[go: up one dir, main page]

WO2015181494A1 - Catalyseur avec une forme externe hélicoïdale améliorant l'hydrodynamique dans des réacteurs - Google Patents

Catalyseur avec une forme externe hélicoïdale améliorant l'hydrodynamique dans des réacteurs Download PDF

Info

Publication number
WO2015181494A1
WO2015181494A1 PCT/FR2015/051394 FR2015051394W WO2015181494A1 WO 2015181494 A1 WO2015181494 A1 WO 2015181494A1 FR 2015051394 W FR2015051394 W FR 2015051394W WO 2015181494 A1 WO2015181494 A1 WO 2015181494A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
catalyst according
gas
solid
stack
Prior art date
Application number
PCT/FR2015/051394
Other languages
English (en)
Inventor
Marie BASIN
Caroline Bertail
Pascal Del-Gallo
Daniel Gary
Amara FEZOUA
Nik LYGEROS
Clémence NIKITINE
Isabelle PITAULT
Frédéric BORNETTE
Original Assignee
L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Centre National De La Recherche Scientifique
L'ecole Superieure De Chimie-Physique-Electronique De Lyon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude, Centre National De La Recherche Scientifique, L'ecole Superieure De Chimie-Physique-Electronique De Lyon filed Critical L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to CN201580029384.2A priority Critical patent/CN106457200A/zh
Priority to US15/314,853 priority patent/US10005079B2/en
Priority to EP15732808.9A priority patent/EP3148688A1/fr
Publication of WO2015181494A1 publication Critical patent/WO2015181494A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/30Loose or shaped packing elements, e.g. Raschig rings or Berl saddles, for pouring into the apparatus for mass or heat transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/618Surface area more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0207Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal
    • B01J8/0214Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal in a cylindrical annular shaped bed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • C10G35/085Catalytic reforming characterised by the catalyst used containing platinum group metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00539Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/302Basic shape of the elements
    • B01J2219/30257Wire
    • B01J2219/30265Spiral
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/304Composition or microstructure of the elements
    • B01J2219/30416Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/304Composition or microstructure of the elements
    • B01J2219/30475Composition or microstructure of the elements comprising catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/308Details relating to random packing elements filling or discharging the elements into or from packed columns
    • B01J2219/3081Orientation of the packing elements within the column or vessel
    • B01J2219/3083Random or dumped packing elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/31Size details
    • B01J2219/312Sizes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1223Methanol
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1229Ethanol
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/10Magnesium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of rare earths
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/28Molybdenum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/42Platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/44Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/72Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/75Cobalt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to novel catalyst structures.
  • a catalyst is a material that converts reagents into product through repeated and uninterrupted cycles of elemental phases. The catalyst participates in the conversion by returning to its original state at the end of each cycle throughout its lifetime.
  • Hollow forms (cylinders or multi-lobes) is perforated with several convex holes of different shapes (circle, angular sector, lobe) or holes with several non-convex holes such as the inner quadrilobe.
  • the hydrodynamics of the reactor is mainly due to the stacking of the catalysts and not to their shape, that is to say that the fluid "slides" on the shapes without these generating ejection effects of fluids to increase dispersion and mixing within the bed.
  • the stack of catalyst shapes according to the prior art is highly porous, has a high percentage of void fraction for stacking (PFVE) (> 70%) and therefore generates less losses.
  • PFVE void fraction for stacking
  • the hollow forms (barrels or miniliths) based on a network of channels having symmetries lead to a stack having, statistically, many preferential paths. This induces a low radial dispersion, little turbulence and therefore poor material transfers (extraparticular transfer of reagents) (ie transfer of the gaseous or liquid phases towards the catalyst surface), considering catalytic gas / solid reactions, liquid / solid or gas / liquid / solid.
  • the present invention proposes to improve the hydrodynamics of fixed-bed reactors for gas / solid, liquid / solid or gas / liquid / solid reactions; on the one hand, by reducing the pressure losses of fixed beds, on the other hand, by improving the radial dispersion within the reactor.
  • a solution of the present invention is a catalyst for catalytic reactors whose shape is a helical helix with n ⁇ l and is such that the percentage of void fraction of the stack (PFVE) is between 75% and 85% and the area / volume ratio (S / V) is greater than 1000 m 2 / m 3 .
  • the helical 1 wing corresponds to the shape that is commonly called Archimedean screw; the helical 2 wings corresponds to the form commonly called double helix and the helical 3 wings corresponds to the form commonly called triple helix, etc.
  • Each helicoid according to the invention creates turbulence and the use of a stack of helicoidal according to the invention causes gas ejection phenomena from one helical to another improving the mixture locally within the catalytic reactors.
  • the percentage of vacuum fraction of the stack (PFVE) is directly related to the pressure drop of the catalytic bed.
  • PFVE The percentage of vacuum fraction of the stack
  • the S / V ratio is defined as follows:
  • the catalyst according to the invention may have one or more of the following characteristics:
  • said catalyst has a length of between 5 and 40 mm and an equivalent cylinder diameter of between 5 and 10 mm.
  • the surface / volume ratio (S / V) is greater than 2000 m 2 / m 3 .
  • said helicoidal catalyst comprises between 1.5 and 10 turns
  • said catalyst consists of an oxide-type support or a mixture of inorganic oxides.
  • said catalyst consists of a support and an active phase deposited on the support;
  • the catalyst support is of the oxide type or of a mixture of inorganic oxides.
  • the inorganic oxides are chosen from Al 2 O 3 , MgO, CaO, ZrO 2 , TiO 2 , Ce 2 O 3 , and CeO 2
  • the active phase deposited in and / or on the support by all types of techniques consists of metal particles chosen from Ni, Rh, Pt, Pd, Co, Mo, Cu, Fe and or their mixture; the active phase can be deposited in and / or on the support by all types of techniques (impregnation, coprecipitation, ).
  • FIG. 1 gives examples of catalyst according to the invention.
  • the losses in catalytic reactors are a paramount parameter influencing the performance of certain gas / solid, liquid / solid or gas / liquid / solid processes.
  • the pressure drop in a reactor is related to the geometry of the catalyst and the compactness of its stack and / or the formation of fines during filling due to its low mechanical strength.
  • Some catalytic gas / solid, liquid / solid or gas / liquid / solid processes involve several catalytic reactors which may have recycles (eg the flow leaving a secondary reactor is returned to the top of a primary reactor). In these cases, compression steps may be necessary and adversely affect the overall efficiency of the process if the pressure drops in the reactors are too great.
  • other processes may involve, downstream of the catalytic reactors, units whose performance can be reduced by a too low inlet pressure (eg purification units).
  • the invention proposes new geometries with high PFVE (greater than 70%) in order to reduce the pressure drops.
  • the catalytic reactions gas / solid, liquid / solid or gas / liquid / solid having a fast intrinsic kinetics are then limited by the transfer of material (transfer of reagents) or gas or liquid phases to the catalyst surface (extraparticular transfer), or from the surface of the catalyst to the active sites within the pores of the catalyst (intraparticular transfer).
  • transfer of material transfer of reagents
  • gas or liquid phases to the catalyst surface
  • extraparticular transfer or from the surface of the catalyst to the active sites within the pores of the catalyst
  • intraparticular transfer are, in these cases, slower than the reaction and the step limiting the catalytic efficiency is the transport of the reagents to the active site where the reaction takes place.
  • a key catalyst parameter influencing internal and external transfers is the S / M ratio.
  • the catalyst according to the invention can be used in any type of reaction (oxidation, hydrogenation, etc.).
  • the main targeted reactions of the gas / solid type will be the reforming reactions of a hydrocarbon (natural gas, naphtha, biogas, refinery gas off ...), an alcohol (MeOH, EtOH), of glycerol, with an oxidant such as water vapor, C0 2 , oxygen or their mixture, the reactions of transformation of a synthesis mixture rich in H 2 / CO such as water gas shift reaction, reverse water gas shift reaction, synthesis reaction of an alcohol (MeOH, ..), the methanation reaction.
  • the use of the catalyst according to the invention is not limited to the gas / solid type reactions but is applicable to liquid / solid and gas / liquid / solid reactions.
  • the catalyst according to the invention can operate under pressure (1 to 60 atm) and temperature (150 - 1000 ° C).
  • the subject of the present invention is also a catalytic reactor comprising a stack of catalysts according to the invention.
  • Example 1 The advantages of the subject of the invention have been illustrated by the example below.
  • Example 1 The advantages of the subject of the invention have been illustrated by the example below.
  • the pressure drop and tracing experiments were carried out in a reactor 15 cm in diameter and 2.5 m high (bed volume 46.9 L). This pilot has 5 taps for the pressure drop and 2 taps measurements for the radial dispersion of the gas.
  • the gas phase used is air with a flow rate ranging from 0 to 185 m / n (ie 0 to 2.9 m / s) and the tracer is methane. For tracing, methane is injected from the top and center of the bed section ( Figure 2).
  • the samples are taken over the entire diameter of the reactor using rods passing through the nozzle of the reactor ( Figure 2).
  • the object tested in this example is a 3-wing propeller 0.4 cm and 5 turns and 3.5 cm long. It is compared to commercial objects that are 5mm diameter glass beads and 10-hole 19mm diameter and 15mm height barrels with a 5mm center hole and 9 3mm peripheral holes.
  • Table 1 shows the pressure drop of the 10-hole cylinders as a function of volume flow or empty drum speed.
  • Table 2 shows the pressure drop of the glass beads as a function of volume flow or empty drum speed.
  • Table 3 shows the pressure losses of the propellers as a function of the volume flow rate or the empty drum speed.
  • Figure 3 allows a comparison of the results given in Tables 1, 2 and 3.
  • the triangles correspond to the losses of loads on the propellers, the squares correspond to the pressure drops on the 10-hole cylinders and the rounds correspond to the pressure losses on the glass balls.
  • Table 4 shows the axial dispersion of the 10-hole drums as a function of the empty drum speed.
  • Table 5 shows the axial dispersion of the propellers as a function of empty drum speed.
  • FIG. 4 allows a comparison of the results given in Tables 4 and 5.
  • the triangles correspond to the axial dispersion for the helices and the squares correspond to the axial dispersion for the 10-hole drums.
  • Table 6 shows the number of Peclets determined with a flow of 80 m / n for barrels
  • the propellers have a higher bedlet than the 10-hole drums (800 and 280 respectively). Consequently, a reactor filled with propellers will have a functioning closer to that of a perfectly piston reactor. This result is supported by the calculations of the axial dispersions as a function of the empty drum speeds. Indeed, as shown in Figure 4 the axial dispersions (Dax) of the propellers are lower than that of 10-hole drums, in other words the deviations from a perfectly piston flow are lower with the propellers.
  • the object tested in this example is a 3-wing propeller 0.4 cm and 5 turns and 3.5 cm long. It is compared to commercial objects that are 5mm diameter glass beads.
  • the methane concentration profiles are given in Figures 5a) and 5b).
  • Propeller-like shapes greatly improve the radial dispersion of stacks compared to stacks of logs. Indeed, the radial dispersion in the helix stack is multiplied by 50 compared to that of the stack of balls.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

