WO2015163412A1 - 熱線吸収ガラス板およびその製造方法 - Google Patents
熱線吸収ガラス板およびその製造方法 Download PDFInfo
- Publication number
- WO2015163412A1 WO2015163412A1 PCT/JP2015/062383 JP2015062383W WO2015163412A1 WO 2015163412 A1 WO2015163412 A1 WO 2015163412A1 JP 2015062383 W JP2015062383 W JP 2015062383W WO 2015163412 A1 WO2015163412 A1 WO 2015163412A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass plate
- less
- absorbing glass
- heat ray
- terms
- Prior art date
Links
- 239000011521 glass Substances 0.000 title claims abstract description 179
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 201
- 238000002834 transmittance Methods 0.000 claims abstract description 63
- 229910052742 iron Inorganic materials 0.000 claims abstract description 54
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 31
- 239000011135 tin Substances 0.000 claims abstract description 28
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 22
- 239000011593 sulfur Substances 0.000 claims abstract description 22
- 229910052718 tin Inorganic materials 0.000 claims abstract description 7
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 30
- 239000000395 magnesium oxide Substances 0.000 claims description 18
- 239000002994 raw material Substances 0.000 claims description 18
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 13
- 238000002844 melting Methods 0.000 claims description 11
- 230000008018 melting Effects 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 11
- 239000005361 soda-lime glass Substances 0.000 claims description 10
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 9
- 230000000007 visual effect Effects 0.000 claims description 9
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 8
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 4
- 238000000465 moulding Methods 0.000 claims description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 abstract 4
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 230000007423 decrease Effects 0.000 description 8
- 230000005855 radiation Effects 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000006060 molten glass Substances 0.000 description 5
- 230000005484 gravity Effects 0.000 description 4
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 238000004040 coloring Methods 0.000 description 3
- 238000004031 devitrification Methods 0.000 description 3
- 239000005357 flat glass Substances 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 239000006103 coloring component Substances 0.000 description 2
- 239000005340 laminated glass Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 238000006124 Pilkington process Methods 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000005328 architectural glass Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 239000010446 mirabilite Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/095—Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
- C03C3/087—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/02—Compositions for glass with special properties for coloured glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/08—Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
- C03C4/082—Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for infrared absorbing glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/02—Other methods of shaping glass by casting molten glass, e.g. injection moulding
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2204/00—Glasses, glazes or enamels with special properties
Definitions
- the present invention relates to a heat ray absorbing glass plate and a method for producing the same.
- the heat ray absorbing glass plate is required to have low solar transmittance and high visible light transmittance. That is, the solar radiation transmittance defined in JIS R 3106 (1998) (hereinafter also referred to as Te. In this application, the thickness is converted to 4 mm) and the visible light transmittance defined in JIS R 3106 (1998) (A light source, 2 degrees).
- the ratio Tv / Te is required to be high (field of view) (hereinafter also referred to as Tv. In this application, the thickness is converted to 4 mm).
- Patent Document 1 has been proposed as a heat ray absorbing glass plate.
- redox is 0.38 to 0.60
- soda lime silica glass containing SO 3 0.005 to 0.18% and substantially free of polysulfide in terms of mass percentage based on oxide.
- a heat-absorbing glass plate containing any one of I) to V) as a coloring component in terms of mass percentage or mass percentage.
- SiO 2 65 to 75%, Al 2 O 3 : more than 3%, 6% or less, MgO: 0% to less than 2%, CaO: 7 to 10%, total iron converted to Fe 2 O 3 : 45 to 0.65%, TiO 2 : 0.2 to 0.8%, substantially free of any one selected from the group consisting of CoO, Cr 2 O 3 , V 2 O 5 and MnO,
- a heat-absorbing glass plate in which the ratio (Redox) of the total iron mass and the divalent FeO mass in which the iron amount is converted to Fe 2 O 3 is more than 42% and 60% or less.
- Patent Document 3 includes iron, tin, and sulfur elements, and includes total sulfur converted to SO 3 in terms of oxide-based mass percentage: 0.025% or more, and converted to Fe 2 O 3 .
- the ratio (Redox) of divalent iron converted to Fe 2 O 3 in the total iron is 60 to 80% in terms of mass percentage, and the ratio of divalent tin in the total tin is 0 in terms of mole percentage.
- a colored glass plate made of alkali-containing silica glass of 1% or more has been proposed.
- Some of the heat-absorbing glass plates of Patent Document 1 have a low Te and a high Tv, but if the total iron amount is small, the value of Tv / Te is low, and if the total iron amount is large, the solar transmittance is high. However, the value of Tv / Te was high, but the value of Tv / Te with respect to the total iron content was not sufficient.
- some glasses having a high redox have a high Tv / Te value. However, since redox is high, amber coloring may occur when SO 3 is included.
- the glass plate of Patent Document 3 can suppress amber color development because it contains tin, but has a high Te due to a low MgO content.
- the present invention provides a heat-absorbing glass plate that simultaneously satisfies a low solar transmittance and a high visible light transmittance with suppressed amber color development, and a method for producing the same.
- the heat-absorbing glass plate of the present invention contains each element of iron, tin, and sulfur, MgO is 4.5% or less in terms of oxide-based mass percentage, and the total tin amount converted to SnO 2 is 0.4%.
- the ratio of the total tin amount and the total sulfur amount converted to SO 3 (SnO 2 / SO 3 ) is 0.2 to 100.
- the heat ray absorbing glass plate of the present invention has a ratio Tv / Te of visible light transmittance Tv (A light source, 2 degree visual field) defined by JIS R 3106 (1998) and solar radiation transmittance Te defined by JIS R 3106 (1998),
- Tv visible light transmittance
- Te solar radiation transmittance Te
- the total iron amount t-Fe 2 O 3 converted to Fe 2 O 3 in terms of oxide-based mass percentage may be expressed by the following equation as a 4 mm thickness converted value of the glass plate.
- Tv / Te 1.70
- Tv / Te 1.70
- Tv / Te 1.60
- Tv / Te 1.960 when t-Fe 2 O 3 is 0.559% or more.
- the heat ray absorbing glass plate of the present invention may have a principal wavelength Dw of transmitted light as defined in JIS Z 8701 (1982) of less than 492 nm in terms of a 4 mm thickness converted value of the glass plate. .
- the heat ray absorbing glass plate of the present invention may have a main wavelength Dw of transmitted light defined by JIS Z 8701 (1982) of 492 nm or more in terms of a 4 mm thickness converted value of the glass plate. .
- the heat ray absorbing glass plate of the present invention has a ratio Tv / Te of the visible light transmittance Tv (A light source, 2 degree visual field) defined by JIS R 3106 (1998) and the solar transmittance Te defined by JIS R 3106 (1998). It may be 2.0 or more in terms of a 4 mm thickness converted value of the glass plate.
- the heat ray absorbing glass plate of the present invention has a solar transmittance Te defined in JIS R 3106 (1998) of 50% or less in terms of a 4 mm thickness converted value of the glass plate, and a visible light transmittance Tv defined in JIS R 3106 (1998).
- a light source, 2 degree visual field may be 60% or more in terms of a 4 mm thickness converted value of the glass plate.
- the heat ray absorbing glass plate of the present invention may be expressed in mass percentage on an oxide basis, and the total sulfur amount converted to SO 3 may be 0.005% or more and 0.1% or less.
- the heat ray absorbing glass plate of the present invention may have a total iron content of 0.01% to 1.0% converted to Fe 2 O 3 in terms of oxide based mass percentage.
- the percentage of divalent iron in terms of Fe 2 O 3 in the total iron in terms of Fe 2 O 3 may be 55% or greater.
- the ratio of SnO 2 / SO 3 to Fe-redox (SnO 2 / SO 3 ) / Fe-redox may be 0.0025 to 5.
- the heat ray absorbing glass plate of the present invention may be a soda lime silica glass containing the following composition in terms of oxide based mass percentage. SiO 2 : 65 to 75%, Al 2 O 3 : more than 3% and 6% or less, MgO: 0% or more, less than 2%, CaO: 7-10%, Na 2 O: 5 to 18%, K 2 O: 0 to 5%, Total iron converted to Fe 2 O 3 : 0.3 to 0.9%, Total tin converted to SnO 2 : 0.02 to 0.3%.
- the heat ray absorbing glass plate of the present invention does not need to contain TiO 2 substantially. “Substantially free” means not containing any inevitable impurities (hereinafter the same).
- the heat ray absorbing glass plate of the present invention substantially contains TiO 2 in order to reduce the ultraviolet transmittance and obtain a green or yellow glass plate, and the content of TiO 2 is expressed in terms of mass percentage on the basis of oxide. It may be 3% or less.
- the heat ray absorbing glass plate of the present invention may contain substantially no CeO 2 in order to keep the cost low.
- Heat ray absorbing glass plate of the present invention in order to reduce the ultraviolet transmittance comprises a substantially CeO 2, as represented by mass percentage based on oxides, the content of CeO 2 may be 3% or less.
- ⁇ -OH may be 0.15 mm ⁇ 1 or more.
- the method for producing a heat-absorbing glass plate of the present invention is the production of soda-lime silica glass that melts and forms a glass raw material, and the glass after molding contains elements of iron, tin, and sulfur, and is based on an oxide.
- MgO is 4.5% or less
- the total tin amount converted to SnO 2 is less than 0.4%
- the ratio of the total tin amount to the total sulfur amount converted to SO 3 (SnO 2 / SO 3 ) is A heat-absorbing glass plate having a thickness of 0.2 to 100 is obtained.
- the term “to” indicating the above numerical range is used in the sense that the numerical values described before and after it are used as the lower limit value and the upper limit value, and unless otherwise specified, “to” is the same in the following specification. Used with meaning.
- the heat ray absorbing glass plate of the present invention simultaneously satisfies a low solar transmittance and a high visible light transmittance.
- the ratio Tv / Te of the visible light transmittance is higher than the conventional ratio to the total iron amount t-Fe 2 O 3 converted to Fe 2 O 3 in terms of mass percentage on the basis of oxide. High heat ray absorbing glass can be obtained.
- 29 is a graph showing the relationship between t-Fe 2 O 3 and Tv / Te in Examples 1 to 28.
- the heat ray absorbing glass plate of one embodiment of the present invention contains each element of iron, tin, and sulfur, and the Mg content, the total tin amount converted to SnO 2 , and the total tin amount and SO 3 are converted.
- the ratio of total sulfur amount (SnO 2 / SO 3 ) the total iron amount t-Fe 2 O 3 converted to Fe 2 O 3 in terms of Tv / Te and oxide-based mass percentage, It is characterized in that the relationship of the following formula is satisfied with a 4 mm thickness converted value of the glass plate.
- Tv / Te 1.70
- Tv / Te 1.70
- Tv / Te 1.60
- Tv / Te 1.960 when t-Fe 2 O 3 is 0.559% or more.
- the heat ray absorbing glass plate of the present embodiment has MgO of 4.5% or less in terms of oxide based mass percentage.
- MgO is a component that promotes the melting of the glass raw material and improves the weather resistance. If the content of MgO is 4.5% or less, devitrification becomes difficult.
- a heat ray absorbing glass plate having an MgO content of 4.5% or less has a low Te when compared with the same Tv as a heat ray absorbing glass plate having an MgO content of 4.5% or more. Therefore, if the MgO content is 4.5% or less, the heat ray absorbability can be easily improved without impairing the visible light transmittance.
- the content of MgO is preferably 0% or more and less than 2.0%, expressed as a mass percentage based on oxide, more preferably 0 to 1.0%, further preferably 0 to 0.5%, and more preferably 0% to 0%. .2% is particularly preferable, and it is most preferable that it is not substantially contained.
- the heat ray absorbing glass plate of this embodiment contains tin, and the total tin amount converted to SnO 2 is less than 0.4% in terms of oxide-based mass percentage.
- SnO 2 acts as a buffer material for redox reaction of iron or sulfur, and suppresses amber color development. If the total tin amount converted to SnO 2 is less than 0.4%, the volatilization of SnO 2 is small and the cost can be kept low.
- the total amount of tin converted to SnO 2 is preferably 0.02 to 0.3%, more preferably 0.05% to 0.25%, and more preferably 0.09 to 0.23% in terms of mass percentage based on oxide. Is more preferable, and 0.15 to 0.22% is particularly preferable.
- the total sulfur content converted to SO 3 in the heat-absorbing glass plate of the present embodiment is preferably 0.005% or more and 0.1% or less in terms of oxide-based mass percentage. If the total sulfur content converted to SO 3 is 0.005% or more, the clarification effect at the time of melting the glass is good, and no foam residue is generated.
- the content of SO 3 is more preferably 0.008% or more, further preferably 0.01% or more, and particularly preferably 0.013% or more in terms of oxide-based mass percentage. On the other hand, if SO 3 increases too much, Tv decreases due to amber color development.
- the content of SO 3 is more preferably 0.05% or less, more preferably 0.03% or less, particularly preferably less than 0.02%, and most preferably less than 0.016% in terms of mass percentage on an oxide basis. .
- the ratio of the total tin amount to the total sulfur amount (SnO 2 / SO 3 ) in the heat ray absorbing glass plate of this embodiment is 0.2 to 100. If the ratio of the total tin amount to the total sulfur amount (SnO 2 / SO 3 ) is 0.2 or more, the occurrence of amber coloring can be suppressed. If it is 100 or less, there is little volatilization and cost can be suppressed low.
- SnO 2 / SO 3 is more preferably 1 to 50, further preferably 3 to 30, and particularly preferably 5 to 20.
- the total iron amount converted to Fe 2 O 3 is 0.01% or more and 1.0% or less in terms of oxide based mass percentage. If the total iron content converted to Fe 2 O 3 is 0.01% or more, Te can be kept low. Te decreases as the total iron content converted to Fe 2 O 3 decreases, but Tv also decreases. If the total iron amount converted to Fe 2 O 3 is 1.0% or less, a decrease in Tv can be prevented and Tv / Te can be 1.85 (4 mm thickness conversion) or more.
- the total iron amount converted to Fe 2 O 3 is more preferably 0.1 to 0.9%, still more preferably 0.3 to 0.9, and even more preferably 0.4 to 0.00 in terms of oxide-based mass percentage. 8% is more preferable, 0.5 to 0.75% is particularly preferable, and 0.60 to 0.70% is most preferable.
- the total iron content is expressed as the amount of Fe 2 O 3 according to the standard analysis method, but not all iron present in the glass is present as trivalent iron.
- divalent iron is present in the glass.
- Divalent iron has an absorption peak near a wavelength of 1100 nm
- trivalent iron has an absorption peak near a wavelength of 400 nm. Therefore, when attention is paid to the infrared absorption ability, it is preferable that there is more divalent iron (Fe 2+ ) than trivalent iron (Fe 3+ ). Therefore, in order to keep Te low, the ratio of the total iron mass converted to Fe 2 O 3 and the divalent FeO mass (hereinafter, this ratio is also referred to as Fe-redox. That is, Fe-redox (% ) Is represented by Fe 2+ / (Fe 2+ + Fe 3+ ).
- the Fe-redox in the heat ray absorbing glass plate of this embodiment is preferably 55% or more. If Fe-redox is 55% or more, Te can be kept low. Fe-redox is preferably 57% or more, and more preferably 59% or more. On the other hand, if the Fe-redox becomes too high, the glass raw material melting process becomes complicated. Fe-redox is preferably 80% or less, more preferably 70% or less, and even more preferably 65% or less.
- the ratio of SnO 2 / SO 3 and Fe-redox (SnO 2 / SO 3 ) / Fe-redox is preferably 0.0025 to 5. If it is 0.0025 or more, the occurrence of amber coloring can be suppressed. If it is 5 or less, there is little volatilization and cost can be suppressed low. 0.05 to 3 is more preferable, 0.08 to 2 is further preferable, 0.15 to 1 is particularly preferable, and 0.2 to 0.5 is most preferable.
- the heat ray absorbing glass plate of the present embodiment is preferably a soda lime silica glass containing the following composition in terms of an oxide-based mass percentage.
- the heat ray absorbing glass plate of the present embodiment is preferably made of soda lime silica glass having the following composition in terms of mass percentage based on oxide. SiO 2 : 65 to 75%, Al 2 O 3 : more than 3% and 6% or less, MgO: 0% or more, less than 2%, CaO: 7-10%, Na 2 O: 5 to 18%, K 2 O: 0 to 5%, Total iron converted to Fe 2 O 3 : 0.3 to 0.9%, Total tin converted to SnO 2 : 0.02 to 0.3%.
- the content of SiO 2 is preferably 67 to 73%, more preferably 68 to 71% in terms of mass percentage based on oxide.
- Al 2 O 3 is a component that improves weather resistance. If the content of Al 2 O 3 exceeds 3%, the weather resistance will be good. If the content of Al 2 O 3 is 6% or less, the meltability will be good.
- the content of Al 2 O 3 is preferably 3.1 to 5%, more preferably 3.2 to 4% in terms of oxide based mass percentage.
- CaO is a component that promotes the melting of the glass raw material and improves the weather resistance. When the content of CaO is 7% or more, the meltability and weather resistance are good. If the content of CaO is 10% or less, devitrification becomes difficult.
- the content of CaO is preferably 7.5 to 9.5%, more preferably 8 to 9% in terms of mass percentage based on oxide.
- Na 2 O is a component that promotes melting of the glass raw material. When the content of Na 2 O is more than 5%, a good meltability. When the content of Na 2 O is 18% or less, the weather resistance is good.
- the content of Na 2 O is preferably 10 to 17%, more preferably 12 to 16%, and particularly preferably 14 to 15% in terms of mass percentage based on oxide.
- K 2 O is a component that promotes melting of the glass raw material. If is less than 5% the content of K 2 O, weather resistance is improved.
- the content of K 2 O is preferably 0.5 to 3%, more preferably 1 to 2%, and further preferably 1.3 to 1.7% in terms of mass percentage based on oxide.
- the heat ray absorbing glass plate of the present embodiment may contain SrO in order to promote melting of the glass raw material.
- the content of SrO is preferably 0 to 5%, more preferably 0 to 3% in terms of mass percentage based on oxide. More preferably, it is preferably 1% or less, more preferably 0.5% or less, and further not substantially contained. If the SrO content is 5% or less, the melting of the glass raw material can be promoted sufficiently.
- the heat ray absorbing glass plate of this embodiment may contain BaO in order to promote melting of the glass raw material.
- the content of BaO is preferably 0 to 5%, more preferably 0 to 3% in terms of mass percentage based on oxide. More preferably, it is preferably 1% or less, more preferably 0.5% or less, and further not substantially contained. If the content of BaO is 5% or less, melting of the glass raw material can be sufficiently promoted.
- the heat ray absorbing glass plate of the present embodiment does not need to contain TiO 2 substantially.
- the heat ray absorbing glass plate of the present embodiment contains a content of TiO 2 exceeding 0% in terms of oxide-based mass percentage. May be. If the content exceeds 0%, the ultraviolet transmittance decreases, and a green or yellow glass plate can be obtained. 0.1% or more is more preferable, 0.3% or more is more preferable, and 0.5% or more is particularly preferable. On the other hand, if the content of TiO 2 is 3% or less, Tv can be increased. 2% or less is more preferable, and 1% or less is more preferable.
- the heat ray absorbing glass plate of the present embodiment may contain substantially no CeO 2 in order to keep costs low.
- the heat-absorbing glass plate of the present embodiment can reduce the ultraviolet transmittance if the CeO 2 content exceeds 0% in terms of oxide-based mass percentage. it can. 0.1% or more is more preferable, 0.3% or more is more preferable, and 0.5% or more is particularly preferable. On the other hand, if the CeO 2 content is 3% or less, Tv can be increased, and the cost can be kept low. It is more preferably 2% or less, further preferably 1% or less, particularly preferably less than 0.8%, and most preferably less than 0.6%.
- the specific gravity of the heat ray absorbing glass plate of this embodiment is preferably 2.48 to 2.55, more preferably 2.50 to 2.53.
- the specific gravity of the heat ray absorbing glass plate of this embodiment can be adjusted by adjusting the glass composition.
- the mass ratio of SiO 2 / (MgO + CaO) is preferably 6.0 to 9.0, and more preferably 6.7 to 8.7.
- the mass ratio of SiO 2 / (MgO + CaO + SrO + BaO) is preferably 6.0 to 9.0, and preferably 6.7 to 8.7. Is more preferable.
- the heat ray absorbing glass plate of the present embodiment has a principal wavelength Dw of transmitted light as defined in JIS Z 8701 (1982) of less than 492 nm in terms of a 4 mm thickness converted value of the glass plate. Is preferred. It is more preferably less than 491 nm, further preferably less than 490 nm, and particularly preferably less than 489 nm.
- the heat ray absorbing glass plate of the present embodiment has a main wavelength Dw of transmitted light as defined in JIS Z 8701 (1982) of 492 nm or more in terms of a 4 mm thickness converted value of the glass plate. Is preferred. It is more preferably 494 to 565 nm, further preferably 496 to 560 nm, particularly preferably 498 to 530 nm, and most preferably 499 to 510 nm.
- Tv / Te is greatly dependent on the Zentetsuryou t-Fe 2 O 3 in terms of Fe 2 O 3. If the amount of t-Fe 2 O 3 is small, it is difficult to increase Tv / Te. If the amount of t-Fe 2 O 3 is large, it is relatively easy to increase Tv / Te.
- the heat ray absorbing glass plate of the present embodiment is characterized in that Tv / Te is larger than that of the conventional heat ray absorbing glass plate.
- the Tv / Te of the heat ray absorbing glass plate of the present embodiment is larger than 1.70 when t-Fe 2 O 3 is less than 0.351% in terms of a 4 mm thickness converted value of the glass plate.
- Tv / Te is larger than 1.70, low solar transmittance and high visible light transmittance can be satisfied at the same time.
- Tv / Te is preferably greater than 1.75, and more preferably greater than 1.80.
- Tv / Te is larger than the value obtained by “1.252 ⁇ (t-Fe 2 O 3 ) +1.260”. If it is larger than the value obtained by “1.252 ⁇ (t-Fe 2 O 3 ) +1.260”, the low solar radiation transmittance and the high visible light transmittance can be satisfied at the same time.
- Tv / Te may be larger than a value obtained by “1.252 ⁇ (t-Fe 2 O 3 ) +1.260”.
- Tv / Te is more preferably greater than the value determined by "1.252 ⁇ (t-Fe 2 O 3) +1.270 ", "1.252 ⁇ (t-Fe 2 O 3) +1.280 " More preferably, it is larger than the required value.
- Tv / Te is larger than 1.960. If Tv / Te is larger than 1.960, low solar transmittance and high visible light transmittance can be satisfied at the same time.
- Tv / Te is preferably greater than 1.970, and when t-Fe 2 O 3 is 0.575% or more, it is preferably greater than 1.980. More preferably, when t-Fe 2 O 3 is 0.583% or more, it is particularly preferably larger than 1.990, and when t-Fe 2 O 3 is 0.591% or more, it is larger than 2.0. Most preferred.
- Te of the heat ray absorbing glass plate of this embodiment is preferably 50% or less, more preferably 45% or less, further preferably 40% or less, and particularly preferably 35% or less.
- Te of the heat ray absorbing glass plate means a value of Te when the thickness of the heat ray absorbing glass plate is converted to a thickness of 4 mm. In this specification, simply “4 mm Also referred to as “thickness conversion (value)”. Te is the solar radiation transmittance calculated by measuring the transmittance with a spectrophotometer according to JIS R 3106 (1998) (hereinafter simply referred to as JIS R 3106).
- the Tv of the heat ray absorbing glass plate of this embodiment is preferably 60% or more, more preferably 65% or more, and further preferably 70% or more.
- the Tv of the heat ray absorbing glass plate means a value of Tv when the thickness of the heat ray absorbing glass plate is converted to a thickness of 4 mm. Also referred to as “thickness conversion (value)”.
- Tv is the visible light transmittance calculated by measuring the transmittance with a spectrophotometer in accordance with JIS R 3106. As a coefficient, a standard A light source and a value of a 2-degree visual field are used.
- beta-OH is preferably from 0.15 ⁇ 0.45 mm -1, and more preferably 0.20 ⁇ 0.35 mm -1, more preferably 0.23 ⁇ 0.30mm -1, 0.25 ⁇ 0.28mm -1 is particularly preferred.
- ⁇ -OH is a value obtained by the following equation.
- T 3500 cm -1 is a wave number (wave number) 3500cm transmittance -1 (%)
- T 4000 cm -1 is the transmittance of the wave number 4000cm -1 (%)
- t is The thickness (mm) of the glass plate.
- the heat ray absorbing glass plate of the present embodiment can be used for both vehicles and buildings, and is particularly suitable as building glass.
- a window glass for automobiles it is used as necessary, such as laminated glass in which a plurality of glass plates are sandwiched between interlayer films, glass obtained by processing flat glass into a curved surface, or glass that has been tempered.
- a multilayer glass for construction it uses as a multilayer glass which consists of two sheets of the heat ray absorption glass plate of this invention, or the heat ray absorption glass plate of this invention, and another glass plate.
- the heat ray absorbing glass plate of the present embodiment is manufactured, for example, through the following steps (i) to (v) in order.
- a glass raw material is prepared by mixing silica sand, other glass mother composition raw materials, a coloring component raw material such as an iron source, a reducing agent, a refining agent, and the like so as to obtain a target glass composition.
- a glass raw material is continuously supplied to a melting kiln, heated to about 1400 ° C. to 1550 ° C. (for example, about 1500 ° C.) with heavy oil, natural gas, etc., and melted to obtain molten glass.
- the molten glass is clarified, it is formed into a glass plate having a predetermined thickness by a glass plate forming method such as a float method.
- a glass plate forming method such as a float method.
- the cut glass plate may be tempered, processed into a laminated glass, or processed into a multilayer glass.
- glass matrix composition raw material examples include those used as raw materials for ordinary soda lime silica glass, such as silica sand, soda ash, limestone, and feldspar.
- iron source examples include iron powder, iron oxide powder, and bengara.
- reducing agent examples include carbon and coke. The reducing agent is for suppressing the oxidation of iron in the molten glass and adjusting the target Fe-redox.
- each element of iron, tin and sulfur is contained, the content of MgO, and the total tin amount converted to SnO 2 , and the total tin amount and total sulfur.
- the 4 mm thickness conversion value satisfies the following relationship.
- Tv / Te 1.70
- Tv / Te 1.70
- Tv / Te 1.60
- Tv / Te 1.960 when t-Fe 2 O 3 is 0.559% or more.
- Fe-redox was calculated from the spectrum curve of the glass measured with a spectrophotometer.
- the visible light transmittance (Tv) defined in JIS R3106 (A light source, a value under measurement conditions of a two-degree visual field) was obtained as a 4 mm thickness converted value.
- ⁇ -OH was calculated from the infrared absorption spectrum curve of the glass measured by FT-IR based on the following formula.
- ⁇ -OH (mm ⁇ 1 ) ⁇ log 10 (T 3500 cm ⁇ 1 / T 4000 cm ⁇ 1 ) / t
- T 3500 cm -1 is the wave number transmittance (wave number) 3500cm -1 (% )
- T 4000 cm -1 is the transmittance of the wave number 4000cm -1 (%)
- t is It is the thickness (mm) of the glass plate.
- glass matrix composition materials such as silica sand, coke, iron source, SnO 2 , and mirabilite (Na 2 SO 4 ) were mixed so as to have the glass compositions shown in Tables 1 to 5 to prepare glass materials.
- the glass raw material was put in a crucible and heated at 1500 ° C. for 2 hours to obtain molten glass.
- Molten glass was poured onto a carbon plate and cooled. Both surfaces of the obtained plate glass were polished to obtain a glass plate having a thickness of 4 mm.
- permeability was measured for every 1 nm using the spectrophotometer (The Perkin Elmer company make, Lambda950), and Te, Tv, and Dw were calculated
- the glass was polished to a thickness of 2 mm, and the transmittance of this glass plate was measured every 1 cm ⁇ 1 using FT-IR (Thermo Nicolet Avatar 370, manufactured by Thermo Nicolet), based on the above formula, ⁇ -OH was obtained.
- FT-IR Thermo Nicolet Avatar 370, manufactured by Thermo Nicolet
- Examples 1 to 14 and 29 to 32 are examples, and examples 15 to 28 are comparative examples.
- Examples 15 to 21 are examples described in Patent Document 2 (International Publication No. 2012/102176)
- Examples 22 to 24 are examples described in Patent Document 3 (International Publication No. 2011/093284)
- Examples 25 to 28 were taken from the examples described in Patent Document 1 (US Pat. No. 6,673,730).
- LTA was used as an indicator of visible light transmittance
- TSET was used as an indicator of solar transmittance
- TSET and Te were compared as the same.
- Tv / Te When t-Fe 2 O 3 is less than 0.351%, Tv / Te> 1.70, When t-Fe 2 O 3 is 0.351% or more and less than 0.559%, Tv / Te> 1.252 ⁇ t-Fe 2 O 3 +1.260, Tv / Te> 1.960 when t-Fe 2 O 3 is 0.559% or more.
- the boundary line of the relational expression is indicated by a solid line.
- the glass plates of Examples 15 to 18, which are comparative examples, have a large Tv / Te, but do not contain SnO 2, and therefore exhibit amber coloration due to the inclusion of SO 3 , resulting in non-uniform colors.
- the heat-absorbing glass plate of the present invention has a feature of satisfying low solar transmittance and high visible light transmittance at the same time, and is therefore useful as a glass plate for vehicles and buildings, and particularly for architectural glass. It is suitable as a plate.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Compositions (AREA)
Abstract
Description
一般的に、酸化物基準の質量百分率表示で、Fe2O3に換算した全鉄量(以下、3価の鉄量と区別するためにt-Fe2O3とも記す。)が多いと日射透過率が低くなるためTv/Teの値を高くしやすくなるが、同時に可視光透過率も低くなる。全鉄量が少なければ可視光透過率は高くなるが日射透過率も高くなり、Tv/Teの値は低くなる。
熱線吸収ガラス板としては、たとえば、特許文献1が提案されている。すなわち、Redoxが0.38~0.60であり、酸化物基準の質量百分率表示で、SO3:0.005~0.18%を含み、多硫化物を実質的に含まないソーダライムシリカガラスからなり、着色成分として、質量百分率表示または質量百万分率表示で、I)~V)のいずれかを含む熱線吸収ガラス板である。
I)Fe2O3に換算した全鉄:0.6~4%、
FeO :0.23~2.4%、
CoO :40~500ppm、
Se :5~70ppm、
Cr2O3 :15~800ppm、
TiO2 :0.02~1%。
II)Fe2O3に換算した全鉄:0.4~1%、
CoO :4~40ppm、
Cr2O3 :0~100ppm。
III)Fe2O3に換算した全鉄:0.9~2%、
FeO :0.34~1.2%、
CoO :90~250ppm、
Se :0~12ppm、
TiO2 :0~0.9%。
IV)Fe2O3に換算した全鉄:0.7~2.2%、
FeO :0.266~1.32%、
Se :3~100ppm、
CoO :0~100ppm。
V)Fe2O3に換算した全鉄:0.9~2%、
FeO :0.34~1.2%、
CoO :40~150ppm、
Cr2O3 :250~800ppm、
TiO2 :0.1~1%。
また、特許文献2には、日射透過率、4mm厚さ換算値で42%以下であり、可視光透過率(A光源2度視野)が4mm厚さ換算値で70%以上であり、透過光の主波長が、492~520nmであり、酸化物基準の質量百分率表示で、実質的に下記の組成のソーダライムシリカガラスからなる。SiO2:65~75%、Al2O3:3%を超え、6%以下、MgO:0%以上2%未満、CaO:7~10%、Fe2O3に換算した全鉄:0.45~0.65%、TiO2:0.2~0.8%、CoO、Cr2O3、V2O5およびMnOからなる群から選ばれるいずれの1種も実質的に含まず、全鉄量をFe2O3に換算した全鉄質量と2価のFeO質量の割合(Redox)が42%を超え、60%以下である熱線吸収ガラス板が提案されている。
また、特許文献3には、鉄、スズおよび硫黄の各元素を含み、酸化物基準の質量百分率表示でSO3に換算した全硫黄:0.025%以上を含み、Fe2O3に換算した全鉄中のFe2O3に換算した2価の鉄の割合(Redox)が、質量百分率表示で60~80%であり、全スズ中の2価のスズの割合が、モル百分率表示で0.1%以上であるアルカリ含有シリカガラスからなる着色ガラス板が提案されている。
特許文献2の熱線吸収ガラスの中でRedoxの高いガラスに関しては、Tv/Teの値が高くなるものもあるが、Redoxが高いためにSO3を含むとアンバー発色が生じることがある。
特許文献3のガラス板は、スズを含有しているためアンバー発色を抑えることはできるが、MgOの含有量が少ないためにTeが高かった。
本発明は、アンバー発色を抑えた低い日射透過率および高い可視光透過率を同時に満足する熱線吸収ガラス板、およびその製造方法を提供する。
本発明の熱線吸収ガラス板は、JIS R 3106(1998)規定の可視光透過率Tv(A光源、2度視野)とJIS R 3106(1998)規定の日射透過率Teの比Tv/Teと、酸化物基準の質量百分率表示で、Fe2O3に換算した全鉄量t-Fe2O3が、ガラス板の4mm厚さ換算値で次式の関係であってよい。
t-Fe2O3が0.351%未満の時、Tv/Te>1.70、
t-Fe2O3が0.351%以上0.559%未満の時、
Tv/Te>1.252×(t-Fe2O3)+1.260、
t-Fe2O3が0.559%以上の時、Tv/Te>1.960。
SiO2 :65~75%、
Al2O3 :3%を超え、6%以下、
MgO :0%以上、2%未満、
CaO :7~10%、
Na2O :5~18%、
K2O :0~5%、
Fe2O3に換算した全鉄 :0.3~0.9%、
SnO2に換算した全スズ :0.02~0.3%。
上記した数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用され、特段の定めがない限り、以下本明細書において「~」は、同様の意味をもって使用される。
本発明の一実施形態の熱線吸収ガラス板は、鉄、スズおよび硫黄の各元素を含み、MgOの含有量、および、SnO2に換算した全錫量、および全錫量とSO3に換算した全硫黄量の割合(SnO2/SO3)を調整することによって、Tv/Teと、酸化物基準の質量百分率表示で、Fe2O3に換算した全鉄量t-Fe2O3が、ガラス板の4mm厚さ換算値で次式の関係を満足することに特徴がある。
t-Fe2O3が0.351%未満の時、Tv/Te>1.70、
t-Fe2O3が0.351%以上0.559%未満の時、
Tv/Te>1.252×(t-Fe2O3)+1.260、
t-Fe2O3が0.559%以上の時、Tv/Te>1.960。
MgOの含有量が4.5%以下であれば、失透しにくくなる。また、MgOの含有量が4.5%以下の熱線吸収ガラス板は、MgOの含有量が4.5%以上の熱線吸収ガラス板と同一のTvで比較した場合、Teが低い。したがって、MgOの含有量が4.5%以下であれば、可視光透過性を損なわずに熱線吸収性を容易に向上させることができる。
MgOの含有量は、酸化物基準の質量百分率表示で0%以上、2.0%未満が好ましく、0~1.0%がより好ましく、0~0.5%がさらに好ましく、0%~0.2%が特に好ましく、実質的に含有しないことが最も好ましい。
通常、ガラス中には2価の鉄が存在している。2価の鉄は波長1100nm付近に吸収のピークを有し、3価の鉄は波長400nm付近に吸収のピークを有する。そのため、赤外線吸収能について着目した場合、3価の鉄(Fe3+)よりも2価の鉄(Fe2+)が多い方が好ましい。したがって、Teを低く抑える点では、全鉄量をFe2O3に換算した全鉄質量と2価のFeO質量の割合(以下、この割合をFe-redoxとも記す。すなわち、Fe-redox(%)は、Fe2+/(Fe2++Fe3+)で表わされる。)を高めることが好ましい。
SiO2 :65~75%、
Al2O3 :3%を超え、6%以下、
MgO :0%以上、2%未満、
CaO :7~10%、
Na2O :5~18%、
K2O :0~5%、
Fe2O3に換算した全鉄 :0.3~0.9%、
SnO2に換算した全スズ :0.02~0.3%。
Al2O3の含有量が3%を超えれば、耐候性が良好となる。Al2O3の含有量が6%以下であれば、溶融性が良好となる。Al2O3の含有量は、酸化物基準の質量百分率表示で3.1~5%が好ましく、3.2~4%がより好ましい。
CaOの含有量が7%以上であれば、溶融性、耐候性が良好となる。CaOの含有量が10%以下であれば、失透しにくくなる。CaOの含有量は、酸化物基準の質量百分率表示で7.5~9.5%が好ましく、8~9%がより好ましい。
本実施形態の熱線吸収ガラス板の比重は、ガラスの組成を調整することによって調整できる。上記比重にするためには、SiO2/(MgO+CaO)の質量比を、6.0~9.0にすることが好ましく、6.7~8.7にすることがより好ましい。また、SrO及び/またはBaOを含有する場合にも、同様にSiO2/(MgO+CaO+SrO+BaO)の質量比を、6.0~9.0にすることが好ましく、6.7~8.7にすることがより好ましい。
本実施形態の熱線吸収ガラス板のTv/Teは、ガラス板の4mm厚さ換算値でt-Fe2O3が0.351%未満の時、1.70より大きい。Tv/Teが1.70より大きければ、低い日射透過率および高い可視光透過率を同時に満足できる。Tv/Teは1.75より大きいことが好ましく、1.80より大きいことがさらに好ましい。
また、t-Fe2O3が0.351%以上0.559%未満の時、Tv/Teは「1.252×(t-Fe2O3)+1.260」で求められる値より大きい。「1.252×(t-Fe2O3)+1.260」で求められる値より大きければ、低い日射透過率および高い可視光透過率を同時に満足できる。
また、t-Fe2O3が0.559%以上の時も、Tv/Teは「1.252×(t-Fe2O3)+1.260」で求められる値より大きくてもよい。Tv/Teは「1.252×(t-Fe2O3)+1.270」で求められる値より大きいことがより好ましく、「1.252×(t-Fe2O3)+1.280」で求められる値より大きいことがさらに好ましい。
また、t-Fe2O3が0.559%以上の時、Tv/Teは、1.960より大きい。Tv/Teが1.960より大きければ、低い日射透過率および高い可視光透過率を同時に満足できる。t-Fe2O3が0.567%以上の時、Tv/Teは1.970より大きいことが好ましく、t-Fe2O3が0.575%以上の時、1.980より大きいことがさらに好ましく、t-Fe2O3が0.583%以上の時、1.990より大きいことが特に好ましく、t-Fe2O3が0.591%以上の時、2.0より大きいことが最も好ましい。
本実施形態の熱線吸収ガラス板のTvは、60%以上であることが好ましく、65%以上であることがより好ましく、70%以上であることがさらに好ましい。本実施形態において、熱線吸収ガラス板のTvとは、熱線吸収ガラス板の板厚を4mmの厚さに換算としたときのTvの値を意味するものであり、本明細書において、単に「4mm厚さ換算(値)」とも表記している。Tvは、JIS R 3106にしたがい分光光度計により透過率を測定し算出された可視光透過率である。係数は標準のA光源、2度視野の値を用いる。
β-OH(mm-1)=-log10(T3500cm-1/T4000cm-1)/t
上記式において、T3500cm-1は、波数(wave number)3500cm-1の透過率(%)であり、T4000cm-1は、波数4000cm-1の透過率(%)であり、tは、ガラス板の厚さ(mm)である。
(i)目標とするガラス組成になるように、珪砂、その他のガラス母組成原料、鉄源等の着色成分原料、還元剤、清澄剤等を混合し、ガラス原料を調製する。
(ii)ガラス原料を連続的に溶融窯に供給し、重油、天然ガス等により約1400℃~1550℃(例えば、約1500℃)に加熱し溶融させて溶融ガラスとする。
(iii)溶融ガラスを清澄した後、フロート法等のガラス板成形法により所定の厚さのガラス板に成形する。
(iv)ガラス板を徐冷した後、所定の大きさに切断し、本発明の熱線吸収ガラス板とする。
(v)必要に応じて、切断したガラス板を強化処理してもよく、合せガラスに加工してもよく、複層ガラスに加工してもよい。
鉄源としては、鉄粉、酸化鉄粉、ベンガラ等が挙げられる。
還元剤としては、炭素、コークス等が挙げられる。還元剤は、溶融ガラス中の鉄の酸化を抑制し、目標のFe-redoxとなるように調整するためのものである。
t-Fe2O3が0.351%未満の時、Tv/Te>1.70、
t-Fe2O3が0.351%以上0.559%未満の時、
Tv/Te>1.252×(t-Fe2O3)+1.260、
t-Fe2O3が0.559%以上の時、Tv/Te>1.960。
得られたガラス板について、分光光度計により測定したガラスのスペクトル曲線からFe-redoxを算出した。
得られたガラス板について、JIS R3106規定の可視光透過率(Tv)(A光源、2度視野の測定条件下における値)を4mm厚さ換算値で求めた。
得られたガラス板について、JIS R3106規定の日射透過率(Te)を4mm厚さ換算値で求めた。
得られたガラス板について、JIS Z8701(1982)規定の透過光の主波長(Dw)を4mm厚さ換算値で求めた。
得られたガラス板について、FT-IRにより測定したガラスの赤外線吸収スペクトル曲線から下式に基づき、β-OHを算出した。
β-OH(mm-1)=-log10(T3500cm-1/T4000cm-1)/t
ここで、T3500cm-1は、波数(wave number)3500cm-1の透過率(%)であり、T4000cm-1は、波数4000cm-1の透過率(%)であり、tは、ガラス板の厚さ(mm)である。
なお、表5のTv、Te、DwおよびTv/Teの欄において、括弧をもって表示した数値は、計算値を示す。
例15~21は特許文献2(国際公開第2012/102176号)に記載されている実施例、例22~24は特許文献3(国際公開第2011/093284号)に記載されている実施例、例25~28は特許文献1(米国特許第6673730号明細書)に記載されている実施例から引用した。例25~28は可視光透過率の指標としてLTAが、日射透過率の指標としてTSETが用いられているが、LTAとTv、TSETとTeは同じものとして比較した。
実施例である例1~14、29~32の本発明の熱線吸収ガラス板は、次の式を満足しており、Tv/Teが大きい値であった。
t-Fe2O3が0.351%未満の時、Tv/Te>1.70、
t-Fe2O3が0.351%以上0.559%未満の時、
Tv/Te>1.252×t-Fe2O3+1.260、
t-Fe2O3が0.559%以上の時、Tv/Te>1.960。
図1において、上記関係式の境界線を実線で示している。
比較例である例15~18のガラス板は、Tv/Teは大きいが、SnO2を含まないため、SO3を含有することによるアンバー発色を呈することにより色が不均質となる。
比較例である例19~21のガラス板は、SnO2を含まないため、アンバー発色を抑えるためにFe-redoxを低くする必要があった。
比較例である例22~24のガラス板は、MgOの含有量が多いためにTeが大きくなり、Tv/Teが小さかった。
比較例である例25~28のガラス板は、t-Fe2O3の割合に対して、Tv/Teは充分に大きくない。
なお、2014年4月23日に出願された日本特許出願2014-089594号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
Claims (20)
- 鉄、スズおよび硫黄の各元素を含み、酸化物基準の質量百分率表示でMgOが4.5%以下で、SnO2に換算した全錫量が0.4%未満、全錫量とSO3に換算した全硫黄量の割合(SnO2/SO3)が0.2~100である、熱線吸収ガラス板。
- JIS R 3106(1998)規定の可視光透過率Tv(A光源、2度視野)とJIS R 3106(1998)規定の日射透過率Teの比Tv/Teと、酸化物基準の質量百分率表示で、Fe2O3に換算した全鉄量t-Fe2O3が、ガラス板の4mm厚さ換算値で次式の関係にある請求項1に記載の熱線吸収ガラス板。
t-Fe2O3が0.351%未満の時、Tv/Te>1.70、
t-Fe2O3が0.351%以上0.559%未満の時、
Tv/Te>1.252×(t-Fe2O3)+1.260、
t-Fe2O3が0.559%以上の時、Tv/Te>1.960。 - JIS R 3106(1998)規定の可視光透過率Tv(A光源、2度視野)とJIS R 3106(1998)規定の日射透過率Teの比Tv/Teと、酸化物基準の質量百分率表示で、Fe2O3に換算した全鉄量t-Fe2O3が、ガラス板の4mm厚さ換算値で次式の関係にある請求項1に記載の熱線吸収ガラス板。
t-Fe2O3が0.351%未満の時、Tv/Te>1.70、
t-Fe2O3が0.351%以上0.575%未満の時、
Tv/Te>1.252×(t-Fe2O3)+1.260、
t-Fe2O3が0.575%以上の時、Tv/Te>1.980。 - JIS R 3106(1998)規定の可視光透過率Tv(A光源、2度視野)とJIS R 3106(1998)規定の日射透過率Teの比Tv/Teと、酸化物基準の質量百分率表示で、Fe2O3に換算した全鉄量t-Fe2O3が、ガラス板の4mm厚さ換算値で次式の関係にある請求項1に記載の熱線吸収ガラス板。
t-Fe2O3が0.351%未満の時、Tv/Te>1.70、
t-Fe2O3が0.351%以上の時、
Tv/Te>1.252×(t-Fe2O3)+1.260。 - JIS Z 8701(1982)規定の透過光の主波長Dwが、ガラス板の4mm厚さ換算値で492nm未満である請求項1~4のいずれか一項に記載の熱線吸収ガラス板。
- JIS Z 8701(1982)規定の透過光の主波長Dwが、ガラス板の4mm厚さ換算値で492nm以上である請求項1~4のいずれか一項に記載の熱線吸収ガラス板。
- JIS R 3106(1998)規定の可視光透過率Tv(A光源、2度視野)とJIS R 3106(1998)規定の日射透過率Teの比Tv/Teが、ガラス板の4mm厚さ換算値で2.0以上である請求項1~6のいずれか一項に記載の熱線吸収ガラス板。
- JIS R 3106(1998)規定の日射透過率Teがガラス板の4mm厚さ換算値で50%以下で、かつJIS R 3106(1998)規定の可視光透過率Tv(A光源、2度視野)がガラス板の4mm厚さ換算値で60%以上である請求項1~7のいずれか一項に記載の熱線吸収ガラス板。
- 酸化物基準の質量百分率表示で、SO3に換算した全硫黄量が0.005%以上、0.1%以下である請求項1~8のいずれか一項に記載の熱線吸収ガラス板。
- 酸化物基準の質量百分率表示で、SO3に換算した全硫黄量が0.005%以上、0.02%未満である請求項1~9のいずれか一項に記載の熱線吸収ガラス板。
- 酸化物基準の質量百分率表示で、Fe2O3に換算した全鉄量が0.01%~1.0%である請求項1~10のいずれか一項に記載の熱線吸収ガラス板。
- Fe2O3に換算した全鉄中のFe2O3に換算した2価の鉄の割合が55%以上である請求項1~11のいずれか一項に記載の熱線吸収ガラス板。
- SnO2/SO3とFe-redoxの比(SnO2/SO3)/Fe-redoxが0.0025~5である請求項1~12のいずれか一項に記載の熱線吸収ガラス板。
- 酸化物基準の質量百分率表示で、下記の組成を含有するソーダライムシリカガラスである、請求項1~13のいずれか一項に記載の熱線吸収ガラス板。
SiO2 :65~75%、
Al2O3 :3%を超え、6%以下、
MgO :0%以上、2%未満、
CaO :7~10%、
Na2O :5~18%、
K2O :0~5%、
Fe2O3に換算した全鉄 :0.3~0.9%、
SnO2に換算した全スズ :0.02~0.3%。 - TiO2を実質的に含まない請求項1~14のいずれか一項に記載の熱線吸収ガラス板。
- TiO2を実質的に含み、酸化物基準の質量百分率表示で、TiO2の含有量が3%以下である請求項1~15のいずれか一項に記載の熱線吸収ガラス板。
- CeO2を実質的に含まない請求項1~16のいずれか一項に記載の熱線吸収ガラス板。
- CeO2を実質的に含み、酸化物基準の質量百分率表示で、CeO2の含有量が3%以下である請求項1~16のいずれか一項に記載の熱線吸収ガラス板。
- β-OHが0.15mm-1以上である、請求項1~18のいずれか一項に記載の熱線吸収ガラス板。
- ガラス原料を溶融し、成形するソーダライムシリカガラスの製造において、成形後の該ガラスが、請求項1~19のいずれか一項に記載の熱線吸収ガラス板を得る、熱線吸収ガラス板の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580020989.5A CN106232544A (zh) | 2014-04-23 | 2015-04-23 | 热线吸收玻璃板及其制造方法 |
JP2016515201A JP6631512B2 (ja) | 2014-04-23 | 2015-04-23 | 熱線吸収ガラス板およびその製造方法 |
EP15782383.2A EP3135643B1 (en) | 2014-04-23 | 2015-04-23 | Heat-ray-absorbing glass plate and method for producing same |
US15/290,489 US9862637B2 (en) | 2014-04-23 | 2016-10-11 | Heat-ray-absorbing glass plate and method for producing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014089594 | 2014-04-23 | ||
JP2014-089594 | 2014-04-23 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/290,489 Continuation US9862637B2 (en) | 2014-04-23 | 2016-10-11 | Heat-ray-absorbing glass plate and method for producing same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015163412A1 true WO2015163412A1 (ja) | 2015-10-29 |
Family
ID=54332574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/062383 WO2015163412A1 (ja) | 2014-04-23 | 2015-04-23 | 熱線吸収ガラス板およびその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9862637B2 (ja) |
EP (1) | EP3135643B1 (ja) |
JP (1) | JP6631512B2 (ja) |
CN (1) | CN106232544A (ja) |
WO (1) | WO2015163412A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6561983B2 (ja) * | 2014-04-23 | 2019-08-21 | Agc株式会社 | 熱線吸収ガラス板およびその製造方法 |
CN108046587A (zh) * | 2017-12-06 | 2018-05-18 | 海南中航特玻科技有限公司 | 一种强吸收近红外线的节能安全玻璃 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04502304A (ja) * | 1989-08-18 | 1992-04-23 | リビー―オーウェンズ―フォード・カンパニー | 赤外線吸収青色ガラス組成 |
JPH09208254A (ja) * | 1995-11-30 | 1997-08-12 | Central Glass Co Ltd | 紫外線赤外線吸収緑色系ガラス |
JPH10152339A (ja) * | 1996-09-27 | 1998-06-09 | Nippon Sheet Glass Co Ltd | 耐熱性ガラス組成物 |
JP2002293571A (ja) * | 2001-03-30 | 2002-10-09 | Nippon Electric Glass Co Ltd | 照明用ガラス |
JP2005132709A (ja) * | 2003-10-31 | 2005-05-26 | Central Glass Co Ltd | 紫外線赤外線吸収緑色系ガラス |
JP2005162537A (ja) * | 2003-12-03 | 2005-06-23 | Central Glass Co Ltd | 紫外線赤外線吸収緑色系ガラス |
JP2005320225A (ja) * | 2004-04-05 | 2005-11-17 | Nippon Electric Glass Co Ltd | 照明用ガラス |
JP2006265001A (ja) * | 2005-03-22 | 2006-10-05 | Asahi Glass Co Ltd | ガラスおよびガラス製造方法 |
JP2009242131A (ja) * | 2008-03-28 | 2009-10-22 | Nihon Yamamura Glass Co Ltd | アンバーガラス組成物、及びアンバーガラスの製造方法 |
JP2010001216A (ja) * | 2003-10-24 | 2010-01-07 | Schott Ag | リチア−アルミナ−シリカを含むガラス組成物および化学的焼戻しに適したガラスならびに化学的に焼戻しされたガラスを用いて製造される物品 |
JP2011162379A (ja) * | 2010-02-08 | 2011-08-25 | Asahi Glass Co Ltd | 高透過ガラス板およびその製造方法 |
JP2012180262A (ja) * | 2011-02-10 | 2012-09-20 | Nippon Electric Glass Co Ltd | 強化ガラス板 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5069826A (en) * | 1989-08-18 | 1991-12-03 | Libbey-Owens-Ford Co. | Infrared radiation absorbing blue glass composition |
US5688727A (en) * | 1996-06-17 | 1997-11-18 | Ppg Industries, Inc. | Infrared and ultraviolet radiation absorbing blue glass composition |
PT1023245E (pt) | 1997-10-20 | 2005-06-30 | Ppg Ind Ohio Inc | Composicao de vidro azul que absorve radiacao ultravioleta e infravermelha |
US7598190B2 (en) * | 2004-10-29 | 2009-10-06 | Central Glass Company, Limited | Ultraviolet and infrared absorptive greenish glass |
JP2009167018A (ja) | 2006-04-26 | 2009-07-30 | Nippon Sheet Glass Co Ltd | 赤外線吸収ガラス組成物 |
JP5853700B2 (ja) | 2009-10-22 | 2016-02-09 | 旭硝子株式会社 | 熱線吸収ガラス板およびその製造方法 |
BR112012018543A2 (pt) | 2010-01-26 | 2016-05-03 | Asahi Glass Co Ltd | chapa de vidro colorido |
JP5867415B2 (ja) * | 2011-01-25 | 2016-02-24 | 旭硝子株式会社 | 熱線吸収ガラス板およびその製造方法 |
-
2015
- 2015-04-23 WO PCT/JP2015/062383 patent/WO2015163412A1/ja active Application Filing
- 2015-04-23 EP EP15782383.2A patent/EP3135643B1/en active Active
- 2015-04-23 JP JP2016515201A patent/JP6631512B2/ja active Active
- 2015-04-23 CN CN201580020989.5A patent/CN106232544A/zh active Pending
-
2016
- 2016-10-11 US US15/290,489 patent/US9862637B2/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04502304A (ja) * | 1989-08-18 | 1992-04-23 | リビー―オーウェンズ―フォード・カンパニー | 赤外線吸収青色ガラス組成 |
JPH09208254A (ja) * | 1995-11-30 | 1997-08-12 | Central Glass Co Ltd | 紫外線赤外線吸収緑色系ガラス |
JPH10152339A (ja) * | 1996-09-27 | 1998-06-09 | Nippon Sheet Glass Co Ltd | 耐熱性ガラス組成物 |
JP2002293571A (ja) * | 2001-03-30 | 2002-10-09 | Nippon Electric Glass Co Ltd | 照明用ガラス |
JP2010001216A (ja) * | 2003-10-24 | 2010-01-07 | Schott Ag | リチア−アルミナ−シリカを含むガラス組成物および化学的焼戻しに適したガラスならびに化学的に焼戻しされたガラスを用いて製造される物品 |
JP2005132709A (ja) * | 2003-10-31 | 2005-05-26 | Central Glass Co Ltd | 紫外線赤外線吸収緑色系ガラス |
JP2005162537A (ja) * | 2003-12-03 | 2005-06-23 | Central Glass Co Ltd | 紫外線赤外線吸収緑色系ガラス |
JP2005320225A (ja) * | 2004-04-05 | 2005-11-17 | Nippon Electric Glass Co Ltd | 照明用ガラス |
JP2006265001A (ja) * | 2005-03-22 | 2006-10-05 | Asahi Glass Co Ltd | ガラスおよびガラス製造方法 |
JP2009242131A (ja) * | 2008-03-28 | 2009-10-22 | Nihon Yamamura Glass Co Ltd | アンバーガラス組成物、及びアンバーガラスの製造方法 |
JP2011162379A (ja) * | 2010-02-08 | 2011-08-25 | Asahi Glass Co Ltd | 高透過ガラス板およびその製造方法 |
JP2012180262A (ja) * | 2011-02-10 | 2012-09-20 | Nippon Electric Glass Co Ltd | 強化ガラス板 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3135643A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3135643A4 (en) | 2017-11-22 |
EP3135643A1 (en) | 2017-03-01 |
JP6631512B2 (ja) | 2020-01-15 |
US9862637B2 (en) | 2018-01-09 |
EP3135643B1 (en) | 2021-05-26 |
US20170029321A1 (en) | 2017-02-02 |
CN106232544A (zh) | 2016-12-14 |
JPWO2015163412A1 (ja) | 2017-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5867415B2 (ja) | 熱線吸収ガラス板およびその製造方法 | |
JP5853700B2 (ja) | 熱線吸収ガラス板およびその製造方法 | |
US9878937B2 (en) | Heat ray-absorbing glass plate and method for producing same | |
CN108025954A (zh) | 紫外线吸收性玻璃物品 | |
JP5999111B2 (ja) | 着色ガラス板およびその製造方法 | |
JP6561983B2 (ja) | 熱線吸収ガラス板およびその製造方法 | |
WO2015163412A1 (ja) | 熱線吸収ガラス板およびその製造方法 | |
JP5999110B2 (ja) | 着色ガラス板およびその製造方法 | |
JP5999112B2 (ja) | 着色ガラス板およびその製造方法 | |
US9957189B2 (en) | Heat-absorbing glass plate and method for manufacturing same | |
JP7127654B2 (ja) | ガラス板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15782383 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016515201 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015782383 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015782383 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |