WO2015166971A1 - Phase difference film roll, method for manufacturing same, polarizer, and liquid-crystal display device - Google Patents
Phase difference film roll, method for manufacturing same, polarizer, and liquid-crystal display device Download PDFInfo
- Publication number
- WO2015166971A1 WO2015166971A1 PCT/JP2015/062916 JP2015062916W WO2015166971A1 WO 2015166971 A1 WO2015166971 A1 WO 2015166971A1 JP 2015062916 W JP2015062916 W JP 2015062916W WO 2015166971 A1 WO2015166971 A1 WO 2015166971A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- group
- retardation film
- retardation
- general formula
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 90
- 239000004973 liquid crystal related substance Substances 0.000 title claims description 51
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 40
- 229920005994 diacetyl cellulose Polymers 0.000 claims abstract description 36
- 238000004804 winding Methods 0.000 claims description 126
- 125000004432 carbon atom Chemical group C* 0.000 claims description 85
- 125000003118 aryl group Chemical group 0.000 claims description 75
- 125000000217 alkyl group Chemical group 0.000 claims description 72
- 150000001875 compounds Chemical class 0.000 claims description 55
- 125000001424 substituent group Chemical group 0.000 claims description 43
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 41
- 210000002858 crystal cell Anatomy 0.000 claims description 26
- 230000001681 protective effect Effects 0.000 claims description 21
- 230000002829 reductive effect Effects 0.000 claims description 20
- 239000000178 monomer Substances 0.000 claims description 16
- 238000005259 measurement Methods 0.000 claims description 13
- 229920000642 polymer Polymers 0.000 claims description 11
- 125000002947 alkylene group Chemical group 0.000 claims description 5
- 239000000470 constituent Substances 0.000 abstract 1
- 238000005096 rolling process Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 386
- 238000003860 storage Methods 0.000 description 38
- -1 triazine ring compound Chemical class 0.000 description 37
- 125000001072 heteroaryl group Chemical group 0.000 description 34
- 125000003342 alkenyl group Chemical group 0.000 description 23
- 230000000052 comparative effect Effects 0.000 description 22
- 230000006866 deterioration Effects 0.000 description 21
- 239000000243 solution Substances 0.000 description 20
- 125000000304 alkynyl group Chemical group 0.000 description 19
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 18
- 239000000463 material Substances 0.000 description 18
- 235000000346 sugar Nutrition 0.000 description 17
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 16
- 229910052751 metal Inorganic materials 0.000 description 16
- 239000002184 metal Substances 0.000 description 16
- 230000010287 polarization Effects 0.000 description 15
- 229920002678 cellulose Polymers 0.000 description 14
- 238000001035 drying Methods 0.000 description 13
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 13
- 239000004372 Polyvinyl alcohol Substances 0.000 description 12
- 125000005647 linker group Chemical group 0.000 description 12
- 239000002245 particle Substances 0.000 description 12
- 229920002451 polyvinyl alcohol Polymers 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 125000003545 alkoxy group Chemical group 0.000 description 11
- 238000005266 casting Methods 0.000 description 10
- 239000006224 matting agent Substances 0.000 description 10
- 239000013557 residual solvent Substances 0.000 description 9
- 238000006467 substitution reaction Methods 0.000 description 9
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 8
- 239000000306 component Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 239000010419 fine particle Substances 0.000 description 8
- 239000003112 inhibitor Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 239000004327 boric acid Substances 0.000 description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 7
- IANQTJSKSUMEQM-UHFFFAOYSA-N 1-benzofuran Chemical compound C1=CC=C2OC=CC2=C1 IANQTJSKSUMEQM-UHFFFAOYSA-N 0.000 description 6
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 6
- 229920002284 Cellulose triacetate Polymers 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 125000005843 halogen group Chemical group 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 125000000623 heterocyclic group Chemical group 0.000 description 6
- 230000007774 longterm Effects 0.000 description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 6
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 6
- 125000003226 pyrazolyl group Chemical group 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 238000002834 transmittance Methods 0.000 description 6
- 230000037303 wrinkles Effects 0.000 description 6
- 0 Cc1cccc(NC2=NC(Nc3ccc(*)cc3)=NC(Nc3cccc(C*)c3)N2)c1 Chemical compound Cc1cccc(NC2=NC(Nc3ccc(*)cc3)=NC(Nc3cccc(C*)c3)N2)c1 0.000 description 5
- 125000002252 acyl group Chemical group 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 5
- 238000004090 dissolution Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 125000001624 naphthyl group Chemical group 0.000 description 5
- 125000004430 oxygen atom Chemical group O* 0.000 description 5
- 238000007127 saponification reaction Methods 0.000 description 5
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- 125000003277 amino group Chemical group 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 125000004093 cyano group Chemical group *C#N 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 125000002883 imidazolyl group Chemical group 0.000 description 4
- 229910052740 iodine Inorganic materials 0.000 description 4
- 125000004433 nitrogen atom Chemical group N* 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 239000004014 plasticizer Substances 0.000 description 4
- 125000000168 pyrrolyl group Chemical group 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 3
- 125000001376 1,2,4-triazolyl group Chemical group N1N=C(N=C1)* 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 3
- 229910002012 Aerosil® Inorganic materials 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- 125000004423 acyloxy group Chemical group 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 125000005161 aryl oxy carbonyl group Chemical group 0.000 description 3
- 125000000732 arylene group Chemical group 0.000 description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 3
- 230000001143 conditioned effect Effects 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000004049 embossing Methods 0.000 description 3
- 150000002243 furanoses Chemical group 0.000 description 3
- 239000011630 iodine Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 125000002971 oxazolyl group Chemical group 0.000 description 3
- 229920006267 polyester film Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000004321 preservation Methods 0.000 description 3
- 150000003214 pyranose derivatives Chemical group 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 229960004793 sucrose Drugs 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 125000004434 sulfur atom Chemical group 0.000 description 3
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical group C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 2
- 125000001399 1,2,3-triazolyl group Chemical group N1N=NC(=C1)* 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical group C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical group C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000005903 acid hydrolysis reaction Methods 0.000 description 2
- 125000004442 acylamino group Chemical group 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 2
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 2
- 125000005199 aryl carbonyloxy group Chemical group 0.000 description 2
- 125000004104 aryloxy group Chemical group 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical group C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 2
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 150000001639 boron compounds Chemical class 0.000 description 2
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000000378 calcium silicate Substances 0.000 description 2
- 229910052918 calcium silicate Inorganic materials 0.000 description 2
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 235000013681 dietary sucrose Nutrition 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000004043 dyeing Methods 0.000 description 2
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- ZLTPDFXIESTBQG-UHFFFAOYSA-N isothiazole Chemical group C=1C=NSC=1 ZLTPDFXIESTBQG-UHFFFAOYSA-N 0.000 description 2
- 125000000842 isoxazolyl group Chemical group 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 2
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 150000003852 triazoles Chemical group 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- BBVIDBNAYOIXOE-UHFFFAOYSA-N 1,2,4-oxadiazole Chemical group C=1N=CON=1 BBVIDBNAYOIXOE-UHFFFAOYSA-N 0.000 description 1
- XBYRMPXUBGMOJC-UHFFFAOYSA-N 1,2-dihydropyrazol-3-one Chemical group OC=1C=CNN=1 XBYRMPXUBGMOJC-UHFFFAOYSA-N 0.000 description 1
- FKASFBLJDCHBNZ-UHFFFAOYSA-N 1,3,4-oxadiazole Chemical group C1=NN=CO1 FKASFBLJDCHBNZ-UHFFFAOYSA-N 0.000 description 1
- MBIZXFATKUQOOA-UHFFFAOYSA-N 1,3,4-thiadiazole Chemical group C1=NN=CS1 MBIZXFATKUQOOA-UHFFFAOYSA-N 0.000 description 1
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical group C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- SQAINHDHICKHLX-UHFFFAOYSA-N 1-naphthaldehyde Chemical group C1=CC=C2C(C=O)=CC=CC2=C1 SQAINHDHICKHLX-UHFFFAOYSA-N 0.000 description 1
- YUBBHLUEJPLYOZ-UHFFFAOYSA-N 1-phenyl-4-(4-phenylphenyl)benzene phosphoric acid Chemical compound P(=O)(O)(O)O.C1(=CC=CC=C1)C1=CC=C(C=C1)C1=CC=C(C=C1)C1=CC=CC=C1 YUBBHLUEJPLYOZ-UHFFFAOYSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- QWENRTYMTSOGBR-UHFFFAOYSA-N 1H-1,2,3-Triazole Chemical group C=1C=NNN=1 QWENRTYMTSOGBR-UHFFFAOYSA-N 0.000 description 1
- YQTCQNIPQMJNTI-UHFFFAOYSA-N 2,2-dimethylpropan-1-one Chemical group CC(C)(C)[C]=O YQTCQNIPQMJNTI-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- YEVQZPWSVWZAOB-UHFFFAOYSA-N 2-(bromomethyl)-1-iodo-4-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=CC=C(I)C(CBr)=C1 YEVQZPWSVWZAOB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 125000001731 2-cyanoethyl group Chemical group [H]C([H])(*)C([H])([H])C#N 0.000 description 1
- 125000002941 2-furyl group Chemical group O1C([*])=C([H])C([H])=C1[H] 0.000 description 1
- 125000004105 2-pyridyl group Chemical group N1=C([*])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 125000000175 2-thienyl group Chemical group S1C([*])=C([H])C([H])=C1[H] 0.000 description 1
- 125000000590 4-methylphenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 1
- 125000000339 4-pyridyl group Chemical group N1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- NLNNWNAHYRYVPM-UHFFFAOYSA-N Cc1cccc(Nc2nc(Nc3ccccc3C)nc(Nc3cccc(C)c3)n2)c1 Chemical compound Cc1cccc(Nc2nc(Nc3ccccc3C)nc(Nc3cccc(C)c3)n2)c1 NLNNWNAHYRYVPM-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-CUHNMECISA-N D-Cellobiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-CUHNMECISA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- MUPFEKGTMRGPLJ-RMMQSMQOSA-N Raffinose Natural products O(C[C@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O[C@@]2(CO)[C@H](O)[C@@H](O)[C@@H](CO)O2)O1)[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 MUPFEKGTMRGPLJ-RMMQSMQOSA-N 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical group C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 1
- MUPFEKGTMRGPLJ-UHFFFAOYSA-N UNPD196149 Natural products OC1C(O)C(CO)OC1(CO)OC1C(O)C(O)C(O)C(COC2C(C(O)C(O)C(CO)O2)O)O1 MUPFEKGTMRGPLJ-UHFFFAOYSA-N 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000005196 alkyl carbonyloxy group Chemical group 0.000 description 1
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 229940072049 amyl acetate Drugs 0.000 description 1
- PGMYKACGEOXYJE-UHFFFAOYSA-N anhydrous amyl acetate Natural products CCCCCOC(C)=O PGMYKACGEOXYJE-UHFFFAOYSA-N 0.000 description 1
- 125000002490 anilino group Chemical group [H]N(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical group C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Chemical group 0.000 description 1
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000001231 benzoyloxy group Chemical group C(C1=CC=CC=C1)(=O)O* 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000037237 body shape Effects 0.000 description 1
- 125000004063 butyryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- FYGDTMLNYKFZSV-ZWSAEMDYSA-N cellotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@@H](O[C@@H]2[C@H](OC(O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-ZWSAEMDYSA-N 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000006125 ethylsulfonyl group Chemical group 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 235000010855 food raising agent Nutrition 0.000 description 1
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- VANNPISTIUFMLH-UHFFFAOYSA-N glutaric anhydride Chemical compound O=C1CCCC(=O)O1 VANNPISTIUFMLH-UHFFFAOYSA-N 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-M heptanoate Chemical compound CCCCCCC([O-])=O MNWFXJYAOYHMED-UHFFFAOYSA-M 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 125000003104 hexanoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 229960004592 isopropanol Drugs 0.000 description 1
- 125000003253 isopropoxy group Chemical group [H]C([H])([H])C([H])(O*)C([H])([H])[H] 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 229960001375 lactose Drugs 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000000845 maltitol Substances 0.000 description 1
- VQHSOMBJVWLPSR-WUJBLJFYSA-N maltitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-WUJBLJFYSA-N 0.000 description 1
- 229940035436 maltitol Drugs 0.000 description 1
- 235000010449 maltitol Nutrition 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 125000001434 methanylylidene group Chemical group [H]C#[*] 0.000 description 1
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 1
- 125000000250 methylamino group Chemical group [H]N(*)C([H])([H])[H] 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 125000004170 methylsulfonyl group Chemical group [H]C([H])([H])S(*)(=O)=O 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 125000006608 n-octyloxy group Chemical group 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 125000002801 octanoyl group Chemical group C(CCCCCCC)(=O)* 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical group C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 125000001037 p-tolyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 125000006678 phenoxycarbonyl group Chemical group 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 125000001557 phthalyl group Chemical group C(=O)(O)C1=C(C(=O)*)C=CC=C1 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920006290 polyethylene naphthalate film Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- UBQKCCHYAOITMY-UHFFFAOYSA-N pyridin-2-ol Chemical group OC1=CC=CC=N1 UBQKCCHYAOITMY-UHFFFAOYSA-N 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000000246 pyrimidin-2-yl group Chemical group [H]C1=NC(*)=NC([H])=C1[H] 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- MUPFEKGTMRGPLJ-ZQSKZDJDSA-N raffinose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)O1 MUPFEKGTMRGPLJ-ZQSKZDJDSA-N 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 125000004213 tert-butoxy group Chemical group [H]C([H])([H])C(O*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 150000004867 thiadiazoles Chemical group 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 125000005425 toluyl group Chemical group 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- STCOOQWBFONSKY-UHFFFAOYSA-N tributyl phosphate Chemical compound CCCCOP(=O)(OCCCC)OCCCC STCOOQWBFONSKY-UHFFFAOYSA-N 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 description 1
- 150000004043 trisaccharides Chemical class 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 125000003774 valeryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C41/00—Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
- B29C41/24—Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/10—Esters; Ether-esters
- C08K5/101—Esters; Ether-esters of monocarboxylic acids
- C08K5/105—Esters; Ether-esters of monocarboxylic acids with phenols
- C08K5/107—Esters; Ether-esters of monocarboxylic acids with phenols with polyphenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3442—Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
- C08K5/3445—Five-membered rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3442—Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
- C08K5/3462—Six-membered rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3467—Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
- C08K5/3477—Six-membered rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L1/00—Compositions of cellulose, modified cellulose or cellulose derivatives
- C08L1/08—Cellulose derivatives
- C08L1/10—Esters of organic acids, i.e. acylates
- C08L1/12—Cellulose acetate
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13363—Birefringent elements, e.g. for optical compensation
Definitions
- the present invention relates to a roll of retardation film, a method for producing the roll, a polarizing plate, and a liquid crystal display device.
- the retardation film is used for the purpose of improving the visibility of liquid crystal display devices and the like.
- a retardation film for VA a film containing triacetyl cellulose and a retardation increasing agent such as a triazine ring compound or a rod-like compound; a film mainly composed of cellulose acetate propionate, and the like are known (for example, Patent Documents 1 and 2).
- the retardation film is also required to be thin.
- the retardation value is lowered and it is difficult to obtain a desired retardation value. Therefore, in the case of a film mainly composed of cellulose triacetate film, the addition amount of the retardation increasing agent is increased; in the case of a film mainly composed of cellulose acetate propionate, it is considered to add a retardation increasing agent.
- the retardation film is usually wound on both ends of the long film in the width direction; the roll film is wound in the long direction and stored as a roll body.
- a roll body obtained by winding a long retardation film containing triacetyl cellulose or cellulose acetate propionate and a retardation increasing agent by a usual method is deformed during long-term storage. There was a problem that it was easy.
- the roll body obtained by winding the thin film retardation film used for VA or the like by a usual method has a problem that it is easily deformed during long-term storage.
- the deformation of the roll body is a phenomenon in which the winding diameter at both ends in the width direction of the film where the embossed portions overlap each other is significantly larger than the winding diameter at the central portion in the width direction of the film, and a large wrinkle that bends vertically is generated.
- a long retardation film containing triacetyl cellulose or cellulose acetate propionate and a retardation increasing agent is made thinner than before, the content of the retardation increasing agent is increased in order to obtain a desired retardation. It is assumed that the strength of the film is reduced; as a result, deformation of the roll body is likely to occur significantly.
- a retardation film having such retardation unevenness causes display unevenness of a liquid crystal display device.
- the present invention has been made in view of the above circumstances, and an object thereof is to provide a roll body of a retardation film that has a high retardation and can suppress display unevenness due to deformation of the roll body.
- the retardation film R 0 defined in the following formula (I) and measured in the in-plane direction at a measurement wavelength of 590 nm is 20 to 130 nm, and is defined by the following formula (II).
- nx represents the refractive index in the slow axis direction x where the refractive index is maximum in the in-plane direction of the film
- ny represents the refractive index in the direction y perpendicular to the slow axis direction x in the in-plane direction of the film.
- the retardation film roll according to any one of [1] to [3], wherein the content of the retardation increasing agent is 1 to 10 parts by mass with respect to 100 parts by mass of the diacetylcellulose.
- the retardation film includes a polymer having a repeating structure derived from a monomer represented by the following general formula (A), a compound represented by the general formula (B), and a compound represented by the general formula (C).
- R 1 and R 2 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms; R 3 represents a substituent; Ring A represents a 5 or 6 membered ring; n represents an integer of 1 to 4, and when n is 2 or more, a plurality of R 3 may be the same or different from each other)
- A represents a substituted or unsubstituted aromatic ring; R 3 and R 4 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atom
- the manufacturing method of the roll body of retardation film including the vibration winding process wound up to the said winding core.
- a polarizing plate comprising a polarizer and a retardation film obtained from the roll according to any one of [1] to [5] disposed on at least one surface of the polarizer.
- the first polarized light including a liquid crystal cell, a first polarizing plate disposed on one surface of the liquid crystal cell, and a second polarizing plate disposed on the other surface of the liquid crystal cell.
- the plate is disposed on the surface of the first polarizer, the protective film F1 disposed on the surface of the first polarizer opposite to the liquid crystal cell, and the surface of the first polarizer on the liquid crystal cell side.
- the second polarizing plate includes a second polarizer, a protective film F3 disposed on a surface of the second polarizer on the liquid crystal cell side, and the second polarizing plate.
- a liquid crystal display device comprising the obtained retardation film.
- the present invention it is possible to provide a roll body of a retardation film that has a high retardation and can suppress display unevenness due to deformation of the roll body.
- a roll body obtained by winding a long retardation film containing triacetyl cellulose or cellulose acetate propionate and a retardation increasing agent by a normal method is a roll body during long-term storage. Easy to deform. The reason for this is not clear, but is assumed as follows. That is, when a long retardation film containing triacetyl cellulose or cellulose acetate propionate and a retardation increasing agent is made thinner than before, the content of the retardation increasing agent is obtained in order to obtain a desired retardation. You have to make more. As a result, the orientation state of the cellulose ester molecules is lowered, and the film strength is likely to be lowered;
- a roll body obtained by winding such a low-strength retardation film by a usual method is likely to be deformed after long-term storage. Deformation of the roll body is particularly likely to occur particularly when the retardation film is thin and the film strength is lower. When such a roll body is deformed, non-uniform tension is easily applied to the retardation film, and the optical characteristics are likely to vary. Such a retardation film tends to cause display unevenness of a liquid crystal display device.
- a desired retardation value can be obtained by combining diacetyl cellulose and a retardation increasing agent even if the film thickness is reduced.
- the roll of the retardation film is subjected to a vibration winding process in which at least one of the film and the core is vibrated while periodically vibrating in the width direction of the film. Can be suppressed to a higher degree.
- the roll body of the retardation film of the present invention is obtained by winding a retardation film containing diacetyl cellulose and a retardation increasing agent through a vibration winding process.
- the roll body of the retardation film obtained through the vibration winding process includes a portion in which the side surface shape of both end portions in the axial direction is wavy.
- the retardation film of the present invention contains diacetyl cellulose as a main component and a retardation increasing agent.
- “Containing diacetyl cellulose as a main component” means, for example, that the content of diacetyl cellulose in the retardation film is 50% by mass or more, preferably 70% by mass or more, and more preferably 80% by mass or more.
- Diacetylcellulose is a compound in which part of the hydroxyl groups of cellulose is substituted with acetyl groups.
- the degree of substitution of acetyl groups in diacetylcellulose is 2.0 or more and less than 2.6, from the viewpoint of obtaining a sufficient phase difference, preferably 2.0 to 2.55, more preferably 2.0 to 2.5. More preferably, it may be 2.0 or more and less than 2.5. In order to enhance the retardation development, it is preferable that the substitution degree of the acetyl group is low.
- the degree of substitution of the acetyl group of diacetylcellulose can be measured by the method prescribed in ASTM-D817-96.
- the weight average molecular weight of diacetyl cellulose is preferably 5.0 ⁇ 10 4 to 5.0 ⁇ 10 5 in order to obtain a certain level of mechanical strength, and 1.0 ⁇ 10 5 to 3.0 ⁇ . 10 5 is more preferable, and 1.5 ⁇ 10 5 to 2.9 ⁇ 10 5 is even more preferable.
- the molecular weight distribution (weight average molecular weight Mw / number average molecular weight Mn) of diacetylcellulose is preferably 1.0 to 4.5.
- the weight average molecular weight and molecular weight distribution of diacetylcellulose can be measured by gel permeation chromatography (GPC).
- the measurement conditions are as follows. Solvent: Methylene chloride Column: Three Shodex K806, K805, K803G (manufactured by Showa Denko KK) are connected and used.
- the retardation increasing agent is a compound having a function of increasing the retardation value of the film.
- the retardation increasing agent is a compound that can make the retardation value Rth (wavelength 590 nm) in the thickness direction 1.1 times or more that of an unadded film in a film added with 3 parts by mass with respect to 100 parts by mass of diacetylcellulose. It is preferable.
- retardation increasing agents examples include discotic compounds described in paragraphs 0041 to 0063 of Japanese Patent No. 5311966, paragraphs 0036 to 0124 of Japanese Patent No. 54277738, paragraphs 0164 to 0169 of Japanese Patent No. 4686351, and the like.
- Examples include nitrogen-containing heterocyclic compounds described in paragraphs 0087 to 0194 of Application No. 2014-010918, rod-like compounds described in paragraphs 0030 to 0158 of Japanese Patent No. 4686351, and the like.
- the retardation increasing agent is preferably a nitrogen-containing heterocyclic compound because it has excellent retardation and good compatibility with diacetylcellulose. Since nitrogen-containing heterocyclic compounds have good compatibility with diacetylcellulose, pyrrole ring, pyrazole ring, imidazole ring, triazole ring (1,2,4-triazole ring or 1,2,3-triazole ring) , A triazine ring, a pyrimidine ring, or a compound containing a pyridine ring, more preferably a compound containing a pyrrole ring, a pyrazole ring, an imidazole ring or a triazole ring.
- the retardation increasing agent is preferably a compound represented by any one of the following general formulas (1) to (6).
- a in the general formula (1) represents a pyrazole ring.
- Ar 1 and Ar 2 in the general formula (1) are each an aryl group or a heteroaryl group; preferably an aryl group.
- the aryl group preferably has 6 to 20 carbon atoms, and more preferably 6 to 10 carbon atoms. Examples of the aryl group include a phenyl group and a naphthyl group.
- a heteroaryl group is a 5- or 6-membered aromatic heterocyclic group, and examples thereof include a pyrrole ring, a pyrazole ring, an imidazole ring, a 1,2,3-triazole ring, and a 1,2,4-triazole ring.
- Tetrazole ring furan ring, oxazole ring, isoxazole ring, oxadiazole ring, isoxadiazole ring, thiophene ring, thiazole ring, isothiazole ring, thiadiazole ring, isothiadiazole ring and the like.
- the aryl group and heteroaryl group represented by Ar 1 or Ar 2 may further have a substituent.
- substituents include Halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom); Alkyl groups (methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n-octyl group, 2-ethylhexyl group, etc.); A cycloalkyl group (a cyclohexyl group, a cyclopentyl group, a 4-n-dodecylcyclohexyl group, etc.); Aryl groups (phenyl, p-tolyl, naphthyl, etc.); Heteroaryl group (2-pyrrole group, 2-furyl group, 2-thienyl group, pyrrole group, imidazolyl group, oxazolyl group, thiazolyl group, benzoimi
- R 1 in the general formula (1) represents a hydrogen atom, an alkyl group, an aryl group, an acyl group, a sulfonyl group, an alkyloxycarbonyl group or an aryloxycarbonyl group; preferably a hydrogen atom or an alkyl group.
- the alkyl group is preferably an alkyl group having 1 to 10 carbon atoms, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a tert-butyl group, an n-octyl group, and a 2-ethylhexyl group. Etc. are included.
- the aryl group is preferably an aryl group having 6 to 20 carbon atoms, and examples thereof include a phenyl group.
- the acyl group is preferably an acyl group having 2 to 20 carbon atoms, and examples thereof include an acetyl group and a pivaloylbenzoyl group.
- the sulfonyl group is preferably an alkylsulfonyl group having 1 to 10 carbon atoms, and examples thereof include a methylsulfonyl group and an ethylsulfonyl group.
- the alkyloxycarbonyl group is preferably an alkyloxycarbonyl group having 2 to 10 carbon atoms, and examples thereof include a methoxycarbonyl group.
- the aryloxycarbonyl group is preferably an aryloxycarbonyl group having 7 to 20 carbon atoms, and examples thereof include a phenoxycarbonyl group.
- Q in the general formula (1) represents an integer of 1 to 2; n and m each independently represents an integer of 1 to 3;
- Specific examples of the compound represented by the general formula (1) include the following compounds.
- X 1 to X 3 in the general formula (2) are each independently a single bond, —NR 4 —, —O— or —S—; preferably —NR 4 —.
- Each R 4 in —NR 4 — is independently a hydrogen atom, an alkyl group, an alkenyl group, an aryl group or a heteroaryl group, preferably a hydrogen atom.
- the number of carbon atoms of the alkyl group represented by R 4 can be preferably 1 to 10, more preferably 1 to 6.
- the carbon number of the alkenyl group is preferably 2 to 10, more preferably 2 to 6.
- the aryl group may preferably have 6 to 20 carbon atoms.
- the carbon number of the heteroaryl group is preferably 5 to 23, and more preferably 5 to 17.
- These groups may further have a substituent, and examples thereof include a halogen atom, an alkoxy group (for example, methoxy group, ethoxy group) and an acyloxy group (for example, acryloyloxy group, methacryloyloxy group). It is.
- R 1 to R 3 in the general formula (2) are each independently an alkyl group, an alkenyl group, an aryl group or a heteroaryl group, preferably an aryl group or a heteroaryl group, and more preferably an aryl group.
- the number of carbon atoms of the aryl group represented by R 1 to R 3 can be preferably 6 to 20.
- the aryl group include a phenyl group and a naphthyl group.
- the heterocycle constituting the heteroaryl group is preferably a 5-membered or 6-membered unsaturated heterocycle.
- the hetero atom of the heterocyclic ring is a nitrogen atom, a sulfur atom or an oxygen atom, preferably a nitrogen atom.
- heteroaryl groups include 2-pyridyl or 4-pyridyl.
- the aryl group or heteroaryl group may further have a substituent.
- substituents include a halogen atom, a nitro group, a cyano group, an alkyl group (preferably an alkyl group having 1 to 12 carbon atoms, more preferably 1 to 4 carbon atoms), an alkoxy group (preferably having a carbon number). 1 to 12, more preferably 1 to 4 alkoxy groups).
- Examples of the compound represented by the general formula (2) include the following.
- Ra in the general formula (3) represents an alkyl group, an alkenyl group, an alkynyl group, a heteroaryl group or an aryl group; preferably an alkyl group or an aryl group.
- the number of carbon atoms of the alkyl group is preferably 1-20, more preferably 3-15, and even more preferably 6-12.
- the alkynyl group preferably has 2 to 20 carbon atoms, more preferably 3 to 15 carbon atoms, and still more preferably 6 to 12 carbon atoms.
- the number of carbon atoms of the aryl group is preferably 6 to 24, more preferably 6 to 18.
- the carbon number of the heteroaryl group is preferably 5 to 23, more preferably 5 to 17.
- X 1 to X 4 in the general formula (3) each independently represents a single bond or a divalent linking group; preferably a single bond, more preferably all a single bond.
- the divalent linking group include a divalent linking group represented by the following general formula (Q) and an alkylene group (preferably having 1 to 30 carbon atoms, more preferably 1 to 3 carbon atoms, and still more preferably carbon atoms.
- a linking group, more preferably a carbonyl group. * Of general formula (Q) is a connection part with the N atom substituted on the heterocyclic ring of general formula (3).
- R 1 to R 4 in the general formula (3) each independently represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group; preferably a hydrogen atom, an alkyl group, an aryl group or a heteroaryl group More preferably a hydrogen atom or an alkyl group. At least one of R 1 and R 2 and at least one of R 3 and R 4 are preferably hydrogen atoms.
- the number of carbon atoms of the alkyl group represented by R 1 to R 4 is preferably 1 to 12, more preferably 1 to 6, and still more preferably 1 to 4.
- the alkenyl group and alkynyl group each preferably have 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, and still more preferably 2 to 4 carbon atoms.
- the aryl group preferably has 6 to 18 carbon atoms, more preferably 6 to 12 carbon atoms, and still more preferably 6. These groups may further have a substituent.
- Examples of the compound represented by the general formula (3) include the following.
- Y 1 in the general formula (4) represents a methine group or —N—; preferably —N—.
- Q 21 in the general formula (4) represents a single bond, —O—, —S—, or —NRf—.
- Rf in —NRf— represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a heteroaryl group, and may be linked to Ra 31 to form a ring.
- Ra 31 in the general formula (4) represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group.
- the alkyl group, alkenyl group, alkynyl group, aryl group or heteroaryl group represented by Ra 31 is the alkyl group, alkenyl group, alkynyl group, aryl group or heteroaryl represented by Ra in the general formula (3). Synonymous with group.
- X 32 and X 33 in formula (4) each independently represent a single bond or a divalent linking group; preferably a single bond.
- the divalent linking group may have the same meaning as the divalent linking group in X 1 to X 4 of the general formula (3).
- X 31 and X 34 are divalent linking groups represented by the aforementioned general formula (Q); preferably a carbonyl group.
- Rb 31 to Re 31 in the general formula (4) each independently represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group.
- the alkyl group, alkenyl group, alkynyl group, aryl group or heteroaryl group represented by Rb 31 to Re 31 is the alkyl group, alkenyl group or alkynyl represented by R 1 to R 4 in the general formula (3).
- Rb 31 to Re 31 in the general formula (4) each independently represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group.
- Examples of the compound represented by the general formula (4) include the following.
- Q 31 and Q 32 in the general formula (5) each independently represent —O—, —S—, or —NRf—.
- Rf in —NRf— represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group, and may be linked to Ra 41 to form a ring.
- Ra 41 and Rg 41 in the general formula (5) represent an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a heteroaryl group.
- the alkyl group, alkenyl group, alkynyl group, aryl group or heteroaryl group represented by Ra 41 and Rg 41 is the alkyl group, alkenyl group, alkynyl group, aryl group represented by Ra in the general formula (3). Or it is synonymous with heteroaryl group, respectively.
- X 43 in formula (5) represents a single bond or a divalent linking group; preferably a single bond.
- the divalent linking group may have the same meaning as the divalent linking group in X 1 to X 4 of the general formula (3).
- X 44 represents a divalent linking group represented by the aforementioned general formula (Q); preferably a carbonyl group.
- Rd 41 and Re 41 in the general formula (5) each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group.
- the alkyl group, alkenyl group, alkynyl group, aryl group or heteroaryl group represented by Rd 41 and Re 41 is the alkyl group, alkenyl group, alkynyl represented by R 1 to R 4 in the general formula (3).
- Rd 41 and Re 41 in the general formula (5) each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group.
- Examples of the compound represented by the general formula (5) include the following.
- X in the general formula (6) is a group represented by the following general formula (6-1) or general formula (6-2).
- R 1 to R 8 in the general formula (6-1) and R 11 to R 18 in the general formula (6-2) each independently represent a hydrogen atom or a substituent. Examples of the substituent include a halogen atom and an alkyl group.
- L 1 and L 2 in the general formula (6) each independently represent —C ( ⁇ O) O— or —C ( ⁇ O) NR—.
- R in —C ( ⁇ O) NR— represents a hydrogen atom or an alkyl group; preferably a hydrogen atom or a methyl group; more preferably a hydrogen atom.
- the alkyl group represented by R preferably has 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms.
- Ar 1 and Ar 2 in formula (6) each independently represent an aryl group or a heteroaryl group; preferably an aryl group.
- the number of carbon atoms of the aryl group represented by Ar 1 or Ar 2 is preferably 6-20, more preferably 6-12.
- Examples of the aryl group include a phenyl group, a p-methylphenyl group, a naphthyl group, and the like, and preferably a phenyl group.
- the heteroaryl group represented by Ar 1 or Ar 2 is a 5- or 6-membered aromatic heterocyclic group containing one or more of an oxygen atom, a nitrogen atom and a sulfur atom.
- heteroaryl groups include benzimidazole, benzoxazole, benzthiazole, benzotriazole and the like.
- Each of the aryl group and the heteroaryl group may further have the aforementioned substituent.
- the compound represented by the general formula (6) is preferably represented by the following formula.
- R 111 to R 120 in the above formula each independently represents a hydrogen atom or a substituent.
- the substituent is an alkyl group (preferably an alkyl group having 1 to 4 carbon atoms, more preferably a methyl group), an alkoxy group (preferably 1 to 12 carbon atoms, more preferably an alkoxy group having 1 to 4 carbon atoms), amino A group or a hydroxyl group, preferably an alkoxy group.
- the compound represented by general formula (1), the compound represented by general formula (2), and general formula ( Compounds represented by 3) are preferred; compounds represented by general formula (2) and general formula (3) are particularly preferred.
- the content of the retardation increasing agent is preferably 1 to 10 parts by mass, more preferably 1 to 7 parts by mass, and further preferably 1 to 5 parts by mass with respect to 100 parts by mass of diacetylcellulose. preferable.
- the content of the retardation increasing agent is a certain level or more, the retardation of the film can be sufficiently increased.
- the content of the retardation increasing agent is below a certain level, not only the precipitation of the retardation increasing agent can be highly suppressed, but also an excessive decrease in film strength can be suppressed.
- polarizer degradation inhibitor examples include paragraphs 0057 to 0120 of JP2013-174661, paragraphs 0062 to 0158 of JP2013-174451, paragraphs 0015 to 0031 of JP2013-82918, and JP2013.
- the compounds described in paragraphs 0047 to 0060 of 97170 are included.
- a polymer containing a repeating unit derived from a monomer represented by the general formula (A) and a compound selected from the group consisting of compounds represented by the general formulas (B) to (D) are used for suppressing deterioration of a polarizer. It can function preferably as an agent.
- the PVA polymer and the dichroic dye form a stabilizing complex by boric acid crosslinking.
- the polymer containing the repeating unit derived from the monomer represented by the general formula (A) and the compound represented by the general formula (B) have an aromatic ring and have a rigid structure.
- the film can have a high density. As a result, not only can the moisture transmission amount of the retardation film be reduced, but also the number of diffusion paths of boric acid from the polarizer can be reduced, and deterioration of the polarizer can be suppressed.
- the compounds represented by the general formulas (C) and (D) are organic acids having a relatively low water solubility, and can lower the pH in the polarizer. Thereby, destruction of the boric acid bridge
- Ring A in general formula (A) represents a 5- or 6-membered ring.
- R 1 and R 2 in formula (A) each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
- R 3 represents a substituent. Examples of the substituent include an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and a cyclohexane having 4 to 10 carbon atoms.
- n represents an integer of 1 to 4, and when n is 2 or more, the plurality of R 3 may be the same or different from each other.
- the monomer represented by the general formula (A) is preferably represented by the following general formula (A-1).
- a 1 in the general formula (A-1), -CR 4 R 5 - represents an or oxygen atom.
- R 4 and R 5 in —CR 4 R 5 — each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
- R 1, R 2, R 3 and n in the general formula (A-1) is R 1 in the general formula (A), R 2, respectively R 3 and n synonymous.
- the polymer containing a repeating unit derived from the monomer represented by the general formula (A) may further include a repeating structure derived from another monomer. Examples of other monomers include styrene and the like.
- the content of the repeating unit derived from the monomer represented by the general formula (A) can be about 30 to 99 mol%.
- the monomer represented by the general formula (A) may be one type or two or more types.
- the polymer containing a repeating unit derived from the monomer represented by the general formula (A) may preferably be a copolymer represented by the following general formula (a).
- R 21 , R 22 and R 24 in the general formula (a) are each independently synonymous with R 3 in the general formula (A).
- R 23 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
- x, y and z represent molar ratios with respect to all repeating units contained in the polymer, x represents 1 to 40%, y represents 5 to 95%, and z represents 1 to 70%.
- m1 and m2 each independently represents an integer of 0 to 4.
- m3 represents an integer of 0-2.
- m4 represents an integer of 0 to 5.
- R 101 , R 102 and R 103 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, preferably a hydrogen atom.
- Examples of the compound represented by the general formula (A) include Coumarone resin (Nit resin Coumarone G-90, G-100N, V-120S, H-100) manufactured by Nikkaku Chemical Co., Ltd.
- the weight average molecular weight of the polymer containing the repeating unit derived from the monomer represented by formula (A) is preferably 200 to 10,000, more preferably 300 to 8,000, and more preferably 400 to 4000. Further preferred.
- the weight average molecular weight is not less than a certain value, the density of the retardation film can be improved satisfactorily. Thereby, the diffusion of boric acid from the polarizer can be suppressed, and the polarizer deterioration can be suppressed.
- the weight average molecular weight is below a certain level, the compatibility with diacetylcellulose is hardly impaired.
- R 1 in the general formula (B) represents a hydrogen atom or a substituent.
- substituents include an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 26 carbon atoms, and a hydroxyl group.
- n1 represents an integer of 0 to 4, and when n1 is 2 or more, the plurality of R 1 may be the same or different from each other.
- R 2 in the general formula (B) represents a substituent represented by the following general formula (B-1).
- n2 represents an integer of 1 to 5, when n2 is 2 or more, plural R 2 may being the same or different.
- a in the general formula (B-1) represents a substituted or unsubstituted aromatic ring.
- the aromatic ring is preferably a benzene ring.
- R 3 and R 4 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a group represented by General Formula (B-2).
- R 5 represents a single bond or an alkylene group having 1 to 5 carbon atoms.
- X represents a substituted or unsubstituted aromatic ring.
- the aromatic ring is preferably a benzene ring.
- n3 represents an integer of 0 to 10, and when n3 is 2 or more, the plurality of R 5 and X may be the same or different from each other.
- X in the general formula (B-2) represents a substituted or unsubstituted aromatic ring.
- the aromatic ring is preferably a benzene ring.
- R 6 to R 9 each independently represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
- n5 represents an integer of 1 to 11, and when n5 is 2 or more, the plurality of R 6 to R 9 and X may be the same as or different from each other.
- the content of the polymer containing the monomer unit represented by the general formula (A) and the compound represented by the general formula (B) is 0.1 to 15 parts by mass, preferably 0 to 100 parts by mass of diacetylcellulose. .5 to 10 parts by mass, more preferably 0.5 to 5 parts by mass. If content of the said compound is more than fixed, the density of a retardation film can fully be raised and it will be easy to fully suppress deterioration of a polarizer. It can suppress that film strength falls too much that content of the said compound is below fixed.
- R 26 in the general formula (C) represents an alkyl group (including a cycloalkyl group) or an aryl group.
- the alkyl group is preferably an alkyl group having 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, and may be a methyl group, an ethyl group, a cyclohexyl group, or the like.
- the aryl group is preferably an aryl group having 6 to 12 carbon atoms, and more preferably a phenyl group.
- R 27 and R 28 in formula (C) each independently represent a hydrogen atom, an alkyl group, or an aryl group.
- the alkyl group and the aryl group can be defined similarly to the above-described alkyl group and aryl group, respectively.
- R 26 , R 27 and R 28 may each have a substituent.
- substituent of the aryl group represented by R 26 , R 27 and R 28 include a halogen atom or an alkyl group having 1 to 6 carbon atoms.
- the weight average molecular weight of the compound represented by the general formula (C) is preferably 200 to 1000, and more preferably 250 to 800.
- R in the general formula (D) represents a substituent.
- substituents include a substituent represented by the following general formula (D-1).
- m and n each independently represents an integer of 1 to 3.
- Y in the general formula (D-1) represents an oxygen atom or a sulfur atom; preferably an oxygen atom.
- R 1 and R 2 in formula (D-1) each independently represent a hydrogen atom or a substituent.
- substituents include alkyl groups, alkenyl groups, aryl groups, heterocyclic groups, alkoxy groups, aryloxy groups, alkoxycarbonyl groups, amino groups, acylamino groups, cyano groups and halogen atoms; preferably alkyl groups , An alkenyl group, a heterocyclic group, an alkoxy group, an alkoxycarbonyl group, an amino group, an acylamino group or a cyano group; more preferably a hydrogen atom, an aromatic group or an alkyl group; particularly preferably a hydrogen atom or a phenyl group is there.
- the aromatic group may further have a substituent such as an alkyl group; the alkyl group may further have a substituent such as an aromatic group.
- P in formula (D-1) represents an integer of 1 to 3; preferably 1 to 2; more preferably 1.
- the content of the compounds represented by the general formulas (C) and (D) is 0.1 to 15 parts by mass, preferably 0.5 to 10 parts by mass, and more preferably 0.1 to 100 parts by mass of diacetylcellulose. It may be 5 to 5 parts by mass. If content of the said compound is more than fixed, the inside of a polarizer can be adjusted to low pH, suppressing the acid hydrolysis of the diacetyl cellulose in retardation film, and deterioration of a polarizer can be suppressed preferably. If content of the said compound is below fixed, the excessive fall of film strength can be suppressed.
- the retardation film of the present invention may further contain various additives such as a plasticizer, an ultraviolet absorber, and a matting agent (fine particles) as necessary.
- plasticizer examples include sugar derivatives and phosphate ester compounds.
- the sugar derivative may be a compound in which at least a part of the hydrogen atoms of the hydroxyl group of the sugar is substituted with a substituent.
- the sugar constituting the sugar derivative preferably has a structure in which 1 to 12 of one or both of the furanose structure and the pyranose structure are bonded; one to both of the furanose structure and the pyranose structure is 1 to 3, preferably 2 It preferably has a bonded structure. Especially, what contains both a pyranose structure and a furanose structure is preferable.
- sugars constituting sugar derivatives include monosaccharides such as glucose, galactose, mannose, fructose, xylose and arabinose; disaccharides such as lactose, sucrose, maltitol, cellobiose and maltose; trisaccharides such as cellotriose and raffinose The structure derived from is included.
- the substituent constituting the sugar derivative is an alkyl group (preferably an alkyl group having 1 to 22 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms, such as a methyl group, an ethyl group, a propyl group).
- aryl group preferably an aryl group having 6 to 24 carbon atoms, more preferably 6 to 18 carbon atoms, particularly preferably 6 to 12 carbon atoms, for example, Phenyl group, naphthyl group
- acyl group preferably having 1 to 22 carbon atoms, more preferably 2 to 12 carbon atoms, particularly preferably 2 to 8 carbon atoms, for example, acetyl group, propionyl group, butyryl group, pentanoyl group
- Group hexanoyl group, octanoyl group, benzoyl group, toluyl group, phthalyl group, naphthal group, and the like.
- an unreacted hydroxyl group that is not substituted with a substituent may generally remain as it is as a hydroxyl group.
- the sugar derivative can be a mixture of a plurality of sugar derivatives having different degrees of substitution. Such a mixture may contain an unsubstituted form.
- the average substitution rate in the mixture is preferably 62 to 94%.
- sugar derivative examples include the following.
- Examples of the phosphoric acid ester compound include triphenyl phosphate, diphenyl biphenyl phosphate, trioctyl phosphate, and tributyl phosphate.
- the content of the plasticizer can be 1 to 40 parts by mass with respect to 100 parts by mass of diacetylcellulose.
- the matting agent can impart further slipperiness to the retardation film.
- the matting agent may be fine particles made of an inorganic compound or an organic compound having heat resistance in the film forming process without impairing the transparency of the resulting film.
- inorganic compounds constituting the matting agent include silicon dioxide (silica), titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, and hydrated calcium silicate. , Aluminum silicate, magnesium silicate and calcium phosphate. Of these, silicon dioxide and zirconium oxide are preferable, and silicon dioxide is more preferable in order to reduce an increase in haze of the obtained film.
- silicon dioxide examples include Aerosil 200V, Aerosil R972V, Aerosil R972, R974, R812, 200, 300, R202, OX50, TT600, NAX50 (above, Nippon Aerosil Co., Ltd.), Sea Hoster KEP-10, Sea Hoster KEP -30, Seahoster KEP-50 (manufactured by Nippon Shokubai Co., Ltd.), Silo Hovic 100 (manufactured by Fuji Silysia), nip seal E220A (manufactured by Nippon Silica Kogyo), Admafine SO (manufactured by Admatechs) and the like.
- the particle shape of the matting agent is indefinite, needle-like, flat or spherical, and may preferably be spherical in view of easy transparency of the resulting film.
- the matting agent may be used alone or in combination of two or more. Further, by using particles having different particle diameters and shapes (for example, needle shape and spherical shape, for example), both transparency and slipperiness may be made highly compatible.
- the size of the particles of the matting agent is preferably smaller than the wavelength of visible light. / 2 or less is preferable. However, if the size of the particles is too small, the effect of improving slipperiness may not be manifested. Therefore, the size of the particles is preferably in the range of 80 to 180 nm.
- the particle size means the size of an aggregate when the particle is an aggregate of primary particles. When the particles are not spherical, the size of the particles means the diameter of a circle corresponding to the projected area.
- the content of the matting agent can be about 0.05 to 1.0% by mass, preferably 0.1 to 0.8% by mass with respect to diacetylcellulose.
- the thickness of the retardation film is about 15 to 40 ⁇ m, preferably 15 to 35 ⁇ m, more preferably 20 to 30 ⁇ m in order to make the polarizing plate thinner. If the thickness of the retardation film is preferably 35 ⁇ m or less, the roll body tends to be easily deformed, and therefore the present invention is particularly effective. If the thickness of the retardation film is less than 15 ⁇ m, the film is likely to be broken and may not be stably produced. From the viewpoint of reducing the thickness of the display device, the retardation film is preferably thinner.
- the retardation of the retardation film can be set according to the type of liquid crystal cell to be combined.
- the in-plane retardation R 0 (590) measured at a wavelength of 590 nm under 23 ° C. and RH 55% of the retardation film is preferably 20 to 130 nm, more preferably 30 to 100 nm.
- the retardation Rth (590) in the thickness direction is preferably 100 to 300 nm, and more preferably 100 to 200 nm.
- a retardation film having a retardation in the above range is suitable as a retardation film such as a VA liquid crystal cell.
- Retardations R0 and Rth are defined by the following equations, respectively.
- Formula (I): R 0 (nx ⁇ ny) ⁇ d (nm)
- Formula (II): Rth ⁇ (nx + ny) / 2 ⁇ nz ⁇ ⁇ d (nm)
- nx represents the refractive index in the slow axis direction x where the refractive index is maximum in the in-plane direction of the film
- ny represents the refractive index in the direction y perpendicular to the slow axis direction x in the in-plane direction of the film.
- Nz represents the refractive index in the thickness direction z of the film
- d (nm) represents the thickness of the film)
- the retardations R0 and Rth can be determined by the following method, for example. 1) The retardation film is conditioned at 23 ° C. and 55% RH. The average refractive index of the retardation film after humidity adjustment is measured with an Abbe refractometer or the like. The retardation film after 2) humidity, measuring the R 0 when the light is incident in parallel to the measurement wavelength 590nm to normal of the film surface, KOBRA21ADH, in Oji Scientific Corporation.
- the slow axis in the plane of the retardation film is the tilt axis (rotation axis), and the measurement wavelength is 590 nm from the angle of ⁇ (incident angle ( ⁇ )) with respect to the normal of the surface of the retardation film
- the retardation value R ( ⁇ ) when light is incident is measured.
- the retardation value R ( ⁇ ) can be measured at 6 points every 10 °, with ⁇ ranging from 0 ° to 50 °.
- the in-plane slow axis of the retardation film can be confirmed by KOBRA21ADH.
- nx, ny, and nz are calculated by KOBRA21ADH from the measured R 0 and R ( ⁇ ) and the above-described average refractive index and film thickness, and Rth at a measurement wavelength of 590 nm is calculated.
- the measurement of retardation can be performed under conditions of 23 ° C. and 55% RH.
- the total retardation of the retardation film is preferably 80% or more, more preferably 90% or more, and further preferably 93% or more.
- the haze value of the retardation film is preferably 3.0% or less, preferably 2.0% or less, more preferably 1.0% or less, and 0.5% or less. Is more preferable.
- the haze can be measured with a haze meter (turbidimeter) (model: NDH 2000, manufactured by Nippon Denshoku Co., Ltd.) in accordance with JIS K-7136.
- Roll body of retardation film The roll body of the retardation film of the present invention is obtained by winding the above-described retardation film in the longitudinal direction.
- FIG. 1 is a schematic view showing an example of a roll body of the retardation film of the present invention.
- FIG. 1A is a view showing an example of the appearance of a roll body;
- FIG. 1B is a partial cross-sectional view (cross-sectional view taken along the line AA) along the axial direction of FIG.
- a roll body 10 of a retardation film is a long retardation film wound around a core 11 and embossed portions 13A at both ends in the width direction. 13 and so on.
- the roll body of the retardation film of the present invention is obtained through a vibration winding process in which at least one of the film or the core is vibrated in the width direction of the film and the film is wound. Therefore, the roll body 10 obtained includes portions that are laminated so that the embossed portions 13A after winding do not completely overlap each other. That is, the side surface shape of the axial direction both ends of the roll body 10 includes a wavy portion. Specifically, the side surface shape of both end portions in the axial direction of the roll body 10 is wavy, as shown in FIG. 1B. Specifically, both end portions in the axial direction of the cross section along the axial direction of the roll body. The shape is wavy.
- the side surfaces of both ends in the axial direction of the roll body 10 corresponding to the vibration winding process are wavy;
- the side surface shape of both end portions in the axial direction of the roll body 10 of the portion to be performed is a planar shape.
- the embossed portion 13A is provided at both ends in the width direction of the retardation film 13.
- the width W of the embossed portion 13A can be, for example, 0.2 to 6%, preferably 0.3 to 2% with respect to the total width of the retardation film 13. Specifically, it may be about 0.5 to 30 mm, preferably 5 to 30 mm, more preferably 6 to 20 mm. If the width of the embossed portion 13A is too small, the transportability of the retardation film 13 may not be sufficiently improved, or winding deviation may not be sufficiently suppressed. On the other hand, if the width of the embossed portion 13A is too large, the ratio that can be used as a retardation film tends to decrease.
- the height of the convex portion constituting the embossed portion 13A can be about 5 to 60% of the film thickness of the retardation film 13. Specifically, the height of the convex portion constituting the embossed portion 13A is preferably 1.0 to 10.0 ⁇ m, more preferably 1.0 to 6.0 ⁇ m.
- the height of a convex part means the height from the film surface in which embossing is not formed to the vertex of a convex part. If the height of the embossed portion 13A is too low, there is a possibility that winding deviation in the roll body cannot be sufficiently suppressed. If the embossed portion 13A is too high, the region where the embossed portions overlap in the roll body tends to be thicker than the other regions. Therefore, even if the above-described vibration winding process is performed, deformation of the roll body may not be sufficiently suppressed.
- FIG. 2 is a schematic diagram showing an example of a cross-sectional shape of the embossed portion 13A.
- the cross-sectional shape of the embossed portion 13A include a rectangular shape (FIG. 2 (a)); a shape in which a concave portion a is formed in the central portion in the width direction of the embossed portion 13A lower than both end portions in the width direction (FIG. )); Includes a plurality of convex portions b and c, and the convex portion b in the central portion in the width direction of the embossed portion is lower than the convex portions c at both end portions in the width direction (FIG. 2C). .
- the overlap of the width direction center part of an embossed part can be made small by making the width direction center part of an embossed part low. Thereby, it is thought that the increase in the thickness of the embossed portion of the roll body can be reduced, and the deformation of the roll body can be further suppressed.
- the width of the retardation film 13 can be, for example, 1000 to 6000 mm, preferably 1400 to 4000 mm.
- the winding length of the retardation film 13 can be set to 100 to 10,000 m, for example.
- the retardation film roll body of the present invention comprises: 1) a step of preparing a long retardation film having embossed portions at both ends in the width direction; and 2) a retardation film.
- the step of winding the retardation film is a step of winding the retardation film around the core while vibrating at least one of the retardation film and the core in the width direction of the film (vibration winding). Step).
- the long retardation film is produced by a solution casting method (cast) or a melt casting method (melt); preferably, by a solution casting method (cast) in order to reduce streak failure. Can be done.
- a method for producing a long retardation film by a solution casting method (cast) includes: 1-1) a step of obtaining a dope containing diacetyl cellulose as described above; 1-2) casting the dope on a support; Thereafter, a step of drying to obtain a film-like material, 1-3) a step of peeling the film-like material from the support, and 1-5) forming embossed portions at both ends in the width direction of the peeled film-like material And 1-4) may be further included between the 1-3) and the 1-5) as necessary.
- the organic solvent used for preparing the dope solution can be used without limitation as long as it sufficiently dissolves each of the above components such as diacetylcellulose.
- the chlorinated organic solvent include methylene chloride.
- the non-chlorine organic solvent include methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate and the like. Of these, methylene chloride is preferred.
- the dope preferably further contains 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms in addition to the organic solvent.
- a linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, tert-butanol and the like. Of these, methanol and ethanol are preferable because the stability of the dope, the boiling point is relatively low, and the drying property is good.
- Dissolution of diacetylcellulose and the like includes a method performed at normal pressure, a method performed at a temperature lower than the boiling point of the main solvent, a method performed at a pressure higher than the boiling point of the main solvent, and a method performed at a pressure higher than the boiling point of the main solvent. Is preferred.
- the dope solution is fed to a pressure die through a liquid feed pump (for example, a pressurized metering gear pump). Then, the dope solution is cast from the slit of the pressure die to a casting position on an endless metal support (for example, a stainless belt or a rotating metal drum) that is transferred infinitely.
- a liquid feed pump for example, a pressurized metering gear pump
- the dope solution on the metal support is preferably dried in an atmosphere within a range of 40 to 100 ° C.
- the surface temperature of the metal drum is set to ⁇ 20 to 10 ° C. and the film is peeled off without being dried on the metal drum.
- the film-like material obtained on the metal support is peeled off at the peeling position.
- the temperature of the metal support at the peeling position is preferably in the range of 10 to 40 ° C, more preferably in the range of 11 to 30 ° C.
- the temperature of the metal support at the peeling position is preferably in the range of ⁇ 20 to 10 ° C.
- the residual solvent amount of the film-like material on the metal support at the time of peeling can be, for example, in the range of 50 to 120% by mass.
- the heat treatment for measuring the residual solvent amount represents performing a heat treatment at 140 ° C. for 1 hour.
- the peeling tension when peeling the metal support from the film is usually in the range of 196 to 245 N / m. However, if wrinkles easily occur during peeling, peeling with a tension of 190 N / m or less is preferable. Further, it is more preferable to peel with a tension of 80 N / m or less.
- the peeled film-like material is dried while being conveyed in the tenter stretching apparatus, or is dried while being conveyed by a plurality of rollers disposed in the drying apparatus.
- the drying method is not particularly limited, but a method of blowing hot air on both surfaces of the film-like material is common.
- drying at a high temperature is preferably performed under conditions where the residual solvent is 8% by mass or less.
- the drying temperature is preferably in the range of 40-190 ° C, more preferably in the range of 40-170 ° C.
- the film obtained after drying may be further stretched as necessary.
- the stretching of the film is preferably performed in at least one of the width direction (TD direction), the transport direction (MD direction) or the oblique direction of the film; more preferably in the width direction (TD direction).
- stretching in both the width direction (TD direction) and the transport direction (MD direction) of the film stretching in the width direction (TD direction) of the film and stretching in the transport direction (MD direction) may be performed sequentially. You may do it simultaneously.
- the draw ratio may be about 1.01 to 1.5 times, preferably about 1.01 to 1.3 times in each direction.
- the residual solvent amount of the film-like material at the start of tenter stretching is preferably 2 to 30% by mass. Furthermore, it is preferable to dry until the amount of residual solvent in the film-like material is 10% by mass or less, preferably 5% by mass or less.
- the drying temperature is preferably in the range of 30 to 160 ° C, more preferably in the range of 50 to 150 ° C.
- the tenter method includes a clip tenter and a pin tenter. In the present invention, a pin tenter is preferable from the viewpoint of productivity.
- Emboss formation step In order to facilitate winding of the obtained film, it is preferable to form embossed portions at both ends in the width direction of the film.
- the method for forming the embossed part is not particularly limited, and examples thereof include a method for forming an embossed part by pressing a roller such as an embossing ring on the film, and a method for forming the embossed part in a non-contact manner.
- Examples of the method of forming the embossed portion by a non-contact method include a method of forming an embossed portion by irradiating a film with a laser beam; a method of forming an embossed portion by applying a liquid material by an ink jet method, and the like. .
- the winding step preferably includes a step of winding the retardation film around the core (vibrating winding step) while periodically vibrating at least one of the retardation film and the core in the width direction of the film.
- FIG. 3 is a schematic view showing an example of a winding device 20 used in the winding process of the retardation film.
- 3A is a side view seen from the axial direction of the core 11 of the winding device 20, and
- FIG. 3B is a plan view seen from above the retardation film 13. As shown in FIG.
- the winding device 20 includes a vibration control device 21 for controlling the vibration of the winding core 11, a guide roller 23 for guiding the retardation film 13 to the winding core 11, and the retardation film 13 wound on the winding core 11. And a touch roller 25 for pressing.
- the winding core 11 is rotatably installed by a rotating device (not shown).
- the vibration control device 21 is configured to apply vibration that changes the relative position between the retardation film 13 and the core 11 and to control the vibration state.
- the guide roller 23 is a member that rotates following the traveling of the retardation film 13. Thereby, the traveling retardation film 13 is guided to the core 11, and the travel of the retardation film 13 is reduced by the guide roller 23 so that the retardation film 13 can be smoothly supplied to the winding core 11. It has become.
- the touch roller 25 is a member that rotates following the rotation of the core 11. Thereby, the retardation film 13 wound around the core 11 is pressed, and the wound retardation film 13 can be prevented from being separated from the core 11.
- the retardation film 13 is guided to the surface of the core 11 by the guide roller 23. Then, the core 11 is rotated by a rotating device (not shown), and the guided retardation film 13 is wound around the core 11.
- the winding process of winding the retardation film 13 around the core 11 includes a vibration winding process.
- vibration is applied to change the relative position of the retardation film 13 and the core 11 in the width direction of the retardation film 13.
- the vibration condition can be controlled by the vibration control device 21.
- FIG. 3B shows an example in which the core 11 is vibrated, but any vibration that changes the relative position of the retardation film 13 and the core 11 in the width direction of the film may be used.
- the phase difference film 13 may be vibrated; both the phase difference film 13 and the core 11 may be vibrated.
- Vibration winding is oscillating winding. Oscillating winding is known from Japanese Patent Application Laid-Open No. 2010-150041.
- FIG. 4 is a graph for explaining the vibration in the vibration winding process.
- the x-axis of the graph in FIG. 4 indicates the integrated thickness (mm) of the phase difference film that has been wound at the position of the phase difference film that has started to be wound around the core. That is, the distance between the outermost surface of the phase difference film 13 being wound and the surface of the core 11 is shown, and corresponds to the integrated thickness x of the phase difference film 13 in FIG. 4 is the distance between the center position in the width direction of the phase difference film 13 and the center position in the width direction of the core 11 (distance between the centers of the phase difference film 13 and the core 11) (mm).
- the vibration in the vibration winding process may be sinusoidal vibration as indicated by curve 2 in FIG. 4; may be rectangular wave vibration as indicated by curve 3; Such vibration may be used.
- the vibration as shown by the curve 1 is preferable in order to make the side surface of the roll body difficult to be damaged.
- a function indicating a sinusoidal vibration with an amplitude A and a period T as indicated by a curve 2 is a (x); a function indicating a rectangular wave vibration with an amplitude A and a period T as indicated by a curve 3 b (x);
- f (x) is a function indicating the vibration of amplitude A and period T as shown by curve 1
- the area surrounded by the function f (x) and the x axis is the function a (x )
- the vibration represented by the function f (x) that is smaller than the area surrounded by the function b (x) and the x-axis is preferable.
- the function is represented by a straight line 4 on the x-axis in FIG.
- FIG. 5 is a schematic diagram showing an example of a simulation result of the integrated emboss height in the width direction of the roll body of the retardation film.
- the x-axis in FIG. 5 indicates the position of the retardation film in the width direction of the roll body; the y-axis indicates the integrated embossed height.
- the graph is shown by line 7; when the vibration is made so as to have a function a (x) (however, the amplitude A is equal to or less than the width of the embossed portion). Becomes the graph shown by the line 6; when it is vibrated so as to be the function f (x), it becomes the graph shown by the line 5.
- the embossed portion When vibration is not applied, the embossed portion is laminated at the same position in the width direction of the film, as indicated by line 7, so the accumulated embossed height is accumulated by the number of windings to the height of the embossed portion. Value.
- the vibration when the vibration is applied so as to be the function a (x), as shown by the line 6, although the embossed portion overlaps near the center position of the amplitude A of the vibration, the vibration is not applied. Accumulated emboss height can be reduced.
- the vibration when the vibration is applied so as to be the function f (x), the stay time when the absolute value of the y displacement of the vibration is large becomes relatively long. The overlapping of the parts can be effectively reduced.
- the roll body of the retardation film wound up through the vibration winding process can sufficiently suppress the occurrence of deformation even when stored for a long period of time.
- the function f (x) may be a function in which the vibration period T and the amplitude A periodically change.
- the function may be a function that gradually decreases as the thickness x increases; the function f (x) gradually increases as the vibration amplitude A increases as the integrated thickness x of the retardation film increases. Such a function may be used.
- the vibration amplitude A As the integrated thickness of the wound retardation film 13 increases.
- the amplitude of vibration is large, it is considered that the overlapping of the embossed portions can be further suppressed and the occurrence of deformation can be further suppressed.
- the integrated thickness of the retardation film is small and deformation of the roll body hardly occurs, deformation of the roll body can be sufficiently suppressed even when vibration having a small amplitude is applied.
- the retardation film is wound around the core, the roll body is likely to be deformed when the integrated thickness of the wound retardation film increases.
- the vibration period T it is preferable to gradually reduce the vibration period T as the integrated thickness of the wound retardation film increases. If the period of vibration is small, it is considered that the load applied to the retardation film can be reduced. As the retardation film is wound up, the roll body is likely to be deformed when the integrated thickness of the wound up retardation film increases. Thus, when the integrated thickness of the wound retardation film is large and deformation of the roll body is likely to occur, it is possible to effectively reduce the load on the retardation film by applying a vibration having a small period. It is considered that the deformation of the roll body can be further suppressed.
- the vibration amplitude A is preferably 0.1 to 1.0% of the film width, and more preferably 0.35 to 0.70%. Specifically, it can be about 2 to 15 mm, preferably about 4 to 10 mm.
- the amplitude A is greater than or equal to a certain value, it is easy to reduce the overlap between the embosses and to easily suppress the deformation of the roll body.
- the amplitude A is equal to or less than a certain value, it is possible to prevent the side surfaces at both end portions in the axial direction of the roll body from greatly wavy.
- the period T of vibration is preferably 0.2 to 10% of the film width, and more preferably 0.3 to 6%. Specifically, it may be about 3 to 160 mm, preferably 3 to 120 mm.
- the period T is equal to or greater than a certain value, it is possible to suppress the undulation of the side surfaces of both end portions in the axial direction of the roll body.
- the period T is equal to or less than a certain value, it is easy to satisfactorily suppress the deformation of the roll body.
- the winding process only needs to include the above-described vibration winding process, and all of the winding processes may be the vibration winding process; and may further include another winding process.
- the step of winding the retardation film without changing the distance (center distance y) between the center position in the width direction of the retardation film and the center position in the width direction of the core. (Non-vibrating winding process) is included.
- the non-vibrating winding process and the vibrating winding process can be arbitrarily combined.
- a non-vibrating winding process may be performed after the vibrating winding process.
- the start of winding is a non-vibration winding process
- the middle is a vibration winding process
- the end of winding is a non-vibration winding process. That is, at the beginning of winding, the non-vibrating winding process can be performed because the accumulated thickness of the retardation film is small and the roll body is hardly deformed.
- the winding of the retardation film proceeds and the integrated thickness of the wound retardation film increases, the wound roll body is likely to be deformed. In such a case, the roll shape deterioration can be effectively reduced by performing the vibration winding process.
- the retardation film can be smoothly fed out when the retardation film is fed out from the roll body.
- the end of winding is the vibration winding process
- the retardation film starts to be unwound from the obtained roll body, it may not be smoothly fed out due to meandering of the retardation film.
- the end of winding is the vibration winding process
- the retardation film can be smoothly fed out immediately after the retardation film starts to be unwound from the roll body.
- the roll body of the retardation film of the present invention includes a step of winding the retardation film around the core while vibrating at least one of the retardation film and the core in the width direction of the film (vibrating winding). It is obtained through the taking process).
- the roll body of the retardation film of the present invention can be suppressed.
- By suppressing the deformation of the roll body it is possible to suppress a decrease in optical characteristics due to non-uniform tension applied to the wound retardation film or non-uniform film thickness.
- the deformation of the roll body can be preferably suppressed by performing the above-described vibration winding process.
- Polarizing plate The polarizing plate of the present invention includes a polarizer and the above-described retardation film disposed on at least one surface thereof.
- a polarizer is an element that passes only light having a plane of polarization in a certain direction
- a typical polarizer known at present is a polyvinyl alcohol polarizing film.
- the polyvinyl alcohol polarizing film includes those obtained by dyeing iodine on a polyvinyl alcohol film and those obtained by dyeing a dichroic dye.
- the polyvinyl alcohol polarizing film may be a film (preferably a film further subjected to durability treatment with a boron compound) dyed with iodine or a dichroic dye after uniaxially stretching the polyvinyl alcohol film; A film obtained by dying an alcohol film with iodine or a dichroic dye and then uniaxially stretching (preferably a film further subjected to a durability treatment with a boron compound) may be used.
- the thickness of the polarizer is preferably 2 to 30 ⁇ m, and more preferably 5 to 15 ⁇ m in order to reduce the thickness of the polarizing plate.
- the protective film can be disposed on the other surface of the polarizer.
- the protective film include a (meth) acrylic resin film, a polyester film, a cellulose ester film, and the like, preferably a cellulose ester film.
- cellulose ester film examples include commercially available cellulose ester films (for example, Konica Minoltack KC8UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY, KC6UY, KC6UA, KC4UY, KC8U, XC8U, KC8UE, KC8U, HC8U -RHA-C, KC8UXW-RHA-NC, KC4UXW-RHA-NC, manufactured by Konica Minolta Co., Ltd.) are preferably used.
- cellulose ester films for example, Konica Minoltack KC8UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY, KC6UY, KC6UA, KC4UY, KC8U, XC8U, KC8UE, KC8U, HC8U -RHA
- a (meth) acrylic resin film or a polyester film is preferable because of its low moisture permeability.
- (Meth) acrylic resin film may be a film containing, as a main component, a homopolymer of methyl methacrylate; or a copolymer of methyl methacrylate and another monomer copolymerizable therewith.
- Examples of other monomers copolymerizable with methyl methacrylate include: alkyl methacrylates having 2 to 18 carbon atoms in the alkyl moiety; alkyl alkyl esters having 1 to 18 carbon atoms in the alkyl moiety; acrylic acid ⁇ , ⁇ -unsaturated acids such as methacrylic acid; unsaturated group-containing dicarboxylic acids such as maleic acid, fumaric acid and itaconic acid; aromatic vinyl compounds such as styrene and ⁇ -methylstyrene; acrylonitrile, methacrylonitrile And ⁇ , ⁇ -unsaturated nitriles such as maleic anhydride and glutaric anhydride.
- polyester film examples include a polyethylene terephthalate film and a polyethylene naphthalate film.
- the in-plane retardation R 0 measured under the conditions of a measurement wavelength of 590 nm and 23 ° C. and 55% RH is preferably 0 to 20 nm, and more preferably 0 to 10 nm.
- the retardation Rth in the thickness direction measured under the conditions of a measurement wavelength of 590 nm and 23 ° C. and 55% RH of the protective film is preferably 0 to 80 nm, and more preferably 0 to 50 nm.
- the thickness of the protective film can be about 10 to 100 ⁇ m, preferably 10 to 80 ⁇ m.
- the polarizing plate of the present invention can be obtained, for example, through a process in which the retardation film of the present invention is bonded to at least one surface of a polarizer with an adhesive.
- the adhesive used for the bonding may be a completely saponified polyvinyl alcohol aqueous solution (water glue) or an active energy ray-curable adhesive.
- the retardation film may further contain compounds represented by the above general formulas (A) to (D).
- the polarizing plate of the present invention including such a retardation film can satisfactorily suppress the deterioration of the polarizer even when stored at high temperature and high humidity.
- the liquid crystal display device of the present invention includes a liquid crystal cell and a pair of polarizing plates that sandwich the liquid crystal cell. At least one of the pair of polarizing plates includes the above-described retardation film.
- FIG. 6 is a schematic diagram showing an example of a basic configuration of the liquid crystal display device.
- the liquid crystal display device 30 of the present invention includes a liquid crystal cell 40, a first polarizing plate 50 and a second polarizing plate 60 that sandwich the liquid crystal cell 40, and a backlight 70.
- the display mode of the liquid crystal cell 40 may be various display modes such as STN, TN, OCB, HAN, VA (MVA, PVA), and IPS.
- the VA (MVA, PVA) mode is used. It is preferable that
- the first polarizing plate 50 includes a first polarizer 51, a protective film 53 (F1) disposed on the viewing side surface of the first polarizer 51, and a liquid crystal cell side of the first polarizer 51. And a retardation film 55 (F2) disposed on the surface.
- the second polarizing plate 60 includes a second polarizer 61, a retardation film 63 (F3) disposed on the liquid crystal cell side surface of the second polarizer 61, and a backlight of the second polarizer 61. And a protective film 65 (F4) disposed on the side surface.
- the retardation film 55 (F2) and the retardation film 63 (F3) may be the above-described retardation film. Only one of the retardation film 55 (F2) and the retardation film 63 (F3) may be used as the above-described retardation film.
- the retardation film of the present invention contains diacetyl cellulose and a retardation increasing agent. Therefore, although it is thin, it has a high retardation value. Furthermore, since the retardation film of the present invention does not require an excessive increase in the amount of addition of the retardation increasing agent, the decrease in film strength can be reduced. Furthermore, deformation of the roll body during storage is suppressed by winding the retardation film through a vibration winding process. Therefore, the dispersion
- Example 1 Production of Retardation Film ⁇ Example 1> (Preparation of fine particle additive solution) 11 parts by mass of fine particles (Aerosil R972V manufactured by Nippon Aerosil Co., Ltd.) and 89 parts by mass of ethanol were stirred and mixed with a dissolver for 50 minutes, and then dispersed with Manton Gorin to obtain a fine particle dispersion. Next, 99 parts by mass of methylene chloride was charged into the dissolution tank, and 5 parts by mass of the prepared fine particle dispersion was slowly added while stirring sufficiently. The obtained solution was dispersed with an attritor so that the secondary particles had a predetermined particle size, and then filtered with Finemet NF manufactured by Nippon Seisen Co., Ltd. to obtain a fine particle additive solution. It was.
- Finemet NF manufactured by Nippon Seisen Co., Ltd.
- the obtained dope solution was uniformly cast on a stainless band support having a dope temperature of 35 ° C. and a temperature of 22 ° C. using a belt casting apparatus. Thereafter, the dope solution on the stainless steel band support was dried until the residual solvent amount became 75%, and then peeled from the stainless steel band support with a peel strength of 130 N / m to obtain a film-like material.
- the obtained film-like material was stretched 30% (1.3 times) in the width direction (TD direction) with a tenter while applying heat at 150 ° C.
- the amount of residual solvent in the film-like material at the start of stretching was 15%.
- the obtained film was dried while being conveyed by many rolls.
- the drying temperature was 130 ° C. and the transport tension was 100 N / m.
- knurling is performed on both ends of the film in the width direction to form an embossed portion having a width of 10 mm and a height of 5 ⁇ m as shown in FIG. 2A to obtain a film having a width of 1400 mm and a film thickness of 25 ⁇ m. It was.
- the obtained knurled film was wound into a roll using a winding device as shown in FIG. 3 while vibrating the core in the film width direction to obtain a roll body.
- the roll 101 was obtained by winding the film 101 at 2900 m with a speed of 80 m / min, a winding initial tension of 140 N, a winding end tension of 90 N, and a nip force of a touch roller of 20 N.
- the shape of the side surface of both end portions in the axial direction of the obtained roll body was wavy.
- the curve 62 of FIG. 7 shows the sine wave vibration whose period T and A are the same as the above.
- Examples 2-5 Comparative Examples 1-2> Except that the type of cellulose ester and the stretching conditions were changed as shown in Table 2, films having a film thickness of 25 ⁇ m were produced in the same manner as in Example 1, and roll bodies 102 to 107 were obtained.
- Examples 15 to 19, Comparative Example 18> A film was prepared in the same manner as in Example 1 except that the composition of the cellulose ester and the retardation increasing agent was changed as shown in Table 3, and the stretching conditions and film thickness were changed as shown in Table 3. did.
- the obtained film was wound up (oscillate A) while applying vibration in the same manner as in Example 1 to obtain roll bodies 132 to 137.
- the film thickness was adjusted by the dope casting amount, stretch ratio, and the like.
- Examples 20 to 27 Rolls 144 to 151 were obtained in the same manner as in Example 3 except that a polarizer deterioration inhibitor of the type and amount shown in Table 4 was further added.
- Example 28 A film was produced in the same manner as in Example 20 except that the type of the polarizer deterioration inhibitor was changed as shown in Table 5. Then, the obtained film was wound (oscillate B) in the same manner as in Example 20 except that the amplitude A of vibration in the vibration winding process was gradually increased in accordance with the increase in the integrated thickness of the wound film. ) And a roll body 160 was obtained. Specifically, the vibration amplitude is 8 mm at the start of winding, the vibration amplitude A is increased, and the vibration amplitude is 10 mm at the end of winding. The period T of vibration was fixed at 80 mm as in Example 20.
- Example 29 Example 1 except that when the produced film is wound around the core, the amplitude A of vibration in the vibration winding process is gradually increased as the integrated thickness of the film wound around the core increases.
- a roll film 161 of a retardation film was obtained. Specifically, the amplitude A of vibration at the start of winding was set to 5 mm and gradually increased so that the amplitude A of vibration at the end of winding was set to 7 mm (oscillate C).
- Example 30 Example when the produced film was wound around the core, except that the vibration period T in the vibration winding process was gradually decreased as the integrated thickness of the film wound on the core increased.
- a roll body 162 of a retardation film was obtained. Specifically, the vibration period T at the start of winding was set to 160 mm and gradually decreased, and the vibration period T at the end of winding was set to 100 mm (oscillate D).
- Example 31 A retardation film was produced in the same manner as in Example 1 except that an embossed portion having a shape as shown in FIG.
- the production conditions for the films of Examples 1-14 and Comparative Examples 1-17 are shown in Table 2; the production conditions for the films of Examples 15-19 and Comparative Examples 18-24 are shown in Table 3; Examples 20-27 and The production conditions for the films of Comparative Examples 25-32 are shown in Table 4; the production conditions for the films of Examples 28-31 are shown in Table 5.
- the retardation (R 0 and Rth) of the film obtained from the produced roll body was evaluated by the following method.
- ⁇ Phase difference R 0 , Rth> 1 The film was drawn out from the obtained roll body, and the film cut out from the central portion in the width direction was conditioned at 23 ° C. and 55% RH. The average refractive index of the film after humidity control was measured with an Abbe refractometer. 2) R 0 when light having a measurement wavelength of 590 nm was incident on the film after humidity control in parallel with the normal line of the film surface was measured by KOBRA 21ADH, Oji Scientific Co., Ltd.
- nx, ny, and nz were calculated by KOBRA21ADH from the measured R 0 and R ( ⁇ ) and the above-described average refractive index and film thickness, and Rth at a measurement wavelength of 590 nm was calculated. The retardation was measured under the conditions of 23 ° C. and 55% RH.
- a part of the film was cut out from the roll body after storage to obtain a film after storage. Then, a polarizing plate and a liquid crystal display device using the film before storage and a polarizing plate and a liquid crystal display device using the film after storage were prepared by the following methods, respectively.
- the film obtained from the produced roll was subjected to alkali saponification treatment, then washed with water, neutralized and washed with water.
- Saponification step 2M-NaOH 50 ° C. 90 seconds
- Water washing step Water 30 ° C. 45 seconds
- Water washing step Water 30 ° C. 45 seconds Then, the obtained film was dried at 80 ° C.
- Konica Minoltack KC4UY was prepared as a protective film, and its surface was subjected to alkali saponification treatment.
- the prepared film (retardation film) subjected to alkali saponification treatment was bonded to one surface of the prepared polarizer using a 5% aqueous solution of completely saponified polyvinyl alcohol as an adhesive.
- KC4UY subjected to alkali saponification treatment was bonded to the other surface of the polarizer using a 5% aqueous solution of completely saponified polyvinyl alcohol as an adhesive.
- the bonding was performed so that the transmission axis of the polarizer and the in-plane slow axis of the produced film were parallel.
- the laminated laminate was dried at 60 ° C. to obtain a polarizing plate.
- ⁇ Polarizer degradation> Deterioration of the polarization degree of the polarizing plate produced using the film (film before storage) obtained from the roll body before storage was evaluated by the following methods. 1) The obtained polarizing plate was cut into a size of 4 cm ⁇ 4 cm to obtain a polarizing plate sample. The polarizing plate sample was conditioned at 23 ° C. and 55% RH for 24 hours, and then parallel transmittance and orthogonal transmittance were measured at 23 ° C. and 55% RH. The obtained measured values were applied to the following formulas to calculate the polarization degree P0 before storage.
- ⁇ Polarization degree change rate of less than 3%
- ⁇ Polarization degree change rate of 3% or more and less than 5%
- ⁇ Polarization degree change rate of 5% or more and less than 8%
- ⁇ Polarization degree change rate of 8% or more
- viewing angle characteristics and display unevenness of the liquid crystal display device using the film before storage were evaluated by the following methods, respectively.
- X The viewing angle is very narrow.
- the evaluation results using the films obtained from the roll bodies of Examples 1 to 14 and Comparative Examples 1 to 17 are shown in Table 6; the films obtained from the roll bodies of Examples 15 to 19 and Comparative Examples 18 to 24 were used.
- the evaluation results are shown in Table 7; the evaluation results using the films obtained from the roll bodies of Examples 20 to 27 and Comparative Examples 25 to 32 are shown in Table 8; the films obtained from the roll bodies of Examples 28 to 31 are shown.
- Table 9 shows the evaluation results used.
- the films obtained from the roll bodies of Examples 1 to 31 have high retardation values even when the thickness is small. And even if it uses the film (film after a preservation
- Comparative Examples 25 to 32 of Table 8 it can be seen that when the film further contains a polarizer deterioration inhibitor, display unevenness and storage angle performance after storage are more likely to occur. This is presumably because the film containing the polarizer deterioration inhibitor has a lower strength and the roll body tends to be deformed during storage. In contrast, the films of Examples 20 to 27 wound by oscillating winding hardly cause deformation of the roll body during storage, and it can be seen that display unevenness and deterioration of viewing angle performance can be reduced even after storage.
- the roll body of Example 28 or 29 in which the amplitude A of the oscillating winding is gradually increased with the progress of winding is the same as that of Example 20 or Example 1 in which the amplitude A is constant. It can be seen that there is less deformation during storage than the roll body. Further, it can be seen that the roll body of Example 30 in which the cycle T of the oscillating winding is gradually reduced as the winding progresses is less deformed during storage than the roll body of Example 1 in which the period T is constant. . Further, the roll body of Example 31 in which the shape of the embossed portion is the shape shown in FIG. 2B is more deformed during storage than the roll body of Example 1 having the shape shown in FIG. I understand that there are few. Thereby, it can be seen that the film obtained from the roll body after storage in Examples 28 to 30 can reduce the display unevenness of the liquid crystal display device more than the film obtained from the roll body in Example 20 or Example 1.
- the present invention it is possible to provide a roll body of a retardation film that has a high retardation and can suppress display unevenness due to deformation of the roll body.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nonlinear Science (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mathematical Physics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
An objective of the present invention is to provide a phase difference film roll which has a high phase difference and which is capable of suppressing display unevenness arising from deformations in the roll. This phase difference film roll is obtained by rolling a phase difference film in the length direction of the film, which is embossed on both end parts in the width direction. The phase difference film includes a diacetyl cellulose and a retardation increasing agent as primary constituents. At least a portion of the lateral face shapes of both ends of the roll in the axial direction have wave shapes.
Description
本発明は、位相差フィルムのロール体とその製造方法、偏光板および液晶表示装置に関する。
The present invention relates to a roll of retardation film, a method for producing the roll, a polarizing plate, and a liquid crystal display device.
位相差フィルムは、液晶表示装置などの視認性を高める目的で用いられている。例えばVA用位相差フィルムとしては、トリアセチルセルロースと、トリアジン環化合物や棒状化合物などのリターデーション上昇剤とを含むフィルムや;セルロースアセテートプロピオネートを主成分とするフィルムなどが知られている(例えば特許文献1および2)。
The retardation film is used for the purpose of improving the visibility of liquid crystal display devices and the like. For example, as a retardation film for VA, a film containing triacetyl cellulose and a retardation increasing agent such as a triazine ring compound or a rod-like compound; a film mainly composed of cellulose acetate propionate, and the like are known ( For example, Patent Documents 1 and 2).
近年、液晶表示装置の薄型化に伴い、位相差フィルムにも薄膜化が求められている。しかしながら、位相差フィルムを薄膜化すると、位相差値が低下し、所望の位相差値が得られにくい。そのため、セルローストリアセテートフィルムを主成分とするフィルムでは、リターデーション上昇剤の添加量を増加させたり;セルロースアセテートプロピオネートを主成分とするフィルムでは、リターデーション上昇剤を添加したりすることが検討されている。
In recent years, with the thinning of liquid crystal display devices, the retardation film is also required to be thin. However, when the retardation film is thinned, the retardation value is lowered and it is difficult to obtain a desired retardation value. Therefore, in the case of a film mainly composed of cellulose triacetate film, the addition amount of the retardation increasing agent is increased; in the case of a film mainly composed of cellulose acetate propionate, it is considered to add a retardation increasing agent. Has been.
ところで、位相差フィルムは、通常、長尺状のフィルムの幅方向両端部にエンボス部を施した後;長尺方向にロール状に巻き取り、ロール体として保管される。しかしながら、トリアセチルセルロースまたはセルロースアセテートプロピオネートと、リターデーション上昇剤とを含む長尺状の位相差フィルムを通常の方法で巻き取って得られるロール体は、長期保存中にロール体が変形しやすいという問題があった。このようにVA用などに用いられる薄膜の位相差フィルムを、通常の方法で巻き取って得られるロール体は、長期保存中に変形しやすいという問題があった。
By the way, the retardation film is usually wound on both ends of the long film in the width direction; the roll film is wound in the long direction and stored as a roll body. However, a roll body obtained by winding a long retardation film containing triacetyl cellulose or cellulose acetate propionate and a retardation increasing agent by a usual method is deformed during long-term storage. There was a problem that it was easy. Thus, the roll body obtained by winding the thin film retardation film used for VA or the like by a usual method has a problem that it is easily deformed during long-term storage.
長期保存中のロール体の変形が生じる理由は必ずしも明らかではないが、以下のように考えられる。即ち、ロール体の変形は、エンボス部同士が重なるフィルムの幅方向両端部の巻き径がフィルムの幅方向中央部の巻き径よりも顕著に大きくなり、鉛直方向にたわむような大きな皺が生じる現象をいう。トリアセチルセルロースまたはセルロースアセテートプロピオネートとリターデーション上昇剤とを含む長尺状の位相差フィルムを従来よりも薄膜化すると、所望の位相差を得るためにリターデーション上昇剤の含有量を多くしなければならず、フィルムの強度が低下し;その結果、ロール体の変形が顕著に生じやすくなると想定される。
The reason why the roll body is deformed during long-term storage is not necessarily clear, but can be considered as follows. That is, the deformation of the roll body is a phenomenon in which the winding diameter at both ends in the width direction of the film where the embossed portions overlap each other is significantly larger than the winding diameter at the central portion in the width direction of the film, and a large wrinkle that bends vertically is generated. Say. When a long retardation film containing triacetyl cellulose or cellulose acetate propionate and a retardation increasing agent is made thinner than before, the content of the retardation increasing agent is increased in order to obtain a desired retardation. It is assumed that the strength of the film is reduced; as a result, deformation of the roll body is likely to occur significantly.
そのようなロール体の変形が生じると、巻き取られた位相差フィルムに不均一な張力が加わりやすく、位相差のムラを生じやすい。そのような位相差のムラを有する位相差フィルムは、液晶表示装置の表示ムラを生じさせる。
When such a roll body is deformed, non-uniform tension is easily applied to the wound retardation film, and unevenness of the retardation is likely to occur. A retardation film having such retardation unevenness causes display unevenness of a liquid crystal display device.
本発明は、上記事情に鑑みてなされたものであり、高い位相差を有し、かつロール体の変形に起因する表示ムラを抑制できる位相差フィルムのロール体を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a roll body of a retardation film that has a high retardation and can suppress display unevenness due to deformation of the roll body.
[1] 幅方向両端部にエンボス部を有する位相差フィルムを、フィルムの長尺方向に巻き取って得られるロール体であって、前記位相差フィルムは、主成分としてのジアセチルセルロースと、リターデーション上昇剤とを含み、前記ロール体の軸方向両端部の側面形状の少なくとも一部が波状になっている、位相差フィルムのロール体。
[2] 前記位相差フィルムの厚みが15~35μmである、[1]に記載の位相差フィルムのロール体。
[3] 前記位相差フィルムの、下記式(I)で定義され、かつ測定波長590nmで測定される面内方向のリターデーションR0が20~130nmであり、かつ下記式(II)で定義され、かつ測定波長590nmで測定される厚み方向のリターデーションRthが、100~300nmである、[1]または[2]に記載の位相差フィルムのロール体。
式(I) R0=(nx-ny)×t(nm)
式(II) Rth={(nx+ny)/2-nz}×t(nm)
(式(I)および(II)において、
nxは、フィルムの面内方向において屈折率が最大になる遅相軸方向xにおける屈折率を表し;nyは、フィルムの面内方向において前記遅相軸方向xと直交する方向yにおける屈折率を表し;nzは、フィルムの厚み方向zにおける屈折率を表し;t(nm)は、フィルムの厚みを表す)
[4] 前記リターデーション上昇剤の含有量は、前記ジアセチルセルロース100質量部に対して1~10質量部である、[1]~[3]のいずれかに記載の位相差フィルムのロール体。
[5] 前記位相差フィルムは、下記一般式(A)で表されるモノマー由来の繰り返し構造を有する重合体、一般式(B)で表される化合物、一般式(C)で表される化合物、および一般式(D)で表される化合物からなる群より選ばれる一以上をさらに含む、[1]~[4]のいずれかに記載の位相差フィルムのロール体。
(一般式(A)中、
R1およびR2は、それぞれ独立に水素原子または炭素数1~4のアルキル基を表し;
R3は、置換基を表し;
環Aは、5または6員環を表し;
nは、1~4の整数を表し、nが2以上のとき、複数のR3は互いに同一であっても異なっていてもよい)
(一般式(B)中、
R1は、水素原子または置換基を表し;
R2は、下記一般式(B-1)で表される置換基を表し;
n1は、0~4の整数を表し、n1が2以上のとき、複数のR1は互いに同一であっても異なっていてもよく、
n2は1~5の整数を表し、n2が2以上のとき、複数のR2は互いに同一であっても異なっていてもよい)
(一般式(B-1)中、
Aは、置換または無置換の芳香族環を表し;
R3およびR4は、それぞれ独立に、水素原子、炭素数1~5のアルキル基または一般式(B-2)で表される置換基を表し;
R5は、単結合または炭素数1~5のアルキレン基を表し;
Xは、置換または無置換の芳香族環を表し;
n3は、0~10の整数を表し、n3が2以上のとき、複数のR5およびXは互いに同一であっても異なっていてもよい)
(一般式(B-2)中、
Xは、置換または無置換の芳香族環を表し;
R6、R7、R8、およびR9は、それぞれ独立に水素原子または炭素数1~5のアルキル基を表し;
n5は1~11の整数を表し、n5が2以上のとき、複数のR6、R7、R8およびXは互いに同一であっても異なっていてもよい)
(一般式(C)中、
R26は、炭素数6~12のアリール基を表し;
R27およびR28は、それぞれ独立して水素原子、炭素数1~12のアルキル基または炭素数6~12のアリール基を表し;
R26およびR27は、それぞれ置換基を有していてもよい)
(一般式(D)中、
Rは、置換基を表し;
m、nは、それぞれ独立に1~3の整数を表す)
[6] 主成分としてのジアセチルセルロースと、リターデーション上昇剤とを含み、幅方向両端部にエンボス部が設けられた長尺状の位相差フィルムを準備する工程と、前記位相差フィルムを巻芯にロール状に巻き取る工程とを含み、前記巻き取る工程は、前記位相差フィルムと前記巻芯の少なくとも一方を、前記位相差フィルムの幅方向に周期的に振動させながら、前記位相差フィルムを前記巻芯に巻き取る振動巻き取り工程を含む、位相差フィルムのロール体の製造方法。
[7] 前記振動巻き取り工程における振動の振幅を、巻き取られる前記位相差フィルムの積算の厚みが大きくなるにつれて大きくする、[6]に記載の位相差フィルムのロール体の製造方法。
[8] 前記振動巻き取り工程における振動の周期を、巻き取られる前記位相差フィルムの積算の厚みが大きくなるにつれて小さくする、[6]または[7]に記載の位相差フィルムのロール体の製造方法。 [1] A roll obtained by winding a retardation film having embossed portions at both ends in the width direction in the longitudinal direction of the film, the retardation film comprising diacetyl cellulose as a main component and retardation A roll body of a retardation film comprising a rising agent, wherein at least a part of a side surface shape of both end portions in the axial direction of the roll body is wavy.
[2] The retardation film roll according to [1], wherein the retardation film has a thickness of 15 to 35 μm.
[3] The retardation film R 0 defined in the following formula (I) and measured in the in-plane direction at a measurement wavelength of 590 nm is 20 to 130 nm, and is defined by the following formula (II). And a retardation film roll according to [1] or [2], wherein retardation Rth in the thickness direction measured at a measurement wavelength of 590 nm is 100 to 300 nm.
Formula (I) R 0 = (nx−ny) × t (nm)
Formula (II) Rth = {(nx + ny) / 2−nz} × t (nm)
(In formulas (I) and (II),
nx represents the refractive index in the slow axis direction x where the refractive index is maximum in the in-plane direction of the film; ny represents the refractive index in the direction y perpendicular to the slow axis direction x in the in-plane direction of the film. Nz represents the refractive index in the thickness direction z of the film; t (nm) represents the thickness of the film)
[4] The retardation film roll according to any one of [1] to [3], wherein the content of the retardation increasing agent is 1 to 10 parts by mass with respect to 100 parts by mass of the diacetylcellulose.
[5] The retardation film includes a polymer having a repeating structure derived from a monomer represented by the following general formula (A), a compound represented by the general formula (B), and a compound represented by the general formula (C). And a roll of retardation film according to any one of [1] to [4], further comprising at least one selected from the group consisting of compounds represented by formula (D).
(In general formula (A),
R 1 and R 2 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms;
R 3 represents a substituent;
Ring A represents a 5 or 6 membered ring;
n represents an integer of 1 to 4, and when n is 2 or more, a plurality of R 3 may be the same or different from each other)
(In the general formula (B),
R 1 represents a hydrogen atom or a substituent;
R 2 represents a substituent represented by the following general formula (B-1);
n1 represents an integer of 0 to 4, and when n1 is 2 or more, a plurality of R 1 may be the same or different from each other;
n2 represents an integer of 1 to 5, and when n2 is 2 or more, a plurality of R 2 may be the same or different)
(In the general formula (B-1),
A represents a substituted or unsubstituted aromatic ring;
R 3 and R 4 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a substituent represented by the general formula (B-2);
R 5 represents a single bond or an alkylene group having 1 to 5 carbon atoms;
X represents a substituted or unsubstituted aromatic ring;
n3 represents an integer of 0 to 10, and when n3 is 2 or more, a plurality of R 5 and X may be the same or different from each other)
(In the general formula (B-2),
X represents a substituted or unsubstituted aromatic ring;
R 6 , R 7 , R 8 , and R 9 each independently represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms;
n5 represents an integer of 1 to 11, and when n5 is 2 or more, a plurality of R 6 , R 7 , R 8 and X may be the same or different)
(In the general formula (C),
R 26 represents an aryl group having 6 to 12 carbon atoms;
R 27 and R 28 each independently represent a hydrogen atom, an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 12 carbon atoms;
R 26 and R 27 may each have a substituent)
(In general formula (D),
R represents a substituent;
m and n each independently represents an integer of 1 to 3)
[6] A step of preparing a long retardation film including diacetylcellulose as a main component and a retardation increasing agent and having embossed portions at both ends in the width direction; and winding the retardation film into a core The step of winding the phase difference film and the core while periodically oscillating at least one of the phase difference film and the core in the width direction of the phase difference film. The manufacturing method of the roll body of retardation film including the vibration winding process wound up to the said winding core.
[7] The method for producing a roll of retardation film according to [6], wherein the amplitude of vibration in the vibration winding process is increased as the integrated thickness of the phase difference film to be wound increases.
[8] Manufacture of roll body of retardation film according to [6] or [7], wherein the period of vibration in the vibration winding process is decreased as the integrated thickness of the phase difference film to be wound is increased. Method.
[2] 前記位相差フィルムの厚みが15~35μmである、[1]に記載の位相差フィルムのロール体。
[3] 前記位相差フィルムの、下記式(I)で定義され、かつ測定波長590nmで測定される面内方向のリターデーションR0が20~130nmであり、かつ下記式(II)で定義され、かつ測定波長590nmで測定される厚み方向のリターデーションRthが、100~300nmである、[1]または[2]に記載の位相差フィルムのロール体。
式(I) R0=(nx-ny)×t(nm)
式(II) Rth={(nx+ny)/2-nz}×t(nm)
(式(I)および(II)において、
nxは、フィルムの面内方向において屈折率が最大になる遅相軸方向xにおける屈折率を表し;nyは、フィルムの面内方向において前記遅相軸方向xと直交する方向yにおける屈折率を表し;nzは、フィルムの厚み方向zにおける屈折率を表し;t(nm)は、フィルムの厚みを表す)
[4] 前記リターデーション上昇剤の含有量は、前記ジアセチルセルロース100質量部に対して1~10質量部である、[1]~[3]のいずれかに記載の位相差フィルムのロール体。
[5] 前記位相差フィルムは、下記一般式(A)で表されるモノマー由来の繰り返し構造を有する重合体、一般式(B)で表される化合物、一般式(C)で表される化合物、および一般式(D)で表される化合物からなる群より選ばれる一以上をさらに含む、[1]~[4]のいずれかに記載の位相差フィルムのロール体。
R1およびR2は、それぞれ独立に水素原子または炭素数1~4のアルキル基を表し;
R3は、置換基を表し;
環Aは、5または6員環を表し;
nは、1~4の整数を表し、nが2以上のとき、複数のR3は互いに同一であっても異なっていてもよい)
R1は、水素原子または置換基を表し;
R2は、下記一般式(B-1)で表される置換基を表し;
n1は、0~4の整数を表し、n1が2以上のとき、複数のR1は互いに同一であっても異なっていてもよく、
n2は1~5の整数を表し、n2が2以上のとき、複数のR2は互いに同一であっても異なっていてもよい)
Aは、置換または無置換の芳香族環を表し;
R3およびR4は、それぞれ独立に、水素原子、炭素数1~5のアルキル基または一般式(B-2)で表される置換基を表し;
R5は、単結合または炭素数1~5のアルキレン基を表し;
Xは、置換または無置換の芳香族環を表し;
n3は、0~10の整数を表し、n3が2以上のとき、複数のR5およびXは互いに同一であっても異なっていてもよい)
Xは、置換または無置換の芳香族環を表し;
R6、R7、R8、およびR9は、それぞれ独立に水素原子または炭素数1~5のアルキル基を表し;
n5は1~11の整数を表し、n5が2以上のとき、複数のR6、R7、R8およびXは互いに同一であっても異なっていてもよい)
R26は、炭素数6~12のアリール基を表し;
R27およびR28は、それぞれ独立して水素原子、炭素数1~12のアルキル基または炭素数6~12のアリール基を表し;
R26およびR27は、それぞれ置換基を有していてもよい)
Rは、置換基を表し;
m、nは、それぞれ独立に1~3の整数を表す)
[6] 主成分としてのジアセチルセルロースと、リターデーション上昇剤とを含み、幅方向両端部にエンボス部が設けられた長尺状の位相差フィルムを準備する工程と、前記位相差フィルムを巻芯にロール状に巻き取る工程とを含み、前記巻き取る工程は、前記位相差フィルムと前記巻芯の少なくとも一方を、前記位相差フィルムの幅方向に周期的に振動させながら、前記位相差フィルムを前記巻芯に巻き取る振動巻き取り工程を含む、位相差フィルムのロール体の製造方法。
[7] 前記振動巻き取り工程における振動の振幅を、巻き取られる前記位相差フィルムの積算の厚みが大きくなるにつれて大きくする、[6]に記載の位相差フィルムのロール体の製造方法。
[8] 前記振動巻き取り工程における振動の周期を、巻き取られる前記位相差フィルムの積算の厚みが大きくなるにつれて小さくする、[6]または[7]に記載の位相差フィルムのロール体の製造方法。 [1] A roll obtained by winding a retardation film having embossed portions at both ends in the width direction in the longitudinal direction of the film, the retardation film comprising diacetyl cellulose as a main component and retardation A roll body of a retardation film comprising a rising agent, wherein at least a part of a side surface shape of both end portions in the axial direction of the roll body is wavy.
[2] The retardation film roll according to [1], wherein the retardation film has a thickness of 15 to 35 μm.
[3] The retardation film R 0 defined in the following formula (I) and measured in the in-plane direction at a measurement wavelength of 590 nm is 20 to 130 nm, and is defined by the following formula (II). And a retardation film roll according to [1] or [2], wherein retardation Rth in the thickness direction measured at a measurement wavelength of 590 nm is 100 to 300 nm.
Formula (I) R 0 = (nx−ny) × t (nm)
Formula (II) Rth = {(nx + ny) / 2−nz} × t (nm)
(In formulas (I) and (II),
nx represents the refractive index in the slow axis direction x where the refractive index is maximum in the in-plane direction of the film; ny represents the refractive index in the direction y perpendicular to the slow axis direction x in the in-plane direction of the film. Nz represents the refractive index in the thickness direction z of the film; t (nm) represents the thickness of the film)
[4] The retardation film roll according to any one of [1] to [3], wherein the content of the retardation increasing agent is 1 to 10 parts by mass with respect to 100 parts by mass of the diacetylcellulose.
[5] The retardation film includes a polymer having a repeating structure derived from a monomer represented by the following general formula (A), a compound represented by the general formula (B), and a compound represented by the general formula (C). And a roll of retardation film according to any one of [1] to [4], further comprising at least one selected from the group consisting of compounds represented by formula (D).
R 1 and R 2 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms;
R 3 represents a substituent;
Ring A represents a 5 or 6 membered ring;
n represents an integer of 1 to 4, and when n is 2 or more, a plurality of R 3 may be the same or different from each other)
R 1 represents a hydrogen atom or a substituent;
R 2 represents a substituent represented by the following general formula (B-1);
n1 represents an integer of 0 to 4, and when n1 is 2 or more, a plurality of R 1 may be the same or different from each other;
n2 represents an integer of 1 to 5, and when n2 is 2 or more, a plurality of R 2 may be the same or different)
A represents a substituted or unsubstituted aromatic ring;
R 3 and R 4 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a substituent represented by the general formula (B-2);
R 5 represents a single bond or an alkylene group having 1 to 5 carbon atoms;
X represents a substituted or unsubstituted aromatic ring;
n3 represents an integer of 0 to 10, and when n3 is 2 or more, a plurality of R 5 and X may be the same or different from each other)
X represents a substituted or unsubstituted aromatic ring;
R 6 , R 7 , R 8 , and R 9 each independently represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms;
n5 represents an integer of 1 to 11, and when n5 is 2 or more, a plurality of R 6 , R 7 , R 8 and X may be the same or different)
R 26 represents an aryl group having 6 to 12 carbon atoms;
R 27 and R 28 each independently represent a hydrogen atom, an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 12 carbon atoms;
R 26 and R 27 may each have a substituent)
R represents a substituent;
m and n each independently represents an integer of 1 to 3)
[6] A step of preparing a long retardation film including diacetylcellulose as a main component and a retardation increasing agent and having embossed portions at both ends in the width direction; and winding the retardation film into a core The step of winding the phase difference film and the core while periodically oscillating at least one of the phase difference film and the core in the width direction of the phase difference film. The manufacturing method of the roll body of retardation film including the vibration winding process wound up to the said winding core.
[7] The method for producing a roll of retardation film according to [6], wherein the amplitude of vibration in the vibration winding process is increased as the integrated thickness of the phase difference film to be wound increases.
[8] Manufacture of roll body of retardation film according to [6] or [7], wherein the period of vibration in the vibration winding process is decreased as the integrated thickness of the phase difference film to be wound is increased. Method.
[9] 偏光子と、前記偏光子の少なくとも一方の面に配置される[1]~[5]のいずれかに記載のロール体から得られる位相差フィルムとを含む、偏光板。
[10] 液晶セルと、前記液晶セルの一方の面に配置された第一の偏光板と、前記液晶セルの他方の面に配置された第二の偏光板とを含み、前記第一の偏光板は、第一の偏光子と、前記第一の偏光子の前記液晶セルとは反対側の面に配置される保護フィルムF1と、前記第一の偏光子の前記液晶セル側の面に配置される保護フィルムF2とを含み、前記第二の偏光板は、第二の偏光子と、前記第二の偏光子の前記液晶セル側の面に配置される保護フィルムF3と、前記第二の偏光子の前記液晶セルとは反対側の面に配置される保護フィルムF4とを含み、前記保護フィルムF2およびF3の少なくとも一方が、[1]~[5]のいずれかに記載のロール体から得られる位相差フィルムを含む、液晶表示装置。 [9] A polarizing plate comprising a polarizer and a retardation film obtained from the roll according to any one of [1] to [5] disposed on at least one surface of the polarizer.
[10] The first polarized light including a liquid crystal cell, a first polarizing plate disposed on one surface of the liquid crystal cell, and a second polarizing plate disposed on the other surface of the liquid crystal cell. The plate is disposed on the surface of the first polarizer, the protective film F1 disposed on the surface of the first polarizer opposite to the liquid crystal cell, and the surface of the first polarizer on the liquid crystal cell side. The second polarizing plate includes a second polarizer, a protective film F3 disposed on a surface of the second polarizer on the liquid crystal cell side, and the second polarizing plate. A protective film F4 disposed on a surface of the polarizer opposite to the liquid crystal cell, and at least one of the protective films F2 and F3 is formed of the roll body according to any one of [1] to [5]. A liquid crystal display device comprising the obtained retardation film.
[10] 液晶セルと、前記液晶セルの一方の面に配置された第一の偏光板と、前記液晶セルの他方の面に配置された第二の偏光板とを含み、前記第一の偏光板は、第一の偏光子と、前記第一の偏光子の前記液晶セルとは反対側の面に配置される保護フィルムF1と、前記第一の偏光子の前記液晶セル側の面に配置される保護フィルムF2とを含み、前記第二の偏光板は、第二の偏光子と、前記第二の偏光子の前記液晶セル側の面に配置される保護フィルムF3と、前記第二の偏光子の前記液晶セルとは反対側の面に配置される保護フィルムF4とを含み、前記保護フィルムF2およびF3の少なくとも一方が、[1]~[5]のいずれかに記載のロール体から得られる位相差フィルムを含む、液晶表示装置。 [9] A polarizing plate comprising a polarizer and a retardation film obtained from the roll according to any one of [1] to [5] disposed on at least one surface of the polarizer.
[10] The first polarized light including a liquid crystal cell, a first polarizing plate disposed on one surface of the liquid crystal cell, and a second polarizing plate disposed on the other surface of the liquid crystal cell. The plate is disposed on the surface of the first polarizer, the protective film F1 disposed on the surface of the first polarizer opposite to the liquid crystal cell, and the surface of the first polarizer on the liquid crystal cell side. The second polarizing plate includes a second polarizer, a protective film F3 disposed on a surface of the second polarizer on the liquid crystal cell side, and the second polarizing plate. A protective film F4 disposed on a surface of the polarizer opposite to the liquid crystal cell, and at least one of the protective films F2 and F3 is formed of the roll body according to any one of [1] to [5]. A liquid crystal display device comprising the obtained retardation film.
本発明によれば、高い位相差を有し、かつロール体の変形に起因する表示ムラを抑制できる位相差フィルムのロール体を提供することができる。
According to the present invention, it is possible to provide a roll body of a retardation film that has a high retardation and can suppress display unevenness due to deformation of the roll body.
前述の通り、トリアセチルセルロースまたはセルロースアセテートプロピオネートと、リターデーション上昇剤とを含む長尺状の位相差フィルムを通常の方法で巻き取って得られるロール体は、長期保存中にロール体が変形しやすい。この理由は明らかではないが、以下のように想定される。即ち、トリアセチルセルロースまたはセルロースアセテートプロピオネートと、リターデーション上昇剤とを含む長尺状の位相差フィルムを従来よりも薄膜化すると、所望の位相差を得るためにリターデーション上昇剤の含有量を多くしなければならない。その結果、セルロースエステル分子の配向状態が低下し、フィルム強度が低下しやすくなり;ロール体の変形が顕著に生じやすいと考えられる。
As described above, a roll body obtained by winding a long retardation film containing triacetyl cellulose or cellulose acetate propionate and a retardation increasing agent by a normal method is a roll body during long-term storage. Easy to deform. The reason for this is not clear, but is assumed as follows. That is, when a long retardation film containing triacetyl cellulose or cellulose acetate propionate and a retardation increasing agent is made thinner than before, the content of the retardation increasing agent is obtained in order to obtain a desired retardation. You have to make more. As a result, the orientation state of the cellulose ester molecules is lowered, and the film strength is likely to be lowered;
そのような強度が低い位相差フィルムを通常の方法で巻き取って得られるロール体は、長期間保存後に変形しやすい。ロール体の変形は、特に位相差フィルムの膜厚が薄く、フィルム強度がより低い場合に特に生じやすい。そのようなロール体の変形が生じると、位相差フィルムに不均一な張力が加わりやすく、光学特性がばらつきやすい。そのような位相差フィルムは、液晶表示装置の表示ムラを生じやすい。
A roll body obtained by winding such a low-strength retardation film by a usual method is likely to be deformed after long-term storage. Deformation of the roll body is particularly likely to occur particularly when the retardation film is thin and the film strength is lower. When such a roll body is deformed, non-uniform tension is easily applied to the retardation film, and the optical characteristics are likely to vary. Such a retardation film tends to cause display unevenness of a liquid crystal display device.
これに対して本発明では、ジアセチルセルロースとリターデーション上昇剤とを組み合わせることで、膜厚を薄くしても、所望の位相差値を得ることができる。その結果、リターデーション上昇剤の添加量を過剰に多くする必要がないため、フィルム強度の低下を少なくでき、長期保存後のロール体の変形を少なくしうる。
In contrast, in the present invention, a desired retardation value can be obtained by combining diacetyl cellulose and a retardation increasing agent even if the film thickness is reduced. As a result, since it is not necessary to increase the amount of addition of the retardation increasing agent excessively, a decrease in film strength can be reduced, and deformation of the roll body after long-term storage can be reduced.
さらに、位相差フィルムの巻き取りを、フィルムと巻芯の少なくとも一方をフィルムの幅方向に周期的に振動させながら巻き取る振動巻き取り工程を経て行うことで、長期間保存後のロール体の変形をより高度に抑制しうる。
Furthermore, the roll of the retardation film is subjected to a vibration winding process in which at least one of the film and the core is vibrated while periodically vibrating in the width direction of the film. Can be suppressed to a higher degree.
即ち、本発明の位相差フィルムのロール体は、ジアセチルセルロースとリターデーション上昇剤とを含む位相差フィルムを、振動巻き取り工程を経て巻き取って得られるものである。振動巻き取り工程を経て得られる位相差フィルムのロール体は、軸方向両端部の側面形状が波状となる部分を含む。
That is, the roll body of the retardation film of the present invention is obtained by winding a retardation film containing diacetyl cellulose and a retardation increasing agent through a vibration winding process. The roll body of the retardation film obtained through the vibration winding process includes a portion in which the side surface shape of both end portions in the axial direction is wavy.
1.位相差フィルム
本発明の位相差フィルムは、前述の通り、主成分としてジアセチルセルロースと、リターデーション上昇剤とを含む。主成分としてジアセチルセルロースを含むとは、例えば位相差フィルムにおけるジアセチルセルロースの含有量が50質量%以上、好ましくは70質量%以上、さらに好ましくは80質量%以上であることを意味する。 1. Retardation Film As described above, the retardation film of the present invention contains diacetyl cellulose as a main component and a retardation increasing agent. “Containing diacetyl cellulose as a main component” means, for example, that the content of diacetyl cellulose in the retardation film is 50% by mass or more, preferably 70% by mass or more, and more preferably 80% by mass or more.
本発明の位相差フィルムは、前述の通り、主成分としてジアセチルセルロースと、リターデーション上昇剤とを含む。主成分としてジアセチルセルロースを含むとは、例えば位相差フィルムにおけるジアセチルセルロースの含有量が50質量%以上、好ましくは70質量%以上、さらに好ましくは80質量%以上であることを意味する。 1. Retardation Film As described above, the retardation film of the present invention contains diacetyl cellulose as a main component and a retardation increasing agent. “Containing diacetyl cellulose as a main component” means, for example, that the content of diacetyl cellulose in the retardation film is 50% by mass or more, preferably 70% by mass or more, and more preferably 80% by mass or more.
<ジアセチルセルロースについて>
ジアセチルセルロースは、セルロースの水酸基の一部が、アセチル基で置換された化合物である。ジアセチルセルロースのアセチル基の置換度は、十分な位相差を得る観点から、2.0以上2.6未満であり、好ましくは2.0~2.55、より好ましくは2.0~2.5、さらに好ましくは2.0以上2.5未満でありうる。位相差発現性を高めるためには、アセチル基の置換度は低いことが好ましい。 <About diacetylcellulose>
Diacetylcellulose is a compound in which part of the hydroxyl groups of cellulose is substituted with acetyl groups. The degree of substitution of acetyl groups in diacetylcellulose is 2.0 or more and less than 2.6, from the viewpoint of obtaining a sufficient phase difference, preferably 2.0 to 2.55, more preferably 2.0 to 2.5. More preferably, it may be 2.0 or more and less than 2.5. In order to enhance the retardation development, it is preferable that the substitution degree of the acetyl group is low.
ジアセチルセルロースは、セルロースの水酸基の一部が、アセチル基で置換された化合物である。ジアセチルセルロースのアセチル基の置換度は、十分な位相差を得る観点から、2.0以上2.6未満であり、好ましくは2.0~2.55、より好ましくは2.0~2.5、さらに好ましくは2.0以上2.5未満でありうる。位相差発現性を高めるためには、アセチル基の置換度は低いことが好ましい。 <About diacetylcellulose>
Diacetylcellulose is a compound in which part of the hydroxyl groups of cellulose is substituted with acetyl groups. The degree of substitution of acetyl groups in diacetylcellulose is 2.0 or more and less than 2.6, from the viewpoint of obtaining a sufficient phase difference, preferably 2.0 to 2.55, more preferably 2.0 to 2.5. More preferably, it may be 2.0 or more and less than 2.5. In order to enhance the retardation development, it is preferable that the substitution degree of the acetyl group is low.
ジアセチルセルロースのアセチル基の置換度は、ASTM-D817-96に規定の方法で測定することができる。
The degree of substitution of the acetyl group of diacetylcellulose can be measured by the method prescribed in ASTM-D817-96.
ジアセチルセルロースの重量平均分子量は、一定以上の機械的強度を得るためには、5.0×104~5.0×105であることが好ましく、1.0×105~3.0×105であることがより好ましく、1.5×105~2.9×105であることがさらに好ましい。ジアセチルセルロースの分子量分布(重量平均分子量Mw/数平均分子量Mn)は、1.0~4.5であることが好ましい。
The weight average molecular weight of diacetyl cellulose is preferably 5.0 × 10 4 to 5.0 × 10 5 in order to obtain a certain level of mechanical strength, and 1.0 × 10 5 to 3.0 ×. 10 5 is more preferable, and 1.5 × 10 5 to 2.9 × 10 5 is even more preferable. The molecular weight distribution (weight average molecular weight Mw / number average molecular weight Mn) of diacetylcellulose is preferably 1.0 to 4.5.
ジアセチルセルロースの重量平均分子量および分子量分布は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されうる。測定条件は、以下の通りである。
溶媒:メチレンクロライド
カラム:Shodex K806、K805、K803G(昭和電工(株)製)を3本接続して使用する。
カラム温度:25℃
試料濃度:0.1質量%
検出器:RI Model 504(GLサイエンス社製)
ポンプ:L6000(日立製作所(株)製)
流量:1.0ml/min
校正曲線:標準ポリスチレンSTK standardポリスチレン(東ソー(株)製)Mw=1.0×106~5.0×102までの13サンプルによる校正曲線を使用する。13サンプルは、ほぼ等間隔に選択することが好ましい。 The weight average molecular weight and molecular weight distribution of diacetylcellulose can be measured by gel permeation chromatography (GPC). The measurement conditions are as follows.
Solvent: Methylene chloride Column: Three Shodex K806, K805, K803G (manufactured by Showa Denko KK) are connected and used.
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (GL Science Co., Ltd.)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0 ml / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Corporation) Mw = 1.0 × 10 6 to 5.0 × 10 2 13 calibration curves are used. The 13 samples are preferably selected at approximately equal intervals.
溶媒:メチレンクロライド
カラム:Shodex K806、K805、K803G(昭和電工(株)製)を3本接続して使用する。
カラム温度:25℃
試料濃度:0.1質量%
検出器:RI Model 504(GLサイエンス社製)
ポンプ:L6000(日立製作所(株)製)
流量:1.0ml/min
校正曲線:標準ポリスチレンSTK standardポリスチレン(東ソー(株)製)Mw=1.0×106~5.0×102までの13サンプルによる校正曲線を使用する。13サンプルは、ほぼ等間隔に選択することが好ましい。 The weight average molecular weight and molecular weight distribution of diacetylcellulose can be measured by gel permeation chromatography (GPC). The measurement conditions are as follows.
Solvent: Methylene chloride Column: Three Shodex K806, K805, K803G (manufactured by Showa Denko KK) are connected and used.
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (GL Science Co., Ltd.)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0 ml / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Corporation) Mw = 1.0 × 10 6 to 5.0 × 10 2 13 calibration curves are used. The 13 samples are preferably selected at approximately equal intervals.
<リターデーション上昇剤について>
リターデーション上昇剤は、フィルムの位相差値を高める機能を有する化合物である。リターデーション上昇剤は、ジアセチルセルロース100質量部に対して3質量部添加したフィルムの、厚み方向の位相差値Rth(波長590nm)を、未添加のフィルムの1.1倍以上としうる化合物であることが好ましい。 <About the retardation increasing agent>
The retardation increasing agent is a compound having a function of increasing the retardation value of the film. The retardation increasing agent is a compound that can make the retardation value Rth (wavelength 590 nm) in the thickness direction 1.1 times or more that of an unadded film in a film added with 3 parts by mass with respect to 100 parts by mass of diacetylcellulose. It is preferable.
リターデーション上昇剤は、フィルムの位相差値を高める機能を有する化合物である。リターデーション上昇剤は、ジアセチルセルロース100質量部に対して3質量部添加したフィルムの、厚み方向の位相差値Rth(波長590nm)を、未添加のフィルムの1.1倍以上としうる化合物であることが好ましい。 <About the retardation increasing agent>
The retardation increasing agent is a compound having a function of increasing the retardation value of the film. The retardation increasing agent is a compound that can make the retardation value Rth (wavelength 590 nm) in the thickness direction 1.1 times or more that of an unadded film in a film added with 3 parts by mass with respect to 100 parts by mass of diacetylcellulose. It is preferable.
そのようなリターデーション上昇剤の例には、特許第5319966号の段落0041~0063、特許第5427738号の段落0036~0124、特許第4686351号の段落0164~0169などに記載の円盤状化合物、特願2014-010918号の段落0087~0194に記載の含窒素複素環化合物、特許第4686351号の段落0030~0158などに記載の棒状化合物などが含まれる。
Examples of such retardation increasing agents include discotic compounds described in paragraphs 0041 to 0063 of Japanese Patent No. 5311966, paragraphs 0036 to 0124 of Japanese Patent No. 54277738, paragraphs 0164 to 0169 of Japanese Patent No. 4686351, and the like. Examples include nitrogen-containing heterocyclic compounds described in paragraphs 0087 to 0194 of Application No. 2014-010918, rod-like compounds described in paragraphs 0030 to 0158 of Japanese Patent No. 4686351, and the like.
なかでも、リターデーション上昇剤は、位相差発現性に優れ、かつジアセチルセルロースとの相溶性が良好であることなどから、含窒素複素環化合物であることが好ましい。含窒素複素環化合物は、ジアセチルセルロースとの相溶性が良好であることから、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環(1,2,4-トリアゾール環または1,2,3-トリアゾール環)、トリアジン環、ピリミジン環、またはピリジン環を含む化合物であることが好ましく、ピロール環、ピラゾール環、イミダゾール環またはトリアゾール環を含む化合物であることがより好ましい。
Of these, the retardation increasing agent is preferably a nitrogen-containing heterocyclic compound because it has excellent retardation and good compatibility with diacetylcellulose. Since nitrogen-containing heterocyclic compounds have good compatibility with diacetylcellulose, pyrrole ring, pyrazole ring, imidazole ring, triazole ring (1,2,4-triazole ring or 1,2,3-triazole ring) , A triazine ring, a pyrimidine ring, or a compound containing a pyridine ring, more preferably a compound containing a pyrrole ring, a pyrazole ring, an imidazole ring or a triazole ring.
即ち、リターデーション上昇剤は、下記一般式(1)~(6)のいずれかで表される化合物であることが好ましい。
That is, the retardation increasing agent is preferably a compound represented by any one of the following general formulas (1) to (6).
一般式(1)のAは、ピラゾール環を表す。
A in the general formula (1) represents a pyrazole ring.
一般式(1)のAr1およびAr2は、それぞれアリール基またはヘテロアリール基であり;好ましくはアリール基である。アリール基の炭素数は、6~20であることが好ましく、6~10であることがより好ましい。アリール基の例には、フェニル基、ナフチル基などが含まれる。ヘテロアリール基は、5員もしくは6員の芳香族複素環基であり、その例には、ピロール環、ピラゾール環、イミダゾール環、1,2,3-トリアゾール環、1,2,4-トリアゾール環、テトラゾール環、フラン環、オキサゾール環、イソオキサゾール環、オキサジアゾール環、イソオキサジアゾール環、チオフェン環、チアゾール環、イソチアゾール環、チアジアゾール環、イソチアジアゾール環などに由来する基が含まれる。
Ar 1 and Ar 2 in the general formula (1) are each an aryl group or a heteroaryl group; preferably an aryl group. The aryl group preferably has 6 to 20 carbon atoms, and more preferably 6 to 10 carbon atoms. Examples of the aryl group include a phenyl group and a naphthyl group. A heteroaryl group is a 5- or 6-membered aromatic heterocyclic group, and examples thereof include a pyrrole ring, a pyrazole ring, an imidazole ring, a 1,2,3-triazole ring, and a 1,2,4-triazole ring. , Tetrazole ring, furan ring, oxazole ring, isoxazole ring, oxadiazole ring, isoxadiazole ring, thiophene ring, thiazole ring, isothiazole ring, thiadiazole ring, isothiadiazole ring and the like.
Ar1またはAr2で表されるアリール基およびヘテロアリール基は、置換基をさらに有してもよい。そのような置換基の例には、
ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子);
アルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、n-オクチル基、2-エチルヘキシル基等);
シクロアルキル基(シクロヘキシル基、シクロペンチル基、4-n-ドデシルシクロヘキシル基等);
アリール基(フェニル基、p-トリル基、ナフチル基等);
ヘテロアリール基(2-ピロール基、2-フリル基、2-チエニル基、ピロール基、イミダゾリル基、オキサゾリル基、チアゾリル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、2-ベンゾチアゾリル基、ピラゾリノン基、ピリジル基、ピリジノン基、2-ピリミジニル基、トリアジン基、ピラゾール基、1,2,3-トリアゾール基、1,2,4-トリアゾール基、オキサゾール基、イソオキサゾール基、1,2,4-オキサジアゾール基、1,3,4-オキサジアゾール基、チアゾール基、イソチアゾール基、1,2,4-チオジアゾール基、1,3,4-チアジアゾール基等);
アルコキシ基(メトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基、n-オクチルオキシ基、2-メトキシエトキシ基等);
アリールオキシ基(フェノキシ基、2-メチルフェノキシ基、4-tert-ブチルフェノキシ基、3-ニトロフェノキシ基、2-テトラデカノイルアミノフェノキシ基等);
アシル基(アセチル基、ピバロイル基、ベンゾイル基等);
アシルオキシ基(ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基などのアルキルカルボニルオキシ基;ベンゾイルオキシ基、p-メトキシフェニルカルボニルオキシ基などのアリールカルボニルオキシ基等);
アミノ基(アミノ基、メチルアミノ基、ジメチルアミノ基、アニリノ基、N-メチル-アニリノ基、ジフェニルアミノ基等);
シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基などが含まれる。なかでも、ヘテロアリール基(好ましくはピラゾール基)やアシルオキシ基(好ましくはアリールカルボニルオキシ基)が好ましい。これらの置換基は、さらに他の置換基を有してもよい。 The aryl group and heteroaryl group represented by Ar 1 or Ar 2 may further have a substituent. Examples of such substituents include
Halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom);
Alkyl groups (methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n-octyl group, 2-ethylhexyl group, etc.);
A cycloalkyl group (a cyclohexyl group, a cyclopentyl group, a 4-n-dodecylcyclohexyl group, etc.);
Aryl groups (phenyl, p-tolyl, naphthyl, etc.);
Heteroaryl group (2-pyrrole group, 2-furyl group, 2-thienyl group, pyrrole group, imidazolyl group, oxazolyl group, thiazolyl group, benzoimidazolyl group, benzoxazolyl group, 2-benzothiazolyl group, pyrazolinone group, pyridyl group , Pyridinone group, 2-pyrimidinyl group, triazine group, pyrazole group, 1,2,3-triazole group, 1,2,4-triazole group, oxazole group, isoxazole group, 1,2,4- oxadiazole group 1,3,4-oxadiazole group, thiazole group, isothiazole group, 1,2,4-thiodiazole group, 1,3,4-thiadiazole group, etc.);
An alkoxy group (methoxy group, ethoxy group, isopropoxy group, tert-butoxy group, n-octyloxy group, 2-methoxyethoxy group, etc.);
Aryloxy groups (phenoxy group, 2-methylphenoxy group, 4-tert-butylphenoxy group, 3-nitrophenoxy group, 2-tetradecanoylaminophenoxy group, etc.);
An acyl group (acetyl group, pivaloyl group, benzoyl group, etc.);
Acyloxy groups (alkylcarbonyloxy groups such as formyloxy group, acetyloxy group, pivaloyloxy group and stearoyloxy group; arylcarbonyloxy groups such as benzoyloxy group and p-methoxyphenylcarbonyloxy group);
An amino group (amino group, methylamino group, dimethylamino group, anilino group, N-methyl-anilino group, diphenylamino group, etc.);
A cyano group, a hydroxy group, a nitro group, a carboxy group and the like are included. Of these, a heteroaryl group (preferably a pyrazole group) and an acyloxy group (preferably an arylcarbonyloxy group) are preferable. These substituents may further have other substituents.
ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子);
アルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、n-オクチル基、2-エチルヘキシル基等);
シクロアルキル基(シクロヘキシル基、シクロペンチル基、4-n-ドデシルシクロヘキシル基等);
アリール基(フェニル基、p-トリル基、ナフチル基等);
ヘテロアリール基(2-ピロール基、2-フリル基、2-チエニル基、ピロール基、イミダゾリル基、オキサゾリル基、チアゾリル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、2-ベンゾチアゾリル基、ピラゾリノン基、ピリジル基、ピリジノン基、2-ピリミジニル基、トリアジン基、ピラゾール基、1,2,3-トリアゾール基、1,2,4-トリアゾール基、オキサゾール基、イソオキサゾール基、1,2,4-オキサジアゾール基、1,3,4-オキサジアゾール基、チアゾール基、イソチアゾール基、1,2,4-チオジアゾール基、1,3,4-チアジアゾール基等);
アルコキシ基(メトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基、n-オクチルオキシ基、2-メトキシエトキシ基等);
アリールオキシ基(フェノキシ基、2-メチルフェノキシ基、4-tert-ブチルフェノキシ基、3-ニトロフェノキシ基、2-テトラデカノイルアミノフェノキシ基等);
アシル基(アセチル基、ピバロイル基、ベンゾイル基等);
アシルオキシ基(ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基などのアルキルカルボニルオキシ基;ベンゾイルオキシ基、p-メトキシフェニルカルボニルオキシ基などのアリールカルボニルオキシ基等);
アミノ基(アミノ基、メチルアミノ基、ジメチルアミノ基、アニリノ基、N-メチル-アニリノ基、ジフェニルアミノ基等);
シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基などが含まれる。なかでも、ヘテロアリール基(好ましくはピラゾール基)やアシルオキシ基(好ましくはアリールカルボニルオキシ基)が好ましい。これらの置換基は、さらに他の置換基を有してもよい。 The aryl group and heteroaryl group represented by Ar 1 or Ar 2 may further have a substituent. Examples of such substituents include
Halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom);
Alkyl groups (methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n-octyl group, 2-ethylhexyl group, etc.);
A cycloalkyl group (a cyclohexyl group, a cyclopentyl group, a 4-n-dodecylcyclohexyl group, etc.);
Aryl groups (phenyl, p-tolyl, naphthyl, etc.);
Heteroaryl group (2-pyrrole group, 2-furyl group, 2-thienyl group, pyrrole group, imidazolyl group, oxazolyl group, thiazolyl group, benzoimidazolyl group, benzoxazolyl group, 2-benzothiazolyl group, pyrazolinone group, pyridyl group , Pyridinone group, 2-pyrimidinyl group, triazine group, pyrazole group, 1,2,3-triazole group, 1,2,4-triazole group, oxazole group, isoxazole group, 1,2,4-
An alkoxy group (methoxy group, ethoxy group, isopropoxy group, tert-butoxy group, n-octyloxy group, 2-methoxyethoxy group, etc.);
Aryloxy groups (phenoxy group, 2-methylphenoxy group, 4-tert-butylphenoxy group, 3-nitrophenoxy group, 2-tetradecanoylaminophenoxy group, etc.);
An acyl group (acetyl group, pivaloyl group, benzoyl group, etc.);
Acyloxy groups (alkylcarbonyloxy groups such as formyloxy group, acetyloxy group, pivaloyloxy group and stearoyloxy group; arylcarbonyloxy groups such as benzoyloxy group and p-methoxyphenylcarbonyloxy group);
An amino group (amino group, methylamino group, dimethylamino group, anilino group, N-methyl-anilino group, diphenylamino group, etc.);
A cyano group, a hydroxy group, a nitro group, a carboxy group and the like are included. Of these, a heteroaryl group (preferably a pyrazole group) and an acyloxy group (preferably an arylcarbonyloxy group) are preferable. These substituents may further have other substituents.
一般式(1)のR1は、水素原子、アルキル基、アリール基、アシル基、スルホニル基、アルキルオキシカルボニル基またはアリールオキシカルボニル基を表し;好ましくは水素原子またはアルキル基である。
R 1 in the general formula (1) represents a hydrogen atom, an alkyl group, an aryl group, an acyl group, a sulfonyl group, an alkyloxycarbonyl group or an aryloxycarbonyl group; preferably a hydrogen atom or an alkyl group.
アルキル基は、好ましくは炭素数1~10のアルキル基であり、その例には、メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、n-オクチル基、2-エチルヘキシル基などが含まれる。アリール基は、好ましくは炭素数6~20のアリール基であり、その例には、フェニル基などが含まれる。アシル基は、好ましくは炭素数2~20のアシル基であり、その例には、アセチル基、ピバロイルベンゾイル基などが含まれる。スルホニル基は、好ましくは炭素数1~10のアルキルスルホニル基であり、その例には、メチルスルホニル基、エチルスルホニル基などが含まれる。アルキルオキシカルボニル基は、好ましくは炭素数2~10のアルキルオキシカルボニル基であり、その例には、メトキシカルボニル基などが含まれる。アリールオキシカルボニル基は、好ましくは炭素数7~20のアリールオキシカルボニル基であり、その例には、フェノキシカルボニル基などが含まれる。
The alkyl group is preferably an alkyl group having 1 to 10 carbon atoms, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a tert-butyl group, an n-octyl group, and a 2-ethylhexyl group. Etc. are included. The aryl group is preferably an aryl group having 6 to 20 carbon atoms, and examples thereof include a phenyl group. The acyl group is preferably an acyl group having 2 to 20 carbon atoms, and examples thereof include an acetyl group and a pivaloylbenzoyl group. The sulfonyl group is preferably an alkylsulfonyl group having 1 to 10 carbon atoms, and examples thereof include a methylsulfonyl group and an ethylsulfonyl group. The alkyloxycarbonyl group is preferably an alkyloxycarbonyl group having 2 to 10 carbon atoms, and examples thereof include a methoxycarbonyl group. The aryloxycarbonyl group is preferably an aryloxycarbonyl group having 7 to 20 carbon atoms, and examples thereof include a phenoxycarbonyl group.
一般式(1)のqは、1~2の整数を表し;好ましくは1である。nおよびmは、それぞれ独立に1~3の整数を表し;好ましくは1である。
Q in the general formula (1) represents an integer of 1 to 2; n and m each independently represents an integer of 1 to 3;
一般式(1)で表される化合物の具体例には、以下の化合物が含まれる。
Specific examples of the compound represented by the general formula (1) include the following compounds.
一般式(2)のX1~X3は、それぞれ独立して単結合、-NR4-、-O-または-S-であり;好ましくは-NR4-である。-NR4-のR4は、それぞれ独立して水素原子、アルキル基、アルケニル基、アリール基またはヘテロアリール基であり、好ましくは水素原子である。
X 1 to X 3 in the general formula (2) are each independently a single bond, —NR 4 —, —O— or —S—; preferably —NR 4 —. Each R 4 in —NR 4 — is independently a hydrogen atom, an alkyl group, an alkenyl group, an aryl group or a heteroaryl group, preferably a hydrogen atom.
R4で表されるアルキル基の炭素数は、好ましくは1~10、より好ましくは1~6でありうる。アルケニル基の炭素数は、好ましくは2~10、より好ましくは2~6である。アリール基の炭素数は、好ましくは6~20でありうる。ヘテロアリール基の炭素数は、好ましくは5~23であり、より好ましくは5~17でありうる。これらの基はさらに置換基を有してもよく、その例には、ハロゲン原子、アルコキシ基(例えば、メトキシ基、エトキシ基)およびアシルオキシ基(例えば、アクリロイルオキシ基、メタクリロイルオキシ基)などが含まれる。
The number of carbon atoms of the alkyl group represented by R 4 can be preferably 1 to 10, more preferably 1 to 6. The carbon number of the alkenyl group is preferably 2 to 10, more preferably 2 to 6. The aryl group may preferably have 6 to 20 carbon atoms. The carbon number of the heteroaryl group is preferably 5 to 23, and more preferably 5 to 17. These groups may further have a substituent, and examples thereof include a halogen atom, an alkoxy group (for example, methoxy group, ethoxy group) and an acyloxy group (for example, acryloyloxy group, methacryloyloxy group). It is.
一般式(2)のR1~R3は、それぞれ独立にアルキル基、アルケニル基、アリール基またはヘテロアリール基であり、好ましくはアリール基またはヘテロアリール基であり、より好ましくはアリール基である。
R 1 to R 3 in the general formula (2) are each independently an alkyl group, an alkenyl group, an aryl group or a heteroaryl group, preferably an aryl group or a heteroaryl group, and more preferably an aryl group.
R1~R3で表されるアリール基の炭素数は、好ましくは6~20でありうる。アリール基の例には、フェニル基、ナフチル基などが含まれる。ヘテロアリール基を構成する複素環は、5員環または6員環の不飽和複素環であることが好ましい。複素環のヘテロ原子は、窒素原子、硫黄原子または酸素原子であり、好ましくは窒素原子である。ヘテロアリール基の例には、2-ピリジルまたは4-ピリジルなどが含まれる。
The number of carbon atoms of the aryl group represented by R 1 to R 3 can be preferably 6 to 20. Examples of the aryl group include a phenyl group and a naphthyl group. The heterocycle constituting the heteroaryl group is preferably a 5-membered or 6-membered unsaturated heterocycle. The hetero atom of the heterocyclic ring is a nitrogen atom, a sulfur atom or an oxygen atom, preferably a nitrogen atom. Examples of heteroaryl groups include 2-pyridyl or 4-pyridyl.
アリール基またはヘテロアリール基は、置換基をさらに有してもよい。そのような置換基の例には、ハロゲン原子、ニトロ基、シアノ基、アルキル基(炭素数が好ましくは1~12、より好ましくは1~4のアルキル基)、アルコキシ基(炭素数が好ましくは1~12、より好ましくは1~4のアルコキシ基)などが含まれる。
The aryl group or heteroaryl group may further have a substituent. Examples of such substituents include a halogen atom, a nitro group, a cyano group, an alkyl group (preferably an alkyl group having 1 to 12 carbon atoms, more preferably 1 to 4 carbon atoms), an alkoxy group (preferably having a carbon number). 1 to 12, more preferably 1 to 4 alkoxy groups).
一般式(2)で表される化合物の例には、以下のものが含まれる。
Examples of the compound represented by the general formula (2) include the following.
一般式(3)のRaは、アルキル基、アルケニル基、アルキニル基、ヘテロアリール基またはアリール基を表し;好ましくはアルキル基またはアリール基である。アルキル基の炭素数は、好ましくは1~20、より好ましくは3~15であり、さらに好ましくは6~12である。アルキニル基の炭素数は、好ましくは2~20であり、より好ましくは3~15であり、さらに好ましくは6~12である。アリール基の炭素数は、好ましくは6~24であり、より好ましくは6~18である。ヘテロアリール基の炭素数は、好ましくは5~23であり、より好ましくは5~17である。
Ra in the general formula (3) represents an alkyl group, an alkenyl group, an alkynyl group, a heteroaryl group or an aryl group; preferably an alkyl group or an aryl group. The number of carbon atoms of the alkyl group is preferably 1-20, more preferably 3-15, and even more preferably 6-12. The alkynyl group preferably has 2 to 20 carbon atoms, more preferably 3 to 15 carbon atoms, and still more preferably 6 to 12 carbon atoms. The number of carbon atoms of the aryl group is preferably 6 to 24, more preferably 6 to 18. The carbon number of the heteroaryl group is preferably 5 to 23, more preferably 5 to 17.
一般式(3)のX1~X4は、それぞれ独立に単結合または2価の連結基を表し;好ましくは単結合であり、より好ましくは全て単結合である。2価の連結基の例には、下記一般式(Q)で表される2価の連結基、アルキレン基(好ましくは炭素数1~30、より好ましくは炭素数1~3、さらに好ましくは炭素数2のアルキレン基)、アリーレン基(好ましくは炭素数6~30、より好ましくは炭素数6~10のアリーレン基)などが含まれ、好ましくは下記一般式(Q)で表される2価の連結基であり、より好ましくはカルボニル基である。一般式(Q)の*は、一般式(3)の複素環に置換しているN原子との連結部位である。
X 1 to X 4 in the general formula (3) each independently represents a single bond or a divalent linking group; preferably a single bond, more preferably all a single bond. Examples of the divalent linking group include a divalent linking group represented by the following general formula (Q) and an alkylene group (preferably having 1 to 30 carbon atoms, more preferably 1 to 3 carbon atoms, and still more preferably carbon atoms. An alkylene group having a number of 2), an arylene group (preferably an arylene group having 6 to 30 carbon atoms, more preferably an arylene group having 6 to 10 carbon atoms), and the like, preferably a divalent group represented by the following general formula (Q): A linking group, more preferably a carbonyl group. * Of general formula (Q) is a connection part with the N atom substituted on the heterocyclic ring of general formula (3).
一般式(3)のR1~R4は、それぞれ独立に水素原子、アルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基を表し;好ましくは水素原子、アルキル基、アリール基またはヘテロアリール基であり;より好ましくは水素原子またはアルキル基である。R1およびR2の少なくとも一方と、R3およびR4の少なくとも一方は、水素原子であることが好ましい。
R 1 to R 4 in the general formula (3) each independently represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group; preferably a hydrogen atom, an alkyl group, an aryl group or a heteroaryl group More preferably a hydrogen atom or an alkyl group. At least one of R 1 and R 2 and at least one of R 3 and R 4 are preferably hydrogen atoms.
R1~R4で表されるアルキル基の炭素数は、好ましくは1~12、より好ましくは1~6、さらに好ましくは1~4である。アルケニル基およびアルキニル基の炭素数は、それぞれ好ましくは2~12であり、より好ましくは2~6であり、さらに好ましくは2~4である。アリール基の炭素数は、好ましくは6~18であり、より好ましくは6~12であり、さらに好ましくは6である。これらの基は、さらに置換基を有していてもよい。
The number of carbon atoms of the alkyl group represented by R 1 to R 4 is preferably 1 to 12, more preferably 1 to 6, and still more preferably 1 to 4. The alkenyl group and alkynyl group each preferably have 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, and still more preferably 2 to 4 carbon atoms. The aryl group preferably has 6 to 18 carbon atoms, more preferably 6 to 12 carbon atoms, and still more preferably 6. These groups may further have a substituent.
一般式(3)で表される化合物の例には、以下のものが含まれる。
Examples of the compound represented by the general formula (3) include the following.
一般式(4)のY1は、メチン基、あるいは-N-を表し;好ましくは-N-を表す。
Y 1 in the general formula (4) represents a methine group or —N—; preferably —N—.
一般式(4)のQ21は、単結合、-O-、-S-、あるいは-NRf-を表す。-NRf-におけるRfは、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、またはヘテロアリール基を表し、Ra31と連結して環を形成してもよい。
Q 21 in the general formula (4) represents a single bond, —O—, —S—, or —NRf—. Rf in —NRf— represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a heteroaryl group, and may be linked to Ra 31 to form a ring.
一般式(4)のRa31は、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基を表す。Ra31で表されるアルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基は、前述の一般式(3)のRaで表されるアルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基と同義である。
Ra 31 in the general formula (4) represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group. The alkyl group, alkenyl group, alkynyl group, aryl group or heteroaryl group represented by Ra 31 is the alkyl group, alkenyl group, alkynyl group, aryl group or heteroaryl represented by Ra in the general formula (3). Synonymous with group.
一般式(4)のX32およびX33は、それぞれ独立に単結合または2価の連結基を表し;好ましくは単結合である。2価の連結基は、一般式(3)のX1~X4における2価の連結基と同義でありうる。X31およびX34は、前述の一般式(Q)で表される2価の連結基であり;好ましくはカルボニル基である。
X 32 and X 33 in formula (4) each independently represent a single bond or a divalent linking group; preferably a single bond. The divalent linking group may have the same meaning as the divalent linking group in X 1 to X 4 of the general formula (3). X 31 and X 34 are divalent linking groups represented by the aforementioned general formula (Q); preferably a carbonyl group.
一般式(4)のRb31~Re31は、それぞれ独立に水素原子、アルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基を表す。Rb31~Re31で表されるアルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基は、前述の一般式(3)のR1~R4で表されるアルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基とそれぞれ同義である。
Rb 31 to Re 31 in the general formula (4) each independently represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group. The alkyl group, alkenyl group, alkynyl group, aryl group or heteroaryl group represented by Rb 31 to Re 31 is the alkyl group, alkenyl group or alkynyl represented by R 1 to R 4 in the general formula (3). Each having the same meaning as a group, an aryl group or a heteroaryl group.
一般式(4)で表される化合物の例には、以下のものが含まれる。
Examples of the compound represented by the general formula (4) include the following.
一般式(5)のQ31およびQ32は、それぞれ独立して-O-、-S-または-NRf-を表す。-NRf-におけるRfは、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基を表し、Ra41と連結して環を形成してもよい。
Q 31 and Q 32 in the general formula (5) each independently represent —O—, —S—, or —NRf—. Rf in —NRf— represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group, and may be linked to Ra 41 to form a ring.
一般式(5)のRa41およびRg41は、アルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基を表す。Ra41およびRg41で表されるアルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基は、前述の一般式(3)のRaで表されるアルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基とそれぞれ同義である。
Ra 41 and Rg 41 in the general formula (5) represent an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a heteroaryl group. The alkyl group, alkenyl group, alkynyl group, aryl group or heteroaryl group represented by Ra 41 and Rg 41 is the alkyl group, alkenyl group, alkynyl group, aryl group represented by Ra in the general formula (3). Or it is synonymous with heteroaryl group, respectively.
一般式(5)のX43は、単結合または2価の連結基を表し;好ましくは単結合である。2価の連結基は、一般式(3)のX1~X4における2価の連結基と同義でありうる。X44は、前述の一般式(Q)で表される2価の連結基を表し;好ましくはカルボニル基である。
X 43 in formula (5) represents a single bond or a divalent linking group; preferably a single bond. The divalent linking group may have the same meaning as the divalent linking group in X 1 to X 4 of the general formula (3). X 44 represents a divalent linking group represented by the aforementioned general formula (Q); preferably a carbonyl group.
一般式(5)のRd41およびRe41は、それぞれ独立に水素原子、アルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基を表す。Rd41およびRe41で表されるアルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基は、前述の一般式(3)のR1~R4で表されるアルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基とそれぞれ同義である。
Rd 41 and Re 41 in the general formula (5) each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group. The alkyl group, alkenyl group, alkynyl group, aryl group or heteroaryl group represented by Rd 41 and Re 41 is the alkyl group, alkenyl group, alkynyl represented by R 1 to R 4 in the general formula (3). Each having the same meaning as a group, an aryl group or a heteroaryl group.
一般式(5)で表される化合物の例には、以下のものが含まれる。
Examples of the compound represented by the general formula (5) include the following.
一般式(6)のXは、下記一般式(6-1)または一般式(6-2)で表される基である。一般式(6-1)のR1~R8および一般式(6-2)のR11~R18は、それぞれ独立に水素原子または置換基を表す。置換基の例には、ハロゲン原子やアルキル基などが含まれる。
X in the general formula (6) is a group represented by the following general formula (6-1) or general formula (6-2). R 1 to R 8 in the general formula (6-1) and R 11 to R 18 in the general formula (6-2) each independently represent a hydrogen atom or a substituent. Examples of the substituent include a halogen atom and an alkyl group.
一般式(6)のL1およびL2は、それぞれ独立に、-C(=O)O-または-C(=O)NR-を表す。-C(=O)NR-におけるRは、水素原子またはアルキル基を表し;好ましくは水素原子またはメチル基を表し;より好ましくは水素原子である。Rで表されるアルキル基の炭素数は、1~6であることが好ましく、1~4であることがより好ましい。
L 1 and L 2 in the general formula (6) each independently represent —C (═O) O— or —C (═O) NR—. R in —C (═O) NR— represents a hydrogen atom or an alkyl group; preferably a hydrogen atom or a methyl group; more preferably a hydrogen atom. The alkyl group represented by R preferably has 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms.
一般式(6)のAr1およびAr2は、それぞれ独立にアリール基またはヘテロアリール基を表し;好ましくはアリール基である。Ar1またはAr2で表されるアリール基の炭素数は、好ましくは6~20、より好ましくは6~12である。アリール基の例には、フェニル基、p-メチルフェニル基、ナフチル基などが含まれ、好ましくはフェニル基である。
Ar 1 and Ar 2 in formula (6) each independently represent an aryl group or a heteroaryl group; preferably an aryl group. The number of carbon atoms of the aryl group represented by Ar 1 or Ar 2 is preferably 6-20, more preferably 6-12. Examples of the aryl group include a phenyl group, a p-methylphenyl group, a naphthyl group, and the like, and preferably a phenyl group.
Ar1またはAr2で表されるヘテロアリール基は、酸素原子、窒素原子および硫黄原子のうち一以上を含む5または6員環の芳香族複素環基である。ヘテロアリール基の例には、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾールなどが含まれる。アリール基およびヘテロアリール基は、それぞれ前述の置換基をさらに有してもよい。
The heteroaryl group represented by Ar 1 or Ar 2 is a 5- or 6-membered aromatic heterocyclic group containing one or more of an oxygen atom, a nitrogen atom and a sulfur atom. Examples of heteroaryl groups include benzimidazole, benzoxazole, benzthiazole, benzotriazole and the like. Each of the aryl group and the heteroaryl group may further have the aforementioned substituent.
一般式(6)で表される化合物は、好ましくは下記式で表されることが好ましい。
The compound represented by the general formula (6) is preferably represented by the following formula.
上記式のR111~R120は、それぞれ独立に水素原子または置換基を表す。置換基は、アルキル基(好ましくは炭素数1~4のアルキル基、より好ましくはメチル基)、アルコキシ基(好ましくは炭素数1~12、より好ましくは炭素数1~4のアルコキシ基)、アミノ基または水酸基であり、好ましくはアルコキシ基である。
R 111 to R 120 in the above formula each independently represents a hydrogen atom or a substituent. The substituent is an alkyl group (preferably an alkyl group having 1 to 4 carbon atoms, more preferably a methyl group), an alkoxy group (preferably 1 to 12 carbon atoms, more preferably an alkoxy group having 1 to 4 carbon atoms), amino A group or a hydroxyl group, preferably an alkoxy group.
一般式(6)で表される化合物の具体例には、以下のものが含まれる。
Specific examples of the compound represented by the general formula (6) include the following.
なかでも、ジアセチルセルロースとの相溶性が良好で、かつ高い位相差発現性を有することから、一般式(1)で表される化合物、一般式(2)で表される化合物、および一般式(3)で表される化合物が好ましく;一般式(2)および一般式(3)で表される化合物が特に好ましい。
Especially, since compatibility with diacetylcellulose is good and it has high retardation development, the compound represented by general formula (1), the compound represented by general formula (2), and general formula ( Compounds represented by 3) are preferred; compounds represented by general formula (2) and general formula (3) are particularly preferred.
リターデーション上昇剤の含有量は、ジアセチルセルロース100質量部に対して1~10質量部であることが好ましく、1~7質量部であることがより好ましく、1~5質量部であることがさらに好ましい。リターデーション上昇剤の含有量が一定以上であると、フィルムの位相差を十分に高めうる。リターデーション上昇剤の含有量が一定以下であると、リターデーション上昇剤の析出を高度に抑制しうるだけでなく、フィルム強度の過剰な低下を抑制しうる。
The content of the retardation increasing agent is preferably 1 to 10 parts by mass, more preferably 1 to 7 parts by mass, and further preferably 1 to 5 parts by mass with respect to 100 parts by mass of diacetylcellulose. preferable. When the content of the retardation increasing agent is a certain level or more, the retardation of the film can be sufficiently increased. When the content of the retardation increasing agent is below a certain level, not only the precipitation of the retardation increasing agent can be highly suppressed, but also an excessive decrease in film strength can be suppressed.
<偏光子劣化抑制剤>
偏光子劣化抑制剤の例には、特開2013-174861号の段落0057~0120、特開2013-174851号の段落0062~0158、特開2013-82918号の段落0015~0031、特開2013-97170号の段落0047~0060に記載の化合物などが含まれる。 <Polarizer degradation inhibitor>
Examples of the polarizer deterioration inhibitor include paragraphs 0057 to 0120 of JP2013-174661, paragraphs 0062 to 0158 of JP2013-174451, paragraphs 0015 to 0031 of JP2013-82918, and JP2013. The compounds described in paragraphs 0047 to 0060 of 97170 are included.
偏光子劣化抑制剤の例には、特開2013-174861号の段落0057~0120、特開2013-174851号の段落0062~0158、特開2013-82918号の段落0015~0031、特開2013-97170号の段落0047~0060に記載の化合物などが含まれる。 <Polarizer degradation inhibitor>
Examples of the polarizer deterioration inhibitor include paragraphs 0057 to 0120 of JP2013-174661, paragraphs 0062 to 0158 of JP2013-174451, paragraphs 0015 to 0031 of JP2013-82918, and JP2013. The compounds described in paragraphs 0047 to 0060 of 97170 are included.
なかでも、一般式(A)で表されるモノマー由来の繰り返し単位を含む重合体、および一般式(B)~(D)で表される化合物からなる群より選ばれる化合物は、偏光子劣化抑制剤として好ましく機能しうる。
Among them, a polymer containing a repeating unit derived from a monomer represented by the general formula (A) and a compound selected from the group consisting of compounds represented by the general formulas (B) to (D) are used for suppressing deterioration of a polarizer. It can function preferably as an agent.
即ち、偏光子では、PVA高分子と二色性色素がホウ酸架橋によって安定化錯体を形成している。偏光子に水分が侵入すると、ホウ酸架橋が破壊されるだけでなく、ホウ酸が散逸して偏光子が劣化しやすい。一般式(A)で表されるモノマー由来の繰り返し単位を含む重合体および一般式(B)で表される化合物は、芳香環を有し、剛直な構造を有することから、それを含む位相差フィルムは高い密度を有しうる。その結果、位相差フィルムの水分の透過量を低減できるだけでなく、偏光子からのホウ酸の拡散経路を少なくすることができ、偏光子の劣化を抑制しうる。
That is, in the polarizer, the PVA polymer and the dichroic dye form a stabilizing complex by boric acid crosslinking. When moisture enters the polarizer, not only is the boric acid bridge broken, but boric acid is dissipated and the polarizer tends to deteriorate. The polymer containing the repeating unit derived from the monomer represented by the general formula (A) and the compound represented by the general formula (B) have an aromatic ring and have a rigid structure. The film can have a high density. As a result, not only can the moisture transmission amount of the retardation film be reduced, but also the number of diffusion paths of boric acid from the polarizer can be reduced, and deterioration of the polarizer can be suppressed.
一般式(C)および(D)で表される化合物は、水溶性が比較的低い有機酸であり、偏光子内のpHを低くしうる。それにより、位相差フィルムのジアセチルセルロースの酸加水分解を抑制しつつ、偏光子中のホウ酸架橋の破壊を抑制しうる。
The compounds represented by the general formulas (C) and (D) are organic acids having a relatively low water solubility, and can lower the pH in the polarizer. Thereby, destruction of the boric acid bridge | crosslinking in a polarizer can be suppressed, suppressing the acid hydrolysis of the diacetyl cellulose of a phase difference film.
一般式(A)の環Aは、5または6員環を表す。
Ring A in general formula (A) represents a 5- or 6-membered ring.
一般式(A)のR1およびR2は、それぞれ独立に水素原子または炭素数1~4のアルキル基を表す。R3は、置換基を表す。置換基の例には、炭素数1~4のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、炭素数1~4のアルコキシ基、炭素数4~10のシクロアルキル基、炭素数6~20のアリール基などが含まれ、好ましくは炭素数1~4のアルキル基、炭素数1~4のアルコキシル基およびフェニル基などが含まれる。nは1~4の整数を表し、nが2以上のとき、複数のR3は互いに同一であっても異なっていてもよい。
R 1 and R 2 in formula (A) each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. R 3 represents a substituent. Examples of the substituent include an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and a cyclohexane having 4 to 10 carbon atoms. An alkyl group, an aryl group having 6 to 20 carbon atoms, and the like are included, and an alkyl group having 1 to 4 carbon atoms, an alkoxyl group having 1 to 4 carbon atoms, a phenyl group, and the like are preferably included. n represents an integer of 1 to 4, and when n is 2 or more, the plurality of R 3 may be the same or different from each other.
一般式(A)で表されるモノマーは、下記一般式(A-1)で表されることが好ましい。
The monomer represented by the general formula (A) is preferably represented by the following general formula (A-1).
一般式(A-1)のA1は、-CR4R5-または酸素原子を表す。-CR4R5-におけるR4およびR5は、それぞれ独立に水素原子または炭素数1~4のアルキル基を表す。一般式(A-1)のR1、R2、R3およびnは、一般式(A)のR1、R2、R3およびnとそれぞれ同義である。
A 1 in the general formula (A-1), -CR 4 R 5 - represents an or oxygen atom. R 4 and R 5 in —CR 4 R 5 — each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. R 1, R 2, R 3 and n in the general formula (A-1) is R 1 in the general formula (A), R 2, respectively R 3 and n synonymous.
一般式(A)で表されるモノマーに由来する繰り返し単位を含む重合体は、他のモノマー由来の繰り返し構造をさらに含みうる。他のモノマーの例には、スチレンなどが含まれる。一般式(A)で表されるモノマー由来の繰り返し単位の含有割合は、30~99モル%程度としうる。一般式(A)で表されるモノマーは、一種類であっても二種類以上であってもよい。
The polymer containing a repeating unit derived from the monomer represented by the general formula (A) may further include a repeating structure derived from another monomer. Examples of other monomers include styrene and the like. The content of the repeating unit derived from the monomer represented by the general formula (A) can be about 30 to 99 mol%. The monomer represented by the general formula (A) may be one type or two or more types.
一般式(A)で表されるモノマーに由来する繰り返し単位を含む重合体は、好ましくは下記一般式(a)で表される共重合体でありうる。
The polymer containing a repeating unit derived from the monomer represented by the general formula (A) may preferably be a copolymer represented by the following general formula (a).
一般式(a)のR21、R22およびR24は、それぞれ独立して前述の一般式(A)のR3と同義である。R23は、水素原子または炭素数1~4のアルキル基である。x、y、zは、重合体に含まれる全繰り返し単位に対するモル比率を表し、xは1~40%、yは5~95%、zは1~70%を表す。m1、m2は、それぞれ独立して0~4の整数を表す。m3は、0~2の整数を表す。m4は、0~5の整数を表す。R101、R102、R103は、それぞれ独立して水素原子または炭素数1~4のアルキル基を表し、好ましくは水素原子である。
R 21 , R 22 and R 24 in the general formula (a) are each independently synonymous with R 3 in the general formula (A). R 23 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. x, y and z represent molar ratios with respect to all repeating units contained in the polymer, x represents 1 to 40%, y represents 5 to 95%, and z represents 1 to 70%. m1 and m2 each independently represents an integer of 0 to 4. m3 represents an integer of 0-2. m4 represents an integer of 0 to 5. R 101 , R 102 and R 103 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, preferably a hydrogen atom.
一般式(A)で表される化合物の例には、日塗化学株式会社製クマロン樹脂(ニットレジン クマロン G-90、G-100N、V-120S、H-100)などが含まれる。
Examples of the compound represented by the general formula (A) include Coumarone resin (Nit resin Coumarone G-90, G-100N, V-120S, H-100) manufactured by Nikkaku Chemical Co., Ltd.
一般式(A)で表されるモノマー由来の繰り返し単位を含む重合体の重量平均分子量は、200~10000であることが好ましく、300~8000であることがより好ましく、400~4000であることがさらに好ましい。上記重量平均分子量が一定以上であると、位相差フィルムの密度を良好に高めうる。それにより、偏光子からのホウ酸の拡散を抑制し、偏光子劣化を抑制しうる。上記重量平均分子量が一定以下であると、ジアセチルセルロースとの相溶性が損なわれにくい。
The weight average molecular weight of the polymer containing the repeating unit derived from the monomer represented by formula (A) is preferably 200 to 10,000, more preferably 300 to 8,000, and more preferably 400 to 4000. Further preferred. When the weight average molecular weight is not less than a certain value, the density of the retardation film can be improved satisfactorily. Thereby, the diffusion of boric acid from the polarizer can be suppressed, and the polarizer deterioration can be suppressed. When the weight average molecular weight is below a certain level, the compatibility with diacetylcellulose is hardly impaired.
一般式(B)のR1は、水素原子または置換基を表す。置換基の例には、炭素数1~20のアルキル基、炭素数6~26のアリール基、ヒドロキシル基などが含まれる。n1は、0~4の整数を表し、n1が2以上のとき、複数のR1は互いに同一であっても異なっていてもよい。
R 1 in the general formula (B) represents a hydrogen atom or a substituent. Examples of the substituent include an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 26 carbon atoms, and a hydroxyl group. n1 represents an integer of 0 to 4, and when n1 is 2 or more, the plurality of R 1 may be the same or different from each other.
一般式(B)のR2は、下記一般式(B-1)で表される置換基を表す。n2は、1~5の整数を表し、n2が2以上のとき、複数のR2は互いに同一であっても異なっていてもよい。
R 2 in the general formula (B) represents a substituent represented by the following general formula (B-1). n2 represents an integer of 1 to 5, when n2 is 2 or more, plural R 2 may being the same or different.
一般式(B-1)のAは、置換または無置換の芳香族環を表す。芳香族環は、好ましくはベンゼン環である。R3およびR4は、それぞれ独立に、水素原子、炭素数1~5のアルキル基または一般式(B-2)で表される基を表す。R5は、単結合または炭素数1~5のアルキレン基を表す。Xは、置換または無置換の芳香族環を表す。芳香族環は、好ましくはベンゼン環である。n3は0~10の整数を表し、n3が2以上のとき、複数のR5およびXは互いに同一であっても異なっていてもよい。
A in the general formula (B-1) represents a substituted or unsubstituted aromatic ring. The aromatic ring is preferably a benzene ring. R 3 and R 4 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a group represented by General Formula (B-2). R 5 represents a single bond or an alkylene group having 1 to 5 carbon atoms. X represents a substituted or unsubstituted aromatic ring. The aromatic ring is preferably a benzene ring. n3 represents an integer of 0 to 10, and when n3 is 2 or more, the plurality of R 5 and X may be the same or different from each other.
一般式(B-2)のXは、置換または無置換の芳香族環を表す。芳香族環は、好ましくはベンゼン環である。R6~R9は、それぞれ独立に水素原子または炭素数1~5のアルキル基を表す。n5は、1~11の整数を表し、n5が2以上のとき、複数のR6~R9およびXは互いに同一であっても異なっていてもよい。
X in the general formula (B-2) represents a substituted or unsubstituted aromatic ring. The aromatic ring is preferably a benzene ring. R 6 to R 9 each independently represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. n5 represents an integer of 1 to 11, and when n5 is 2 or more, the plurality of R 6 to R 9 and X may be the same as or different from each other.
一般式(B)で表される化合物の具体例には、以下のものが含まれる。
Specific examples of the compound represented by the general formula (B) include the following.
一般式(A)で表されるモノマー単位を含む重合体および一般式(B)で表される化合物の含有量は、ジアセチルセルロース100質量部に対して0.1~15質量部、好ましくは0.5~10質量部、さらに好ましくは0.5~5質量部としうる。上記化合物の含有量が一定以上であれば、位相差フィルムの密度を十分に高めることができ、偏光子の劣化を十分に抑制しやすい。上記化合物の含有量が一定以下であると、フィルム強度が過剰に低下するのを抑制できる。
The content of the polymer containing the monomer unit represented by the general formula (A) and the compound represented by the general formula (B) is 0.1 to 15 parts by mass, preferably 0 to 100 parts by mass of diacetylcellulose. .5 to 10 parts by mass, more preferably 0.5 to 5 parts by mass. If content of the said compound is more than fixed, the density of a retardation film can fully be raised and it will be easy to fully suppress deterioration of a polarizer. It can suppress that film strength falls too much that content of the said compound is below fixed.
一般式(C)のR26は、アルキル基(シクロアルキル基を含む)またはアリール基を表す。アルキル基は、好ましくは炭素数1~12、より好ましくは1~8のアルキル基であり、メチル基、エチル基、シクロヘキシル基などでありうる。アリール基は、好ましくは炭素数6~12のアリール基であり、より好ましくはフェニル基でありうる。
R 26 in the general formula (C) represents an alkyl group (including a cycloalkyl group) or an aryl group. The alkyl group is preferably an alkyl group having 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, and may be a methyl group, an ethyl group, a cyclohexyl group, or the like. The aryl group is preferably an aryl group having 6 to 12 carbon atoms, and more preferably a phenyl group.
一般式(C)のR27およびR28は、それぞれ独立して水素原子、アルキル基またはアリール基を表す。アルキル基およびアリール基は、それぞれ前述のアルキル基とアリール基と同様に定義されうる。
R 27 and R 28 in formula (C) each independently represent a hydrogen atom, an alkyl group, or an aryl group. The alkyl group and the aryl group can be defined similarly to the above-described alkyl group and aryl group, respectively.
R26、R27およびR28は、それぞれ置換基を有していてもよい。R26、R27およびR28で示されるアリール基が有する置換基の例には、ハロゲン原子または炭素数1~6のアルキル基などが含まれる。R26、R27およびR28で示されるアルキル基が有する置換基の例には、炭素数6~12のアリール基が含まれる。
R 26 , R 27 and R 28 may each have a substituent. Examples of the substituent of the aryl group represented by R 26 , R 27 and R 28 include a halogen atom or an alkyl group having 1 to 6 carbon atoms. Examples of the substituent that the alkyl group represented by R 26 , R 27, and R 28 have include an aryl group having 6 to 12 carbon atoms.
一般式(C)で表される化合物の具体例には、以下のものが含まれる。
Specific examples of the compound represented by the general formula (C) include the following.
一般式(C)で表される化合物の重量平均分子量は、200~1000であることが好ましく、250~800であることがより好ましい。
The weight average molecular weight of the compound represented by the general formula (C) is preferably 200 to 1000, and more preferably 250 to 800.
一般式(D)のRは、置換基を表す。置換基の例には、下記一般式(D-1)で表される置換基が含まれる。mおよびnは、それぞれ独立に1~3の整数を表す。
R in the general formula (D) represents a substituent. Examples of the substituent include a substituent represented by the following general formula (D-1). m and n each independently represents an integer of 1 to 3.
一般式(D-1)のYは、酸素原子または硫黄原子を表し;好ましくは酸素原子である。
Y in the general formula (D-1) represents an oxygen atom or a sulfur atom; preferably an oxygen atom.
一般式(D-1)のR1およびR2は、それぞれ独立に水素原子または置換基を表す。置換基の例には、アルキル基、アルケニル基、アリール基、ヘテロ環基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基、シアノ基およびハロゲン原子が含まれ;好ましくはアルキル基、アルケニル基、ヘテロ環基、アルコキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基またはシアノ基であり;より好ましくは水素原子、芳香族基またはアルキル基であり;特に好ましくは水素原子またはフェニル基である。芳香族基は、アルキル基などの置換基をさらに有してもよく;アルキル基は、芳香族基などの置換基をさらに有してもよい。
R 1 and R 2 in formula (D-1) each independently represent a hydrogen atom or a substituent. Examples of substituents include alkyl groups, alkenyl groups, aryl groups, heterocyclic groups, alkoxy groups, aryloxy groups, alkoxycarbonyl groups, amino groups, acylamino groups, cyano groups and halogen atoms; preferably alkyl groups , An alkenyl group, a heterocyclic group, an alkoxy group, an alkoxycarbonyl group, an amino group, an acylamino group or a cyano group; more preferably a hydrogen atom, an aromatic group or an alkyl group; particularly preferably a hydrogen atom or a phenyl group is there. The aromatic group may further have a substituent such as an alkyl group; the alkyl group may further have a substituent such as an aromatic group.
一般式(D-1)のpは、1~3の整数を表し;好ましくは1~2であり;より好ましくは1である。
P in formula (D-1) represents an integer of 1 to 3; preferably 1 to 2; more preferably 1.
一般式(C)および(D)で表される化合物の含有量は、ジアセチルセルロース100質量部に対して0.1~15質量部、好ましくは0.5~10質量部、さらに好ましくは0.5~5質量部としうる。上記化合物の含有量が一定以上であれば、位相差フィルム中のジアセチルセルロースの酸加水分解を抑制しつつ、偏光子内を低いpHに調整でき、偏光子の劣化を好ましく抑制しうる。上記化合物の含有量が一定以下であれば、フィルム強度の過剰な低下を抑制しうる。
The content of the compounds represented by the general formulas (C) and (D) is 0.1 to 15 parts by mass, preferably 0.5 to 10 parts by mass, and more preferably 0.1 to 100 parts by mass of diacetylcellulose. It may be 5 to 5 parts by mass. If content of the said compound is more than fixed, the inside of a polarizer can be adjusted to low pH, suppressing the acid hydrolysis of the diacetyl cellulose in retardation film, and deterioration of a polarizer can be suppressed preferably. If content of the said compound is below fixed, the excessive fall of film strength can be suppressed.
本発明の位相差フィルムは、必要に応じて可塑剤、紫外線吸収剤、マット剤(微粒子)などの各種添加剤をさらに含みうる。
The retardation film of the present invention may further contain various additives such as a plasticizer, an ultraviolet absorber, and a matting agent (fine particles) as necessary.
<可塑剤について>
可塑剤の例には、糖誘導体やリン酸エステル化合物などが含まれる。 <About plasticizer>
Examples of the plasticizer include sugar derivatives and phosphate ester compounds.
可塑剤の例には、糖誘導体やリン酸エステル化合物などが含まれる。 <About plasticizer>
Examples of the plasticizer include sugar derivatives and phosphate ester compounds.
糖誘導体は、糖が有する水酸基の水素原子の少なくとも一部が、置換基で置換された化合物でありうる。糖誘導体を構成する糖は、フラノース構造とピラノース構造の一方または両方が1~12個結合した構造を有することが好ましく;フラノース構造とピラノース構造の一方または両方が1~3個、好ましくは2個結合した構造を有することが好ましい。なかでも、ピラノース構造とフラノース構造の両方を含むものが好ましい。
The sugar derivative may be a compound in which at least a part of the hydrogen atoms of the hydroxyl group of the sugar is substituted with a substituent. The sugar constituting the sugar derivative preferably has a structure in which 1 to 12 of one or both of the furanose structure and the pyranose structure are bonded; one to both of the furanose structure and the pyranose structure is 1 to 3, preferably 2 It preferably has a bonded structure. Especially, what contains both a pyranose structure and a furanose structure is preferable.
糖誘導体を構成する糖の例には、グルコース、ガラクトース、マンノース、フルクトース、キシロースおよびアラビノースなどの単糖;ラクトース、スクロース、マルチトール、セロビオース、マルトースなどの二糖;セロトリオース、ラフィノースなどの三糖などに由来する構造が含まれる。
Examples of sugars constituting sugar derivatives include monosaccharides such as glucose, galactose, mannose, fructose, xylose and arabinose; disaccharides such as lactose, sucrose, maltitol, cellobiose and maltose; trisaccharides such as cellotriose and raffinose The structure derived from is included.
糖誘導体を構成する置換基は、アルキル基(好ましくは炭素数1~22、より好ましくは炭素数1~12、特に好ましくは炭素数1~8のアルキル基、例えば、メチル基、エチル基、プロピル基、ヒドロキシエチル基、ヒドロキシプロピル基、2-シアノエチル基、ベンジル基など);アリール基(好ましくは炭素数6~24、より好ましくは6~18、特に好ましくは6~12のアリール基、例えば、フェニル基、ナフチル基);アシル基(好ましくは炭素数1~22、より好ましくは炭素数2~12、特に好ましくは炭素数2~8のアシル基、例えばアセチル基、プロピオニル基、ブチリル基、ペンタノイル基、ヘキサノイル基、オクタノイル基、ベンゾイル基、トルイル基、フタリル基、ナフタル基など)などであり、好ましくはアシル基である。
The substituent constituting the sugar derivative is an alkyl group (preferably an alkyl group having 1 to 22 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms, such as a methyl group, an ethyl group, a propyl group). Group, hydroxyethyl group, hydroxypropyl group, 2-cyanoethyl group, benzyl group, etc.); aryl group (preferably an aryl group having 6 to 24 carbon atoms, more preferably 6 to 18 carbon atoms, particularly preferably 6 to 12 carbon atoms, for example, Phenyl group, naphthyl group); acyl group (preferably having 1 to 22 carbon atoms, more preferably 2 to 12 carbon atoms, particularly preferably 2 to 8 carbon atoms, for example, acetyl group, propionyl group, butyryl group, pentanoyl group) Group, hexanoyl group, octanoyl group, benzoyl group, toluyl group, phthalyl group, naphthal group, and the like. A Le group.
糖誘導体において、置換基で置換されていない未反応の水酸基は、通常、そのまま水酸基として残っていてもよい。
In a sugar derivative, an unreacted hydroxyl group that is not substituted with a substituent may generally remain as it is as a hydroxyl group.
糖誘導体は、置換度が異なる複数の糖誘導体の混合物でありうる。そのような混合物は、無置換体が含まれていてもよい。上記混合物における平均置換率は、62~94%であることが好ましい。平均置換率は、下記式で定義されうる。
[数1]
平均置換率=100%×(混合物中の各糖誘導体の含有率)×(混合物中の各糖誘導体1分子中の置換されたOHの数)/(無置換糖の一分子中のOHの総数) The sugar derivative can be a mixture of a plurality of sugar derivatives having different degrees of substitution. Such a mixture may contain an unsubstituted form. The average substitution rate in the mixture is preferably 62 to 94%. The average substitution rate can be defined by the following formula.
[Equation 1]
Average substitution rate = 100% × (content of each sugar derivative in the mixture) × (number of substituted OH in each molecule of each sugar derivative in the mixture) / (total number of OH in one molecule of unsubstituted sugar) )
[数1]
平均置換率=100%×(混合物中の各糖誘導体の含有率)×(混合物中の各糖誘導体1分子中の置換されたOHの数)/(無置換糖の一分子中のOHの総数) The sugar derivative can be a mixture of a plurality of sugar derivatives having different degrees of substitution. Such a mixture may contain an unsubstituted form. The average substitution rate in the mixture is preferably 62 to 94%. The average substitution rate can be defined by the following formula.
[Equation 1]
Average substitution rate = 100% × (content of each sugar derivative in the mixture) × (number of substituted OH in each molecule of each sugar derivative in the mixture) / (total number of OH in one molecule of unsubstituted sugar) )
リン酸エステル化合物の例には、トリフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、およびトリブチルホスフェートなどが含まれる。
Examples of the phosphoric acid ester compound include triphenyl phosphate, diphenyl biphenyl phosphate, trioctyl phosphate, and tributyl phosphate.
可塑剤の含有量は、ジアセチルセルロース100質量部に対して1~40質量部としうる。
The content of the plasticizer can be 1 to 40 parts by mass with respect to 100 parts by mass of diacetylcellulose.
<マット剤について>
マット剤は、位相差フィルムにさらなる滑り性を付与しうる。マット剤は、得られるフィルムの透明性を損なうことがなく、製膜工程においての耐熱性を有する無機化合物または有機化合物からなる微粒子でありうる。 <About matting agent>
The matting agent can impart further slipperiness to the retardation film. The matting agent may be fine particles made of an inorganic compound or an organic compound having heat resistance in the film forming process without impairing the transparency of the resulting film.
マット剤は、位相差フィルムにさらなる滑り性を付与しうる。マット剤は、得られるフィルムの透明性を損なうことがなく、製膜工程においての耐熱性を有する無機化合物または有機化合物からなる微粒子でありうる。 <About matting agent>
The matting agent can impart further slipperiness to the retardation film. The matting agent may be fine particles made of an inorganic compound or an organic compound having heat resistance in the film forming process without impairing the transparency of the resulting film.
マット剤を構成する無機化合物の例には、二酸化珪素(シリカ)、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウムおよびリン酸カルシウムなどが含まれる。なかでも、二酸化珪素や酸化ジルコニウムが好ましく、得られるフィルムのヘイズの増大を少なくするためには、より好ましくは二酸化珪素である。
Examples of inorganic compounds constituting the matting agent include silicon dioxide (silica), titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, and hydrated calcium silicate. , Aluminum silicate, magnesium silicate and calcium phosphate. Of these, silicon dioxide and zirconium oxide are preferable, and silicon dioxide is more preferable in order to reduce an increase in haze of the obtained film.
二酸化ケイ素の具体例には、アエロジル200V、アエロジルR972V、アエロジルR972、R974、R812、200、300、R202、OX50、TT600、NAX50(以上、日本アエロジル(株)製)、シーホスターKEP-10、シーホスターKEP-30、シーホスターKEP-50(以上、株式会社日本触媒製)、サイロホービック100(富士シリシア製)、ニップシールE220A(日本シリカ工業製)、アドマファインSO(アドマテックス製)などが含まれる。
Specific examples of silicon dioxide include Aerosil 200V, Aerosil R972V, Aerosil R972, R974, R812, 200, 300, R202, OX50, TT600, NAX50 (above, Nippon Aerosil Co., Ltd.), Sea Hoster KEP-10, Sea Hoster KEP -30, Seahoster KEP-50 (manufactured by Nippon Shokubai Co., Ltd.), Silo Hovic 100 (manufactured by Fuji Silysia), nip seal E220A (manufactured by Nippon Silica Kogyo), Admafine SO (manufactured by Admatechs) and the like.
マット剤の粒子形状は、不定形、針状、扁平または球状であり、得られるフィルムの透明性が良好にしやすい点などから、好ましくは球状でありうる。
The particle shape of the matting agent is indefinite, needle-like, flat or spherical, and may preferably be spherical in view of easy transparency of the resulting film.
マット剤は、一種類で用いてもよいし、二種以上を併用して用いてもよい。また、粒径や形状(例えば針状と球状など)の異なる粒子を併用することで、高度に透明性と滑り性を両立させてもよい。
The matting agent may be used alone or in combination of two or more. Further, by using particles having different particle diameters and shapes (for example, needle shape and spherical shape, for example), both transparency and slipperiness may be made highly compatible.
マット剤の粒子の大きさは、当該大きさが可視光の波長に近いと、光が散乱して透明性が低下するので、可視光の波長より小さいことが好ましく、更に可視光の波長の1/2以下であることが好ましい。ただし、粒子の大きさが小さすぎると、滑り性の改善効果が発現しない場合があるので、粒子の大きさは、80~180nmの範囲であることが好ましい。粒子の大きさとは、粒子が一次粒子の凝集体の場合は凝集体の大きさを意味する。粒子が球状でない場合、粒子の大きさは、その投影面積に相当する円の直径を意味する。
When the size of the matting agent particles is close to the wavelength of visible light, the light is scattered and the transparency is lowered. Therefore, the size of the particles of the matting agent is preferably smaller than the wavelength of visible light. / 2 or less is preferable. However, if the size of the particles is too small, the effect of improving slipperiness may not be manifested. Therefore, the size of the particles is preferably in the range of 80 to 180 nm. The particle size means the size of an aggregate when the particle is an aggregate of primary particles. When the particles are not spherical, the size of the particles means the diameter of a circle corresponding to the projected area.
マット剤の含有量は、ジアセチルセルロースに対して0.05~1.0質量%程度とすることができ、好ましくは0.1~0.8質量%としうる。
The content of the matting agent can be about 0.05 to 1.0% by mass, preferably 0.1 to 0.8% by mass with respect to diacetylcellulose.
<位相差フィルムの物性>
(厚み)
位相差フィルムの厚みは、偏光板を薄型化するためなどから、15~40μm程度であり、好ましくは15~35μmであり、より好ましくは20~30μmである。位相差フィルムの厚みが好ましくは35μm以下であると、ロール体の変形が生じやすい傾向があることから、本発明が特に有効である。位相差フィルムの厚みが15μm未満であると、フィルムが破断しやすく、安定に生産できないおそれがある。表示装置を薄型化する観点では、位相差フィルムの厚みは薄いほうが好ましい。 <Physical properties of retardation film>
(Thickness)
The thickness of the retardation film is about 15 to 40 μm, preferably 15 to 35 μm, more preferably 20 to 30 μm in order to make the polarizing plate thinner. If the thickness of the retardation film is preferably 35 μm or less, the roll body tends to be easily deformed, and therefore the present invention is particularly effective. If the thickness of the retardation film is less than 15 μm, the film is likely to be broken and may not be stably produced. From the viewpoint of reducing the thickness of the display device, the retardation film is preferably thinner.
(厚み)
位相差フィルムの厚みは、偏光板を薄型化するためなどから、15~40μm程度であり、好ましくは15~35μmであり、より好ましくは20~30μmである。位相差フィルムの厚みが好ましくは35μm以下であると、ロール体の変形が生じやすい傾向があることから、本発明が特に有効である。位相差フィルムの厚みが15μm未満であると、フィルムが破断しやすく、安定に生産できないおそれがある。表示装置を薄型化する観点では、位相差フィルムの厚みは薄いほうが好ましい。 <Physical properties of retardation film>
(Thickness)
The thickness of the retardation film is about 15 to 40 μm, preferably 15 to 35 μm, more preferably 20 to 30 μm in order to make the polarizing plate thinner. If the thickness of the retardation film is preferably 35 μm or less, the roll body tends to be easily deformed, and therefore the present invention is particularly effective. If the thickness of the retardation film is less than 15 μm, the film is likely to be broken and may not be stably produced. From the viewpoint of reducing the thickness of the display device, the retardation film is preferably thinner.
(リターデーション)
位相差フィルムのリターデーションは、組み合わされる液晶セルの種類に応じて設定されうる。位相差フィルムの、23℃RH55%下、波長590nmで測定される面内リターデーションR0(590)は20~130nmであることが好ましく、30~100nmであることがより好ましい。厚さ方向のリターデーションRth(590)は100~300nmであることが好ましく、100~200nmであることがより好ましい。リターデーションが上記範囲である位相差フィルムは、例えばVA型液晶セルなどの位相差フィルムとして好適である。 (Retardation)
The retardation of the retardation film can be set according to the type of liquid crystal cell to be combined. The in-plane retardation R 0 (590) measured at a wavelength of 590 nm under 23 ° C. andRH 55% of the retardation film is preferably 20 to 130 nm, more preferably 30 to 100 nm. The retardation Rth (590) in the thickness direction is preferably 100 to 300 nm, and more preferably 100 to 200 nm. A retardation film having a retardation in the above range is suitable as a retardation film such as a VA liquid crystal cell.
位相差フィルムのリターデーションは、組み合わされる液晶セルの種類に応じて設定されうる。位相差フィルムの、23℃RH55%下、波長590nmで測定される面内リターデーションR0(590)は20~130nmであることが好ましく、30~100nmであることがより好ましい。厚さ方向のリターデーションRth(590)は100~300nmであることが好ましく、100~200nmであることがより好ましい。リターデーションが上記範囲である位相差フィルムは、例えばVA型液晶セルなどの位相差フィルムとして好適である。 (Retardation)
The retardation of the retardation film can be set according to the type of liquid crystal cell to be combined. The in-plane retardation R 0 (590) measured at a wavelength of 590 nm under 23 ° C. and
リターデーションR0およびRthは、それぞれ以下の式で定義される。
式(I):R0=(nx-ny)×d(nm)
式(II):Rth={(nx+ny)/2-nz}×d(nm)
(式(I)および(II)において、
nxは、フィルムの面内方向において屈折率が最大になる遅相軸方向xにおける屈折率を表し;nyは、フィルムの面内方向において前記遅相軸方向xと直交する方向yにおける屈折率を表し;nzは、フィルムの厚み方向zにおける屈折率を表し;d(nm)は、フィルムの厚みを表す) Retardations R0 and Rth are defined by the following equations, respectively.
Formula (I): R 0 = (nx−ny) × d (nm)
Formula (II): Rth = {(nx + ny) / 2−nz} × d (nm)
(In formulas (I) and (II),
nx represents the refractive index in the slow axis direction x where the refractive index is maximum in the in-plane direction of the film; ny represents the refractive index in the direction y perpendicular to the slow axis direction x in the in-plane direction of the film. Nz represents the refractive index in the thickness direction z of the film; d (nm) represents the thickness of the film)
式(I):R0=(nx-ny)×d(nm)
式(II):Rth={(nx+ny)/2-nz}×d(nm)
(式(I)および(II)において、
nxは、フィルムの面内方向において屈折率が最大になる遅相軸方向xにおける屈折率を表し;nyは、フィルムの面内方向において前記遅相軸方向xと直交する方向yにおける屈折率を表し;nzは、フィルムの厚み方向zにおける屈折率を表し;d(nm)は、フィルムの厚みを表す) Retardations R0 and Rth are defined by the following equations, respectively.
Formula (I): R 0 = (nx−ny) × d (nm)
Formula (II): Rth = {(nx + ny) / 2−nz} × d (nm)
(In formulas (I) and (II),
nx represents the refractive index in the slow axis direction x where the refractive index is maximum in the in-plane direction of the film; ny represents the refractive index in the direction y perpendicular to the slow axis direction x in the in-plane direction of the film. Nz represents the refractive index in the thickness direction z of the film; d (nm) represents the thickness of the film)
リターデーションR0およびRthは、例えば以下の方法によって求めることができる。
1)位相差フィルムを、23℃55%RHで調湿する。調湿後の位相差フィルムの平均屈折率をアッベ屈折計などで測定する。
2)調湿後の位相差フィルムに、当該フィルム表面の法線に平行に測定波長590nmの光を入射させたときのR0を、KOBRA21ADH、王子計測(株)にて測定する。
3)KOBRA21ADHにより、位相差フィルムの面内の遅相軸を傾斜軸(回転軸)として、位相差フィルムの表面の法線に対してθの角度(入射角(θ))から測定波長590nmの光を入射させたときのリターデーション値R(θ)を測定する。リターデーション値R(θ)の測定は、θが0°~50°の範囲で、10°毎に6点行うことができる。位相差フィルムの面内の遅相軸は、KOBRA21ADHにより確認することができる。
4)測定されたR0およびR(θ)と、前述の平均屈折率と膜厚とから、KOBRA21ADHにより、nx、nyおよびnzを算出して、測定波長590nmでのRthを算出する。リターデーションの測定は、23℃55%RH条件下で行うことができる。 The retardations R0 and Rth can be determined by the following method, for example.
1) The retardation film is conditioned at 23 ° C. and 55% RH. The average refractive index of the retardation film after humidity adjustment is measured with an Abbe refractometer or the like.
The retardation film after 2) humidity, measuring the R 0 when the light is incident in parallel to the measurement wavelength 590nm to normal of the film surface, KOBRA21ADH, in Oji Scientific Corporation.
3) With KOBRA21ADH, the slow axis in the plane of the retardation film is the tilt axis (rotation axis), and the measurement wavelength is 590 nm from the angle of θ (incident angle (θ)) with respect to the normal of the surface of the retardation film The retardation value R (θ) when light is incident is measured. The retardation value R (θ) can be measured at 6 points every 10 °, with θ ranging from 0 ° to 50 °. The in-plane slow axis of the retardation film can be confirmed by KOBRA21ADH.
4) nx, ny, and nz are calculated by KOBRA21ADH from the measured R 0 and R (θ) and the above-described average refractive index and film thickness, and Rth at a measurement wavelength of 590 nm is calculated. The measurement of retardation can be performed under conditions of 23 ° C. and 55% RH.
1)位相差フィルムを、23℃55%RHで調湿する。調湿後の位相差フィルムの平均屈折率をアッベ屈折計などで測定する。
2)調湿後の位相差フィルムに、当該フィルム表面の法線に平行に測定波長590nmの光を入射させたときのR0を、KOBRA21ADH、王子計測(株)にて測定する。
3)KOBRA21ADHにより、位相差フィルムの面内の遅相軸を傾斜軸(回転軸)として、位相差フィルムの表面の法線に対してθの角度(入射角(θ))から測定波長590nmの光を入射させたときのリターデーション値R(θ)を測定する。リターデーション値R(θ)の測定は、θが0°~50°の範囲で、10°毎に6点行うことができる。位相差フィルムの面内の遅相軸は、KOBRA21ADHにより確認することができる。
4)測定されたR0およびR(θ)と、前述の平均屈折率と膜厚とから、KOBRA21ADHにより、nx、nyおよびnzを算出して、測定波長590nmでのRthを算出する。リターデーションの測定は、23℃55%RH条件下で行うことができる。 The retardations R0 and Rth can be determined by the following method, for example.
1) The retardation film is conditioned at 23 ° C. and 55% RH. The average refractive index of the retardation film after humidity adjustment is measured with an Abbe refractometer or the like.
The retardation film after 2) humidity, measuring the R 0 when the light is incident in parallel to the measurement wavelength 590nm to normal of the film surface, KOBRA21ADH, in Oji Scientific Corporation.
3) With KOBRA21ADH, the slow axis in the plane of the retardation film is the tilt axis (rotation axis), and the measurement wavelength is 590 nm from the angle of θ (incident angle (θ)) with respect to the normal of the surface of the retardation film The retardation value R (θ) when light is incident is measured. The retardation value R (θ) can be measured at 6 points every 10 °, with θ ranging from 0 ° to 50 °. The in-plane slow axis of the retardation film can be confirmed by KOBRA21ADH.
4) nx, ny, and nz are calculated by KOBRA21ADH from the measured R 0 and R (θ) and the above-described average refractive index and film thickness, and Rth at a measurement wavelength of 590 nm is calculated. The measurement of retardation can be performed under conditions of 23 ° C. and 55% RH.
位相差フィルムは、全光線透過率が好ましくは、80%以上であり、より好ましくは90%以上であり、さらに好ましくは93%以上である。
The total retardation of the retardation film is preferably 80% or more, more preferably 90% or more, and further preferably 93% or more.
位相差フィルムのヘイズ値は、3.0%以下であることが好ましく、2.0%以下であることが好ましく、さらに1.0%以下であることが好ましく、0.5%以下であることがさらに好ましい。ヘイズは、JIS K-7136に準拠して、ヘイズメーター(濁度計)(型式:NDH 2000、日本電色(株)製)にて測定されうる。
The haze value of the retardation film is preferably 3.0% or less, preferably 2.0% or less, more preferably 1.0% or less, and 0.5% or less. Is more preferable. The haze can be measured with a haze meter (turbidimeter) (model: NDH 2000, manufactured by Nippon Denshoku Co., Ltd.) in accordance with JIS K-7136.
2.位相差フィルムのロール体
本発明の位相差フィルムのロール体は、前述の位相差フィルムを、その長尺方向に巻き取ったものである。 2. Roll body of retardation film The roll body of the retardation film of the present invention is obtained by winding the above-described retardation film in the longitudinal direction.
本発明の位相差フィルムのロール体は、前述の位相差フィルムを、その長尺方向に巻き取ったものである。 2. Roll body of retardation film The roll body of the retardation film of the present invention is obtained by winding the above-described retardation film in the longitudinal direction.
図1は、本発明の位相差フィルムのロール体の一例を示す模式図である。図1(a)はロール体の外観の一例を示す図であり;図1(b)は図1(a)の軸方向に沿った部分断面図(A-A線断面図)である。図1(a)に示されるように、位相差フィルムのロール体10は、巻芯11と、その周囲に巻き取られ、かつ幅方向両端部にエンボス部13Aを有する長尺状の位相差フィルム13とを含む。
FIG. 1 is a schematic view showing an example of a roll body of the retardation film of the present invention. FIG. 1A is a view showing an example of the appearance of a roll body; FIG. 1B is a partial cross-sectional view (cross-sectional view taken along the line AA) along the axial direction of FIG. As shown in FIG. 1 (a), a roll body 10 of a retardation film is a long retardation film wound around a core 11 and embossed portions 13A at both ends in the width direction. 13 and so on.
本発明の位相差フィルムのロール体は、フィルムの幅方向に当該フィルムまたは巻芯の少なくとも一方を振動させながらフィルムを巻き取る振動巻き取り工程を経て得られる。従って、得られるロール体10は、巻き取り後のエンボス部13Aが互いに完全に重なることがないように積層された部分を含む。即ち、ロール体10の軸方向両端部の側面形状が波状となる部分を含む。ロール体10の軸方向両端部の側面形状が波状になっているとは、具体的には図1(b)に示されるように、ロール体の軸方向に沿った断面の軸方向両端部の形状が波状になっていることをいう。
The roll body of the retardation film of the present invention is obtained through a vibration winding process in which at least one of the film or the core is vibrated in the width direction of the film and the film is wound. Therefore, the roll body 10 obtained includes portions that are laminated so that the embossed portions 13A after winding do not completely overlap each other. That is, the side surface shape of the axial direction both ends of the roll body 10 includes a wavy portion. Specifically, the side surface shape of both end portions in the axial direction of the roll body 10 is wavy, as shown in FIG. 1B. Specifically, both end portions in the axial direction of the cross section along the axial direction of the roll body. The shape is wavy.
振動巻き取り工程と非振動巻き取り工程を組み合わせて巻き取った場合、振動巻き取り工程に対応する部分のロール体10の軸方向両端部の側面形状は、波状となり;非振動巻き取り工程に対応する部分のロール体10の軸方向両端部の側面形状は、平面状となる。
When combined with the vibration winding process and the non-vibration winding process, the side surfaces of both ends in the axial direction of the roll body 10 corresponding to the vibration winding process are wavy; The side surface shape of both end portions in the axial direction of the roll body 10 of the portion to be performed is a planar shape.
エンボス部13Aは、位相差フィルム13の幅方向両端部に設けられる。エンボス部13Aの幅Wは、例えば位相差フィルム13の全幅に対して0.2~6%、好ましくは0.3~2%としうる。具体的には、0.5~30mm程度、好ましくは5~30mm、より好ましくは6~20mmでありうる。エンボス部13Aの幅が小さすぎると、位相差フィルム13の搬送性が十分には向上しなかったり、巻きズレを十分には抑制できなかったりする傾向がある。一方、エンボス部13Aの幅が大きすぎると、位相差フィルムとして利用できる割合が少なくなる傾向がある。
The embossed portion 13A is provided at both ends in the width direction of the retardation film 13. The width W of the embossed portion 13A can be, for example, 0.2 to 6%, preferably 0.3 to 2% with respect to the total width of the retardation film 13. Specifically, it may be about 0.5 to 30 mm, preferably 5 to 30 mm, more preferably 6 to 20 mm. If the width of the embossed portion 13A is too small, the transportability of the retardation film 13 may not be sufficiently improved, or winding deviation may not be sufficiently suppressed. On the other hand, if the width of the embossed portion 13A is too large, the ratio that can be used as a retardation film tends to decrease.
エンボス部13Aを構成する凸部の高さは、位相差フィルム13の膜厚の5~60%程度でありうる。具体的には、エンボス部13Aを構成する凸部の高さは、好ましくは1.0~10.0μm、より好ましくは1.0~6.0μmでありうる。凸部の高さとは、エンボスが形成されていないフィルム面から凸部の頂点までの高さをいう。エンボス部13Aの高さが低すぎると、ロール体での巻きずれを十分には抑制できないおそれがある。また、エンボス部13Aが高すぎると、ロール体のうちエンボス部が重なり合う領域が、それ以外の領域よりも厚くなりやすい。そのため、前述の振動巻き取り工程を施しても、ロール体の変形を十分には抑制できないおそれがある。
The height of the convex portion constituting the embossed portion 13A can be about 5 to 60% of the film thickness of the retardation film 13. Specifically, the height of the convex portion constituting the embossed portion 13A is preferably 1.0 to 10.0 μm, more preferably 1.0 to 6.0 μm. The height of a convex part means the height from the film surface in which embossing is not formed to the vertex of a convex part. If the height of the embossed portion 13A is too low, there is a possibility that winding deviation in the roll body cannot be sufficiently suppressed. If the embossed portion 13A is too high, the region where the embossed portions overlap in the roll body tends to be thicker than the other regions. Therefore, even if the above-described vibration winding process is performed, deformation of the roll body may not be sufficiently suppressed.
図2は、エンボス部13Aの断面形状の例を示す模式図である。エンボス部13Aの断面形状の例には、矩形状(図2(a));エンボス部13Aの幅方向中央部が、幅方向両端部よりも低い凹部aが形成された形状(図2(b));複数の凸部b、cを含み、かつエンボス部の幅方向中央部の凸部bが、幅方向両端部の凸部cよりも低い形状(図2(c))などが含まれる。このように、エンボス部の幅方向中央部を低くすることで、エンボス部の幅方向中央部の重なりを小さくすることができる。それにより、ロール体のエンボス部の厚みの増大を少なくでき、ロール体の変形をより抑制できると考えられる。
FIG. 2 is a schematic diagram showing an example of a cross-sectional shape of the embossed portion 13A. Examples of the cross-sectional shape of the embossed portion 13A include a rectangular shape (FIG. 2 (a)); a shape in which a concave portion a is formed in the central portion in the width direction of the embossed portion 13A lower than both end portions in the width direction (FIG. )); Includes a plurality of convex portions b and c, and the convex portion b in the central portion in the width direction of the embossed portion is lower than the convex portions c at both end portions in the width direction (FIG. 2C). . Thus, the overlap of the width direction center part of an embossed part can be made small by making the width direction center part of an embossed part low. Thereby, it is thought that the increase in the thickness of the embossed portion of the roll body can be reduced, and the deformation of the roll body can be further suppressed.
位相差フィルム13の幅は、例えば1000~6000mm、好ましくは1400~4000mmでありうる。位相差フィルム13の巻き取り長さは、例えば100~10000mとしうる。
The width of the retardation film 13 can be, for example, 1000 to 6000 mm, preferably 1400 to 4000 mm. The winding length of the retardation film 13 can be set to 100 to 10,000 m, for example.
3.位相差フィルムのロール体の製造方法
本発明の位相差フィルムのロール体は、1)幅方向両端部にエンボス部を有する長尺状の位相差フィルムを準備する工程と、2)位相差フィルムを巻き取る工程とを含む。そして、2)位相差フィルムを巻き取る工程は、位相差フィルムと巻芯の少なくとも一方を、当該フィルムの幅方向に周期的に振動させながら位相差フィルムを巻芯に巻き取る工程(振動巻き取り工程)を含むことが好ましい。 3. Method for producing retardation film roll body The retardation film roll body of the present invention comprises: 1) a step of preparing a long retardation film having embossed portions at both ends in the width direction; and 2) a retardation film. A winding step. And 2) the step of winding the retardation film is a step of winding the retardation film around the core while vibrating at least one of the retardation film and the core in the width direction of the film (vibration winding). Step).
本発明の位相差フィルムのロール体は、1)幅方向両端部にエンボス部を有する長尺状の位相差フィルムを準備する工程と、2)位相差フィルムを巻き取る工程とを含む。そして、2)位相差フィルムを巻き取る工程は、位相差フィルムと巻芯の少なくとも一方を、当該フィルムの幅方向に周期的に振動させながら位相差フィルムを巻芯に巻き取る工程(振動巻き取り工程)を含むことが好ましい。 3. Method for producing retardation film roll body The retardation film roll body of the present invention comprises: 1) a step of preparing a long retardation film having embossed portions at both ends in the width direction; and 2) a retardation film. A winding step. And 2) the step of winding the retardation film is a step of winding the retardation film around the core while vibrating at least one of the retardation film and the core in the width direction of the film (vibration winding). Step).
<長尺状の位相差フィルムを準備する工程について>
長尺状の位相差フィルムは、溶液流延法(キャスト)または溶融流延法(メルト)で製造され;筋状の故障が少なくするためなどから、好ましくは溶液流延法(キャスト)で製造されうる。 <About the process of preparing a long retardation film>
The long retardation film is produced by a solution casting method (cast) or a melt casting method (melt); preferably, by a solution casting method (cast) in order to reduce streak failure. Can be done.
長尺状の位相差フィルムは、溶液流延法(キャスト)または溶融流延法(メルト)で製造され;筋状の故障が少なくするためなどから、好ましくは溶液流延法(キャスト)で製造されうる。 <About the process of preparing a long retardation film>
The long retardation film is produced by a solution casting method (cast) or a melt casting method (melt); preferably, by a solution casting method (cast) in order to reduce streak failure. Can be done.
溶液流延法(キャスト)による長尺状の位相差フィルムの製造方法は、1-1)前述のジアセチルセルロースを含むドープを得る工程と、1-2)該ドープを支持体上に流延した後、乾燥させて膜状物を得る工程と、1-3)膜状物を支持体から剥離する工程と、1-5)剥離された膜状物の幅方向両端部にエンボス部を形成する工程とを含み;必要に応じて前記1-3)と前記1-5)との間に、1-4)膜状物を延伸する工程をさらに含みうる。
A method for producing a long retardation film by a solution casting method (cast) includes: 1-1) a step of obtaining a dope containing diacetyl cellulose as described above; 1-2) casting the dope on a support; Thereafter, a step of drying to obtain a film-like material, 1-3) a step of peeling the film-like material from the support, and 1-5) forming embossed portions at both ends in the width direction of the peeled film-like material And 1-4) may be further included between the 1-3) and the 1-5) as necessary.
1-1)溶解工程
ドープ液の調製に用いられる有機溶媒は、ジアセチルセルロースなどの上記各成分を十分に溶解するものであれば、制限なく用いることができる。塩素系有機溶媒の例には、塩化メチレンが含まれる。非塩素系有機溶媒の例には、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル等が含まれる。なかでも、塩化メチレンが好ましい。 1-1) Dissolution Step The organic solvent used for preparing the dope solution can be used without limitation as long as it sufficiently dissolves each of the above components such as diacetylcellulose. Examples of the chlorinated organic solvent include methylene chloride. Examples of the non-chlorine organic solvent include methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate and the like. Of these, methylene chloride is preferred.
ドープ液の調製に用いられる有機溶媒は、ジアセチルセルロースなどの上記各成分を十分に溶解するものであれば、制限なく用いることができる。塩素系有機溶媒の例には、塩化メチレンが含まれる。非塩素系有機溶媒の例には、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル等が含まれる。なかでも、塩化メチレンが好ましい。 1-1) Dissolution Step The organic solvent used for preparing the dope solution can be used without limitation as long as it sufficiently dissolves each of the above components such as diacetylcellulose. Examples of the chlorinated organic solvent include methylene chloride. Examples of the non-chlorine organic solvent include methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate and the like. Of these, methylene chloride is preferred.
ドープは、上記有機溶媒の他に、1~40質量%の炭素数1~4の直鎖または分岐鎖状の脂肪族アルコールをさらに含むことが好ましい。脂肪族アルコールを含有させることで、膜状物がゲル化し、金属支持体からの剥離が容易になる。炭素数1~4の直鎖または分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールなどが含まれる。なかでも、ドープの安定性、沸点も比較的低く、乾燥性もよいこと等からメタノール、エタノールが好ましい。
The dope preferably further contains 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms in addition to the organic solvent. By containing the aliphatic alcohol, the film-like material is gelled, and peeling from the metal support becomes easy. Examples of the linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, tert-butanol and the like. Of these, methanol and ethanol are preferable because the stability of the dope, the boiling point is relatively low, and the drying property is good.
ジアセチルセルロース等の溶解は、常圧で行う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上で加圧して行う方法などがあるが、特に主溶媒の沸点以上で加圧して行う方法が好ましい。
Dissolution of diacetylcellulose and the like includes a method performed at normal pressure, a method performed at a temperature lower than the boiling point of the main solvent, a method performed at a pressure higher than the boiling point of the main solvent, and a method performed at a pressure higher than the boiling point of the main solvent. Is preferred.
1-2)流延工程
ドープ液を、送液ポンプ(例えば、加圧型定量ギヤポンプ)を通して加圧ダイに送液する。そして、加圧ダイのスリットから、無限に移送する無端の金属支持体上(例えばステンレスベルト、あるいは回転する金属ドラム等)の流延位置に、ドープ液を流延する。 1-2) Casting step The dope solution is fed to a pressure die through a liquid feed pump (for example, a pressurized metering gear pump). Then, the dope solution is cast from the slit of the pressure die to a casting position on an endless metal support (for example, a stainless belt or a rotating metal drum) that is transferred infinitely.
ドープ液を、送液ポンプ(例えば、加圧型定量ギヤポンプ)を通して加圧ダイに送液する。そして、加圧ダイのスリットから、無限に移送する無端の金属支持体上(例えばステンレスベルト、あるいは回転する金属ドラム等)の流延位置に、ドープ液を流延する。 1-2) Casting step The dope solution is fed to a pressure die through a liquid feed pump (for example, a pressurized metering gear pump). Then, the dope solution is cast from the slit of the pressure die to a casting position on an endless metal support (for example, a stainless belt or a rotating metal drum) that is transferred infinitely.
1-3)溶媒蒸発・剥離工程
金属支持体上に流延されたドープ液を金属支持体上で加熱して、ドープ液中の溶媒を蒸発させて、膜状物を得る。 1-3) Solvent evaporation / peeling step The dope solution cast on the metal support is heated on the metal support to evaporate the solvent in the dope solution to obtain a film-like material.
金属支持体上に流延されたドープ液を金属支持体上で加熱して、ドープ液中の溶媒を蒸発させて、膜状物を得る。 1-3) Solvent evaporation / peeling step The dope solution cast on the metal support is heated on the metal support to evaporate the solvent in the dope solution to obtain a film-like material.
溶媒を蒸発させるには、ドープ液面側から風を吹かせる方法、支持体の裏面から液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等があるが、裏面液体伝熱方法が、乾燥効率が良く好ましい。特にステンレスベルトを用いて製膜する場合、金属支持体上のドープ液を40~100℃の範囲内の雰囲気下で乾燥させることが好ましい。40~100℃の範囲内の雰囲気に維持するには、この温度の温風を、金属支持体上のドープ液面に当てるか赤外線等の手段により加熱することが好ましい。また、金属ドラムを用いて製膜する場合は、金属ドラムの表面温度を-20~10℃とし、金属ドラム上で乾燥させずに剥離することが好ましい。
In order to evaporate the solvent, there are a method of blowing wind from the dope liquid surface side, a method of transferring heat from the back surface of the support by a liquid, a method of transferring heat from the front and back by radiant heat, etc. The drying efficiency is good and preferable. In particular, when a film is formed using a stainless steel belt, the dope solution on the metal support is preferably dried in an atmosphere within a range of 40 to 100 ° C. In order to maintain the atmosphere within the range of 40 to 100 ° C., it is preferable to apply hot air at this temperature to the dope liquid surface on the metal support or to heat by means such as infrared rays. In the case of forming a film using a metal drum, it is preferable that the surface temperature of the metal drum is set to −20 to 10 ° C. and the film is peeled off without being dried on the metal drum.
金属支持体上で得られた膜状物を、剥離位置で剥離する。ステンレスベルトを用いて製膜する場合は、剥離位置における金属支持体の温度は、好ましくは10~40℃の範囲であり、さらに好ましくは11~30℃の範囲である。また、金属ドラムを用いて製膜する場合は、剥離位置における金属支持体の温度は、-20~10℃の範囲であることが好ましい。
The film-like material obtained on the metal support is peeled off at the peeling position. When the film is formed using a stainless steel belt, the temperature of the metal support at the peeling position is preferably in the range of 10 to 40 ° C, more preferably in the range of 11 to 30 ° C. When forming a film using a metal drum, the temperature of the metal support at the peeling position is preferably in the range of −20 to 10 ° C.
剥離時の金属支持体上での膜状物の残留溶媒量は、例えば50~120質量%の範囲としうる。膜状物の残留溶媒量は、下記式で定義される。
残留溶媒量(%)=(膜状物の加熱処理前質量-膜状物の加熱処理後質量)/(膜状物の加熱処理後質量)×100
残留溶媒量を測定する際の加熱処理とは、140℃で1時間の加熱処理を行うことを表す。 The residual solvent amount of the film-like material on the metal support at the time of peeling can be, for example, in the range of 50 to 120% by mass. The amount of residual solvent in the film-like material is defined by the following formula.
Residual solvent amount (%) = (mass before heat treatment of film-like material−mass after heat treatment of film-like material) / (mass after heat treatment of film-like material) × 100
The heat treatment for measuring the residual solvent amount represents performing a heat treatment at 140 ° C. for 1 hour.
残留溶媒量(%)=(膜状物の加熱処理前質量-膜状物の加熱処理後質量)/(膜状物の加熱処理後質量)×100
残留溶媒量を測定する際の加熱処理とは、140℃で1時間の加熱処理を行うことを表す。 The residual solvent amount of the film-like material on the metal support at the time of peeling can be, for example, in the range of 50 to 120% by mass. The amount of residual solvent in the film-like material is defined by the following formula.
Residual solvent amount (%) = (mass before heat treatment of film-like material−mass after heat treatment of film-like material) / (mass after heat treatment of film-like material) × 100
The heat treatment for measuring the residual solvent amount represents performing a heat treatment at 140 ° C. for 1 hour.
金属支持体とフィルムを剥離する際の剥離張力は、通常、196~245N/mの範囲内であるが、剥離の際に皺が入り易い場合、190N/m以下の張力で剥離することが好ましく、80N/m以下の張力で剥離することがさらに好ましい。
The peeling tension when peeling the metal support from the film is usually in the range of 196 to 245 N / m. However, if wrinkles easily occur during peeling, peeling with a tension of 190 N / m or less is preferable. Further, it is more preferable to peel with a tension of 80 N / m or less.
1-4)乾燥・延伸工程
剥離された膜状物を、テンター延伸装置内を搬送させながら乾燥させるか、あるいは乾燥装置内に複数配置したローラで搬送させながら乾燥させる。乾燥方法は、特に制限されないが、膜状物の両面に熱風を吹かせる方法が一般的である。 1-4) Drying / stretching process The peeled film-like material is dried while being conveyed in the tenter stretching apparatus, or is dried while being conveyed by a plurality of rollers disposed in the drying apparatus. The drying method is not particularly limited, but a method of blowing hot air on both surfaces of the film-like material is common.
剥離された膜状物を、テンター延伸装置内を搬送させながら乾燥させるか、あるいは乾燥装置内に複数配置したローラで搬送させながら乾燥させる。乾燥方法は、特に制限されないが、膜状物の両面に熱風を吹かせる方法が一般的である。 1-4) Drying / stretching process The peeled film-like material is dried while being conveyed in the tenter stretching apparatus, or is dried while being conveyed by a plurality of rollers disposed in the drying apparatus. The drying method is not particularly limited, but a method of blowing hot air on both surfaces of the film-like material is common.
急激な乾燥は、得られるフィルムの平面性を損ない易いことから、高温による乾燥は、残留溶媒が8質量%以下となった条件で行うのが好ましい。乾燥工程全体を通して、乾燥温度は、好ましくは40~190℃の範囲、より好ましくは40~170℃の範囲である。
Since rapid drying tends to impair the flatness of the resulting film, drying at a high temperature is preferably performed under conditions where the residual solvent is 8% by mass or less. Throughout the drying process, the drying temperature is preferably in the range of 40-190 ° C, more preferably in the range of 40-170 ° C.
乾燥後に得られた膜状物を、必要に応じてさらに延伸してもよい。膜状物の延伸は、フィルムの幅方向(TD方向)、搬送方向(MD方向)または斜め方向のうち少なくとも一方向に行うことが好ましく;幅方向(TD方向)に行うことがより好ましい。フィルムの幅方向(TD方向)と搬送方向(MD方向)の両方に延伸する場合、フィルムの幅方向(TD方向)の延伸と搬送方向(MD方向)の延伸とは、逐次的に行ってもよいし、同時に行ってもよい。
The film obtained after drying may be further stretched as necessary. The stretching of the film is preferably performed in at least one of the width direction (TD direction), the transport direction (MD direction) or the oblique direction of the film; more preferably in the width direction (TD direction). When stretching in both the width direction (TD direction) and the transport direction (MD direction) of the film, stretching in the width direction (TD direction) of the film and stretching in the transport direction (MD direction) may be performed sequentially. You may do it simultaneously.
延伸倍率は、各方向に例えば1.01~1.5倍、好ましくは1.01~1.3倍程度としうる。
The draw ratio may be about 1.01 to 1.5 times, preferably about 1.01 to 1.3 times in each direction.
テンター延伸装置で延伸を行う場合、テンター延伸開始時の膜状物の残留溶媒量は、2~30質量%であることが好ましい。さらに、膜状物の残留溶媒量が10質量%以下になるまで、好ましくは5質量%以下になるまで乾燥を行うことが好ましい。乾燥温度は、30~160℃の範囲が好ましく、50~150℃の範囲がより好ましい。テンター方式はクリップテンター、ピンテンターなどがあるが、本発明では生産性の観点からピンテンターが好ましい。
When stretching with a tenter stretching apparatus, the residual solvent amount of the film-like material at the start of tenter stretching is preferably 2 to 30% by mass. Furthermore, it is preferable to dry until the amount of residual solvent in the film-like material is 10% by mass or less, preferably 5% by mass or less. The drying temperature is preferably in the range of 30 to 160 ° C, more preferably in the range of 50 to 150 ° C. The tenter method includes a clip tenter and a pin tenter. In the present invention, a pin tenter is preferable from the viewpoint of productivity.
1-5)エンボス形成工程
得られたフィルムの巻き取りを行いやすくするためなどから、フィルムの幅方向両端部にエンボス部を形成することが好ましい。エンボス部の形成方法は、特に制限されず、フィルムにエンボスリング等のローラを押し付けてエンボス部を形成する方法や、非接触方式でエンボス部を形成する方法などが挙げられる。非接触方式でエンボス部を形成する方法の例には、フィルムにレーザ光を照射してエンボス部を形成する方法;液状の材料をインクジェット方式で塗布してエンボス部を形成する方法などが挙げられる。 1-5) Emboss formation step In order to facilitate winding of the obtained film, it is preferable to form embossed portions at both ends in the width direction of the film. The method for forming the embossed part is not particularly limited, and examples thereof include a method for forming an embossed part by pressing a roller such as an embossing ring on the film, and a method for forming the embossed part in a non-contact manner. Examples of the method of forming the embossed portion by a non-contact method include a method of forming an embossed portion by irradiating a film with a laser beam; a method of forming an embossed portion by applying a liquid material by an ink jet method, and the like. .
得られたフィルムの巻き取りを行いやすくするためなどから、フィルムの幅方向両端部にエンボス部を形成することが好ましい。エンボス部の形成方法は、特に制限されず、フィルムにエンボスリング等のローラを押し付けてエンボス部を形成する方法や、非接触方式でエンボス部を形成する方法などが挙げられる。非接触方式でエンボス部を形成する方法の例には、フィルムにレーザ光を照射してエンボス部を形成する方法;液状の材料をインクジェット方式で塗布してエンボス部を形成する方法などが挙げられる。 1-5) Emboss formation step In order to facilitate winding of the obtained film, it is preferable to form embossed portions at both ends in the width direction of the film. The method for forming the embossed part is not particularly limited, and examples thereof include a method for forming an embossed part by pressing a roller such as an embossing ring on the film, and a method for forming the embossed part in a non-contact manner. Examples of the method of forming the embossed portion by a non-contact method include a method of forming an embossed portion by irradiating a film with a laser beam; a method of forming an embossed portion by applying a liquid material by an ink jet method, and the like. .
<巻き取り工程について>
巻き取り工程は、位相差フィルムと巻芯の少なくとも一方を、フィルムの幅方向に周期的に振動させながら位相差フィルムを巻芯に巻き取る工程(振動巻き取り工程)を含むことが好ましい。 <About the winding process>
The winding step preferably includes a step of winding the retardation film around the core (vibrating winding step) while periodically vibrating at least one of the retardation film and the core in the width direction of the film.
巻き取り工程は、位相差フィルムと巻芯の少なくとも一方を、フィルムの幅方向に周期的に振動させながら位相差フィルムを巻芯に巻き取る工程(振動巻き取り工程)を含むことが好ましい。 <About the winding process>
The winding step preferably includes a step of winding the retardation film around the core (vibrating winding step) while periodically vibrating at least one of the retardation film and the core in the width direction of the film.
図3は、位相差フィルムの巻き取り工程に用いられる巻き取り装置20の一例を示す概略図である。図3(a)は、巻き取り装置20の巻芯11の軸方向から見た側面図であり、図3(b)は、位相差フィルム13の上方から見た平面図である。
FIG. 3 is a schematic view showing an example of a winding device 20 used in the winding process of the retardation film. 3A is a side view seen from the axial direction of the core 11 of the winding device 20, and FIG. 3B is a plan view seen from above the retardation film 13. As shown in FIG.
巻き取り装置20は、巻芯11の振動を制御するための振動制御装置21と、位相差フィルム13を巻芯11に案内する案内ローラ23と、巻芯11に巻き取られた位相差フィルム13を押圧するタッチローラ25とを備えている。
The winding device 20 includes a vibration control device 21 for controlling the vibration of the winding core 11, a guide roller 23 for guiding the retardation film 13 to the winding core 11, and the retardation film 13 wound on the winding core 11. And a touch roller 25 for pressing.
巻芯11は、回転装置(不図示)によって回転可能に設置されている。振動制御装置21は、位相差フィルム13と巻芯11との相対的な位置を変化させる振動を付与し、かつその振動状態を制御できるように構成されている。
The winding core 11 is rotatably installed by a rotating device (not shown). The vibration control device 21 is configured to apply vibration that changes the relative position between the retardation film 13 and the core 11 and to control the vibration state.
案内ローラ23は、位相差フィルム13の走行によって従動回転する部材である。それにより、走行してきた位相差フィルム13を巻芯11に案内し、案内ローラ23によって位相差フィルム13の走行位置のぶれを低減し、位相差フィルム13を巻芯11へ円滑に供給できるようになっている。
The guide roller 23 is a member that rotates following the traveling of the retardation film 13. Thereby, the traveling retardation film 13 is guided to the core 11, and the travel of the retardation film 13 is reduced by the guide roller 23 so that the retardation film 13 can be smoothly supplied to the winding core 11. It has become.
タッチローラ25は、巻芯11の回転によって、従動回転する部材である。それにより、巻芯11に巻き取られた位相差フィルム13を押圧して、巻き取られた位相差フィルム13が巻芯11から離間するのを抑制できるようになっている。
The touch roller 25 is a member that rotates following the rotation of the core 11. Thereby, the retardation film 13 wound around the core 11 is pressed, and the wound retardation film 13 can be prevented from being separated from the core 11.
このように構成された巻き取り装置20では、位相差フィルム13を、巻芯11の表面まで案内ローラ23で案内する。そして、回転装置(不図示)によって巻芯11を回転させて、案内された位相差フィルム13を巻芯11に巻き取る。
In the winding device 20 configured as described above, the retardation film 13 is guided to the surface of the core 11 by the guide roller 23. Then, the core 11 is rotated by a rotating device (not shown), and the guided retardation film 13 is wound around the core 11.
本発明では、位相差フィルム13を巻芯11に巻き取る巻き取り工程が、振動巻き取り工程を含むことが好ましい。振動巻き取り工程では、位相差フィルム13の幅方向に位相差フィルム13と巻芯11との相対的な位置を変化させる振動を付与する。振動条件は、振動制御装置21によって制御することができる。図3(b)では、巻芯11を振動させる例を示したが、位相差フィルム13と巻芯11とのフィルムの幅方向の相対的な位置が変化するような振動であればよく、位相差フィルム13を振動させてもよいし;位相差フィルム13と巻芯11の両方を振動させてもよい。振動巻き取りとは、オシレート巻きのことである。オシレート巻きは特開2010-150041号で知られている。
In the present invention, it is preferable that the winding process of winding the retardation film 13 around the core 11 includes a vibration winding process. In the vibration winding process, vibration is applied to change the relative position of the retardation film 13 and the core 11 in the width direction of the retardation film 13. The vibration condition can be controlled by the vibration control device 21. FIG. 3B shows an example in which the core 11 is vibrated, but any vibration that changes the relative position of the retardation film 13 and the core 11 in the width direction of the film may be used. The phase difference film 13 may be vibrated; both the phase difference film 13 and the core 11 may be vibrated. Vibration winding is oscillating winding. Oscillating winding is known from Japanese Patent Application Laid-Open No. 2010-150041.
図4は、振動巻き取り工程での振動を説明するためのグラフである。図4のグラフのx軸は、巻芯に巻き取られ始める位相差フィルムの位置における、巻き取られている位相差フィルムの積算厚み(mm)を示す。即ち、巻き取られている位相差フィルム13の最外面と巻芯11の表面との距離を示し、図3における位相差フィルム13の積算厚みxに相当する。図4のグラフのy軸は、位相差フィルム13の幅方向の中心位置と巻芯11の幅方向の中心位置との距離(位相差フィルム13と巻芯11との中心間距離)(mm)を示し;図3における中心間距離yに相当する。
FIG. 4 is a graph for explaining the vibration in the vibration winding process. The x-axis of the graph in FIG. 4 indicates the integrated thickness (mm) of the phase difference film that has been wound at the position of the phase difference film that has started to be wound around the core. That is, the distance between the outermost surface of the phase difference film 13 being wound and the surface of the core 11 is shown, and corresponds to the integrated thickness x of the phase difference film 13 in FIG. 4 is the distance between the center position in the width direction of the phase difference film 13 and the center position in the width direction of the core 11 (distance between the centers of the phase difference film 13 and the core 11) (mm). Corresponding to the center-to-center distance y in FIG.
振動巻き取り工程における振動は、図4の曲線2で示されるような正弦波振動であってもよいし;曲線3で示されるような矩形波振動であってもよいし;曲線1で示されるような振動であってもよい。なかでも、ロール体の側面を傷付きにくい形状とするためなどから、曲線1で示されるような振動が好ましい。具体的には、曲線2に示されるような振幅A、周期Tの正弦波振動を示す関数をa(x);曲線3に示されるような振幅A、周期Tの矩形波振動を示す関数をb(x);曲線1で示されるような振幅A、周期Tの振動を示す関数をf(x)としたとき、関数f(x)とx軸とで囲まれる面積が、関数a(x)とx軸とで囲まれる面積より大きくかつ関数b(x)とx軸とで囲まれる面積より小さくなるような関数f(x)で表される振動が好ましい。なお、振動を付与しない場合は、図4のx軸上の直線4で表される関数となる。
The vibration in the vibration winding process may be sinusoidal vibration as indicated by curve 2 in FIG. 4; may be rectangular wave vibration as indicated by curve 3; Such vibration may be used. Especially, the vibration as shown by the curve 1 is preferable in order to make the side surface of the roll body difficult to be damaged. Specifically, a function indicating a sinusoidal vibration with an amplitude A and a period T as indicated by a curve 2 is a (x); a function indicating a rectangular wave vibration with an amplitude A and a period T as indicated by a curve 3 b (x); where f (x) is a function indicating the vibration of amplitude A and period T as shown by curve 1, the area surrounded by the function f (x) and the x axis is the function a (x ) And the x-axis, and the vibration represented by the function f (x) that is smaller than the area surrounded by the function b (x) and the x-axis is preferable. When no vibration is applied, the function is represented by a straight line 4 on the x-axis in FIG.
図5は、位相差フィルムのロール体の幅方向における積算エンボス高さのシミュレーション結果の一例を示す概略図である。図5のx軸は、位相差フィルムのロール体の幅方向における位置を示し;y軸は、積算エンボス高さを示す。
FIG. 5 is a schematic diagram showing an example of a simulation result of the integrated emboss height in the width direction of the roll body of the retardation film. The x-axis in FIG. 5 indicates the position of the retardation film in the width direction of the roll body; the y-axis indicates the integrated embossed height.
図5に示されるように、振動を付与しない場合は、線7に示されるグラフとなり;関数a(x)となるように振動させた場合(ただし、振幅Aがエンボス部の幅以下の場合)は、線6に示されるグラフとなり;関数f(x)となるように振動させた場合は、線5に示されるグラフとなる。
As shown in FIG. 5, when no vibration is applied, the graph is shown by line 7; when the vibration is made so as to have a function a (x) (however, the amplitude A is equal to or less than the width of the embossed portion). Becomes the graph shown by the line 6; when it is vibrated so as to be the function f (x), it becomes the graph shown by the line 5.
振動を付与しない場合は、線7に示されるように、エンボス部がフィルムの幅方向の同一の位置で積層されるため、積算エンボス高さが、エンボス部の高さに巻き取る回数を積算した値となる。一方、関数a(x)となるように振動を付与した場合、線6に示されるように、振動の振幅Aの中心位置付近でエンボス部の重なりが大きくなるものの、振動を付与しない場合よりは積算エンボス高さを低減できる。さらに、関数f(x)となるように振動を付与した場合、振動のy変位の絶対値が大きいときの滞在時間が比較的長くなるため、線5に示されるように、ロール体でのエンボス部の重なり合いを効果的に低減できる。このように、振動巻き取り工程を経て巻き取られた位相差フィルムのロール体は、長期間保存しても、変形の発生を充分に抑制しうる。
When vibration is not applied, the embossed portion is laminated at the same position in the width direction of the film, as indicated by line 7, so the accumulated embossed height is accumulated by the number of windings to the height of the embossed portion. Value. On the other hand, when the vibration is applied so as to be the function a (x), as shown by the line 6, although the embossed portion overlaps near the center position of the amplitude A of the vibration, the vibration is not applied. Accumulated emboss height can be reduced. Further, when the vibration is applied so as to be the function f (x), the stay time when the absolute value of the y displacement of the vibration is large becomes relatively long. The overlapping of the parts can be effectively reduced. Thus, the roll body of the retardation film wound up through the vibration winding process can sufficiently suppress the occurrence of deformation even when stored for a long period of time.
関数f(x)は、振動の周期Tや振幅Aが周期的に変動する関数であってもよい。具体的には、関数f(x)は、f(x)=f(x+T)が成り立つ周期関数であってもよいし;関数f(x)は、振動の周期Tが、位相差フィルムの積算厚みxが大きくなるに従い、徐々に小さくなるような関数であってもよいし;関数f(x)は、振動の振幅Aが、位相差フィルムの積算厚みxが大きくなるに従い、徐々に大きくなるような関数であってもよい。
The function f (x) may be a function in which the vibration period T and the amplitude A periodically change. Specifically, the function f (x) may be a periodic function in which f (x) = f (x + T); or the function f (x) may be determined by integrating the retardation film with a period T of vibration. The function may be a function that gradually decreases as the thickness x increases; the function f (x) gradually increases as the vibration amplitude A increases as the integrated thickness x of the retardation film increases. Such a function may be used.
なかでも、位相差フィルムのロール体の変形を好ましく抑制する観点から、振動の振幅Aを、巻き取られた位相差フィルム13の積算の厚みが大きくなるに従い、徐々に大きくすることが好ましい。振動の振幅が大きいと、エンボス部の重なり合いをより抑制でき、変形の発生をより抑制できると考えられる。巻き始めは、位相差フィルムの積算厚みが小さく、ロール体の変形も生じにくいことから、振幅が小さい振動を適用しても、ロール体の変形を十分に抑制できる。一方、位相差フィルムが巻芯に巻き取られていくにつれて、巻き取られた位相差フィルムの積算の厚みが大きくなると、ロール体の変形が生じやすい。このように、巻き取られた位相差フィルムの積算の厚みが大きく、ロール体の変形が生じやすい場合に、振幅の大きい振動を適用することで、エンボス部の重なり合いを効果的に低減でき、ロール体の変形をより抑制できると考えられる。
Among these, from the viewpoint of preferably suppressing the deformation of the roll body of the retardation film, it is preferable to gradually increase the vibration amplitude A as the integrated thickness of the wound retardation film 13 increases. When the amplitude of vibration is large, it is considered that the overlapping of the embossed portions can be further suppressed and the occurrence of deformation can be further suppressed. At the beginning of winding, since the integrated thickness of the retardation film is small and deformation of the roll body hardly occurs, deformation of the roll body can be sufficiently suppressed even when vibration having a small amplitude is applied. On the other hand, as the retardation film is wound around the core, the roll body is likely to be deformed when the integrated thickness of the wound retardation film increases. Thus, when the integrated thickness of the wound retardation film is large and deformation of the roll body is likely to occur, it is possible to effectively reduce the overlap of the embossed portions by applying vibration with a large amplitude, It is thought that body deformation can be further suppressed.
また、振動の周期Tを、巻き取られた位相差フィルムの積算の厚みが大きくなるに従い、徐々に小さくすることが好ましい。振動の周期が小さいと、位相差フィルムにかかる負荷を低減できると考えられる。そして、位相差フィルムが巻き取られていくにつれて、巻き取られた位相差フィルムの積算の厚みが大きくなると、ロール体の変形が生じやすい。このように、巻き取られた位相差フィルムの積算の厚みが大きく、ロール体の変形が生じやすい場合に、周期の小さい振動を適用することで、位相差フィルムへの負荷を効果的に低減でき、ロール体の変形の発生をより抑制できると考えられる。
Further, it is preferable to gradually reduce the vibration period T as the integrated thickness of the wound retardation film increases. If the period of vibration is small, it is considered that the load applied to the retardation film can be reduced. As the retardation film is wound up, the roll body is likely to be deformed when the integrated thickness of the wound up retardation film increases. Thus, when the integrated thickness of the wound retardation film is large and deformation of the roll body is likely to occur, it is possible to effectively reduce the load on the retardation film by applying a vibration having a small period. It is considered that the deformation of the roll body can be further suppressed.
振動の振幅Aは、フィルム幅の0.1~1.0%であることが好ましく、0.35~0.70%であることがより好ましい。具体的には、2~15mm、好ましくは4~10mm程度としうる。振幅Aが一定以上であると、エンボス同士の重なりを低減しやすく、ロール体の変形を良好に抑制しやすい。振幅Aが一定以下であると、ロール体の軸方向両端部の側面が大きく波打つのを抑制できる。
The vibration amplitude A is preferably 0.1 to 1.0% of the film width, and more preferably 0.35 to 0.70%. Specifically, it can be about 2 to 15 mm, preferably about 4 to 10 mm. When the amplitude A is greater than or equal to a certain value, it is easy to reduce the overlap between the embosses and to easily suppress the deformation of the roll body. When the amplitude A is equal to or less than a certain value, it is possible to prevent the side surfaces at both end portions in the axial direction of the roll body from greatly wavy.
振動の周期Tは、フィルム幅の0.2~10%であることが好ましく、0.3~6%であることがより好ましい。具体的には、3~160mm程度、好ましくは3~120mmとしうる。周期Tが一定以上であると、ロール体の軸方向両端部の側面が大きく波打つのを抑制できる。周期Tが一定以下であると、ロール体の変形を良好に抑制しやすい。
The period T of vibration is preferably 0.2 to 10% of the film width, and more preferably 0.3 to 6%. Specifically, it may be about 3 to 160 mm, preferably 3 to 120 mm. When the period T is equal to or greater than a certain value, it is possible to suppress the undulation of the side surfaces of both end portions in the axial direction of the roll body. When the period T is equal to or less than a certain value, it is easy to satisfactorily suppress the deformation of the roll body.
巻き取り工程は、前述の振動巻き取り工程を含んでいればよく、巻き取り工程の全てが振動巻き取り工程であってもよいし;他の巻き取り工程をさらに含んでいてもよい。他の巻き取り工程の例には、位相差フィルムの幅方向の中心位置と巻芯の幅方向の中心位置との距離(中心間距離y)を変動させることなく、位相差フィルムを巻き取る工程(非振動巻き取り工程)が含まれる。非振動巻き取り工程と、振動巻き取り工程とは、任意に組み合わせることができる。例えば、巻き取り工程は、振動巻き取り工程の後に、非振動巻き取り工程を行ってもよい。
The winding process only needs to include the above-described vibration winding process, and all of the winding processes may be the vibration winding process; and may further include another winding process. In another example of the winding step, the step of winding the retardation film without changing the distance (center distance y) between the center position in the width direction of the retardation film and the center position in the width direction of the core. (Non-vibrating winding process) is included. The non-vibrating winding process and the vibrating winding process can be arbitrarily combined. For example, in the winding process, a non-vibrating winding process may be performed after the vibrating winding process.
また、ロール体の変形を良好に抑制できる点から、巻き始めは非振動巻き取り工程とし、途中は振動巻き取り工程とし、巻き終わりは非振動巻き取り工程とすることが好ましい。即ち、巻き始めは、位相差フィルムの積算厚みが小さく、ロール体の変形も生じにくいことから、非振動巻き取り工程を行うことができる。一方、位相差フィルムの巻き取りが進み、巻き取られた位相差フィルムの積算厚みが大きくなるにつれて、巻き取られたロール体は変形が生じやすい。そのようなときに、振動巻き取り工程を行うことで、効果的にロール形状の劣化を低減できる。さらに、巻き終わりに非振動巻き取り工程を行うことで、ロール体から位相差フィルムを繰り出す際に、位相差フィルムを円滑に繰り出すことができる。例えば、巻き終わりを振動巻き取り工程とすると、得られたロール体から位相差フィルムを巻き出し始める際に、位相差フィルムの蛇行等により円滑に繰り出せない場合がある。これに対して、巻き終わりを非振動巻き取り工程とすることで、ロール体から位相差フィルムを巻き出し始めた直後から、位相差フィルムを円滑に繰り出すことができる。
Also, from the viewpoint that deformation of the roll body can be satisfactorily suppressed, it is preferable that the start of winding is a non-vibration winding process, the middle is a vibration winding process, and the end of winding is a non-vibration winding process. That is, at the beginning of winding, the non-vibrating winding process can be performed because the accumulated thickness of the retardation film is small and the roll body is hardly deformed. On the other hand, as the winding of the retardation film proceeds and the integrated thickness of the wound retardation film increases, the wound roll body is likely to be deformed. In such a case, the roll shape deterioration can be effectively reduced by performing the vibration winding process. Furthermore, by performing a non-vibrating winding process at the end of winding, the retardation film can be smoothly fed out when the retardation film is fed out from the roll body. For example, if the end of winding is the vibration winding process, when the retardation film starts to be unwound from the obtained roll body, it may not be smoothly fed out due to meandering of the retardation film. On the other hand, by setting the end of winding as a non-vibration winding process, the retardation film can be smoothly fed out immediately after the retardation film starts to be unwound from the roll body.
このように、本発明の位相差フィルムのロール体は、位相差フィルムと巻芯の少なくとも一方を、フィルムの幅方向に周期的に振動させながら位相差フィルムを巻芯に巻き取る工程(振動巻き取り工程)を経て得られる。それにより、振動させないで巻き取る非振動巻き取り工程のみで得られるロール体よりも、エンボス部の重なりを少なくすることができ、ロール体の幅方向両端部と幅方向中央部との巻き径の差を少なくすることができる。その結果、本発明の位相差フィルムのロール体の変形を抑制することができる。ロール体の変形を抑制することで、巻き取られた位相差フィルムに不均一な張力が加わったり、膜厚が不均一になったりすることによる光学特性の低下を抑制できる。
As described above, the roll body of the retardation film of the present invention includes a step of winding the retardation film around the core while vibrating at least one of the retardation film and the core in the width direction of the film (vibrating winding). It is obtained through the taking process). Thereby, it is possible to reduce the overlap of the embossed portion than the roll body obtained only by the non-vibration winding process of winding without vibrating, and the winding diameter of the width direction both ends and the width direction center portion of the roll body The difference can be reduced. As a result, deformation of the roll body of the retardation film of the present invention can be suppressed. By suppressing the deformation of the roll body, it is possible to suppress a decrease in optical characteristics due to non-uniform tension applied to the wound retardation film or non-uniform film thickness.
特に、位相差フィルムの膜厚が薄い場合には、位相差フィルムの強度が低下しやすく、ロール体の変形が生じやすい。そのような場合でも、前述の振動巻き取り工程を行うことで、ロール体の変形を好ましく抑制できる。
In particular, when the film thickness of the retardation film is thin, the strength of the retardation film tends to decrease and the roll body tends to be deformed. Even in such a case, the deformation of the roll body can be preferably suppressed by performing the above-described vibration winding process.
4.偏光板
本発明の偏光板は、偏光子と、その少なくとも一方の面に配置された前述の位相差フィルムとを含む。 4). Polarizing plate The polarizing plate of the present invention includes a polarizer and the above-described retardation film disposed on at least one surface thereof.
本発明の偏光板は、偏光子と、その少なくとも一方の面に配置された前述の位相差フィルムとを含む。 4). Polarizing plate The polarizing plate of the present invention includes a polarizer and the above-described retardation film disposed on at least one surface thereof.
<偏光子について>
偏光子は、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光子は、ポリビニルアルコール系偏光フィルムである。ポリビニルアルコール系偏光フィルムには、ポリビニルアルコール系フィルムにヨウ素を染色させたものと、二色性染料を染色させたものとがある。 <About the polarizer>
A polarizer is an element that passes only light having a plane of polarization in a certain direction, and a typical polarizer known at present is a polyvinyl alcohol polarizing film. The polyvinyl alcohol polarizing film includes those obtained by dyeing iodine on a polyvinyl alcohol film and those obtained by dyeing a dichroic dye.
偏光子は、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光子は、ポリビニルアルコール系偏光フィルムである。ポリビニルアルコール系偏光フィルムには、ポリビニルアルコール系フィルムにヨウ素を染色させたものと、二色性染料を染色させたものとがある。 <About the polarizer>
A polarizer is an element that passes only light having a plane of polarization in a certain direction, and a typical polarizer known at present is a polyvinyl alcohol polarizing film. The polyvinyl alcohol polarizing film includes those obtained by dyeing iodine on a polyvinyl alcohol film and those obtained by dyeing a dichroic dye.
ポリビニルアルコール系偏光フィルムは、ポリビニルアルコール系フィルムを一軸延伸した後、ヨウ素または二色性染料で染色したフィルム(好ましくはさらにホウ素化合物で耐久性処理を施したフィルム)であってもよいし;ポリビニルアルコール系フィルムをヨウ素または二色性染料で染色した後、一軸延伸したフィルム(好ましくは、さらにホウ素化合物で耐久性処理を施したフィルム)であってもよい。
The polyvinyl alcohol polarizing film may be a film (preferably a film further subjected to durability treatment with a boron compound) dyed with iodine or a dichroic dye after uniaxially stretching the polyvinyl alcohol film; A film obtained by dying an alcohol film with iodine or a dichroic dye and then uniaxially stretching (preferably a film further subjected to a durability treatment with a boron compound) may be used.
偏光子の厚みは、2~30μmであることが好ましく、偏光板を薄型化するためなどから、5~15μmであることがより好ましい。
The thickness of the polarizer is preferably 2 to 30 μm, and more preferably 5 to 15 μm in order to reduce the thickness of the polarizing plate.
<保護フィルムについて>
保護フィルムは、偏光子の他方の面に配置されうる。保護フィルムの例には、(メタ)アクリル樹脂フィルム、ポリエステルフィルム、セルロースエステルフィルムなどが含まれ、好ましくはセルロースエステルフィルムである。 <About protective film>
The protective film can be disposed on the other surface of the polarizer. Examples of the protective film include a (meth) acrylic resin film, a polyester film, a cellulose ester film, and the like, preferably a cellulose ester film.
保護フィルムは、偏光子の他方の面に配置されうる。保護フィルムの例には、(メタ)アクリル樹脂フィルム、ポリエステルフィルム、セルロースエステルフィルムなどが含まれ、好ましくはセルロースエステルフィルムである。 <About protective film>
The protective film can be disposed on the other surface of the polarizer. Examples of the protective film include a (meth) acrylic resin film, a polyester film, a cellulose ester film, and the like, preferably a cellulose ester film.
セルロースエステルフィルムの例には、市販のセルロースエステルフィルム(例えば、コニカミノルタタック KC8UX、KC5UX、KC8UCR3、KC8UCR4、KC8UCR5、KC8UY、KC6UY、KC6UA、KC4UY、KC4UE、KC8UE、KC8UY-HA、KC8UX-RHA、KC8UXW-RHA-C、KC8UXW-RHA-NC、KC4UXW-RHA-NC、以上コニカミノルタ(株)製)が好ましく用いられる。
Examples of the cellulose ester film include commercially available cellulose ester films (for example, Konica Minoltack KC8UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY, KC6UY, KC6UA, KC4UY, KC8U, XC8U, KC8UE, KC8U, HC8U -RHA-C, KC8UXW-RHA-NC, KC4UXW-RHA-NC, manufactured by Konica Minolta Co., Ltd.) are preferably used.
保護フィルムの厚みを薄くする場合は、透湿性が低いことなどから、(メタ)アクリル樹脂フィルムやポリエステルフィルムが好ましい。
When reducing the thickness of the protective film, a (meth) acrylic resin film or a polyester film is preferable because of its low moisture permeability.
(メタ)アクリル樹脂フィルムは、メタクリル酸メチルの単独重合体;またはメタクリル酸メチルとそれと共重合可能な他のモノマーとの共重合体を主成分として含むフィルムでありうる。メタクリル酸メチルと共重合可能な他のモノマーの例には、アルキル部分の炭素原子数が2~18のメタクリル酸アルキルエステル;アルキル部分の炭素原子数が1~18のアクリル酸アルキルエステル;アクリル酸、メタクリル酸等のα,β-不飽和酸;マレイン酸、フマル酸、イタコン酸等の不飽和基含有二価カルボン酸;スチレン、α-メチルスチレン等の芳香族ビニル化合物;アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル;無水マレイン酸、無水グルタル酸などの酸無水物が含まれる。
(Meth) acrylic resin film may be a film containing, as a main component, a homopolymer of methyl methacrylate; or a copolymer of methyl methacrylate and another monomer copolymerizable therewith. Examples of other monomers copolymerizable with methyl methacrylate include: alkyl methacrylates having 2 to 18 carbon atoms in the alkyl moiety; alkyl alkyl esters having 1 to 18 carbon atoms in the alkyl moiety; acrylic acid Α, β-unsaturated acids such as methacrylic acid; unsaturated group-containing dicarboxylic acids such as maleic acid, fumaric acid and itaconic acid; aromatic vinyl compounds such as styrene and α-methylstyrene; acrylonitrile, methacrylonitrile And α, β-unsaturated nitriles such as maleic anhydride and glutaric anhydride.
ポリエステルフィルムの例には、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルムなどが含まれる。
Examples of the polyester film include a polyethylene terephthalate film and a polyethylene naphthalate film.
保護フィルムは、測定波長590nm、23℃55%RHの条件下で測定される面内方向のリターデーションR0は、0~20nmであることが好ましく、0~10nmであることがより好ましい。保護フィルムの、測定波長590nm、23℃55%RHの条件下で測定される厚み方向のリターデーションRthは、0~80nmであることが好ましく、0~50nmであることがより好ましい。
In the protective film, the in-plane retardation R 0 measured under the conditions of a measurement wavelength of 590 nm and 23 ° C. and 55% RH is preferably 0 to 20 nm, and more preferably 0 to 10 nm. The retardation Rth in the thickness direction measured under the conditions of a measurement wavelength of 590 nm and 23 ° C. and 55% RH of the protective film is preferably 0 to 80 nm, and more preferably 0 to 50 nm.
保護フィルムの厚みは、10~100μm程度とすることができ、好ましくは10~80μmでありうる。
The thickness of the protective film can be about 10 to 100 μm, preferably 10 to 80 μm.
本発明の偏光板は、例えば偏光子の少なくとも一方の面に、本発明の位相差フィルムを接着剤で貼り合わる工程を経て得ることができる。貼り合わせに用いられる接着剤は、完全ケン化型ポリビニルアルコール水溶液(水糊)であってもよいし、活性エネルギー線硬化性接着剤を用いて行ってもよい。
The polarizing plate of the present invention can be obtained, for example, through a process in which the retardation film of the present invention is bonded to at least one surface of a polarizer with an adhesive. The adhesive used for the bonding may be a completely saponified polyvinyl alcohol aqueous solution (water glue) or an active energy ray-curable adhesive.
前述の通り、位相差フィルムは、前述の一般式(A)~(D)で表される化合物をさらに含みうる。そのような位相差フィルムを含む本発明の偏光板は、高温・高湿下で保存されても、偏光子の劣化を良好に抑制できる。
As described above, the retardation film may further contain compounds represented by the above general formulas (A) to (D). The polarizing plate of the present invention including such a retardation film can satisfactorily suppress the deterioration of the polarizer even when stored at high temperature and high humidity.
5.液晶表示装置
本発明の液晶表示装置は、液晶セルと、それを挟持する一対の偏光板とを含む。一対の偏光板の少なくとも一方が、前述の位相差フィルムを含む。 5. Liquid Crystal Display Device The liquid crystal display device of the present invention includes a liquid crystal cell and a pair of polarizing plates that sandwich the liquid crystal cell. At least one of the pair of polarizing plates includes the above-described retardation film.
本発明の液晶表示装置は、液晶セルと、それを挟持する一対の偏光板とを含む。一対の偏光板の少なくとも一方が、前述の位相差フィルムを含む。 5. Liquid Crystal Display Device The liquid crystal display device of the present invention includes a liquid crystal cell and a pair of polarizing plates that sandwich the liquid crystal cell. At least one of the pair of polarizing plates includes the above-described retardation film.
図6は、液晶表示装置の基本的な構成の一例を示す模式図である。図6に示されるように、本発明の液晶表示装置30は、液晶セル40と、それを挟持する第一の偏光板50および第二の偏光板60と、バックライト70とを含む。
FIG. 6 is a schematic diagram showing an example of a basic configuration of the liquid crystal display device. As shown in FIG. 6, the liquid crystal display device 30 of the present invention includes a liquid crystal cell 40, a first polarizing plate 50 and a second polarizing plate 60 that sandwich the liquid crystal cell 40, and a backlight 70.
液晶セル40の表示モードは、例えばSTN、TN、OCB、HAN、VA(MVA、PVA)、IPS等の種々の表示モードであってよく、高いコントラストを得るためにはVA(MVA、PVA)モードであることが好ましい。
The display mode of the liquid crystal cell 40 may be various display modes such as STN, TN, OCB, HAN, VA (MVA, PVA), and IPS. For obtaining high contrast, the VA (MVA, PVA) mode is used. It is preferable that
第一の偏光板50は、第一の偏光子51と、第一の偏光子51の視認側の面に配置された保護フィルム53(F1)と、第一の偏光子51の液晶セル側の面に配置された位相差フィルム55(F2)とを含む。
The first polarizing plate 50 includes a first polarizer 51, a protective film 53 (F1) disposed on the viewing side surface of the first polarizer 51, and a liquid crystal cell side of the first polarizer 51. And a retardation film 55 (F2) disposed on the surface.
第二の偏光板60は、第二の偏光子61と、第二の偏光子61の液晶セル側の面に配置された位相差フィルム63(F3)と、第二の偏光子61のバックライト側の面に配置された保護フィルム65(F4)とを含む。
The second polarizing plate 60 includes a second polarizer 61, a retardation film 63 (F3) disposed on the liquid crystal cell side surface of the second polarizer 61, and a backlight of the second polarizer 61. And a protective film 65 (F4) disposed on the side surface.
位相差フィルム55(F2)と位相差フィルム63(F3)が、前述の位相差フィルムでありうる。なお、位相差フィルム55(F2)と位相差フィルム63(F3)のいずれか一方のみを前述の位相差フィルムとしてもよい。
The retardation film 55 (F2) and the retardation film 63 (F3) may be the above-described retardation film. Only one of the retardation film 55 (F2) and the retardation film 63 (F3) may be used as the above-described retardation film.
本発明の位相差フィルムは、ジアセチルセルロースと、リターデーション上昇剤とを含む。従って、厚みが薄いにも係わらず、高い位相差値を有する。さらに、本発明の位相差フィルムは、リターデーション上昇剤の添加量を過剰に多くする必要がないため、フィルム強度の低下を少なくできる。さらに、当該位相差フィルムを振動巻き取り工程を経て巻き取ることによって、保存中のロール体の変形が抑制されている。従って、保存後のロール体から得られる位相差フィルムの位相差値のばらつきも低減されている。従って、本発明の位相差フィルムを含む液晶表示装置は、光学補償を良好に行うことができ、高いコントラストを有しうる。
The retardation film of the present invention contains diacetyl cellulose and a retardation increasing agent. Therefore, although it is thin, it has a high retardation value. Furthermore, since the retardation film of the present invention does not require an excessive increase in the amount of addition of the retardation increasing agent, the decrease in film strength can be reduced. Furthermore, deformation of the roll body during storage is suppressed by winding the retardation film through a vibration winding process. Therefore, the dispersion | variation in the retardation value of the retardation film obtained from the roll body after a preservation | save is also reduced. Therefore, the liquid crystal display device including the retardation film of the present invention can perform optical compensation satisfactorily and can have high contrast.
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
1.位相差フィルムの材料
<セルロースエステル>
表1に示されるセルロースアセテートを用いた。
1. Material of retardation film <Cellulose ester>
The cellulose acetate shown in Table 1 was used.
<セルロースエステル>
表1に示されるセルロースアセテートを用いた。
The cellulose acetate shown in Table 1 was used.
<リターデーション上昇剤>
1)一般式(1)で表されるモノマー由来の繰り返し単位を含む重合体
2)一般式(2)で表される化合物
3)一般式(3)で表される化合物
4)一般式(4)で表される化合物
5)一般式(5)で表される化合物
6)一般式(6)で表される化合物
<Retardation raising agent>
1) A polymer containing a repeating unit derived from the monomer represented by the general formula (1)
2) Compound represented by general formula (2)
3) Compound represented by general formula (3)
4) Compound represented by general formula (4)
5) Compound represented by general formula (5)
6) Compound represented by general formula (6)
1)一般式(1)で表されるモノマー由来の繰り返し単位を含む重合体
1) A polymer containing a repeating unit derived from the monomer represented by the general formula (1)
<偏光子劣化抑制剤>
1)一般式(A)で表される化合物
化合物f:ニットレジン クマロン G-100N(前述の一般式(A-2)で表される共重合体)
2)一般式(B)で表される化合物
3)一般式(C)で表される化合物
4)一般式(D)で表される化合物
<Polarizer degradation inhibitor>
1) Compound represented by general formula (A) Compound f: Knit resin Coumarone G-100N (copolymer represented by general formula (A-2))
2) Compound represented by general formula (B)
3) Compound represented by general formula (C)
4) Compound represented by general formula (D)
1)一般式(A)で表される化合物
化合物f:ニットレジン クマロン G-100N(前述の一般式(A-2)で表される共重合体)
2)一般式(B)で表される化合物
1) Compound represented by general formula (A) Compound f: Knit resin Coumarone G-100N (copolymer represented by general formula (A-2))
2) Compound represented by general formula (B)
<糖エステル化合物>
ベンジルサッカロース(ベンジル基の置換度7.5) <Sugar ester compound>
Benzyl saccharose (degree of substitution of benzyl group 7.5)
ベンジルサッカロース(ベンジル基の置換度7.5) <Sugar ester compound>
Benzyl saccharose (degree of substitution of benzyl group 7.5)
2.位相差フィルムの作製
<実施例1>
(微粒子添加液の調製)
11質量部の微粒子(アエロジル R972V 日本アエロジル(株)製)と、89質量部のエタノールとを、ディゾルバーで50分間攪拌混合した後、マントンゴーリンで分散させて微粒子分散液を得た。
次いで、溶解タンクに、99質量部のメチレンクロライドを投入して十分攪拌させながら、5質量部の上記作製した微粒子分散液をゆっくりと添加した。得られた溶液を、二次粒子の粒径が所定の大きさとなるように、アトライターにより分散させた後、日本精線(株)製のファインメットNFにより濾過して、微粒子添加液を得た。 2. Production of Retardation Film <Example 1>
(Preparation of fine particle additive solution)
11 parts by mass of fine particles (Aerosil R972V manufactured by Nippon Aerosil Co., Ltd.) and 89 parts by mass of ethanol were stirred and mixed with a dissolver for 50 minutes, and then dispersed with Manton Gorin to obtain a fine particle dispersion.
Next, 99 parts by mass of methylene chloride was charged into the dissolution tank, and 5 parts by mass of the prepared fine particle dispersion was slowly added while stirring sufficiently. The obtained solution was dispersed with an attritor so that the secondary particles had a predetermined particle size, and then filtered with Finemet NF manufactured by Nippon Seisen Co., Ltd. to obtain a fine particle additive solution. It was.
<実施例1>
(微粒子添加液の調製)
11質量部の微粒子(アエロジル R972V 日本アエロジル(株)製)と、89質量部のエタノールとを、ディゾルバーで50分間攪拌混合した後、マントンゴーリンで分散させて微粒子分散液を得た。
次いで、溶解タンクに、99質量部のメチレンクロライドを投入して十分攪拌させながら、5質量部の上記作製した微粒子分散液をゆっくりと添加した。得られた溶液を、二次粒子の粒径が所定の大きさとなるように、アトライターにより分散させた後、日本精線(株)製のファインメットNFにより濾過して、微粒子添加液を得た。 2. Production of Retardation Film <Example 1>
(Preparation of fine particle additive solution)
11 parts by mass of fine particles (Aerosil R972V manufactured by Nippon Aerosil Co., Ltd.) and 89 parts by mass of ethanol were stirred and mixed with a dissolver for 50 minutes, and then dispersed with Manton Gorin to obtain a fine particle dispersion.
Next, 99 parts by mass of methylene chloride was charged into the dissolution tank, and 5 parts by mass of the prepared fine particle dispersion was slowly added while stirring sufficiently. The obtained solution was dispersed with an attritor so that the secondary particles had a predetermined particle size, and then filtered with Finemet NF manufactured by Nippon Seisen Co., Ltd. to obtain a fine particle additive solution. It was.
(ドープ液の調製)
下記成分のうちメチレンクロライドとエタノールを加圧溶解タンクに投入し、攪拌しながらセルロースエステルをさらに投入した。これを、加熱しながら撹拌し、セルロースエステルを完全に溶解させた。得られた溶液を、安積濾紙(株)製の安積濾紙No.244を用いて濾過して主ドープ液を得た。得られた主ドープ液と、残りの下記成分とを主溶解釜に投入し、攪拌しながら溶解させてドープ液を得た。
(ドープ液の組成)
セルロースエステルCE2(アセチル置換度2.0のジアセチルセルロース、Mw:20万):100質量部
化合物I(リターデーション上昇剤):2.0質量部
ベンジルサッカロース(糖エステル化合物):10質量部
微粒子添加液:1質量部
メチレンクロライド:365質量部
エタノール:50質量部 (Preparation of dope solution)
Among the following components, methylene chloride and ethanol were charged into a pressure dissolution tank, and cellulose ester was further charged while stirring. This was stirred while heating to completely dissolve the cellulose ester. The obtained solution was used as Azumi filter paper No. manufactured by Azumi Filter Paper Co., Ltd. Filtration using 244 gave a main dope solution. The obtained main dope solution and the remaining components below were put into a main dissolution vessel and dissolved with stirring to obtain a dope solution.
(Dope solution composition)
Cellulose ester CE2 (diacetyl cellulose having an acetyl substitution degree of 2.0, Mw: 200,000): 100 parts by mass Compound I (retardation increasing agent): 2.0 parts by mass Benzyl saccharose (sugar ester compound): 10 parts by mass Addition of fine particles Liquid: 1 part by mass Methylene chloride: 365 parts by mass Ethanol: 50 parts by mass
下記成分のうちメチレンクロライドとエタノールを加圧溶解タンクに投入し、攪拌しながらセルロースエステルをさらに投入した。これを、加熱しながら撹拌し、セルロースエステルを完全に溶解させた。得られた溶液を、安積濾紙(株)製の安積濾紙No.244を用いて濾過して主ドープ液を得た。得られた主ドープ液と、残りの下記成分とを主溶解釜に投入し、攪拌しながら溶解させてドープ液を得た。
(ドープ液の組成)
セルロースエステルCE2(アセチル置換度2.0のジアセチルセルロース、Mw:20万):100質量部
化合物I(リターデーション上昇剤):2.0質量部
ベンジルサッカロース(糖エステル化合物):10質量部
微粒子添加液:1質量部
メチレンクロライド:365質量部
エタノール:50質量部 (Preparation of dope solution)
Among the following components, methylene chloride and ethanol were charged into a pressure dissolution tank, and cellulose ester was further charged while stirring. This was stirred while heating to completely dissolve the cellulose ester. The obtained solution was used as Azumi filter paper No. manufactured by Azumi Filter Paper Co., Ltd. Filtration using 244 gave a main dope solution. The obtained main dope solution and the remaining components below were put into a main dissolution vessel and dissolved with stirring to obtain a dope solution.
(Dope solution composition)
Cellulose ester CE2 (diacetyl cellulose having an acetyl substitution degree of 2.0, Mw: 200,000): 100 parts by mass Compound I (retardation increasing agent): 2.0 parts by mass Benzyl saccharose (sugar ester compound): 10 parts by mass Addition of fine particles Liquid: 1 part by mass Methylene chloride: 365 parts by mass Ethanol: 50 parts by mass
得られたドープ液を、ベルト流延装置を用いて、ドープ温度35℃で22℃のステンレスバンド支持体上に均一に流延した。その後、ステンレスバンド支持体上のドープ液を、残留溶媒量が75%となるまで乾燥させた後、剥離強度130N/mで、ステンレスバンド支持体から剥離して膜状物を得た。
The obtained dope solution was uniformly cast on a stainless band support having a dope temperature of 35 ° C. and a temperature of 22 ° C. using a belt casting apparatus. Thereafter, the dope solution on the stainless steel band support was dried until the residual solvent amount became 75%, and then peeled from the stainless steel band support with a peel strength of 130 N / m to obtain a film-like material.
得られた膜状物を、150℃の熱をかけながら、テンターにて幅方向(TD方向)に30%(1.3倍)延伸した。延伸開始時の膜状物の残留溶媒量は15%であった。得られたフィルムを、多数のロールで搬送させながら乾燥させた。乾燥温度は130℃とし、搬送張力は100N/mとした。その後、フィルムの幅方向両端部に、図2(a)に示されるような形状の幅10mm、高さ5μmのエンボス部を形成するナーリング加工を施して、幅1400mm、膜厚25μmのフィルムを得た。
The obtained film-like material was stretched 30% (1.3 times) in the width direction (TD direction) with a tenter while applying heat at 150 ° C. The amount of residual solvent in the film-like material at the start of stretching was 15%. The obtained film was dried while being conveyed by many rolls. The drying temperature was 130 ° C. and the transport tension was 100 N / m. Thereafter, knurling is performed on both ends of the film in the width direction to form an embossed portion having a width of 10 mm and a height of 5 μm as shown in FIG. 2A to obtain a film having a width of 1400 mm and a film thickness of 25 μm. It was.
得られたナーリング加工を施したフィルムを、図3に示されるような巻取装置を用いて、巻芯をフィルム幅方向に振動させながらロール状に巻き取り、ロール体を得た。具体的には、速度80m/分、巻き取り初期張力140N、巻き終わり張力90N、タッチローラのニップ力20Nとし、フィルム101を2900m巻き取ってロール体101を得た。振動巻き取り工程での振動条件は、図7の曲線61で表される関数f(x)を満たす周期T=80mm、振幅A=5mmの条件とした(オシレートA)。得られたロール体の軸方向両端部の側面形状は波状であった。なお、図7の曲線62は、周期TとAが上記と同じ正弦波振動を示す。
The obtained knurled film was wound into a roll using a winding device as shown in FIG. 3 while vibrating the core in the film width direction to obtain a roll body. Specifically, the roll 101 was obtained by winding the film 101 at 2900 m with a speed of 80 m / min, a winding initial tension of 140 N, a winding end tension of 90 N, and a nip force of a touch roller of 20 N. The vibration condition in the vibration winding process was set such that the period T = 80 mm and the amplitude A = 5 mm satisfying the function f (x) represented by the curve 61 in FIG. 7 (oscillate A). The shape of the side surface of both end portions in the axial direction of the obtained roll body was wavy. In addition, the curve 62 of FIG. 7 shows the sine wave vibration whose period T and A are the same as the above.
<実施例2~5、比較例1~2>
セルロースエステルの種類と延伸条件を表2に示されるように変更した以外は実施例1と同様にして膜厚25μmのフィルムを作製し、ロール体102~107を得た。 <Examples 2-5, Comparative Examples 1-2>
Except that the type of cellulose ester and the stretching conditions were changed as shown in Table 2, films having a film thickness of 25 μm were produced in the same manner as in Example 1, and roll bodies 102 to 107 were obtained.
セルロースエステルの種類と延伸条件を表2に示されるように変更した以外は実施例1と同様にして膜厚25μmのフィルムを作製し、ロール体102~107を得た。 <Examples 2-5, Comparative Examples 1-2>
Except that the type of cellulose ester and the stretching conditions were changed as shown in Table 2, films having a film thickness of 25 μm were produced in the same manner as in Example 1, and roll bodies 102 to 107 were obtained.
<比較例3~7>
セルロースエステルの種類と延伸条件を表2に示されるように変更した以外は実施例1と同様にして膜厚25μmのフィルムを得た。そして、得られたフィルムを、非振動巻き取り法(ストレート)で巻き取った以外は実施例1と同様にしてロール体108~112を得た。得られたロール体の軸方向両端部の側面形状は平面状であった。 <Comparative Examples 3 to 7>
A film having a film thickness of 25 μm was obtained in the same manner as in Example 1 except that the type of cellulose ester and the stretching conditions were changed as shown in Table 2. Then, roll bodies 108 to 112 were obtained in the same manner as in Example 1 except that the obtained film was wound by a non-vibration winding method (straight). The shape of the side surface of both end portions in the axial direction of the obtained roll body was flat.
セルロースエステルの種類と延伸条件を表2に示されるように変更した以外は実施例1と同様にして膜厚25μmのフィルムを得た。そして、得られたフィルムを、非振動巻き取り法(ストレート)で巻き取った以外は実施例1と同様にしてロール体108~112を得た。得られたロール体の軸方向両端部の側面形状は平面状であった。 <Comparative Examples 3 to 7>
A film having a film thickness of 25 μm was obtained in the same manner as in Example 1 except that the type of cellulose ester and the stretching conditions were changed as shown in Table 2. Then, roll bodies 108 to 112 were obtained in the same manner as in Example 1 except that the obtained film was wound by a non-vibration winding method (straight). The shape of the side surface of both end portions in the axial direction of the obtained roll body was flat.
<比較例8>
リターデーション上昇剤を含有させなかった以外は実施例5と同様にして膜厚25μmのフィルムを作製し、ロール体113を得た。 <Comparative Example 8>
A film having a thickness of 25 μm was produced in the same manner as in Example 5 except that the retardation increasing agent was not contained, and a roll body 113 was obtained.
リターデーション上昇剤を含有させなかった以外は実施例5と同様にして膜厚25μmのフィルムを作製し、ロール体113を得た。 <Comparative Example 8>
A film having a thickness of 25 μm was produced in the same manner as in Example 5 except that the retardation increasing agent was not contained, and a roll body 113 was obtained.
<実施例6~14>
リターデーション上昇剤の種類と含有量を、表2に示されるように変更した以外は実施例3と同様にして膜厚25μmのフィルムを作製し、ロール体114~122を得た。 <Examples 6 to 14>
Except that the type and content of the retardation increasing agent were changed as shown in Table 2, films having a film thickness of 25 μm were prepared in the same manner as in Example 3, and roll bodies 114 to 122 were obtained.
リターデーション上昇剤の種類と含有量を、表2に示されるように変更した以外は実施例3と同様にして膜厚25μmのフィルムを作製し、ロール体114~122を得た。 <Examples 6 to 14>
Except that the type and content of the retardation increasing agent were changed as shown in Table 2, films having a film thickness of 25 μm were prepared in the same manner as in Example 3, and roll bodies 114 to 122 were obtained.
<比較例9~17>
リターデーション上昇剤の種類と含有量を、表2に示されるように変更した以外は比較例5と同様にして膜厚25μmのフィルムを作製し、ロール体123~131を得た。 <Comparative Examples 9 to 17>
Except that the type and content of the retardation increasing agent were changed as shown in Table 2, films having a film thickness of 25 μm were prepared in the same manner as in Comparative Example 5, and roll bodies 123 to 131 were obtained.
リターデーション上昇剤の種類と含有量を、表2に示されるように変更した以外は比較例5と同様にして膜厚25μmのフィルムを作製し、ロール体123~131を得た。 <Comparative Examples 9 to 17>
Except that the type and content of the retardation increasing agent were changed as shown in Table 2, films having a film thickness of 25 μm were prepared in the same manner as in Comparative Example 5, and roll bodies 123 to 131 were obtained.
<実施例15~19、比較例18>
セルロースエステルとリターデーション上昇剤の組成を表3に示されるように変更し、かつ延伸条件とフィルムの膜厚を表3に示されるように変更した以外は実施例1と同様にしてフィルムを作製した。得られたフィルムを実施例1と同様に振動を付与しながら巻き取って(オシレートA)、ロール体132~137を得た。フィルムの膜厚は、ドープの流延量や延伸倍率などにより調整した。 <Examples 15 to 19, Comparative Example 18>
A film was prepared in the same manner as in Example 1 except that the composition of the cellulose ester and the retardation increasing agent was changed as shown in Table 3, and the stretching conditions and film thickness were changed as shown in Table 3. did. The obtained film was wound up (oscillate A) while applying vibration in the same manner as in Example 1 to obtain roll bodies 132 to 137. The film thickness was adjusted by the dope casting amount, stretch ratio, and the like.
セルロースエステルとリターデーション上昇剤の組成を表3に示されるように変更し、かつ延伸条件とフィルムの膜厚を表3に示されるように変更した以外は実施例1と同様にしてフィルムを作製した。得られたフィルムを実施例1と同様に振動を付与しながら巻き取って(オシレートA)、ロール体132~137を得た。フィルムの膜厚は、ドープの流延量や延伸倍率などにより調整した。 <Examples 15 to 19, Comparative Example 18>
A film was prepared in the same manner as in Example 1 except that the composition of the cellulose ester and the retardation increasing agent was changed as shown in Table 3, and the stretching conditions and film thickness were changed as shown in Table 3. did. The obtained film was wound up (oscillate A) while applying vibration in the same manner as in Example 1 to obtain roll bodies 132 to 137. The film thickness was adjusted by the dope casting amount, stretch ratio, and the like.
<比較例19~24>
セルロースエステルとリターデーション上昇剤の組成を表3に示されるように変更し、かつ延伸条件とフィルムの膜厚を表3に示されるように変更した以外は比較例3と同様にしてフィルムを作製した。得られたフィルムを実施例1と同様に巻き取り、ロール体138~143を得た。フィルムの膜厚は、ドープの流延量や延伸倍率などにより調整した。 <Comparative Examples 19 to 24>
A film was prepared in the same manner as in Comparative Example 3 except that the composition of the cellulose ester and the retardation increasing agent was changed as shown in Table 3, and the stretching conditions and the film thickness were changed as shown in Table 3. did. The obtained film was wound up in the same manner as in Example 1 to obtain rolls 138 to 143. The film thickness was adjusted by the dope casting amount, stretch ratio, and the like.
セルロースエステルとリターデーション上昇剤の組成を表3に示されるように変更し、かつ延伸条件とフィルムの膜厚を表3に示されるように変更した以外は比較例3と同様にしてフィルムを作製した。得られたフィルムを実施例1と同様に巻き取り、ロール体138~143を得た。フィルムの膜厚は、ドープの流延量や延伸倍率などにより調整した。 <Comparative Examples 19 to 24>
A film was prepared in the same manner as in Comparative Example 3 except that the composition of the cellulose ester and the retardation increasing agent was changed as shown in Table 3, and the stretching conditions and the film thickness were changed as shown in Table 3. did. The obtained film was wound up in the same manner as in Example 1 to obtain rolls 138 to 143. The film thickness was adjusted by the dope casting amount, stretch ratio, and the like.
<実施例20~27>
表4に示される種類と量の偏光子劣化抑制剤をさらに添加した以外は実施例3と同様にしてフィルムを作製し、ロール体144~151を得た。 <Examples 20 to 27>
Rolls 144 to 151 were obtained in the same manner as in Example 3 except that a polarizer deterioration inhibitor of the type and amount shown in Table 4 was further added.
表4に示される種類と量の偏光子劣化抑制剤をさらに添加した以外は実施例3と同様にしてフィルムを作製し、ロール体144~151を得た。 <Examples 20 to 27>
Rolls 144 to 151 were obtained in the same manner as in Example 3 except that a polarizer deterioration inhibitor of the type and amount shown in Table 4 was further added.
<比較例25~32>
表4に示される種類と量の偏光子劣化抑制剤をさらに添加した以外は比較例5と同様にしてフィルムを作製し、ロール体152~159を得た。 <Comparative Examples 25 to 32>
Rolls 152 to 159 were obtained in the same manner as in Comparative Example 5 except that a polarizer deterioration inhibitor of the type and amount shown in Table 4 was further added.
表4に示される種類と量の偏光子劣化抑制剤をさらに添加した以外は比較例5と同様にしてフィルムを作製し、ロール体152~159を得た。 <Comparative Examples 25 to 32>
Rolls 152 to 159 were obtained in the same manner as in Comparative Example 5 except that a polarizer deterioration inhibitor of the type and amount shown in Table 4 was further added.
<実施例28>
偏光子劣化抑制剤の種類を表5に示されるように変更した以外は実施例20と同様にしてフィルムを作製した。そして、得られたフィルムを、振動巻き取り工程における振動の振幅Aを、巻き取られたフィルムの積算の厚みの増加に従い、徐々に大きくした以外は実施例20と同様にして巻き取り(オシレートB)、ロール体160を得た。具体的には、巻き始め時は、振動の振幅が8mmとし、振動の振幅Aを大きくして、巻き終わり時には、振動の振幅が10mmとなるようにした。振動の周期Tは、実施例20と同様に80mmで一定とした。 <Example 28>
A film was produced in the same manner as in Example 20 except that the type of the polarizer deterioration inhibitor was changed as shown in Table 5. Then, the obtained film was wound (oscillate B) in the same manner as in Example 20 except that the amplitude A of vibration in the vibration winding process was gradually increased in accordance with the increase in the integrated thickness of the wound film. ) And aroll body 160 was obtained. Specifically, the vibration amplitude is 8 mm at the start of winding, the vibration amplitude A is increased, and the vibration amplitude is 10 mm at the end of winding. The period T of vibration was fixed at 80 mm as in Example 20.
偏光子劣化抑制剤の種類を表5に示されるように変更した以外は実施例20と同様にしてフィルムを作製した。そして、得られたフィルムを、振動巻き取り工程における振動の振幅Aを、巻き取られたフィルムの積算の厚みの増加に従い、徐々に大きくした以外は実施例20と同様にして巻き取り(オシレートB)、ロール体160を得た。具体的には、巻き始め時は、振動の振幅が8mmとし、振動の振幅Aを大きくして、巻き終わり時には、振動の振幅が10mmとなるようにした。振動の周期Tは、実施例20と同様に80mmで一定とした。 <Example 28>
A film was produced in the same manner as in Example 20 except that the type of the polarizer deterioration inhibitor was changed as shown in Table 5. Then, the obtained film was wound (oscillate B) in the same manner as in Example 20 except that the amplitude A of vibration in the vibration winding process was gradually increased in accordance with the increase in the integrated thickness of the wound film. ) And a
<実施例29>
作製したフィルムを巻芯に巻き取る際、振動巻き取り工程における振動の振幅Aを、巻芯に巻き取られたフィルムの積算の厚みが大きくなるに従って徐々に大きくなるようにした以外は実施例1と同様にして位相差フィルムのロール体161を得た。具体的には、巻き始め時の振動の振幅Aは5mmとし、徐々に大きくして、巻き終わり時の振動の振幅Aは7mmとなるようにした(オシレートC)。 <Example 29>
Example 1 except that when the produced film is wound around the core, the amplitude A of vibration in the vibration winding process is gradually increased as the integrated thickness of the film wound around the core increases. In the same manner, a roll film 161 of a retardation film was obtained. Specifically, the amplitude A of vibration at the start of winding was set to 5 mm and gradually increased so that the amplitude A of vibration at the end of winding was set to 7 mm (oscillate C).
作製したフィルムを巻芯に巻き取る際、振動巻き取り工程における振動の振幅Aを、巻芯に巻き取られたフィルムの積算の厚みが大きくなるに従って徐々に大きくなるようにした以外は実施例1と同様にして位相差フィルムのロール体161を得た。具体的には、巻き始め時の振動の振幅Aは5mmとし、徐々に大きくして、巻き終わり時の振動の振幅Aは7mmとなるようにした(オシレートC)。 <Example 29>
Example 1 except that when the produced film is wound around the core, the amplitude A of vibration in the vibration winding process is gradually increased as the integrated thickness of the film wound around the core increases. In the same manner, a roll film 161 of a retardation film was obtained. Specifically, the amplitude A of vibration at the start of winding was set to 5 mm and gradually increased so that the amplitude A of vibration at the end of winding was set to 7 mm (oscillate C).
<実施例30>
作製したフィルムを巻芯に巻き取る際、振動巻き取り工程における振動の周期Tを、巻芯に巻き取られたフィルムの積算の厚みが大きくなるに従って、徐々に小さくなるようにした以外は実施例1と同様にして位相差フィルムのロール体162を得た。具体的には、巻き始め時の振動の周期Tを160mmとし、徐々に小さくし、巻き終わり時の振動の周期Tは100mmとなるようにした(オシレートD)。 <Example 30>
Example when the produced film was wound around the core, except that the vibration period T in the vibration winding process was gradually decreased as the integrated thickness of the film wound on the core increased. In the same manner as in Example 1, a roll body 162 of a retardation film was obtained. Specifically, the vibration period T at the start of winding was set to 160 mm and gradually decreased, and the vibration period T at the end of winding was set to 100 mm (oscillate D).
作製したフィルムを巻芯に巻き取る際、振動巻き取り工程における振動の周期Tを、巻芯に巻き取られたフィルムの積算の厚みが大きくなるに従って、徐々に小さくなるようにした以外は実施例1と同様にして位相差フィルムのロール体162を得た。具体的には、巻き始め時の振動の周期Tを160mmとし、徐々に小さくし、巻き終わり時の振動の周期Tは100mmとなるようにした(オシレートD)。 <Example 30>
Example when the produced film was wound around the core, except that the vibration period T in the vibration winding process was gradually decreased as the integrated thickness of the film wound on the core increased. In the same manner as in Example 1, a roll body 162 of a retardation film was obtained. Specifically, the vibration period T at the start of winding was set to 160 mm and gradually decreased, and the vibration period T at the end of winding was set to 100 mm (oscillate D).
<実施例31>
ナーリング加工の際に、図2(b)に示されるような形状のエンボス部を形成した以外は実施例1と同様にして位相差フィルムを作製し、ロール体163を得た。 <Example 31>
A retardation film was produced in the same manner as in Example 1 except that an embossed portion having a shape as shown in FIG.
ナーリング加工の際に、図2(b)に示されるような形状のエンボス部を形成した以外は実施例1と同様にして位相差フィルムを作製し、ロール体163を得た。 <Example 31>
A retardation film was produced in the same manner as in Example 1 except that an embossed portion having a shape as shown in FIG.
実施例1~14および比較例1~17のフィルムの製造条件を表2に示し;実施例15~19および比較例18~24のフィルムの製造条件を表3に示し;実施例20~27および比較例25~32のフィルムの製造条件を表4に示し;実施例28~31のフィルムの製造条件を表5に示す。
The production conditions for the films of Examples 1-14 and Comparative Examples 1-17 are shown in Table 2; the production conditions for the films of Examples 15-19 and Comparative Examples 18-24 are shown in Table 3; Examples 20-27 and The production conditions for the films of Comparative Examples 25-32 are shown in Table 4; the production conditions for the films of Examples 28-31 are shown in Table 5.
上記作製したロール体から得られるフィルムの位相差(R0およびRth)を、以下の方法で評価した。
The retardation (R 0 and Rth) of the film obtained from the produced roll body was evaluated by the following method.
<位相差R0、Rth>
1)得られたロール体からフィルムを繰り出し、幅方向の中心部分から切り出したフィルムを、23℃55%RHで調湿した。調湿後のフィルムの平均屈折率をアッベ屈折計などで測定した。
2)調湿後のフィルムに、当該フィルム表面の法線に平行に測定波長590nmの光を入射させたときのR0を、KOBRA21ADH、王子計測(株)にて測定した。
3)KOBRA21ADHにより、フィルムの面内の遅相軸を傾斜軸(回転軸)として、フィルム表面の法線に対してθの角度(入射角(θ))から測定波長590nmの光を入射させたときのリターデーション値R(θ)を測定した。リターデーション値R(θ)の測定は、θが0°~50°の範囲で、10°毎に6点行った。フィルムの面内の遅相軸は、KOBRA21ADHにより確認した。
4)測定されたR0およびR(θ)と、前述の平均屈折率と膜厚とから、KOBRA21ADHにより、nx、nyおよびnzを算出して、測定波長590nmでのRthを算出した。リターデーションの測定は、23℃55%RH条件下で行った。 <Phase difference R 0 , Rth>
1) The film was drawn out from the obtained roll body, and the film cut out from the central portion in the width direction was conditioned at 23 ° C. and 55% RH. The average refractive index of the film after humidity control was measured with an Abbe refractometer.
2) R 0 when light having a measurement wavelength of 590 nm was incident on the film after humidity control in parallel with the normal line of the film surface was measured by KOBRA 21ADH, Oji Scientific Co., Ltd.
3) With KOBRA21ADH, light with a measurement wavelength of 590 nm was incident from the angle of θ (incident angle (θ)) with respect to the normal of the film surface with the slow axis in the plane of the film as the tilt axis (rotation axis). The retardation value R (θ) was measured. The retardation value R (θ) was measured at 6 points every 10 °, with θ ranging from 0 ° to 50 °. The in-plane slow axis of the film was confirmed by KOBRA21ADH.
4) nx, ny, and nz were calculated by KOBRA21ADH from the measured R 0 and R (θ) and the above-described average refractive index and film thickness, and Rth at a measurement wavelength of 590 nm was calculated. The retardation was measured under the conditions of 23 ° C. and 55% RH.
1)得られたロール体からフィルムを繰り出し、幅方向の中心部分から切り出したフィルムを、23℃55%RHで調湿した。調湿後のフィルムの平均屈折率をアッベ屈折計などで測定した。
2)調湿後のフィルムに、当該フィルム表面の法線に平行に測定波長590nmの光を入射させたときのR0を、KOBRA21ADH、王子計測(株)にて測定した。
3)KOBRA21ADHにより、フィルムの面内の遅相軸を傾斜軸(回転軸)として、フィルム表面の法線に対してθの角度(入射角(θ))から測定波長590nmの光を入射させたときのリターデーション値R(θ)を測定した。リターデーション値R(θ)の測定は、θが0°~50°の範囲で、10°毎に6点行った。フィルムの面内の遅相軸は、KOBRA21ADHにより確認した。
4)測定されたR0およびR(θ)と、前述の平均屈折率と膜厚とから、KOBRA21ADHにより、nx、nyおよびnzを算出して、測定波長590nmでのRthを算出した。リターデーションの測定は、23℃55%RH条件下で行った。 <Phase difference R 0 , Rth>
1) The film was drawn out from the obtained roll body, and the film cut out from the central portion in the width direction was conditioned at 23 ° C. and 55% RH. The average refractive index of the film after humidity control was measured with an Abbe refractometer.
2) R 0 when light having a measurement wavelength of 590 nm was incident on the film after humidity control in parallel with the normal line of the film surface was measured by KOBRA 21ADH, Oji Scientific Co., Ltd.
3) With KOBRA21ADH, light with a measurement wavelength of 590 nm was incident from the angle of θ (incident angle (θ)) with respect to the normal of the film surface with the slow axis in the plane of the film as the tilt axis (rotation axis). The retardation value R (θ) was measured. The retardation value R (θ) was measured at 6 points every 10 °, with θ ranging from 0 ° to 50 °. The in-plane slow axis of the film was confirmed by KOBRA21ADH.
4) nx, ny, and nz were calculated by KOBRA21ADH from the measured R 0 and R (θ) and the above-described average refractive index and film thickness, and Rth at a measurement wavelength of 590 nm was calculated. The retardation was measured under the conditions of 23 ° C. and 55% RH.
また、上記作製したロール体のフィルムを一部切り出して、保存前のフィルムとした。次いで、ロール体を60℃90%RH環境下で5日間保存した。そして、保存後のロール体の形状を以下の方法で評価した。
Also, a part of the roll film produced above was cut out to obtain a film before storage. Subsequently, the roll body was preserve | saved for 5 days in 60 degreeC90% RH environment. And the shape of the roll body after a preservation | save was evaluated with the following method.
<ロール体の形状>
得られたロール体の表面形状を目視観察し、以下の基準で評価した。
◎:ロールの表面に皺が認められない
○:ロールの表面に弱い皺が認められる
△:ロール表面付近には著しい形状の劣化があり、皺や凹みが全面に認められる
×:ロール表面には著しい形状の劣化があり、皺や凹みが全面に認められ、さらにロールの内部まで形状の劣化が及んでいる
〇以上が実質的に問題ないレベルと判断した。 <Roll body shape>
The surface shape of the obtained roll body was visually observed and evaluated according to the following criteria.
◎: No wrinkles are observed on the roll surface. ○: Weak wrinkles are observed on the roll surface. △: There is remarkable shape deterioration near the roll surface, and wrinkles and dents are observed on the entire surface. There was significant shape deterioration, wrinkles and dents were observed on the entire surface, and shape deterioration reached the inside of the roll.
得られたロール体の表面形状を目視観察し、以下の基準で評価した。
◎:ロールの表面に皺が認められない
○:ロールの表面に弱い皺が認められる
△:ロール表面付近には著しい形状の劣化があり、皺や凹みが全面に認められる
×:ロール表面には著しい形状の劣化があり、皺や凹みが全面に認められ、さらにロールの内部まで形状の劣化が及んでいる
〇以上が実質的に問題ないレベルと判断した。 <Roll body shape>
The surface shape of the obtained roll body was visually observed and evaluated according to the following criteria.
◎: No wrinkles are observed on the roll surface. ○: Weak wrinkles are observed on the roll surface. △: There is remarkable shape deterioration near the roll surface, and wrinkles and dents are observed on the entire surface. There was significant shape deterioration, wrinkles and dents were observed on the entire surface, and shape deterioration reached the inside of the roll.
次いで、保存後のロール体からフィルムを一部切り出して、保存後のフィルムとした。そして、以下の方法で保存前のフィルムを用いた偏光板および液晶表示装置と;保存後のフィルムを用いた偏光板および液晶表示装置とをそれぞれ作製した。
Next, a part of the film was cut out from the roll body after storage to obtain a film after storage. Then, a polarizing plate and a liquid crystal display device using the film before storage and a polarizing plate and a liquid crystal display device using the film after storage were prepared by the following methods, respectively.
1)偏光板の作製
厚さ30μmのポリビニルアルコールフィルムを、35℃の水で膨潤させた。得られたフィルムを、ヨウ素0.075g、ヨウ化カリウム5gおよび水100gからなる水溶液に60秒間浸漬し、更にヨウ化カリウム3g、ホウ酸7.5gおよび水100gからなる45℃の水溶液に浸漬した。得られたフィルムを、延伸温度55℃、延伸倍率3倍の条件で一軸延伸した。この一軸延伸フィルムを、水洗した後、乾燥させて、厚み5μmの偏光子を得た。 1) Preparation of polarizing plate A polyvinyl alcohol film having a thickness of 30 μm was swollen with water at 35 ° C. The obtained film was immersed in an aqueous solution consisting of 0.075 g of iodine, 5 g of potassium iodide and 100 g of water for 60 seconds, and further immersed in an aqueous solution at 45 ° C. consisting of 3 g of potassium iodide, 7.5 g of boric acid and 100 g of water. . The obtained film was uniaxially stretched under conditions of a stretching temperature of 55 ° C. and a stretching ratio of 3 times. The uniaxially stretched film was washed with water and dried to obtain a polarizer having a thickness of 5 μm.
厚さ30μmのポリビニルアルコールフィルムを、35℃の水で膨潤させた。得られたフィルムを、ヨウ素0.075g、ヨウ化カリウム5gおよび水100gからなる水溶液に60秒間浸漬し、更にヨウ化カリウム3g、ホウ酸7.5gおよび水100gからなる45℃の水溶液に浸漬した。得られたフィルムを、延伸温度55℃、延伸倍率3倍の条件で一軸延伸した。この一軸延伸フィルムを、水洗した後、乾燥させて、厚み5μmの偏光子を得た。 1) Preparation of polarizing plate A polyvinyl alcohol film having a thickness of 30 μm was swollen with water at 35 ° C. The obtained film was immersed in an aqueous solution consisting of 0.075 g of iodine, 5 g of potassium iodide and 100 g of water for 60 seconds, and further immersed in an aqueous solution at 45 ° C. consisting of 3 g of potassium iodide, 7.5 g of boric acid and 100 g of water. . The obtained film was uniaxially stretched under conditions of a stretching temperature of 55 ° C. and a stretching ratio of 3 times. The uniaxially stretched film was washed with water and dried to obtain a polarizer having a thickness of 5 μm.
以下に示されるように、上記作製したロール体から得られたフィルムを、アルカリケン化処理した後、水洗、中和および水洗した。
ケン化工程 2M-NaOH 50℃ 90秒
水洗工程 水 30℃ 45秒
中和工程 10質量%HCl 30℃ 45秒
水洗工程 水 30℃ 45秒
その後、得られたフィルムを80℃で乾燥させた。同様にして、保護フィルムとしてコニカミノルタタック KC4UYを準備し、その表面もアルカリケン化処理した。 As shown below, the film obtained from the produced roll was subjected to alkali saponification treatment, then washed with water, neutralized and washed with water.
Saponification step 2M-NaOH 50 ° C. 90 seconds Water washing step Water 30 ° C. 45 seconds Neutralization step 10% by mass HCl 30 ° C. 45 seconds Water washing step Water 30 ° C. 45 seconds Then, the obtained film was dried at 80 ° C. Similarly, Konica Minoltack KC4UY was prepared as a protective film, and its surface was subjected to alkali saponification treatment.
ケン化工程 2M-NaOH 50℃ 90秒
水洗工程 水 30℃ 45秒
中和工程 10質量%HCl 30℃ 45秒
水洗工程 水 30℃ 45秒
その後、得られたフィルムを80℃で乾燥させた。同様にして、保護フィルムとしてコニカミノルタタック KC4UYを準備し、その表面もアルカリケン化処理した。 As shown below, the film obtained from the produced roll was subjected to alkali saponification treatment, then washed with water, neutralized and washed with water.
Saponification step 2M-
そして、上記作製した偏光子の一方の面に、アルカリケン化処理した上記作製したフィルム(位相差フィルム)を、完全ケン化型ポリビニルアルコール5%水溶液を接着剤として貼り合わせた。同様に、偏光子の他方の面に、アルカリケン化処理したKC4UYを、完全ケン化型ポリビニルアルコール5%水溶液を接着剤として貼り合わせた。貼り合わせは、偏光子の透過軸と上記作製したフィルムの面内遅相軸とが平行になるように行った。貼り合わせた積層物を60℃で乾燥して、偏光板を得た。
Then, the prepared film (retardation film) subjected to alkali saponification treatment was bonded to one surface of the prepared polarizer using a 5% aqueous solution of completely saponified polyvinyl alcohol as an adhesive. Similarly, KC4UY subjected to alkali saponification treatment was bonded to the other surface of the polarizer using a 5% aqueous solution of completely saponified polyvinyl alcohol as an adhesive. The bonding was performed so that the transmission axis of the polarizer and the in-plane slow axis of the produced film were parallel. The laminated laminate was dried at 60 ° C. to obtain a polarizing plate.
<偏光子劣化>
保存前のロール体から得られたフィルム(保存前のフィルム)を用いて作製した偏光板の偏光度の劣化を、以下の方法で評価した。
1)得られた偏光板を4cm×4cmの大きさに切り出して、偏光板試料とした。この偏光板試料を、23℃55%RHの雰囲気下で24時間調湿した後、23℃55%RHで平行透過率と直交透過率を測定した。得られた測定値を、それぞれ下記式に当てはめて、保存前の偏光度P0を算出した。
偏光度P=((H0-H90)/(H0+H90))0.5×100
(H0:平行透過率、H90:直交透過率)
2)その後、偏光板試料を、60℃90%RHの条件下で1000時間保存した後、前述と同様にして偏光板試料の平行透過率と直行透過率を測定した。得られた測定値を、それぞれ前述の式に当てはめて、保存後の偏光度P1000を算出した。
3)前記1)で得られた偏光度P0と、前記2)で得られた偏光度P1000の値を下記式に当てはめて、偏光度変化量を算出した。
偏光度変化量=P0-P1000
(P0 :強制劣化前の偏光度、P1000:強制劣化1000時間後の偏光度) <Polarizer degradation>
Deterioration of the polarization degree of the polarizing plate produced using the film (film before storage) obtained from the roll body before storage was evaluated by the following methods.
1) The obtained polarizing plate was cut into a size of 4 cm × 4 cm to obtain a polarizing plate sample. The polarizing plate sample was conditioned at 23 ° C. and 55% RH for 24 hours, and then parallel transmittance and orthogonal transmittance were measured at 23 ° C. and 55% RH. The obtained measured values were applied to the following formulas to calculate the polarization degree P0 before storage.
Polarization degree P = ((H0−H90) / (H0 + H90)) 0.5 × 100
(H0: parallel transmittance, H90: orthogonal transmittance)
2) Thereafter, the polarizing plate sample was stored for 1000 hours at 60 ° C. and 90% RH, and then the parallel transmittance and the direct transmittance of the polarizing plate sample were measured in the same manner as described above. The obtained measured values were applied to the above-described formulas, respectively, and the degree of polarization P1000 after storage was calculated.
3) The polarization degree P0 obtained in the above 1) and the polarization degree P1000 obtained in the above 2) were applied to the following formula to calculate the degree of polarization change.
Polarization degree change = P0−P1000
(P0: degree of polarization before forced deterioration, P1000: degree of polarization after 1000 hours of forced deterioration)
保存前のロール体から得られたフィルム(保存前のフィルム)を用いて作製した偏光板の偏光度の劣化を、以下の方法で評価した。
1)得られた偏光板を4cm×4cmの大きさに切り出して、偏光板試料とした。この偏光板試料を、23℃55%RHの雰囲気下で24時間調湿した後、23℃55%RHで平行透過率と直交透過率を測定した。得られた測定値を、それぞれ下記式に当てはめて、保存前の偏光度P0を算出した。
偏光度P=((H0-H90)/(H0+H90))0.5×100
(H0:平行透過率、H90:直交透過率)
2)その後、偏光板試料を、60℃90%RHの条件下で1000時間保存した後、前述と同様にして偏光板試料の平行透過率と直行透過率を測定した。得られた測定値を、それぞれ前述の式に当てはめて、保存後の偏光度P1000を算出した。
3)前記1)で得られた偏光度P0と、前記2)で得られた偏光度P1000の値を下記式に当てはめて、偏光度変化量を算出した。
偏光度変化量=P0-P1000
(P0 :強制劣化前の偏光度、P1000:強制劣化1000時間後の偏光度) <Polarizer degradation>
Deterioration of the polarization degree of the polarizing plate produced using the film (film before storage) obtained from the roll body before storage was evaluated by the following methods.
1) The obtained polarizing plate was cut into a size of 4 cm × 4 cm to obtain a polarizing plate sample. The polarizing plate sample was conditioned at 23 ° C. and 55% RH for 24 hours, and then parallel transmittance and orthogonal transmittance were measured at 23 ° C. and 55% RH. The obtained measured values were applied to the following formulas to calculate the polarization degree P0 before storage.
Polarization degree P = ((H0−H90) / (H0 + H90)) 0.5 × 100
(H0: parallel transmittance, H90: orthogonal transmittance)
2) Thereafter, the polarizing plate sample was stored for 1000 hours at 60 ° C. and 90% RH, and then the parallel transmittance and the direct transmittance of the polarizing plate sample were measured in the same manner as described above. The obtained measured values were applied to the above-described formulas, respectively, and the degree of polarization P1000 after storage was calculated.
3) The polarization degree P0 obtained in the above 1) and the polarization degree P1000 obtained in the above 2) were applied to the following formula to calculate the degree of polarization change.
Polarization degree change = P0−P1000
(P0: degree of polarization before forced deterioration, P1000: degree of polarization after 1000 hours of forced deterioration)
偏光板試料における偏光子の劣化を、以下の基準に基づいて評価した。
◎:偏光度変化率3%未満
○:偏光度変化率3%以上5%未満
△:偏光度変化率5%以上8%未満
×:偏光度変化率8%以上 The deterioration of the polarizer in the polarizing plate sample was evaluated based on the following criteria.
◎: Polarization degree change rate of less than 3% ○: Polarization degree change rate of 3% or more and less than 5% △: Polarization degree change rate of 5% or more and less than 8% ×: Polarization degree change rate of 8% or more
◎:偏光度変化率3%未満
○:偏光度変化率3%以上5%未満
△:偏光度変化率5%以上8%未満
×:偏光度変化率8%以上 The deterioration of the polarizer in the polarizing plate sample was evaluated based on the following criteria.
◎: Polarization degree change rate of less than 3% ○: Polarization degree change rate of 3% or more and less than 5% △: Polarization degree change rate of 5% or more and less than 8% ×: Polarization degree change rate of 8% or more
2)液晶表示装置の作製
SONY製40型ディスプレイBRAVIA KLV-40J3000(VA方式)から、一対の偏光板を取り外した。そして、得られた液晶セルの両面に、上記作製した偏光板をそれぞれ貼り合わせて液晶表示装置を作製した。二枚の偏光板の位相差フィルム(図6のF2、F3)は、互いに同じ製造番号のロール体から得られたフィルムとした。偏光板の貼り合わせは、上記作製したフィルム(位相差フィルム)がそれぞれ液晶セルに接し、かつ上記作製したフィルム(位相差フィルム)の遅相軸と予め貼られていた偏光板の位相差フィルムの遅相軸とが平行となるように行った。 2) Production of liquid crystal display device A pair of polarizing plates was removed from Sony 40-inch display BRAVIA KLV-40J3000 (VA system). And the produced said polarizing plate was bonded together on both surfaces of the obtained liquid crystal cell, respectively, and the liquid crystal display device was produced. The retardation films of the two polarizing plates (F2 and F3 in FIG. 6) were films obtained from rolls having the same production number. The polarizing film is bonded to the retardation film of the polarizing plate that has been pasted in advance with the slow axis of the prepared film (retarding film) in contact with the liquid crystal cell. The slow axis was made parallel.
SONY製40型ディスプレイBRAVIA KLV-40J3000(VA方式)から、一対の偏光板を取り外した。そして、得られた液晶セルの両面に、上記作製した偏光板をそれぞれ貼り合わせて液晶表示装置を作製した。二枚の偏光板の位相差フィルム(図6のF2、F3)は、互いに同じ製造番号のロール体から得られたフィルムとした。偏光板の貼り合わせは、上記作製したフィルム(位相差フィルム)がそれぞれ液晶セルに接し、かつ上記作製したフィルム(位相差フィルム)の遅相軸と予め貼られていた偏光板の位相差フィルムの遅相軸とが平行となるように行った。 2) Production of liquid crystal display device A pair of polarizing plates was removed from Sony 40-inch display BRAVIA KLV-40J3000 (VA system). And the produced said polarizing plate was bonded together on both surfaces of the obtained liquid crystal cell, respectively, and the liquid crystal display device was produced. The retardation films of the two polarizing plates (F2 and F3 in FIG. 6) were films obtained from rolls having the same production number. The polarizing film is bonded to the retardation film of the polarizing plate that has been pasted in advance with the slow axis of the prepared film (retarding film) in contact with the liquid crystal cell. The slow axis was made parallel.
そして、保存前のフィルムを用いた液晶表示装置の視野角特性と表示ムラ;および保存後のフィルムを用いた液晶表示装置の視野角特性と表示ムラを、それぞれ以下の方法で評価した。
Then, viewing angle characteristics and display unevenness of the liquid crystal display device using the film before storage; and viewing angle characteristics and display unevenness of the liquid crystal display device using the film after storage were evaluated by the following methods, respectively.
<視野角特性>
得られた液晶表示装置の視野角を、23℃55%RH環境下で、ELDIM社製EZ-Contrast160Dを用いて測定した。
◎:視野角が非常に広い
〇:視野角が広い
△:視野角が狭い
×:視野角が非常に狭い
◎と○が実用上問題ないレベルとした。 <Viewing angle characteristics>
The viewing angle of the obtained liquid crystal display device was measured using EZ-Contrast 160D manufactured by ELDIM in an environment of 23 ° C. and 55% RH.
A: The viewing angle is very wide. O: The viewing angle is wide. Δ: The viewing angle is narrow. X: The viewing angle is very narrow.
得られた液晶表示装置の視野角を、23℃55%RH環境下で、ELDIM社製EZ-Contrast160Dを用いて測定した。
◎:視野角が非常に広い
〇:視野角が広い
△:視野角が狭い
×:視野角が非常に狭い
◎と○が実用上問題ないレベルとした。 <Viewing angle characteristics>
The viewing angle of the obtained liquid crystal display device was measured using EZ-Contrast 160D manufactured by ELDIM in an environment of 23 ° C. and 55% RH.
A: The viewing angle is very wide. O: The viewing angle is wide. Δ: The viewing angle is narrow. X: The viewing angle is very narrow.
<表示ムラ>
得られた液晶表示装置に黒画像を表示させた。そして、表示した黒画像を、正面から目視観察したときの、ロール体の変形に起因すると考えられる表示ムラを評価した。
◎:ロール体の変形に起因するムラが全く確認できない
〇:ロール体の変形に起因するムラがわずかに確認される
△:ロール体の変形に起因する細かいムラが確認される
×:ロール体の変形に起因するムラがはっきりと確認される
◎と○が実用上問題ないレベルとした。 <Display unevenness>
A black image was displayed on the obtained liquid crystal display device. And the display nonuniformity considered to originate in a deformation | transformation of a roll body when visually observing the displayed black image from the front was evaluated.
◎: Unevenness due to deformation of roll body cannot be confirmed at all ◯: Unevenness due to deformation of roll body is slightly confirmed △: Fine unevenness due to deformation of roll body is confirmed ×: Roll body Unevenness due to deformation is clearly confirmed ◎ and ○ are at a level where there is no practical problem.
得られた液晶表示装置に黒画像を表示させた。そして、表示した黒画像を、正面から目視観察したときの、ロール体の変形に起因すると考えられる表示ムラを評価した。
◎:ロール体の変形に起因するムラが全く確認できない
〇:ロール体の変形に起因するムラがわずかに確認される
△:ロール体の変形に起因する細かいムラが確認される
×:ロール体の変形に起因するムラがはっきりと確認される
◎と○が実用上問題ないレベルとした。 <Display unevenness>
A black image was displayed on the obtained liquid crystal display device. And the display nonuniformity considered to originate in a deformation | transformation of a roll body when visually observing the displayed black image from the front was evaluated.
◎: Unevenness due to deformation of roll body cannot be confirmed at all ◯: Unevenness due to deformation of roll body is slightly confirmed △: Fine unevenness due to deformation of roll body is confirmed ×: Roll body Unevenness due to deformation is clearly confirmed ◎ and ○ are at a level where there is no practical problem.
実施例1~14および比較例1~17のロール体から得られるフィルムを用いた評価結果を表6に示し;実施例15~19および比較例18~24のロール体から得られるフィルムを用いた評価結果を表7に示し;実施例20~27および比較例25~32のロール体から得られるフィルムを用いた評価結果を表8に示し;実施例28~31のロール体から得られるフィルムを用いた評価結果を表9に示す。
The evaluation results using the films obtained from the roll bodies of Examples 1 to 14 and Comparative Examples 1 to 17 are shown in Table 6; the films obtained from the roll bodies of Examples 15 to 19 and Comparative Examples 18 to 24 were used. The evaluation results are shown in Table 7; the evaluation results using the films obtained from the roll bodies of Examples 20 to 27 and Comparative Examples 25 to 32 are shown in Table 8; the films obtained from the roll bodies of Examples 28 to 31 are shown. Table 9 shows the evaluation results used.
実施例1~31のロール体から得られるフィルムは、いずれも厚みが薄くても高い位相差値を有することがわかる。そして、高温多湿環境下で保存したロール体から得られるフィルム(保存後のフィルム)を用いても、液晶表示装置の視野角特性は良好であり、表示ムラも抑制されることがわかる。
It can be seen that the films obtained from the roll bodies of Examples 1 to 31 have high retardation values even when the thickness is small. And even if it uses the film (film after a preservation | save) obtained from the roll body preserve | saved in a hot and humid environment, it turns out that the viewing angle characteristic of a liquid crystal display device is favorable, and a display nonuniformity is also suppressed.
一方、表6~8の比較例1~32のロール体から得られるフィルムは、厚みが薄いと、保存時のロール体の変形に起因する表示ムラや視野角性能の低下が生じることがわかる。具体的には、比較例1のフィルムは強度が低すぎて、保存中のロール体の変形に起因する保存後の表示ムラなどを十分には抑制できないことがわかる。一方、比較例2のフィルムは、リターデーション上昇剤を多く含むため、保存中のロール体の変形が生じ、それによる保存後の表示ムラが生じることが示される。また、比較例3~7のフィルムは、ストレート方式で巻き取ったロール体から得られたものであり、当該ロール体は保存中に変形したことから、保存後の表示ムラや視野角性能が生じることがわかる。
On the other hand, it can be seen that when the film obtained from the roll body of Comparative Examples 1 to 32 in Tables 6 to 8 is thin, display unevenness and viewing angle performance are reduced due to deformation of the roll body during storage. Specifically, it can be seen that the film of Comparative Example 1 is too low in strength and cannot sufficiently suppress display unevenness after storage caused by deformation of the roll body during storage. On the other hand, since the film of Comparative Example 2 contains a large amount of retardation increasing agent, it is shown that deformation of the roll body during storage occurs, resulting in display unevenness after storage. In addition, the films of Comparative Examples 3 to 7 were obtained from a roll body wound in a straight manner, and the roll body was deformed during storage, resulting in display unevenness and viewing angle performance after storage. I understand that.
表7の比較例19~24に示されるように、膜厚が薄いほど、保存後の表示ムラや視野角性能の低下が生じる傾向にある。これは、膜厚が薄いフィルムは強度が低く、保存中にロール体の変形が生じやすいためであると考えられる。これに対し、オシレート巻きで巻き取った実施例15~19のフィルムは、保存中のロール体の変形が生じにくいことがわかる。それにより、保存後であっても表示ムラや視野角性能の低下を低減できることがわかる。
As shown in Comparative Examples 19 to 24 in Table 7, as the film thickness is thinner, display unevenness after storage and viewing angle performance tend to decrease. This is presumably because a film having a small film thickness has low strength and the roll body is likely to be deformed during storage. On the other hand, it can be seen that the films of Examples 15 to 19 wound by oscillating winding hardly cause deformation of the roll body during storage. Thereby, it can be seen that display unevenness and viewing angle performance degradation can be reduced even after storage.
表8の比較例25~32に示されるように、フィルムが偏光子劣化抑制剤をさらに含んでいると、保存後の表示ムラや視野角性能の低下がより生じやすいことがわかる。これは、偏光子劣化抑制剤を含むフィルムは強度が一層低く、保存中にロール体の変形が生じやすいためであると考えられる。これに対し、オシレート巻きで巻き取った実施例20~27のフィルムは、保存中のロール体の変形が生じにくく、保存後であっても表示ムラや視野角性能の低下を低減できることがわかる。
As shown in Comparative Examples 25 to 32 of Table 8, it can be seen that when the film further contains a polarizer deterioration inhibitor, display unevenness and storage angle performance after storage are more likely to occur. This is presumably because the film containing the polarizer deterioration inhibitor has a lower strength and the roll body tends to be deformed during storage. In contrast, the films of Examples 20 to 27 wound by oscillating winding hardly cause deformation of the roll body during storage, and it can be seen that display unevenness and deterioration of viewing angle performance can be reduced even after storage.
表9にも示されるように、巻き取りの進行に伴い、オシレート巻きの振幅Aを徐々に大きくした実施例28または29のロール体は、振幅Aを一定とした実施例20または実施例1のロール体よりも保存中の変形が少ないことがわかる。また、巻き取りの進行に伴い、オシレート巻きの周期Tを徐々に小さくした実施例30のロール体は、周期Tを一定とした実施例1のロール体よりも保存中の変形が少ないことがわかる。さらに、エンボス部の形状を図2(b)に示される形状とした実施例31のロール体は、図2(a)に示される形状とした実施例1のロール体よりも保存中の変形が少ないことがわかる。それにより、実施例28~30の保存後のロール体から得られるフィルムは、実施例20または実施例1のロール体から得られるフィルムよりも、液晶表示装置の表示ムラを低減できることがわかる。
As shown in Table 9, the roll body of Example 28 or 29 in which the amplitude A of the oscillating winding is gradually increased with the progress of winding is the same as that of Example 20 or Example 1 in which the amplitude A is constant. It can be seen that there is less deformation during storage than the roll body. Further, it can be seen that the roll body of Example 30 in which the cycle T of the oscillating winding is gradually reduced as the winding progresses is less deformed during storage than the roll body of Example 1 in which the period T is constant. . Further, the roll body of Example 31 in which the shape of the embossed portion is the shape shown in FIG. 2B is more deformed during storage than the roll body of Example 1 having the shape shown in FIG. I understand that there are few. Thereby, it can be seen that the film obtained from the roll body after storage in Examples 28 to 30 can reduce the display unevenness of the liquid crystal display device more than the film obtained from the roll body in Example 20 or Example 1.
本出願は、2014年5月2日出願の特願2014-095443に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。
This application claims priority based on Japanese Patent Application No. 2014-095443 filed on May 2, 2014. The contents described in the application specification and the drawings are all incorporated herein.
本発明によれば、高い位相差を有し、かつロール体の変形に起因する表示ムラを抑制できる位相差フィルムのロール体を提供することができる。
According to the present invention, it is possible to provide a roll body of a retardation film that has a high retardation and can suppress display unevenness due to deformation of the roll body.
10 ロール体
11 巻芯
13 位相差フィルム
13A エンボス部
20 巻き取り装置
21 振動制御装置
23 案内ローラ
25 タッチローラ
30 液晶表示装置
40 液晶セル
50 第一の偏光板
51 第一の偏光子
53 保護フィルム(F1)
55 位相差フィルム(F2)
60 第二の偏光板
61 第二の偏光子
63 位相差フィルム(F3)
65 保護フィルム(F4)
70 バックライト DESCRIPTION OFSYMBOLS 10 Roll body 11 Core 13 Phase difference film 13A Embossing part 20 Winding device 21 Vibration control device 23 Guide roller 25 Touch roller 30 Liquid crystal display device 40 Liquid crystal cell 50 First polarizing plate 51 First polarizer 53 Protective film ( F1)
55 Retardation film (F2)
60Second polarizing plate 61 Second polarizer 63 Retardation film (F3)
65 Protective film (F4)
70 Backlight
11 巻芯
13 位相差フィルム
13A エンボス部
20 巻き取り装置
21 振動制御装置
23 案内ローラ
25 タッチローラ
30 液晶表示装置
40 液晶セル
50 第一の偏光板
51 第一の偏光子
53 保護フィルム(F1)
55 位相差フィルム(F2)
60 第二の偏光板
61 第二の偏光子
63 位相差フィルム(F3)
65 保護フィルム(F4)
70 バックライト DESCRIPTION OF
55 Retardation film (F2)
60
65 Protective film (F4)
70 Backlight
Claims (10)
- 幅方向両端部にエンボス部を有する位相差フィルムを、フィルムの長尺方向に巻き取って得られるロール体であって、
前記位相差フィルムは、主成分としてのジアセチルセルロースと、リターデーション上昇剤とを含み、
前記ロール体の軸方向両端部の側面形状の少なくとも一部が波状になっている、位相差フィルムのロール体。 A roll body obtained by winding a retardation film having an embossed portion at both ends in the width direction in the longitudinal direction of the film,
The retardation film includes diacetyl cellulose as a main component and a retardation increasing agent,
A roll body of a retardation film, wherein at least a part of a side surface shape of both end portions in the axial direction of the roll body is wavy. - 前記位相差フィルムの厚みが15~35μmである、請求項1に記載の位相差フィルムのロール体。 2. The roll of retardation film according to claim 1, wherein the retardation film has a thickness of 15 to 35 μm.
- 前記位相差フィルムの、下記式(I)で定義され、かつ測定波長590nmで測定される面内方向のリターデーションR0が20~130nmであり、かつ下記式(II)で定義され、かつ測定波長590nmで測定される厚み方向のリターデーションRthが、100~300nmである、請求項1に記載の位相差フィルムのロール体。
式(I) R0=(nx-ny)×t(nm)
式(II) Rth={(nx+ny)/2-nz}×t(nm)(式(I)および(II)において、
nxは、フィルムの面内方向において屈折率が最大になる遅相軸方向xにおける屈折率を表し;nyは、フィルムの面内方向において前記遅相軸方向xと直交する方向yにおける屈折率を表し;nzは、フィルムの厚み方向zにおける屈折率を表し;t(nm)は、フィルムの厚みを表す) The retardation film is defined by the following formula (I) and has an in-plane retardation R 0 of 20 to 130 nm measured at a measurement wavelength of 590 nm, and is defined by the following formula (II) and measured. 2. The retardation film roll according to claim 1, wherein the retardation Rth in the thickness direction measured at a wavelength of 590 nm is 100 to 300 nm.
Formula (I) R 0 = (nx−ny) × t (nm)
Formula (II) Rth = {(nx + ny) / 2−nz} × t (nm) (in formulas (I) and (II)
nx represents the refractive index in the slow axis direction x where the refractive index is maximum in the in-plane direction of the film; ny represents the refractive index in the direction y perpendicular to the slow axis direction x in the in-plane direction of the film. Nz represents the refractive index in the thickness direction z of the film; t (nm) represents the thickness of the film) - 前記リターデーション上昇剤の含有量は、前記ジアセチルセルロース100質量部に対して1~10質量部である、請求項1に記載の位相差フィルムのロール体。 2. The retardation film roll according to claim 1, wherein the content of the retardation increasing agent is 1 to 10 parts by mass with respect to 100 parts by mass of the diacetylcellulose.
- 前記位相差フィルムは、下記一般式(A)で表されるモノマー由来の繰り返し構造を有する重合体、一般式(B)で表される化合物、一般式(C)で表される化合物、および一般式(D)で表される化合物からなる群より選ばれる一以上をさらに含む、請求項1に記載の位相差フィルムのロール体。
R1およびR2は、それぞれ独立に水素原子または炭素数1~4のアルキル基を表し;
R3は、置換基を表し;
環Aは、5または6員環を表し;
nは、1~4の整数を表し、nが2以上のとき、複数のR3は互いに同一であっても異なっていてもよい)
R1は、水素原子または置換基を表し;
R2は、下記一般式(B-1)で表される置換基を表し;
n1は、0~4の整数を表し、n1が2以上のとき、複数のR1は互いに同一であっても異なっていてもよく、
n2は1~5の整数を表し、n2が2以上のとき、複数のR2は互いに同一であっても異なっていてもよい)
Aは、置換または無置換の芳香族環を表し;
R3およびR4は、それぞれ独立に、水素原子、炭素数1~5のアルキル基または一般式(B-2)で表される置換基を表し;
R5は、単結合または炭素数1~5のアルキレン基を表し;
Xは、置換または無置換の芳香族環を表し;
n3は、0~10の整数を表し、n3が2以上のとき、複数のR5およびXは互いに同一であっても異なっていてもよい)
Xは、置換または無置換の芳香族環を表し;
R6、R7、R8、およびR9は、それぞれ独立に水素原子または炭素数1~5のアルキル基を表し;
n5は1~11の整数を表し、n5が2以上のとき、複数のR6、R7、R8およびXは互いに同一であっても異なっていてもよい)
R26は、炭素数1~12のアルキル基または炭素数6~12のアリール基を表し;
R27およびR28は、それぞれ独立して水素原子、炭素数1~12のアルキル基または炭素数6~12のアリール基を表し;
R26およびR27は、それぞれ置換基を有していてもよい)
Rは、置換基を表し;
m、nは、それぞれ独立に1~3の整数を表す) The retardation film includes a polymer having a repeating structure derived from a monomer represented by the following general formula (A), a compound represented by the general formula (B), a compound represented by the general formula (C), and a general The roll body of retardation film of Claim 1 which further contains 1 or more chosen from the group which consists of a compound represented by Formula (D).
R 1 and R 2 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms;
R 3 represents a substituent;
Ring A represents a 5 or 6 membered ring;
n represents an integer of 1 to 4, and when n is 2 or more, a plurality of R 3 may be the same or different from each other)
R 1 represents a hydrogen atom or a substituent;
R 2 represents a substituent represented by the following general formula (B-1);
n1 represents an integer of 0 to 4, and when n1 is 2 or more, a plurality of R 1 may be the same or different from each other;
n2 represents an integer of 1 to 5, and when n2 is 2 or more, a plurality of R 2 may be the same or different)
A represents a substituted or unsubstituted aromatic ring;
R 3 and R 4 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a substituent represented by the general formula (B-2);
R 5 represents a single bond or an alkylene group having 1 to 5 carbon atoms;
X represents a substituted or unsubstituted aromatic ring;
n3 represents an integer of 0 to 10, and when n3 is 2 or more, a plurality of R 5 and X may be the same or different from each other)
X represents a substituted or unsubstituted aromatic ring;
R 6 , R 7 , R 8 , and R 9 each independently represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms;
n5 represents an integer of 1 to 11, and when n5 is 2 or more, a plurality of R 6 , R 7 , R 8 and X may be the same or different)
R 26 represents an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 12 carbon atoms;
R 27 and R 28 each independently represent a hydrogen atom, an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 12 carbon atoms;
R 26 and R 27 may each have a substituent)
R represents a substituent;
m and n each independently represents an integer of 1 to 3) - 主成分としてのジアセチルセルロースと、リターデーション上昇剤とを含み、幅方向両端部にエンボス部が設けられた長尺状の位相差フィルムを準備する工程と、
前記位相差フィルムを巻芯にロール状に巻き取る工程とを含み、
前記巻き取る工程は、前記位相差フィルムと前記巻芯の少なくとも一方を、前記位相差フィルムの幅方向に周期的に振動させながら、前記位相差フィルムを前記巻芯に巻き取る振動巻き取り工程を含む、位相差フィルムのロール体の製造方法。 A step of preparing a long retardation film including diacetylcellulose as a main component and a retardation increasing agent and having embossed portions provided at both ends in the width direction;
Winding the phase difference film into a roll around a core,
The winding step includes a vibration winding step of winding the retardation film around the core while periodically vibrating at least one of the retardation film and the core in the width direction of the retardation film. A method for producing a roll of retardation film. - 前記振動巻き取り工程における振動の振幅を、巻き取られる前記位相差フィルムの積算の厚みが大きくなるにつれて大きくする、請求項6に記載の位相差フィルムのロール体の製造方法。 The method for producing a roll body of a retardation film according to claim 6, wherein the amplitude of vibration in the vibration winding process is increased as the integrated thickness of the phase difference film to be wound increases.
- 前記振動巻き取り工程における振動の周期を、巻き取られる前記位相差フィルムの積算の厚みが大きくなるにつれて小さくする、請求項6に記載の位相差フィルムのロール体の製造方法。 The method for producing a roll body of a retardation film according to claim 6, wherein a period of vibration in the vibration winding process is reduced as an integrated thickness of the phase difference film to be wound is increased.
- 偏光子と、前記偏光子の少なくとも一方の面に配置される請求項1に記載のロール体から得られる位相差フィルムとを含む、偏光板。 A polarizing plate comprising: a polarizer; and a retardation film obtained from the roll body according to claim 1 disposed on at least one surface of the polarizer.
- 液晶セルと、前記液晶セルの一方の面に配置された第一の偏光板と、前記液晶セルの他方の面に配置された第二の偏光板とを含み、
前記第一の偏光板は、第一の偏光子と、前記第一の偏光子の前記液晶セルとは反対側の面に配置される保護フィルムF1と、前記第一の偏光子の前記液晶セル側の面に配置される保護フィルムF2とを含み、
前記第二の偏光板は、第二の偏光子と、前記第二の偏光子の前記液晶セル側の面に配置される保護フィルムF3と、前記第二の偏光子の前記液晶セルとは反対側の面に配置される保護フィルムF4とを含み、
前記保護フィルムF2およびF3の少なくとも一方が、請求項1に記載のロール体から得られる位相差フィルムを含む、液晶表示装置。 Including a liquid crystal cell, a first polarizing plate disposed on one surface of the liquid crystal cell, and a second polarizing plate disposed on the other surface of the liquid crystal cell,
The first polarizing plate includes a first polarizer, a protective film F1 disposed on a surface of the first polarizer opposite to the liquid crystal cell, and the liquid crystal cell of the first polarizer. Including a protective film F2 disposed on the side surface,
The second polarizing plate is opposite to the second polarizer, the protective film F3 disposed on the surface of the second polarizer on the liquid crystal cell side, and the liquid crystal cell of the second polarizer. Including a protective film F4 disposed on the side surface,
The liquid crystal display device in which at least one of the said protective films F2 and F3 contains the retardation film obtained from the roll body of Claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016516397A JPWO2015166971A1 (en) | 2014-05-02 | 2015-04-30 | Retardation film roll and method for producing the same, polarizing plate and liquid crystal display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014095443 | 2014-05-02 | ||
JP2014-095443 | 2014-05-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015166971A1 true WO2015166971A1 (en) | 2015-11-05 |
Family
ID=54358696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/062916 WO2015166971A1 (en) | 2014-05-02 | 2015-04-30 | Phase difference film roll, method for manufacturing same, polarizer, and liquid-crystal display device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2015166971A1 (en) |
WO (1) | WO2015166971A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021145201A1 (en) * | 2020-01-14 | 2021-07-22 | 日東電工株式会社 | System for producing film roll and method for producing film roll |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010150041A (en) * | 2008-11-19 | 2010-07-08 | Fujifilm Corp | Method and device for winding film, and method for manufacturing film roll |
WO2011001700A1 (en) * | 2009-06-30 | 2011-01-06 | コニカミノルタオプト株式会社 | Cellulose ester film, polarizing plate using same, and liquid crystal display device |
JP2012509568A (en) * | 2008-11-19 | 2012-04-19 | スリーエム イノベイティブ プロパティズ カンパニー | Brewster angle film for light management in luminaires and other lighting systems |
JP2013100146A (en) * | 2011-11-07 | 2013-05-23 | Fujifilm Corp | Method for winding film, method for manufacturing the film, and method for manufacturing polarizing plate |
JP2013174851A (en) * | 2011-04-21 | 2013-09-05 | Fujifilm Corp | Polarizing plate and liquid crystal display device |
JP2013174861A (en) * | 2012-01-25 | 2013-09-05 | Fujifilm Corp | Polarizing plate and manufacturing method thereof, and liquid crystal display device |
-
2015
- 2015-04-30 JP JP2016516397A patent/JPWO2015166971A1/en active Pending
- 2015-04-30 WO PCT/JP2015/062916 patent/WO2015166971A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010150041A (en) * | 2008-11-19 | 2010-07-08 | Fujifilm Corp | Method and device for winding film, and method for manufacturing film roll |
JP2012509568A (en) * | 2008-11-19 | 2012-04-19 | スリーエム イノベイティブ プロパティズ カンパニー | Brewster angle film for light management in luminaires and other lighting systems |
WO2011001700A1 (en) * | 2009-06-30 | 2011-01-06 | コニカミノルタオプト株式会社 | Cellulose ester film, polarizing plate using same, and liquid crystal display device |
JP2013174851A (en) * | 2011-04-21 | 2013-09-05 | Fujifilm Corp | Polarizing plate and liquid crystal display device |
JP2013100146A (en) * | 2011-11-07 | 2013-05-23 | Fujifilm Corp | Method for winding film, method for manufacturing the film, and method for manufacturing polarizing plate |
JP2013174861A (en) * | 2012-01-25 | 2013-09-05 | Fujifilm Corp | Polarizing plate and manufacturing method thereof, and liquid crystal display device |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021145201A1 (en) * | 2020-01-14 | 2021-07-22 | 日東電工株式会社 | System for producing film roll and method for producing film roll |
JP2021109759A (en) * | 2020-01-14 | 2021-08-02 | 日東電工株式会社 | Film roll manufacturing system and film roll manufacturing method |
JP7084432B2 (en) | 2020-01-14 | 2022-06-14 | 日東電工株式会社 | Film roll manufacturing system and film roll manufacturing method |
CN114901574A (en) * | 2020-01-14 | 2022-08-12 | 日东电工株式会社 | Film roll manufacturing system and film roll manufacturing method |
TWI787705B (en) * | 2020-01-14 | 2022-12-21 | 日商日東電工股份有限公司 | Film coil manufacturing system, and film coil manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015166971A1 (en) | 2017-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101399788B1 (en) | Phase difference film manufacturing method, phase difference film, polarization plate and liquid crystal display device | |
JP5329088B2 (en) | Cellulose ester film, polarizing plate and liquid crystal display device | |
JP4802409B2 (en) | Optical compensation film, polarizing plate and liquid crystal display device using the same | |
WO2015076250A1 (en) | Optical film, polarizing plate and liquid crystal display device | |
JP6428621B2 (en) | Cellulose acylate film, polarizing plate and liquid crystal display device | |
JP5157032B2 (en) | Cellulose ester film, production method thereof, optical compensation film, polarizing plate and liquid crystal display device | |
JP2004177642A (en) | Phase difference film and its manufacturing method, optical compensating film, polarizing plate, and liquid crystal display device | |
WO2014136529A1 (en) | Optical film, polarizing plate containing same and vertical alignment liquid crystal display device | |
WO2015098491A1 (en) | Cellulose-ester film, manufacturing method therefor, and polarizing plate | |
JP2017021236A (en) | Retardation film for va (vertical alignment), method for manufacturing retardation film for va, polarizing plate, and vertical alignment liquid crystal display device | |
WO2014148476A1 (en) | Polarizing plate, method for manufacturing polarizing plate, and liquid crystal display device | |
WO2014042022A1 (en) | Image display device | |
JPWO2014068802A1 (en) | Optical film and optical film manufacturing method, polarizing plate and liquid crystal display device | |
WO2015146890A1 (en) | Optical film, method for producing same, polarizing plate and liquid crystal display device | |
WO2015166971A1 (en) | Phase difference film roll, method for manufacturing same, polarizer, and liquid-crystal display device | |
JP6627748B2 (en) | Retardation film, polarizing plate and display device using the same | |
JP6264373B2 (en) | Manufacturing method of optical film | |
JP4904665B2 (en) | Liquid crystal display and polarizing plate set | |
JP6760284B2 (en) | Phase difference film, polarizing plate and vertically oriented liquid crystal display device | |
JP4622130B2 (en) | Stretched film composition and optical compensation film, elliptically polarizing plate and liquid crystal display device using the same | |
JP4904663B2 (en) | Liquid crystal display and polarizing plate set | |
KR101234908B1 (en) | Polarization plate, acrylic adhesive for polarization plate, and liquid crystal device using polarization plate | |
JP2007181987A (en) | Method for producing cellulose ester film, polarizing plate using the film, liquid crystal display device, and optical compensation film | |
JP5114591B2 (en) | Optical polymer film, and polarizing plate and liquid crystal display device using the same | |
JP2004198904A (en) | Optical compensation film and polarizer plate using the same, and liquid crystal display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15786851 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016516397 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15786851 Country of ref document: EP Kind code of ref document: A1 |