Catalyseur pour réacteurs catalytiques dont la forme externe est une hélicoïdale à n ailes avec n≥1 et est telle que le pourcentage de fraction de vide de l'empilement (PFVE) est compris entre 75% et 85% et le rapport surface / volume (S/V) est supérieur à1000 m2/m3.

Description

CATALYSEUR AVEC UNE FORME EXTERNE HELICOÏDALE AMELIORANT L'HYDRODYNAMIQUE DANS DES
REACTEURS
La présente invention concerne des nouvelles structures de catalyseurs.
Un catalyseur est un matériau qui convertit des réactifs en produit à travers des cycles répétés et ininterrompus de phases élémentaires. Le catalyseur participe à la conversion en retournant à son état d'origine à la fin de chaque cycle durant toute sa durée de vie.
Actuellement les catalyseurs commerciaux pour les procédés gaz/solide, liquide/solide ou gaz/liquide/solide se présentent sous différentes formes :
- des formes pleines (sphère, cylindre, trilobé, quadrilobe, tétraèdre, cube, octaèdre, dodécaèdre, icosaèdre)
- des formes creuses (cylindres ou multi-lobes) soit trouées de plusieurs trous convexes de différentes formes (cercle, secteur angulaire, lobe), soit trouées de plusieurs trous non convexes comme le quadrilobe interne.
Pour toutes ces formes, l'hydrodynamique du réacteur est principalement due à l'empilement des catalyseurs et non à leur forme, c'est-à-dire que le fluide « glisse » sur les formes sans que celles-ci ne génèrent d'effets d'éjection des fluides pour augmenter la dispersion et le mélange au sein du lit.
L'empilement des formes de catalyseur selon l'art antérieur est très poreux, présente un Pourcentage de Fraction de Vide pour l'Empilement (PFVE) élevé (>70%) et génère donc moins de pertes de charge. Toutefois, les formes creuses (barillets ou minilithes) basées sur un réseau de canaux présentant des symétries, conduisent à un empilement ayant, statistiquement, de nombreux chemins préférentiels. Cela induit une faible dispersion radiale, peu de turbulence et donc de mauvais transferts de matière (transfert des réactifs) extraparticulaires (i.e. transfert des phases gazeuse ou liquide vers la surface du catalyseur), considérant des réactions catalytiques gaz/solide, liquide/solide ou gaz/liquide/solide.
La présente invention se propose d'améliorer l'hydrodynamique des réacteurs à lit fixe pour les réactions gaz/solide, liquide/solide ou gaz/liquide/solide ; d'une part, en diminuant les pertes de charge des lits fixes, d'autre part, en améliorant la dispersion radiale au sein du réacteur. Une solution de la présente invention est un catalyseur pour réacteurs catalytiques dont la forme est une hélicoïdale à n aile avec n≥l et est telle que le pourcentage de fraction de vide de l'empilement (PFVE) est compris entre 75% et 85% et le rapport surface / volume (S/V) est supérieur à 1000 m2/m3. On appellera « aile », la surface planaire accrochée à l'axe central et « spire » le nombre de rotations des ailes, de préférence n=l, 2 ou 3.
Notons que l'hélicoïdale à 1 aile correspond à la forme que l'on appelle communément vis d'Archimède ; l'hélicoïdale à 2 ailes correspond à la forme que l'on appelle communément double hélice et l'hélicoïdale à 3 ailes correspond à la forme que l'on appelle communément triple hélice, etc.
Chaque hélicoïdale selon l'invention crée des turbulences et l'utilisation d'un empilement d'hélicoïdales selon l'invention entraîne des phénomènes d'éjection de gaz d'une hélicoïdale à une autre améliorant le mélange localement au sein des réacteurs catalytiques.
Le Pourcentage de Fraction de Vide de l'Empilement (PFVE) est directement lié à la perte de charge du lit catalytique. Le PFVE est défini comme suit :
PFVE = 100 Volume de l' hélicoïdale
Volume total de Γ empilement
Le rapport S/V est défini comme suit :
Ι ΎΓ Surface de Γ hélicoïdal e ——
S IV =— ; lOO
Volume de l'hélicoïdale
Selon le cas, le catalyseur selon l'invention peut présenter une ou plusieurs des caractéristiques suivantes :
- ledit catalyseur présente une longueur comprise entre 5 et 40 mm et un diamètre de cylindre équivalent compris entre 5 et 10 mm.
- le rapport surface / volume (S/V) est supérieur à 2000 m2/m3.
- ledit catalyseur en forme d'hélicoïdale comprend entre 1.5 et 10 spires
- ledit catalyseur est constitué d'un support de type oxyde ou d'un mélange d'oxydes inorganiques.
- ledit catalyseur est constitué d'un support et d'une phase active déposée sur le support ;
- le support du catalyseur est de type oxyde ou d'un mélange d'oxydes inorganiques.
- les oxydes inorganiques sont choisis parmi Al203, MgO, CaO, Zr02, Ti02, Ce203, et Ce02 - la phase active déposée dans et /ou sur le support par tous types de techniques (imprégnation, coprécipitation,...) est constituée de particules métalliques choisies parmi Ni, Rh, Pt, Pd, Co, Mo, Cu, Fe et/ou leur mélange ; la phase active peut être déposée dans et /ou sur le support par tous types de techniques (imprégnation, coprécipitation,...).
La figure 1 donne des exemples de catalyseur selon l'invention.
Les pertes de charges dans les réacteurs catalytiques sont un paramètre primordial influençant les performances de certains procédés gaz/solide, liquide/solide ou gaz/liquide/solide. La perte de charge dans un réacteur est liée à la géométrie du catalyseur et à la compacité de son empilement et/ou à la formation de fines lors du remplissage en raison de sa faible tenue mécanique. Certains procédés catalytiques gaz/solide, liquide/solide ou gaz/liquide/solide mettent en jeu plusieurs réacteurs catalytiques pouvant présenter des recycles (ex. le flux sortant d'un réacteur secondaire est renvoyé en tête d'un réacteur primaire). Dans ces cas, des étapes de compression peuvent être nécessaires et nuire à l'efficacité globale du procédé si les pertes de charge dans les réacteurs sont trop importantes. De plus, d'autres procédés peuvent mettre en jeu, en aval des réacteurs catalytiques, des unités dont les performances peuvent être diminuées par une pression d'entrée trop basse (ex. unités de purification).
L'invention propose de nouvelles géométries à fort PFVE (supérieur à 70 %) afin de diminuer les pertes de charge.
D'autre part, les réactions catalytiques gaz/solide, liquide/solide ou gaz/liquide/solide présentant une cinétique intrinsèque rapide sont alors limitées par le transfert de matière (transfert des réactifs) soit des phases gazeuse ou liquide vers la surface du catalyseur (transfert extraparticulaire), soit de la surface du catalyseur vers les sites actifs au sein des pores du catalyseur (transfert intraparticulaire). Ces transferts de matière sont, dans ces cas, plus lents que la réaction et l'étape limitant l'efficacité catalytique est le transport des réactifs vers le site actif où a lieu la réaction.
Un paramètre clé du catalyseur influençant les transferts internes et externes est le rapport S/M. Le catalyseur selon l'invention peut être utilisé dans tout type de réactions (oxydation, hydrogénation...). Les principales réactions visées de type gaz/solide seront les réactions de reformage d'un hydrocarbure (gaz naturel, naphta, biogaz, off gas de raffinerie...), d'un alcool (MeOH, EtOH), de glycérol, par un oxydant tels que la vapeur d'eau, le C02, l'oxygène ou leur mélange, les réactions de transformation d'un mélange de synthèse riche en H2/CO telles que la réaction de water gas shift, la réaction de reverse water gas shift, la réaction de synthèse d'un alcool (MeOH,..), la réaction de méthanation.
L'utilisation du catalyseur selon l'invention ne se limite pas aux réactions type gaz/solide mais est applicable aux réactions liquide/solide et gaz/liquide/solide.
Le catalyseur selon l'invention peut opérer sous pression (1 à 60 atm) et température (150 - 1000°C).
Enfin, la présente invention a également pour objet un réacteur catalytique comprenant un empilement de catalyseurs selon l'invention.
Les avantages de l'objet de l'invention ont été illustrés par l'exemple ci-dessous. Exemple 1
Les expériences de perte de charge et de traçage (dispersions axiales et radiales) ont été effectuées dans un réacteur de 15 cm de diamètre et 2,5 m de haut (volume du lit 46,9 L). Ce pilote dispose de 5 piquages pour les mesures de perte de charge et de 2 piquages pour la dispersion radiale du gaz. La phase gaz utilisée est de l'air avec un débit pouvant varier de 0 à 185 m /n (i.e 0 à 2,9 m/s) et le traceur est du méthane. Pour les mesures de traçage, le méthane est injecté par puise en haut et au centre de la section du lit (figure 2). Concernant les dispersions axiales, la concentration de méthane est mesurée par un FID (Flamme lonization Detector = détecteur à ionisation de flamme en langue française) dans un cône en sortie du réacteur avec une fréquence d'acquisition de 100Hz. Pour les dispersions radiales, les prélèvements sont faits sur tout le diamètre du réacteur à l'aide de cannes passant par les piquages du réacteur (figure 2). Les dispersions axiales permettent d'avoir des informations sur les performances du réacteur (piston idéal, piston à dispersion,... ) par la mesure du nombre de Péclet (Pe=vL/Dax) avec v, la vitesse interstitielle (m/s), L, la hauteur du lit (m) et Dax la dispersion axiale (m2/s). Plus le nombre de Péclet est élevé, plus le réacteur tend vers le réacteur parfaitement piston. Les informations sur la distribution du fluide à travers le lit sont obtenues par les données de dispersion radiale. Par la suite, on désignera par :
DP : pertes de charge (mbar ou Pa)
L : longueur du lit (m)
Q : Débit volumique d'air (m /n)
u : vitesse en fût vide (m/s)
v : vitesse interstitielle (m/s)
ε : porosité du lit
Dax : dispersion axiale (m2/s)
avec u = ε v
L'objet testé dans cet exemple est une hélice à 3 ailes de 0,4 cm et 5 spires et de longueur 3,5 cm. Elle est comparée aux objets commerciaux qui sont des billes de verre de 5mm de diamètre et des barillets à 10 trous de diamètre 19mm et de hauteur 15mm avec un trou central de 5mm et 9 trous périphériques de 3mm.
Le tableau 1 indique les pertes de charge des barillets à 10 trous en fonction du débit volumique ou de la vitesse en fût vide.
Le tableau 2 indique les pertes de charge des billes en verre en fonction du débit volumique ou de la vitesse en fût vide.
Le tableau 3 indique les pertes de charge des hélices en fonction du débit volumique ou de la vitesse en fût vide.
La figure 3 permet une comparaison des résultats donnés dans les tableaux 1, 2 et 3. Les triangles correspondent aux pertes de charges sur les hélices, les carrés correspondent aux pertes de charge sur les barillets 10 trous et les ronds correspondent aux pertes de charge sur les billes en verre.
Le tableau 4 indique la dispersion axiale des barillets à 10 trous en fonction de la vitesse en fût vide.
Le tableau 5 indique la dispersion axiale des hélices en fonction de la vitesse en fût vide.
La figure 4 permet une comparaison des résultats donnés dans les tableaux 4 et 5. Les triangles correspondent à la dispersion axiale pour les hélices et les carrés correspondent à la dispersion axiale pour les barillets 10 trous. Le tableau 6 indique le nombre de Péclet déterminé avec un débit de 80 m /n pour les barillets
10 trous et les hélices.
Figure imgf000008_0001
Tableau 1
Figure imgf000008_0002
Tableau 2 Q DP exp DP exp u m3/h mbar/m Pa/m m/s
68,06 2,69 269,01 1,07
75,14 3,50 350,01 1,18
86,81 4,48 447,81 1,36
94,18 5,55 555,16 1,48
103,69 7,03 703,47 1,63
119,16 9,30 930,22 1,87
127,04 11,00 1099,96 2,00
140,86 13,59 1358,92 2,21
154,61 16,43 1642,98 2,43
164,74 19,17 1916,72 2,59
173,90 21,42 2142,02 2,73
186,51 24,81 2480,72 2,93
172,42 20,80 2079,79 2,71
152,62 16,27 1627,32 2,40
138,98 13,15 1314,87 2,18
119,37 9,64 964,11 1,88
104,31 6,82 682,45 1,64
86,55 4,74 474,01 1,36
67,97 2,68 268,30 1,07
Tableau 3
Figure imgf000009_0001
Tableau 4
Figure imgf000009_0002
Tableau 5
Figure imgf000009_0003
Tableau 6 En résumé, les pertes de charges sont meilleures pour les hélices que pour les barillets 10 trous et les billes de 5 mm.
Les hélices présentent un Péclet de lit plus élevé que celui des barillets 10 trous (800 et 280 respectivement). Par conséquent, un réacteur rempli d'hélices aura un fonctionnement plus proche de celui d'un réacteur parfaitement piston. Ce résultat est conforté par les calculs des dispersions axiales en fonction des vitesses en fût vide. En effet, comme le montre la figure 4 les dispersions axiales (Dax) des hélices sont inférieures à celle des barillets 10 trous, en d'autres termes les écarts par rapport à un écoulement parfaitement piston sont plus faibles avec les hélices.
Exemple 2
Des mesures de dispersions radiales ont été réalisées dans un tube de 15cm de diamètre et de 80cm de haut. Le tube était rempli sur 40cm des différentes particules et les mesures ont été réalisées avec un débit d'air de 40m3/h. L'expérience a consisté à injecter des puises de méthane à 28cm de haut par rapport à la grille de maintien, l'injecteur étant localisé dans l'empilement. Les prélèvements ont été réalisés à l'aide d'une canne sous la grille de maintien des particules sur 9 points par axe (distances par rapport au centre : -7,5 cm ; -5,5 cm ; -3,5 cm ; -1,5 cm ; 0 cm ; 1,5 cm ; 3,5 cm ; 5,5 cm ; 7,5 cm) et sur 6 axes espacés de 30 degrés (soit à 0, 30, 60, 90, 120 et 150 degrés).
L'objet testé dans cet exemple est une hélice à 3 ailes de 0,4 cm et 5 spires et de longueur 3,5 cm. Elle est comparée aux objets commerciaux qui sont des billes de verre de 5mm de diamètre. Les profils de concentration de méthane sont donnés sur les figures 5a) et 5b). Les formes de type hélices améliorent fortement la dispersion radiale des empilements comparativement aux empilements de billes. En effet, la dispersion radiale dans l'empilement d'hélice est multipliée par 50 comparativement à celle de l'empilement de billes.

Claims

Revendications
1. Catalyseur pour réacteurs catalytiques dont la forme externe est une hélicoïdale à n ailes avec n≥l et est telle que le pourcentage de fraction de vide de l'empilement (PFVE) est compris entre 75% et 85% et le rapport surface / volume (S/V) est supérieur à 1000 m2/m3, avec ledit catalyseur constitué d'un support et d'une phase active déposée sur le support.
2. Catalyseur selon la revendication 1, caractérisé en ce que ledit catalyseur présente une longueur comprise entre 5 et 40 mm et un diamètre de cylindre équivalent compris entre 5 et 10 mm.
3. Catalyseur selon l'une des revendications 1 ou 2, caractérisé en ce que le rapport surface / volume (S/V) est supérieur à 2000 m2/m3.
4. Catalyseur selon l'une des revendications 1 à 3, caractérisé en ce que ledit catalyseur en forme d'hélicoïdale comprend entre 1.5 et 10 spires.
5. Catalyseur selon l'une des revendications 1 à 4, caractérisé en ce que le support est de type oxyde ou d'un mélange d'oxydes inorganiques.
6. Catalyseur selon la revendication 5, caractérisé en ce que les oxydes inorganiques sont choisis parmi Al203, MgO, CaO, Zr02, Ti02, Ce02 et Ce203.
7. Catalyseur selon l'une des revendications 1 à 6, caractérisé en ce que la phase active est constituée de particules métalliques choisies parmi Ni, Rh, Pt, Pd, Co, Mo, Cu, Fe et/ou leur mélange.
8. Utilisation d'un catalyseur selon l'une des revendications 1 à 7 pour les réactions gaz/solide de type reformage d'un hydrocarbure, d'un alcool et de glycérol et les réactions de transformation d'un mélange de synthèse riche en H2/CO.
9. Réacteur catalytique comprenant un empilement de catalyseurs selon l'une des revendications 1 à 7.
PCT/FR2015/051394 2014-05-30 2015-05-27 Catalyseur avec une forme externe hélicoïdale améliorant l'hydrodynamique dans des réacteurs WO2015181494A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580029384.2A CN106457200A (zh) 2014-05-30 2015-05-27 改进反应器中的流体动力学的具有螺旋形外部形状的催化剂
US15/314,853 US10005079B2 (en) 2014-05-30 2015-05-27 Catalyst having a helical outer shape, improving hydrodynamics in reactors
EP15732808.9A EP3148688A1 (fr) 2014-05-30 2015-05-27 Catalyseur avec une forme externe hélicoïdale améliorant l'hydrodynamique dans des réacteurs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1454934 2014-05-30
FR1454934A FR3021557B1 (fr) 2014-05-30 2014-05-30 Catalyseur avec une forme externe ameliorant l'hydrodynamique des reacteurs

Publications (1)

Publication Number Publication Date
WO2015181494A1 true WO2015181494A1 (fr) 2015-12-03

Family

ID=51417448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/051394 WO2015181494A1 (fr) 2014-05-30 2015-05-27 Catalyseur avec une forme externe hélicoïdale améliorant l'hydrodynamique dans des réacteurs

Country Status (5)

Country Link
US (1) US10005079B2 (fr)
EP (1) EP3148688A1 (fr)
CN (1) CN106457200A (fr)
FR (1) FR3021557B1 (fr)
WO (1) WO2015181494A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170189896A1 (en) * 2014-05-30 2017-07-06 L'Air Liquide, Société Anonyme pour I'Etude et I'Exploitation des Procédés Georges Claude Catalyst having a helical outer shape, improving hydrodynamics in reactors

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230173444A1 (en) 2020-06-30 2023-06-08 Dow Technology Investments Llc Processes for reducing the rate of pressure drop increase in a vessel
USD968560S1 (en) * 2020-11-20 2022-11-01 Catmasters LLC Chemical reactor and tower packing
CN114177913A (zh) * 2021-12-03 2022-03-15 浙江皇马科技股份有限公司 一种用于合成聚醚胺的负载型催化剂、制备方法及应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL3202C (fr) *
DE321078C (de) * 1913-11-15 1920-05-14 Harald Nielsen Fuellkoerper fuer Reaktionstuerme
FR731857A (fr) * 1931-04-11 1932-09-09 Union Chimique Belge Sa éléments d'empilage pour colonnes d'absorption et analogues
SU484715A1 (ru) * 1972-02-02 1978-02-25 Научно-Исследовательский И Конструкторско-Технологический Институт Эмалированного Химического Оборудования Насадка дл массообменных аппаратов
SU797740A1 (ru) * 1978-03-27 1981-01-23 Предприятие П/Я Р-6603 Регул рна насадка дл тепло-МАССООбМЕННыХ АппАРАТОВ
SU865361A1 (ru) * 1980-01-11 1981-09-23 Предприятие П/Я В-8046 Насадка дл тепломассообменных аппаратов
SU899103A1 (ru) * 1980-06-04 1982-01-23 Северодонецкий Филиал Всесоюзного Научно-Исследовательского И Конструкторского Института Химического Машиностроения Контактна насадка
WO2005112552A2 (fr) * 2004-05-24 2005-12-01 Bogatyrjov Vladimir Fjodorovic Ajutage en spirale destine aux processus d'echange de masse et de chaleur et aux processus chimiques correspondants
CN201799279U (zh) * 2010-06-07 2011-04-20 沈国建 一种塔填料

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2644800A (en) * 1949-06-01 1953-07-07 Standard Oil Dev Co Shaped catalyst for packed catalytic reactor
US3673079A (en) * 1970-01-21 1972-06-27 Chevron Res Catalyst manufacture
US4289657A (en) * 1978-10-27 1981-09-15 United Kingdom Atomic Energy Authority Fluid treatment devices
JPS56102940A (en) * 1980-01-18 1981-08-17 Toyota Motor Corp Catalyst for cleaning exhaust gas
US4673664A (en) * 1985-10-07 1987-06-16 American Cyanamid Company Shape for extruded catalyst support particles and catalysts
US4960554A (en) * 1985-10-07 1990-10-02 American Cyanamid Company Method for making helically wound extrudate particles
US20050274646A1 (en) * 2004-06-14 2005-12-15 Conocophillips Company Catalyst for hydroprocessing of Fischer-Tropsch products
DE102007011471B4 (de) * 2006-03-09 2021-09-30 Shell Internationale Research Maatschappij B.V. Katalysatorkombination für die hydrierende Verarbeitung von Vakuumgasölen und/oder Visbreakergasölen
WO2009062096A1 (fr) * 2007-11-09 2009-05-14 Washington State University Research Foundation Catalyseurs et procédés apparentés
US8835516B2 (en) * 2010-12-20 2014-09-16 Shell Oil Company Fischer Tropsch process using improved extrudates
US20120319322A1 (en) * 2010-12-20 2012-12-20 Shell Oil Company Particle extrusion
FR3015309B1 (fr) * 2013-12-19 2016-01-29 IFP Energies Nouvelles Extrusion helicoidale de supports catalytiques multilobes dissymetriques
FR3021557B1 (fr) * 2014-05-30 2018-01-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Catalyseur avec une forme externe ameliorant l'hydrodynamique des reacteurs

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL3202C (fr) *
DE321078C (de) * 1913-11-15 1920-05-14 Harald Nielsen Fuellkoerper fuer Reaktionstuerme
FR731857A (fr) * 1931-04-11 1932-09-09 Union Chimique Belge Sa éléments d'empilage pour colonnes d'absorption et analogues
SU484715A1 (ru) * 1972-02-02 1978-02-25 Научно-Исследовательский И Конструкторско-Технологический Институт Эмалированного Химического Оборудования Насадка дл массообменных аппаратов
SU797740A1 (ru) * 1978-03-27 1981-01-23 Предприятие П/Я Р-6603 Регул рна насадка дл тепло-МАССООбМЕННыХ АппАРАТОВ
SU865361A1 (ru) * 1980-01-11 1981-09-23 Предприятие П/Я В-8046 Насадка дл тепломассообменных аппаратов
SU899103A1 (ru) * 1980-06-04 1982-01-23 Северодонецкий Филиал Всесоюзного Научно-Исследовательского И Конструкторского Института Химического Машиностроения Контактна насадка
WO2005112552A2 (fr) * 2004-05-24 2005-12-01 Bogatyrjov Vladimir Fjodorovic Ajutage en spirale destine aux processus d'echange de masse et de chaleur et aux processus chimiques correspondants
CN201799279U (zh) * 2010-06-07 2011-04-20 沈国建 一种塔填料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3148688A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170189896A1 (en) * 2014-05-30 2017-07-06 L'Air Liquide, Société Anonyme pour I'Etude et I'Exploitation des Procédés Georges Claude Catalyst having a helical outer shape, improving hydrodynamics in reactors
US10005079B2 (en) * 2014-05-30 2018-06-26 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Catalyst having a helical outer shape, improving hydrodynamics in reactors

Also Published As

Publication number Publication date
FR3021557B1 (fr) 2018-01-26
EP3148688A1 (fr) 2017-04-05
FR3021557A1 (fr) 2015-12-04
US20170189896A1 (en) 2017-07-06
CN106457200A (zh) 2017-02-22
US10005079B2 (en) 2018-06-26

Similar Documents

Publication Publication Date Title
WO2015181494A1 (fr) Catalyseur avec une forme externe hélicoïdale améliorant l'hydrodynamique dans des réacteurs
Pahalagedara et al. Structure and oxidation activity correlations for carbon blacks and diesel soot
EP1433745A2 (fr) Catalyseur pour enlever le monoxyde de carbone, sa production et ses utilisations
FR2949073A1 (fr) Produit moule et procede pour le produire, et catalyseur et procede pour le produire
WO2011062129A1 (fr) Catalyseur de purification des gaz d'échappement et son procédé de fabrication
EP2151277B1 (fr) Réacteur gaz-liquide à écoulement co-courant ascendant avec plateau distributeur
WO2015106634A1 (fr) Catalyseur chargé sur un support en phase métallique, son procédé de préparation et ses utilisations
EP0780156B1 (fr) Catalyseur d'oxydation non-selectif et ses utilisations
Li et al. Metallic-substrate-supported manganese oxide as Joule-heat-ignition catalytic reactor for removal of carbon monoxide and toluene in air
EP2506962B1 (fr) Réacteur catalytique comprenant une zone alvéolaire de macroporosité et microstructure contrôlées et une zone à microstructure standard
CN204503105U (zh) 一种浸渍转鼓和一种浸渍系统
FR2884443A1 (fr) Reacteur de laboratoire pour l'etude de reactions en phase gaz et liquide
AU2004224919A1 (en) Modifying catalyst for partial oxidation and method for modification
CN101294093A (zh) 生物柴油的一体化生产工艺及专用装置
US11600836B2 (en) Supported nickel catalysts used as direct internal reforming catalyst in molten carbonate fuel cells
WO2015181472A1 (fr) Catalyseur sous la forme d'un barillet perfore de part en part
EP2315628B1 (fr) Procede de preparation d'un materiau coeur-couche ayant une bonne resistance mecanique
CA3020940A1 (fr) Panier amovible pour reacteur catalytique
US20120114537A1 (en) Reformer
CN103627432A (zh) 一种生产低凝点柴油和润滑油基础油的加氢方法
CN105214667B (zh) 一种壳层分布催化剂及其制备方法和应用
JP2005046669A (ja) 触媒担持用基材及びその製造方法
CN104588036A (zh) 通用小型汽油机尾气净化金属丝饼状催化剂及其制备方法
CN108855057B (zh) 壳层分布型催化剂及其制备方法和费托合成方法
US20080016663A1 (en) Formed materials and strips used in fuel tanks and to prevent explosive reactions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15732808

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015732808

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015732808

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15314853

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016149512

Country of ref document: RU

Kind code of ref document: A