WO2015151145A1 - All-solid lithium secondary cell - Google Patents
All-solid lithium secondary cell Download PDFInfo
- Publication number
- WO2015151145A1 WO2015151145A1 PCT/JP2014/059405 JP2014059405W WO2015151145A1 WO 2015151145 A1 WO2015151145 A1 WO 2015151145A1 JP 2014059405 W JP2014059405 W JP 2014059405W WO 2015151145 A1 WO2015151145 A1 WO 2015151145A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- solid
- secondary battery
- lithium secondary
- electrolyte
- Prior art date
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 196
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 195
- 239000007787 solid Substances 0.000 title claims abstract description 94
- 239000011245 gel electrolyte Substances 0.000 claims abstract description 77
- 239000005486 organic electrolyte Substances 0.000 claims abstract description 41
- 239000007773 negative electrode material Substances 0.000 claims abstract description 37
- 229920000642 polymer Polymers 0.000 claims abstract description 33
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 24
- 239000005518 polymer electrolyte Substances 0.000 claims abstract description 9
- 239000000203 mixture Substances 0.000 claims description 90
- 229920001940 conductive polymer Polymers 0.000 claims description 82
- 239000000463 material Substances 0.000 claims description 53
- 238000000034 method Methods 0.000 claims description 45
- 238000004519 manufacturing process Methods 0.000 claims description 23
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims description 18
- 239000002608 ionic liquid Substances 0.000 claims description 16
- 150000001875 compounds Chemical class 0.000 claims description 14
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 7
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 239000003792 electrolyte Substances 0.000 claims description 6
- 238000010030 laminating Methods 0.000 claims description 6
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 5
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 5
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 5
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 5
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 5
- RAXXELZNTBOGNW-UHFFFAOYSA-O Imidazolium Chemical compound C1=C[NH+]=CN1 RAXXELZNTBOGNW-UHFFFAOYSA-O 0.000 claims description 4
- 125000001931 aliphatic group Chemical group 0.000 claims description 4
- 229920002627 poly(phosphazenes) Polymers 0.000 claims description 4
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-O pyridinium Chemical compound C1=CC=[NH+]C=C1 JUJWROOIHBZHMG-UHFFFAOYSA-O 0.000 claims description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims description 3
- 229920002125 Sokalan® Polymers 0.000 claims description 3
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 2
- 238000003475 lamination Methods 0.000 claims description 2
- 239000004584 polyacrylic acid Substances 0.000 claims description 2
- 230000008961 swelling Effects 0.000 claims description 2
- 239000006258 conductive agent Substances 0.000 description 34
- 238000011156 evaluation Methods 0.000 description 18
- 239000007774 positive electrode material Substances 0.000 description 18
- 239000002002 slurry Substances 0.000 description 18
- 229910052782 aluminium Inorganic materials 0.000 description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 15
- 239000011883 electrode binding agent Substances 0.000 description 15
- 229910003002 lithium salt Inorganic materials 0.000 description 15
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 14
- 159000000002 lithium salts Chemical class 0.000 description 14
- 239000000843 powder Substances 0.000 description 14
- 239000002033 PVDF binder Substances 0.000 description 13
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 13
- 239000006230 acetylene black Substances 0.000 description 12
- 239000011149 active material Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 238000012360 testing method Methods 0.000 description 10
- -1 amine compounds Chemical class 0.000 description 9
- 239000011888 foil Substances 0.000 description 9
- 239000002243 precursor Substances 0.000 description 9
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 8
- 239000003960 organic solvent Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 239000003575 carbonaceous material Substances 0.000 description 7
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical compound [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229910001416 lithium ion Inorganic materials 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 150000004645 aluminates Chemical class 0.000 description 4
- 239000011362 coarse particle Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 3
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000002482 conductive additive Substances 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229920003048 styrene butadiene rubber Polymers 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical group [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 229910015645 LiMn Inorganic materials 0.000 description 2
- 229910014689 LiMnO Inorganic materials 0.000 description 2
- 229910012465 LiTi Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- 239000012752 auxiliary agent Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000002322 conducting polymer Substances 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910003480 inorganic solid Inorganic materials 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 229910021382 natural graphite Inorganic materials 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- PYOKUURKVVELLB-UHFFFAOYSA-N trimethyl orthoformate Chemical compound COC(OC)OC PYOKUURKVVELLB-UHFFFAOYSA-N 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 description 1
- VWIIJDNADIEEDB-UHFFFAOYSA-N 3-methyl-1,3-oxazolidin-2-one Chemical compound CN1CCOC1=O VWIIJDNADIEEDB-UHFFFAOYSA-N 0.000 description 1
- OYOKPDLAMOMTEE-UHFFFAOYSA-N 4-chloro-1,3-dioxolan-2-one Chemical compound ClC1COC(=O)O1 OYOKPDLAMOMTEE-UHFFFAOYSA-N 0.000 description 1
- AETJTBDBQRMLLQ-UHFFFAOYSA-N 4-chloro-5-methyl-1,3-dioxolan-2-one Chemical compound CC1OC(=O)OC1Cl AETJTBDBQRMLLQ-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910020724 Li0.34La0.51TiO2.94 Inorganic materials 0.000 description 1
- 229910009274 Li1.4Al0.4Ti1.6 (PO4)3 Inorganic materials 0.000 description 1
- 229910012291 Li3.4V0.6Si0.4O4 Inorganic materials 0.000 description 1
- 229910010242 LiAlGe Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013188 LiBOB Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910013733 LiCo Inorganic materials 0.000 description 1
- 229910010586 LiFeO 2 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910010918 LiLaZrO Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013716 LiNi Inorganic materials 0.000 description 1
- 229910013709 LiNi 1-x M Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- DMEJJWCBIYKVSB-UHFFFAOYSA-N lithium vanadium Chemical compound [Li].[V] DMEJJWCBIYKVSB-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 239000000075 oxide glass Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000098 polyolefin Chemical class 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 125000005463 sulfonylimide group Chemical group 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011366 tin-based material Substances 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/46—Separators, membranes or diaphragms characterised by their combination with electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to an all solid lithium secondary battery.
- An all solid lithium secondary battery using a nonflammable or flame retardant gel electrolyte containing a lithium conductive polymer and an organic electrolyte (hereinafter also referred to as “solid electrolyte”) is a lithium using a liquid electrolyte. Compared with a secondary battery, higher heat resistance is possible. For this reason, the all-solid lithium secondary battery can improve safety and increase the energy density.
- Patent Document 1 describes a secondary battery composed of a positive electrode, a solid electrolyte, and a negative electrode, wherein at least one of the positive electrode and the negative electrode is a polymer whose active material is a polymer.
- a secondary battery characterized by being dispersed in a gel is described.
- Patent Document 2 discloses that in a solid polymer electrolyte in which a positive electrode and a negative electrode including a polymer electrolyte are sandwiched between solid polymer electrolyte layers, a portion of the polymer electrolyte near the current collector of the positive electrode and / or the negative electrode is a gel.
- An electrode for a solid polymer battery characterized in that the polymer electrolyte in a portion near the solid polymer electrolyte layer of the positive electrode and / or the negative electrode is completely solidified.
- an all-solid lithium secondary battery when the concentration of the lithium conductive polymer in the gel electrolyte is high, the viscosity of the gel electrolyte generally increases, and as a result, the gel electrolyte becomes hard.
- a material that can expand and contract during charging such as graphite
- peeling may occur at the interface between the active material and the gel electrolyte when the charge / discharge cycle is repeated. In the above case, the lithium conduction path between the active material and the gel electrolyte is lost. Therefore, in an all-solid lithium secondary battery having a gel electrolyte containing a high concentration of lithium conductive polymer, the resistance may increase with time, and the capacity may decrease. It was difficult.
- an object of the present invention is to provide a high-power all-solid lithium secondary battery.
- the all-solid-state lithium secondary battery of the present invention comprises a gel electrolyte containing a lithium conductive polymer and an organic electrolyte in a range of 0.01 to 15% by mass relative to the total mass, a negative electrode active material, and A negative electrode having an electrode, a positive electrode, and a solid electrolyte disposed between the negative electrode and the positive electrode.
- the method for producing an all solid lithium secondary battery of the present invention also includes forming a gel electrolyte by swelling a lithium conductive polymer with an organic electrolyte to form a gel electrolyte containing the lithium conductive polymer and the organic electrolyte. Process.
- All-solid lithium secondary battery> The present invention relates to an all-solid lithium secondary battery.
- the all-solid-state lithium secondary battery of the present invention needs to include a negative electrode, a positive electrode, and a solid electrolyte disposed between the negative electrode and the positive electrode.
- the negative electrode needs to have a gel electrolyte, a negative electrode active material, and a negative electrode current collector.
- the gel electrolyte and the negative electrode active material contained in the negative electrode constitute a negative electrode mixture layer.
- “gel electrolyte” means an electrolyte in a gel form.
- the gel electrolyte needs to contain a lithium conductive polymer and an organic electrolyte.
- the gel electrolyte is preferably in a form in which a lithium conductive polymer is swollen with an organic electrolyte, that is, in a gel form.
- the present inventors have obtained an all-solid lithium secondary as a result. It has been found that the output of the battery is improved.
- the reason why the all solid lithium secondary battery of the present invention has the above-described characteristics can be explained as follows. Note that the present invention is not limited to the following actions and principles.
- the active material and the gel electrolyte may be separated, and a gap may be generated between the active material and the gel electrolyte.
- This phenomenon can occur remarkably when a material that can expand and contract during charging is used as the active material or conductive agent. If such voids occur, the lithium conduction path between the active material or conductive agent and the gel electrolyte may be lost, increasing the resistance and consequently reducing the capacity.
- the all solid lithium secondary battery of the present invention uses a gel electrolyte containing a lithium conductive polymer at a lower concentration than the conventional product. The viscosity of the lithium conducting polymer usually increases depending on its concentration.
- the gel electrolyte used for the all-solid-state lithium secondary battery of the present invention has a low viscosity as compared with the conventional product. Since the low-viscosity gel electrolyte has high fluidity, it can flow corresponding to the expansion and contraction of the active material or the conductive agent, and can substantially suppress the formation of voids. In the present specification, the above effect may be referred to as “a void filling effect”. As described above, the all-solid-state lithium secondary battery of the present invention exhibits high output without reducing the capacity even when the charge / discharge cycle is repeated over a long period of time due to the void filling effect by the lithium conductive polymer. can do.
- the lithium conductive polymer can be used without particular limitation as long as it is a material usually used in the technical field.
- Polymer compounds used in solid electrolytes such as polyiminophosphoranes and ionic liquid polymers (for example, polymers of imidazolium ionic liquid, pyridinium ionic liquid or aliphatic ionic liquid); polyvinyl alcohol, polyethylene glycol, polypropylene glycol , Polyvinylpyrrolidone, styrene-maleic anhydride copolymer, water-soluble polymer compounds such as methylcellulose, carboxymethylcellulose and hydroxyethylcellulose; crosslinkable polymer compounds such as styrene-butadiene rubber It can be given as well as high molecular amine compounds; olefin polymer compounds such as polyethylene and polypropylene; fluorine-based resin such as polyvinylidene fluoride and polytetrafluoroethylene.
- polyiminophosphoranes and ionic liquid polymers for example, polymers of imidazolium ionic liquid, pyridinium ionic
- the lithium conductive polymer may be in the form of a hydrolyzate, a cross-linked reaction product or an acid-modified product such as the above-mentioned polymer, or a modified product, or a neutralized salt with an acid or a base.
- it may be in the form of a salt such as a metal salt.
- the form of the copolymer of the monomer which comprises the polymer mentioned above may be sufficient. In either case, it can be used as a lithium conductive polymer in the present invention.
- the lithium conductive polymer includes polyethylene oxide (PEO), polyacrylonitrile (PAN), polyacrylic acid (PAA), polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), polyphosphazene, polyiminophosphorane, and ionic liquid polymer.
- PEO polyethylene oxide
- PAN polyacrylonitrile
- PAA polyacrylic acid
- PVA polyvinyl alcohol
- PVP polyvinylpyrrolidone
- polyphosphazene polyiminophosphorane
- ionic liquid polymer ionic liquid polymer
- Particularly preferred lithium conducting polymers are those of the following formula: (In the formula, n, m, x and y are each independently an integer in the range of 1 to 10,000.) At least one polymer selected from the group consisting of compounds represented by:
- the polymer described above is chemically and / or electrochemically stable with respect to other materials such as an organic electrolyte solution or a solid electrolyte contained in the all solid lithium secondary battery of the present invention.
- the polymer is stable with respect to materials and / or conditions used in the method for producing an all solid lithium secondary battery of the present invention described below.
- the polymer does not substantially dissolve and / or peel off due to the binder or the organic solvent used in the method for producing the all solid lithium secondary battery of the present invention. Therefore, by using the polymer as a lithium conductive polymer, the all solid lithium secondary battery of the present invention can be stably manufactured and used stably.
- the average molecular weight of the lithium conductive polymer is preferably in the range of 1000 to 400000, more preferably in the range of 5000 to 400000, and particularly preferably in the range of 10000 to 300000.
- lithium conductive polymers may aggregate in the method for producing an all solid lithium secondary battery of the present invention described below. . In this case, a good electron conduction path is not formed, and the output of the resulting all-solid lithium secondary battery may be reduced.
- the average molecular weight of the lithium conductive polymer exceeds the upper limit of the above range, the viscosity becomes high, which may make it difficult to fill the voids of the active material or the conductive agent with the lithium conductive polymer. . In this case, the void filling effect by the lithium conductive polymer is reduced, and it may be difficult to increase the output of the resulting all-solid lithium secondary battery. Therefore, when the average molecular weight of the lithium conductive polymer is in the above range, the output of the resulting all solid lithium secondary battery can be improved.
- the content of the lithium conductive polymer is defined by the following formula.
- the content of the lithium conductive polymer needs to be in the range of 0.01 to 15% by mass with respect to the total mass of the gel electrolyte.
- the content of the lithium conductive polymer is preferably in the range of 3 to 12% by mass and more preferably in the range of 5 to 10% by mass with respect to the total mass of the gel electrolyte.
- the viscosity becomes low. For this reason, when the all-solid-state lithium secondary battery of this invention receives an impact, the liquid retention property of the gel electrolyte inside a battery becomes low, and this gel electrolyte may detach
- the battery performance of the resulting all solid lithium secondary battery may be reduced.
- the content of the lithium conductive polymer exceeds the upper limit of the above range, the viscosity increases. For this reason, fluidity
- the lithium conduction path between the active material or conductive agent in the negative electrode and the gel electrolyte is lost, the resistance increases, and the capacity of the resulting all-solid lithium secondary battery may decrease. There is. Therefore, when the content of the lithium conductive polymer is in the above range, the output of the resulting all solid lithium secondary battery can be improved.
- the characteristics of the output and resistance of the all-solid lithium secondary battery of the present invention can be evaluated based on, for example, the capacity maintenance ratio and the DC resistance value determined by the following evaluation test.
- the all-solid-state lithium secondary battery of this invention charges / discharges with a specific charging / discharging rate, and discharge in each cycle when performing initial charge capacity and N cycle (for example, 50 or 100 cycles) charge / discharge repeatedly Measure capacity.
- N cycle for example, 50 or 100 cycles
- charge / discharge charge / discharge repeatedly Measure capacity.
- the voltage difference and electric current value when it discharges for 10 second are measured.
- the capacity retention ratio and the direct current resistance of the all solid lithium secondary battery of the present invention are determined.
- the organic electrolyte can be used without particular limitation as long as it is a material that is usually used in the technical field.
- examples of the organic electrolyte include, but are not limited to, propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, gamma butyrolactone, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, trimethoxymethane, 1,2-dimethoxyethane.
- 1,2-diethoxyethane 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethyl sulfoxide, dioxolane (eg 1,3-dioxolane), formamide, dimethylformamide, methyl propionate, ethyl propionate, phosphate triester, diethyl ether, Sulfolane, 3-methyl-2-oxazolidinone, chloroethylene carbonate, chloropropylene carbonate, imidazolium ionic liquid, pyridinium ionic liquid And aliphatic ionic liquids, and mixtures thereof.
- dioxolane eg 1,3-dioxolane
- formamide dimethylformamide
- methyl propionate ethyl propionate
- phosphate triester diethyl ether
- Sulfolane 3-methyl-2-oxazolidinone
- chloroethylene carbonate chloropropylene carbonate
- the organic electrolyte is at least one compound selected from the group consisting of propylene carbonate, ethylene carbonate, gamma-butyrolactone, imidazolium ionic liquid, pyridinium ionic liquid and aliphatic ionic liquid, and mixtures thereof. Of these, propylene carbonate is more preferable.
- the all-solid-state lithium secondary battery of the present invention has a gel electrolyte that is a gel-like electrolyte. When the gel electrolyte does not contain an organic electrolyte, the lithium conductive polymer does not swell sufficiently, and it may be difficult to make the electrolyte in a gel form.
- the lithium conductive polymer can be swollen so that the electrolyte can be in a gel form.
- the organic electrolyte described above is chemically and / or electrochemically stable with respect to other materials such as a lithium conductive polymer or a solid electrolyte contained in the all solid lithium secondary battery of the present invention. . Further, the organic electrolyte is stable with respect to materials and / or conditions used in the method for producing the all solid lithium secondary battery of the present invention described below. Therefore, by using the organic electrolyte, the all solid lithium secondary battery of the present invention can be stably produced and used stably.
- the gel electrolyte usually contains a lithium salt in addition to the lithium conductive polymer and the organic electrolyte.
- the lithium salt include, but are not limited to, for example, LiPF 6, LiBF 4, LiClO 4, LiCF 3 SO 3, LiCF 3 CO 2, LiBOB, LiAsF 6, LiSbF 6, and lithium bis (fluorosulfonyl) imide ( LiFSI) or an imide salt of lithium such as lithium trifluoromethanesulfonylimide.
- the lithium salt used in the all solid lithium secondary battery of the present invention is preferably at least one lithium salt selected from the group consisting of the above lithium salt compounds and mixtures thereof.
- the negative electrode active material is a material in which lithium ions are inserted and desorbed by a lithium ion insertion and desorption reaction or a conversion reaction in the charge and discharge process.
- the negative electrode active material can be used without particular limitation as long as it is a material that is normally used in this technical field and capable of reversibly inserting and extracting lithium ions.
- Examples of the negative electrode active material include, but are not limited to, for example, carbon materials, silicon-based materials (for example, Si or SiO), tin-based materials, lithium titanate and lithium vanadium composite oxides with or without a substitution element. And alloys of lithium with one or more other metals (eg, tin, aluminum or antimony).
- the carbon material is natural graphite, a composite carbonaceous material in which a film is formed on the surface of natural graphite by a dry CVD method or a wet spray method, a resin material such as epoxy or phenol, or a pitch-based material obtained from petroleum or coal.
- the raw material include artificial graphite produced by firing, non-graphitizable carbon material, and the like.
- the negative electrode active material is preferably a carbon material or lithium titanate.
- the negative electrode active material may be used in the form of a mixture containing one or more of the materials as desired.
- the negative electrode active material is usually used in the form of powder.
- the particle size of the negative electrode active material powder is usually equal to or less than the thickness of the negative electrode mixture layer containing the gel electrolyte and the negative electrode active material.
- the coarse particles are removed beforehand by means such as sieving classification or wind classification, and particles having a thickness equal to or less than the thickness of the negative electrode mixture layer Is preferably used.
- the negative electrode mixture layer usually contains a negative electrode conductive agent and a negative electrode binder in addition to the gel electrolyte and the negative electrode active material.
- the negative electrode conductive agent is a material used to supplement the electrical conductivity of the negative electrode active material.
- the negative electrode conductive agent may be referred to as a conductive additive.
- the negative electrode conductive agent include, but are not limited to, carbon materials such as acetylene black, carbon black, graphite, and amorphous carbon.
- the negative electrode conductive agent is usually used in the form of a powder.
- the negative electrode active material is a metal oxide
- the negative electrode active material itself has high electrical resistance. Therefore, the electrical conductivity of the negative electrode mixture layer can be ensured by including the negative electrode conductive agent having electric conductivity in the negative electrode mixture layer together with the negative electrode active material.
- the negative electrode binder is a material used for bonding the negative electrode active material and the negative electrode conductive agent contained in the negative electrode mixture layer and bonding the negative electrode mixture layer to the negative electrode current collector.
- the negative electrode binder include, but are not limited to, styrene-butadiene rubber, carboxymethyl cellulose, polyvinylidene fluoride (PVDF), and a mixture thereof.
- the negative electrode active material and the negative electrode conductive agent are usually used in the form of powder. Therefore, by including the negative electrode binder in the negative electrode mixture layer together with the negative electrode active material and the negative electrode conductive agent, the adhesion of the negative electrode mixture layer material is improved and the negative electrode mixture layer is adhered to the negative electrode current collector. be able to.
- the negative electrode current collector can be used without particular limitation as long as it is a material usually used in the technical field.
- Examples of the negative electrode current collector include, but are not limited to, materials such as aluminum, stainless steel, and titanium.
- the material of the negative electrode current collector is preferably aluminum.
- the positive electrode usually has a gel electrolyte containing a lithium conductive polymer and an organic electrolyte, a positive electrode active material, a positive electrode conductive agent, a positive electrode binder, and a positive electrode current collector.
- the positive electrode conductive agent, the positive electrode binder, and the positive electrode active material included in the positive electrode constitute a positive electrode mixture layer.
- the lithium conductive polymer and the organic electrolyte contained in the positive electrode mixture layer may be the same material as the lithium conductive polymer and the organic electrolyte contained in the negative electrode mixture layer, and are different from each other. It may be a material.
- the lithium conductive polymer and the organic electrolyte contained in the positive electrode mixture layer can be appropriately selected from the materials contained in the positive electrode mixture layer described above.
- the positive electrode current collector can be used without particular limitation as long as it is a material usually used in the technical field.
- the positive electrode current collector include, but are not limited to, materials such as aluminum, stainless steel, and titanium.
- the material of the positive electrode current collector is preferably aluminum.
- the positive electrode active material is a material into which lithium ions are desorbed in the charging process and lithium ions desorbed from the negative electrode active material in the negative electrode mixture layer are inserted in the discharging process.
- the positive electrode active material can be used without particular limitation as long as it is a material that can be reversibly inserted and desorbed reversibly, which is usually used in the art.
- the positive electrode active material examples include, but are not limited to, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 3 , LiMn 2 O 3 , LiMnO 2 , Li 4 Mn 5 O 12 and LiMn 2-x M x O 2 (wherein M is at least one metal selected from the group consisting of Co, Ni, Fe, Cr, Zn and Ti, and x is 0.01 to 0.2), Li 2 Mn 3 MO 8 (Wherein M is at least one metal selected from the group consisting of Fe, Co, Ni, Cu and Zn), Li 1-x A x Mn 2 O 4 (wherein A is Mg) , B, Al, Fe, Co, Ni, Cr, Zn and Ca, and at least one metal selected from the group consisting of 0.01 to 0.1), LiNi 1-x M x O 2 ( In the formula, M is at least one metal selected from the group consisting of Co, Fe and Ga, and x is 0.01 to 0.2), LiFeO 2
- the positive electrode active material is usually used in the form of a powder.
- the particle size of the positive electrode active material powder is usually equal to or less than the thickness of the positive electrode mixture layer.
- the coarse particles are removed in advance by means such as sieving classification or wind classification, and particles having a thickness equal to or less than the thickness of the positive electrode mixture layer Is preferably used.
- the positive electrode conductive agent is a material used to supplement the electrical conductivity of the positive electrode active material.
- the positive electrode conductive agent may be described as a conductive additive.
- the positive electrode conductive agent include, but are not limited to, carbon materials such as acetylene black, carbon black, graphite, and amorphous carbon.
- the positive electrode conductive agent is usually used in the form of a powder.
- the positive electrode active material is usually a metal oxide. For this reason, the positive electrode active material itself has a high electrical resistance. Therefore, by including the positive electrode conductive agent having electric conductivity in the positive electrode mixture layer together with the positive electrode active material, the electric conductivity of the positive electrode mixture layer can be ensured.
- the positive electrode binder is a material used for bonding the positive electrode active material and the positive electrode conductive agent contained in the positive electrode mixture layer and bonding the positive electrode mixture layer to the positive electrode current collector.
- the positive electrode binder include, but are not limited to, styrene-butadiene rubber, carboxymethyl cellulose, polyvinylidene fluoride (PVDF), and a mixture thereof.
- the positive electrode active material and the positive electrode conductive agent are usually used in the form of powder. Therefore, by including the positive electrode binder in the positive electrode mixture layer together with the positive electrode active material and the positive electrode conductive agent, the adhesion of the positive electrode mixture layer material is improved and the positive electrode mixture layer is brought into close contact with the positive electrode current collector. be able to.
- the solid electrolyte can be used without particular limitation as long as it is a material usually used in the technical field. From the viewpoint of safety, a nonflammable inorganic solid electrolyte is preferable.
- the solid electrolyte include, but are not limited to, Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 , LiAlGe (PO 4 ) 3 , Li 3.4 V 0.6 Si 0.4 O 4 and Li 2 P 2 O 6 .
- Oxide glass perovskite oxides such as Li 0.34 La 0.51 TiO 2.94 , garnet oxides such as LiLaZrO 2 , sulfonylimide-based solids such as lithium bis (fluorosulfonyl) imide (LiFSI) or lithium trifluoromethanesulfonylimide Examples thereof include electrolytes, sulfide-based inorganic solid electrolytes, and polymer electrolytes.
- the oxide may optionally contain a lithium halide such as LiCl or LiI. If desired, the solid electrolyte may be used in the form of a mixture containing one or more of the above materials.
- FIG. 1 is a cross-sectional view of an all-solid lithium secondary battery according to an embodiment of the present invention.
- FIG. 2 is a cross-sectional view of a main part of an all solid lithium secondary battery according to an embodiment of the present invention.
- an all solid lithium secondary battery 100 of the present invention includes a negative electrode 80, a positive electrode 70, and a solid electrolyte 50 disposed between the negative electrode 80 and the positive electrode 70.
- the negative electrode 80 includes a negative electrode current collector 20 and a negative electrode mixture layer 60.
- the negative electrode mixture layer 60 includes a gel electrolyte containing a lithium conductive polymer and an organic electrolyte, and a negative electrode active material.
- the positive electrode 70 includes the positive electrode current collector 10 and the positive electrode mixture layer 40.
- the all solid lithium secondary battery 100 of the present invention is usually housed in a battery case 30.
- the negative electrode mixture layer 60 and the positive electrode mixture layer 40 may have a laminated structure composed of a plurality of layers.
- the positive electrode current collector 10 is electrically connected to the positive electrode mixture layer 40.
- the positive electrode current collector 10 is usually an aluminum foil having a thickness of 10 to 100 mm, an aluminum perforated foil having a thickness of 10 to 100 mm and a hole diameter of 0.1 to 10 mm, an expanded metal, or a foam metal plate, etc. Is used.
- the positive electrode current collector can be used without particular limitation as long as it has a shape usually used in the technical field.
- the negative electrode current collector 20 is electrically connected to the negative electrode mixture layer 60.
- a copper foil having a thickness of 10 to 100 mm, a copper perforated foil having a thickness of 10 to 100 mm and a hole diameter of 0.1 to 10 mm, an expanded metal, or a foam metal plate is usually used. Is done.
- the negative electrode current collector can be used without particular limitation as long as it has a shape usually used in the technical field.
- Battery case 30 accommodates positive electrode current collector 10, negative electrode current collector 20, positive electrode mixture layer 40, solid electrolyte layer 50, and negative electrode mixture layer 60.
- the shape of the battery case 30 is a cylindrical shape, a flat oval shape, a flat oval shape, a square shape, or the like according to the shape of the electrode group composed of the positive electrode mixture layer 40, the solid electrolyte layer 50, and the negative electrode mixture layer 60. May be selected.
- the material of the battery case 30 is selected from materials that are corrosion resistant to the non-aqueous electrolyte, such as aluminum, stainless steel, or nickel-plated steel.
- the negative electrode mixture layer 60 includes a negative electrode active material 62, a lithium conductive polymer 63, a negative electrode conductive agent 64, a lithium salt 65, and an organic electrolyte. And a gel electrolyte containing 66.
- the negative electrode mixture layer 60 is disposed so as to be sandwiched between the negative electrode current collector 20 and the solid electrolyte layer 50.
- the negative electrode mixture layer 60 used in the all solid lithium secondary battery of the present invention has a low viscosity as compared with a conventional product, and thus has high fluidity.
- the negative electrode active material 62 and / or the negative electrode conductive agent 64 expands and contracts by repeating the charge / discharge cycle, the negative electrode active material 62 and / or the negative electrode conductive agent 64 and the lithium conductive polymer 63, the negative electrode conductive agent 64, the formation of voids between the gel electrolyte containing the lithium salt 65 and the organic electrolyte 66 can be substantially suppressed.
- the all-solid lithium secondary battery of the present invention can exhibit high output without decreasing its capacity even when the charge / discharge cycle is repeated over a long period of time. Therefore, it is possible to apply the all solid lithium secondary battery of the present invention to the use of a stationary lithium secondary battery such as a power storage battery.
- the present invention also relates to a method for producing an all-solid lithium secondary battery.
- the method for producing an all solid lithium secondary battery of the present invention includes a gel electrolyte forming step in which a lithium conductive polymer is swollen with an organic electrolyte to form a gel electrolyte containing the lithium conductive polymer and the organic electrolyte. It is necessary to include.
- This step includes, for example, (i) a step of mixing a lithium conductive polymer with an organic solvent to form a lithium conductive polymer slurry, and removing the organic solvent from the slurry to form a gel electrolyte precursor And a step of impregnating the precursor of the gel electrolyte with an organic electrolyte to form a gel electrolyte.
- the lithium conductive polymer slurry may contain a lithium salt, a negative electrode active material, a negative electrode conductive agent, and a negative electrode binder, if desired. In this case, the slurry of the lithium conductive polymer becomes a slurry of the negative electrode mixture layer material.
- This step can also be carried out as a step including (ii) forming a gel electrolyte by impregnating the precursor of the gel electrolyte with an organic electrolyte and a lithium salt in the step (i).
- the lithium conductive polymer slurry may contain a negative electrode active material, a negative electrode conductive agent, and a negative electrode binder, if desired, but does not contain a lithium salt.
- an organic electrolyte, a lithium salt, a negative electrode active material, a negative electrode conductive agent, and a negative electrode binder are mixed with an organic solvent to conduct lithium. It can also be carried out as a process including a step of forming a slurry of a conductive polymer.
- the lithium conductive polymer slurry is a slurry containing all the materials of the negative electrode mixture layer. Therefore, in the step (iii), it is not necessary to perform the step of forming the gel electrolyte by impregnating the precursor of the gel electrolyte with the organic electrolyte.
- This step can also be carried out as a step of (iv) forming the gel electrolyte in step (i) by impregnating the gel electrolyte precursor with an organic electrolyte under reduced pressure, preferably in a vacuum state. .
- the gel electrolyte can be filled in the voids in the negative electrode mixture layer and / or the voids in the negative electrode active material in a short time. Therefore, by carrying out this step according to step (iv), the battery characteristics of the resulting all-solid lithium secondary battery of the present invention can be improved.
- the organic solvent used in the steps (i) to (iv) is not particularly limited.
- the organic solvent normally used in the said technical field can be used.
- the steps (i) to (iv) can be carried out under heating conditions as desired. Thereby, the gelation reaction of the gel electrolyte containing a lithium conductive polymer and an organic electrolyte can be promoted.
- This step can also be carried out as a step including any combination of the steps (i) to (iv).
- This step can also be carried out as a step of repeating a desired step a plurality of times in the steps (i) to (iv).
- the negative electrode which has a some electrode compound-material layer can be formed.
- the lithium conductive polymer, organic electrolyte, lithium salt, negative electrode active material, negative electrode conductive agent and negative electrode binder used in this step are appropriately selected from the materials for the all-solid lithium secondary battery of the present invention described above. can do.
- the method for producing an all solid lithium secondary battery of the present invention preferably further includes a material laminating step of laminating the lithium conductive polymer and the negative electrode active material on the negative electrode current collector before the gel electrolyte forming step. .
- the step of forming the precursor of the gel electrolyte is performed by applying a lithium conductive polymer slurry containing a lithium conductive polymer and an organic solvent to the surface of the negative electrode current collector.
- the step of laminating and removing the organic solvent from the slurry to form a gel electrolyte precursor on the surface of the negative electrode current collector can be carried out.
- the means for laminating the lithium conductive polymer slurry on the surface of the negative electrode current collector is not limited, and examples thereof include a doctor blade method, a dipping method, a spray method or a screen printing method. Can do.
- the step of forming the gel electrolyte precursor on the surface of the negative electrode current collector is not limited.
- the gel electrolyte precursor is applied to the surface of the negative electrode current collector by means of a roll press or the like. It can be carried out by pressing. By carrying out this step, the resulting negative electrode composite material layer in the all solid lithium secondary battery of the present invention can be formed into a desired shape.
- the negative electrode current collector used in this step can be appropriately selected from the materials of the all solid lithium secondary battery of the present invention described above.
- the positive electrode can be formed by a method usually used in the art.
- the material for the positive electrode can be appropriately selected from the materials for the all solid lithium secondary battery of the present invention described above.
- the positive electrode is preferably formed by applying the same procedure as the gel electrolyte forming step and the material laminating step described above. By applying the same procedure as that for the negative electrode to the formation of the positive electrode, the all solid lithium secondary battery of the present invention can be efficiently produced.
- LTO LiTi 4 O 12
- AB acetylene black
- PVDF polyvinylidene fluoride
- the polymer 1 was prepared as a lithium conductive polymer so as to have the above-described solid component mass ratio.
- LTO was prepared as a powder having an average particle diameter of 20 ⁇ m, AB as a powder, PVDF as an NMP solution, and Polymer 1 as an NMP solution prepared by the above procedure.
- the above materials were mixed in an agate mortar to prepare a slurry of the negative electrode mixture layer material. Thereafter, the slurry was applied to the surface of an aluminum foil having a thickness of 20 ⁇ m. The coated aluminum foil was left in a drier set at a temperature of 80 ° C., and NMP contained in the slurry was distilled off. The obtained aluminum foil was punched into a circle having a diameter of 15 mm together with the negative electrode mixture layer formed on the surface. The punched circular material was uniaxially pressed from above and below to obtain a negative electrode in which a negative electrode mixture layer having a density of about 1.6 cm / cm 3 was formed on the surface of the negative electrode current collector.
- the produced negative electrode was put in a container in which about 1 ml of propylene carbonate (PC) (organic electrolyte solution) was previously injected, and the entire negative electrode was placed in contact with the PC.
- PC propylene carbonate
- the whole container was depressurized to be in a vacuum state for 1 minute. By the decompression operation, PC was impregnated into the negative electrode mixture layer. After 30 minutes, the negative electrode was removed from the container. The obtained negative electrode was left in a glove box to evaporate PC remaining on the surface of the negative electrode. By the said operation, the negative electrode in which the gel electrolyte was formed was obtained.
- the amount of PC evaporation was adjusted so that the gel concentration defined by the following formula was 10% by mass.
- LiCoO 2 as a positive electrode active material
- 5 parts by mass of acetylene black (AB) as a conductive additive 5 parts by mass of polyvinylidene fluoride (PVDF) as a positive electrode binder
- 10 parts by mass of polymer 1 as lithium As a conductive polymer, it prepared so that it might become said solid component mass ratio.
- LiCoO 2 was prepared as a powder having an average particle size of 10 ⁇ m, AB as a powder, PVDF as an NMP solution, and Polymer 1 as an NMP solution prepared by the above procedure. The above materials were mixed in an agate mortar to prepare a slurry of the positive electrode mixture layer material.
- the slurry was applied to the surface of an aluminum foil having a thickness of 20 ⁇ m.
- the coated aluminum foil was left in a drier set at a temperature of 80 ° C., and NMP contained in the slurry was distilled off.
- the obtained aluminum foil was punched into a circle having a diameter of 15 mm together with the positive electrode mixture layer formed on the surface.
- the punched circular material was uniaxially pressed from above and below to obtain a positive electrode in which a positive electrode mixture layer having a density of about 1.6 cm / cm 3 was formed on the surface of the positive electrode current collector.
- the produced positive electrode was put in a container in which about 1 ml of propylene carbonate (PC) (organic electrolyte solution) was injected in advance, and the entire positive electrode was placed in contact with the PC.
- PC propylene carbonate
- the whole container was depressurized to be in a vacuum state for 1 minute.
- the positive electrode mixture layer was impregnated with PC.
- the positive electrode was taken out of the container.
- the obtained positive electrode was left in a glove box to evaporate PC remaining on the surface of the positive electrode.
- a positive electrode on which a gel electrolyte was formed was obtained.
- the amount of PC evaporation was adjusted so that the gel concentration defined by the above formula was 10% by mass.
- Example 2 The production of the all-solid-state lithium secondary battery of Example 2 was the same as the procedure of Example 1, except that the concentration of the lithium conductive polymer in the gel electrolyte of the negative electrode mixture layer and the positive electrode mixture layer was changed to 5% by mass. was performed in the same procedure as described above.
- Example 3 The production of the all-solid-state lithium secondary battery of Example 3 was the same as that of Example 1, except that the concentration of the lithium conductive polymer in the gel electrolyte of the negative electrode mixture layer and the positive electrode mixture layer was changed to 12% by mass. Was performed in the same procedure as described above.
- Example 4 The production of the all-solid lithium secondary battery of Example 4 was performed except that the concentration of the lithium conductive polymer in the gel electrolyte of the negative electrode mixture layer and the positive electrode mixture layer was changed to 3% by mass in the procedure of Example 1. Was performed in the same procedure as described above.
- Example 5 Production of the all-solid-state lithium secondary battery of Example 5 was the same as that of Example 1, except that the concentration of the lithium conductive polymer in the gel electrolyte of the negative electrode mixture layer and the positive electrode mixture layer was changed to 15% by mass. Was performed in the same procedure as described above.
- Example 6 The production of the all-solid-state lithium secondary battery of Example 6 was the same as that of Example 1, except that the concentration of the lithium conductive polymer in the gel electrolyte of the negative electrode mixture layer and the positive electrode mixture layer was changed to 0.01% by mass. Was performed in the same procedure as described above.
- Example 7 Preparation of the all-solid-state lithium secondary battery of Example 7 was carried out in the procedure of Example 1, with the lithium conductive polymer in the gel electrolyte of the negative electrode mixture layer and the positive electrode mixture layer represented by the following formula (II): (In the formula, n are each independently an integer in the range of 1 to 10,000.) The procedure was the same as described above except that the compound was changed to the compound represented by (average molecular weight: 300,000).
- Example 8 In the production of the all solid lithium secondary battery of Example 8, in the procedure of Example 1, the lithium conductive polymer in the gel electrolyte of the negative electrode mixture layer and the positive electrode mixture layer was expressed by the following formula (III): (Wherein x and y are each independently an integer ranging from 1 to 10000) The procedure was the same as described above except that the compound was changed to the compound represented by (average molecular weight: 300,000).
- Example 9 The all-solid lithium secondary battery of Example 9 was prepared by replacing the lithium conductive polymer in the gel electrolyte of the negative electrode mixture layer and the positive electrode mixture layer with the following formula (IV) in the procedure of Example 1. (In the formula, n are each independently an integer in the range of 1 to 10,000.) The procedure was the same as described above except that the compound was changed to the compound represented by (average molecular weight: 300,000).
- Example 10 The all-solid lithium secondary battery of Example 10 was prepared in the same manner as described above except that the charge / discharge rate in the evaluation test of electrochemical characteristics was changed to 0.1 C in the procedure of Example 1.
- Example 11 The all-solid lithium secondary battery of Example 11 was prepared in the same manner as described above, except that the charge / discharge rate in the electrochemical property evaluation test was changed to 0.5 C in the procedure of Example 1.
- Example 12 The all-solid lithium secondary battery of Example 12 was produced in the same manner as described above, except that the charge / discharge rate in the electrochemical property evaluation test was changed to 0.1 C in the procedure of Example 7.
- Example 13 The all-solid lithium secondary battery of Example 13 was prepared in the same manner as described above, except that the charge / discharge rate in the evaluation test of electrochemical characteristics was changed to 0.1 C in the procedure of Example 8.
- Example 14 The all-solid lithium secondary battery of Example 13 was prepared in the same manner as described above, except that the charge / discharge rate in the evaluation test of electrochemical characteristics was changed to 0.1 C in the procedure of Example 9.
- Comparative Example 1 The production of the all-solid lithium secondary battery of Comparative Example 1 was performed except that the concentration of the lithium conductive polymer in the gel electrolyte of the negative electrode mixture layer and the positive electrode mixture layer was changed to 20% by mass in the procedure of Example 1. Was performed in the same procedure as described above.
- Comparative Example 2 The production of the all-solid lithium secondary battery of Comparative Example 2 was performed except that the concentration of the lithium conductive polymer in the gel electrolyte of the negative electrode mixture layer and the positive electrode mixture layer was changed to 50% by mass in the procedure of Example 1. Was performed in the same procedure as described above.
- Comparative Example 5 The production of the all-solid lithium secondary battery of Comparative Example 5 was carried out in the same manner as in Example 1, except that the composition of the negative electrode layer was 90.6 parts by mass of the negative electrode active material LiTi 4 O 12 , 4.7 parts by mass of the conductive auxiliary agent acetylene black (AB ), And 4.7 parts by mass of PVDF solid component mass ratio, the electrode composition of the positive electrode is 90 parts by mass of positive electrode active material LiCoO 2 , 5 parts by mass of conductive auxiliary agent acetylene black (AB), 5 parts by mass of The procedure was the same as above except that the solid component mass ratio of PVDF was changed.
- Table 1 shows the evaluation test results of the electrochemical characteristics of the all-solid lithium secondary batteries of Examples and Comparative Examples.
- this invention is not limited to an above-described Example, Various modifications are included.
- the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, it is possible to add, delete, and / or replace another configuration with respect to a part of the configuration of each embodiment.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
The present invention addresses problem of providing an all-solid lithium secondary cell having high output. The present invention pertains to an all-solid lithium secondary cell provided with: a negative electrode having a gel electrolyte that contains a lithium electroconductive polymer and organic electrolyte constituting 0.01-15% by mass in relation to the total mass, a negative-electrode active material, and a negative-electrode current collector; a positive electrode; and a solid electrolyte that is interposed between the negative electrode and the positive electrode.
Description
本発明は、全固体リチウム二次電池に関する。
The present invention relates to an all solid lithium secondary battery.
リチウム伝導性高分子及び有機電解液を含有する不燃性又は難燃性のゲル電解質(以下、「固体電解質」とも記載する)を用いた全固体リチウム二次電池は、液体形態の電解質を用いるリチウム二次電池と比較して、高耐熱化が可能である。このため、全固体リチウム二次電池は、安全性を向上できるとともに、高エネルギー密度化が可能である。
An all solid lithium secondary battery using a nonflammable or flame retardant gel electrolyte containing a lithium conductive polymer and an organic electrolyte (hereinafter also referred to as “solid electrolyte”) is a lithium using a liquid electrolyte. Compared with a secondary battery, higher heat resistance is possible. For this reason, the all-solid lithium secondary battery can improve safety and increase the energy density.
ゲル電解質を用いた全固体リチウム二次電池の例として、特許文献1は、正極、固体電解質、及び負極から構成される二次電池において、前記正極又は負極の少なくとも一方が、その活物質がポリマーゲルに分散したものであることを特徴とする二次電池を記載する。
As an example of an all-solid lithium secondary battery using a gel electrolyte, Patent Document 1 describes a secondary battery composed of a positive electrode, a solid electrolyte, and a negative electrode, wherein at least one of the positive electrode and the negative electrode is a polymer whose active material is a polymer. A secondary battery characterized by being dispersed in a gel is described.
特許文献2は、高分子電解質を含む正極及び負極が、固体高分子電解質層を挟んで構成される固体高分子電解質において、正極及び/又は負極の集電体に近い部分の高分子電解質がゲル化されており、正極及び/又は負極の固体高分子電解質層に近い部分の高分子電解質が全固体化されていることを特徴とする固体高分子電池用電極を記載する。
Patent Document 2 discloses that in a solid polymer electrolyte in which a positive electrode and a negative electrode including a polymer electrolyte are sandwiched between solid polymer electrolyte layers, a portion of the polymer electrolyte near the current collector of the positive electrode and / or the negative electrode is a gel. An electrode for a solid polymer battery, characterized in that the polymer electrolyte in a portion near the solid polymer electrolyte layer of the positive electrode and / or the negative electrode is completely solidified.
全固体リチウム二次電池において、ゲル電解質中のリチウム伝導性高分子の濃度が高い場合、一般にゲル電解質の粘度が高くなり、結果としてゲル電解質が硬くなる。例えば、黒鉛のように、充電時に膨張収縮し得る材料を活物質として使用する場合、充放電サイクルを繰り返すと、活物質とゲル電解質との界面に剥離が生じる可能性がある。前記の場合、活物質とゲル電解質との間のリチウム伝導パスが失われることとなる。それ故、高濃度のリチウム伝導性高分子を含有するゲル電解質を有する全固体リチウム二次電池においては、経時的に抵抗が増加して、容量が減少する可能性があることから、高出力化が困難であった。
In an all-solid lithium secondary battery, when the concentration of the lithium conductive polymer in the gel electrolyte is high, the viscosity of the gel electrolyte generally increases, and as a result, the gel electrolyte becomes hard. For example, when a material that can expand and contract during charging, such as graphite, is used as the active material, peeling may occur at the interface between the active material and the gel electrolyte when the charge / discharge cycle is repeated. In the above case, the lithium conduction path between the active material and the gel electrolyte is lost. Therefore, in an all-solid lithium secondary battery having a gel electrolyte containing a high concentration of lithium conductive polymer, the resistance may increase with time, and the capacity may decrease. It was difficult.
それ故、本発明は、高出力の全固体リチウム二次電池を提供することを目的とする。
Therefore, an object of the present invention is to provide a high-power all-solid lithium secondary battery.
前記課題を解決するため、本発明の全固体リチウム二次電池は、総質量に対して0.01~15質量%の範囲のリチウム伝導性高分子及び有機電解液を含有するゲル電解質、負極活物質並びに電極を有する負極と、正極と、該負極及び該正極の間に配置された固体電解質とを備える。
In order to solve the above problems, the all-solid-state lithium secondary battery of the present invention comprises a gel electrolyte containing a lithium conductive polymer and an organic electrolyte in a range of 0.01 to 15% by mass relative to the total mass, a negative electrode active material, and A negative electrode having an electrode, a positive electrode, and a solid electrolyte disposed between the negative electrode and the positive electrode.
本発明の全固体リチウム二次電池の製造方法はまた、リチウム伝導性高分子を有機電解液で膨潤させて、リチウム伝導性高分子及び有機電解液を含有するゲル電解質を形成させる、ゲル電解質形成工程を含む。
The method for producing an all solid lithium secondary battery of the present invention also includes forming a gel electrolyte by swelling a lithium conductive polymer with an organic electrolyte to form a gel electrolyte containing the lithium conductive polymer and the organic electrolyte. Process.
本発明により、高出力の全固体リチウム二次電池を提供することが可能となる。
According to the present invention, it is possible to provide a high-power all-solid lithium secondary battery.
前記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
Issues, configurations, and effects other than those described above will be clarified by the following description of embodiments.
以下、本発明の好ましい実施形態について詳細に説明する。以下では、適宜、図面等を用いて、本発明の実施形態について説明する。以下の説明は、本発明の内容の具体例を示すものである。本発明は、以下の説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において、当業者による様々な変更及び修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。
Hereinafter, preferred embodiments of the present invention will be described in detail. Hereinafter, embodiments of the present invention will be described as appropriate using the drawings and the like. The following description shows specific examples of the contents of the present invention. The present invention is not limited to the following description, and various changes and modifications by those skilled in the art are possible within the scope of the technical idea disclosed in the present specification. In all the drawings for explaining the present invention, components having the same function are denoted by the same reference numerals, and repeated description thereof may be omitted.
<1. 全固体リチウム二次電池>
本発明は、全固体リチウム二次電池に関する。 <1. All-solid lithium secondary battery>
The present invention relates to an all-solid lithium secondary battery.
本発明は、全固体リチウム二次電池に関する。 <1. All-solid lithium secondary battery>
The present invention relates to an all-solid lithium secondary battery.
本発明の全固体リチウム二次電池は、負極と、正極と、該負極及び該正極の間に配置された固体電解質とを備えることが必要である。
The all-solid-state lithium secondary battery of the present invention needs to include a negative electrode, a positive electrode, and a solid electrolyte disposed between the negative electrode and the positive electrode.
本発明の全固体リチウム二次電池において、負極は、ゲル電解質、負極活物質及び負極集電体を有することが必要である。負極に含まれるゲル電解質及び負極活物質は、負極合材層を構成する。本発明において、「ゲル電解質」は、ゲル状の形態の電解質を意味する。前記ゲル電解質は、リチウム伝導性高分子及び有機電解液を含有することが必要である。以下において説明するように、ゲル電解質は、リチウム伝導性高分子が有機電解液で膨潤された形態、すなわちゲル状の形態であることが好ましい。
In the all solid lithium secondary battery of the present invention, the negative electrode needs to have a gel electrolyte, a negative electrode active material, and a negative electrode current collector. The gel electrolyte and the negative electrode active material contained in the negative electrode constitute a negative electrode mixture layer. In the present invention, “gel electrolyte” means an electrolyte in a gel form. The gel electrolyte needs to contain a lithium conductive polymer and an organic electrolyte. As will be described below, the gel electrolyte is preferably in a form in which a lithium conductive polymer is swollen with an organic electrolyte, that is, in a gel form.
本発明者らは、ゲル電解質に含有されるリチウム伝導性高分子を、従来使用される濃度範囲と比較して低濃度領域で用いて負極を構成する場合、結果として得られる全固体リチウム二次電池の出力が向上することを見出した。本発明の全固体リチウム二次電池が前記のような特性を有する理由は、以下のように説明することができる。なお、本発明は、以下の作用・原理に限定されるものではない。
In the case where the negative electrode is formed by using the lithium conductive polymer contained in the gel electrolyte in a low concentration region as compared with the concentration range conventionally used, the present inventors have obtained an all-solid lithium secondary as a result. It has been found that the output of the battery is improved. The reason why the all solid lithium secondary battery of the present invention has the above-described characteristics can be explained as follows. Note that the present invention is not limited to the following actions and principles.
全固体リチウム二次電池において、充放電サイクルを繰り返すと、活物質及びゲル電解質が剥離して、活物質とゲル電解質との間に空隙が生じる可能性がある。この現象は、充電時に膨張収縮し得る材料を活物質又は導電剤として使用する場合、顕著に発生し得る。このような空隙が生じる場合、活物質又は導電剤とゲル電解質との間のリチウム伝導パスが失われ、抵抗が増加し、結果として容量が減少する可能性がある。これに対し、本発明の全固体リチウム二次電池は、従来品と比較して低濃度のリチウム伝導性高分子を含有するゲル電解質を使用する。リチウム伝導性高分子の粘度は、通常は、その濃度に依存して高くなる。このため、本発明の全固体リチウム二次電池に使用されるゲル電解質は、従来品と比較して低粘度である。低粘度のゲル電解質は、流動性が高くなるため、活物質又は導電剤の膨張収縮に対応して流動し、空隙の形成を実質的に抑制することができる。本明細書において、前記の効果を、「空隙の充填効果」と記載する場合がある。以上のように、本発明の全固体リチウム二次電池は、リチウム伝導性高分子による空隙の充填効果により、長期に亘って充放電サイクルを繰り返しても容量が減少することなく、高出力を発揮することができる。
In an all-solid lithium secondary battery, when the charge / discharge cycle is repeated, the active material and the gel electrolyte may be separated, and a gap may be generated between the active material and the gel electrolyte. This phenomenon can occur remarkably when a material that can expand and contract during charging is used as the active material or conductive agent. If such voids occur, the lithium conduction path between the active material or conductive agent and the gel electrolyte may be lost, increasing the resistance and consequently reducing the capacity. On the other hand, the all solid lithium secondary battery of the present invention uses a gel electrolyte containing a lithium conductive polymer at a lower concentration than the conventional product. The viscosity of the lithium conducting polymer usually increases depending on its concentration. For this reason, the gel electrolyte used for the all-solid-state lithium secondary battery of the present invention has a low viscosity as compared with the conventional product. Since the low-viscosity gel electrolyte has high fluidity, it can flow corresponding to the expansion and contraction of the active material or the conductive agent, and can substantially suppress the formation of voids. In the present specification, the above effect may be referred to as “a void filling effect”. As described above, the all-solid-state lithium secondary battery of the present invention exhibits high output without reducing the capacity even when the charge / discharge cycle is repeated over a long period of time due to the void filling effect by the lithium conductive polymer. can do.
本発明において、リチウム伝導性高分子は、当該技術分野で通常使用される材料であれば、特に制限無く使用することができる。リチウム伝導性高分子としては、限定するものではないが、例えば、ポリエチレンオキシド、ポリプロピレンオキシド、ポリアクリロニトリル及びポリアクリル酸、-P=N-基を有するポリマー(以下、「ポリホスファゼン」とも記載する)、ポリイミノホスホラン及びイオン液体ポリマー(例えば、イミダゾリウム系イオン液体、ピリジニウム系イオン液体又は脂肪族系イオン液体のポリマー)等の固体電解質に用いられる高分子化合物;ポリビニルアルコール、ポリエチレングリコール、ポリプロピレングリコール、ポリビニルピロリドン、スチレン-無水マレイン酸共重合体、メチルセルロース、カルボキシメチルセルロース及びヒドロキシエチルセルロース等の水溶性高分子化合物;スチレン-ブタジエンラバー等の架橋性高分子化合物;ポリエチレン及びポリプロピレン等のオレフィン系高分子化合物;ポリフッ化ビニリデン及びポリテトラフルオルエチレン等のフッ素系樹脂;並びに高分子アミン化合物等を挙げることができる。リチウム伝導性高分子は、前記で挙げた高分子の加水分解物、架橋反応物若しくは酸変性物等の反応物、又は変性物の形態であってもよく、或いは酸若しくは塩基との中和塩又は金属塩等の塩の形態であってもよい。或いは、前記で挙げた高分子を構成するモノマーの共重合体の形態であってもよい。いずれの場合も、本発明において、リチウム伝導性高分子として使用することができる。
In the present invention, the lithium conductive polymer can be used without particular limitation as long as it is a material usually used in the technical field. Examples of the lithium conductive polymer include, but are not limited to, polyethylene oxide, polypropylene oxide, polyacrylonitrile and polyacrylic acid, a polymer having a -P = N- group (hereinafter also referred to as "polyphosphazene"). , Polymer compounds used in solid electrolytes such as polyiminophosphoranes and ionic liquid polymers (for example, polymers of imidazolium ionic liquid, pyridinium ionic liquid or aliphatic ionic liquid); polyvinyl alcohol, polyethylene glycol, polypropylene glycol , Polyvinylpyrrolidone, styrene-maleic anhydride copolymer, water-soluble polymer compounds such as methylcellulose, carboxymethylcellulose and hydroxyethylcellulose; crosslinkable polymer compounds such as styrene-butadiene rubber It can be given as well as high molecular amine compounds; olefin polymer compounds such as polyethylene and polypropylene; fluorine-based resin such as polyvinylidene fluoride and polytetrafluoroethylene. The lithium conductive polymer may be in the form of a hydrolyzate, a cross-linked reaction product or an acid-modified product such as the above-mentioned polymer, or a modified product, or a neutralized salt with an acid or a base. Alternatively, it may be in the form of a salt such as a metal salt. Or the form of the copolymer of the monomer which comprises the polymer mentioned above may be sufficient. In either case, it can be used as a lithium conductive polymer in the present invention.
前記リチウム伝導性高分子は、ポリエチレンオキシド(PEO)、ポリアクリロニトリル(PAN)、ポリアクリル酸(PAA)、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)、ポリホスファゼン、ポリイミノホスホラン及びイオン液体ポリマー、並びにそれらの混合物及び共重合体からなる群より選択される少なくとも1種の高分子であることがより好ましく、直鎖状若しくは分岐状のポリエチレンオキシド、直鎖状若しくは分岐状のエチレンオキシドと他のアルキレンオキシド(例えば、直鎖状若しくは分岐状のC2~C10アルキレンオキシド)とを共重合させたポリマー、CN基を有するモノマー(例えばアクリロニトリル)とアクリル酸のような-COOR基又は-CO-基のいずれかを有するモノマー(例えばアクリル酸)とを共重合させたポリマー、ポリビニルアルコール、ポリビニルピロリドン、ポリホスファゼン、ポリイミノホスホラン及びイオン液体ポリマー、並びにそれらの混合物からなる群より選択される少なくとも1種の高分子であることがより好ましい。特に好ましいリチウム伝導性高分子は、下記の式:
(式中、n、m、x及びyは、互いに独立して、1~10000の範囲の整数である。)
で表される化合物からなる群より選択される少なくとも1種の高分子である。 The lithium conductive polymer includes polyethylene oxide (PEO), polyacrylonitrile (PAN), polyacrylic acid (PAA), polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), polyphosphazene, polyiminophosphorane, and ionic liquid polymer. More preferably at least one polymer selected from the group consisting of mixtures and copolymers thereof, linear or branched polyethylene oxide, linear or branched ethylene oxide and other Polymers copolymerized with alkylene oxides (eg, linear or branched C 2 -C 10 alkylene oxides), monomers having CN groups (eg, acrylonitrile) and —COOR groups such as acrylic acid or —CO— A polymer copolymerized with a monomer having any of the groups (for example, acrylic acid), More preferably, it is at least one polymer selected from the group consisting of polyvinyl alcohol, polyvinyl pyrrolidone, polyphosphazene, polyiminophosphorane and ionic liquid polymer, and mixtures thereof. Particularly preferred lithium conducting polymers are those of the following formula:
(In the formula, n, m, x and y are each independently an integer in the range of 1 to 10,000.)
At least one polymer selected from the group consisting of compounds represented by:
で表される化合物からなる群より選択される少なくとも1種の高分子である。 The lithium conductive polymer includes polyethylene oxide (PEO), polyacrylonitrile (PAN), polyacrylic acid (PAA), polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), polyphosphazene, polyiminophosphorane, and ionic liquid polymer. More preferably at least one polymer selected from the group consisting of mixtures and copolymers thereof, linear or branched polyethylene oxide, linear or branched ethylene oxide and other Polymers copolymerized with alkylene oxides (eg, linear or branched C 2 -C 10 alkylene oxides), monomers having CN groups (eg, acrylonitrile) and —COOR groups such as acrylic acid or —CO— A polymer copolymerized with a monomer having any of the groups (for example, acrylic acid), More preferably, it is at least one polymer selected from the group consisting of polyvinyl alcohol, polyvinyl pyrrolidone, polyphosphazene, polyiminophosphorane and ionic liquid polymer, and mixtures thereof. Particularly preferred lithium conducting polymers are those of the following formula:
At least one polymer selected from the group consisting of compounds represented by:
前記で説明した高分子は、本発明の全固体リチウム二次電池に含まれる有機電解液又は固体電解質等の他の材料に対して、化学的及び/又は電気化学的に安定である。また、前記高分子は、以下において説明する本発明の全固体リチウム二次電池の製造方法において使用される材料及び/又は条件に対して、安定である。例えば、前記高分子は、本発明の全固体リチウム二次電池の製造方法において使用されるバインダ又は有機溶媒等によって、実質的に溶解及び/又は剥離等を生じない。それ故、前記高分子をリチウム伝導性高分子として用いることにより、本発明の全固体リチウム二次電池を安定して製造し、且つ安定して使用することができる。
The polymer described above is chemically and / or electrochemically stable with respect to other materials such as an organic electrolyte solution or a solid electrolyte contained in the all solid lithium secondary battery of the present invention. The polymer is stable with respect to materials and / or conditions used in the method for producing an all solid lithium secondary battery of the present invention described below. For example, the polymer does not substantially dissolve and / or peel off due to the binder or the organic solvent used in the method for producing the all solid lithium secondary battery of the present invention. Therefore, by using the polymer as a lithium conductive polymer, the all solid lithium secondary battery of the present invention can be stably manufactured and used stably.
前記リチウム伝導性高分子の平均分子量は、1000~400000の範囲であることが好ましく、5000~400000の範囲であることがより好ましく、10000~300000の範囲であることが特に好ましい。前記リチウム伝導性高分子の平均分子量が前記範囲の下限値未満の場合、以下において説明する本発明の全固体リチウム二次電池の製造方法において、リチウム伝導性高分子同士が凝集する可能性がある。この場合、良好な電子伝導パスが形成されなくなり、結果として得られる全固体リチウム二次電池の出力が低下する可能性がある。前記リチウム伝導性高分子の平均分子量が前記範囲の上限値を超える場合、粘度が高くなることから、リチウム伝導性高分子によって活物質又は導電剤の空隙を満たすことが困難になる可能性がある。この場合、リチウム伝導性高分子による空隙の充填効果が低減し、結果として得られる全固体リチウム二次電池の高出力化が困難になる可能性がある。それ故、前記リチウム伝導性高分子の平均分子量が前記範囲の場合、結果として得られる全固体リチウム二次電池の出力を向上させることができる。
The average molecular weight of the lithium conductive polymer is preferably in the range of 1000 to 400000, more preferably in the range of 5000 to 400000, and particularly preferably in the range of 10000 to 300000. When the average molecular weight of the lithium conductive polymer is less than the lower limit of the above range, lithium conductive polymers may aggregate in the method for producing an all solid lithium secondary battery of the present invention described below. . In this case, a good electron conduction path is not formed, and the output of the resulting all-solid lithium secondary battery may be reduced. When the average molecular weight of the lithium conductive polymer exceeds the upper limit of the above range, the viscosity becomes high, which may make it difficult to fill the voids of the active material or the conductive agent with the lithium conductive polymer. . In this case, the void filling effect by the lithium conductive polymer is reduced, and it may be difficult to increase the output of the resulting all-solid lithium secondary battery. Therefore, when the average molecular weight of the lithium conductive polymer is in the above range, the output of the resulting all solid lithium secondary battery can be improved.
前記ゲル電解質において、リチウム伝導性高分子の含有量は、下記の式で定義される。
In the gel electrolyte, the content of the lithium conductive polymer is defined by the following formula.
リチウム伝導性高分子の含有量は、ゲル電解質の総質量に対して、0.01~15質量%の範囲であることが必要である。前記リチウム伝導性高分子の含有量は、ゲル電解質の総質量に対して、3~12質量%の範囲であることが好ましく、5~10質量%の範囲であることがより好ましい。リチウム伝導性高分子の含有量が前記範囲の下限値未満の場合、粘度が低くなる。このため、本発明の全固体リチウム二次電池が衝撃を受けた場合、電池内部のゲル電解質の保液性が低くなり、該ゲル電解質が負極より脱離する可能性がある。このような場合、結果として得られる全固体リチウム二次電池の電池性能が低下する可能性がある。リチウム伝導性高分子の含有量が前記範囲の上限値を超える場合、粘度が高くなる。このため、ゲル電解質の流動性が低下して、活物質又は導電剤の膨張収縮に起因する空隙の形成を抑制することが困難となる可能性がある。このような場合、負極中の活物質又は導電剤とゲル電解質との間のリチウム伝導パスが失われ、抵抗が増加して、結果として得られる全固体リチウム二次電池の容量が減少する可能性がある。それ故、前記リチウム伝導性高分子の含有量が前記範囲の場合、結果として得られる全固体リチウム二次電池の出力を向上させることができる。
The content of the lithium conductive polymer needs to be in the range of 0.01 to 15% by mass with respect to the total mass of the gel electrolyte. The content of the lithium conductive polymer is preferably in the range of 3 to 12% by mass and more preferably in the range of 5 to 10% by mass with respect to the total mass of the gel electrolyte. When the content of the lithium conductive polymer is less than the lower limit of the above range, the viscosity becomes low. For this reason, when the all-solid-state lithium secondary battery of this invention receives an impact, the liquid retention property of the gel electrolyte inside a battery becomes low, and this gel electrolyte may detach | desorb from a negative electrode. In such a case, the battery performance of the resulting all solid lithium secondary battery may be reduced. When the content of the lithium conductive polymer exceeds the upper limit of the above range, the viscosity increases. For this reason, fluidity | liquidity of gel electrolyte falls and it may become difficult to suppress formation of the space | gap resulting from the expansion / contraction of an active material or a electrically conductive agent. In such a case, the lithium conduction path between the active material or conductive agent in the negative electrode and the gel electrolyte is lost, the resistance increases, and the capacity of the resulting all-solid lithium secondary battery may decrease. There is. Therefore, when the content of the lithium conductive polymer is in the above range, the output of the resulting all solid lithium secondary battery can be improved.
なお、本発明の全固体リチウム二次電池の出力及び抵抗の特性は、例えば、以下の評価試験によって決定される、容量維持率及び直流抵抗の値に基づき、評価することができる。本発明の全固体リチウム二次電池について、特定の充放電レートで充放電を行い、初回放電容量と、Nサイクル(例えば、50又は100サイクル)充放電を繰り返して行った場合の各サイクルにおける放電容量を測定する。また、前記全固体リチウム二次電池について、50%の充電状態(SOC)まで充電した後、10秒間放電したときの電圧差分及び電流値を測定する。次いで、下記の式に従い、本発明の全固体リチウム二次電池の容量維持率及び直流抵抗を決定する。
In addition, the characteristics of the output and resistance of the all-solid lithium secondary battery of the present invention can be evaluated based on, for example, the capacity maintenance ratio and the DC resistance value determined by the following evaluation test. About the all-solid-state lithium secondary battery of this invention, it charges / discharges with a specific charging / discharging rate, and discharge in each cycle when performing initial charge capacity and N cycle (for example, 50 or 100 cycles) charge / discharge repeatedly Measure capacity. Moreover, about the said all-solid-state lithium secondary battery, after charging to a 50% charge condition (SOC), the voltage difference and electric current value when it discharges for 10 second are measured. Next, according to the following formula, the capacity retention ratio and the direct current resistance of the all solid lithium secondary battery of the present invention are determined.
本発明において、有機電解液は、当該技術分野で通常使用される材料であれば、特に制限無く使用することができる。有機電解液としては、限定するものではないが、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、ガンマブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、トリメトキシメタン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジメチルスルホキシド、ジオキソラン(例えば1,3-ジオキソラン)、ホルムアミド、ジメチルホルムアミド、プロピオン酸メチル、プロピオン酸エチル、リン酸トリエステル、ジエチルエーテル、スルホラン、3-メチル-2-オキサゾリジノン、クロルエチレンカーボネート、クロルプロピレンカーボネート、イミダゾリウム系イオン液体、ピリジニウム系イオン液体及び脂肪族系イオン液体、並びにそれらの混合物等を挙げることができる。前記有機電解液は、プロピレンカーボネート、エチレンカーボネート、ガンマブチロラクトン、イミダゾリウム系イオン液体、ピリジニウム系イオン液体及び脂肪族系イオン液体、並びにそれらの混合物からなる群より選択される少なくとも1種の化合物であることが好ましく、プロピレンカーボネートであることがより好ましい。前記で説明したように、本発明の全固体リチウム二次電池は、ゲル状の形態の電解質であるゲル電解質を有する。ゲル電解質が有機電解液を含まない場合、リチウム伝導性高分子の膨潤が不十分となり、電解質をゲル状の形態とすることが困難になる可能性がある。それ故、ゲル電解質が前記有機電解液を含むことにより、リチウム伝導性高分子を膨潤させて、電解質をゲル状の形態とすることができる。前記で説明した有機電解液は、本発明の全固体リチウム二次電池に含まれるリチウム伝導性高分子又は固体電解質等の他の材料に対して、化学的及び/又は電気化学的に安定である。また、有機電解液は、以下において説明する本発明の全固体リチウム二次電池の製造方法において使用される材料及び/又は条件に対して、安定である。それ故、前記有機電解液を用いることにより、本発明の全固体リチウム二次電池を安定して製造し、且つ安定して使用することができる。
In the present invention, the organic electrolyte can be used without particular limitation as long as it is a material that is usually used in the technical field. Examples of the organic electrolyte include, but are not limited to, propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, gamma butyrolactone, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, trimethoxymethane, 1,2-dimethoxyethane. 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethyl sulfoxide, dioxolane (eg 1,3-dioxolane), formamide, dimethylformamide, methyl propionate, ethyl propionate, phosphate triester, diethyl ether, Sulfolane, 3-methyl-2-oxazolidinone, chloroethylene carbonate, chloropropylene carbonate, imidazolium ionic liquid, pyridinium ionic liquid And aliphatic ionic liquids, and mixtures thereof. The organic electrolyte is at least one compound selected from the group consisting of propylene carbonate, ethylene carbonate, gamma-butyrolactone, imidazolium ionic liquid, pyridinium ionic liquid and aliphatic ionic liquid, and mixtures thereof. Of these, propylene carbonate is more preferable. As described above, the all-solid-state lithium secondary battery of the present invention has a gel electrolyte that is a gel-like electrolyte. When the gel electrolyte does not contain an organic electrolyte, the lithium conductive polymer does not swell sufficiently, and it may be difficult to make the electrolyte in a gel form. Therefore, when the gel electrolyte contains the organic electrolyte, the lithium conductive polymer can be swollen so that the electrolyte can be in a gel form. The organic electrolyte described above is chemically and / or electrochemically stable with respect to other materials such as a lithium conductive polymer or a solid electrolyte contained in the all solid lithium secondary battery of the present invention. . Further, the organic electrolyte is stable with respect to materials and / or conditions used in the method for producing the all solid lithium secondary battery of the present invention described below. Therefore, by using the organic electrolyte, the all solid lithium secondary battery of the present invention can be stably produced and used stably.
本発明において、ゲル電解質は、リチウム伝導性高分子及び有機電解液に加えて、通常は、リチウム塩を含む。リチウム塩としては、限定するものではないが、例えば、LiPF6、LiBF4、LiClO4、LiCF3SO3、LiCF3CO2、LiBOB、LiAsF6、LiSbF6、及びリチウムビス(フルオロスルホニル)イミド(LiFSI)又はリチウムトリフルオロメタンスルホニルイミドのようなリチウムのイミド塩等を挙げることができる。本発明の全固体リチウム二次電池に使用されるリチウム塩は、前記のリチウム塩化合物、並びにそれらの混合物からなる群より選択される少なくとも1種のリチウム塩であることが好ましい。
In the present invention, the gel electrolyte usually contains a lithium salt in addition to the lithium conductive polymer and the organic electrolyte. Examples of the lithium salt include, but are not limited to, for example, LiPF 6, LiBF 4, LiClO 4, LiCF 3 SO 3, LiCF 3 CO 2, LiBOB, LiAsF 6, LiSbF 6, and lithium bis (fluorosulfonyl) imide ( LiFSI) or an imide salt of lithium such as lithium trifluoromethanesulfonylimide. The lithium salt used in the all solid lithium secondary battery of the present invention is preferably at least one lithium salt selected from the group consisting of the above lithium salt compounds and mixtures thereof.
負極活物質は、充放電過程において、リチウムイオンの挿入脱離反応又はコンバージョン反応によって、リチウムイオンが挿入脱離される材料である。本発明において、負極活物質は、当該技術分野で通常使用される、リチウムイオンを可逆的に挿入脱離可能な材料であれば、特に制限無く使用することができる。負極活物質としては、限定するものではないが、例えば、炭素材料、シリコン系材料(例えば、Si又はSiO)、スズ系材料、置換元素を含むか又は含まないチタン酸リチウム及びリチウムバナジウム複合酸化物、並びにリチウムと1種以上の他の金属(例えば、スズ、アルミニウム又はアンチモン等)との合金を挙げることができる。前記炭素材料は、天然黒鉛、天然黒鉛の表面に乾式のCVD法若しくは湿式のスプレー法によって被膜を形成した複合炭素質材料、エポキシ若しくはフェノール等の樹脂材料又は石油若しくは石炭から得られるピッチ系材料を原料として焼成により製造される人造黒鉛、並びに難黒鉛化炭素材等を挙げることができる。負極活物質は、炭素材料又はチタン酸リチウムが好ましい。負極活物質は、所望により1種以上の前記材料を含む混合物の形態で使用してもよい。
The negative electrode active material is a material in which lithium ions are inserted and desorbed by a lithium ion insertion and desorption reaction or a conversion reaction in the charge and discharge process. In the present invention, the negative electrode active material can be used without particular limitation as long as it is a material that is normally used in this technical field and capable of reversibly inserting and extracting lithium ions. Examples of the negative electrode active material include, but are not limited to, for example, carbon materials, silicon-based materials (for example, Si or SiO), tin-based materials, lithium titanate and lithium vanadium composite oxides with or without a substitution element. And alloys of lithium with one or more other metals (eg, tin, aluminum or antimony). The carbon material is natural graphite, a composite carbonaceous material in which a film is formed on the surface of natural graphite by a dry CVD method or a wet spray method, a resin material such as epoxy or phenol, or a pitch-based material obtained from petroleum or coal. Examples of the raw material include artificial graphite produced by firing, non-graphitizable carbon material, and the like. The negative electrode active material is preferably a carbon material or lithium titanate. The negative electrode active material may be used in the form of a mixture containing one or more of the materials as desired.
負極活物質は、通常は、粉末の形態で使用される。負極活物質粉末の粒径は、通常は、ゲル電解質及び負極活物質を含む負極合材層の厚さ以下である。負極活物質の材料の粉末中に負極合材層の厚さを超える粗粒がある場合、予めふるい分級又は風流分級等の手段によって粗粒を除去し、負極合材層の厚さ以下の粒子を使用することが好ましい。
The negative electrode active material is usually used in the form of powder. The particle size of the negative electrode active material powder is usually equal to or less than the thickness of the negative electrode mixture layer containing the gel electrolyte and the negative electrode active material. When there are coarse particles exceeding the thickness of the negative electrode mixture layer in the powder of the negative electrode active material, the coarse particles are removed beforehand by means such as sieving classification or wind classification, and particles having a thickness equal to or less than the thickness of the negative electrode mixture layer Is preferably used.
本発明において、負極合材層は、ゲル電解質及び負極活物質に加えて、通常は、負極導電剤及び負極バインダを含む。
In the present invention, the negative electrode mixture layer usually contains a negative electrode conductive agent and a negative electrode binder in addition to the gel electrolyte and the negative electrode active material.
本発明において、負極導電剤は、負極活物質の電気伝導性を補うために使用される材料である。本明細書において、負極導電剤を導電助剤と記載する場合がある。負極導電剤としては、限定するものではないが、例えば、アセチレンブラック、カーボンブラック、黒鉛及び非晶質炭素等の炭素材料を挙げることができる。負極導電剤は、通常は、粉末の形態で使用される。負極活物質が金属酸化物の場合、負極活物質それ自体は電気抵抗が高い。それ故、電気伝導性を有する負極導電剤を負極活物質と一緒に負極合材層に含むことにより、負極合材層の電気伝導性を確保することができる。
In the present invention, the negative electrode conductive agent is a material used to supplement the electrical conductivity of the negative electrode active material. In this specification, the negative electrode conductive agent may be referred to as a conductive additive. Examples of the negative electrode conductive agent include, but are not limited to, carbon materials such as acetylene black, carbon black, graphite, and amorphous carbon. The negative electrode conductive agent is usually used in the form of a powder. When the negative electrode active material is a metal oxide, the negative electrode active material itself has high electrical resistance. Therefore, the electrical conductivity of the negative electrode mixture layer can be ensured by including the negative electrode conductive agent having electric conductivity in the negative electrode mixture layer together with the negative electrode active material.
本発明において、負極バインダは、負極合材層に含まれる負極活物質及び負極導電剤を結合させるとともに、負極合材層を負極集電体に接着させるために使用される材料である。負極バインダとしては、限定するものではないが、例えば、スチレン-ブタジエンゴム、カルボキシメチルセルロース及びポリフッ化ビニリデン(PVDF)、並びにこれらの混合物等を挙げることができる。前記のように、負極活物質及び負極導電剤は、通常は、粉末の形態で使用される。それ故、負極バインダを負極活物質及び負極導電剤と一緒に負極合材層に含むことにより、負極合材層材料の接着性を向上させて、負極合材層を負極集電体に密着させることができる。
In the present invention, the negative electrode binder is a material used for bonding the negative electrode active material and the negative electrode conductive agent contained in the negative electrode mixture layer and bonding the negative electrode mixture layer to the negative electrode current collector. Examples of the negative electrode binder include, but are not limited to, styrene-butadiene rubber, carboxymethyl cellulose, polyvinylidene fluoride (PVDF), and a mixture thereof. As described above, the negative electrode active material and the negative electrode conductive agent are usually used in the form of powder. Therefore, by including the negative electrode binder in the negative electrode mixture layer together with the negative electrode active material and the negative electrode conductive agent, the adhesion of the negative electrode mixture layer material is improved and the negative electrode mixture layer is adhered to the negative electrode current collector. be able to.
本発明において、負極集電体は、当該技術分野で通常使用される材料であれば、特に制限無く使用することができる。負極集電体としては、限定するものではないが、例えば、アルミニウム、ステンレス及びチタン等の材料を挙げることができる。負極集電体の材料は、アルミニウムであることが好ましい。
In the present invention, the negative electrode current collector can be used without particular limitation as long as it is a material usually used in the technical field. Examples of the negative electrode current collector include, but are not limited to, materials such as aluminum, stainless steel, and titanium. The material of the negative electrode current collector is preferably aluminum.
本発明において、正極は、通常は、リチウム伝導性高分子及び有機電解液を含有するゲル電解質、正極活物質、正極導電剤、正極バインダ、並びに正極集電体を有する。正極に含まれる正極導電剤、正極バインダ、並びに正極活物質は、正極合材層を構成する。本発明において、正極合材層に含まれるリチウム伝導性高分子及び有機電解液は、負極合材層に含まれるリチウム伝導性高分子及び有機電解液と同一の材料であってもよく、互いに異なる材料であってもよい。本発明において、正極合材層に含まれるリチウム伝導性高分子及び有機電解液は、前記で説明した正極合材層に含まれる材料から適宜選択して使用することができる。
In the present invention, the positive electrode usually has a gel electrolyte containing a lithium conductive polymer and an organic electrolyte, a positive electrode active material, a positive electrode conductive agent, a positive electrode binder, and a positive electrode current collector. The positive electrode conductive agent, the positive electrode binder, and the positive electrode active material included in the positive electrode constitute a positive electrode mixture layer. In the present invention, the lithium conductive polymer and the organic electrolyte contained in the positive electrode mixture layer may be the same material as the lithium conductive polymer and the organic electrolyte contained in the negative electrode mixture layer, and are different from each other. It may be a material. In the present invention, the lithium conductive polymer and the organic electrolyte contained in the positive electrode mixture layer can be appropriately selected from the materials contained in the positive electrode mixture layer described above.
本発明において、正極集電体は、当該技術分野で通常使用される材料であれば、特に制限無く使用することができる。正極集電体としては、限定するものではないが、例えば、アルミニウム、ステンレス及びチタン等の材料を挙げることができる。正極集電体の材料は、アルミニウムであることが好ましい。
In the present invention, the positive electrode current collector can be used without particular limitation as long as it is a material usually used in the technical field. Examples of the positive electrode current collector include, but are not limited to, materials such as aluminum, stainless steel, and titanium. The material of the positive electrode current collector is preferably aluminum.
本発明において、正極活物質は、充電過程において、リチウムイオンが脱離し、放電過程において、負極合材層中の負極活物質から脱離したリチウムイオンが挿入される材料である。本発明において、正極活物質は、当該技術分野で通常使用される、リチウムイオンを可逆的に挿入脱離可能な材料であれば、特に制限無く使用することができる。正極活物質としては、限定するものではないが、例えば、LiCoO2、LiNiO2、LiMn2O4、LiMnO3、LiMn2O3、LiMnO2、Li4Mn5O12及びLiMn2-xMxO2(式中、Mは、Co、Ni、Fe、Cr、Zn及びTiからなる群から選択される少なくとも1種の金属であり、xは0.01~0.2である)、Li2Mn3MO8(式中、Mは、Fe、Co、Ni、Cu及びZnからなる群から選択される少なくとも1種の金属である)、Li1-xAxMn2O4(式中、Aは、Mg、B、Al、Fe、Co、Ni、Cr、Zn及びCaからなる群から選択される少なくとも1種の金属であり、xは、0.01~0.1である)、LiNi1-xMxO2(式中、Mは、Co、Fe及びGaからなる群から選択される少なくとも1種の金属であり、xは、0.01~0.2である)、LiFeO2、Fe2(SO4)3及びLiCo1-xMxO2(式中、Mは、Ni、Fe及びMnからなる群から選択される少なくとも1種の金属であり、xは、0.01~0.2である)、LiNi1-xMxO2(式中、Mは、Mn、Fe、Co、Al、Ga、Ca及びMgからなる群から選択される少なくとも1種の金属であり、xは、0.01~0.2である)、Fe(MoO4)3、FeF3、LiFePO4、並びにLiMnPO4等を挙げることができる。正極活物質は、所望により1種以上の前記材料を含む混合物の形態で使用してもよい。
In the present invention, the positive electrode active material is a material into which lithium ions are desorbed in the charging process and lithium ions desorbed from the negative electrode active material in the negative electrode mixture layer are inserted in the discharging process. In the present invention, the positive electrode active material can be used without particular limitation as long as it is a material that can be reversibly inserted and desorbed reversibly, which is usually used in the art. Examples of the positive electrode active material include, but are not limited to, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 3 , LiMn 2 O 3 , LiMnO 2 , Li 4 Mn 5 O 12 and LiMn 2-x M x O 2 (wherein M is at least one metal selected from the group consisting of Co, Ni, Fe, Cr, Zn and Ti, and x is 0.01 to 0.2), Li 2 Mn 3 MO 8 (Wherein M is at least one metal selected from the group consisting of Fe, Co, Ni, Cu and Zn), Li 1-x A x Mn 2 O 4 (wherein A is Mg) , B, Al, Fe, Co, Ni, Cr, Zn and Ca, and at least one metal selected from the group consisting of 0.01 to 0.1), LiNi 1-x M x O 2 ( In the formula, M is at least one metal selected from the group consisting of Co, Fe and Ga, and x is 0.01 to 0.2), LiFeO 2 , Fe 2 (SO 4 ) 3 and LiCo 1− during x M x O 2 (wherein, M is at least one metal selected Ni, from the group consisting of Fe and Mn, x is 0.01 A 0.2), LiNi in 1-x M x O 2 (wherein, M is at least one metal selected Mn, Fe, Co, Al, Ga, from the group consisting of Ca and Mg, x is , 0.01 to 0.2), Fe (MoO 4 ) 3 , FeF 3 , LiFePO 4 , and LiMnPO 4 . The positive electrode active material may be used in the form of a mixture containing one or more kinds of the materials as desired.
正極活物質は、通常は、粉末の形態で使用される。正極活物質粉末の粒径は、通常は、正極合材層の厚さ以下である。正極活物質の材料の粉末中に正極合材層の厚さを超える粗粒がある場合、予めふるい分級又は風流分級等の手段によって粗粒を除去し、正極合材層の厚さ以下の粒子を使用することが好ましい。
The positive electrode active material is usually used in the form of a powder. The particle size of the positive electrode active material powder is usually equal to or less than the thickness of the positive electrode mixture layer. When there are coarse particles exceeding the thickness of the positive electrode mixture layer in the powder of the positive electrode active material, the coarse particles are removed in advance by means such as sieving classification or wind classification, and particles having a thickness equal to or less than the thickness of the positive electrode mixture layer Is preferably used.
本発明において、正極導電剤は、正極活物質の電気伝導性を補うために使用される材料である。本明細書において、正極導電剤を導電助剤と記載する場合がある。正極導電剤としては、限定するものではないが、例えば、アセチレンブラック、カーボンブラック、黒鉛及び非晶質炭素等の炭素材料を挙げることができる。正極導電剤は、通常は、粉末の形態で使用される。前記のように、正極活物質は、通常は金属酸化物である。このため、正極活物質それ自体は電気抵抗が高い。それ故、電気伝導性を有する正極導電剤を正極活物質と一緒に正極合材層に含むことにより、正極合材層の電気伝導性を確保することができる。
In the present invention, the positive electrode conductive agent is a material used to supplement the electrical conductivity of the positive electrode active material. In this specification, the positive electrode conductive agent may be described as a conductive additive. Examples of the positive electrode conductive agent include, but are not limited to, carbon materials such as acetylene black, carbon black, graphite, and amorphous carbon. The positive electrode conductive agent is usually used in the form of a powder. As described above, the positive electrode active material is usually a metal oxide. For this reason, the positive electrode active material itself has a high electrical resistance. Therefore, by including the positive electrode conductive agent having electric conductivity in the positive electrode mixture layer together with the positive electrode active material, the electric conductivity of the positive electrode mixture layer can be ensured.
本発明において、正極バインダは、正極合材層に含まれる正極活物質及び正極導電剤を結合させるとともに、正極合材層を正極集電体に接着させるために使用される材料である。正極バインダとしては、限定するものではないが、例えば、スチレン-ブタジエンゴム、カルボキシメチルセルロース及びポリフッ化ビニリデン(PVDF)、並びにこれらの混合物等を挙げることができる。前記のように、正極活物質及び正極導電剤は、通常は、粉末の形態で使用される。それ故、正極バインダを正極活物質及び正極導電剤と一緒に正極合材層に含むことにより、正極合材層材料の接着性を向上させて、正極合材層を正極集電体に密着させることができる。
In the present invention, the positive electrode binder is a material used for bonding the positive electrode active material and the positive electrode conductive agent contained in the positive electrode mixture layer and bonding the positive electrode mixture layer to the positive electrode current collector. Examples of the positive electrode binder include, but are not limited to, styrene-butadiene rubber, carboxymethyl cellulose, polyvinylidene fluoride (PVDF), and a mixture thereof. As described above, the positive electrode active material and the positive electrode conductive agent are usually used in the form of powder. Therefore, by including the positive electrode binder in the positive electrode mixture layer together with the positive electrode active material and the positive electrode conductive agent, the adhesion of the positive electrode mixture layer material is improved and the positive electrode mixture layer is brought into close contact with the positive electrode current collector. be able to.
本発明において、固体電解質は、当該技術分野で通常使用される材料であれば、特に制限無く使用することができる。安全性の観点から、不燃性の無機固体電解質が好ましい。固体電解質としては、限定するものではないが、例えば、Li1.4Al0.4Ti1.6(PO4)3、LiAlGe(PO4)3、Li3.4V0.6Si0.4O4及びLi2P2O6等の酸化物ガラス、Li0.34La0.51TiO2.94等のペロブスカイト型酸化物、LiLaZrO2等のガーネット型酸化物、リチウムビス(フルオロスルホニル)イミド(LiFSI)又はリチウムトリフルオロメタンスルホニルイミドのようなスルホニルイミド系の固体電解質、硫化物系の無機固体電解質、並びにポリマー電解質等を挙げることができる。前記酸化物は、所望により、LiCl又はLiI等のハロゲン化リチウムを含んでいてもよい。固体電解質は、所望により1種以上の前記材料を含む混合物の形態で使用してもよい。
In the present invention, the solid electrolyte can be used without particular limitation as long as it is a material usually used in the technical field. From the viewpoint of safety, a nonflammable inorganic solid electrolyte is preferable. Examples of the solid electrolyte include, but are not limited to, Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 , LiAlGe (PO 4 ) 3 , Li 3.4 V 0.6 Si 0.4 O 4 and Li 2 P 2 O 6 . Oxide glass, perovskite oxides such as Li 0.34 La 0.51 TiO 2.94 , garnet oxides such as LiLaZrO 2 , sulfonylimide-based solids such as lithium bis (fluorosulfonyl) imide (LiFSI) or lithium trifluoromethanesulfonylimide Examples thereof include electrolytes, sulfide-based inorganic solid electrolytes, and polymer electrolytes. The oxide may optionally contain a lithium halide such as LiCl or LiI. If desired, the solid electrolyte may be used in the form of a mixture containing one or more of the above materials.
次に、図1を参照しながら、前記で説明した材料を備える本発明の全固体リチウム二次電池の構成をさらに説明する。図1は、本発明の一実施形態に係る全固体リチウム二次電池の断面図である。図2は、本発明の一実施形態に係る全固体リチウム二次電池の要部の断面図である。図1に示すように、本発明の全固体リチウム二次電池100は、負極80と、正極70と、該負極80及び該正極70の間に配置された固体電解質50とを備える。負極80は、負極集電体20及び負極合材層60を有する。負極合材層60は、リチウム伝導性高分子及び有機電解液を含有するゲル電解質、並びに負極活物質を有する。正極70は、正極集電体10及び正極合材層40を有する。本発明の全固体リチウム二次電池100は、通常は電池ケース30に収容される。
Next, the configuration of the all-solid lithium secondary battery according to the present invention including the materials described above will be further described with reference to FIG. FIG. 1 is a cross-sectional view of an all-solid lithium secondary battery according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of a main part of an all solid lithium secondary battery according to an embodiment of the present invention. As shown in FIG. 1, an all solid lithium secondary battery 100 of the present invention includes a negative electrode 80, a positive electrode 70, and a solid electrolyte 50 disposed between the negative electrode 80 and the positive electrode 70. The negative electrode 80 includes a negative electrode current collector 20 and a negative electrode mixture layer 60. The negative electrode mixture layer 60 includes a gel electrolyte containing a lithium conductive polymer and an organic electrolyte, and a negative electrode active material. The positive electrode 70 includes the positive electrode current collector 10 and the positive electrode mixture layer 40. The all solid lithium secondary battery 100 of the present invention is usually housed in a battery case 30.
本発明の全固体リチウム二次電池において、負極合材層60及び正極合材層40は、複数の層からなる積層構造の形態であってもよい。
In the all solid lithium secondary battery of the present invention, the negative electrode mixture layer 60 and the positive electrode mixture layer 40 may have a laminated structure composed of a plurality of layers.
正極集電体10は、正極合材層40に電気的に接続されている。正極集電体10としては、通常は、厚さが10~100 μmのアルミニウム箔、厚さが10~100 μmで孔径が0.1~10 mmのアルミニウム製穿孔箔、エキスパンドメタル、又は発泡金属板等が使用される。本発明の全固体リチウム二次電池において、正極集電体は、当該技術分野で通常使用される形状であれば、特に制限無く使用することができる。
The positive electrode current collector 10 is electrically connected to the positive electrode mixture layer 40. The positive electrode current collector 10 is usually an aluminum foil having a thickness of 10 to 100 mm, an aluminum perforated foil having a thickness of 10 to 100 mm and a hole diameter of 0.1 to 10 mm, an expanded metal, or a foam metal plate, etc. Is used. In the all-solid lithium secondary battery of the present invention, the positive electrode current collector can be used without particular limitation as long as it has a shape usually used in the technical field.
負極集電体20は、負極合材層60に電気的に接続されている。負極集電体20としては、通常は、厚さが10~100 μmの銅箔、厚さが10~100 μmで孔径0.1~10 mmの銅製穿孔箔、エキスパンドメタル、又は発泡金属板等が使用される。本発明の全固体リチウム二次電池において、負極集電体は、当該技術分野で通常使用される形状であれば、特に制限無く使用することができる。
The negative electrode current collector 20 is electrically connected to the negative electrode mixture layer 60. As the negative electrode current collector 20, a copper foil having a thickness of 10 to 100 mm, a copper perforated foil having a thickness of 10 to 100 mm and a hole diameter of 0.1 to 10 mm, an expanded metal, or a foam metal plate is usually used. Is done. In the all solid lithium secondary battery of the present invention, the negative electrode current collector can be used without particular limitation as long as it has a shape usually used in the technical field.
電池ケース30は、正極集電体10、負極集電体20、正極合材層40、固体電解質層50、および負極合材層60を収容する。電池ケース30の形状は、正極合材層40、固体電解質層50、負極合材層60で構成される電極群の形状に合わせ、円筒形、偏平長円形状、扁平楕円形状又は角形等の形状を選択してもよい。電池ケース30の材料は、アルミニウム、ステンレス鋼又はニッケルメッキ鋼製等のような、非水電解質に対し耐食性のある材料から選択される。
Battery case 30 accommodates positive electrode current collector 10, negative electrode current collector 20, positive electrode mixture layer 40, solid electrolyte layer 50, and negative electrode mixture layer 60. The shape of the battery case 30 is a cylindrical shape, a flat oval shape, a flat oval shape, a square shape, or the like according to the shape of the electrode group composed of the positive electrode mixture layer 40, the solid electrolyte layer 50, and the negative electrode mixture layer 60. May be selected. The material of the battery case 30 is selected from materials that are corrosion resistant to the non-aqueous electrolyte, such as aluminum, stainless steel, or nickel-plated steel.
図2に示すように、本発明の全固体リチウム二次電池において、負極合材層60は、負極活物質62と、リチウム伝導性高分子63、負極導電剤64、リチウム塩65及び有機電解液66を含有するゲル電解質とを含む。負極合材層60は、負極集電体20と固体電解質層50との間に挟持されるように配置される。前記で説明したように、本発明の全固体リチウム二次電池に使用される負極合材層60は、従来品と比較して低粘度であることから、流動性が高い。このため、充放電サイクルを繰り返すことによって負極活物質62及び/又は負極導電剤64が膨張収縮しても、負極活物質62及び/又は負極導電剤64とリチウム伝導性高分子63、負極導電剤64、リチウム塩65及び有機電解液66を含有するゲル電解質との間に空隙が生じることを実質的に抑制することができる。
As shown in FIG. 2, in the all solid lithium secondary battery of the present invention, the negative electrode mixture layer 60 includes a negative electrode active material 62, a lithium conductive polymer 63, a negative electrode conductive agent 64, a lithium salt 65, and an organic electrolyte. And a gel electrolyte containing 66. The negative electrode mixture layer 60 is disposed so as to be sandwiched between the negative electrode current collector 20 and the solid electrolyte layer 50. As described above, the negative electrode mixture layer 60 used in the all solid lithium secondary battery of the present invention has a low viscosity as compared with a conventional product, and thus has high fluidity. Therefore, even if the negative electrode active material 62 and / or the negative electrode conductive agent 64 expands and contracts by repeating the charge / discharge cycle, the negative electrode active material 62 and / or the negative electrode conductive agent 64 and the lithium conductive polymer 63, the negative electrode conductive agent 64, the formation of voids between the gel electrolyte containing the lithium salt 65 and the organic electrolyte 66 can be substantially suppressed.
以上詳細に説明したように、本発明の全固体リチウム二次電池は、長期に亘って充放電サイクルを繰り返しても容量が減少することなく、高出力を発揮することができる。それ故、本発明の全固体リチウム二次電池を、例えば電力貯蔵用蓄電池のような定置型のリチウム二次電池の用途に適用することが可能である。
As described above in detail, the all-solid lithium secondary battery of the present invention can exhibit high output without decreasing its capacity even when the charge / discharge cycle is repeated over a long period of time. Therefore, it is possible to apply the all solid lithium secondary battery of the present invention to the use of a stationary lithium secondary battery such as a power storage battery.
<2. 全固体リチウム二次電池の製造方法>
本発明はまた、全固体リチウム二次電池の製造方法に関する。 <2. Manufacturing method of all-solid lithium secondary battery>
The present invention also relates to a method for producing an all-solid lithium secondary battery.
本発明はまた、全固体リチウム二次電池の製造方法に関する。 <2. Manufacturing method of all-solid lithium secondary battery>
The present invention also relates to a method for producing an all-solid lithium secondary battery.
[2-1. ゲル電解質形成工程]
本発明の全固体リチウム二次電池の製造方法は、リチウム伝導性高分子を有機電解液で膨潤させて、リチウム伝導性高分子及び有機電解液を含有するゲル電解質を形成させる、ゲル電解質形成工程を含むことが必要である。 [2-1. Gel electrolyte formation process]
The method for producing an all solid lithium secondary battery of the present invention includes a gel electrolyte forming step in which a lithium conductive polymer is swollen with an organic electrolyte to form a gel electrolyte containing the lithium conductive polymer and the organic electrolyte. It is necessary to include.
本発明の全固体リチウム二次電池の製造方法は、リチウム伝導性高分子を有機電解液で膨潤させて、リチウム伝導性高分子及び有機電解液を含有するゲル電解質を形成させる、ゲル電解質形成工程を含むことが必要である。 [2-1. Gel electrolyte formation process]
The method for producing an all solid lithium secondary battery of the present invention includes a gel electrolyte forming step in which a lithium conductive polymer is swollen with an organic electrolyte to form a gel electrolyte containing the lithium conductive polymer and the organic electrolyte. It is necessary to include.
本工程は、例えば、(i)リチウム伝導性高分子を有機溶媒と混合してリチウム伝導性高分子のスラリーを形成させる段階、該スラリーから有機溶媒を除去して、ゲル電解質の前駆体を形成する段階、該ゲル電解質の前駆体に有機電解液を含浸して、ゲル電解質を形成する段階を含む工程として、実施することができる。前記工程(i)において、リチウム伝導性高分子のスラリーは、所望により、リチウム塩、負極活物質、負極導電剤及び負極バインダを含んでもよい。この場合、リチウム伝導性高分子のスラリーは、負極合材層材料のスラリーとなる。
This step includes, for example, (i) a step of mixing a lithium conductive polymer with an organic solvent to form a lithium conductive polymer slurry, and removing the organic solvent from the slurry to form a gel electrolyte precursor And a step of impregnating the precursor of the gel electrolyte with an organic electrolyte to form a gel electrolyte. In the step (i), the lithium conductive polymer slurry may contain a lithium salt, a negative electrode active material, a negative electrode conductive agent, and a negative electrode binder, if desired. In this case, the slurry of the lithium conductive polymer becomes a slurry of the negative electrode mixture layer material.
本工程はまた、(ii)前記工程(i)において、ゲル電解質の前駆体に有機電解液及びリチウム塩を含浸して、ゲル電解質を形成する段階を含む工程として、実施することもできる。この場合、リチウム伝導性高分子のスラリーは、所望により、負極活物質、負極導電剤及び負極バインダを含んでもよいが、リチウム塩を含まない。
This step can also be carried out as a step including (ii) forming a gel electrolyte by impregnating the precursor of the gel electrolyte with an organic electrolyte and a lithium salt in the step (i). In this case, the lithium conductive polymer slurry may contain a negative electrode active material, a negative electrode conductive agent, and a negative electrode binder, if desired, but does not contain a lithium salt.
本工程はまた、(iii)前記工程(i)において、リチウム伝導性高分子に加えて、有機電解液、リチウム塩、負極活物質、負極導電剤及び負極バインダを有機溶媒と混合してリチウム伝導性高分子のスラリーを形成させる段階を含む工程として、実施することもできる。この場合、リチウム伝導性高分子のスラリーは、負極合材層の全ての材料を含有するスラリーとなる。それ故、工程(iii)においては、ゲル電解質の前駆体に有機電解液を含浸して、ゲル電解質を形成する段階を実施する必要はない。
In this step, (iii) in the step (i), in addition to the lithium conductive polymer, an organic electrolyte, a lithium salt, a negative electrode active material, a negative electrode conductive agent, and a negative electrode binder are mixed with an organic solvent to conduct lithium. It can also be carried out as a process including a step of forming a slurry of a conductive polymer. In this case, the lithium conductive polymer slurry is a slurry containing all the materials of the negative electrode mixture layer. Therefore, in the step (iii), it is not necessary to perform the step of forming the gel electrolyte by impregnating the precursor of the gel electrolyte with the organic electrolyte.
本工程はまた、(iv)前記工程(i)において、減圧下、好ましくは真空状態でゲル電解質の前駆体に有機電解液を含浸して、ゲル電解質を形成する工程として、実施することもできる。工程(iv)に従い本工程を実施することにより、負極合材層の空隙及び/又は負極活物質内部の空隙に、短時間でゲル電解質を充填することができる。それ故、工程(iv)に従い本工程を実施することにより、結果として得られる本発明の全固体リチウム二次電池の電池特性を向上させることができる。
This step can also be carried out as a step of (iv) forming the gel electrolyte in step (i) by impregnating the gel electrolyte precursor with an organic electrolyte under reduced pressure, preferably in a vacuum state. . By carrying out this step according to the step (iv), the gel electrolyte can be filled in the voids in the negative electrode mixture layer and / or the voids in the negative electrode active material in a short time. Therefore, by carrying out this step according to step (iv), the battery characteristics of the resulting all-solid lithium secondary battery of the present invention can be improved.
前記工程(i)~(iv)において使用される有機溶媒は、特に限定されない。当該技術分野で通常使用される有機溶媒を使用することができる。
The organic solvent used in the steps (i) to (iv) is not particularly limited. The organic solvent normally used in the said technical field can be used.
前記工程(i)~(iv)の各段階は、所望により、加熱条件下で実施することができる。これにより、リチウム伝導性高分子及び有機電解液を含有するゲル電解質のゲル化反応を促進させることができる。
The steps (i) to (iv) can be carried out under heating conditions as desired. Thereby, the gelation reaction of the gel electrolyte containing a lithium conductive polymer and an organic electrolyte can be promoted.
本工程はまた、前記工程(i)~(iv)の各段階の任意の組合せを含む工程として、実施することもできる。
This step can also be carried out as a step including any combination of the steps (i) to (iv).
本工程はまた、前記工程(i)~(iv)において、所望の段階を複数回繰り返す工程として、実施することもできる。これにより、複数の電極合材層を有する負極を形成することができる。
This step can also be carried out as a step of repeating a desired step a plurality of times in the steps (i) to (iv). Thereby, the negative electrode which has a some electrode compound-material layer can be formed.
本工程において使用される、リチウム伝導性高分子、有機電解液、リチウム塩、負極活物質、負極導電剤及び負極バインダは、前記で説明した本発明の全固体リチウム二次電池の材料から適宜選択することができる。
The lithium conductive polymer, organic electrolyte, lithium salt, negative electrode active material, negative electrode conductive agent and negative electrode binder used in this step are appropriately selected from the materials for the all-solid lithium secondary battery of the present invention described above. can do.
[2-2.材料積層工程]
本発明の全固体リチウム二次電池の製造方法は、前記ゲル電解質形成工程の前に、リチウム伝導性高分子及び負極活物質を負極集電体に積層する、材料積層工程を更に含むことが好ましい。 [2-2. Material lamination process]
The method for producing an all solid lithium secondary battery of the present invention preferably further includes a material laminating step of laminating the lithium conductive polymer and the negative electrode active material on the negative electrode current collector before the gel electrolyte forming step. .
本発明の全固体リチウム二次電池の製造方法は、前記ゲル電解質形成工程の前に、リチウム伝導性高分子及び負極活物質を負極集電体に積層する、材料積層工程を更に含むことが好ましい。 [2-2. Material lamination process]
The method for producing an all solid lithium secondary battery of the present invention preferably further includes a material laminating step of laminating the lithium conductive polymer and the negative electrode active material on the negative electrode current collector before the gel electrolyte forming step. .
本工程は、例えば、前記工程(i)において、ゲル電解質の前駆体を形成する段階が、リチウム伝導性高分子及び有機溶媒を含有するリチウム伝導性高分子のスラリーを負極集電体の表面に積層する段階、及び該スラリーから有機溶媒を除去して、ゲル電解質の前駆体を負極集電体の表面に形成する段階を更に含む工程として、実施することができる。この場合、リチウム伝導性高分子のスラリーを負極集電体の表面に積層する手段としては、限定するものではないが、例えば、ドクターブレード法、ディッピング法、スプレー法又はスクリーン印刷法等を挙げることができる。ゲル電解質の前駆体を負極集電体の表面に形成する段階は、限定するものではないが、例えば、ロールプレス等の手段によって、該ゲル電解質の前駆体を、負極集電体の表面において加圧成形することによって実施することができる。本工程を実施することにより、結果として得られる本発明の全固体リチウム二次電池における負極合材層を、所望の形状に成形することができる。
In this step, for example, in the step (i), the step of forming the precursor of the gel electrolyte is performed by applying a lithium conductive polymer slurry containing a lithium conductive polymer and an organic solvent to the surface of the negative electrode current collector. The step of laminating and removing the organic solvent from the slurry to form a gel electrolyte precursor on the surface of the negative electrode current collector can be carried out. In this case, the means for laminating the lithium conductive polymer slurry on the surface of the negative electrode current collector is not limited, and examples thereof include a doctor blade method, a dipping method, a spray method or a screen printing method. Can do. The step of forming the gel electrolyte precursor on the surface of the negative electrode current collector is not limited. For example, the gel electrolyte precursor is applied to the surface of the negative electrode current collector by means of a roll press or the like. It can be carried out by pressing. By carrying out this step, the resulting negative electrode composite material layer in the all solid lithium secondary battery of the present invention can be formed into a desired shape.
本工程において使用される負極集電体は、前記で説明した本発明の全固体リチウム二次電池の材料から適宜選択することができる。
The negative electrode current collector used in this step can be appropriately selected from the materials of the all solid lithium secondary battery of the present invention described above.
本発明の全固体リチウム二次電池の製造方法において、正極は、当該技術分野で通常使用される方法によって形成することができる。この場合、正極の材料は、前記で説明した本発明の全固体リチウム二次電池の材料から適宜選択することができる。本発明の全固体リチウム二次電池の製造方法において、正極は、前記で説明したゲル電解質形成工程及び材料積層工程と同様の手順を適用することにより、正極を形成することが好ましい。負極と同様の手順を正極の形成に適用することにより、本発明の全固体リチウム二次電池を効率的に製造することができる。
In the method for producing an all solid lithium secondary battery of the present invention, the positive electrode can be formed by a method usually used in the art. In this case, the material for the positive electrode can be appropriately selected from the materials for the all solid lithium secondary battery of the present invention described above. In the method for producing an all solid lithium secondary battery of the present invention, the positive electrode is preferably formed by applying the same procedure as the gel electrolyte forming step and the material laminating step described above. By applying the same procedure as that for the negative electrode to the formation of the positive electrode, the all solid lithium secondary battery of the present invention can be efficiently produced.
以下、実施例を用いて本発明をさらに具体的に説明する。但し、本発明の技術的範囲はこれら実施例に限定されるものではない。
Hereinafter, the present invention will be described more specifically with reference to examples. However, the technical scope of the present invention is not limited to these examples.
<1. 全固体リチウム二次電池の作製>
[実施例1]
〔1-1. リチウム伝導性高分子溶液の調製〕
下記の式(I):
(式中、n及びmは、互いに独立して、1~10000の範囲の整数である。)
で表されるリチウム伝導性高分子を、N-メチルピロリドン(NMP)に溶解させた。前記リチウム伝導性高分子を、ポリマー1と記載する。得られた溶液を、70℃で3時間静置して、10質量%の均一なリチウム伝導性高分子溶液を調整した。前記リチウム伝導性高分子の平均分子量は、300000である。前記溶液に、リチウム塩として、Li原子とO原子とのモル比がLi/O=0.1となるように、リチウムビス(フルオロスルホニル)イミド(LiFSI)を添加した。 <1. Fabrication of all-solid lithium secondary battery>
[Example 1]
[1-1. Preparation of lithium conductive polymer solution]
Formula (I) below:
(In the formula, n and m are each independently an integer in the range of 1 to 10,000.)
Was dissolved in N-methylpyrrolidone (NMP). The lithium conductive polymer is referred to as polymer 1. The obtained solution was allowed to stand at 70 ° C. for 3 hours to prepare a 10% by mass uniform lithium conductive polymer solution. The lithium conductive polymer has an average molecular weight of 300,000. Lithium bis (fluorosulfonyl) imide (LiFSI) was added to the solution as a lithium salt so that the molar ratio of Li atoms to O atoms was Li / O = 0.1.
[実施例1]
〔1-1. リチウム伝導性高分子溶液の調製〕
下記の式(I):
で表されるリチウム伝導性高分子を、N-メチルピロリドン(NMP)に溶解させた。前記リチウム伝導性高分子を、ポリマー1と記載する。得られた溶液を、70℃で3時間静置して、10質量%の均一なリチウム伝導性高分子溶液を調整した。前記リチウム伝導性高分子の平均分子量は、300000である。前記溶液に、リチウム塩として、Li原子とO原子とのモル比がLi/O=0.1となるように、リチウムビス(フルオロスルホニル)イミド(LiFSI)を添加した。 <1. Fabrication of all-solid lithium secondary battery>
[Example 1]
[1-1. Preparation of lithium conductive polymer solution]
Formula (I) below:
Was dissolved in N-methylpyrrolidone (NMP). The lithium conductive polymer is referred to as polymer 1. The obtained solution was allowed to stand at 70 ° C. for 3 hours to prepare a 10% by mass uniform lithium conductive polymer solution. The lithium conductive polymer has an average molecular weight of 300,000. Lithium bis (fluorosulfonyl) imide (LiFSI) was added to the solution as a lithium salt so that the molar ratio of Li atoms to O atoms was Li / O = 0.1.
〔1-2. 負極層の作製〕
80.6質量部のLiTi4O12(LTO)を負極活物質として、4.7質量部のアセチレンブラック(AB)を導電助剤として、4.7質量部のポリフッ化ビニリデン(PVDF)を負極バインダとして、10質量部のポリマー1をリチウム伝導性高分子として、前記の固形成分質量比となるように準備した。LTOは、20 μmの平均粒子径の粉末として、ABは粉末として、PVDFはNMP溶液として、ポリマー1は前記の手順で調製したNMP溶液として、それぞれ準備した。前記の材料をメノウ乳鉢内で混合して、負極合材層材料のスラリーを調製した。その後、20 μmの厚さのアルミニウム箔の表面に、前記スラリーを塗工した。塗工後のアルミニウム箔を、80℃の温度に設定した乾燥機内に静置して、スラリーに含有されるNMPを留去した。得られたアルミニウム箔を、表面に形成された負極合材層と一緒に15 mmの直径の円形に打ち抜いた。打ち抜かれた円形の材料を、上下から1軸プレスして、約1.6 cm/cm3の密度を有する負極合材層が負極集電体の表面に形成された負極を得た。作製した負極を、予め約1 mlのプロピレンカーボネート(PC)(有機電解液)が注入された容器に入れて、負極全体がPCと接触するように配置した。前記容器の全体を、1分間、真空状態となるように減圧した。前記減圧操作により、負極合材層の内部にPCを含浸させた。30分後、容器から負極を取り出した。得られた負極を、グローブボックス内に静置して、負極の表面に残留したPCを蒸発させた。前記操作により、ゲル電解質が形成された負極を得た。なお、PCの蒸発量は、下記の式で定義されるゲル濃度が10質量%になるように調整した。
[1-2. Preparation of negative electrode layer]
10 parts by mass of 80.6 parts by mass of LiTi 4 O 12 (LTO) as a negative electrode active material, 4.7 parts by mass of acetylene black (AB) as a conductive aid, and 4.7 parts by mass of polyvinylidene fluoride (PVDF) as a negative electrode binder The polymer 1 was prepared as a lithium conductive polymer so as to have the above-described solid component mass ratio. LTO was prepared as a powder having an average particle diameter of 20 μm, AB as a powder, PVDF as an NMP solution, and Polymer 1 as an NMP solution prepared by the above procedure. The above materials were mixed in an agate mortar to prepare a slurry of the negative electrode mixture layer material. Thereafter, the slurry was applied to the surface of an aluminum foil having a thickness of 20 μm. The coated aluminum foil was left in a drier set at a temperature of 80 ° C., and NMP contained in the slurry was distilled off. The obtained aluminum foil was punched into a circle having a diameter of 15 mm together with the negative electrode mixture layer formed on the surface. The punched circular material was uniaxially pressed from above and below to obtain a negative electrode in which a negative electrode mixture layer having a density of about 1.6 cm / cm 3 was formed on the surface of the negative electrode current collector. The produced negative electrode was put in a container in which about 1 ml of propylene carbonate (PC) (organic electrolyte solution) was previously injected, and the entire negative electrode was placed in contact with the PC. The whole container was depressurized to be in a vacuum state for 1 minute. By the decompression operation, PC was impregnated into the negative electrode mixture layer. After 30 minutes, the negative electrode was removed from the container. The obtained negative electrode was left in a glove box to evaporate PC remaining on the surface of the negative electrode. By the said operation, the negative electrode in which the gel electrolyte was formed was obtained. The amount of PC evaporation was adjusted so that the gel concentration defined by the following formula was 10% by mass.
80.6質量部のLiTi4O12(LTO)を負極活物質として、4.7質量部のアセチレンブラック(AB)を導電助剤として、4.7質量部のポリフッ化ビニリデン(PVDF)を負極バインダとして、10質量部のポリマー1をリチウム伝導性高分子として、前記の固形成分質量比となるように準備した。LTOは、20 μmの平均粒子径の粉末として、ABは粉末として、PVDFはNMP溶液として、ポリマー1は前記の手順で調製したNMP溶液として、それぞれ準備した。前記の材料をメノウ乳鉢内で混合して、負極合材層材料のスラリーを調製した。その後、20 μmの厚さのアルミニウム箔の表面に、前記スラリーを塗工した。塗工後のアルミニウム箔を、80℃の温度に設定した乾燥機内に静置して、スラリーに含有されるNMPを留去した。得られたアルミニウム箔を、表面に形成された負極合材層と一緒に15 mmの直径の円形に打ち抜いた。打ち抜かれた円形の材料を、上下から1軸プレスして、約1.6 cm/cm3の密度を有する負極合材層が負極集電体の表面に形成された負極を得た。作製した負極を、予め約1 mlのプロピレンカーボネート(PC)(有機電解液)が注入された容器に入れて、負極全体がPCと接触するように配置した。前記容器の全体を、1分間、真空状態となるように減圧した。前記減圧操作により、負極合材層の内部にPCを含浸させた。30分後、容器から負極を取り出した。得られた負極を、グローブボックス内に静置して、負極の表面に残留したPCを蒸発させた。前記操作により、ゲル電解質が形成された負極を得た。なお、PCの蒸発量は、下記の式で定義されるゲル濃度が10質量%になるように調整した。
10 parts by mass of 80.6 parts by mass of LiTi 4 O 12 (LTO) as a negative electrode active material, 4.7 parts by mass of acetylene black (AB) as a conductive aid, and 4.7 parts by mass of polyvinylidene fluoride (PVDF) as a negative electrode binder The polymer 1 was prepared as a lithium conductive polymer so as to have the above-described solid component mass ratio. LTO was prepared as a powder having an average particle diameter of 20 μm, AB as a powder, PVDF as an NMP solution, and Polymer 1 as an NMP solution prepared by the above procedure. The above materials were mixed in an agate mortar to prepare a slurry of the negative electrode mixture layer material. Thereafter, the slurry was applied to the surface of an aluminum foil having a thickness of 20 μm. The coated aluminum foil was left in a drier set at a temperature of 80 ° C., and NMP contained in the slurry was distilled off. The obtained aluminum foil was punched into a circle having a diameter of 15 mm together with the negative electrode mixture layer formed on the surface. The punched circular material was uniaxially pressed from above and below to obtain a negative electrode in which a negative electrode mixture layer having a density of about 1.6 cm / cm 3 was formed on the surface of the negative electrode current collector. The produced negative electrode was put in a container in which about 1 ml of propylene carbonate (PC) (organic electrolyte solution) was previously injected, and the entire negative electrode was placed in contact with the PC. The whole container was depressurized to be in a vacuum state for 1 minute. By the decompression operation, PC was impregnated into the negative electrode mixture layer. After 30 minutes, the negative electrode was removed from the container. The obtained negative electrode was left in a glove box to evaporate PC remaining on the surface of the negative electrode. By the said operation, the negative electrode in which the gel electrolyte was formed was obtained. The amount of PC evaporation was adjusted so that the gel concentration defined by the following formula was 10% by mass.
〔1-3. 正極層の作製〕
80質量部のLiCoO2を正極活物質として、5質量部のアセチレンブラック(AB)を導電助剤として、5質量部のポリフッ化ビニリデン(PVDF)を正極バインダとして、10質量部のポリマー1をリチウム伝導性高分子として、前記の固形成分質量比となるように準備した。LiCoO2は、10 μmの平均粒子径の粉末として、ABは粉末として、PVDFはNMP溶液として、ポリマー1は前記の手順で調製したNMP溶液として、それぞれ準備した。前記の材料をメノウ乳鉢内で混合して、正極合材層材料のスラリーを調製した。その後、20 μmの厚さのアルミニウム箔の表面に、前記スラリーを塗工した。塗工後のアルミニウム箔を、80℃の温度に設定した乾燥機内に静置して、スラリーに含有されるNMPを留去した。得られたアルミニウム箔を、表面に形成された正極合材層と一緒に15 mmの直径の円形に打ち抜いた。打ち抜かれた円形の材料を、上下から1軸プレスして、約1.6 cm/cm3の密度を有する正極合材層が正極集電体の表面に形成された正極を得た。作製した正極を、予め約1 mlのプロピレンカーボネート(PC)(有機電解液)が注入された容器に入れて、正極全体がPCと接触するように配置した。前記容器の全体を、1分間、真空状態となるように減圧した。前記減圧操作により、正極合材層の内部にPCを含浸させた。30分後、容器から正極を取り出した。得られた正極を、グローブボックス内に静置して、正極の表面に残留したPCを蒸発させた。前記操作により、ゲル電解質が形成された正極を得た。なお、PCの蒸発量は、前記の式で定義されるゲル濃度が10質量%になるように調整した。 [1-3. Preparation of positive electrode layer]
80 parts by mass of LiCoO 2 as a positive electrode active material, 5 parts by mass of acetylene black (AB) as a conductive additive, 5 parts by mass of polyvinylidene fluoride (PVDF) as a positive electrode binder, 10 parts by mass of polymer 1 as lithium As a conductive polymer, it prepared so that it might become said solid component mass ratio. LiCoO 2 was prepared as a powder having an average particle size of 10 μm, AB as a powder, PVDF as an NMP solution, and Polymer 1 as an NMP solution prepared by the above procedure. The above materials were mixed in an agate mortar to prepare a slurry of the positive electrode mixture layer material. Thereafter, the slurry was applied to the surface of an aluminum foil having a thickness of 20 μm. The coated aluminum foil was left in a drier set at a temperature of 80 ° C., and NMP contained in the slurry was distilled off. The obtained aluminum foil was punched into a circle having a diameter of 15 mm together with the positive electrode mixture layer formed on the surface. The punched circular material was uniaxially pressed from above and below to obtain a positive electrode in which a positive electrode mixture layer having a density of about 1.6 cm / cm 3 was formed on the surface of the positive electrode current collector. The produced positive electrode was put in a container in which about 1 ml of propylene carbonate (PC) (organic electrolyte solution) was injected in advance, and the entire positive electrode was placed in contact with the PC. The whole container was depressurized to be in a vacuum state for 1 minute. By the depressurization operation, the positive electrode mixture layer was impregnated with PC. After 30 minutes, the positive electrode was taken out of the container. The obtained positive electrode was left in a glove box to evaporate PC remaining on the surface of the positive electrode. By the above operation, a positive electrode on which a gel electrolyte was formed was obtained. The amount of PC evaporation was adjusted so that the gel concentration defined by the above formula was 10% by mass.
80質量部のLiCoO2を正極活物質として、5質量部のアセチレンブラック(AB)を導電助剤として、5質量部のポリフッ化ビニリデン(PVDF)を正極バインダとして、10質量部のポリマー1をリチウム伝導性高分子として、前記の固形成分質量比となるように準備した。LiCoO2は、10 μmの平均粒子径の粉末として、ABは粉末として、PVDFはNMP溶液として、ポリマー1は前記の手順で調製したNMP溶液として、それぞれ準備した。前記の材料をメノウ乳鉢内で混合して、正極合材層材料のスラリーを調製した。その後、20 μmの厚さのアルミニウム箔の表面に、前記スラリーを塗工した。塗工後のアルミニウム箔を、80℃の温度に設定した乾燥機内に静置して、スラリーに含有されるNMPを留去した。得られたアルミニウム箔を、表面に形成された正極合材層と一緒に15 mmの直径の円形に打ち抜いた。打ち抜かれた円形の材料を、上下から1軸プレスして、約1.6 cm/cm3の密度を有する正極合材層が正極集電体の表面に形成された正極を得た。作製した正極を、予め約1 mlのプロピレンカーボネート(PC)(有機電解液)が注入された容器に入れて、正極全体がPCと接触するように配置した。前記容器の全体を、1分間、真空状態となるように減圧した。前記減圧操作により、正極合材層の内部にPCを含浸させた。30分後、容器から正極を取り出した。得られた正極を、グローブボックス内に静置して、正極の表面に残留したPCを蒸発させた。前記操作により、ゲル電解質が形成された正極を得た。なお、PCの蒸発量は、前記の式で定義されるゲル濃度が10質量%になるように調整した。 [1-3. Preparation of positive electrode layer]
80 parts by mass of LiCoO 2 as a positive electrode active material, 5 parts by mass of acetylene black (AB) as a conductive additive, 5 parts by mass of polyvinylidene fluoride (PVDF) as a positive electrode binder, 10 parts by mass of polymer 1 as lithium As a conductive polymer, it prepared so that it might become said solid component mass ratio. LiCoO 2 was prepared as a powder having an average particle size of 10 μm, AB as a powder, PVDF as an NMP solution, and Polymer 1 as an NMP solution prepared by the above procedure. The above materials were mixed in an agate mortar to prepare a slurry of the positive electrode mixture layer material. Thereafter, the slurry was applied to the surface of an aluminum foil having a thickness of 20 μm. The coated aluminum foil was left in a drier set at a temperature of 80 ° C., and NMP contained in the slurry was distilled off. The obtained aluminum foil was punched into a circle having a diameter of 15 mm together with the positive electrode mixture layer formed on the surface. The punched circular material was uniaxially pressed from above and below to obtain a positive electrode in which a positive electrode mixture layer having a density of about 1.6 cm / cm 3 was formed on the surface of the positive electrode current collector. The produced positive electrode was put in a container in which about 1 ml of propylene carbonate (PC) (organic electrolyte solution) was injected in advance, and the entire positive electrode was placed in contact with the PC. The whole container was depressurized to be in a vacuum state for 1 minute. By the depressurization operation, the positive electrode mixture layer was impregnated with PC. After 30 minutes, the positive electrode was taken out of the container. The obtained positive electrode was left in a glove box to evaporate PC remaining on the surface of the positive electrode. By the above operation, a positive electrode on which a gel electrolyte was formed was obtained. The amount of PC evaporation was adjusted so that the gel concentration defined by the above formula was 10% by mass.
〔1-4. 評価セルの作製〕
露点-80℃以下のアルゴンガスで置換されたグローブボックス内で、評価用セルを作製した。前記の手順で作製した負極層とポリマーシートとを対向させ、さらに、該ポリマーシート上に正極を積層した。得られた積層体を、アルミネートパック中に挿入した。アルミネートパックから端子が露出するように、該アルミネートパックを真空シールした。このアルミネートパックを、70℃で3時間加熱して、抵抗評価用セルを作製した。前記ポリマーシートは、分岐鎖を有するポリエチレンオキシド(PEO)とリチウム塩(LiFSI)とをアセトニトリルに溶解させた後、80℃で乾燥させることによって作製した。 [1-4. Preparation of evaluation cell]
An evaluation cell was produced in a glove box substituted with argon gas having a dew point of −80 ° C. or less. The negative electrode layer produced in the above procedure was opposed to the polymer sheet, and a positive electrode was further laminated on the polymer sheet. The resulting laminate was inserted into an aluminate pack. The aluminate pack was vacuum sealed so that the terminals were exposed from the aluminate pack. This aluminate pack was heated at 70 ° C. for 3 hours to produce a resistance evaluation cell. The polymer sheet was prepared by dissolving polyethylene oxide (PEO) having a branched chain and lithium salt (LiFSI) in acetonitrile and then drying at 80 ° C.
露点-80℃以下のアルゴンガスで置換されたグローブボックス内で、評価用セルを作製した。前記の手順で作製した負極層とポリマーシートとを対向させ、さらに、該ポリマーシート上に正極を積層した。得られた積層体を、アルミネートパック中に挿入した。アルミネートパックから端子が露出するように、該アルミネートパックを真空シールした。このアルミネートパックを、70℃で3時間加熱して、抵抗評価用セルを作製した。前記ポリマーシートは、分岐鎖を有するポリエチレンオキシド(PEO)とリチウム塩(LiFSI)とをアセトニトリルに溶解させた後、80℃で乾燥させることによって作製した。 [1-4. Preparation of evaluation cell]
An evaluation cell was produced in a glove box substituted with argon gas having a dew point of −80 ° C. or less. The negative electrode layer produced in the above procedure was opposed to the polymer sheet, and a positive electrode was further laminated on the polymer sheet. The resulting laminate was inserted into an aluminate pack. The aluminate pack was vacuum sealed so that the terminals were exposed from the aluminate pack. This aluminate pack was heated at 70 ° C. for 3 hours to produce a resistance evaluation cell. The polymer sheet was prepared by dissolving polyethylene oxide (PEO) having a branched chain and lithium salt (LiFSI) in acetonitrile and then drying at 80 ° C.
〔1-5. 電気化学特性の評価試験〕
前記の方法に従って作製した実施例1の全固体リチウム二次電池の評価セルについて、0.01Cの充放電レート及び4.2~2.5 Vの電圧範囲で充放電を行い、初回放電容量を測定した。また、前記評価セルについて、50又は100サイクル充放電を繰り返して行い、各サイクルにおける放電容量を測定した。前記評価セルについて、50%の充電状態(SOC)まで充電した後、10秒間放電したときの電圧差分及び電流値を測定した。下記の式に従い、実施例1の全固体リチウム二次電池の評価セルについて、容量維持率及び直流抵抗を決定した。初期又は各サイクルにおける放電容量を測定後の評価セルを用いて決定した直流抵抗値を、それぞれ初期抵抗、50サイクル後抵抗又は100サイクル後抵抗とした。
[1-5. Evaluation test of electrochemical properties]
The evaluation cell of the all-solid lithium secondary battery of Example 1 produced according to the above method was charged / discharged at a charge / discharge rate of 0.01 C and a voltage range of 4.2 to 2.5 V, and the initial discharge capacity was measured. The evaluation cell was repeatedly charged or discharged for 50 or 100 cycles, and the discharge capacity in each cycle was measured. About the said evaluation cell, after charging to a 50% charge condition (SOC), the voltage difference and electric current value when discharging for 10 second were measured. According to the following formula, the capacity retention ratio and the direct current resistance were determined for the evaluation cell of the all solid lithium secondary battery of Example 1. The direct current resistance value determined using the evaluation cell after measuring the discharge capacity in the initial stage or each cycle was defined as the initial resistance, the resistance after 50 cycles, or the resistance after 100 cycles, respectively.
前記の方法に従って作製した実施例1の全固体リチウム二次電池の評価セルについて、0.01Cの充放電レート及び4.2~2.5 Vの電圧範囲で充放電を行い、初回放電容量を測定した。また、前記評価セルについて、50又は100サイクル充放電を繰り返して行い、各サイクルにおける放電容量を測定した。前記評価セルについて、50%の充電状態(SOC)まで充電した後、10秒間放電したときの電圧差分及び電流値を測定した。下記の式に従い、実施例1の全固体リチウム二次電池の評価セルについて、容量維持率及び直流抵抗を決定した。初期又は各サイクルにおける放電容量を測定後の評価セルを用いて決定した直流抵抗値を、それぞれ初期抵抗、50サイクル後抵抗又は100サイクル後抵抗とした。
The evaluation cell of the all-solid lithium secondary battery of Example 1 produced according to the above method was charged / discharged at a charge / discharge rate of 0.01 C and a voltage range of 4.2 to 2.5 V, and the initial discharge capacity was measured. The evaluation cell was repeatedly charged or discharged for 50 or 100 cycles, and the discharge capacity in each cycle was measured. About the said evaluation cell, after charging to a 50% charge condition (SOC), the voltage difference and electric current value when discharging for 10 second were measured. According to the following formula, the capacity retention ratio and the direct current resistance were determined for the evaluation cell of the all solid lithium secondary battery of Example 1. The direct current resistance value determined using the evaluation cell after measuring the discharge capacity in the initial stage or each cycle was defined as the initial resistance, the resistance after 50 cycles, or the resistance after 100 cycles, respectively.
[実施例2]
実施例2の全固体リチウム二次電池の作製は、実施例1の手順において、負極合剤層及び正極合剤層のゲル電解質中のリチウム伝導性高分子の濃度を5質量%に変更した以外は、前記と同様の手順で行った。 [Example 2]
The production of the all-solid-state lithium secondary battery of Example 2 was the same as the procedure of Example 1, except that the concentration of the lithium conductive polymer in the gel electrolyte of the negative electrode mixture layer and the positive electrode mixture layer was changed to 5% by mass. Was performed in the same procedure as described above.
実施例2の全固体リチウム二次電池の作製は、実施例1の手順において、負極合剤層及び正極合剤層のゲル電解質中のリチウム伝導性高分子の濃度を5質量%に変更した以外は、前記と同様の手順で行った。 [Example 2]
The production of the all-solid-state lithium secondary battery of Example 2 was the same as the procedure of Example 1, except that the concentration of the lithium conductive polymer in the gel electrolyte of the negative electrode mixture layer and the positive electrode mixture layer was changed to 5% by mass. Was performed in the same procedure as described above.
[実施例3]
実施例3の全固体リチウム二次電池の作製は、実施例1の手順において、負極合剤層及び正極合剤層のゲル電解質中のリチウム伝導性高分子の濃度を12質量%に変更した以外は、前記と同様の手順で行った。 [Example 3]
The production of the all-solid-state lithium secondary battery of Example 3 was the same as that of Example 1, except that the concentration of the lithium conductive polymer in the gel electrolyte of the negative electrode mixture layer and the positive electrode mixture layer was changed to 12% by mass. Was performed in the same procedure as described above.
実施例3の全固体リチウム二次電池の作製は、実施例1の手順において、負極合剤層及び正極合剤層のゲル電解質中のリチウム伝導性高分子の濃度を12質量%に変更した以外は、前記と同様の手順で行った。 [Example 3]
The production of the all-solid-state lithium secondary battery of Example 3 was the same as that of Example 1, except that the concentration of the lithium conductive polymer in the gel electrolyte of the negative electrode mixture layer and the positive electrode mixture layer was changed to 12% by mass. Was performed in the same procedure as described above.
[実施例4]
実施例4の全固体リチウム二次電池の作製は、実施例1の手順において、負極合剤層及び正極合剤層のゲル電解質中のリチウム伝導性高分子の濃度を3質量%に変更した以外は、前記と同様の手順で行った。 [Example 4]
The production of the all-solid lithium secondary battery of Example 4 was performed except that the concentration of the lithium conductive polymer in the gel electrolyte of the negative electrode mixture layer and the positive electrode mixture layer was changed to 3% by mass in the procedure of Example 1. Was performed in the same procedure as described above.
実施例4の全固体リチウム二次電池の作製は、実施例1の手順において、負極合剤層及び正極合剤層のゲル電解質中のリチウム伝導性高分子の濃度を3質量%に変更した以外は、前記と同様の手順で行った。 [Example 4]
The production of the all-solid lithium secondary battery of Example 4 was performed except that the concentration of the lithium conductive polymer in the gel electrolyte of the negative electrode mixture layer and the positive electrode mixture layer was changed to 3% by mass in the procedure of Example 1. Was performed in the same procedure as described above.
[実施例5]
実施例5の全固体リチウム二次電池の作製は、実施例1の手順において、負極合剤層及び正極合剤層のゲル電解質中のリチウム伝導性高分子の濃度を15質量%に変更した以外は、前記と同様の手順で行った。 [Example 5]
Production of the all-solid-state lithium secondary battery of Example 5 was the same as that of Example 1, except that the concentration of the lithium conductive polymer in the gel electrolyte of the negative electrode mixture layer and the positive electrode mixture layer was changed to 15% by mass. Was performed in the same procedure as described above.
実施例5の全固体リチウム二次電池の作製は、実施例1の手順において、負極合剤層及び正極合剤層のゲル電解質中のリチウム伝導性高分子の濃度を15質量%に変更した以外は、前記と同様の手順で行った。 [Example 5]
Production of the all-solid-state lithium secondary battery of Example 5 was the same as that of Example 1, except that the concentration of the lithium conductive polymer in the gel electrolyte of the negative electrode mixture layer and the positive electrode mixture layer was changed to 15% by mass. Was performed in the same procedure as described above.
[実施例6]
実施例6の全固体リチウム二次電池の作製は、実施例1の手順において、負極合剤層及び正極合剤層のゲル電解質中のリチウム伝導性高分子の濃度を0.01質量%に変更した以外は、前記と同様の手順で行った。 [Example 6]
The production of the all-solid-state lithium secondary battery of Example 6 was the same as that of Example 1, except that the concentration of the lithium conductive polymer in the gel electrolyte of the negative electrode mixture layer and the positive electrode mixture layer was changed to 0.01% by mass. Was performed in the same procedure as described above.
実施例6の全固体リチウム二次電池の作製は、実施例1の手順において、負極合剤層及び正極合剤層のゲル電解質中のリチウム伝導性高分子の濃度を0.01質量%に変更した以外は、前記と同様の手順で行った。 [Example 6]
The production of the all-solid-state lithium secondary battery of Example 6 was the same as that of Example 1, except that the concentration of the lithium conductive polymer in the gel electrolyte of the negative electrode mixture layer and the positive electrode mixture layer was changed to 0.01% by mass. Was performed in the same procedure as described above.
[実施例7]
実施例7の全固体リチウム二次電池の作製は、実施例1の手順において、負極合剤層及び正極合剤層のゲル電解質中のリチウム伝導性高分子を、下記の式(II):
(式中、nは、互いに独立して、1~10000の範囲の整数である。)
で表される化合物(平均分子量:300000)に変更した以外は、前記と同様の手順で行った。 [Example 7]
Preparation of the all-solid-state lithium secondary battery of Example 7 was carried out in the procedure of Example 1, with the lithium conductive polymer in the gel electrolyte of the negative electrode mixture layer and the positive electrode mixture layer represented by the following formula (II):
(In the formula, n are each independently an integer in the range of 1 to 10,000.)
The procedure was the same as described above except that the compound was changed to the compound represented by (average molecular weight: 300,000).
実施例7の全固体リチウム二次電池の作製は、実施例1の手順において、負極合剤層及び正極合剤層のゲル電解質中のリチウム伝導性高分子を、下記の式(II):
で表される化合物(平均分子量:300000)に変更した以外は、前記と同様の手順で行った。 [Example 7]
Preparation of the all-solid-state lithium secondary battery of Example 7 was carried out in the procedure of Example 1, with the lithium conductive polymer in the gel electrolyte of the negative electrode mixture layer and the positive electrode mixture layer represented by the following formula (II):
The procedure was the same as described above except that the compound was changed to the compound represented by (average molecular weight: 300,000).
[実施例8]
実施例8の全固体リチウム二次電池の作製は、実施例1の手順において、負極合剤層及び正極合剤層のゲル電解質中のリチウム伝導性高分子を、下記の式(III):
(式中、x及びyは、互いに独立して、1~10000の範囲の整数である。)
で表される化合物(平均分子量:300000)に変更した以外は、前記と同様の手順で行った。 [Example 8]
In the production of the all solid lithium secondary battery of Example 8, in the procedure of Example 1, the lithium conductive polymer in the gel electrolyte of the negative electrode mixture layer and the positive electrode mixture layer was expressed by the following formula (III):
(Wherein x and y are each independently an integer ranging from 1 to 10000)
The procedure was the same as described above except that the compound was changed to the compound represented by (average molecular weight: 300,000).
実施例8の全固体リチウム二次電池の作製は、実施例1の手順において、負極合剤層及び正極合剤層のゲル電解質中のリチウム伝導性高分子を、下記の式(III):
で表される化合物(平均分子量:300000)に変更した以外は、前記と同様の手順で行った。 [Example 8]
In the production of the all solid lithium secondary battery of Example 8, in the procedure of Example 1, the lithium conductive polymer in the gel electrolyte of the negative electrode mixture layer and the positive electrode mixture layer was expressed by the following formula (III):
The procedure was the same as described above except that the compound was changed to the compound represented by (average molecular weight: 300,000).
[実施例9]
実施例9の全固体リチウム二次電池の作製は、実施例1の手順において、負極合剤層及び正極合剤層のゲル電解質中のリチウム伝導性高分子を、下記の式(IV):
(式中、nは、互いに独立して、1~10000の範囲の整数である。)
で表される化合物(平均分子量:300000)に変更した以外は、前記と同様の手順で行った。 [Example 9]
The all-solid lithium secondary battery of Example 9 was prepared by replacing the lithium conductive polymer in the gel electrolyte of the negative electrode mixture layer and the positive electrode mixture layer with the following formula (IV) in the procedure of Example 1.
(In the formula, n are each independently an integer in the range of 1 to 10,000.)
The procedure was the same as described above except that the compound was changed to the compound represented by (average molecular weight: 300,000).
実施例9の全固体リチウム二次電池の作製は、実施例1の手順において、負極合剤層及び正極合剤層のゲル電解質中のリチウム伝導性高分子を、下記の式(IV):
で表される化合物(平均分子量:300000)に変更した以外は、前記と同様の手順で行った。 [Example 9]
The all-solid lithium secondary battery of Example 9 was prepared by replacing the lithium conductive polymer in the gel electrolyte of the negative electrode mixture layer and the positive electrode mixture layer with the following formula (IV) in the procedure of Example 1.
The procedure was the same as described above except that the compound was changed to the compound represented by (average molecular weight: 300,000).
[実施例10]
実施例10の全固体リチウム二次電池の作製は、実施例1の手順において、電気化学特性の評価試験の充放電レートを0.1Cに変更した以外は、前記と同様の手順で行った。 [Example 10]
The all-solid lithium secondary battery of Example 10 was prepared in the same manner as described above except that the charge / discharge rate in the evaluation test of electrochemical characteristics was changed to 0.1 C in the procedure of Example 1.
実施例10の全固体リチウム二次電池の作製は、実施例1の手順において、電気化学特性の評価試験の充放電レートを0.1Cに変更した以外は、前記と同様の手順で行った。 [Example 10]
The all-solid lithium secondary battery of Example 10 was prepared in the same manner as described above except that the charge / discharge rate in the evaluation test of electrochemical characteristics was changed to 0.1 C in the procedure of Example 1.
[実施例11]
実施例11の全固体リチウム二次電池の作製は、実施例1の手順において、電気化学特性の評価試験の充放電レートを0.5Cに変更した以外は、前記と同様の手順で行った。 [Example 11]
The all-solid lithium secondary battery of Example 11 was prepared in the same manner as described above, except that the charge / discharge rate in the electrochemical property evaluation test was changed to 0.5 C in the procedure of Example 1.
実施例11の全固体リチウム二次電池の作製は、実施例1の手順において、電気化学特性の評価試験の充放電レートを0.5Cに変更した以外は、前記と同様の手順で行った。 [Example 11]
The all-solid lithium secondary battery of Example 11 was prepared in the same manner as described above, except that the charge / discharge rate in the electrochemical property evaluation test was changed to 0.5 C in the procedure of Example 1.
[実施例12]
実施例12の全固体リチウム二次電池の作製は、実施例7の手順において、電気化学特性の評価試験の充放電レートを0.1Cに変更した以外は、前記と同様の手順で行った。 [Example 12]
The all-solid lithium secondary battery of Example 12 was produced in the same manner as described above, except that the charge / discharge rate in the electrochemical property evaluation test was changed to 0.1 C in the procedure of Example 7.
実施例12の全固体リチウム二次電池の作製は、実施例7の手順において、電気化学特性の評価試験の充放電レートを0.1Cに変更した以外は、前記と同様の手順で行った。 [Example 12]
The all-solid lithium secondary battery of Example 12 was produced in the same manner as described above, except that the charge / discharge rate in the electrochemical property evaluation test was changed to 0.1 C in the procedure of Example 7.
[実施例13]
実施例13の全固体リチウム二次電池の作製は、実施例8の手順において、電気化学特性の評価試験の充放電レートを0.1Cに変更した以外は、前記と同様の手順で行った。 [Example 13]
The all-solid lithium secondary battery of Example 13 was prepared in the same manner as described above, except that the charge / discharge rate in the evaluation test of electrochemical characteristics was changed to 0.1 C in the procedure of Example 8.
実施例13の全固体リチウム二次電池の作製は、実施例8の手順において、電気化学特性の評価試験の充放電レートを0.1Cに変更した以外は、前記と同様の手順で行った。 [Example 13]
The all-solid lithium secondary battery of Example 13 was prepared in the same manner as described above, except that the charge / discharge rate in the evaluation test of electrochemical characteristics was changed to 0.1 C in the procedure of Example 8.
[実施例14]
実施例13の全固体リチウム二次電池の作製は、実施例9の手順において、電気化学特性の評価試験の充放電レートを0.1Cに変更した以外は、前記と同様の手順で行った。 Example 14
The all-solid lithium secondary battery of Example 13 was prepared in the same manner as described above, except that the charge / discharge rate in the evaluation test of electrochemical characteristics was changed to 0.1 C in the procedure of Example 9.
実施例13の全固体リチウム二次電池の作製は、実施例9の手順において、電気化学特性の評価試験の充放電レートを0.1Cに変更した以外は、前記と同様の手順で行った。 Example 14
The all-solid lithium secondary battery of Example 13 was prepared in the same manner as described above, except that the charge / discharge rate in the evaluation test of electrochemical characteristics was changed to 0.1 C in the procedure of Example 9.
[比較例1]
比較例1の全固体リチウム二次電池の作製は、実施例1の手順において、負極合剤層及び正極合剤層のゲル電解質中のリチウム伝導性高分子の濃度を20質量%に変更した以外は、前記と同様の手順で行った。 [Comparative Example 1]
The production of the all-solid lithium secondary battery of Comparative Example 1 was performed except that the concentration of the lithium conductive polymer in the gel electrolyte of the negative electrode mixture layer and the positive electrode mixture layer was changed to 20% by mass in the procedure of Example 1. Was performed in the same procedure as described above.
比較例1の全固体リチウム二次電池の作製は、実施例1の手順において、負極合剤層及び正極合剤層のゲル電解質中のリチウム伝導性高分子の濃度を20質量%に変更した以外は、前記と同様の手順で行った。 [Comparative Example 1]
The production of the all-solid lithium secondary battery of Comparative Example 1 was performed except that the concentration of the lithium conductive polymer in the gel electrolyte of the negative electrode mixture layer and the positive electrode mixture layer was changed to 20% by mass in the procedure of Example 1. Was performed in the same procedure as described above.
[比較例2]
比較例2の全固体リチウム二次電池の作製は、実施例1の手順において、負極合剤層及び正極合剤層のゲル電解質中のリチウム伝導性高分子の濃度を50質量%に変更した以外は、前記と同様の手順で行った。 [Comparative Example 2]
The production of the all-solid lithium secondary battery of Comparative Example 2 was performed except that the concentration of the lithium conductive polymer in the gel electrolyte of the negative electrode mixture layer and the positive electrode mixture layer was changed to 50% by mass in the procedure of Example 1. Was performed in the same procedure as described above.
比較例2の全固体リチウム二次電池の作製は、実施例1の手順において、負極合剤層及び正極合剤層のゲル電解質中のリチウム伝導性高分子の濃度を50質量%に変更した以外は、前記と同様の手順で行った。 [Comparative Example 2]
The production of the all-solid lithium secondary battery of Comparative Example 2 was performed except that the concentration of the lithium conductive polymer in the gel electrolyte of the negative electrode mixture layer and the positive electrode mixture layer was changed to 50% by mass in the procedure of Example 1. Was performed in the same procedure as described above.
[比較例3]
比較例3の全固体リチウム二次電池の作製は、比較例2の手順において、電気化学特性の評価試験の充放電レートを0.1Cに変更した以外は、前記と同様の手順で行った。 [Comparative Example 3]
The production of the all-solid lithium secondary battery of Comparative Example 3 was performed in the same procedure as described above, except that the charge / discharge rate in the evaluation test of electrochemical characteristics was changed to 0.1 C in the procedure of Comparative Example 2.
比較例3の全固体リチウム二次電池の作製は、比較例2の手順において、電気化学特性の評価試験の充放電レートを0.1Cに変更した以外は、前記と同様の手順で行った。 [Comparative Example 3]
The production of the all-solid lithium secondary battery of Comparative Example 3 was performed in the same procedure as described above, except that the charge / discharge rate in the evaluation test of electrochemical characteristics was changed to 0.1 C in the procedure of Comparative Example 2.
[比較例4]
比較例4の全固体リチウム二次電池の作製は、実施例1の手順において、負極層及び正極層の作製におけるPCの含浸操作を実施しなかった以外は、前記と同様の手順で行った。 [Comparative Example 4]
The all solid lithium secondary battery of Comparative Example 4 was prepared in the same manner as described above, except that the impregnation operation of PC in the preparation of the negative electrode layer and the positive electrode layer was not performed in the procedure of Example 1.
比較例4の全固体リチウム二次電池の作製は、実施例1の手順において、負極層及び正極層の作製におけるPCの含浸操作を実施しなかった以外は、前記と同様の手順で行った。 [Comparative Example 4]
The all solid lithium secondary battery of Comparative Example 4 was prepared in the same manner as described above, except that the impregnation operation of PC in the preparation of the negative electrode layer and the positive electrode layer was not performed in the procedure of Example 1.
[比較例5]
比較例5の全固体リチウム二次電池の作製は、実施例1の手順において、負極層の組成を、90.6質量部の負極活物質LiTi4O12、4.7質量部の導電助剤アセチレンブラック(AB)、及び4.7質量部のPVDFの固形成分質量比に変更し、正極の電極組成を、90質量部の正極活物質LiCoO2、5質量部の導電助剤アセチレンブラック(AB)、5質量部のPVDFの固形成分質量比に変更した以外は、前記と同様の手順で行った。 [Comparative Example 5]
The production of the all-solid lithium secondary battery of Comparative Example 5 was carried out in the same manner as in Example 1, except that the composition of the negative electrode layer was 90.6 parts by mass of the negative electrode active material LiTi 4 O 12 , 4.7 parts by mass of the conductive auxiliary agent acetylene black (AB ), And 4.7 parts by mass of PVDF solid component mass ratio, the electrode composition of the positive electrode is 90 parts by mass of positive electrode active material LiCoO 2 , 5 parts by mass of conductive auxiliary agent acetylene black (AB), 5 parts by mass of The procedure was the same as above except that the solid component mass ratio of PVDF was changed.
比較例5の全固体リチウム二次電池の作製は、実施例1の手順において、負極層の組成を、90.6質量部の負極活物質LiTi4O12、4.7質量部の導電助剤アセチレンブラック(AB)、及び4.7質量部のPVDFの固形成分質量比に変更し、正極の電極組成を、90質量部の正極活物質LiCoO2、5質量部の導電助剤アセチレンブラック(AB)、5質量部のPVDFの固形成分質量比に変更した以外は、前記と同様の手順で行った。 [Comparative Example 5]
The production of the all-solid lithium secondary battery of Comparative Example 5 was carried out in the same manner as in Example 1, except that the composition of the negative electrode layer was 90.6 parts by mass of the negative electrode active material LiTi 4 O 12 , 4.7 parts by mass of the conductive auxiliary agent acetylene black (AB ), And 4.7 parts by mass of PVDF solid component mass ratio, the electrode composition of the positive electrode is 90 parts by mass of positive electrode active material LiCoO 2 , 5 parts by mass of conductive auxiliary agent acetylene black (AB), 5 parts by mass of The procedure was the same as above except that the solid component mass ratio of PVDF was changed.
<2. 全固体リチウム二次電池の評価試験結果>
実施例及び比較例の全固体リチウム二次電池の電気化学特性の評価試験結果を表1に示す。
<2. Evaluation test results of all-solid lithium secondary battery>
Table 1 shows the evaluation test results of the electrochemical characteristics of the all-solid lithium secondary batteries of Examples and Comparative Examples.
実施例及び比較例の全固体リチウム二次電池の電気化学特性の評価試験結果を表1に示す。
Table 1 shows the evaluation test results of the electrochemical characteristics of the all-solid lithium secondary batteries of Examples and Comparative Examples.
なお、本発明は、前記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施例は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、各実施例の構成の一部について、他の構成の追加・削除及び/又は置換をすることが可能である。
In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, it is possible to add, delete, and / or replace another configuration with respect to a part of the configuration of each embodiment.
本明細書で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書にとり入れるものとする。
All publications, patents and patent applications cited in this specification shall be incorporated into this specification as they are.
10…正極集電体
20…負極集電体
30…電池ケース
40…正極合材層
50…固体電解質層
52…固体電解質粒子
60…負極合材層
62…負極活物質
63…リチウム伝導性高分子
64…負極導電剤
65…リチウム塩
66…有機電解液
70…正極
80…負極
100…全固体リチウム二次電池 10 ... Positive electrode current collector
20 ... Negative electrode current collector
30 ... Battery case
40… Positive electrode mixture layer
50 ... Solid electrolyte layer
52 ... Solid electrolyte particles
60 ... Negative electrode mixture layer
62… Negative electrode active material
63 ... Lithium conductive polymer
64 ... Negative electrode conductive agent
65 ... lithium salt
66… Organic electrolyte
70 ... Positive electrode
80 ... Negative electrode
100 ... All-solid lithium secondary battery
20…負極集電体
30…電池ケース
40…正極合材層
50…固体電解質層
52…固体電解質粒子
60…負極合材層
62…負極活物質
63…リチウム伝導性高分子
64…負極導電剤
65…リチウム塩
66…有機電解液
70…正極
80…負極
100…全固体リチウム二次電池 10 ... Positive electrode current collector
20 ... Negative electrode current collector
30 ... Battery case
40… Positive electrode mixture layer
50 ... Solid electrolyte layer
52 ... Solid electrolyte particles
60 ... Negative electrode mixture layer
62… Negative electrode active material
63 ... Lithium conductive polymer
64 ... Negative electrode conductive agent
65 ... lithium salt
66… Organic electrolyte
70 ... Positive electrode
80 ... Negative electrode
100 ... All-solid lithium secondary battery
Claims (8)
- 総質量に対して0.01~15質量%の範囲のリチウム伝導性高分子及び有機電解液を含有するゲル電解質、負極活物質並びに負極集電体を有する負極と、正極と、該負極及び該正極の間に配置された固体電解質とを備える全固体リチウム二次電池。 A negative electrode having a gel electrolyte containing a lithium conductive polymer and an organic electrolyte in a range of 0.01 to 15% by mass relative to the total mass, a negative electrode active material and a negative electrode current collector, a positive electrode, the negative electrode, and the positive electrode An all-solid lithium secondary battery comprising a solid electrolyte disposed therebetween.
- 前記リチウム伝導性高分子が、ポリエチレンオキシド、ポリアクリロニトリル、ポリアクリル酸、ポリビニルアルコール、ポリビニルピロリドン、ポリホスファゼン、ポリイミノホスホラン及びイオン液体ポリマー、並びにそれらの混合物からなる群より選択される少なくとも1種の高分子である、請求項1に記載の全固体リチウム二次電池。 The lithium conductive polymer is at least one selected from the group consisting of polyethylene oxide, polyacrylonitrile, polyacrylic acid, polyvinyl alcohol, polyvinyl pyrrolidone, polyphosphazene, polyiminophosphorane and ionic liquid polymer, and mixtures thereof. 2. The all-solid-state lithium secondary battery according to claim 1, which is a polymer of
- 前記リチウム伝導性高分子が、下記の式:
で表される化合物からなる群より選択される少なくとも1種の高分子である、請求項1又は2に記載の全固体リチウム二次電池。 The lithium conductive polymer has the following formula:
3. The all solid lithium secondary battery according to claim 1, wherein the all solid lithium secondary battery is at least one polymer selected from the group consisting of compounds represented by: - 前記有機電解液が、プロピレンカーボネート、エチレンカーボネート、ガンマブチロラクトン、イミダゾリウム系イオン液体、ピリジニウム系イオン液体及び脂肪族系イオン液体、並びにそれらの混合物からなる群より選択される少なくとも1種の化合物である、請求項1~3のいずれか1項に記載の全固体リチウム二次電池。 The organic electrolyte is at least one compound selected from the group consisting of propylene carbonate, ethylene carbonate, gamma butyrolactone, imidazolium ionic liquid, pyridinium ionic liquid and aliphatic ionic liquid, and mixtures thereof. The all solid lithium secondary battery according to any one of claims 1 to 3.
- 前記有機電解液が、プロピレンカーボネートである、請求項1~4のいずれか1項に記載の全固体リチウム二次電池。 The all-solid lithium secondary battery according to any one of claims 1 to 4, wherein the organic electrolyte is propylene carbonate.
- 前記固体電解質が、硫化物系固体電解質、酸化物系固体電解質及びポリマー電解質、並びにそれらの混合物からなる群より選択される少なくとも1種の電解質である、請求項1~5のいずれか1項に記載の全固体リチウム二次電池。 6. The solid electrolyte according to any one of claims 1 to 5, wherein the solid electrolyte is at least one electrolyte selected from the group consisting of sulfide-based solid electrolytes, oxide-based solid electrolytes and polymer electrolytes, and mixtures thereof. The all-solid-state lithium secondary battery as described.
- 請求項1~6のいずれか1項に記載の全固体リチウム二次電池の製造方法であって、
リチウム伝導性高分子を有機電解液で膨潤させて、リチウム伝導性高分子及び有機電解液を含有するゲル電解質を形成させる、ゲル電解質形成工程;
を含む、前記方法。 A method for producing an all-solid lithium secondary battery according to any one of claims 1 to 6,
A gel electrolyte forming step of swelling a lithium conductive polymer with an organic electrolyte to form a gel electrolyte containing the lithium conductive polymer and the organic electrolyte;
Said method. - 前記ゲル電解質形成工程の前に、
リチウム伝導性高分子及び負極活物質を負極集電体に積層する、材料積層工程を更に含む、請求項7に記載の方法。 Before the gel electrolyte formation step,
8. The method according to claim 7, further comprising a material lamination step of laminating the lithium conductive polymer and the negative electrode active material on the negative electrode current collector.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/059405 WO2015151145A1 (en) | 2014-03-31 | 2014-03-31 | All-solid lithium secondary cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/059405 WO2015151145A1 (en) | 2014-03-31 | 2014-03-31 | All-solid lithium secondary cell |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015151145A1 true WO2015151145A1 (en) | 2015-10-08 |
Family
ID=54239522
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/059405 WO2015151145A1 (en) | 2014-03-31 | 2014-03-31 | All-solid lithium secondary cell |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015151145A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112072164A (en) * | 2020-08-28 | 2020-12-11 | 蜂巢能源科技有限公司 | Solid-state lithium battery and preparation method thereof |
CN113823768A (en) * | 2021-08-27 | 2021-12-21 | 天津空间电源科技有限公司 | Preparation method of positive electrode suitable for solid-state battery |
WO2024243869A1 (en) * | 2023-05-31 | 2024-12-05 | 宁德时代新能源科技股份有限公司 | Secondary battery and electrical device comprising same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11297357A (en) * | 1998-04-07 | 1999-10-29 | Hitachi Maxell Ltd | Method for producing polymer lithium ion secondary battery |
JP2000003728A (en) * | 1998-06-15 | 2000-01-07 | Mitsubishi Chemicals Corp | Lithium secondary battery and method of manufacturing the same |
JP2000123871A (en) * | 1998-10-13 | 2000-04-28 | Yuasa Corp | Solid electrolyte lithium secondary battery |
JP2002025618A (en) * | 2000-07-05 | 2002-01-25 | Matsushita Electric Ind Co Ltd | Method for manufacturing lithium polymer secondary battery |
JP2007213930A (en) * | 2006-02-08 | 2007-08-23 | Nissan Motor Co Ltd | Bipolar battery, battery pack and vehicle with them mounted thereon |
JP4228541B2 (en) * | 1998-09-01 | 2009-02-25 | ソニー株式会社 | Method for producing non-aqueous gel electrolyte battery |
-
2014
- 2014-03-31 WO PCT/JP2014/059405 patent/WO2015151145A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11297357A (en) * | 1998-04-07 | 1999-10-29 | Hitachi Maxell Ltd | Method for producing polymer lithium ion secondary battery |
JP2000003728A (en) * | 1998-06-15 | 2000-01-07 | Mitsubishi Chemicals Corp | Lithium secondary battery and method of manufacturing the same |
JP4228541B2 (en) * | 1998-09-01 | 2009-02-25 | ソニー株式会社 | Method for producing non-aqueous gel electrolyte battery |
JP2000123871A (en) * | 1998-10-13 | 2000-04-28 | Yuasa Corp | Solid electrolyte lithium secondary battery |
JP2002025618A (en) * | 2000-07-05 | 2002-01-25 | Matsushita Electric Ind Co Ltd | Method for manufacturing lithium polymer secondary battery |
JP2007213930A (en) * | 2006-02-08 | 2007-08-23 | Nissan Motor Co Ltd | Bipolar battery, battery pack and vehicle with them mounted thereon |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112072164A (en) * | 2020-08-28 | 2020-12-11 | 蜂巢能源科技有限公司 | Solid-state lithium battery and preparation method thereof |
CN113823768A (en) * | 2021-08-27 | 2021-12-21 | 天津空间电源科技有限公司 | Preparation method of positive electrode suitable for solid-state battery |
CN113823768B (en) * | 2021-08-27 | 2024-03-22 | 天津空间电源科技有限公司 | Preparation method of solid-state battery |
WO2024243869A1 (en) * | 2023-05-31 | 2024-12-05 | 宁德时代新能源科技股份有限公司 | Secondary battery and electrical device comprising same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2262037B1 (en) | Lithium secondary battery using ionic liquid | |
CN104321912B (en) | Lithium secondary battery including multiple active material layers | |
JP5760593B2 (en) | Method for producing active material, electrode and lithium ion secondary battery | |
JP5228576B2 (en) | Lithium ion secondary battery and electric vehicle power supply | |
JP4834030B2 (en) | Positive electrode for lithium secondary battery and lithium secondary battery using the same | |
US10044072B2 (en) | Lithium secondary battery pack, as well as electronic device, charging system, and charging method using said pack | |
JP2001325988A (en) | Charging method of non-aqueous electrolyte secondary battery | |
WO2018155207A1 (en) | Secondary battery and production method therefor | |
WO2014010526A1 (en) | Non-aqueous electrolyte secondary battery | |
JP5341280B2 (en) | Lithium secondary battery pack, electronic device using the same, charging system and charging method | |
JP2012119091A (en) | Nonaqueous electrolytic solution, electrode, and electrochemical device comprising nonaqueous electrolytic solution and electrode | |
CN112563563A (en) | Composite solid electrolyte, solid battery and preparation method thereof | |
JP2019175657A (en) | Lithium ion secondary battery | |
JP2011192561A (en) | Manufacturing method for nonaqueous electrolyte secondary battery | |
JP2018116831A (en) | Battery manufacturing method | |
CN105493319B (en) | Negative electrode active material, cathode and lithium rechargeable battery using the negative electrode active material | |
WO2015132845A1 (en) | All-solid-state battery | |
WO2015151145A1 (en) | All-solid lithium secondary cell | |
WO2019065288A1 (en) | Nonaqueous electrolyte for lithium ion secondary batteries, and lithium ion secondary battery using same | |
JP2005294028A (en) | Lithium secondary battery | |
JP6992362B2 (en) | Lithium ion secondary battery | |
WO2015037115A1 (en) | Negative-electrode material for use in lithium-ion secondary batteries | |
JP2015159050A (en) | Li battery materials | |
JP2018133335A (en) | Nonaqueous electrolyte battery | |
JP2020155378A (en) | Electrolyte for lithium ion secondary battery, and lithium ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14887720 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14887720 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |