[go: up one dir, main page]

WO2015172291A1 - 一种天线及无线设备 - Google Patents

一种天线及无线设备 Download PDF

Info

Publication number
WO2015172291A1
WO2015172291A1 PCT/CN2014/077276 CN2014077276W WO2015172291A1 WO 2015172291 A1 WO2015172291 A1 WO 2015172291A1 CN 2014077276 W CN2014077276 W CN 2014077276W WO 2015172291 A1 WO2015172291 A1 WO 2015172291A1
Authority
WO
WIPO (PCT)
Prior art keywords
gain compensation
coupling
wave
top plate
bottom plate
Prior art date
Application number
PCT/CN2014/077276
Other languages
English (en)
French (fr)
Inventor
蔡华
邹克利
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14891785.9A priority Critical patent/EP3091611B1/en
Priority to ES14891785T priority patent/ES2746398T3/es
Priority to CN201480076142.4A priority patent/CN106063035B/zh
Priority to PCT/CN2014/077276 priority patent/WO2015172291A1/zh
Publication of WO2015172291A1 publication Critical patent/WO2015172291A1/zh
Priority to US15/237,205 priority patent/US10186757B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/28Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave comprising elements constituting electric discontinuities and spaced in direction of wave propagation, e.g. dielectric elements or conductive elements forming artificial dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0031Parallel-plate fed arrays; Lens-fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an antenna and a wireless device.
  • BACKGROUND OF THE INVENTION In the field of communication technologies, with the development of emerging applications, wireless access networks are moving toward high-capacity, millimeter-wave, multi-band applications, and therefore, wireless devices have placed higher demands on antennas in order to meet such demands.
  • the antenna is required to have a low profile form in order to meet the integration requirements of the millimeter-band wireless device, and also requires the antenna to have a high gain characteristic to accommodate the case where the signal propagation attenuation in the millimeter band is large.
  • Leaky wave antenna is a low-cost low-profile broadband antenna designed for its low-profile, low-profile broadband antenna due to its simple structure, suitable planar structure, and wide-band characteristics.
  • the main technical solutions are a low-cost low-profile broadband antenna designed for its low-profile, low-profile broadband antenna due to its simple structure, suitable planar structure, and wide-band characteristics.
  • the radiation principle of the leaky wave antenna is as follows: The signal wave formed by the feeding unit in the leaky wave antenna is radiated in the form of a leak wave along the aperture formed by the leaky wave antenna to realize the signal emission.
  • the leaky wave antenna of the prior art transmits a signal of a millimeter wave band
  • the signal amplitude of the leaky wave antenna is self-feeding unit on the aperture surface. It is exponentially attenuated in the surrounding direction, so that the aperture efficiency of the antenna is low, and the gain of the antenna is low.
  • the present invention provides an antenna and a wireless device that can improve the aperture efficiency of an antenna and improve the gain of the antenna.
  • an antenna including:
  • a body having a top plate and a bottom plate disposed in parallel, wherein the top plate is provided with a plurality of radiation structures for leaking signals, and the bottom plate is provided with a feed structure for signal excitation to generate a propagation between the top plate and the bottom plate TE wave and TM wave;
  • each of the rows of the gain compensation structures comprising a plurality of gain compensation units And a shielding structure extending along the direction in which the plurality of gain compensation units are arranged; wherein the shielding structure is located between the top plate and the bottom plate to isolate two of the radiation regions, and each
  • the gain compensation unit includes:
  • first coupling structure the first coupling structure is located on a side of the shielding structure toward the feeding structure, and at least a portion of the first coupling structure is located between the top plate and the bottom plate;
  • second coupling structure the second coupling structure is located at a side of the shielding structure facing away from the feeding structure, and at least a portion of the second coupling structure is located between the top plate and the bottom plate;
  • the first single-stage traveling wave amplifying unit when the first single-stage traveling wave amplifying unit operates, has an input end connected to the first coupling structure, and an output end connected to the second coupling structure.
  • the top plate is a metal plate having a left-hand material or a right-hand material structure
  • the bottom plate is a good conductor metal, or a metal plate having a left-hand material or a right-hand material structure .
  • the top plate and the bottom plate are filled with air, and the top plate and the bottom plate are provided with a supporting structure, supported between the top plate and the bottom plate;
  • a shield layer is disposed between the top plate and the bottom plate.
  • the arrangement direction of the gain compensation unit of the at least one row of the gain compensation structure and the TE generated by the excitation of the feed structure The wave propagation direction is perpendicular, and the arrangement direction of the gain compensation unit of the at least one row of the gain compensation structure is perpendicular to the TM wave propagation direction generated by the excitation of the feed structure;
  • the arrangement directions of the gain compensating units in the rows of the gain compensating structures are parallel to each other, and the arrangement direction is perpendicular to the TE wave propagation direction generated by the excitation of the feed structure;
  • the arrangement direction of the gain compensating units in each of the rows of the gain compensating structures is parallel to each other, and the arrangement direction is perpendicular to the direction of propagation of the TM wave generated by the excitation of the feed structure.
  • the multiple-row gain compensation structure forms at least one closed-loop gain compensation structure, where:
  • Each of the gain compensation structures includes a gain compensation structure in which the arrangement direction of the two rows of gain compensation units is perpendicular to the TE wave propagation direction, and a gain compensation structure in which the arrangement directions of the two rows of gain compensation units are perpendicular to the TM wave propagation direction.
  • a projection of the feed structure on a side of the bottom plate facing away from the top plate is located in a region surrounded by a projection of the annular gain structure on a side of the bottom plate facing away from the top plate.
  • a passive reciprocal structure between the first coupling structure and the second coupling structure in each of the gain compensation units, a passive reciprocal structure between the first coupling structure and the second coupling structure .
  • the first coupling structure is a coupling probe, and the first end of the coupling probe is connected to the input end of the corresponding first single-stage traveling wave amplification unit through a conductor, and the second end of the coupling probe extends into the Between the top plate and the bottom plate;
  • the second coupling structure is a coupling probe, and the first end of the coupling probe is connected with the output end of the corresponding first single-stage traveling wave amplification unit through a conductor, and the coupling probe is coupled a second end extending between the top plate and the bottom plate;
  • each of the coupling probes forms a symmetric dipole, and the first end and the first end Single-stage traveling wave amplification unit
  • the conductor has 18. Barron structure
  • the second end of each of the coupling probes forms a ring structure.
  • each coupled probe distance is The spacing of the shielding structure is one quarter of the wavelength of the TE wave;
  • the distance of each of the coupling probes from the spreading structure is one-half of the wavelength of the TM wave.
  • an eighth possible implementation manner when the arrangement direction of the gain compensation unit in a row of the gain compensation structure is perpendicular to the TE wave propagation direction, two adjacent coupling probes are used.
  • the spacing between the pins is less than or equal to one-half of the wavelength of the TE wave;
  • the spacing between adjacent two coupled probes is less than or equal to one-half of the wavelength of the TM wave.
  • the top plate is provided with a plurality of leakage radiation structures, including:
  • TM wave generated by the excitation of the electrical structure is perpendicular to the direction of propagation, and the other sidewall is perpendicular to the propagation direction of the TE wave generated by the excitation of the feed structure;
  • a length direction of the long slot is perpendicular to a TM wave propagation direction generated by the excitation of the feed structure, or a length direction of the long slot and the feed
  • the TE wave propagation direction generated by the structural excitation is vertical.
  • each of the gain compensation units has a first single-stage traveling wave amplifying unit located on a side of the top plate facing away from the bottom plate, and the top plate and each of the single-stage traveling wave amplifying units have a shield layer, and each A ground end of one of the single-stage traveling wave amplifying units is connected to the top plate through a grounding wire.
  • the first possible implementation manner, the second possible implementation manner, the third possible implementation manner, the fourth possible implementation manner, the fifth possible implementation manner, and the sixth possible The implementation of the seventh possible implementation, the eighth possible implementation manner, and the ninth possible implementation manner.
  • each of the gain compensation units further includes a second single-stage traveling wave amplifying unit; an input end of the second single-stage traveling wave amplifying unit and the second coupling structure, and an output end of the first single-stage traveling wave amplifying unit and the first a switch structure is disposed between the two coupling structures, and an output end of the second single-stage traveling wave amplifying unit is a switching structure is disposed between the input ends of the first single-stage traveling wave amplifying unit and the first coupling structure between the first coupling structures;
  • the input end of the first single-stage traveling wave amplifying unit is connected to the first coupling structure, and the output end is connected to the second coupling structure;
  • the output end of the second single-stage traveling wave amplifying unit is connected to the first coupling structure, and the input end is connected to the second coupling structure.
  • a wireless device comprising any of the antennas provided in the first aspect and various possible implementations thereof
  • each of the gain compensating units has a first single-stage traveling wave amplifying unit, and the input end and the shielding structure are oriented.
  • the first coupling structure on one side of the feeding structure is connected, and the output end is connected with the second coupling structure of the shielding structure away from the side of the feeding structure.
  • the first coupling structure may introduce a signal in the antenna structure corresponding to the radiation region closer to the feed structure into the first single-stage traveling wave amplification unit to pass the first single-stage traveling wave amplification unit.
  • Gain compensation for the amplitude of the signal that has been attenuated, and then input to the radiation region farther from the feed structure through the second coupling structure The line structure.
  • the amplitude of the signal that has been attenuated after passing through the first single-stage traveling wave amplifying unit can be compensated by the first single-stage traveling wave amplifying unit, thereby suppressing the amplitude attenuation of the signal due to the gradual leakage of the antenna.
  • This clipping effect therefore, improves the aperture efficiency of the antenna and increases the antenna gain.
  • the antenna provided by the present invention can improve the aperture efficiency of the antenna and improve the gain of the antenna.
  • FIG. 1 is a schematic structural diagram of an antenna according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a gain compensation unit in an antenna according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a principle of a gain compensation unit in an antenna according to an embodiment of the present invention.
  • 4a to 4c are schematic diagrams showing several distribution structures of a gain compensation unit in an antenna according to the present invention.
  • FIG. 5 is a schematic structural diagram of a gain compensation unit in an antenna according to another embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a coupling structure in an antenna according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a coupling structure in an antenna according to another embodiment of the present invention
  • FIG. 8 is a side view of a coupling structure of the structure shown in FIG. 7;
  • FIG. 9 is a schematic structural diagram of a radiation structure of a top plate provided in an antenna according to an embodiment of the present invention
  • FIG. 10 is a schematic diagram of a principle of time-division bidirectional gain compensation of a gain compensation unit in an antenna according to an embodiment of the present invention.
  • Embodiments of the present invention provide an antenna and a wireless device having the same, which can perform gain compensation on a signal between an antenna top plate and a bottom plate, thereby suppressing a gradual attenuation of a signal due to gradual leakage radiation of the antenna.
  • the clipping effect improves the aperture efficiency of the antenna and increases the antenna gain.
  • FIG. 1 is a schematic structural diagram of an antenna according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a gain compensation unit in an antenna according to an embodiment of the present invention
  • an antenna provided by an embodiment of the present invention includes:
  • the body has a top plate 1 and a bottom plate 2 arranged in parallel, the top plate 1 is provided with a plurality of leakage radiating structures 11 , the bottom plate 2 is provided with a feeding structure 21, and the feeding structure 21 is used for signal excitation to the top plate 1 and the bottom plate Generate TE waves and TM waves that can propagate between 2;
  • the multi-row gain compensating structure 12 divides the body of the antenna into a plurality of radiating regions, each of which includes a part of the radiating structure, taking the antenna shown in FIG. 1 as an example, such as a four-row gain compensating structure.
  • each row of the gain compensation structure 121 includes a plurality of gain compensation units, and a plurality of gain compensations.
  • a shielding structure 124 extending in the direction of arrangement of the cells, the shielding structure 124 is located between the top plate 1 and the bottom plate 2 to isolate the radiation zone b and the radiation zone c, and then the radiation zone b and the radiation zone c are located on the top plate 1 and the bottom plate 2 The signal channel is separated between them; wherein, referring to FIG. 2 in conjunction with FIG. 1, as shown in FIG. 2, each gain compensation unit includes:
  • first coupling structure 123 the first coupling structure 123 is located at the side of the shielding structure 124 facing the feeding structure 21, and at least a portion of the first coupling structure 123 is located between the top plate 1 and the bottom plate 2;
  • second coupling structure 125 the second coupling structure 125 is located at a side of the shielding structure 124 away from the feeding structure 21, and at least a portion of the second coupling structure 125 is located between the top board 1 and the bottom board 2;
  • the first single-stage traveling wave amplifying unit 126 when the first single-stage traveling wave amplifying unit 126 is in operation, has an input terminal connected to the first coupling structure 123 and an output terminal connected to the second coupling structure 125.
  • the first single-stage traveling wave amplifying unit 126 is located outside the body.
  • the feeding structure 21 provided on the bottom plate 2 can excite the TE wave and the TM wave between the top plate 1 and the bottom plate 2 of the antenna, and then the TE wave and the TM wave pass through the radiation structure 11 provided in the top plate 1 to leak waves.
  • the form is radiated; continue to take the gain compensation unit of the structure shown in FIG. 2 as an example.
  • the antenna has a plurality of rows of gain compensation structures 12, and each of the gain compensation units has a first single-stage row.
  • the wave amplifying unit 126 When the wave amplifying unit 126 is in operation, the input end thereof is connected to the first coupling structure 123 of the shielding structure 124 toward the side of the feeding structure 21, and the output end is connected with the second coupling structure 125 of the shielding structure 124 away from the side of the feeding structure 21, Therefore, in the operation of the first single-stage traveling wave amplifying unit 126, in the radiating area b and the radiating area c, the first coupling structure 123 can introduce a signal in the antenna structure corresponding to the radiating area b which is closer to the feeding structure 21 to In the first single-stage traveling wave amplifying unit 126, the amplitude of the signal that has been attenuated is gain-compensated by the first single-stage traveling wave amplifying unit 126, and then transmitted through the second coupling structure 125.
  • the amplitude of the signal that has been attenuated after passing through the first single-stage traveling wave amplifying unit 126 can be gain-compensated by the first single-stage traveling wave amplifying unit 126, thereby suppressing the amplitude of the signal due to the gradual leakage of the antenna. This clipping effect is gradually attenuated, thereby increasing the aperture efficiency of the antenna and the antenna gain.
  • the antenna provided by the present invention can improve the aperture efficiency of the antenna and the gain of the antenna.
  • the antenna has a top plate 1 that is a left hand material, or a right hand material structure; the bottom plate 2 is a good conductor metal, or a metal plate having a left hand material or a right hand material structure.
  • the top plate 1 and the bottom plate 2 are made of metal left-handed material or metal right-handed material, and the radiation waveform can be flexibly controlled to enable control of a specific beam and a scanning beam from the edge to the end.
  • the antenna has air between the top plate 1 and the bottom plate 2, and a support structure is disposed between the top plate 1 and the bottom plate 2, and the support structure is supported between the top plate 1 and the bottom plate 2; or
  • a shield layer is disposed between the top plate 1 and the bottom plate 2, so that the antenna can be prepared by using a low-cost PCB process in actual production to reduce the equipment cost of the antenna.
  • the multi-row gain compensating unit 12 is:
  • the arrangement direction of the gain compensating units in at least one row of the gain compensating structures 12 is perpendicular to the TE wave propagation directions E1 and E2 generated by the excitation of the feed structure 21, and at least one row of the gain compensating structures 12
  • the arrangement direction of the gain compensation unit is perpendicular to the TM wave propagation directions M1 and M2 generated by the excitation of the feed structure 21; or, the arrangement direction of the gain compensation unit of each row of the gain compensation structure 12 and the TE wave propagation generated by the excitation of the feed structure Directions E1 and E2 are vertical; or,
  • the arrangement direction of the gain compensation unit of each row of the gain compensation structure 12 is perpendicular to the TM wave propagation directions M1 and M2 generated by the excitation of the feed structure.
  • the arrangement direction of the gain compensation units in at least one row of the gain compensation structures 12 and the TE waves generated by the excitation of the feed structure 21 are shown.
  • the propagation directions E1 and E2 are perpendicular, and the arrangement direction of the gain compensation unit in at least one row of the gain compensation structure 12 is perpendicular to the TM wave propagation directions M1 and M2 generated by the excitation of the feed structure 21, the plurality of rows of gain compensation units 12 form at least A ring gain compensation structure, a ring gain compensation structure formed by the four rows of gain compensation units 121 as shown in FIG. 1, and a ring gain compensation structure formed by the four rows of gain compensation units 122, wherein:
  • Each of the loop gain compensation structures includes a gain compensation structure 12 in which the arrangement direction of the two rows of gain compensation units is perpendicular to the TE wave propagation direction, and the arrangement direction of the two rows of gain compensation units and the gain compensation structure 12 perpendicular to the TM wave propagation direction,
  • the projection of the electrical structure 21 on the side of the bottom plate 2 facing away from the top plate 1 is located in the region of the annular gain structure enclosed by the projection of the bottom plate 1 facing away from the top surface 2 of the top plate.
  • the projection of the feed structure 21 on the back side of the bottom plate 1 from the top surface 2 is located in the projection of the radiation area a on the side of the bottom plate 1 facing away from the top plate 2.
  • the first coupling structure 123 and the second coupling structure 125 are passive reciprocal structures.
  • the first coupling structure 123 is a coupling probe, as shown in FIG. 7, the coupling probe 1231, and the first coupling probe 1231.
  • the input end of the first single-stage traveling wave amplifying unit 126 is connected by a conductor 127, and the second end of the coupling probe 1231 extends between the top plate 1 and the bottom plate 2; the second coupling structure 125 is coupled.
  • a needle as shown in FIG. 6, 1251, a first end of each coupling probe 1251 is connected to an output of the corresponding first single-stage traveling wave amplifying unit 126 via a conductor 128, and the second end extends into the top plate 1 between the bottom plate 2.
  • each of the coupling probe 1231 and the coupling probe 1251 forms a symmetric dipole, and the conductor 127 between the first end of the coupling probe 1231 and the first single-stage traveling wave amplification unit 126 has 180.
  • the balun structure has a conductor 128 between the first end of the coupling probe 1251 and the first single-stage traveling wave amplification unit 126 having 180. Barron structure; Since the direction of the electric field is parallel to the antenna plate, the induced current reversal on the symmetric dipole needs to be merged through a 180° balun structure.
  • each of the coupling probes 1231 and the coupling probe 1251 is one-half of the wavelength of the TM wave, since here is the strongest magnetic field of the TM wave.
  • the spacing between adjacent two coupled probes is less than or equal to TE.
  • the spacing between adjacent two coupled probes is less than or equal to the dichotomy of the wavelength of the TM wave.
  • the plurality of leakage radiating structures 11 provided in the top plate 1 include: as shown in FIG. 9a, the radiating structure 11 may be a plurality of rectangular slots formed by the top plate 1. , a rectangular slotted array in each of the radiating regions is distributed, and in each of the rectangular slots, one of the adjacent two sidewalls is perpendicular to the direction of propagation of the TM wave generated by the feed structure 21, and the other The sidewall is perpendicular to the propagation direction of the TE wave generated by the excitation of the feed structure 21; or
  • the radiation mechanism 11 can also be a plurality of mutually parallel long slots formed by the top plate 1.
  • the length direction of the long slots is perpendicular to the TE wave propagation direction generated by the excitation of the feed structure 21; or as shown in FIG. 9c.
  • the length direction of the long slot is perpendicular to the direction of propagation of the TM wave generated by the excitation of the feed structure 21.
  • each row of the gain compensating structure 12 has a first single-stage traveling wave amplifying unit 126 located on a side of the top plate 1 facing away from the bottom plate 2.
  • the top plate 1 and each of the single-stage traveling wave amplifying units 126 have a shield layer 3, and the ground end of each of the first single-stage traveling wave amplifying units 126 is connected to the top plate 1 through the grounding wire 1261 to realize the first single The ground of the progressive wave amplification unit 126 is grounded.
  • the shield layer 3 can be disposed only between the first single-stage traveling wave amplifying unit 126 and the top plate 1, as shown in Fig.
  • the shield layer 3 can also cover the side of the top plate 1 facing away from the bottom plate 2, as shown in Fig. 5.
  • the first single-stage traveling wave amplifying unit 126 can also be formed on the side of the back plate 2 facing away from the top plate 1. The specific structure will not be described herein.
  • each of the gain compensation units further includes a second single-stage traveling wave amplification unit 129; an input end of the second single-stage traveling wave amplification unit 129 and the second coupling structure 125, and A switch structure 130 is disposed between the output end of the first single-stage traveling wave amplifying unit 126 and the second coupling structure 125, and the first end of the second single-stage traveling wave amplifying unit 129 is coupled to the first coupling structure 123.
  • a switch structure 131 is disposed between the input end of the progressive wave amplifying unit and the first coupling structure 123; wherein
  • the input end of the first single-stage traveling wave amplifying unit 126 is connected to the first coupling structure 123, and the output end is connected to the second coupling structure 125;
  • the second single-stage traveling wave amplifying unit 129 loses The output end is connected to the first coupling structure 123, and the input end is connected to the second coupling structure 125.
  • the first single-stage traveling wave amplifying unit 126 and the second single-stage traveling wave amplifying unit 129 in each of the gain compensating units are arranged side by side, and are connected to each other through the two switches 130, the first single-stage traveling wave
  • the time division control can be implemented between the amplifying unit 126 and the second single-stage traveling wave amplifying unit 129, and the corresponding signal is opposite to the amplification direction of the first single-stage traveling wave amplifying unit 126 and the second single-stage traveling wave amplifying unit 129.
  • the flow direction is reversed, which in turn enables the antenna to implement time-division two-way communication.
  • the feed structure provided by the antenna base 2 can have various structures, such as:
  • the waveguide feeding structure such as a rectangular waveguide feeding structure
  • the size of the rectangular waveguide is a standard waveguide corresponding to the working frequency band, and the rectangular wave waveguide is required to maximize the excitation of the corresponding TE wave and the TM wave.
  • the long side is the same as the propagation direction of the TE wave, and the short side is the same as the propagation direction of the TM wave.
  • the waveguide surface of the rectangular waveguide is parallel to the bottom plate 2 and located below the bottom plate 2, and the bottom plate 2 is opened in the same manner as the waveguide of the rectangular waveguide. a rectangular port of a size to introduce a signal of the rectangular waveguide into the antenna, thereby implementing feeding of the antenna; or
  • the length of the electric dipole is usually half a wavelength.
  • the electric dipole is placed as follows: The direction of the pole is parallel to the bottom plate 2 and parallel to the propagation direction of the TM wave.
  • the direction of the electric dipole double feed line is perpendicular to the bottom plate 2 and below the bottom plate 2, and the electric dipole is made through the opening provided in the bottom plate 2.
  • the sub-node can be placed inside the antenna to feed the antenna; or, or fold the electric dipole feed structure; or
  • the feed structure is a slot slot feed structure formed on the bottom plate 2, the length of the slot is about half a working wavelength, in order to maximize the excitation of the waveguide to the corresponding TE wave and TM wave, Placement method requirements:
  • the long side of the slit is the same as the propagation direction of the TE wave.
  • the slit can be obtained by slitting under the bottom plate 2, and the waveguide signal is coupled into the main structure of the antenna through the gap coupling.
  • an embodiment of the present invention further provides a wireless device, including the antenna provided in the foregoing embodiments and embodiments thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

本发明涉及通信技术领域,公开一种天线及无线设备,天线包括:本体,本体包括顶板和底板,顶板设有多个辐射结构,底板设有馈电结构;多排增益补偿结构,以将本体划分为至少两个辐射区;每一排增益补偿结构包括多个增益补偿单元和屏蔽结构;屏蔽结构位于顶板和底板之间,每一个增益补偿单元包括:位于屏蔽结构朝向馈电结构一侧的第一耦合结构,且第一耦合结构的至少一部分位于顶板和底板之间;位于屏蔽结构背离馈电结构一侧的第二耦合结构,且第二耦合结构的至少一部分位于顶板和底板之间;第一单级行波放大单元,第一单级行波放大单元工作时,其输入端与第一耦合结构连接,且输出端与第二耦合结构连接。该天线的口径效率和天线增益较高。

Description

一种天线及无线设备
技术领域
本发明涉及通信技术领域, 特别涉及一种天线及无线设备。 背景技术 在通信技术领域, 随着新兴应用的发展, 无线接入网络朝着高容量、 毫米波、 多频带 应用方面发展, 因此, 无线设备对天线提出了更高的需求, 为了适应这种需求, 要求天线 具有低剖面形式以便满足毫米波段无线设备集成化的需求, 同时还需要天线具有高增益特 性以适应毫米波段信号传播衰减大的情形。
漏波天线 ( Leaky wave antenna, LWA ) 因其馈电单元及辐射单元的结构筒单、 适合平 面结构、 且具有宽频带特性, 从而使其成为低成本低剖面宽频带天线的设计中釆用的主要 技术方案。
漏波天线的辐射原理为: 馈电单元在漏波天线内激励形成的信号波沿着漏波天线形成 的口径以漏波形式被辐射出去, 实现信号的发射。
但是, 现有技术中的漏波天线发射毫米波段的信号时, 因为信号在漏波天线的口径上 一边传输一边进行漏波辐射, 使得漏波天线的信号幅度在口径面上其自馈电单元向周围方 向呈指数衰减, 由此使得天线的口径效率较低, 天线的增益性较低。 发明内容 本发明提供了一种天线及无线设备, 该天线能够提高天线的口径效率, 提高天线的增 益性。
第一方面, 提供一种天线, 包括:
本体, 所述本体具有平行设置的顶板和底板, 所述顶板设有多个泄漏信号用的辐射结 构, 所述底板设有信号激励用的馈电结构, 以在顶板和底板之间产生能够传播的 TE波及 TM波;
多排增益补偿结构, 以将所述本体划分为至少两个辐射区, 每个辐射区包括所述多个 辐射结构中的一部分辐射结构; 每一排所述增益补偿结构包括多个增益补偿单元, 和沿所 述多个增益补偿单元排列方向延伸的屏蔽结构; 其中, 所述展蔽结构位于所述顶板和所述 底板之间, 以将两个所述辐射区之间隔离, 且每一个增益补偿单元包括:
第一耦合结构, 所述第一耦合结构位于所述展蔽结构朝向所述馈电结构一侧, 且所述 第一耦合结构的至少一部分位于所述顶板和所述底板之间; 第二耦合结构, 所述第二耦合结构位于所述展蔽结构背离所述馈电结构一侧, 且所述 第二耦合结构的至少一部分位于所述顶板和所述底板之间;
第一单级行波放大单元, 所述第一单级行波放大单元工作时, 其输入端与所述第一耦 合结构连接, 且输出端与所述第二耦合结构连接。
结合上述第一方面, 在第一种可能的实现方式中, 所述顶板为具有左手材料或右手材 料结构的金属板; 所述底板为良导体金属、 或者具有左手材料或右手材料结构的金属板。
结合上述第一方面, 在第二种可能的实现方式中, 所述顶板和底板之间填充有空气, 且所述顶板和所述底板设有支撑结构, 支撑于所述顶板和底板之间; 或者,
所述顶板与所述底板之间设有介盾层。
结合上述第一方面, 在第三种可能的实现方式中, 所述多排增益补偿单元中: 至少一排所述增益补偿结构的增益补偿单元的排列方向与所述馈电结构激励产生的 TE波传播方向垂直,且至少一排所述增益补偿结构的增益补偿单元的排列方向与所述馈电 结构激励产生的 TM波传播方向垂直; 或者,
各排所述增益补偿结构中的增益补偿单元的排列方向相互平行, 且排列方向与所述馈 电结构激励产生的 TE波传播方向垂直; 或者,
各排所述增益补偿结构中的增益补偿单元的排列方向相互平行, 且排列方向与所述馈 电结构激励产生的 TM波传播方向垂直。
结合上述第三种可能的实现方式, 在第四种可能的实现方式中, 所述多排增益补偿结 构形成至少一个封闭环形的增益补偿结构, 其中:
每一个所述增益补偿结构包括两排增益补偿单元的排列方向与所述 TE波传播方向垂 直的增益补偿结构, 和两排增益补偿单元的排列方向与所述 TM波传播方向垂直的增益补 偿结构, 所述馈电结构在所述底板背离所述顶板一面的投影位于所述环形增益结构在所述 底板背离所述顶板一面的投影围成的区域内。
结合上述第三种可能的实现方式, 在第五种可能的实现方式中, 每一个所述增益补偿 单元中, 所述第一耦合结构和所述第二耦合结构之间为无源互易结构。
结合上述第五种可能的实现方式, 在第六种可能的实现方式中, 每一个所述增益补偿 单元中:
所述第一耦合结构为耦合探针 , 且耦合探针的第一端与其对应的第一单级行波放大单 元的输入端之间通过导体连接, 耦合探针的第二端伸入所述顶板和所述底板之间; 所述第 二耦合结构为耦合探针, 且耦合探针的第一端与其对应的第一单级行波放大单元的输出端 之间通过导体连接, 耦合探针的第二端伸入所述顶板和所述底板之间; 其中:
当一排增益补偿结构中增益补偿单元的排列方向与所述 TE波传播方向垂直时, 每一 个所述耦合探针的第二端形成一对称偶极子, 且第一端与所述第一单级行波放大单元之间 的导体具有 18。 巴伦结构;
当一排增益补偿结构中增益补偿单元的排列方向与所述 TM波传播方向垂直时, 每一 个所述耦合探针的第二端形成环形结构。
结合上述第六种可能的实现方式, 在第七种可能的实现方式中, 当一排增益补偿结构 中增益补偿单元的排列方向与所述 TE波传播方向垂直时, 每一个耦合探针距离所述展蔽 结构的间距为所述 TE波波长的四分之一;
当一排增益补偿结构中增益补偿单元的排列方向与所述 TM波传播方向垂直时, 每一 个耦合探针距离所述展蔽结构的间距为所述 TM波波长的二分之一。
结合上述第七种可能的实现方式, 在第八种可能的实现方式中, 当一排增益补偿结构 中增益补偿单元的排列方向与所述 TE波传播方向垂直时, 相邻的两个耦合探针之间的间 距小于等于所述 TE波波长的二分之一;
当一排增益补偿结构中增益补偿单元的排列方向与所述 TM波传播方向垂直时, 相邻 的两个耦合探针之间的间距小于等于所述 TM波波长的二分之一。
结合上述第一方面, 在第九种可能的实现方式中, 所述顶板设有的多个泄漏用的辐射 结构, 包括:
所述顶板开设的多个矩形开槽, 每一个所述辐射区内的矩形开槽阵列分布, 且每一个 矩形开槽中, 任意相邻的两个侧壁中, 一个侧壁与所述馈电结构激励产生的 TM波传播方 向垂直, 另一个侧壁与所述馈电结构激励产生的 TE波传播方向垂直; 或者,
所述顶板开设的多个相互平行的长槽, 且所述长槽的长度方向与所述馈电结构激励产 生的 TM波传播方向垂直, 或者, 所述长槽的长度方向与所述馈电结构激励产生的 TE波 传播方向垂直。
结合上述第一方面、 第一种可能的实现方式、 第二种可能的实现方式、 第三种可能的 实现方式、 第四种可能的实现方式、 第五种可能的实现方式、 第六种可能的实现方式、 第 七种可能的实现方式、 第八种可能的实现方式、 第九种可能的实现方式, 在第十种可能的 实现方式中, 每一个所述增益补偿单元中, 每一排所述增益补偿单元具有的第一单级行波 放大单元位于所述顶板背离所述底板的一侧, 且所述顶板与每一个所述单级行波放大单元 之间具有介盾层, 每一个所述单级行波放大单元的接地端通过接地线与所述顶板连接。
结合上述第一方面、 第一种可能的实现方式、 第二种可能的实现方式、 第三种可能的 实现方式、 第四种可能的实现方式、 第五种可能的实现方式、 第六种可能的实现方式、 第 七种可能的实现方式、 第八种可能的实现方式、 第九种可能的实现方式, 在第十一种可能 的实现方式中, 每一个所述增益补偿单元中, 还包括第二单级行波放大单元; 所述第二单 级行波放大单元的输入端与所述第二耦合结构之间、 以及所述第一单级行波放大单元的输 出端与所述第二耦合结构之间设有开关结构, 所述第二单级行波放大单元的输出端与所述 第一耦合结构之间、 所述第一单级行波放大单元的输入端与所述第一耦合结构之间设有开 关结构; 其中,
当所述开关结构和开关结构均处于第一状态时, 所述第一单级行波放大单元的输入端 与所述第一耦合结构连接 , 且输出端与所述第二耦合结构连接;
当所述开关结构和开关结构均处于第二状态时, 所述第二单级行波放大单元的输出端 与所述第一耦合结构连接 , 且输入端与所述第二耦合结构连接。
第二方面, 提供一种无线设备, 包括上述第一方面及其各种可能的实现方式中提供的 任一种天线
上述第一方面提供的天线、 以及第二方面提供的无线设备, 上述天线中底板设有的馈 电结构可以在天线的顶板和底板之间激励产生 TE波和 TM波,然后 TE波与 TM波通过顶 板设有的辐射结构以漏波形式被辐射出去, 天线具有的多排增益补偿结构中, 每一个增益 补偿单元具有的第一单级行波放大单元工作时, 其输入端与屏蔽结构朝向馈电结构一侧的 第一耦合结构连接, 输出端与屏蔽结构背离馈电结构一侧的第二耦合结构连接, 因此, 第 一单级行波放大单元工作时, 每一排增益补偿结构两侧的辐射区中, 第一耦合结构可以将 距离馈电结构较近的辐射区对应的天线结构内的信号导入到第一单级行波放大单元中, 以 通过第一单级行波放大单元对已经衰减的信号幅度进行增益补偿, 然后再通过第二耦合结 构输入到距离馈电结构较远的辐射区对应的天线结构内。 已经衰减了的信号在通过第一单 级行波放大单元之后其衰减的信号幅度可以通过第一单级行波放大单元进行增益补偿, 进 而抑制了信号由于天线逐步漏波辐射导致的幅度逐步衰减这种削推效应, 因此, 提高了天 线的口径效率, 提高了天线增益。
所以, 本发明提供的天线能够提高天线的口径效率, 提高天线的增益性。 附图说明 为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例中所需要使用的附图 作筒单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域 普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附 图。
图 1为本发明一种实施例提供的天线的结构示意图;
图 2为本发明一种实施例提供的天线中增益补偿单元的结构示意图;
图 3为本发明一种实施例提供的天线中增益补偿单元的原理示意图;
图 4a〜图 4c为本发明提供的天线中增益补偿单元的几种分布结构示意图;
图 5为本发明另一种实施例提供的天线中增益补偿单元的结构示意图;
图 6为本发明一种实施例提供的天线中一种耦合结构的结构示意图; 图 7为本发明另一种实施例提供的天线中一种耦合结构的结构示意图; 图 8为图 7所示结构的耦合结构的侧视图;
图 9a〜图 9c为本发明一种实施例提供的天线中顶板设置的辐射结构的结构示意图; 图 10 为本发明一种实施例提供的天线中增益补偿单元具有分时双向增益补偿的原理 示意图。 具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地 描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本 发明中的实施例, 本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实 施例, 都属于本发明保护的范围。
本发明实施例提供了一种天线及具有该天线的无线设备, 该天线能够对天线顶板和底 板之间的信号进行增益补偿, 进而抑制了信号由于天线逐步漏波辐射导致的幅度逐步衰减 这种削推效应, 提高了天线的口径效率, 提高了天线增益。 下面结合附图对上述天线及无 线设备进行描述。
请参考图 1、 图 2和图 3 , 图 1为本发明一种实施例提供的天线的结构示意图; 图 2 为本发明一种实施例提供的天线中增益补偿单元的结构示意图; 图 3为本发明一种实施例 提供的天线中增益补偿单元的原理示意图。
如图 1所示, 本发明实施例提供的天线包括:
本体, 本体具有平行设置的顶板 1和底板 2, 顶板 1设有多个泄漏用的辐射结构 11 , 底板 2设有馈电结构 21 , 馈电结构 21用于信号激励, 以在顶板 1和底板 2之间产生能够 传播的 TE波及 TM波;
多排增益补偿结构 12, 多排增益补偿结构 12将天线的本体划分为多个辐射区, 每一 个辐射区内包括一部分辐射结构, 以图 1所示的天线为例, 如四排增益补偿结构 122围成 的辐射区 a、位于四排增益补偿结构 122和四排增益补偿结构 121之间的辐射区 b、以及位 于四排增益补偿结构 121之外的辐射区 c。
以图 1所示的天线结构、 以及辐射区 b和辐射区 c之间的增益补偿单元 121为例, 具 体地, 每一排增益补偿结构 121包括多个增益补偿单元, 和沿多个增益补偿单元的排列方 向延伸的屏蔽结构 124, 屏蔽结构 124位于顶板 1和底板 2之间, 以将辐射区 b和辐射区 c之间隔离, 进而对辐射区 b和辐射区 c位于顶板 1和底板 2之间的信号通道隔断; 其中, 请结合图 1参考图 2, 如图 2所示, 每一个增益补偿单元包括:
第一耦合结构 123 , 第一耦合结构 123位于屏蔽结构 124朝向馈电结构 21—侧, 且第 一耦合结构 123的至少一部分位于顶板 1和底板 2之间; 第二耦合结构 125 , 第二耦合结构 125位于屏蔽结构 124背离馈电结构 21—侧, 且第 二耦合结构 125的至少一部分位于顶板 1和底板 2之间;
第一单级行波放大单元 126, 第一单级行波放大单元 126工作时, 其输入端与第一耦 合结构 123连接,且输出端与第二耦合结构 125连接。优选地,第一单级行波放大单元 126 位于本体的外侧。
上述天线中, 底板 2设有的馈电结构 21可以在天线的顶板 1和底板 2之间激励产生 TE波和 TM波, 然后 TE波与 TM波通过顶板 1设有的辐射结构 11以漏波形式被辐射出 去; 继续以图 2所示结构的增益补偿单元为例, 请结合图 2和图 3 , 天线具有的多排增益 补偿结构 12中, 每一个增益补偿单元具有的第一单级行波放大单元 126工作时, 其输入 端与屏蔽结构 124朝向馈电结构 21—侧的第一耦合结构 123连接,输出端与屏蔽结构 124 背离馈电结构 21—侧的第二耦合结构 125连接, 因此, 第一单级行波放大单元 126工作 时, 辐射区 b和辐射区 c中, 第一耦合结构 123可以将距离馈电结构 21较近的辐射区 b 对应的天线结构内的信号导入到第一单级行波放大单元 126中, 以通过第一单级行波放大 单元 126对已经衰减的信号幅度进行增益补偿, 然后再经过第二耦合结构 125输入到距离 馈电结构 21较远的辐射区 c对应的天线结构内。已经衰减了的信号在通过第一单级行波放 大单元 126之后其衰减的信号幅度可以通过第一单级行波放大单元 126进行增益补偿, 进 而抑制了信号由于天线逐步漏波辐射导致的幅度逐步衰减这种削推效应 , 由此提高了天线 的口径效率以及天线增益。
所以, 本发明提供的天线能够提高天线的口径效率和天线的增益。
一种实施例中, 天线具有的顶板 1为具有左手材料、 或右手材料结构的金属板; 底板 2为良导体金属、 或者具有左手材料或右手材料结构的金属板。 顶板 1和底板 2釆用金属 左手材料或者金属右手材料制备, 能够对辐射波形进行灵活控制, 以能够实现对特定波束 以及从边射到端射的扫描波束的控制。
一种实施例中, 天线具有的顶板 1和底板 2之间填充有空气, 且顶板 1与底板 2之间 设有支撑结构, 该支撑结构支撑于顶板 1与底板 2之间; 或者,
顶板 1与底板 2之间设有介盾层,这样在实际生产中可以釆用低成本的 PCB工艺制备 上述天线, 以降低天线的设备成本。
一种实施例中, 请结合图 1参考图 4a〜图 4c, 多排增益补偿单元 12中:
如图 4a和图 4c所示,至少一排增益补偿结构 12中的增益补偿单元的排列方向与馈电 结构 21激励产生的 TE波传播方向 E1和 E2垂直, 且至少一排增益补偿结构 12中的增益 补偿单元的排列方向与馈电结构 21激励产生的 TM波传播方向 Ml和 M2垂直; 或者, 每一排增益补偿结构 12的增益补偿单元的排列方向与馈电结构激励产生的 TE波传播 方向 E1和 E2垂直; 或者, 如图 4b所示, 每一排增益补偿结构 12的增益补偿单元的排列方向与馈电结构激励产 生的 TM波传播方向 Ml和 M2垂直。
如图 1和图 4a所示, 一种优选实施方式中, 当多排增益补偿单元 12中, 至少一排增 益补偿结构 12中的增益补偿单元的排列方向与馈电结构 21激励产生的 TE波传播方向 E1 和 E2垂直, 且至少一排增益补偿结构 12中的增益补偿单元的排列方向与馈电结构 21激 励产生的 TM波传播方向 Ml和 M2垂直时,上述多排增益补偿单元 12形成至少一个环形 增益补偿结构, 如图 1中所示的四排增益补偿单元 121形成的环形增益补偿结构, 和四排 增益补偿单元 122形成的环形增益补偿结构, 其中:
每一个环形增益补偿结构包括两排增益补偿单元的排列方向与 TE波传播方向垂直的 增益补偿结构 12,和两排增益补偿单元的排列方向与与 TM波传播方向垂直的增益补偿结 构 12, 馈电结构 21在底板 2背离顶板 1一面的投影位于环形增益结构在底板 1背离顶板 2—面的投影围成的区域内。 如图 1中所示, 馈电结构 21在底板 1背离顶板 2—面的投影 位于辐射区 a在底板 1背离顶板 2—面的投影内。
另一种优选实施方式中, 如图 2所示, 每一排增益补偿单元 12中, 第一耦合结构 123 和第二耦合结构 125之间为无源互易结构。
进一步地, 请结合图 5参考图 6和图 7, 每一个增益补偿单元中, 第一耦合结构 123 为耦合探针, 如图 7中所示的耦合探针 1231 , 耦合探针 1231的第一端与其对应的第一单 级行波放大单元 126的输入端之间通过导体 127连接, 且耦合探针 1231的第二端伸入顶 板 1和底板 2之间; 第二耦合结构 125为耦合探针, 如图 6中所示的 1251 , 每一个耦合探 针 1251的第一端与其对应的第一单级行波放大单元 126的输出端之间通过导体 128连接, 且第二端伸入顶板 1和底板 2之间。
其中, 如图 6所示, 当一排增益补偿结构 12中增益补偿单元的排列方向与馈电结构 21激励产生的 TE波传播方向垂直时, 如图 6中所示, 与该排增益补偿单元对应的每一个 耦合探针 1231和耦合探针 1251的第二端形成对称偶极子, 且耦合探针 1231的第一端与 第一单级行波放大单元 126之间的导体 127具有 180。 巴伦结构,且耦合探针 1251的第一 端与第一单级行波放大单元 126之间的导体 128具有 180。 巴伦结构; 因电场方向平行于 天线板, 对称偶极子上的感应电流反向需要经过 180° 巴伦结构实现合并。
如图 7所示, 当一排增益补偿结构 12中的增益补偿单元的排列方向与馈电结构 21激 励产生的 TM波传播方向垂直时, 如图 7中所示, 与该排增益补偿单元对应的每一个耦合 探针 1231和耦合探针 1251的第二端形成环形结构。
更近一步地, 如图 6所示, 当一排增益补偿结构 12中的增益补偿单元的排列方向与 馈电结构 21激励产生的 TE波传播方向 E1和 E2垂直时, 每一个耦合探针 1231和耦合探 针 1251距离屏蔽结构 124的间距 d为 TE波波长的四分之一, 因为此处为 TE波的电场强 度最强处。
如图 7和图 8所示, 当一排增益补偿结构 12中的增益补偿单元的排列方向与馈电结 构 21激励产生的 TM波传播方向垂直时, 每一个耦合探针 1231以及耦合探针 1251距离 屏蔽结构 124的间距 D为 TM波波长的二分之一, 因为此处为 TM波的磁场最强处。
更近一步地, 当一排增益补偿结构 12中的增益补偿单元的排列方向与馈电结构 21激 励产生的 TE波传播方向垂直时,相邻的两个耦合探针之间的间距小于等于 TE波波长的二 分之一, 以避免高次模传播;
当一排增益补偿结构 12中的增益补偿单元的排列方向与馈电结构 21激励产生的 TM 波传播方向垂直时, 相邻的两个耦合探针之间的间距小于等于 TM波波长的二分之一, 以 避免高次模传播。
一种实施例中, 请参考图 9a〜图 9c, 顶板 1设有的多个泄漏用的辐射结构 11 , 包括: 如图 9a所示, 辐射结构 11可以为顶板 1开设的多个矩形开槽, 每一个辐射区内的矩 形开槽阵列分布, 且每一个矩形开槽中, 任意相邻的两个侧壁中, 一个侧壁与馈电结构 21 激励产生的 TM波传播方向垂直, 另一个侧壁与馈电结构 21激励产生的 TE波传播方向垂 直; 或者,
如图 9b和图 9c所示,辐射机构 11还可以为顶板 1开设的多个相互平行的长槽,长槽 的长度方向与馈电结构 21激励产生的 TE波传播方向垂直; 或者如图 9c所示, 长槽的长 度方向与馈电结构 21激励产生的 TM波传播方向垂直。
一种实施例中, 请参考图 2和图 5 , 上述多排增益补偿结构 12中, 每一排增益补偿结 构 12具有的第一单级行波放大单元 126位于顶板 1背离底板 2的一侧, 且顶板 1与每一 个单级行波放大单元 126之间具有介盾层 3 , 每一个第一单级行波放大单元 126的接地端 通过接地线 1261与顶板 1连接, 以实现第一单级行波放大单元 126的接地。 介盾层 3可 以仅仅设置在第一单级行波放大单元 126与顶板 1之间, 如图 2所示; 介盾层 3还可以覆 盖顶板 1背离底板 2的侧面, 如图 5所示。 当然, 第一单级行波放大单元 126还可以形成 于上述背板 2背离顶板 1的一侧, 具体结构这里不再赘述。
请参考图 10,—种实施例中,每一个增益补偿单元还包括第二单级行波放大单元 129; 第二单级行波放大单元 129的输入端与第二耦合结构 125之间、 以及第一单级行波放大单 元 126的输出端与第二耦合结构 125之间设有开关结构 130, 第二单级行波放大单元 129 的输出端与第一耦合结构 123之间、 第一单级行波放大单元的输入端与第一耦合结构 123 之间设有开关结构 131 ; 其中,
当开关结构 130和开关结构 131均处于第一状态时, 第一单级行波放大单元 126的输 入端与第一耦合结构 123连接, 且输出端与第二耦合结构 125连接;
当开关结构 130和开关结构 131均处于第二状态时, 第二单级行波放大单元 129的输 出端与第一耦合结构 123连接, 且输入端与第二耦合结构 125连接。
上述结构的天线中, 每一个增益补偿单元中的第一单级行波放大单元 126和第二单级 行波放大单元 129并排设置, 且通过两个开关 130相互连接, 第一单级行波放大单元 126 和第二单级行波放大单元 129之间可以实现分时控制, 且由于第一单级行波放大单元 126 与第二单级行波放大单元 129的放大方向相反, 对应的信号流向相反, 进而使天线实现分 时双向通信的作用。
一种实施例中, 天线底板 2设置的馈电结构可以有多种结构, 如:
同轴线馈电结构; 或者,
波导馈电结构, 如矩形波导馈电结构, 矩形波导的尺寸为对应工作频段的标准波导即 可, 同样为了能够使矩形波导最大程度的激励起对应的 TE波及 TM波, 其放置方法要求 矩形波导的长边与 TE波的传播方向相同, 短边与 TM波的传播方向相同, 矩形波导的波 导口面与底板 2平行并位于底板 2的下方, 在底板 2上开设与矩形波导的波导口同样大小 的矩形口、 以将矩形波导的信号引入到天线中, 进而实现对天线的馈电; 或者,
电偶极子馈电结构, 电偶极子的长度通常为半个波长, 为了使电偶极子能够最大程度 的激励起对应的 TE波及 TM波, 电偶极子的放置方法为: 电偶极子的方向与底板 2平行、 且与 TM波的传播方向平行,电偶极子双馈线的方向垂直于底板 2且并位于底板 2的下方, 通过在底板 2设置的开孔使得电偶极子能够置于天线内部从而实现对天线的馈电; 或者, 或者折叠电偶极子馈电结构; 或者,
磁偶极子馈电结构, 馈电结构为底板 2上开设的缝隙槽馈电结构, 缝隙的长度大约为 半个工作波长, 为了使波导能够最大程度的激励起对应的 TE波及 TM波, 其放置方法要 求: 缝隙的长边与 TE波的传播方向相同, 缝隙可以通过在底板 2下方开缝得到, 通过缝 隙耦合将波导信号耦合到天线主结构之中。
另一方面, 本发明实施例还提供了一种无线设备, 包括上述各实施例及其实施方式中 提供的天线。
显然, 本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明的 精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范 围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种天线, 其特征在于, 包括:
本体, 所述本体具有平行设置的顶板( 1 )和底板(2), 所述顶板( 1 )设有多个泄漏 信号用的辐射结构( 11 ), 所述底板( 2 )设有信号激励用的馈电结构( 21 ), 以在顶板( 1 ) 和底板( 2 )之间产生能够传播的 TE波及 TM波;
多排增益补偿结构 ( 12), 以将所述本体划分为至少两个辐射区, 每个辐射区包括所 述多个辐射结构 (11 ) 中的一部分辐射结构; 每一排所述增益补偿结构 (12) 包括多个增 益补偿单元和沿所述多个增益补偿单元排列方向延伸的屏蔽结构 ( 124); 其中, 所述展蔽 结构 ( 124)位于所述顶板( 1 )和所述底板(2)之间, 以将两个所述辐射区之间隔离, 且每一个增益补偿单元包括:
第一耦合结构 (123), 所述第一耦合结构 (123)位于所述展蔽结构 (124)朝向所述 馈电结构 (21 )—侧, 且所述第一耦合结构 (123) 的至少一部分位于所述顶板(1 )和所 述底板(2)之间;
第二耦合结构 ( 125 ), 所述第二耦合结构 ( 125 )位于所述展蔽结构 ( 124) 背离所述 馈电结构 (21 )—侧, 且所述第二耦合结构 (125) 的至少一部分位于所述顶板(1 )和所 述底板(2)之间;
第一单级行波放大单元(126), 所述第一单级行波放大单元 (126) 工作时, 其输入 端与所述第一耦合结构 (123)连接, 且输出端与所述第二耦合结构 (125)连接。
2、 根据权利要求 1所述的天线, 其特征在于, 所述顶板( 1 ) 为具有左手材料或右手 材料结构的金属板; 所述底板(2) 为良导体金属、 或者具有左手材料或右手材料结构的 金属板。
3、 根据权利要求 1所述的天线, 其特征在于,
所述顶板( 1 )和底板( 2 )之间填充有空气, 且所述顶板( 1 )和所述底板( 2 )设有 支撑结构, 支撑于所述顶板( 1 )和底板(2)之间; 或者,
所述顶板( 1 ) 与所述底板(2)之间设有介盾层。
4、 根据权利要求 1所述的天线, 其特征在于, 所述多排增益补偿结构 (12) 中: 至少一排所述增益补偿结构 (12) 的增益补偿单元的排列方向与所述馈电结构 (21 ) 激励产生的 TE波传播方向垂直, 且至少一排所述增益补偿结构 (12) 的增益补偿单元的 排列方向与所述馈电结构 (21 )激励产生的 TM波传播方向垂直; 或者,
每一排所述增益补偿结构 (12) 中的增益补偿单元的排列方向与所述馈电结构 (21 ) 激励产生的 TE波传播方向垂直; 或者,
每一排所述增益补偿结构 (12) 中的增益补偿单元的排列方向与所述馈电结构 (21 ) 激励产生的 TM波传播方向垂直。
5、 根据权利要求 4 所述的天线, 其特征在于, 所述多排增益补偿结构 (12 )形成至 少一个封闭环形的增益补偿结构, 其中:
每一个所述增益补偿结构包括两排增益补偿单元的排列方向与所述 TE波传播方向垂 直的增益补偿结构 (12 ), 和两排增益补偿单元的排列方向与所述 TM 波传播方向垂直的 增益补偿结构 ( 12 ), 所述馈电结构 (21 )在所述底板(2 ) 背离所述顶板( 1 )一面的投 影位于所述环形增益结构在所述底板(2 ) 背离所述顶板(1 )一面的投影围成的区域内。
6、 根据权利要求 4 所述的天线, 其特征在于, 每一个所述增益补偿单元中, 所述第 一耦合结构 (123 )和所述第二耦合结构 (125 )之间为无源互易结构。
7、 根据权利要求 6 所述的天线, 其特征在于, 每一个所述增益补偿单元中, 所述第 一耦合结构 (123 ) 为耦合探针, 且耦合探针的第一端与其对应的第一单级行波放大单元
( 126 ) 的输入端之间通过导体 ( 127 ) 连接, 耦合探针的第二端伸入所述顶板( 1 )和所 述底板(2 )之间; 所述第二耦合结构 (125 )为耦合探针, 且耦合探针的第一端与其对应 的第一单级行波放大单元(126 ) 的输出端之间通过导体(128 )连接, 耦合探针的第二端 伸入所述顶板( 1 )和所述底板(2 )之间; 其中:
当一排增益补偿结构(12 )中增益补偿单元的排列方向与所述 TE波传播方向垂直时, 每一个所述耦合探针的第二端形成一对称偶极子, 且第一端与所述第一单级行波放大单元 ( 126 )之间的导体具有 180。 巴伦结构;
当一排增益补偿结构( 12 )中增益补偿单元的排列方向与所述 TM波传播方向垂直时, 每一个所述耦合探针的第二端形成环形结构。
8、 根据权利要求 7所述的天线, 其特征在于,
当一排增益补偿结构(12 )中增益补偿单元的排列方向与所述 TE波传播方向垂直时, 每一个耦合探针距离所述展蔽结构 (124 ) 的间距为所述 TE波波长的四分之一;
当一排增益补偿结构( 12 )中增益补偿单元的排列方向与所述 TM波传播方向垂直时, 每一个耦合探针距离所述展蔽结构 (124 ) 的间距为所述 TM波波长的二分之一。
9、 根据权利要求 8所述的天线, 其特征在于,
当一排增益补偿结构(12 )中增益补偿单元的排列方向与所述 TE波传播方向垂直时, 相邻的两个耦合探针之间的间距小于等于所述 TE波波长的二分之一;
当一排增益补偿结构( 12 )中增益补偿单元的排列方向与所述 TM波传播方向垂直时, 相邻的两个耦合探针之间的间距小于等于所述 TM波波长的二分之一。
10、 根据权利要求 1 所述的天线, 其特征在于, 所述顶板( 1 )设有的多个泄漏用的 辐射结构 ( 11 ), 包括:
所述顶板( 1 )开设的多个矩形开槽, 每一个所述辐射区内的矩形开槽阵列分布, 且 每一个矩形开槽中, 任意相邻的两个侧壁中, 一个侧壁与所述馈电结构 (21 )激励产生的 TM波传播方向垂直, 另一个侧壁与所述馈电结构 (21 )激励产生的 TE波传播方向垂直; 或者,
所述顶板(1 )开设的多个相互平行的长槽, 且所述长槽的长度方向与所述馈电结构 (21 )激励产生的 TM波传播方向垂直, 或者, 所述长槽的长度方向与所述馈电结构(21 ) 激励产生的 TE波传播方向垂直。
11、 根据权利要求 1~10任一项所述的天线, 其特征在于, 每一个所述增益补偿单元 中, 所述第一单级行波放大单元(126)位于所述顶板(1 ) 背离所述底板(2) 的一侧, 且所述顶板(1 ) 与每一个所述单级行波放大单元之间具有介盾层 (3), 每一个所述单级 行波放大单元的接地端通过接地线 ( 1261 ) 与所述顶板( 1 )连接。
12、 根据权利要求 1~10任一项所述的天线, 其特征在于, 每一个所述增益补偿单元 还包括第二单级行波放大单元 (129); 所述第二单级行波放大单元(129) 的输入端与所 述第二耦合结构 (125)之间、 以及所述第一单级行波放大单元(126) 的输出端与所述第 二耦合结构 (125)之间设有开关结构 (130), 所述第二单级行波放大单元(129) 的输出 端与所述第一耦合结构 (123)之间、 所述第一单级行波放大单元的输入端与所述第一耦 合结构 ( 123 )之间设有开关结构 ( 131 ); 其中,
当所述开关结构 (130)和开关结构 (131 ) 均处于第一状态时, 所述第一单级行波放 大单元(126) 的输入端与所述第一耦合结构 (123)连接, 且输出端与所述第二耦合结构 ( 125 )连接;
当所述开关结构 (130)和开关结构 (131 ) 均处于第二状态时, 所述第二单级行波放 大单元(129) 的输出端与所述第一耦合结构 (123)连接, 且输入端与所述第二耦合结构 ( 125 )连接。
13、 一种无线设备, 其特征在于, 包括如权利要求 1~12任一项所述的天线。
PCT/CN2014/077276 2014-05-12 2014-05-12 一种天线及无线设备 WO2015172291A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14891785.9A EP3091611B1 (en) 2014-05-12 2014-05-12 Antenna and wireless device
ES14891785T ES2746398T3 (es) 2014-05-12 2014-05-12 Antena y dispositivo inalámbrico
CN201480076142.4A CN106063035B (zh) 2014-05-12 2014-05-12 一种天线及无线设备
PCT/CN2014/077276 WO2015172291A1 (zh) 2014-05-12 2014-05-12 一种天线及无线设备
US15/237,205 US10186757B2 (en) 2014-05-12 2016-08-15 Antenna and wireless device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/077276 WO2015172291A1 (zh) 2014-05-12 2014-05-12 一种天线及无线设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/237,205 Continuation US10186757B2 (en) 2014-05-12 2016-08-15 Antenna and wireless device

Publications (1)

Publication Number Publication Date
WO2015172291A1 true WO2015172291A1 (zh) 2015-11-19

Family

ID=54479118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/077276 WO2015172291A1 (zh) 2014-05-12 2014-05-12 一种天线及无线设备

Country Status (5)

Country Link
US (1) US10186757B2 (zh)
EP (1) EP3091611B1 (zh)
CN (1) CN106063035B (zh)
ES (1) ES2746398T3 (zh)
WO (1) WO2015172291A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10818119B2 (en) 2009-02-10 2020-10-27 Yikes Llc Radio frequency antenna and system for presence sensing and monitoring
JP2021519440A (ja) 2018-03-19 2021-08-10 シンペロ・エルエルシー 厳密に画定されたワイヤレスゾーン内の存在を検出するためのシステムおよび方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101395759A (zh) * 2006-02-06 2009-03-25 三菱电机株式会社 高频模件
CN101533960A (zh) * 2009-04-15 2009-09-16 东南大学 毫米波四极化频率扫描天线
CN102394378A (zh) * 2011-11-01 2012-03-28 东南大学 高增益垂直极化全金属扇区天线

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4150382A (en) * 1973-09-13 1979-04-17 Wisconsin Alumni Research Foundation Non-uniform variable guided wave antennas with electronically controllable scanning
US6028562A (en) * 1997-07-31 2000-02-22 Ems Technologies, Inc. Dual polarized slotted array antenna
SE517155C2 (sv) * 1999-09-08 2002-04-23 Ericsson Telefon Ab L M Fördelningsnät, samt antennanordning innefattande sådant fördelningsnät
US6870438B1 (en) * 1999-11-10 2005-03-22 Kyocera Corporation Multi-layered wiring board for slot coupling a transmission line to a waveguide
JP4021150B2 (ja) * 2001-01-29 2007-12-12 沖電気工業株式会社 スロットアレーアンテナ
JP3874279B2 (ja) * 2001-03-21 2007-01-31 マイクロフェース カンパニー リミテッド 導波管スロットアンテナ
US6839030B2 (en) * 2003-05-15 2005-01-04 Anritsu Company Leaky wave microstrip antenna with a prescribable pattern
EP1508940A1 (en) * 2003-08-19 2005-02-23 Era Patents Limited Radiation controller including reactive elements on a dielectric surface
EP2269266A4 (en) 2008-03-25 2014-07-09 Tyco Electronics Services Gmbh ADVANCED ACTIVE METAMATERIAL ANTENNA SYSTEMS
US8457581B2 (en) * 2009-06-09 2013-06-04 Broadcom Corporation Method and system for receiving I and Q RF signals without a phase shifter utilizing a leaky wave antenna
US8508422B2 (en) * 2009-06-09 2013-08-13 Broadcom Corporation Method and system for converting RF power to DC power utilizing a leaky wave antenna
CN103441340B (zh) * 2013-08-14 2016-05-04 北京航空航天大学 极化可变和频率扫描的半模基片集成波导漏波天线

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101395759A (zh) * 2006-02-06 2009-03-25 三菱电机株式会社 高频模件
CN101533960A (zh) * 2009-04-15 2009-09-16 东南大学 毫米波四极化频率扫描天线
CN102394378A (zh) * 2011-11-01 2012-03-28 东南大学 高增益垂直极化全金属扇区天线

Also Published As

Publication number Publication date
EP3091611A4 (en) 2017-03-01
EP3091611A1 (en) 2016-11-09
US20160352001A1 (en) 2016-12-01
EP3091611B1 (en) 2019-07-24
CN106063035A (zh) 2016-10-26
US10186757B2 (en) 2019-01-22
CN106063035B (zh) 2019-04-05
ES2746398T3 (es) 2020-03-06

Similar Documents

Publication Publication Date Title
Lan et al. An aperture-sharing array for (3.5, 28) GHz terminals with steerable beam in millimeter-wave band
WO2021068442A1 (zh) 低损耗馈电网络和高效率天线设备
US9793611B2 (en) Antenna
US8072386B2 (en) Horn antenna, waveguide or apparatus including low index dielectric material
KR102614892B1 (ko) 안테나 유닛 및 단말 장비
Arizaca-Cusicuna et al. High gain 4x4 rectangular patch antenna array at 28GHz for future 5G applications
JP6195935B2 (ja) アンテナ要素、アンテナ要素を有する放射器、二重偏波電流ループ放射器およびフェーズドアレイアンテナ
US10312601B2 (en) Combination antenna element and antenna array
CN109742538B (zh) 一种移动终端毫米波相控阵磁偶极子天线及其天线阵列
CN104752820A (zh) 一种背腔缝隙天线阵列
US11437736B2 (en) Broadband antenna having polarization dependent output
CN110112561A (zh) 一种单极化天线
CN105874648A (zh) 具有可重配置径向波导的双极化宽带灵活圆柱形天线阵列的装置和方法
WO2015172291A1 (zh) 一种天线及无线设备
CN206850028U (zh) 宽带高增益垂直极化全向天线
Shahadan et al. Investigation on feeding techniques for rectangular dielectric resonator antenna in higher-order mode for 5G applications
CN111541016A (zh) 一种用于毫米波手机终端的多模式宽带贴片天线阵列
CN116073112B (zh) 天线和基站设备
Elboushi et al. 4-elements MMW array with EBG feeding network
US20080048916A1 (en) Amplified patch antenna reflect array
Lee et al. Long slot array (LSA) antenna integrated with compact broadband coupled microstrip impedance transformer
Hashimoto et al. Design and fabrication of a dual-polarization corporate-feed waveguide 32× 32-slot array antenna for 120 GHz band
Yin et al. Characterization and design of millimeter-wave full-band waveguide-based spatial power divider/combiner
Khan et al. Substrate integrated waveguide slot-fed grid array antenna
Phalak et al. Surface integrated waveguide fed antipodal fermi-linear tapered slot antenna at 28 ghz

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14891785

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014891785

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014891785

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE