adhesion layer (adhesion layer), an antifouling layer, a deodorant layer, a droplet layer, an easy slip layer, Examples include an abrasion layer, an antireflection layer, an electromagnetic wave shielding layer, a printing layer, a fluorescent light emitting layer, a hologram layer, a release layer, and a colored layer.
本発明の光学反射フィルムは、上記基材及び光学反射層に加えて、赤外吸収ナノ粒子層を有する。ここで、赤外吸収ナノ粒子層は、通常、光学反射層上に形成されるが、光学反射層上に直接赤外吸収ナノ粒子層を設ける形態のみならず、光学反射層と赤外吸収ナノ粒子層との間に他の中間層が設けられてもよい。また、赤外吸収ナノ粒子層は1層であっても、複数層存在していてもよく、赤外吸収ナノ粒子層が複数層存在する場合には、各赤外吸収ナノ粒子層が隣接して積層されている形態のみならず、物理的に離れた位置に存在していてもよい。ここで、中間層は、特に制限されず、所望の機能によって適宜選択される。具体的には、中間層としては、粘着剤層、導電性層、帯電防止層、ガスバリア層、易接着層(接着層)、防汚層、消臭層、流滴層、易滑層、耐摩耗性層、反射防止層、電磁波シールド層、印刷層、蛍光発光層、ホログラム層、剥離層、着色層などが挙げられる。 (Infrared absorbing nanoparticle layer)
The optical reflective film of the present invention has an infrared absorbing nanoparticle layer in addition to the substrate and the optical reflective layer. Here, the infrared absorption nanoparticle layer is usually formed on the optical reflection layer, but not only the form in which the infrared absorption nanoparticle layer is directly provided on the optical reflection layer, but also the optical reflection layer and the infrared absorption nanoparticle layer. Another intermediate layer may be provided between the particle layer. In addition, the infrared absorption nanoparticle layer may be a single layer or a plurality of layers, and when there are a plurality of infrared absorption nanoparticle layers, the infrared absorption nanoparticle layers are adjacent to each other. It may exist not only in a stacked form but also in physically separated positions. Here, the intermediate layer is not particularly limited and is appropriately selected depending on a desired function. Specifically, the intermediate layer includes an adhesive layer, a conductive layer, an antistatic layer, a gas barrier layer, an easy adhesion layer (adhesion layer), an antifouling layer, a deodorant layer, a droplet layer, an easy slip layer, Examples include an abrasion layer, an antireflection layer, an electromagnetic wave shielding layer, a printing layer, a fluorescent light emitting layer, a hologram layer, a release layer, and a colored layer.
赤外吸収ナノ粒子層の厚さは、所望の機能(赤外吸収能)が発揮されるように適宜設計されうる。赤外吸収ナノ粒子層の厚さは、通常、1~20μmであり、好ましくは1~15μm、より好ましくは3~10μm、特に好ましくは5~10μm程度である。
The thickness of the infrared absorption nanoparticle layer can be appropriately designed so that a desired function (infrared absorption ability) is exhibited. The thickness of the infrared absorption nanoparticle layer is usually 1 to 20 μm, preferably 1 to 15 μm, more preferably 3 to 10 μm, and particularly preferably about 5 to 10 μm.
赤外吸収ナノ粒子層の構成は特に制限されず、公知の光学反射フィルムに適用される赤外吸収ナノ粒子層と同様の構成をとりうる。通常、赤外吸収ナノ粒子層は、金属酸化物ナノ粒子および樹脂を含む。
The configuration of the infrared absorption nanoparticle layer is not particularly limited, and may be the same as that of the infrared absorption nanoparticle layer applied to a known optical reflection film. Usually, the infrared absorbing nanoparticle layer includes metal oxide nanoparticles and a resin.
ここで、金属酸化物ナノ粒子は、ナノ粒子であることで、可視光線の透過性が確保される。このような金属酸化物ナノ粒子を構成する材料は、赤外光を吸収できるものであれば特に制限されないが、例えば、スズ、アンチモン、インジウム、チタン、ケイ素、アルミニウム、ジルコニウム、ホウ素、セリウム、タングステン、ニッケル、バナジウムおよび亜鉛の、酸化物およびドープト酸化物、ならびにこれらの混合物が挙げられる。より具体的に、酸化スズ、酸化アンチモン、酸化インジウム、インジウムドープ酸化スズ、インジウムドープ酸化亜鉛(インジウム亜鉛複合酸化物:IZO)、アンチモンドープ酸化インジウムスズ、酸化アンチモンスズ、アンチモンドープ酸化スズ(ATO)、アンチモンドープ酸化亜鉛(アンチモン亜鉛複合酸化物:AZO)、ガリウムドープ酸化亜鉛(ガリウム亜鉛複合酸化物:GZO)、酸化チタン、酸化亜鉛、酸化珪素、アルミナ、ジルコニア、ホウ素化ランタン、酸化セリウム、酸化バナジウム、酸化ニッケル、酸化タングステン、セシウム酸化タングステンまたはこれらの混合物が挙げられる。他にもCd/Se、GaN、Y2O3、Au、Ag、Cuを含む酸化物ナノ粒子も利用可能である。これらのうち、赤外吸収を考慮すると、アンチモンドープ酸化亜鉛、酸化アンチモンスズ、アンチモンドープ酸化スズ、およびインジウムドープ酸化スズが好ましい。上記金属酸化物ナノ粒子は、単独で使用されてもまたは2種以上の混合物の形態で使用されてもよい。なお、本明細書にて他の金属でドープされた化合物とは、化合物中に他の金属が混合されている状態、または化合物と他の金属(酸化物)とが結合している状態の双方を指す。
Here, since the metal oxide nanoparticles are nanoparticles, transparency of visible light is ensured. The material constituting the metal oxide nanoparticles is not particularly limited as long as it can absorb infrared light. For example, tin, antimony, indium, titanium, silicon, aluminum, zirconium, boron, cerium, tungsten , Nickel, vanadium and zinc oxides and doped oxides, and mixtures thereof. More specifically, tin oxide, antimony oxide, indium oxide, indium doped tin oxide, indium doped zinc oxide (indium zinc composite oxide: IZO), antimony doped indium tin oxide, antimony tin oxide, antimony doped tin oxide (ATO) Antimony doped zinc oxide (antimony zinc composite oxide: AZO), gallium doped zinc oxide (gallium zinc composite oxide: GZO), titanium oxide, zinc oxide, silicon oxide, alumina, zirconia, lanthanum boride, cerium oxide, oxidation Examples include vanadium, nickel oxide, tungsten oxide, cesium tungsten oxide, or a mixture thereof. In addition, oxide nanoparticles containing Cd / Se, GaN, Y 2 O 3 , Au, Ag, and Cu can also be used. Among these, in consideration of infrared absorption, antimony-doped zinc oxide, antimony tin oxide, antimony-doped tin oxide, and indium-doped tin oxide are preferable. The metal oxide nanoparticles may be used alone or in the form of a mixture of two or more. In addition, in this specification, the compound doped with another metal means both a state where another metal is mixed in the compound or a state where the compound and another metal (oxide) are bonded. Point to.
赤外吸収ナノ粒子層における金属酸化物ナノ粒子の含有量は、特に制限されないが、赤外吸収ナノ粒子層の構成成分の全量(固形分換算)に対して、30~80質量%であることが好ましく、45~70質量%であることがより好ましい。金属酸化物ナノ粒子の含有量がかような範囲にあることで、赤外吸収ナノ粒子層は十分な赤外光吸収性(赤外光遮蔽性)を発揮できる。
The content of the metal oxide nanoparticles in the infrared absorption nanoparticle layer is not particularly limited, but is 30 to 80% by mass with respect to the total amount of the components of the infrared absorption nanoparticle layer (in terms of solid content). It is preferably 45 to 70% by mass. When the content of the metal oxide nanoparticles is in such a range, the infrared absorption nanoparticle layer can exhibit sufficient infrared light absorption (infrared light shielding).
赤外吸収ナノ粒子層は、金属酸化物ナノ粒子を必須に含むが、本発明の効果を損なわない限り、耐候性や吸収スペクトルの観点から、金属酸化物ナノ粒子以外の他の赤外線吸収剤を混合してもよい。赤外線吸収剤は特に制限されず、公知の赤外線吸収剤が使用できるが、例えば、ホウ素化ランタン、ニッケル錯体系化合物、イモニウム系、フタロシアニン系、アミニウム系化合物等が挙げられる。赤外吸収ナノ粒子層が他の赤外線吸収剤を含む場合の赤外吸収ナノ粒子層における他の赤外線吸収剤の配合量は、本発明の効果を損なわない限り特に制限されないが、好ましくは0質量%を超えて5質量%以下であり、より好ましくは0質量%を超えて3質量%以下である。
The infrared absorption nanoparticle layer essentially contains metal oxide nanoparticles, but from the viewpoint of weather resistance and absorption spectrum, other infrared absorbers other than the metal oxide nanoparticles are used as long as the effects of the present invention are not impaired. You may mix. The infrared absorber is not particularly limited, and a known infrared absorber can be used, and examples thereof include lanthanum boride, nickel complex compounds, imonium compounds, phthalocyanine compounds, and aminium compounds. The amount of the other infrared absorber in the infrared absorbing nanoparticle layer when the infrared absorbing nanoparticle layer contains another infrared absorber is not particularly limited as long as the effect of the present invention is not impaired, but preferably 0 mass. % And 5% by mass or less, more preferably 0% by mass and 3% by mass or less.
金属酸化物ナノ粒子における「ナノ粒子」とは、平均(二次)粒径が1000nm以下の粒子を指す。金属酸化物ナノ粒子の大きさは特に制限されないが、可視光の透過性を考慮すると、平均粒径が1~500nmの範囲にあるものがより好ましく、1~200nmの範囲にあるものがさらに好ましく、5~100nmの範囲にあるものが特に好ましい。粒径は、透過型電子顕微鏡などの観察手段を用いて観察される粒子(観察面)の輪郭線上の任意の2点間の距離のうち最大の距離を意味する。平均粒径の値としては、透過型電子顕微鏡などの観察手段を用い、数~数十視野中に観察される粒子の粒径の個数平均値として算出される値を用いる。
The “nanoparticle” in the metal oxide nanoparticle refers to a particle having an average (secondary) particle size of 1000 nm or less. The size of the metal oxide nanoparticles is not particularly limited, but in view of visible light transmittance, the average particle size is more preferably in the range of 1 to 500 nm, and more preferably in the range of 1 to 200 nm. Those in the range of 5 to 100 nm are particularly preferred. The particle diameter means the maximum distance among the distances between any two points on the outline of the particle (observation surface) observed using an observation means such as a transmission electron microscope. As the value of the average particle size, a value calculated as the number average value of the particle sizes of particles observed in several to several tens of fields using an observation means such as a transmission electron microscope is used.
赤外吸収ナノ粒子層を構成する樹脂は、特に制限されないが、熱硬化性樹脂や活性エネルギー線硬化性樹脂が挙げられる。これらのうち、成形が容易なことから、活性エネルギー線硬化性樹脂が好ましい。かような硬化性樹脂は、単独でもまたは2種以上組み合わせても用いることができる。また、硬化型樹脂は市販品を用いてもよいし、合成品を用いてもよい。ここで、活性エネルギー線樹脂とは、紫外線や電子線のような活性エネルギー線照射により架橋反応等を経て硬化する樹脂をいう。活性エネルギー線硬化樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性エネルギー線を照射することによって硬化させて活性エネルギー線硬化樹脂層が形成される。活性エネルギー線硬化樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線照射によって硬化する紫外線硬化性樹脂が好ましい。すなわち、赤外吸収ナノ粒子層は、紫外線硬化性樹脂、ならびにアルミニウムドープ酸化亜鉛、酸化アンチモンスズ、アンチモンドープ酸化スズ、およびインジウムドープ酸化スズからなる群より選択される少なくとも一種を含むことが好ましい。
The resin constituting the infrared absorbing nanoparticle layer is not particularly limited, and examples thereof include a thermosetting resin and an active energy ray curable resin. Of these, active energy ray-curable resins are preferred because they are easy to mold. Such curable resins can be used singly or in combination of two or more. As the curable resin, a commercially available product may be used, or a synthetic product may be used. Here, the active energy ray resin refers to a resin that is cured through a crosslinking reaction or the like by irradiation with active energy rays such as ultraviolet rays or electron beams. As the active energy ray curable resin, a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and the active energy ray curable resin layer is cured by irradiation with an active energy ray such as an ultraviolet ray or an electron beam. Is formed. Typical examples of the active energy ray curable resin include an ultraviolet curable resin, an electron beam curable resin, and the like, and an ultraviolet curable resin that is cured by ultraviolet irradiation is preferable. That is, the infrared absorption nanoparticle layer preferably contains an ultraviolet curable resin and at least one selected from the group consisting of aluminum-doped zinc oxide, antimony tin oxide, antimony-doped tin oxide, and indium-doped tin oxide.
紫外線硬化性樹脂としては、例えば、紫外線硬化性ウレタンアクリレート樹脂、紫外線硬化性ポリエステルアクリレート樹脂、紫外線硬化性エポキシアクリレート樹脂、紫外線硬化性ポリオールアクリレート樹脂等の紫外線硬化性アクリレート系樹脂、または紫外線硬化性エポキシ樹脂等が好ましく用いられる。中でも、紫外線硬化性アクリレート系樹脂、特に紫外線硬化性ウレタンアクリレート樹脂、紫外線硬化性ポリオールアクリレート樹脂が好ましい。
Examples of the ultraviolet curable resin include an ultraviolet curable acrylate resin such as an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, and an ultraviolet curable polyol acrylate resin, or an ultraviolet curable epoxy. Resins and the like are preferably used. Among these, UV curable acrylate resins, particularly UV curable urethane acrylate resins and UV curable polyol acrylate resins are preferred.
紫外線硬化性ウレタンアクリレート樹脂は、一般にポリエステルポリオールにイソシアネートモノマー、またはプレポリマーを反応させて得られた生成物にさらに2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート(以下アクリレートにはメタクリレートを包含するものとしてアクリレートのみを表示する)、2-ヒドロキシプロピルアクリレート等の水酸基を有するアクリレート系のモノマーを反応させることによって容易に得ることができる。例えば、特開昭59-151110号公報に記載の、ユニディック17-806(大日本インキ(株)製)100部とコロネートL(日本ポリウレタン(株)製)1部との混合物等が好ましく用いられる。紫外線硬化性ウレタンアクリレート樹脂としては、市販品を用いてもよく、市販品としては、ビームセット(登録商標)575、577(荒川化学工業株式会社製)、紫光(登録商標)UVシリーズなどを挙げることができる。
The UV curable urethane acrylate resin is generally a product obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer and further adding 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate (hereinafter, acrylate includes methacrylate). Can be easily obtained by reacting an acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate. For example, a mixture of 100 parts Unidic 17-806 (manufactured by Dainippon Ink Co., Ltd.) and 1 part of Coronate L (manufactured by Nippon Polyurethane Co., Ltd.) described in JP-A-59-151110 is preferably used. It is done. Commercially available products may be used as the ultraviolet curable urethane acrylate resin, and examples of commercially available products include Beamset (registered trademark) 575 and 577 (manufactured by Arakawa Chemical Industry Co., Ltd.), and Murasaki (registered trademark) UV series. be able to.
紫外線硬化性ポリエステルアクリレート樹脂としては、一般にポリエステルポリオールに2-ヒドロキシエチルアクリレート、2-ヒドロキシアクリレート系のモノマーを反応させることにより形成されるものを挙げることができ、特開昭59-151112号公報に記載のものを用いることができる。
Examples of the UV curable polyester acrylate resin include those generally formed by reacting polyester polyol with 2-hydroxyethyl acrylate and 2-hydroxy acrylate monomers, and disclosed in JP-A-59-151112. Those described can be used.
紫外線硬化性エポキシアクリレート樹脂としては、エポキシアクリレートをオリゴマーとし、これに反応性希釈剤、光重合開始剤を添加し、反応させて生成するものを挙げることができ、特開平1-105738号公報に記載のものを用いることができる。
As the ultraviolet curable epoxy acrylate resin, an epoxy acrylate is used as an oligomer, and a reactive diluent and a photopolymerization initiator are added to the oligomer and reacted, and JP-A-1-1057738 discloses. Those described can be used.
紫外線硬化性ポリオールアクリレート樹脂としては、エチレングリコール(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることができる。紫外線硬化性ポリオールアクリレート樹脂としては、市販品を用いてもよく、市販品としては、サートマーSR295、SR399(サートマー社製)などを挙げることができる。
Examples of the UV curable polyol acrylate resin include ethylene glycol (meth) acrylate, polyethylene glycol di (meth) acrylate, glycerin tri (meth) acrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, and dipentaerythritol. Examples include pentaacrylate, dipentaerythritol hexaacrylate, and alkyl-modified dipentaerythritol pentaacrylate. Commercially available products may be used as the ultraviolet curable polyol acrylate resin, and examples of commercially available products include Sartomer SR295, SR399 (manufactured by Sartomer).
また、紫外線硬化性樹脂と組み合わせて(または単独で)、重合性シリコーン化合物を用いてもよい。該重合性シリコーン化合物は、上記紫外線硬化性樹脂と組み合わせて用いることが好ましい。
Also, a polymerizable silicone compound may be used in combination (or alone) with an ultraviolet curable resin. The polymerizable silicone compound is preferably used in combination with the ultraviolet curable resin.
重合性シリコーン化合物は、分子内にシロキサン結合による主骨格(シリコーン骨格)と重合性基を有する化合物である。
The polymerizable silicone compound is a compound having a main skeleton (silicone skeleton) with a siloxane bond and a polymerizable group in the molecule.
重合性基は、上記紫外線硬化性樹脂と重合可能な基であり、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基等の重合性の二重結合を有する基が挙げられる。好ましくは(メタ)アクリロイル基である。したがって、好ましい重合性シリコーン化合物は、シリコーン(メタ)アクリレートまたはシリコーン(メタ)アクリレートオリゴマー(以下、併せてシリコーン(メタ)アクリレートという。)であることが好ましい。
The polymerizable group is a group polymerizable with the ultraviolet curable resin, and examples thereof include a group having a polymerizable double bond such as a (meth) acryloyl group and a (meth) acryloyloxy group. A (meth) acryloyl group is preferred. Therefore, it is preferable that a preferable polymerizable silicone compound is silicone (meth) acrylate or silicone (meth) acrylate oligomer (hereinafter collectively referred to as silicone (meth) acrylate).
また、重合性シリコーン化合物は、上述の紫外線硬化性樹脂との相溶性を向上させるという点から、分子内に紫外線硬化性樹脂との相溶性を向上する部位を含有する有機変性重合性シリコーン化合物であることが好ましい。このような有機変性重合性シリコーン化合物としては、例えば、ウレタン変性、アミノ変性、アルキル変性、エポキシ変性、カルボキシル変性、アルコール変性、フッ素変性、アルキルアラルキルポリエーテル変性、エポキシ・ポリエーテル変性またはポリエーテル変性した重合性シリコーン化合物が挙げられる。
In addition, the polymerizable silicone compound is an organically modified polymerizable silicone compound containing a site that improves the compatibility with the ultraviolet curable resin in the molecule from the viewpoint of improving the compatibility with the ultraviolet curable resin described above. Preferably there is. Examples of such organically modified polymerizable silicone compounds include urethane modification, amino modification, alkyl modification, epoxy modification, carboxyl modification, alcohol modification, fluorine modification, alkylaralkyl polyether modification, epoxy / polyether modification or polyether modification. And polymerizable silicone compounds.
例えば、紫外線硬化性樹脂が、紫外線硬化性ウレタンアクリレート樹脂を含む場合には、重合性シリコーン化合物は、ウレタン変性シリコーン(メタ)アクリレートであることが好ましい。ウレタン変性シリコーン(メタ)アクリレートは、たとえば両末端がOHであるシリコーン化合物に多価イソシアネートを反応させ、末端イソシアナートシリコーン化合物を得て、末端イソシアナートシリコーン化合物と前記ヒドロキシル基含有(メタ)アクリレートとを反応させて得られる。
For example, when the ultraviolet curable resin contains an ultraviolet curable urethane acrylate resin, the polymerizable silicone compound is preferably urethane-modified silicone (meth) acrylate. The urethane-modified silicone (meth) acrylate is obtained by, for example, reacting a polyisocyanate with a silicone compound in which both ends are OH to obtain a terminal isocyanate silicone compound, and the terminal isocyanate silicone compound and the hydroxyl group-containing (meth) acrylate It is obtained by reacting.
なお、重合性シリコーン化合物も重合物が形成されるため、樹脂の重合性成分となる。
Note that the polymerizable silicone compound also forms a polymer, and thus becomes a polymerizable component of the resin.
上記樹脂は、合成により得られてもあるいは市販品を用いることができる。市販品としては、例えば、EBECRYL1360、EBECRYL350、KRM8495(ダイセル・オルネクス社製)、CN9800、CN990(アルケマ社製)などが挙げられる。
The resin may be obtained by synthesis or a commercially available product. Examples of commercially available products include EBECRYL1360, EBECRYL350, KRM8495 (manufactured by Daicel Ornex), CN9800, CN990 (manufactured by Arkema), and the like.
紫外線硬化性樹脂は、光重合開始剤(ラジカル重合開始剤)を用いることが好ましい。光重合開始剤としては、べンゾイン、べンゾインメチルエーテル、べンゾインエチルエーテル、ベンゾインイソプロピルエーテル、べンジルメチルケタールなどのべンゾインとそのアルキルエーテル類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトンなどのアセトフェノン類;メチルアントラキノン、2-エチルアントラキノン、2-アミルアントラキノンなどのアントラキノン類;チオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントンなどのチオキサントン類;アセトフェノンジメチルケタール、ベンジルジメチルケタールなどのケタール類;ベンゾフェノン、4,4-ビスメチルアミノべンゾフェノンなどのベンゾフェノン類およびアゾ化合物等を用いることができる。これらは単独でもまたは2種以上組み合わせても使用することができる。加えて、トリエタノールアミン、メチルジエタノールアミンなどの第3級アミン;2-ジメチルアミノエチル安息香酸、4-ジメチルアミノ安息香酸エチルなどの安息香酸誘導体等の光開始助剤などと組み合わせて使用することができる。光重合開始剤は市販品を用いてもよく、例えばイルガキュア(登録商標)-184、819、907、651、1700、1800、819、369、261、DAROCUR-TPO(BASFジャパン株式会社製)、ダロキュア(登録商標)-1173(メルク株式会社製)、エザキュア-KIP150、TZT(DKSHジャパン株式会社製)、カヤキュア(登録商標)BMS、DMBI(日本化薬株式会社製)等が挙げられる。これら光重合開始剤の使用量は、樹脂の重合性成分100質量部に対して好ましくは0.5~30質量部、より好ましくは1~25質量部である。
It is preferable to use a photopolymerization initiator (radical polymerization initiator) for the ultraviolet curable resin. Photopolymerization initiators include benzoin and its alkyl ethers such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzylmethyl ketal; acetophenone, 2,2-dimethoxy Acetophenones such as -2-phenylacetophenone and 1-hydroxycyclohexyl phenyl ketone; anthraquinones such as methylanthraquinone, 2-ethylanthraquinone and 2-amylanthraquinone; thioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, etc. Thioxanthones; ketals such as acetophenone dimethyl ketal and benzyl dimethyl ketal; benzophenones such as benzophenone and 4,4-bismethylaminobenzozonone And azo compounds can be used. These may be used alone or in combination of two or more. In addition, tertiary amines such as triethanolamine and methyldiethanolamine; photoinitiators such as 2-dimethylaminoethylbenzoic acid and benzoic acid derivatives such as ethyl 4-dimethylaminobenzoate can be used in combination. it can. Commercially available photopolymerization initiators may be used. For example, Irgacure (registered trademark) -184, 819, 907, 651, 1700, 1800, 819, 369, 261, DAROCUR-TPO (manufactured by BASF Japan Ltd.), Darocur (Registered trademark) -1173 (manufactured by Merck), Ezacure-KIP150, TZT (manufactured by DKSH Japan), Kayacure (registered trademark) BMS, DMBI (manufactured by Nippon Kayaku Co., Ltd.) and the like. The amount of the photopolymerization initiator used is preferably 0.5 to 30 parts by mass, more preferably 1 to 25 parts by mass with respect to 100 parts by mass of the polymerizable component of the resin.
赤外吸収ナノ粒子層中の上記樹脂の配合量は、本発明の効果を損なわない限り特に限定されず、目的によって好適に設定できる。例えば、赤外吸収ナノ粒子層中の上記樹脂の配合量は、赤外吸収ナノ粒子層の構成成分の全量(固形分換算)に対して、20~70質量%であることが好ましく、30~55質量%であることがより好ましい。
The blending amount of the resin in the infrared absorbing nanoparticle layer is not particularly limited as long as the effects of the present invention are not impaired, and can be suitably set depending on the purpose. For example, the blending amount of the resin in the infrared absorbing nanoparticle layer is preferably 20 to 70% by mass, preferably 30 to 70% by mass with respect to the total amount (in terms of solid content) of the constituent components of the infrared absorbing nanoparticle layer. More preferably, it is 55 mass%.
また、赤外吸収ナノ粒子層は、必要に応じて、界面活性剤を含んでもよい。これにより、レベリング性、撥水性、滑り性等を付与することができる。界面活性剤の種類として、特に制限はなく、アクリル系界面活性剤、シリコーン系界面活性剤、フッ素系界面活性剤等を用いることができる。特にレベリング性、撥水性、滑り性という観点で、フッ素系界面活性剤を用いることが好ましい。フッ素系界面活性剤の例としては、例えば、DIC株式会社製のメガファック(登録商標)Fシリーズ(F-430、F-477、F-552~F-559、F-561、F-562等)、DIC株式会社製のメガファック(登録商標)RSシリーズ(RS-76-E等)、AGCセイミケミカル株式会社製のサーフロン(登録商標)シリーズ、OMNOVA SOLUTIONS社製のPOLYFOXシリーズ、株式会社T&K TOKAのZXシリーズ、ダイキン工業株式会社製のオプツールシリーズ、ネオス社製のフタージェント(登録商標)シリーズ(602A、650A等)等の市販品を使用することができる。界面活性剤の赤外吸収ナノ粒子層中の含有量は、赤外吸収ナノ粒子層の構成成分の全量(固形分換算)に対して、0.001~0.5質量%であることが好ましい。
Further, the infrared absorbing nanoparticle layer may contain a surfactant as necessary. Thereby, leveling property, water repellency, slipperiness, etc. can be provided. The type of the surfactant is not particularly limited, and an acrylic surfactant, a silicone surfactant, a fluorine surfactant, or the like can be used. In particular, a fluorosurfactant is preferably used from the viewpoint of leveling properties, water repellency, and slipperiness. Examples of the fluorosurfactant include, for example, Megafac (registered trademark) F series (F-430, F-477, F-552 to F-559, F-561, F-562, etc., manufactured by DIC Corporation. ), Megafuck (registered trademark) RS series (RS-76-E, etc.) manufactured by DIC Corporation, Surflon (registered trademark) series manufactured by AGC Seimi Chemical Co., Ltd., POLYFOX series manufactured by OMNOVA SOLUTIONS Corporation, T & K TOKA Corporation Commercially available products such as ZX series, Optool series manufactured by Daikin Industries, Ltd., and Footent (registered trademark) series (602A, 650A, etc.) manufactured by Neos Co., Ltd. can be used. The content of the surfactant in the infrared absorption nanoparticle layer is preferably 0.001 to 0.5% by mass with respect to the total amount of the constituent components of the infrared absorption nanoparticle layer (in terms of solid content). .
赤外吸収ナノ粒子層の形成方法は特に制限されず、公知の方法が同様にしてあるいは適宜修飾して適用できる。例えば、赤外吸収ナノ粒子層形成用塗布液を光学反射層上に塗布する方法が使用できる。
The method for forming the infrared absorbing nanoparticle layer is not particularly limited, and a known method can be applied in the same manner or appropriately modified. For example, the method of apply | coating the coating liquid for infrared absorption nanoparticle layer formation on an optical reflection layer can be used.
上記方法において、赤外吸収ナノ粒子層形成用塗布液を形成するのに使用される溶媒は特に制限されないが、例えば、炭化水素類(トルエン、キシレン)、アルコール類(メタノール、エタノール、イソプロパノール、ブタノール、シクロヘキサノール)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン)、エステル類(酢酸メチル、酢酸エチル、乳酸メチル)、グリコールエーテル類などが挙げられる、これらの溶媒は、単独で使用してもあるいは2種以上の混合物の形態で使用してもよい。溶媒の量は特に制限されず、硬化樹脂を溶解、分散できる量において適宜設定される。例えば、赤外吸収ナノ粒子層形成用塗布液中の金属酸化物ナノ粒子及び樹脂の濃度(全固形分濃度)が、10~60質量%であることが好ましく、20~50質量%であることがより好ましい。
In the above method, the solvent used for forming the coating solution for forming the infrared absorbing nanoparticle layer is not particularly limited. For example, hydrocarbons (toluene, xylene), alcohols (methanol, ethanol, isopropanol, butanol) , Cyclohexanol), ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone), esters (methyl acetate, ethyl acetate, methyl lactate), glycol ethers, etc. These solvents may be used alone or You may use it with the form of a 2 or more types of mixture. The amount of the solvent is not particularly limited, and is appropriately set in an amount capable of dissolving and dispersing the cured resin. For example, the concentration (total solid content) of the metal oxide nanoparticles and the resin in the coating solution for forming the infrared absorbing nanoparticle layer is preferably 10 to 60% by mass, and 20 to 50% by mass. Is more preferable.
また、上記方法において、赤外吸収ナノ粒子層形成用塗布液の塗布方法もまた特に制限されず、バーコート法、グラビアコート法、リバースコート法、ダイコート法等、従来公知のコーティング方法を挙げることができる。上記塗布後は、塗膜を乾燥した後、加熱または活性エネルギー線照射によって硬化処理を行う。ここで、乾燥条件は、用いられる溶媒を除去できる温度で適宜設定されるが、通常40~120℃である。また、上記硬化処理を加熱により行う場合の、加熱条件は十分硬化処理を行うことができる条件であればよいが、50~150℃の温度範囲内で30分~数日間の熱処理を行うことが好ましい。また、上記硬化処理を活性エネルギー線照射によって行う場合の、活性エネルギー線照射条件は、特に制限されない。活性エネルギー線の照射波長、照度、光量によってその反応性が変わるため、使用する樹脂によって最適な条件を選択する必要がある。例えば、活性エネルギー線として紫外線ランプを用いる場合、その照度は50~1500mW/cm2が好ましい。照射エネルギー量は50~1500mJ/cm2が好ましい。
In the above method, the coating method of the coating solution for forming the infrared absorbing nanoparticle layer is not particularly limited, and examples thereof include conventionally known coating methods such as a bar coating method, a gravure coating method, a reverse coating method, and a die coating method. Can do. After the coating, the coating film is dried and then cured by heating or irradiation with active energy rays. Here, the drying conditions are appropriately set at a temperature at which the solvent used can be removed, but is usually 40 to 120 ° C. In addition, when the curing treatment is performed by heating, the heating condition is not limited as long as the sufficient curing treatment can be performed, but the heat treatment may be performed for 30 minutes to several days within a temperature range of 50 to 150 ° C. preferable. Moreover, the active energy ray irradiation conditions in the case of performing the said hardening process by active energy ray irradiation are not restrict | limited in particular. Since the reactivity varies depending on the irradiation wavelength, illuminance, and light amount of the active energy ray, it is necessary to select an optimum condition depending on the resin to be used. For example, when using an ultraviolet lamp as an active energy ray, the illuminance is preferably 50 ~ 1500mW / cm 2. The amount of irradiation energy is preferably 50 to 1500 mJ / cm 2 .
(放熱促進層)
本発明の光学反射フィルムは、上記基材、光学反射層及び赤外吸収ナノ粒子層に加えて、放熱促進層を有する。 (Heat dissipation promotion layer)
The optical reflective film of the present invention has a heat dissipation promoting layer in addition to the substrate, the optical reflective layer, and the infrared absorbing nanoparticle layer.
本発明の光学反射フィルムは、上記基材、光学反射層及び赤外吸収ナノ粒子層に加えて、放熱促進層を有する。 (Heat dissipation promotion layer)
The optical reflective film of the present invention has a heat dissipation promoting layer in addition to the substrate, the optical reflective layer, and the infrared absorbing nanoparticle layer.
ここで、放熱促進層は、光入射側の最表層に配置される。光学反射フィルムは、太陽光が光学反射フィルムの放熱促進層側から入射するように設置される限り、その構造は制限されない。好ましくは、放熱促進層が最外層に配置され、かつ他方の最外層に粘着層が配置される。このような形態では、例えば、光学反射フィルムを戸外(室外)側の窓ガラス面に粘着層を介して貼り合わせる場合には、放熱促進層が太陽光入射側に配置される形態となる。当該形態の場合には太陽光が入射する側の最表層に放熱促進層が配置されるため、赤外吸収ナノ粒子層が発する熱を効率よくフィルム外に放出する。
Here, the heat radiation promoting layer is disposed on the outermost layer on the light incident side. The structure of the optical reflection film is not limited as long as it is installed so that sunlight is incident from the heat radiation promoting layer side of the optical reflection film. Preferably, the heat radiation promoting layer is disposed on the outermost layer, and the adhesive layer is disposed on the other outermost layer. In such a form, for example, when the optical reflection film is bonded to the window glass surface on the outdoor (outdoor) side via the adhesive layer, the heat radiation promoting layer is arranged on the sunlight incident side. In the case of the said form, since the heat radiation acceleration | stimulation layer is arrange | positioned in the outermost layer on the side into which sunlight injects, the heat | fever which an infrared absorption nanoparticle layer emits is efficiently discharge | released out of a film.
また、放熱促進層は、通常、赤外吸収ナノ粒子層上に形成されるが、赤外吸収ナノ粒子層上に直接放熱促進層を設ける形態のみならず、赤外吸収ナノ粒子層と放熱促進層との間に他の中間層が設けられてもよい。好ましくは、放熱促進層は赤外吸収ナノ粒子層上に形成される、即ち、赤外吸収ナノ粒子層および放熱促進層は隣接して配置される。当該構成をとることによって、赤外光吸収ナノ粒子層中の金属酸化物ナノ粒子が赤外光吸収により発する熱をより効率的に放出できる。このため、光学反射フィルムによる熱割れ現象をより有効に抑制・防止できる。また、放熱促進層は1層であっても、複数層存在していてもよく、放熱促進層が複数層存在する場合には、各放熱促進層が隣接して積層されている形態のみならず、物理的に離れた位置に存在していてもよい。ここで、中間層は、特に制限されず、所望の機能によって適宜選択される。具体的には、中間層としては、上記赤外吸収ナノ粒子層で記載したものと同様の層が挙げられる。
In addition, the heat dissipation promotion layer is usually formed on the infrared absorption nanoparticle layer, but not only in the form of providing the heat dissipation promotion layer directly on the infrared absorption nanoparticle layer, but also the infrared absorption nanoparticle layer and the heat dissipation promotion Another intermediate layer may be provided between the layers. Preferably, the heat dissipation promoting layer is formed on the infrared absorbing nanoparticle layer, that is, the infrared absorbing nanoparticle layer and the heat dissipation promoting layer are disposed adjacent to each other. By taking the said structure, the metal oxide nanoparticle in an infrared light absorption nanoparticle layer can discharge | release the heat | fever emitted by infrared light absorption more efficiently. For this reason, the thermal crack phenomenon by an optical reflection film can be suppressed and prevented more effectively. Further, the heat dissipation promotion layer may be a single layer or a plurality of layers, and when there are a plurality of heat dissipation promotion layers, not only the form in which each heat dissipation promotion layer is laminated adjacently. , They may exist at physically separated positions. Here, the intermediate layer is not particularly limited and is appropriately selected depending on a desired function. Specifically, examples of the intermediate layer include the same layers as those described in the infrared absorption nanoparticle layer.
本発明では、放熱促進層の膜厚(d2)に対する赤外吸収ナノ粒子層の膜厚(d1)の比(d1/d2)が、1~100である。すなわち、放熱促進層の膜厚が、赤外吸収ナノ粒子層の膜厚と同等または赤外吸収ナノ粒子層の膜厚より薄い。これにより、放熱促進層は、金属酸化物ナノ粒子が赤外光吸収により発する熱を外部に効率的に放出できる。ここで、上記比(d1/d2)が1未満(即ち、放熱促進層の方が厚い)場合には、放熱促進層が厚すぎて、赤外吸収ナノ粒子層の発熱をフィルム外に十分放熱できないため、熱割れを生じてしまい、好ましくない。また、上記比(d1/d2)が100を超える(即ち、放熱促進層が薄すぎる)と、放熱促進層が薄すぎて、赤外吸収ナノ粒子層の発熱を直接受けて、やはり光学反射フィルムの熱割れ現象を防止できず、やはり好ましくない。放熱特性及び耐傷性の向上効果の観点から、放熱促進層の膜厚(d2)に対する赤外吸収ナノ粒子層の膜厚(d1)の比(d1/d2)は、好ましくは3~50、より好ましくは5~20である。
In the present invention, the ratio (d1 / d2) of the film thickness (d1) of the infrared absorption nanoparticle layer to the film thickness (d2) of the heat dissipation promoting layer is 1 to 100. That is, the film thickness of the heat dissipation promoting layer is equal to or less than the film thickness of the infrared absorption nanoparticle layer. Thereby, the heat radiation promotion layer can efficiently release the heat generated by the metal oxide nanoparticles by absorption of infrared light to the outside. Here, when the ratio (d1 / d2) is less than 1 (that is, the heat dissipation promoting layer is thicker), the heat dissipation promoting layer is too thick and the heat generated by the infrared absorption nanoparticle layer is sufficiently dissipated outside the film. This is not preferable because heat cracking occurs. Further, when the ratio (d1 / d2) exceeds 100 (that is, the heat dissipation promoting layer is too thin), the heat dissipation promoting layer is too thin and directly receives the heat generated by the infrared absorption nanoparticle layer, and is also an optical reflective film. The heat cracking phenomenon cannot be prevented. From the viewpoint of the effect of improving heat dissipation characteristics and scratch resistance, the ratio (d1 / d2) of the film thickness (d1) of the infrared absorption nanoparticle layer to the film thickness (d2) of the heat dissipation promoting layer is preferably 3-50. Preferably it is 5-20.
また、本発明では、放熱促進層の膜厚(乾燥膜厚)は、0.1μm以上1μm未満である。ここで、放熱促進層の膜厚(乾燥膜厚)が0.1μm未満であると、放熱促進層が薄すぎて、赤外吸収ナノ粒子層の発熱を直接受けて、光学反射フィルムの熱割れ現象を防止できない。また、この場合には、放熱促進層が、十分なフィルム保護特性を発揮できず、十分な耐傷性を発揮できない。また、放熱促進層の膜厚(乾燥膜厚)が1μm以上であると、赤外吸収ナノ粒子層の発熱をフィルム外に十分放熱できないため、熱割れを生じてしまう。また、特に後述のポリシラザン由来のメタロキサン骨格を有する材料を用いて放熱促進層を形成する場合には、塗布乾燥時に割れが生じてしまい好ましくない。また、上記したような放熱促進層の膜厚であれば、フィルム全体の膜厚を抑えられるので、フィルムは優れた柔軟性(屈曲性)を発揮できる。耐傷性に劣るため、やはり好ましくない。放熱特性及び耐傷性の向上効果の観点から、放熱促進層の膜厚(乾燥膜厚)は、好ましくは0.1μmを超えて0.9μm以下、より好ましくは0.2~0.8μmである。
In the present invention, the film thickness (dry film thickness) of the heat dissipation promoting layer is 0.1 μm or more and less than 1 μm. Here, if the film thickness (dry film thickness) of the heat radiation promoting layer is less than 0.1 μm, the heat radiation promoting layer is too thin and directly receives the heat generated by the infrared absorption nanoparticle layer, causing thermal cracks in the optical reflective film. The phenomenon cannot be prevented. Further, in this case, the heat dissipation promoting layer cannot exhibit sufficient film protection characteristics and cannot exhibit sufficient scratch resistance. Moreover, since the heat_generation | fever of an infrared absorption nanoparticle layer cannot fully radiate heat outside a film in the film thickness (dry film thickness) of a heat dissipation acceleration | stimulation layer being 1 micrometer or more, it will produce a thermal crack. In particular, when the heat radiation promoting layer is formed using a material having a metalloxane skeleton derived from polysilazane described later, it is not preferable because cracking occurs during coating and drying. Moreover, since the film thickness of the whole film will be restrained if it is the film thickness of the above heat dissipation promotion layer, the film can exhibit the outstanding softness | flexibility (flexibility). Since it is inferior in scratch resistance, it is not preferable again. From the viewpoint of improving the heat dissipation characteristics and scratch resistance, the film thickness (dry film thickness) of the heat dissipation promoting layer is preferably more than 0.1 μm and not more than 0.9 μm, more preferably 0.2 to 0.8 μm. .
放熱促進層を形成する材料としては、放熱性を発揮できるものであれば特に制限されないが、透明性、耐傷性、耐候性、硬度、機械的強度等を発揮できるものであることが好ましい。
The material for forming the heat dissipation promoting layer is not particularly limited as long as it can exhibit heat dissipation, but is preferably a material that can exhibit transparency, scratch resistance, weather resistance, hardness, mechanical strength, and the like.
一般に電子部品等の放熱用には熱伝導性組成物として樹脂に無機フィラーを添加して作製される。樹脂としてはアクリル系樹脂、ウレタン系樹脂、メラミン系樹脂、エポキシ系樹脂、有機シリケート化合物、シリコーン系樹脂などで構成することができる。特に、硬度と耐久性などの点で、シリコーン系樹脂やアクリル系樹脂が好ましい。さらに、硬化性、可撓性および生産性の点で、活性エネルギー線硬化型のアクリル系樹脂、または熱硬化型のアクリル系樹脂からなるものが好ましい。無機フィラーとしては、アルミナ、窒化アルミニウム、窒化ホウ素、炭化ケイ素、窒化ケイ素、酸化マグネシウム、酸化亜鉛が挙げられる。ここで、これら無機フィラーの含有率を高くすると熱伝導率は増加するが、塗膜表面の平面性や透明性が劣化したり、表面にヒビ、クラック、ボイド等が発生しやすくなり、無機フィラーが脱落しやすくなったりすることがあった。これに対して、本発明では、放熱性、耐傷性という観点からは、メタロキサン骨格を有する材料(有機シリケート化合物、シリコーン系樹脂)が特に好ましく使用される。すなわち、放熱促進層がメタロキサン骨格を有する材料を含むことが好ましい。
Generally, an inorganic filler is added to a resin as a heat conductive composition for heat dissipation of electronic parts and the like. As the resin, an acrylic resin, a urethane resin, a melamine resin, an epoxy resin, an organic silicate compound, a silicone resin, or the like can be used. In particular, silicone resins and acrylic resins are preferable in terms of hardness and durability. Further, in terms of curability, flexibility, and productivity, those made of an active energy ray-curable acrylic resin or a thermosetting acrylic resin are preferable. Examples of the inorganic filler include alumina, aluminum nitride, boron nitride, silicon carbide, silicon nitride, magnesium oxide, and zinc oxide. Here, when the content of these inorganic fillers is increased, the thermal conductivity increases, but the flatness and transparency of the coating film surface are deteriorated, and cracks, cracks, voids, etc. are likely to occur on the surface. Sometimes dropped out easily. On the other hand, in the present invention, a material having a metalloxane skeleton (an organic silicate compound or a silicone resin) is particularly preferably used from the viewpoint of heat dissipation and scratch resistance. That is, it is preferable that the heat dissipation promoting layer includes a material having a metalloxane skeleton.
熱硬化型シリコーン系の放熱促進層には公知の方法によって合成したアルコキシシラン化合物の部分加水分解オリゴマーを使用できる。その合成方法の一例は以下の通りである。まず、アルコキシシラン化合物としてテトラメトキシシラン、又はテトラエトキシシランを用い、これを塩酸、硝酸等の酸触媒の存在下に所定量の水を加えて、副生するアルコールを除去しながら室温から80℃で反応させる。この反応によりアルコキシシランは加水分解し、更に縮合反応により一分子中にシラノール基又はアルコキシ基を2個以上有し、平均重合度4~8のアルコキシシラン化合物の部分加水分解オリゴマーが得られる。次にこれに酢酸、マレイン酸等の硬化触媒を添加し、アルコール、グリコールエーテル系の有機溶剤に溶解させて熱硬化型シリコーン系ハードコート液が得られる。そしてこれを通常の塗料における塗装方法により赤外吸収ナノ粒子層に塗布し、80~140℃の温度で加熱硬化することによって透明な放熱促進層を形成させる。なお、テトラアルコキシシランの代わりにジ(アルキルまたはアリール)ジアルコキシシラン、並びに/或いはモノ(アルキルまたはアリール)トリアルコキシシランを使用することにより、同様にポリシロキサン系の透明放熱促進層を製造することが可能である。
A partially hydrolyzed oligomer of an alkoxysilane compound synthesized by a known method can be used for the thermosetting silicone-based heat dissipation promoting layer. An example of the synthesis method is as follows. First, tetramethoxysilane or tetraethoxysilane is used as an alkoxysilane compound, and a predetermined amount of water is added to the alkoxysilane compound in the presence of an acid catalyst such as hydrochloric acid or nitric acid to remove by-produced alcohol from room temperature to 80 ° C. React with. By this reaction, the alkoxysilane is hydrolyzed, and further, a partially hydrolyzed oligomer of the alkoxysilane compound having an average polymerization degree of 4 to 8 having two or more silanol groups or alkoxy groups in one molecule is obtained by the condensation reaction. Next, a curing catalyst such as acetic acid or maleic acid is added to this and dissolved in an alcohol or glycol ether organic solvent to obtain a thermosetting silicone hard coat liquid. And this is apply | coated to an infrared absorption nanoparticle layer by the coating method in a normal coating material, and a transparent heat dissipation acceleration | stimulation layer is formed by heat-curing at the temperature of 80-140 degreeC. In addition, by using di (alkyl or aryl) dialkoxysilane and / or mono (alkyl or aryl) trialkoxysilane instead of tetraalkoxysilane, a polysiloxane-based transparent heat radiation promoting layer is produced in the same manner. Is possible.
放熱促進層が無機物からなる場合、例えば酸化シリコン、酸化アルミニウム、窒化シリコン、窒化アルミニウム、酸化ランタン、窒化ランタン等を、真空製膜法により製膜することで形成できる。真空製膜法としては、例えば、抵抗加熱式真空蒸着法、電子ビーム加熱式真空蒸着法、イオンプレーティング法、イオンビームアシスト真空蒸着法、スパッタ法などがある。
When the heat dissipation promoting layer is made of an inorganic material, it can be formed by depositing, for example, silicon oxide, aluminum oxide, silicon nitride, aluminum nitride, lanthanum oxide, lanthanum nitride, or the like by a vacuum film forming method. Examples of the vacuum film forming method include a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, an ion beam assisted vacuum deposition method, and a sputtering method.
また、放熱促進層がメタロキサン骨格を有する材料を含む場合、ポリシラザンを塗布製膜し、加熱硬化した膜からなることがより好ましい。すなわち、メタロキサン骨格を有する材料がポリシラザン由来のメタロキサン骨格を有する材料であることがより好ましい。当該材料を使用することによって、柔軟性(屈曲性)は維持したまま、熱伝導率の高い放熱促進層が形成できる。また、当該材料を使用して形成した放熱促進層は、ガラス様の特性を示すため、耐傷性にも優れる。
In addition, when the heat dissipation promoting layer includes a material having a metalloxane skeleton, it is more preferable to form a film obtained by coating polysilazane and heat-curing it. That is, the material having a metalloxane skeleton is more preferably a material having a polysilazane-derived metalloxane skeleton. By using the material, it is possible to form a heat radiation promoting layer having high thermal conductivity while maintaining flexibility (flexibility). Moreover, since the heat dissipation acceleration | stimulation layer formed using the said material shows a glass-like characteristic, it is excellent also in scratch resistance.
このような放熱促進層の作製方法は、特に制限されない。例えば、下記一般式(1)で表されるポリシラザンを含む有機溶剤中に必要に応じて触媒を加えた溶液を塗布・乾燥(溶剤を蒸発により除去)した後、加熱することによって、ガラス様の透明な放熱促進層を形成できる。
The method for producing such a heat dissipation promoting layer is not particularly limited. For example, a glass-like solution can be obtained by applying and drying a solution to which a catalyst is added in an organic solvent containing polysilazane represented by the following general formula (1), if necessary, and then heating (removing the solvent by evaporation). A transparent heat dissipation promoting layer can be formed.
上記一般式(1)において、R1、R2およびR3は、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R1、R2およびR3は、それぞれ、同じであってもあるいは異なるものであってもよい。ここで、アルキル基としては、炭素原子数1~8の直鎖、分岐鎖または環状のアルキル基が挙げられる。より具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などがある。また、アリール基としては、炭素原子数6~30のアリール基が挙げられる。より具体的には、フェニル基、ビフェニル基、ターフェニル基などの非縮合炭化水素基;ペンタレニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレニル基、ピレニル基、クリセニル基、ナフタセニル基などの縮合多環炭化水素基が挙げられる。(トリアルコキシシリル)アルキル基としては、炭素原子数1~8のアルコキシ基で置換されたシリル基を有する炭素原子数1~8のアルキル基が挙げられる。より具体的には、3-(トリエトキシシリル)プロピル基、3-(トリメトキシシリル)プロピル基などが挙げられる。上記R1~R3に場合によって存在する置換基は、特に制限はないが、例えば、アルキル基、ハロゲン原子、ヒドロキシル基(-OH)、メルカプト基(-SH)、シアノ基(-CN)、スルホ基(-SO3H)、カルボキシル基(-COOH)、ニトロ基(-NO2)などがある。なお、場合によって存在する置換基は、置換するR1~R3と同じとなることはない。例えば、R1~R3がアルキル基の場合には、さらにアルキル基で置換されることはない。これらのうち、好ましくは、R1、R2およびR3は、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、フェニル基、ビニル基、3-(トリエトキシシリル)プロピル基または3-(トリメトキシシリルプロピル)基である。
In the general formula (1), R 1 , R 2 and R 3 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group. . At this time, R 1 , R 2 and R 3 may be the same or different. Here, examples of the alkyl group include linear, branched or cyclic alkyl groups having 1 to 8 carbon atoms. More specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n -Hexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group and the like. Examples of the aryl group include aryl groups having 6 to 30 carbon atoms. More specifically, non-condensed hydrocarbon groups such as phenyl group, biphenyl group, terphenyl group; pentarenyl group, indenyl group, naphthyl group, azulenyl group, heptaenyl group, biphenylenyl group, fluorenyl group, acenaphthylenyl group, preadenenyl group , Condensed polycyclic hydrocarbon groups such as acenaphthenyl group, phenalenyl group, phenanthryl group, anthryl group, fluoranthenyl group, acephenanthrenyl group, aceantrirenyl group, triphenylenyl group, pyrenyl group, chrysenyl group, naphthacenyl group, etc. Can be mentioned. The (trialkoxysilyl) alkyl group includes an alkyl group having 1 to 8 carbon atoms having a silyl group substituted with an alkoxy group having 1 to 8 carbon atoms. More specific examples include 3- (triethoxysilyl) propyl group and 3- (trimethoxysilyl) propyl group. The substituent optionally present in R 1 to R 3 is not particularly limited, and examples thereof include an alkyl group, a halogen atom, a hydroxyl group (—OH), a mercapto group (—SH), a cyano group (—CN), There are a sulfo group (—SO 3 H), a carboxyl group (—COOH), a nitro group (—NO 2 ) and the like. Note that the optionally present substituent is not the same as R 1 to R 3 to be substituted. For example, when R 1 to R 3 are alkyl groups, they are not further substituted with an alkyl group. Of these, R 1 , R 2 and R 3 are preferably a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a phenyl group, a vinyl group, 3 -(Triethoxysilyl) propyl group or 3- (trimethoxysilylpropyl) group.
また、上記一般式(1)において、nは、整数であり、一般式(1)で表される構造を有するポリシラザンが150~150,000g/モルの数平均分子量を有するように定められることが好ましい。これらのうち、R1、R2およびR3のすべてが水素原子であるパーヒドロポリシラザンが好ましい。
In the general formula (1), n is an integer, and the polysilazane having the structure represented by the general formula (1) may be determined to have a number average molecular weight of 150 to 150,000 g / mol. preferable. Of these, perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms is preferred.
また、別の好ましい態様の一つでは、放熱促進層が、下記の一般式(2)で表される少なくとも一種のポリシラザンを含む。
In another preferred embodiment, the heat dissipation promoting layer contains at least one polysilazane represented by the following general formula (2).
上記一般式(2)において、R1’、R2’、R3’、R4’、R5’およびR6’は、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R1’、R2’、R3’、R4’、R5’およびR6’は、それぞれ、同じであってもあるいは異なるものであってもよい。上記における、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基は、上記一般式(1)の定義と同様であるため、説明を省略する。
In the general formula (2), R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, An aryl group, a vinyl group or a (trialkoxysilyl) alkyl group. In this case, R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ may be the same or different. The substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group in the above is the same as the definition in the general formula (1), and thus the description thereof is omitted.
また、上記一般式(2)において、n’およびp’は、整数であり、一般式(2)で表される構造を有するポリシラザンが150~150,000g/モルの数平均分子量を有するように定められることが好ましい。なお、n’およびp’は、同じであってもあるいは異なるものであってもよい。
In the general formula (2), n ′ and p ′ are integers so that the polysilazane having the structure represented by the general formula (2) has a number average molecular weight of 150 to 150,000 g / mol. Preferably, it is defined. Note that n ′ and p ′ may be the same or different.
上記一般式(2)のポリシラザンのうち、R1’、R3’およびR6’が各々水素原子を表し、R2’、R4’およびR5’が各々メチル基を表す化合物;R1’、R3’およびR6’が各々水素原子を表し、R2’、R4’が各々メチル基を表し、R5’がビニル基を表す化合物;R1’、R3’、R4’およびR6’が各々水素原子を表し、R2’およびR5’が各々メチル基を表す化合物が好ましい。
Of the polysilazanes of the above general formula (2), R 1 ′ , R 3 ′ and R 6 ′ each represent a hydrogen atom, and R 2 ′ , R 4 ′ and R 5 ′ each represent a methyl group; R 1 ' , R 3' and R 6 ' each represents a hydrogen atom, R 2' , R 4 ' each represents a methyl group, and R 5' represents a vinyl group; R 1 ' , R 3' , R 4 A compound in which ' and R 6' each represent a hydrogen atom and R 2 ' and R 5' each represents a methyl group is preferred.
さらに、別の好ましい態様の一つでは、放熱促進層が、下記の一般式(3)で表される少なくとも一種のポリシラザンを含む。
Furthermore, in another preferred embodiment, the heat dissipation promoting layer contains at least one polysilazane represented by the following general formula (3).
上記一般式(3)において、R1”、R2”、R3”、R4”、R5”、R6”、R7”、R8”およびR9”は、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R1”、R2”、R3”、R4”、R5”、R6”、R7”、R8”およびR9”は、それぞれ、同じであってもあるいは異なるものであってもよい。上記における、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基は、上記一般式(1)の定義と同様であるため、説明を省略する。
In the general formula (3), R 1 ″ , R 2 ″ , R 3 ″ , R 4 ″ , R 5 ″ , R 6 ″ , R 7 ″ , R 8 ″ and R 9 ″ are each independently A hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group, wherein R 1 ″ , R 2 ″ , R 3 ″ , R 4 ″ , R 5 ″ , R 6 ″ , R 7 ″ , R 8 ″ and R 9 ″ may be the same or different. The substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group in the above is the same as the definition in the general formula (1), and thus the description thereof is omitted.
また、上記一般式(3)において、n”、p”およびq”は、整数であり、一般式(3)で表される構造を有するポリシラザンが150~150,000g/モルの数平均分子量を有するように定められることが好ましい。なお、n”、p”およびq”は、同じであってもあるいは異なるものであってもよい。
In the general formula (3), n ″, p ″ and q ″ are integers, and the polysilazane having the structure represented by the general formula (3) has a number average molecular weight of 150 to 150,000 g / mol. Preferably, n ″, p ″ and q ″ may be the same or different.
上記一般式(3)のポリシラザンのうち、R1”、R3”およびR6”が各々水素原子を表し、R2”、R4”、R5”およびR8”が各々メチル基を表し、R9”が(トリエトキシシリル)プロピル基を表し、R7”がアルキル基または水素原子を表す化合物が好ましい。
Of the polysilazanes of the general formula (3), R 1 ″ , R 3 ″ and R 6 ″ each represent a hydrogen atom, and R 2 ″ , R 4 ″ , R 5 ″ and R 8 ″ each represent a methyl group. , R 9 ″ represents a (triethoxysilyl) propyl group, and R 7 ″ represents an alkyl group or a hydrogen atom.
一方、そのSiと結合する水素原子部分の一部がアルキル基等で置換されたオルガノポリシラザンは、メチル基等のアルキル基を有することにより下地である基材との接着性が改善され、かつ硬くてもろいポリシラザンによるセラミック膜に靭性を持たせることができ、より(平均)膜厚を厚くした場合でもクラックの発生が抑えられる利点がある。このため、用途に応じて適宜、これらパーヒドロポリシラザンとオルガノポリシラザンを選択してよく、混合して使用することもできる。
On the other hand, the organopolysilazane in which a part of the hydrogen atom portion bonded to Si is substituted with an alkyl group or the like has improved adhesion to the base material as a base by having an alkyl group such as a methyl group and is hard. The ceramic film made of brittle polysilazane can be toughened, and there is an advantage that the occurrence of cracks can be suppressed even when the (average) film thickness is increased. For this reason, perhydropolysilazane and organopolysilazane may be selected as appropriate according to the application, and may be used in combination.
パーヒドロポリシラザンは、直鎖構造と6および8員環を中心とする環構造が存在した構造と推定されている。その分子量は数平均分子量(Mn)で約600~2000程度(ポリスチレン換算)で、液体または固体の物質があり、その状態は分子量により異なる。
Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings. The number average molecular weight (Mn) is about 600 to 2000 (polystyrene conversion), and there are liquid or solid substances, and the state varies depending on the molecular weight.
ポリシラザンは有機溶媒に溶解した溶液状態で市販されており、市販品をそのまま第1のバリア層形成用塗布液として使用することができる。ポリシラザン溶液の市販品としては、AZエレクトロニックマテリアルズ株式会社製のNN120-10、NN120-20、NAX120-20、NN110、NN310、NN320、NL110A、NL120、NL120A、NL120-20、NL150A、NP110、NP140、SP140等が挙げられる。
Polysilazane is commercially available in a solution state dissolved in an organic solvent, and the commercially available product can be used as it is as the first barrier layer forming coating solution. Commercially available polysilazane solutions include NN120-10, NN120-20, NAX120-20, NN110, NN310, NN320, NL110A, NL120, NL120A, NL120-20, NL150A, NP110, NP140, manufactured by AZ Electronic Materials Co., Ltd. SP140 etc. are mentioned.
放熱促進層がメタロキサン骨格(好ましくはポリシラザン由来のメタロキサン骨格)を有する材料で形成する場合の、放熱促進層の形成方法は特に制限されないが、ポリシラザンを含む放熱促進層形成用塗布液を塗布し、塗膜を加熱硬化する方法が好ましい。ここで、塗布方法は特に制限されないが、例えば、バーコート法、グラビアコート法、リバースコート法、ダイコート法等、従来公知のコーティング方法を挙げることができる。
In the case where the heat dissipation promotion layer is formed of a material having a metalloxane skeleton (preferably a metalloxane skeleton derived from polysilazane), the method of forming the heat dissipation promotion layer is not particularly limited, but a coating solution for forming a heat dissipation promotion layer containing polysilazane is applied, A method of curing the coating film by heating is preferred. Here, the coating method is not particularly limited, and examples thereof include conventionally known coating methods such as a bar coating method, a gravure coating method, a reverse coating method, and a die coating method.
溶剤中のポリシラザンの割合は、一般的には、ポリシラザン1~80質量%である。溶剤としては、特に、水及び反応性基(例えばヒドロキシ基又はアミン基)を含まず、ポリシラザンに対して不活性の有機系で好ましくは非プロトン性の溶剤が好適である。これは、例えば、脂肪族又は芳香族炭化水素、ハロゲン炭化水素、エステル、例えば酢酸エチル又は酢酸ブチル、ケトン、例えばアセトン又はメチルエチルケトン、エーテル、例えばテトラヒドロフラン又はジブチルエーテル、並びにモノ-及びポリアルキレングリコールジアルキルエーテル(ジグライム類)又はこれらの溶剤からなる混合物である。
The ratio of polysilazane in the solvent is generally 1 to 80% by mass of polysilazane. As the solvent, water and a reactive group (for example, a hydroxy group or an amine group) are not included, and an organic system that is inert to polysilazane and preferably an aprotic solvent is preferable. This includes, for example, aliphatic or aromatic hydrocarbons, halogen hydrocarbons, esters such as ethyl acetate or butyl acetate, ketones such as acetone or methyl ethyl ketone, ethers such as tetrahydrofuran or dibutyl ether, and mono- and polyalkylene glycol dialkyl ethers (Diglymes) or a mixture of these solvents.
このポリシラザン溶液の追加の成分に、塗料の製造に慣用されているもののような、更に別のバインダーを用いることができる。これは、例えば、セルロースエーテル及びセルロースエステル、例えばエチルセルロース、ニトロセルロース、セルロースアセテート又はセルロースアセトブチレート、天然樹脂、例えばゴムもしくはロジン樹脂、又は合成樹脂、例えば重合樹脂もしくは縮合樹脂、例えばアミノプラスト、特に尿素樹脂及びメラミンホルムアルデヒド樹脂、アルキド樹脂、アクリル樹脂、ポリエステルもしくは変性ポリエステル、エポキシド、ポリイソシアネートもしくはブロック化ポリイソシアネート、又はポリシロキサンである。
As an additional component of this polysilazane solution, further binders such as those conventionally used in the production of paints can be used. For example, cellulose ethers and cellulose esters such as ethyl cellulose, nitrocellulose, cellulose acetate or cellulose acetobutyrate, natural resins such as rubber or rosin resins, or synthetic resins such as polymerized resins or condensed resins such as aminoplasts, in particular Urea resins and melamine formaldehyde resins, alkyd resins, acrylic resins, polyesters or modified polyesters, epoxides, polyisocyanates or blocked polyisocyanates, or polysiloxanes.
上記塗布後は、塗膜を乾燥した後、加熱によって硬化処理を行う。ここで、乾燥条件は、塗膜から十分量の溶剤が蒸発できる(塗膜が形成できる)条件であれば特に制限されない。具体的には、乾燥温度は、好ましくは10~90℃、より好ましくは20~50℃である。また、乾燥時間は、好ましくは0.5~10分、より好ましくは1~5分である。また、硬化条件は十分硬化処理を行うことができる(放熱促進層が形成できる)条件であればよいが、50~150℃の温度範囲内で10分~5時間の熱処理を行うことが好ましい。
After the coating, the coating film is dried and then cured by heating. Here, the drying conditions are not particularly limited as long as a sufficient amount of solvent can be evaporated from the coating film (a coating film can be formed). Specifically, the drying temperature is preferably 10 to 90 ° C, more preferably 20 to 50 ° C. The drying time is preferably 0.5 to 10 minutes, more preferably 1 to 5 minutes. The curing conditions may be any conditions that allow a sufficient curing process (a heat dissipation promoting layer can be formed), but it is preferable to perform a heat treatment for 10 minutes to 5 hours within a temperature range of 50 to 150 ° C.
本発明の光学反射フィルムは、金属酸化物ナノ粒子の赤外光吸収による熱割れを抑制・防止できる。また、本発明の光学反射フィルムは、耐傷性に優れる。さらに、本発明の光学反射フィルムは、高い可視光透過率、優れた赤外遮蔽性、高い屈曲性、剥離抑制性の少なくとも1つを満たす。具体的には、本発明の光学反射フィルムは、400nm~780nmの領域において、通常、50%以上、好ましくは70%以上(上限:100%)の可視光透過率(Tvis)を有する。なお、本明細書において、「可視光透過率(Tvis)」は下記実施例に記載の方法によって測定された値を意味する。
The optical reflective film of the present invention can suppress and prevent thermal cracking due to infrared light absorption of metal oxide nanoparticles. Moreover, the optical reflective film of this invention is excellent in scratch resistance. Furthermore, the optical reflective film of the present invention satisfies at least one of high visible light transmittance, excellent infrared shielding properties, high flexibility, and peeling inhibition properties. Specifically, the optical reflective film of the present invention has a visible light transmittance (T vis ) of usually 50% or more, preferably 70% or more (upper limit: 100%) in the region of 400 nm to 780 nm. In the present specification, “visible light transmittance (T vis )” means a value measured by the method described in the Examples below.
[光学反射フィルムの応用:光学反射体]
本発明の光学反射フィルムは、幅広い分野に応用することができる。すなわち、本発明の好適な一実施形態は、上記光学反射フィルムを基体の少なくとも一方の面に設けてなる、光学反射体である。例えば、建物の屋外の窓や自動車窓等長期間太陽光に晒らされる設備(基体)に貼り合せ、熱線反射効果を付与する熱線反射フィルム等の窓貼用フィルム、農業用ビニールハウス用フィルム等として、主として耐候性を高める目的で用いられる。特に、本発明に係る光学反射フィルムが直接もしくは接着剤を介してガラスもしくはガラス代替樹脂基材に貼合されている部材には好適である。 [Application of optical reflective film: Optical reflector]
The optical reflective film of the present invention can be applied to a wide range of fields. In other words, a preferred embodiment of the present invention is an optical reflector formed by providing the optical reflective film on at least one surface of a substrate. For example, film for window pasting such as heat ray reflecting film that gives heat ray reflection effect, film for agricultural greenhouses, etc. Etc., mainly for the purpose of improving the weather resistance. In particular, it is suitable for a member in which the optical reflection film according to the present invention is bonded to glass or a glass substitute resin base material directly or via an adhesive.
本発明の光学反射フィルムは、幅広い分野に応用することができる。すなわち、本発明の好適な一実施形態は、上記光学反射フィルムを基体の少なくとも一方の面に設けてなる、光学反射体である。例えば、建物の屋外の窓や自動車窓等長期間太陽光に晒らされる設備(基体)に貼り合せ、熱線反射効果を付与する熱線反射フィルム等の窓貼用フィルム、農業用ビニールハウス用フィルム等として、主として耐候性を高める目的で用いられる。特に、本発明に係る光学反射フィルムが直接もしくは接着剤を介してガラスもしくはガラス代替樹脂基材に貼合されている部材には好適である。 [Application of optical reflective film: Optical reflector]
The optical reflective film of the present invention can be applied to a wide range of fields. In other words, a preferred embodiment of the present invention is an optical reflector formed by providing the optical reflective film on at least one surface of a substrate. For example, film for window pasting such as heat ray reflecting film that gives heat ray reflection effect, film for agricultural greenhouses, etc. Etc., mainly for the purpose of improving the weather resistance. In particular, it is suitable for a member in which the optical reflection film according to the present invention is bonded to glass or a glass substitute resin base material directly or via an adhesive.
基体の具体的な例としては、例えば、ガラス、ポリカーボネート樹脂、ポリスルホン樹脂、アクリル樹脂、ポリオレフィン樹脂、ポリエーテル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリスルフィド樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、メラミン樹脂、フェノール樹脂、ジアリルフタレート樹脂、ポリイミド樹脂、ウレタン樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、スチレン樹脂、塩化ビニル樹脂、金属板、セラミック等が挙げられる。樹脂の種類は、熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂のいずれでも良く、これらを2種以上組み合わせて用いても良い。基体は、押出成形、カレンダー成形、射出成形、中空成形、圧縮成形等、公知の方法で製造することができる。基体の厚みは特に制限されないが、通常0.1mm~5cmである。
Specific examples of the substrate include, for example, glass, polycarbonate resin, polysulfone resin, acrylic resin, polyolefin resin, polyether resin, polyester resin, polyamide resin, polysulfide resin, unsaturated polyester resin, epoxy resin, melamine resin, and phenol. Examples thereof include resins, diallyl phthalate resins, polyimide resins, urethane resins, polyvinyl acetate resins, polyvinyl alcohol resins, styrene resins, vinyl chloride resins, metal plates, and ceramics. The type of resin may be any of a thermoplastic resin, a thermosetting resin, and an ionizing radiation curable resin, and two or more of these may be used in combination. The substrate can be produced by a known method such as extrusion molding, calendar molding, injection molding, hollow molding, compression molding or the like. The thickness of the substrate is not particularly limited, but is usually 0.1 mm to 5 cm.
光学反射フィルムと基体とを貼り合わせる接着層または粘着層は、光学反射フィルムを日光(熱線)入射面側に設置することが好ましい。また、光学反射フィルムを、窓ガラスと基体との間に挟持すると、水分等の周囲のガスから封止でき耐久性に優れるため好ましい。本発明に係る光学反射フィルムを屋外や車の外側(外貼り用)に設置しても環境耐久性があって好ましい。ここで、粘着層(接着層)は、基体(例えば、ガラス)との貼付け時点の即粘着力が2~8N/25mmであり、前記即粘着力が4~8N/25mmであることが好ましい。即粘着力とは、光学反射フィルムをガラスに貼付けて24時間後に計測した粘着層の粘着力のことを示す。粘着層の粘着力は粘着層を構成する材料を適切に選択することで調整が可能である。
It is preferable that the adhesive layer or the adhesive layer that bonds the optical reflecting film and the substrate is disposed on the sunlight (heat ray) incident surface side. Further, it is preferable to sandwich the optical reflection film between the window glass and the substrate because it can be sealed from surrounding gas such as moisture and has excellent durability. Even if the optical reflective film according to the present invention is installed outdoors or outside a car (for external application), it is preferable because of environmental durability. Here, the adhesive layer (adhesive layer) preferably has an immediate adhesive force of 2 to 8 N / 25 mm at the time of application to the substrate (eg, glass), and the immediate adhesive force is 4 to 8 N / 25 mm. Immediate adhesive strength refers to the adhesive strength of the adhesive layer measured 24 hours after the optical reflective film was attached to glass. The adhesive strength of the adhesive layer can be adjusted by appropriately selecting the material constituting the adhesive layer.
また、貼付け時点の前記粘着層とガラスとの即粘着力が4~8N/25mmであり、貼付け状態のまま、30℃、湿度60%の条件で1週間放置した時点の粘着層とガラスとの経時粘着力が7~15N/25mmであることが曲面密着性の観点から好ましい。更に、前記経時粘着力が10~15N/25mmであることが耐久性向上と糊残りが減少するという観点からより好ましい。経時粘着力とは、光学反射フィルムをガラスに貼付け、一定期間経過した後に計測した粘着層の粘着力のことを示す。
Further, the adhesive strength between the adhesive layer and the glass at the time of application is 4 to 8 N / 25 mm, and the adhesive layer and the glass at the time of being left for 1 week at 30 ° C. and 60% humidity in the applied state. An adhesive strength with time is preferably 7 to 15 N / 25 mm from the viewpoint of curved surface adhesion. Further, the adhesive strength with time is preferably 10 to 15 N / 25 mm from the viewpoint of improving durability and reducing adhesive residue. The adhesive strength with time refers to the adhesive strength of the adhesive layer measured after a certain period of time when the optical reflective film is attached to glass.
本発明の光学反射フィルムは、窓ガラスに貼り合わせる場合、窓に水を吹き付け、濡れた状態のガラス面に光学制御フィルムの粘着層を合わせる貼り方、いわゆる水貼り法が張り直し、位置直し等の観点で好適に用いられる。そのため、水が存在する湿潤下では粘着力が弱い粘着剤が好ましい。
When the optical reflective film of the present invention is bonded to a window glass, water is sprayed on the window, and a method for bonding the adhesive layer of the optical control film to the wet glass surface, the so-called water bonding method is re-stretched, repositioned, etc. From the viewpoint of, it is preferably used. For this reason, a pressure-sensitive adhesive having a low adhesive strength in the presence of water is preferable.
本発明に適用可能な粘着剤(接着剤)としては、光硬化性もしくは熱硬化性の樹脂を主成分とする接着剤を用いることができる。
As the pressure-sensitive adhesive (adhesive) applicable to the present invention, an adhesive mainly composed of a photocurable or thermosetting resin can be used.
接着剤は紫外線に対して耐久性を有するものが好ましく、アクリル系粘着剤またはシリコーン系粘着剤が好ましい。更に粘着特性やコストの観点から、アクリル系粘着剤が好ましい。特に剥離強さの制御が容易なことから、アクリル系粘着剤において、溶剤系およびエマルジョン系の中で溶剤系が好ましい。アクリル溶剤系粘着剤として溶液重合ポリマーを使用する場合、そのモノマーとしては公知のものを使用できる。
The adhesive preferably has durability against ultraviolet rays, and is preferably an acrylic adhesive or a silicone adhesive. Furthermore, an acrylic adhesive is preferable from the viewpoint of adhesive properties and cost. In particular, since the peel strength can be easily controlled, a solvent system is preferable among the solvent system and the emulsion system in the acrylic adhesive. When a solution polymerization polymer is used as the acrylic solvent-based pressure-sensitive adhesive, known monomers can be used as the monomer.
また、合わせガラスの中間層として用いられるポリビニルブチラール系樹脂、あるいはエチレン-酢酸ビニル共重合体系樹脂を用いてもよい。具体的には可塑性ポリビニルブチラール(積水化学工業社製、三菱モンサント社製等)、エチレン-酢酸ビニル共重合体(デュポン社製、武田薬品工業社製、デュラミン)、変性エチレン-酢酸ビニル共重合体(東ソー社製、メルセンG)等である。なお、接着層には紫外線吸収剤、抗酸化剤、帯電防止剤、熱安定剤、滑剤、充填剤、着色剤、接着調整剤等を適宜添加できる。これらのうち、粘着層は、紫外線吸収剤を含有することが好ましい。紫外線吸収剤を含む粘着層を設けることによって、太陽光(特に赤外光)量(熱線吸収層の太陽光吸収量)はより低減する。また、本発明の光学制御フィルムを窓貼用として使用する場合には、紫外線による光反射フィルムの劣化を抑制できる。
Further, a polyvinyl butyral resin or an ethylene-vinyl acetate copolymer resin used as an intermediate layer of laminated glass may be used. Specifically, plastic polyvinyl butyral (manufactured by Sekisui Chemical Co., Ltd., Mitsubishi Monsanto Co., Ltd.), ethylene-vinyl acetate copolymer (manufactured by DuPont, Takeda Pharmaceutical Company Limited, duramin), modified ethylene-vinyl acetate copolymer (Mersen G, manufactured by Tosoh Corporation). In addition, an ultraviolet absorber, an antioxidant, an antistatic agent, a heat stabilizer, a lubricant, a filler, a colorant, an adhesion adjusting agent, and the like can be appropriately added to the adhesive layer. Among these, it is preferable that an adhesion layer contains a ultraviolet absorber. By providing an adhesive layer containing an ultraviolet absorber, the amount of sunlight (particularly infrared light) (the amount of sunlight absorbed by the heat ray absorbing layer) is further reduced. Moreover, when using the optical control film of this invention for window sticking, degradation of the light reflection film by an ultraviolet-ray can be suppressed.
ここで、紫外線吸収剤としては、特に制限されず、公知の紫外線吸収剤を使用できる。例えば、2,4-ジヒドロキシ-ベンゾフェノン、2-ヒドロキシ-4-メトキシ-ベンゾフェノン等のベンゾフェノン系紫外線吸収剤;2-(2’-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)ベンゾトリアゾール等のベンゾトリアゾール系紫外線吸収剤;フェニルサリチレート、2-4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート等のサリチル酸フェニル系紫外線吸収剤;ビス(2,2,6,6-テトラメチルピペリジン-4-イル)セバケート等のヒンダードアミン系紫外線吸収剤;2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン等のトリアジン系紫外線吸収剤;等が挙げられる。
Here, the ultraviolet absorber is not particularly limited, and a known ultraviolet absorber can be used. For example, benzophenone ultraviolet absorbers such as 2,4-dihydroxy-benzophenone and 2-hydroxy-4-methoxy-benzophenone; 2- (2′-hydroxy-5-methylphenyl) benzotriazole, 2- (2′-hydroxy Benzotriazole UV absorbers such as -3 ', 5'-di-t-butylphenyl) benzotriazole; phenyl salicylate, 2-4-di-t-butylphenyl-3,5-di-t-butyl Phenyl salicylate UV absorbers such as -4-hydroxybenzoate; hindered amine UV absorbers such as bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate; 2,4-diphenyl-6- ( 2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2 Triazine-based UV absorbers such as hydroxy-4-ethoxyphenyl) -1,3,5-triazine; and the like.
紫外線吸収剤としては、上記以外に紫外線の保有するエネルギーを、分子内で振動エネルギーに変換し、その振動エネルギーを、熱エネルギー等として放出する機能を有する化合物が含まれる。
In addition to the above, the ultraviolet absorber includes a compound having a function of converting the energy held by ultraviolet rays into vibrational energy in the molecule and releasing the vibrational energy as thermal energy.
なお、紫外線吸収剤は、単独でもまたは2種以上混合して用いてもよい。また、紫外線吸収剤は、合成品を用いてもよいし市販品を用いてもよい。市販品の例としては、例えば、Tinuvin(登録商標)320、Tinuvin(登録商標)328、Tinuvin(登録商標)234、Tinuvin(登録商標)477、Tinuvin(登録商標)1577、Tinuvin(登録商標)622(以上、BASFジャパン株式会社製)、アデカスタブ(登録商標)LA-31(以上、株式会社アデカ製)、SEESORB(登録商標)102、SEESORB(登録商標)103、SEESORB(登録商標)501(以上、シプロ化成株式会社製)などが挙げられる。
In addition, you may use an ultraviolet absorber individually or in mixture of 2 or more types. Moreover, as the ultraviolet absorber, a synthetic product or a commercially available product may be used. Examples of commercially available products include, for example, Tinuvin (registered trademark) 320, Tinuvin (registered trademark) 328, Tinuvin (registered trademark) 234, Tinuvin (registered trademark) 477, Tinuvin (registered trademark) 1577, and Tinuvin (registered trademark) 622. (Above, manufactured by BASF Japan Ltd.), ADK STAB (registered trademark) LA-31 (above, manufactured by ADEKA CORPORATION), SEESORB (registered trademark) 102, SESORB (registered trademark) 103, SEESORB (registered trademark) 501 (or more, Cipro Kasei Co., Ltd.).
紫外線吸収剤の添加量(固形分換算)は、粘着剤に対して、0.1~10質量%であることが好ましく、より好ましくは0.5~5質量%である。このような範囲であれば、熱線吸収層の太陽光吸収量をより有効に低減できる。
The addition amount of the ultraviolet absorber (in terms of solid content) is preferably 0.1 to 10% by mass, more preferably 0.5 to 5% by mass with respect to the pressure-sensitive adhesive. If it is such a range, the sunlight absorption amount of a heat ray absorption layer can be reduced more effectively.
粘着層(接着層)の厚さは、1~100μmが好ましく、3~50μmがより好ましい。1μm以上であれば粘着性が向上する傾向にあり、十分な粘着力が得られる。逆に100μm以下であれば光学制御フィルムの透明性が向上するだけでなく、光学制御フィルムを窓ガラスに貼り付けた後、剥がしたときに粘着層間で凝集破壊が起こらず、ガラス面への粘着剤残りが無くなる傾向にある。
The thickness of the pressure-sensitive adhesive layer (adhesive layer) is preferably 1 to 100 μm, and more preferably 3 to 50 μm. If it is 1 micrometer or more, there exists a tendency for adhesiveness to improve and sufficient adhesive force is acquired. On the contrary, if the thickness is 100 μm or less, not only the transparency of the optical control film is improved, but also when the optical control film is attached to the window glass and then peeled off, no cohesive failure occurs between the adhesive layers, and adhesion to the glass surface There is a tendency that there is no remaining agent.
基材への粘着層の形成方法としては、特に制限されないが、基材またはセパレーター上に粘着層用塗布液を塗布し乾燥させて粘着層を形成した後、粘着層と反射層とを貼り合わせる方法が好ましい。この際用いられるセパレーターとしては、例えば、シリコーンコート離型PETフィルム、シリコーンコートPEフィルム等が挙げられる。セパレーター上への粘着層用塗布液の塗布方法は、特に制限されず、ワイヤーバーによるコーティング、スピンコーティング、ディップコーティング等により塗布液を塗布し製膜する方法が挙げられ、また、ダイコーター、グラビアコーター、コンマコーターなどの連続塗布装置でも塗布、製膜することが可能である。
The method for forming the adhesive layer on the substrate is not particularly limited, but after the adhesive layer coating liquid is applied on the substrate or separator and dried to form the adhesive layer, the adhesive layer and the reflective layer are bonded together. The method is preferred. Examples of the separator used at this time include a silicone-coated release PET film and a silicone-coated PE film. The method of applying the coating solution for the adhesive layer on the separator is not particularly limited, and examples thereof include a method of applying the coating solution by wire bar coating, spin coating, dip coating, etc., and forming a film. It is possible to apply and form a film using a continuous coating apparatus such as a coater or a comma coater.
なお、本明細書において、「粘着力」は、JIS A 5759:2008 6.8粘着力試験に準じて測定することによって求められ、より具体的には、下記実施例に記載される方法に従って測定される。
In the present specification, the “adhesive strength” is obtained by measuring according to JIS A 5759: 2008 6.8 adhesive strength test, and more specifically, measured according to the method described in the following examples. Is done.
本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。なお、下記実施例において、特記しない限り、操作は室温(25℃)で行われた。また、特記しない限り、「%」および「部」は、それぞれ、「質量%」および「質量部」を意味する。
The effect of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples. In the following examples, the operation was performed at room temperature (25 ° C.) unless otherwise specified. Unless otherwise specified, “%” and “part” mean “% by mass” and “part by mass”, respectively.
実施例1:光学反射フィルム1の作製
グリコール成分としてエチレングリコールおよびシクロヘキサンジメタノール(質量比7:3)、ジカルボン酸成分としてテレフタル酸(ジカルボン酸成分:グリコール成分=1:1(モル比))を用いたポリアルキレンテレフタレート、ならびに、ジカルボン酸成分として2,6-ナフタレンジカルボン酸および1,4-シクロヘキサンジカルボン酸(質量比7:3)、グリコール成分としてエチレングリコール(ジカルボン酸成分:グリコール成分=1:1(モル比))を用いたPENのコポリマーを、320℃に溶融し、200層の重層押し出しダイスから、ポリアルキレンテレフタレートから形成される層を、片面側1640nmからもう片面側が2460nmになるように傾斜をかけ押し出し、PENのコポリマーから形成される層を片面側1230nmからもう片面側が1840nmになるように傾斜をかけ、交互に押し出し、押出されたフィルムを縦約3.3倍、横約3.3倍に延伸した後、熱固定、冷却を行って、波長1000nmに反射波長の中心がある光学反射層(厚さ:72μm)を作製した。 Example 1 Production of Optical Reflective Film 1 Ethylene glycol and cyclohexanedimethanol (mass ratio 7: 3) as glycol components and terephthalic acid (dicarboxylic acid component: glycol component = 1: 1 (molar ratio)) as the dicarboxylic acid component. The polyalkylene terephthalate used, 2,6-naphthalenedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid (mass ratio 7: 3) as the dicarboxylic acid component, and ethylene glycol as the glycol component (dicarboxylic acid component: glycol component = 1: 1 (molar ratio)) is melted at 320 ° C., and a layer formed from polyalkylene terephthalate is formed from 200 layers of multi-layer extrusion dies so that one side is 1640 nm and the other side is 2460 nm. Tilt and extrude The layer formed from the copolymer of PEN is inclined so that the other side is 1230 nm and the other side is 1840 nm, and the extruded film is alternately extruded, and the extruded film is stretched about 3.3 times in length and about 3.3 times in width. Then, heat setting and cooling were performed to produce an optical reflection layer (thickness: 72 μm) having a reflection wavelength center at a wavelength of 1000 nm.
グリコール成分としてエチレングリコールおよびシクロヘキサンジメタノール(質量比7:3)、ジカルボン酸成分としてテレフタル酸(ジカルボン酸成分:グリコール成分=1:1(モル比))を用いたポリアルキレンテレフタレート、ならびに、ジカルボン酸成分として2,6-ナフタレンジカルボン酸および1,4-シクロヘキサンジカルボン酸(質量比7:3)、グリコール成分としてエチレングリコール(ジカルボン酸成分:グリコール成分=1:1(モル比))を用いたPENのコポリマーを、320℃に溶融し、200層の重層押し出しダイスから、ポリアルキレンテレフタレートから形成される層を、片面側1640nmからもう片面側が2460nmになるように傾斜をかけ押し出し、PENのコポリマーから形成される層を片面側1230nmからもう片面側が1840nmになるように傾斜をかけ、交互に押し出し、押出されたフィルムを縦約3.3倍、横約3.3倍に延伸した後、熱固定、冷却を行って、波長1000nmに反射波長の中心がある光学反射層(厚さ:72μm)を作製した。 Example 1 Production of Optical Reflective Film 1 Ethylene glycol and cyclohexanedimethanol (mass ratio 7: 3) as glycol components and terephthalic acid (dicarboxylic acid component: glycol component = 1: 1 (molar ratio)) as the dicarboxylic acid component. The polyalkylene terephthalate used, 2,6-naphthalenedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid (mass ratio 7: 3) as the dicarboxylic acid component, and ethylene glycol as the glycol component (dicarboxylic acid component: glycol component = 1: 1 (molar ratio)) is melted at 320 ° C., and a layer formed from polyalkylene terephthalate is formed from 200 layers of multi-layer extrusion dies so that one side is 1640 nm and the other side is 2460 nm. Tilt and extrude The layer formed from the copolymer of PEN is inclined so that the other side is 1230 nm and the other side is 1840 nm, and the extruded film is alternately extruded, and the extruded film is stretched about 3.3 times in length and about 3.3 times in width. Then, heat setting and cooling were performed to produce an optical reflection layer (thickness: 72 μm) having a reflection wavelength center at a wavelength of 1000 nm.
上記で得られた光学反射層を、基材としてのポリエチレンテレフタレートフィルム(A4300、両面易接着層、厚さ:50μm、長さ200m×幅210mm、東洋紡績株式会社製、以下、PETフィルムと略記する。)に熱圧着させ、光学反射層を基材上に形成した。なお、熱圧着の温度を130℃とし、圧着力が500N/cm2とし、圧着速度は5m/minとした。
The optically reflective layer obtained above is a polyethylene terephthalate film (A4300, double-sided easy-adhesive layer, thickness: 50 μm, length 200 m × width 210 mm, manufactured by Toyobo Co., Ltd., hereinafter abbreviated as PET film). The optical reflective layer was formed on the substrate. The thermocompression bonding temperature was 130 ° C., the crimping force was 500 N / cm 2 , and the crimping speed was 5 m / min.
AZO分散液(製品名:セルナックスCX-Z610M-F2、平均粒径15nm、日産化学工業社製)に対して、メタノールでAZO濃度40質量%になるように希釈し、紫外線硬化性ハードコート剤であるKRM8495(ダイセル・オルネクス社製、アクリレート系硬化樹脂と重合開始剤の混合物)を添加し、全固形分が30質量%、AZO濃度が固形分に対して50質量%、硬化樹脂が50質量%(重合開始剤込)になるように調製して、赤外吸収ナノ粒子層形成用塗布液1を作製した。乾燥膜厚が1μmになるように、グラビアコーターを用いて、光学反射層上に赤外吸収ナノ粒子層形成用塗布液1を塗布し、恒率乾燥区間温度50℃、減率乾燥区間温度90℃で乾燥の後、紫外線ランプを用い照射部の照度が100mW/cm2で、照射量を0.2J/cm2として塗布層を硬化させ、乾燥膜厚が1μmの赤外吸収ナノ粒子層を光学反射層上に形成した。
An AZO dispersion (product name: Celnax CX-Z610M-F2, average particle size 15 nm, manufactured by Nissan Chemical Industries, Ltd.) is diluted with methanol to an AZO concentration of 40% by mass, and an ultraviolet curable hard coat agent. KRM8495 (manufactured by Daicel Ornex Co., Ltd., a mixture of an acrylate-based cured resin and a polymerization initiator) is added, the total solid content is 30% by mass, the AZO concentration is 50% by mass, and the cured resin is 50% by mass. % (Including polymerization initiator) to prepare a coating liquid 1 for forming an infrared absorbing nanoparticle layer. Using a gravure coater, the infrared absorbing nanoparticle layer forming coating solution 1 is applied on the optical reflective layer so that the dry film thickness becomes 1 μm, and the constant rate drying zone temperature is 50 ° C. and the decreasing rate drying zone temperature is 90 °. After drying at 0 ° C., using an ultraviolet lamp, the irradiance of the irradiated part is 100 mW / cm 2 , the irradiation amount is 0.2 J / cm 2 , the coating layer is cured, and an infrared absorbing nanoparticle layer having a dry film thickness of 1 μm is formed. It formed on the optical reflection layer.
上記の赤外吸収ナノ粒子層に、ジブチルエーテル中の3質量%パーヒドロポリシラザン液(AZエレクトロニックマテリアルズ社製 NL120)を用いて乾燥後の膜の厚さが800nmとなるようにバーコーティングし、3分間自然乾燥した後、90℃のオーブンで30分間、加熱硬化(アニール)して、乾燥膜厚800nmの放熱促進層を赤外吸収ナノ粒子層上に形成した。
The above infrared absorbing nanoparticle layer is bar-coated using a 3% by weight perhydropolysilazane liquid (NL120 manufactured by AZ Electronic Materials) in dibutyl ether so that the film thickness after drying is 800 nm. After natural drying for 3 minutes, the film was heat-cured (annealed) in an oven at 90 ° C. for 30 minutes to form a heat dissipation promoting layer having a dry film thickness of 800 nm on the infrared absorption nanoparticle layer.
ヒドロキシ基を有するアクリル樹脂100質量部、MKCメチルシリケートMS-56(三菱化学社製テトラメチルシリケート部分加水分解物縮合物、nの平均値=10)50質量部、ジブチルスズラウレート1質量部、キシレン700質量部、イソプロピルアルコール150質量部を混合、攪拌して、固形分10質量%の樹脂混合物を調製した。
100 parts by mass of an acrylic resin having a hydroxy group, 50 parts by mass of MKC methyl silicate MS-56 (Mitsubishi Chemical's tetramethyl silicate partial hydrolyzate condensate, n average value = 10), 1 part by mass of dibutyltin laurate, xylene 700 parts by mass and 150 parts by mass of isopropyl alcohol were mixed and stirred to prepare a resin mixture having a solid content of 10% by mass.
得られた樹脂混合物に、チヌビン477(BASFジャパン社製の紫外線吸収剤)2.0質量部を混合して、粘着層形成用塗布液1を調製した。
The obtained resin mixture was mixed with 2.0 parts by mass of Tinuvin 477 (UV absorber manufactured by BASF Japan Ltd.) to prepare a coating solution 1 for forming an adhesive layer.
上記で調製した粘着層形成用塗布液1を用いて、ワイヤーバーにて上記放熱促進層と反対側(放熱促進層が形成されていない側の基材面)に塗布し乾燥した。乾燥後の粘着層の膜厚は8μmであった。この粘着層付きフィルムの粘着層表面にセパレーターフィルムとして25μm厚のポリエステルフィルム(セラピール、東洋メタライジング社製)を貼合機により貼合して、光学反射フィルム1を作製した。
Using the pressure-sensitive adhesive layer-forming coating solution 1 prepared above, a wire bar was applied to the opposite side of the heat dissipation promoting layer (the substrate surface on the side where the heat dissipation promoting layer was not formed) and dried. The film thickness of the adhesive layer after drying was 8 μm. A 25 μm thick polyester film (Therapel, manufactured by Toyo Metallizing Co., Ltd.) was bonded as a separator film to the surface of the pressure-sensitive adhesive layer of the film with the pressure-sensitive adhesive layer to produce an optical reflective film 1.
実施例2~13:光学反射フィルム2~13の作製
実施例1において、赤外吸収ナノ粒子層および放熱促進層の厚さを下記表1に示されるような厚さにそれぞれ変更した以外は、実施例1と同様にして、光学反射フィルム2~13を作製した。 Examples 2 to 13: Production of optical reflection films 2 to 13 In Example 1, except that the thicknesses of the infrared absorption nanoparticle layer and the heat dissipation promoting layer were changed to the thicknesses shown in Table 1 below, respectively. In the same manner as in Example 1, optical reflection films 2 to 13 were produced.
実施例1において、赤外吸収ナノ粒子層および放熱促進層の厚さを下記表1に示されるような厚さにそれぞれ変更した以外は、実施例1と同様にして、光学反射フィルム2~13を作製した。 Examples 2 to 13: Production of optical reflection films 2 to 13 In Example 1, except that the thicknesses of the infrared absorption nanoparticle layer and the heat dissipation promoting layer were changed to the thicknesses shown in Table 1 below, respectively. In the same manner as in Example 1, optical reflection films 2 to 13 were produced.
比較例1~5:光学反射フィルム14~18の作製
実施例1において、赤外吸収ナノ粒子層および放熱促進層の厚さを下記表1に示されるような厚さにそれぞれ変更した以外は、実施例1と同様にして、光学反射フィルム14~18を作製した。 Comparative Examples 1 to 5: Production of optical reflection films 14 to 18 In Example 1, except that the thicknesses of the infrared absorption nanoparticle layer and the heat dissipation promoting layer were changed to the thicknesses shown in Table 1 below, respectively. In the same manner as in Example 1, optical reflection films 14 to 18 were produced.
実施例1において、赤外吸収ナノ粒子層および放熱促進層の厚さを下記表1に示されるような厚さにそれぞれ変更した以外は、実施例1と同様にして、光学反射フィルム14~18を作製した。 Comparative Examples 1 to 5: Production of optical reflection films 14 to 18 In Example 1, except that the thicknesses of the infrared absorption nanoparticle layer and the heat dissipation promoting layer were changed to the thicknesses shown in Table 1 below, respectively. In the same manner as in Example 1, optical reflection films 14 to 18 were produced.
[光学反射フィルムの性能評価]
上記実施例および比較例で得られた光学反射フィルム1~18について、下記方法に従って、熱割れ、屈曲性、可視光透過率および耐傷性を評価した。その結果を表1に示す。 [Performance evaluation of optical reflective film]
The optical reflective films 1 to 18 obtained in the above examples and comparative examples were evaluated for thermal cracking, flexibility, visible light transmittance and scratch resistance according to the following methods. The results are shown in Table 1.
上記実施例および比較例で得られた光学反射フィルム1~18について、下記方法に従って、熱割れ、屈曲性、可視光透過率および耐傷性を評価した。その結果を表1に示す。 [Performance evaluation of optical reflective film]
The optical reflective films 1 to 18 obtained in the above examples and comparative examples were evaluated for thermal cracking, flexibility, visible light transmittance and scratch resistance according to the following methods. The results are shown in Table 1.
(熱割れの評価)
上記で作製した光学反射フィルム1~18を、それぞれ、幅15cm、長さ30cmに断裁した後、粘着層側を厚さ3mm(乾燥中間層6mm)の市販の積層ガラス板に水貼り法により貼り合わせた。次に、この光学反射フィルムを貼り合わせた積層ガラス板を、直径が15.2cm(6インチ)、幅が25cmのロール上に、厚さ6mmのゴムで被覆した鋼ローラーを使用し、ローラーの自重のみが窓貼り用フィルム面にかかるように、ローラーでフィルムとガラスを圧着して、評価用サンプルを作製した。 (Evaluation of thermal cracking)
The optical reflection films 1 to 18 produced above were cut to a width of 15 cm and a length of 30 cm, respectively, and then the adhesive layer side was pasted on a commercially available laminated glass plate having a thickness of 3 mm (dry intermediate layer 6 mm) by a water pasting method. Combined. Next, the laminated glass plate on which the optical reflective film was bonded was used on a roll having a diameter of 15.2 cm (6 inches) and a width of 25 cm, and a steel roller covered with rubber having a thickness of 6 mm. An evaluation sample was prepared by pressure bonding the film and glass with a roller so that only its own weight was applied to the window pasting film surface.
上記で作製した光学反射フィルム1~18を、それぞれ、幅15cm、長さ30cmに断裁した後、粘着層側を厚さ3mm(乾燥中間層6mm)の市販の積層ガラス板に水貼り法により貼り合わせた。次に、この光学反射フィルムを貼り合わせた積層ガラス板を、直径が15.2cm(6インチ)、幅が25cmのロール上に、厚さ6mmのゴムで被覆した鋼ローラーを使用し、ローラーの自重のみが窓貼り用フィルム面にかかるように、ローラーでフィルムとガラスを圧着して、評価用サンプルを作製した。 (Evaluation of thermal cracking)
The optical reflection films 1 to 18 produced above were cut to a width of 15 cm and a length of 30 cm, respectively, and then the adhesive layer side was pasted on a commercially available laminated glass plate having a thickness of 3 mm (dry intermediate layer 6 mm) by a water pasting method. Combined. Next, the laminated glass plate on which the optical reflective film was bonded was used on a roll having a diameter of 15.2 cm (6 inches) and a width of 25 cm, and a steel roller covered with rubber having a thickness of 6 mm. An evaluation sample was prepared by pressure bonding the film and glass with a roller so that only its own weight was applied to the window pasting film surface.
この評価用サンプルを、それぞれ、クランプでつかんでスタンドに固定し、ガラス側(光学反射フィルムを貼っていない方)から、30cm離して市販の40Wハロゲンランプを設置し、反対面側から50cm離れた距離で扇風機を回し空冷しながら、上記ハロゲンランプを照射し目視でガラス表面に割れ(ヒビ)が発生し始めるまでの時間を測定し、時間を下記のようにして分類した。
Each sample for evaluation was clamped and fixed to a stand, and a commercially available 40 W halogen lamp was placed 30 cm away from the glass side (the one without the optical reflection film), and 50 cm away from the opposite side. While rotating the fan at a distance and air-cooling, the halogen lamp was irradiated, the time until the glass surface started to crack (crack) was measured, and the time was classified as follows.
(屈曲性の測定)
JIS K5600-5-1:1999に基づいて1506マンドレル屈曲性試験機(Elcometer社製)を用い、放熱促進層塗布面を外側に配置し屈曲した時に剥がれを起こす、または透明支持体から剥がれを起こし始める最低直径(mm)を測定した。 (Measurement of flexibility)
Using a 1506 mandrel bendability tester (manufactured by Elcometer) based on JIS K5600-5: 1-1: 1999, the heat radiation promoting layer coating surface is placed outside to cause peeling or to peel off from the transparent support. The starting minimum diameter (mm) was measured.
JIS K5600-5-1:1999に基づいて1506マンドレル屈曲性試験機(Elcometer社製)を用い、放熱促進層塗布面を外側に配置し屈曲した時に剥がれを起こす、または透明支持体から剥がれを起こし始める最低直径(mm)を測定した。 (Measurement of flexibility)
Using a 1506 mandrel bendability tester (manufactured by Elcometer) based on JIS K5600-5: 1-1: 1999, the heat radiation promoting layer coating surface is placed outside to cause peeling or to peel off from the transparent support. The starting minimum diameter (mm) was measured.
(可視光透過率(Tvis)の測定)
分光光度計(積分球使用、日立製作所社製、U-4100型)を用い、各光学反射フィルム試料の400nm~780nmの領域における平均可視光透過率(Tvis)を測定した。 (Measurement of visible light transmittance (T vis ))
The average visible light transmittance (T vis ) in the region of 400 nm to 780 nm of each optical reflection film sample was measured using a spectrophotometer (using an integrating sphere, manufactured by Hitachi, Ltd., U-4100 type).
分光光度計(積分球使用、日立製作所社製、U-4100型)を用い、各光学反射フィルム試料の400nm~780nmの領域における平均可視光透過率(Tvis)を測定した。 (Measurement of visible light transmittance (T vis ))
The average visible light transmittance (T vis ) in the region of 400 nm to 780 nm of each optical reflection film sample was measured using a spectrophotometer (using an integrating sphere, manufactured by Hitachi, Ltd., U-4100 type).
(耐傷性の評価)
500g/cm2の荷重の条件で#0000のスチールウールをストローク100mm、速度30mm/secで100往復させる後の表面を目視で観察し、その結果を下記のようにして分類した。 (Scratch resistance evaluation)
The surface after reciprocating 100 mm of # 0000 steel wool at a stroke of 100 mm and a speed of 30 mm / sec under a load condition of 500 g / cm 2 was visually observed, and the results were classified as follows.
500g/cm2の荷重の条件で#0000のスチールウールをストローク100mm、速度30mm/secで100往復させる後の表面を目視で観察し、その結果を下記のようにして分類した。 (Scratch resistance evaluation)
The surface after reciprocating 100 mm of # 0000 steel wool at a stroke of 100 mm and a speed of 30 mm / sec under a load condition of 500 g / cm 2 was visually observed, and the results were classified as follows.
上記表1に示されるように、本発明の光学反射フィルムは、熱割れを有効に抑制・防止できることが分かる。これは、放熱促進層が赤外吸収ナノ粒子層が発する熱を十分放出しているためであると考察される。ゆえに、本発明の光学反射フィルムを用いることにより、積層ガラスに貼った場合でもフィルムに割れが生じにくくなることが期待される。なお、フィルム17は放熱促進層が厚すぎるため、塗布乾燥時に放熱促進層自身に微小な割れが発生した。
As shown in Table 1 above, it can be seen that the optical reflective film of the present invention can effectively suppress and prevent thermal cracking. It is considered that this is because the heat dissipation promoting layer sufficiently releases the heat generated by the infrared absorption nanoparticle layer. Therefore, by using the optical reflective film of the present invention, it is expected that the film is less likely to be cracked even when pasted on laminated glass. In addition, since the heat dissipation promotion layer of the film 17 was too thick, minute cracks occurred in the heat dissipation promotion layer itself during coating and drying.
実施例14:光学反射フィルム19の作製
透明樹脂フィルムとして、PETフィルム(A4300、両面易接着層、厚さ:50μm、長さ200m×幅210mm、東洋紡績株式会社製)を準備した。 Example 14: Production of optical reflection film 19 A PET film (A4300, double-sided easy-adhesion layer, thickness: 50 μm, length 200 m × width 210 mm, manufactured by Toyobo Co., Ltd.) was prepared as a transparent resin film.
透明樹脂フィルムとして、PETフィルム(A4300、両面易接着層、厚さ:50μm、長さ200m×幅210mm、東洋紡績株式会社製)を準備した。 Example 14: Production of optical reflection film 19 A PET film (A4300, double-sided easy-adhesion layer, thickness: 50 μm, length 200 m × width 210 mm, manufactured by Toyobo Co., Ltd.) was prepared as a transparent resin film.
(低屈折率層用塗布液1の調製)
下記の各構成材料を、それぞれ45℃でこの順に添加、混合した後、純水で1000部に仕上げて、低屈折率層用塗布液1を調製した。 (Preparation of coating solution 1 for low refractive index layer)
The following constituent materials were added and mixed in this order at 45 ° C., and then finished with 1000 parts of pure water to prepare a coating solution 1 for a low refractive index layer.
下記の各構成材料を、それぞれ45℃でこの順に添加、混合した後、純水で1000部に仕上げて、低屈折率層用塗布液1を調製した。 (Preparation of coating solution 1 for low refractive index layer)
The following constituent materials were added and mixed in this order at 45 ° C., and then finished with 1000 parts of pure water to prepare a coating solution 1 for a low refractive index layer.
(高屈折率層用塗布液1の調製)
下記の手順に従って、高屈折率層用塗布液1を調製した。 (Preparation of coating solution 1 for high refractive index layer)
A coating solution 1 for a high refractive index layer was prepared according to the following procedure.
下記の手順に従って、高屈折率層用塗布液1を調製した。 (Preparation of coating solution 1 for high refractive index layer)
A coating solution 1 for a high refractive index layer was prepared according to the following procedure.
〈シリカ被覆酸化チタン粒子の分散液の調製〉
はじめに、下記の方法に従って、シリカ被覆酸化チタン粒子の分散液を調製し、これに溶媒等を添加した。 <Preparation of dispersion of silica-coated titanium oxide particles>
First, a dispersion of silica-coated titanium oxide particles was prepared according to the following method, and a solvent or the like was added thereto.
はじめに、下記の方法に従って、シリカ被覆酸化チタン粒子の分散液を調製し、これに溶媒等を添加した。 <Preparation of dispersion of silica-coated titanium oxide particles>
First, a dispersion of silica-coated titanium oxide particles was prepared according to the following method, and a solvent or the like was added thereto.
シリカ被覆酸化チタン粒子の分散液は、以下のように調製した。
A dispersion of silica-coated titanium oxide particles was prepared as follows.
硫酸チタン水溶液を公知の方法により熱加水分解して、酸化チタン水和物を得た。得られた酸化チタン水和物を水に懸濁させて、酸化チタン水和物の水性懸濁液(TiO2濃度:100g/L)10Lを得た。これに、水酸化ナトリウム水溶液(濃度10mol/L)30Lを撹拌下で添加し、90℃に昇温して、5時間熟成した。得られた溶液を塩酸で中和し、濾過、水洗することで、塩基処理チタン化合物を得た。
The titanium sulfate aqueous solution was thermally hydrolyzed by a known method to obtain titanium oxide hydrate. The obtained titanium oxide hydrate was suspended in water to obtain 10 L of an aqueous suspension of titanium oxide hydrate (TiO 2 concentration: 100 g / L). To this, 30 L of an aqueous sodium hydroxide solution (concentration 10 mol / L) was added with stirring, the temperature was raised to 90 ° C., and the mixture was aged for 5 hours. The obtained solution was neutralized with hydrochloric acid, filtered and washed with water to obtain a base-treated titanium compound.
次に、塩基処理チタン化合物をTiO2濃度20g/Lになるよう純水に懸濁させて撹拌した。撹拌下、TiO2量に対し0.4mol%の量のクエン酸を添加した。95℃まで昇温し、濃塩酸を塩酸濃度が30g/Lとなるように加え、液温を維持して3時間撹拌した。ここで、得られた混合液のpH及びゼータ電位を測定したところ、25℃におけるpHは1.4、ゼータ電位は+40mVであった。また、ゼータサイザーナノ(マルバーン社製)により粒径測定を行ったところ、体積平均粒子径は35nm、単分散度は16%であった。
Next, the base-treated titanium compound was suspended in pure water and stirred so that the TiO 2 concentration was 20 g / L. Under stirring, it was added citric acid in an amount of 0.4 mol% with respect to TiO 2 weight. The temperature was raised to 95 ° C., concentrated hydrochloric acid was added so that the hydrochloric acid concentration was 30 g / L, and the solution temperature was maintained, followed by stirring for 3 hours. Here, when the pH and zeta potential of the obtained mixed liquid were measured, the pH at 25 ° C. was 1.4, and the zeta potential was +40 mV. Further, when the particle size was measured by Zetasizer Nano (manufactured by Malvern), the volume average particle size was 35 nm and the monodispersity was 16%.
ルチル型酸化チタン粒子を含む20.0質量%の酸化チタンゾル水系分散液1kgに純水1kgを添加して、10.0質量%の酸化チタンゾル水系分散液を調製した。
1 kg of pure water was added to 1 kg of a 20.0 mass% titanium oxide sol aqueous dispersion containing rutile-type titanium oxide particles to prepare a 10.0 mass% titanium oxide sol aqueous dispersion.
上記10.0質量%の酸化チタンゾル水系分散液の0.5kgに、純水2kgを加えた後、90℃に加熱した。その後、SiO2濃度が 0.5質量%のケイ酸水溶液 0.5kgを徐々に添加した。得られた分散液をオートクレーブ中、175℃で18時間加熱処理を行い、さらに濃縮することで、SiO2で被覆されたルチル型構造を有する酸化チタン(被覆量:4質量%)を含む、20質量%のシリカ被覆酸化チタン粒子の分散液(ゾル水分散液)を得た。
2 kg of pure water was added to 0.5 kg of the 10.0 mass% titanium oxide sol aqueous dispersion, followed by heating to 90 ° C. Thereafter, 0.5 kg of an aqueous silicic acid solution having a SiO 2 concentration of 0.5% by mass was gradually added. Autoclave The resulting dispersion subjected to 18 hours of heat treatment at 175 ° C., further by concentrating, titanium oxide having a rutile structure coated with SiO 2: containing (coating amount 4 wt%), 20 A dispersion (mass sol dispersion) of silica-coated titanium oxide particles by mass was obtained.
〈塗布液の調製〉
上記調製したシリカ被覆酸化チタン粒子のゾル水分散液に、下記構成材料を45℃で順次添加し、最後に純水で1000部に仕上げ、高屈折率層用塗布液1を調製した。 <Preparation of coating solution>
The following constituent materials were sequentially added at 45 ° C. to the sol dispersion of silica-coated titanium oxide particles prepared above, and finally finished with 1000 parts of pure water to prepare a coating solution 1 for a high refractive index layer.
上記調製したシリカ被覆酸化チタン粒子のゾル水分散液に、下記構成材料を45℃で順次添加し、最後に純水で1000部に仕上げ、高屈折率層用塗布液1を調製した。 <Preparation of coating solution>
The following constituent materials were sequentially added at 45 ° C. to the sol dispersion of silica-coated titanium oxide particles prepared above, and finally finished with 1000 parts of pure water to prepare a coating solution 1 for a high refractive index layer.
15層重層塗布可能なスライドホッパー型湿式塗布装置を用い、上記調製した低屈折率層用塗布液1及び高屈折率層用塗布液1を40℃に保温しながら、前記透明樹脂フィルム上に、15層の重層塗布を行った。各屈折率層用塗布液を塗布した直後、5℃の冷風を吹き付けてセットした。このとき、表面を指で触れても指に何もつかなくなるまでの時間(セット時間)は5分であった。セット完了後、80℃の温風を吹き付けて乾燥させて、乾燥膜厚2.09μmの光学反射層を透明樹脂フィルム上に形成した。
Using a slide hopper type wet coating apparatus capable of 15-layer coating, the above-prepared coating solution 1 for the low refractive index layer and coating solution 1 for the high refractive index layer are kept on the transparent resin film while keeping the temperature at 40 ° C. Fifteen layers were applied. Immediately after coating each refractive index layer coating solution, cold air of 5 ° C. was blown and set. At this time, even if the surface was touched with a finger, the time until the finger was lost (set time) was 5 minutes. After completion of the setting, warm air of 80 ° C. was blown and dried to form an optical reflection layer having a dry film thickness of 2.09 μm on the transparent resin film.
この際、15層からなる光学反射層においては、最下層及び最上層は低屈折率層とした。この際、低屈折率層及び高屈折率層がそれぞれ交互に積層される構成とした。
At this time, in the 15-layer optical reflection layer, the lowermost layer and the uppermost layer were low refractive index layers. At this time, the low refractive index layer and the high refractive index layer were alternately laminated.
塗布量については、乾燥時の層厚が低屈折率層は各層150nm、高屈折率層は各層130nmになるように調整した。なお、各層厚は、作製した光学反射フィルムを切断し、その切断面を電子顕微鏡により観察することで確認した。この際、二つの層間の界面を明確に観測することができない場合には、XPS表面分析装置により得た層中に含まれるTiO2の厚さ方向のXPSデプスプロファイルにより界面を決定した。
The coating amount was adjusted so that the layer thickness during drying was 150 nm for each low refractive index layer and 130 nm for each high refractive index layer. The thickness of each layer was confirmed by cutting the produced optical reflection film and observing the cut surface with an electron microscope. At this time, when the interface between the two layers could not be clearly observed, the interface was determined by the XPS depth profile in the thickness direction of TiO 2 contained in the layer obtained by the XPS surface analyzer.
実施例1と同様にして、赤外吸収ナノ粒子層形成用塗布液1を作製した。このようにして調製した赤外吸収ナノ粒子層形成用塗布液1を、実施例1と同様にして、上記光学反射層の上に塗布して、乾燥膜厚1μmの赤外吸収ナノ粒子層を光学反射層上に形成した。
In the same manner as in Example 1, a coating liquid 1 for forming an infrared absorbing nanoparticle layer was prepared. The infrared absorbing nanoparticle layer-forming coating solution 1 thus prepared was applied onto the optical reflective layer in the same manner as in Example 1 to form an infrared absorbing nanoparticle layer having a dry film thickness of 1 μm. It formed on the optical reflection layer.
上記の赤外吸収ナノ粒子層に、ジブチルエーテル中の3質量%パーヒドロポリシラザン液(AZエレクトロニックマテリアルズ社製 NL120)を用いて乾燥後の膜の厚さが800nmとなるようにバーコーティングし、3分間自然乾燥した後、90℃のオーブンで30分間、加熱硬化(アニール)して、乾燥膜厚800nmの放熱促進層を赤外吸収ナノ粒子層上に形成した。
The above infrared absorbing nanoparticle layer is bar-coated using a 3% by weight perhydropolysilazane liquid (NL120, manufactured by AZ Electronic Materials) in dibutyl ether so that the thickness of the dried film becomes 800 nm. After natural drying for 3 minutes, the film was heat-cured (annealed) in an oven at 90 ° C. for 30 minutes to form a heat dissipation promoting layer having a dry film thickness of 800 nm on the infrared absorption nanoparticle layer.
実施例1と同様にして、粘着層形成用塗布液1を調製した。
In the same manner as in Example 1, a coating solution 1 for forming an adhesive layer was prepared.
上記調製した粘着層形成用塗布液1を用いて、ワイヤーバーにて上記放熱促進層と反対側(放熱促進層が形成されていない側の基材面)に塗布し乾燥した。乾燥後の粘着層の膜厚は8μmであった。この粘着層付きフィルムの粘着層表面にセパレーターフィルムとして25μm厚のポリエステルフィルム(セラピール、東洋メタライジング社製)を貼合機により貼合して、光学反射フィルム19を作製した。
Using the prepared coating liquid 1 for forming an adhesive layer, a wire bar was applied to the side opposite to the heat dissipation promoting layer (the substrate surface on the side where the heat dissipation promoting layer was not formed) and dried. The film thickness of the adhesive layer after drying was 8 μm. A 25 μm-thick polyester film (Therapel, manufactured by Toyo Metallizing Co., Ltd.) was bonded as a separator film to the surface of the pressure-sensitive adhesive layer of the film with the pressure-sensitive adhesive layer to prepare an optical reflective film 19.
実施例15~26:光学反射フィルム20~31の作製
実施例14において、赤外吸収ナノ粒子層および放熱促進層の厚さを下記表2に示されるような厚さにそれぞれ変更した以外は、実施例14と同様にして、光学反射フィルム20~31を作製した。 Examples 15 to 26: Production of optical reflection films 20 to 31 In Example 14, except that the thicknesses of the infrared absorption nanoparticle layer and the heat dissipation promoting layer were changed to the thicknesses shown in Table 2 below, respectively. In the same manner as in Example 14, optical reflective films 20 to 31 were produced.
実施例14において、赤外吸収ナノ粒子層および放熱促進層の厚さを下記表2に示されるような厚さにそれぞれ変更した以外は、実施例14と同様にして、光学反射フィルム20~31を作製した。 Examples 15 to 26: Production of optical reflection films 20 to 31 In Example 14, except that the thicknesses of the infrared absorption nanoparticle layer and the heat dissipation promoting layer were changed to the thicknesses shown in Table 2 below, respectively. In the same manner as in Example 14, optical reflective films 20 to 31 were produced.
比較例6~10:光学反射フィルム32~36の作製
実施例14において、赤外吸収ナノ粒子層および放熱促進層の厚さを下記表2に示されるような厚さにそれぞれ変更した以外は、実施例14と同様にして、光学反射フィルム32~36を作製した。 Comparative Examples 6 to 10: Production of optical reflection films 32 to 36 In Example 14, except that the thicknesses of the infrared absorption nanoparticle layer and the heat dissipation promotion layer were changed to the thicknesses shown in Table 2 below, respectively. In the same manner as in Example 14, optical reflection films 32 to 36 were produced.
実施例14において、赤外吸収ナノ粒子層および放熱促進層の厚さを下記表2に示されるような厚さにそれぞれ変更した以外は、実施例14と同様にして、光学反射フィルム32~36を作製した。 Comparative Examples 6 to 10: Production of optical reflection films 32 to 36 In Example 14, except that the thicknesses of the infrared absorption nanoparticle layer and the heat dissipation promotion layer were changed to the thicknesses shown in Table 2 below, respectively. In the same manner as in Example 14, optical reflection films 32 to 36 were produced.
[光学反射フィルムの性能評価]
上記実施例および比較例で得られた光学反射フィルム19~36について、熱割れ、膜剥がれおよび耐傷性を評価した。なお、熱割れおよび膜剥がれは、下記方法に従って、評価した。また、耐傷性は、上記と同様にして評価した。その結果を表2に示す。 [Performance evaluation of optical reflective film]
The optical reflective films 19 to 36 obtained in the above examples and comparative examples were evaluated for thermal cracking, film peeling and scratch resistance. The thermal cracking and film peeling were evaluated according to the following methods. The scratch resistance was evaluated in the same manner as described above. The results are shown in Table 2.
上記実施例および比較例で得られた光学反射フィルム19~36について、熱割れ、膜剥がれおよび耐傷性を評価した。なお、熱割れおよび膜剥がれは、下記方法に従って、評価した。また、耐傷性は、上記と同様にして評価した。その結果を表2に示す。 [Performance evaluation of optical reflective film]
The optical reflective films 19 to 36 obtained in the above examples and comparative examples were evaluated for thermal cracking, film peeling and scratch resistance. The thermal cracking and film peeling were evaluated according to the following methods. The scratch resistance was evaluated in the same manner as described above. The results are shown in Table 2.
(熱割れ、膜剥がれの評価)
上記作製した光学反射フィルム19~36を、幅15cm、長さ30cmに断裁した後、粘着層側を厚さ3mm(乾燥中間層6mm)の市販の積層ガラス板に水貼り法により貼り合わせた。次に、この光学反射フィルムを貼り合わせた積層ガラス板を直径が15.2cm(6インチ)、幅が25cmのロール上に、厚さ6mmのゴムで被覆した鋼ローラーを使用し、ローラーの自重のみが光学反射フィルム面にかかるように、ローラーでフィルムとガラスを圧着して、評価用サンプルを作製した。 (Evaluation of thermal cracking and film peeling)
The optical reflection films 19 to 36 produced above were cut to a width of 15 cm and a length of 30 cm, and then the adhesive layer side was bonded to a commercially available laminated glass plate having a thickness of 3 mm (dry intermediate layer 6 mm) by a water bonding method. Next, the laminated glass plate on which the optical reflecting film is bonded is used on a roll having a diameter of 15.2 cm (6 inches) and a width of 25 cm, and a steel roller coated with rubber having a thickness of 6 mm. An evaluation sample was prepared by pressure-bonding the film and glass with a roller so that only the optical reflective film surface was applied.
上記作製した光学反射フィルム19~36を、幅15cm、長さ30cmに断裁した後、粘着層側を厚さ3mm(乾燥中間層6mm)の市販の積層ガラス板に水貼り法により貼り合わせた。次に、この光学反射フィルムを貼り合わせた積層ガラス板を直径が15.2cm(6インチ)、幅が25cmのロール上に、厚さ6mmのゴムで被覆した鋼ローラーを使用し、ローラーの自重のみが光学反射フィルム面にかかるように、ローラーでフィルムとガラスを圧着して、評価用サンプルを作製した。 (Evaluation of thermal cracking and film peeling)
The optical reflection films 19 to 36 produced above were cut to a width of 15 cm and a length of 30 cm, and then the adhesive layer side was bonded to a commercially available laminated glass plate having a thickness of 3 mm (dry intermediate layer 6 mm) by a water bonding method. Next, the laminated glass plate on which the optical reflecting film is bonded is used on a roll having a diameter of 15.2 cm (6 inches) and a width of 25 cm, and a steel roller coated with rubber having a thickness of 6 mm. An evaluation sample was prepared by pressure-bonding the film and glass with a roller so that only the optical reflective film surface was applied.
このようにして作製した評価用サンプルをクランプでつかんでスタンドに固定し、ガラス側(本発明のフィルムを貼っていない方)から、30cm離して市販の40Wハロゲンランプを設置し、40Wで照射しながら、反対面側を1分間純水を霧吹きし、29分間自然乾燥を間欠的に24時間行った。このときの目視でガラス表面に割れ(ヒビ)が発生し始めるまでの時間を測定し、時間を下記のようにして分類した。また、24時間後の膜剥がれの状況を目視で観察し、その結果を下記のようにして分類した。これらの結果を表2に示す。
The sample for evaluation thus produced was clamped and fixed to the stand, and a commercially available 40 W halogen lamp was placed 30 cm away from the glass side (the one where the film of the present invention was not applied) and irradiated at 40 W. However, pure water was sprayed on the opposite side for 1 minute, and naturally dried for 29 minutes intermittently for 24 hours. At this time, the time until cracking (cracking) started to occur on the glass surface was measured, and the time was classified as follows. Further, the state of film peeling after 24 hours was visually observed, and the results were classified as follows. These results are shown in Table 2.
上記表2に示されるように、本発明の光学反射フィルムは、熱割れを有効に抑制・防止できることが分かる。これは、放熱促進層が赤外吸収ナノ粒子層が発する熱を十分放出しているためであると考察される。ゆえに、本発明の光学反射フィルムを用いることにより、積層ガラスに貼った場合でもフィルムに割れが生じにくくなることが期待される。
As shown in Table 2 above, it can be seen that the optical reflective film of the present invention can effectively suppress and prevent thermal cracking. It is considered that this is because the heat dissipation promoting layer sufficiently releases the heat generated by the infrared absorption nanoparticle layer. Therefore, by using the optical reflective film of the present invention, it is expected that the film is less likely to be cracked even when pasted on laminated glass.
また、上記表2から、本発明の光学反射フィルムは、膜の剥がれをより有効に抑制できることも示される。これは、放熱拡散層を設けることにより、フィルム表面の濡れ性が向上して、水がたまりにくくなったため、耐水性が向上したことによるものと推察される。なお、フィルム35は放熱促進層が厚すぎるため、塗布乾燥時に放熱促進層自身に微小な割れが発生した。
In addition, Table 2 also shows that the optical reflective film of the present invention can more effectively suppress film peeling. This is presumed to be due to the improved water resistance since the wettability of the film surface was improved and the water did not collect easily by providing the heat dissipation diffusion layer. In addition, since the heat dissipation promoting layer was too thick in the film 35, minute cracks occurred in the heat dissipation promoting layer itself during coating and drying.
さらに、本出願は、2014年6月12日に出願された日本特許出願番号2014-121787号に基づいており、その開示内容は、参照され、全体として、組み入れられている。
Furthermore, this application is based on Japanese Patent Application No. 2014-121787 filed on June 12, 2014, the disclosure of which is referenced and incorporated as a whole.
Claims (8)
- 基材、光学反射層、赤外吸収ナノ粒子層および放熱促進層を有する光学反射フィルムであって、前記放熱促進層が光入射側の最表層に配置され、前記放熱促進層の膜厚(d2)に対する前記赤外吸収ナノ粒子層の膜厚(d1)の比(d1/d2)が1~100であり、前記放熱促進層の膜厚が0.1μm以上1μm未満であることを特徴とする光学反射フィルム。 An optical reflection film having a base material, an optical reflection layer, an infrared absorption nanoparticle layer, and a heat dissipation promoting layer, wherein the heat dissipation promoting layer is disposed on the outermost layer on the light incident side, and the film thickness (d2 The ratio (d1 / d2) of the film thickness (d1) of the infrared absorption nanoparticle layer to 1) is 1 to 100, and the film thickness of the heat dissipation promoting layer is 0.1 μm or more and less than 1 μm. Optical reflective film.
- 前記放熱促進層がメタロキサン骨格を有する材料を含む、請求項1に記載の光学反射フィルム。 The optical reflection film according to claim 1, wherein the heat dissipation promoting layer includes a material having a metalloxane skeleton.
- 前記メタロキサン骨格を有する材料がポリシラザン由来のメタロキサン骨格を有する材料である、請求項2に記載の光学反射フィルム。 The optical reflective film according to claim 2, wherein the material having a metalloxane skeleton is a material having a polysilazane-derived metalloxane skeleton.
- 前記赤外吸収ナノ粒子層および放熱促進層は隣接して配置される、請求項1~3のいずれか1項に記載の光学反射フィルム。 The optical reflection film according to any one of claims 1 to 3, wherein the infrared absorption nanoparticle layer and the heat dissipation promoting layer are disposed adjacent to each other.
- 前記光学反射層は、第1の水溶性高分子および第1の金属酸化物粒子を含む高屈折率層、ならびに第2の水溶性高分子および第2の金属酸化物粒子を含む低屈折率層が交互に積層されてなる、請求項1~4のいずれか1項に記載の光学反射フィルム。 The optical reflection layer includes a high refractive index layer including a first water-soluble polymer and first metal oxide particles, and a low refractive index layer including a second water-soluble polymer and second metal oxide particles. The optical reflective film according to any one of Claims 1 to 4, wherein are laminated alternately.
- 前記光学反射層は、第3の高分子を含む第3の高分子層、および第4の高分子を含む第4の高分子層が交互に積層されてなる、請求項1~4のいずれか1項に記載の光学反射フィルム。 5. The optical reflection layer according to claim 1, wherein a third polymer layer containing a third polymer and a fourth polymer layer containing a fourth polymer are alternately laminated. The optical reflection film according to item 1.
- 前記赤外吸収ナノ粒子層は、紫外線硬化性樹脂、ならびにアンチモンドープ酸化亜鉛、酸化アンチモンスズ、アンチモンドープ酸化スズ、およびインジウムドープ酸化スズからなる群より選択される少なくとも一種を含む、請求項1~6のいずれか1項に記載の光学反射フィルム。 The infrared absorbing nanoparticle layer includes an ultraviolet curable resin and at least one selected from the group consisting of antimony-doped zinc oxide, antimony tin oxide, antimony-doped tin oxide, and indium-doped tin oxide. The optical reflection film according to any one of 6.
- 請求項1~7のいずれか1項に記載の光学反射フィルムを、基体の少なくとも一方の面に設けてなる、光学反射体。 An optical reflector comprising the optical reflecting film according to any one of claims 1 to 7 provided on at least one surface of a substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016527850A JPWO2015190536A1 (en) | 2014-06-12 | 2015-06-10 | Optical reflective film and optical reflector |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014121787 | 2014-06-12 | ||
JP2014-121787 | 2014-06-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015190536A1 true WO2015190536A1 (en) | 2015-12-17 |
Family
ID=54833625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/066788 WO2015190536A1 (en) | 2014-06-12 | 2015-06-10 | Optical reflection film, and optical reflection body |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2015190536A1 (en) |
WO (1) | WO2015190536A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018180177A1 (en) * | 2017-03-28 | 2018-10-04 | 大阪瓦斯株式会社 | Radiative cooling device and radiative cooling method |
CN110462464A (en) * | 2017-03-28 | 2019-11-15 | 大阪瓦斯株式会社 | Radiate cooling device and radiation cooling means |
CN113113497A (en) * | 2021-04-13 | 2021-07-13 | 河南大学 | Solar cell using organic synergist and preparation method thereof |
WO2021166781A1 (en) * | 2020-02-17 | 2021-08-26 | Agc株式会社 | Power-source-less transparent cooling device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009136848A (en) * | 2007-12-11 | 2009-06-25 | Furukawa Sky Kk | Heat radiation coated metal plate |
US20090208761A1 (en) * | 2008-02-20 | 2009-08-20 | Silmy Kamel | Radiation-selective absorber coating, absober tube and process for production thereof |
JP2012126037A (en) * | 2010-12-16 | 2012-07-05 | Konica Minolta Holdings Inc | Heat-ray intercepting film, and method for producing the same |
WO2013018518A1 (en) * | 2011-08-02 | 2013-02-07 | コニカミノルタアドバンストレイヤー株式会社 | Functional film |
WO2013151136A1 (en) * | 2012-04-05 | 2013-10-10 | コニカミノルタ株式会社 | Infrared-shielding film and infrared-shielding element |
-
2015
- 2015-06-10 WO PCT/JP2015/066788 patent/WO2015190536A1/en active Application Filing
- 2015-06-10 JP JP2016527850A patent/JPWO2015190536A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009136848A (en) * | 2007-12-11 | 2009-06-25 | Furukawa Sky Kk | Heat radiation coated metal plate |
US20090208761A1 (en) * | 2008-02-20 | 2009-08-20 | Silmy Kamel | Radiation-selective absorber coating, absober tube and process for production thereof |
JP2012126037A (en) * | 2010-12-16 | 2012-07-05 | Konica Minolta Holdings Inc | Heat-ray intercepting film, and method for producing the same |
WO2013018518A1 (en) * | 2011-08-02 | 2013-02-07 | コニカミノルタアドバンストレイヤー株式会社 | Functional film |
WO2013151136A1 (en) * | 2012-04-05 | 2013-10-10 | コニカミノルタ株式会社 | Infrared-shielding film and infrared-shielding element |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018180177A1 (en) * | 2017-03-28 | 2018-10-04 | 大阪瓦斯株式会社 | Radiative cooling device and radiative cooling method |
CN110462464A (en) * | 2017-03-28 | 2019-11-15 | 大阪瓦斯株式会社 | Radiate cooling device and radiation cooling means |
CN110462464B (en) * | 2017-03-28 | 2022-08-23 | 大阪瓦斯株式会社 | Radiation cooling device and radiation cooling method |
US11598592B2 (en) | 2017-03-28 | 2023-03-07 | Osaka Gas Co., Ltd. | Radiative cooling device and radiative cooling method |
WO2021166781A1 (en) * | 2020-02-17 | 2021-08-26 | Agc株式会社 | Power-source-less transparent cooling device |
CN113113497A (en) * | 2021-04-13 | 2021-07-13 | 河南大学 | Solar cell using organic synergist and preparation method thereof |
CN113113497B (en) * | 2021-04-13 | 2023-01-24 | 河南大学 | Solar cell using organic synergist and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015190536A1 (en) | 2017-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6443341B2 (en) | Light reflecting film and light reflector using the same | |
WO2014010562A1 (en) | Infrared-shielding film | |
JP6443440B2 (en) | Laminated film and method for producing the same | |
WO2016199682A1 (en) | Infrared shielding body | |
WO2015198762A1 (en) | Optical reflective film, method for producing optical reflective film, and optical reflector using same | |
WO2015190536A1 (en) | Optical reflection film, and optical reflection body | |
WO2016088852A1 (en) | Heat-shielding film, production method therefor, and heat shield using said film | |
JP2014201450A (en) | Heat-ray shielding laminated glass and method for manufacturing heat-ray shielding laminated glass | |
JPWO2014188831A1 (en) | UV shielding film | |
JP2018116069A (en) | Infrared blocking film | |
JP6344069B2 (en) | Optical reflective film | |
WO2015146564A1 (en) | Light shielding film, light shielding body and method for producing light shielding film | |
JP2015150851A (en) | Method of producing functional film | |
JP2015125168A (en) | Dielectric multilayer film | |
JP6326780B2 (en) | Window pasting film | |
JPWO2017169810A1 (en) | Optical reflective film | |
JP2016083903A (en) | Laminated film | |
JP5350609B2 (en) | Coating composition and antireflection film | |
JP2015090395A (en) | Sunlight reflective film, and sunlight reflector and sunlight reflecting device having the same | |
JP6414081B2 (en) | Optical reflective film | |
JP2017219694A (en) | Optical reflection film, method for producing optical reflection film, and optical reflection body | |
WO2015037514A1 (en) | Method for manufacturing multilayer dielectric film | |
JP6536188B2 (en) | Dielectric multilayer film | |
JP2016118632A (en) | Method for manufacturing optical control film | |
JP2015049462A (en) | Optical reflection film, and optical reflector using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15807459 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016527850 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15807459 Country of ref document: EP Kind code of ref document: A1 |