WO2015146485A1 - Water jet peening system and water jet peening method - Google Patents
Water jet peening system and water jet peening method Download PDFInfo
- Publication number
- WO2015146485A1 WO2015146485A1 PCT/JP2015/055890 JP2015055890W WO2015146485A1 WO 2015146485 A1 WO2015146485 A1 WO 2015146485A1 JP 2015055890 W JP2015055890 W JP 2015055890W WO 2015146485 A1 WO2015146485 A1 WO 2015146485A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- jet peening
- gas
- water jet
- treatment
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 254
- 238000000034 method Methods 0.000 title claims description 24
- 238000011282 treatment Methods 0.000 claims abstract description 16
- 238000002347 injection Methods 0.000 claims description 42
- 239000007924 injection Substances 0.000 claims description 42
- 238000010276 construction Methods 0.000 claims description 30
- 230000008602 contraction Effects 0.000 claims description 24
- 238000000926 separation method Methods 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 12
- 238000011221 initial treatment Methods 0.000 claims 2
- 239000007789 gas Substances 0.000 description 73
- 238000007872 degassing Methods 0.000 description 19
- 239000000498 cooling water Substances 0.000 description 13
- 239000000446 fuel Substances 0.000 description 9
- 239000012071 phase Substances 0.000 description 9
- 239000007791 liquid phase Substances 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 230000005484 gravity Effects 0.000 description 6
- 238000009835 boiling Methods 0.000 description 5
- 238000003466 welding Methods 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 229910000851 Alloy steel Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000012510 hollow fiber Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000004992 fission Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/02—Modifying the physical properties of iron or steel by deformation by cold working
- C21D7/04—Modifying the physical properties of iron or steel by deformation by cold working of the surface
Definitions
- the present invention relates to a water jet peening apparatus and a water jet peening method.
- a water jet peening apparatus injects water (high pressure water) from the injection port of the nozzle arrange
- the aspect of this invention aims at providing the water jet peening apparatus and the water jet peening method which can reduce the tensile residual stress of construction object.
- a treatment device for reducing the amount of gas dissolved in water and a supply device for supplying treated water generated by the treatment device, and a treatment device disposed in a space filled with water, And a nozzle having an injection port for injecting the treated water supplied from the supply device.
- Water jet peening method including jetting the treated water from the jet port in a state where the jet port of the nozzle and the construction target are opposed in the space.
- the tensile residual stress of a construction subject can be reduced.
- FIG. 1 is a schematic configuration diagram of an example of a nuclear power plant according to the first embodiment.
- FIG. 2 is a longitudinal sectional view showing an example of the nuclear reactor vessel according to the first embodiment.
- FIG. 3 is a cross-sectional view showing an example of the instrumentation nozzle of the nuclear reactor vessel according to the first embodiment.
- FIG. 4 is a view showing an example of the water jet peening apparatus according to the first embodiment.
- FIG. 5 is a front view showing an example of the water jet peening apparatus according to the first embodiment.
- FIG. 6 is a view showing the relationship between the bubble diameter and the vapor pressure in the bubble.
- FIG. 7 is a view schematically showing an example of the cavitation generator according to the first embodiment.
- FIG. 1 is a schematic configuration diagram of an example of a nuclear power plant according to the first embodiment.
- FIG. 2 is a longitudinal sectional view showing an example of the nuclear reactor vessel according to the first embodiment.
- FIG. 3 is a cross-sectional view showing an
- FIG. 8 is a view schematically showing an example of the cavitation generator according to the first embodiment.
- FIG. 9 is a view schematically showing an example of the cavitation generator according to the first embodiment.
- FIG. 10 is a view schematically showing an example of the cavitation generator according to the first embodiment.
- FIG. 11 is a view schematically showing an example of the separation device according to the first embodiment.
- FIG. 12 is a view showing an example of a water jet peening apparatus according to a second embodiment.
- FIG. 1 is a schematic configuration view showing an example of a nuclear power plant NP according to the present embodiment.
- the nuclear power plant NP has a reactor system CS1 and a turbine system CS2.
- the nuclear power plant NP includes a pressurized water reactor (PWR: Pressurized Water Reactor), and circulates the high temperature and high pressure primary cooling water (hot water) generated in the reactor system CS1 and the turbine system CS2.
- a steam generator 103 is provided which performs heat exchange with secondary cooling water to generate secondary cooling water vapor.
- the reactor system CS1 includes a reactor vessel 101, a pressurizer 102, and a primary cooling water pump 104.
- Each of the reactor vessel 101, the pressurizer 102, the steam generator 103, and the primary cooling water pump 104 is stored in the reactor containment vessel 100.
- the reactor vessel 101 accommodates the core 129 and the fuel assembly 120.
- the high-temperature and high-pressure primary cooling water (hot water) heated by the reactor vessel 101 and pressurized by the pressurizer 102 is supplied to the steam generator 103.
- the low temperature primary cooling water heat-exchanged by the steam generator 103 is supplied to the reactor vessel 101.
- the turbine system CS2 includes a steam turbine 107 including a high pressure turbine 108 and a low pressure turbine 109, a generator 110 driven by the steam turbine 107 to generate electric power, a moisture separation heater 111, and steam generated by the steam turbine 107.
- a condenser 112 for cooling and liquefying, a feed water pump 116, a condensate pump 113, a low pressure feed water heater 114, a deaerator 115, and a high pressure feed water heater 117 are provided.
- the steam turbine 107 operates with the steam supplied from the steam generator 103.
- the condenser 112 cools the steam back to water using, for example, seawater.
- the feed water pump 116 operates so that the secondary cooling water from the condenser 112 is supplied to the steam generator 103.
- FIG. 2 is a longitudinal sectional view showing the vicinity of the nuclear reactor vessel 101 according to the present embodiment.
- the nuclear reactor vessel 101 has a vessel body 101 a and a vessel lid 101 b.
- a core 129 is disposed inside the reactor vessel 101.
- a plurality of fuel assemblies 120 and a plurality of control rods 130 are disposed in the core 129.
- the control rod drive device 133 controls the output of the nuclear reactor vessel 101 by moving the control rod cluster drive shaft 135 in the vertical direction.
- the nuclear reactor vessel 101 has a plurality of instrumentation nozzles 136 arranged to penetrate the lower mirror 101 e of the vessel body 101 a.
- the upper end portion of the instrumentation nozzle 136 is disposed inside the reactor vessel 101, and the lower end portion of the instrumentation nozzle 136 is disposed outside the reactor vessel 101.
- An in-core instrumentation guide tube 137 is connected to the upper end of the instrumentation nozzle 136.
- the conduit tube 138 is connected to the lower end of the instrumentation nozzle 136.
- the thimble tube 141 is disposed so as to be insertable to the fuel assembly 120 via the conduit tube 138, the instrumentation nozzle 136, and the in-core instrumentation guide tube 137.
- the thimble tube 141 has a neutron flux detector capable of measuring the neutron flux.
- the control rod drive device 133 can pull out the control rod 130 from the fuel assembly 120 or insert the control rod 130 into the fuel assembly 120 by moving the control rod cluster drive shaft 135.
- the control rod 130 is pulled out of the fuel assembly 120, and the heat energy generated by nuclear fission in the core 129 heats the primary cooling water of the reactor vessel 101, and the heated primary cooling water is a steam generator. It is supplied to 103. Further, by adjusting the insertion amount of the control rod 130 into the fuel assembly 120, the number of neutrons generated in the core 129 is adjusted. Also, the reactor is shut down by inserting all the control rods 130 into the fuel assembly 120.
- FIG. 3 is a cross-sectional view showing an example of the instrumentation nozzle 136 according to the present embodiment.
- the instrumentation nozzle 136 includes an in-core instrumentation cylinder 145 and is disposed in a hole 146 formed in the lower mirror 101 e of the container body 101 a.
- the instrumentation nozzle 136 is fixed to the inner surface of the lower mirror 101 e by welding.
- a welding portion (groove welding portion) 147 is provided between the instrumentation nozzle 136 and the lower mirror 101 e.
- the container main body 101a includes a low alloy steel as a base material and a stainless steel overlay welded on the inner surface of the low alloy steel.
- the in-core instrumentation cylinder 145 is made of a nickel base alloy. With the in-core instrument cylinder 145 disposed in the hole 146, the vessel body 101a and the in-core instrument cylinder 145 are welded by a material made of a nickel-based alloy. Thereby, a welded portion 147 is generated.
- the tensile stress may remain in the instrumentation nozzle 136 (in-core instrumentation cylinder 145), the groove weld portion 147, and the container main body 101a (lower mirror 101e) disposed around the welding by welding, As a result, stress corrosion cracking may occur.
- the surface (inner surface) of the instrumentation nozzle 136 (in-core instrumentation cylinder 145), the groove weld portion 147, and the lower mirror 101e are constructed by water jet peening. To reduce the tensile residual stress of the construction object, and to suppress the occurrence of stress corrosion cracking.
- Water jet peening is a construction method in which water (high pressure water) is jetted from a jet nozzle of a nozzle disposed in water in a state where a construction target for improving stress is immersed in water.
- An impact pressure is generated by the collapse of air bubbles contained in the water injected from the nozzle.
- the impact pressure hits the object to be installed in water, the tensile residual stress in the vicinity of the surface of the object to be applied is relaxed.
- An impact pressure is generated by the cavitation, and the impact pressure strikes the object to be construction, whereby at least a part of the object to be construction is plastically deformed. Thereby, the tensile residual stress in the vicinity of the surface of the construction object is relaxed. For example, when tensile stress remains in the vicinity of the surface of the construction object, it is converted into compressive stress by impact pressure being applied to the construction object.
- FIG. 4 is a figure which shows typically an example of the water jet peening apparatus 1 which concerns on this embodiment.
- FIG. 5 is an enlarged view of a part of FIG. 4.
- the water jet peening apparatus 1 has a processing device 2 for reducing the amount of gas dissolved in water (cooling water) Lr, and supplies the treated water Ls generated by the processing device 2 And an injection nozzle 5 disposed in a space WH filled with the water Lr and having an injection port 4 for injecting the treated water Ls supplied from the supply device 3.
- the water jet peening apparatus 1 is controlled by a controller 50.
- the construction object surface and bottom of in-core instrumentation cylinder 145. The construction for relieving the tensile residual stress of the surface of the mirror 101e etc. is performed.
- the nuclear power plant NP has a working floor FR of the reactor building and a space WH provided below the working floor FR and filled with water Lr.
- the injection nozzle 5 and the reactor vessel 101 are disposed in the space WH.
- the water jet peening apparatus 1 has a construction apparatus 6 disposed in the space WH.
- the construction apparatus 6 has a main body 61, a connection member 62, and an injection nozzle 5 having an injection port 4 for injecting the treated water Ls.
- the connecting member 62 is disposed at the lower part of the main body 61 and protrudes downward from the main body 61.
- the connection member 62 is connected to the instrumentation nozzle 136 (in-core instrumentation cylinder 145). Thereby, the main body 61 is fixed to the instrumentation nozzle 136.
- the injection nozzle 5 is disposed in the space WH, and injects the treated water (high pressure water) LS from the injection port 4 in the water Lr.
- the injection operation of the injection nozzle 5 is controlled by the control device 50.
- spray nozzle 5 is provided in the main body 61 so that the surface of a construction target object may be opposed.
- the surface of the installation target includes at least one of the outer surface of the instrumentation nozzle 136 (in-core instrumentation cylinder 145), the inner surface of the lower mirror 101e, and the surface of the grooved weld portion 147.
- the treated water Ls is injected from the injection port 4 in a state where the injection port 4 of the injection nozzle 5 disposed in the space WH is opposed to the construction target.
- the supply device 3 is disposed outside the space WH. In the present embodiment, at least a part of the supply device 3 is disposed on the work floor FR.
- the supply device 3 is generated by the water supply tank 9 in which the water Lr sent from the space WH is stored, the processing device 2 for reducing the amount of gas dissolved in the water Lr sent from the water supply tank 9, and the processing device 2
- the high pressure pump 14 for supplying the treated water Ls to the injection nozzle 5 is provided. The high pressure pump 14 is controlled by the controller 50.
- the supply device 3 includes a pipe 8 connecting the space WH and the water supply tank 9, and a pump 7 disposed in the pipe 8.
- the pump 7 is controlled by the controller 50.
- the water supply tank 9 stores the water Lr sent from the space WH.
- the pipe 8 may be provided with a valve mechanism capable of opening and closing the flow path of the pipe 8.
- the supply device 3 further includes a pipe 10 connecting the water supply tank 9 and the processing device 2, a flow meter 11 disposed in the pipe 10, and a pump 12 disposed in the pipe 10.
- the pump 12 is controlled by the controller 50.
- the flow meter 11 detects the flow rate of the water Lr per unit time in the pipe 10.
- the detection result of the flow meter 11 is output to the control device 50.
- the controller 50 may control the pump 12 based on the detection result of the flow meter 11.
- the processing device 2 reduces the amount of gas dissolved in the water Lr supplied from the water supply tank 9.
- the processing device 2 includes a degassing device capable of reducing the amount of gas dissolved in the water Lr.
- the processing device 2 generates a cavitation in the water Lr to reduce the amount of gas dissolved in the water Lr, and a gas component from the primary treated water Lt generated by the cavitation generator 21.
- a separation device 22 that separates to generate treated water Ls.
- the supply device 3 further includes a pipe 13 connecting the processing device 2 and the high pressure pump 14, a pipe 16 connecting the high pressure pump 14 and the injection nozzle 5, and a pressure gauge 15 disposed in the pipe 16.
- the pressure gauge 15 detects the pressure of the treated water Ls in the pipe 13.
- the detection result of the pressure gauge 15 is output to the control device 50.
- the controller 50 may control the high pressure pump 14 based on the detection result of the pressure gauge 15.
- the injection nozzle 5 injects the treated water Ls from the injection port 4 in a state of being disposed in the space WH (in water).
- the pressure of the impact pressure striking the construction object be high.
- the amount of gas dissolved in water per unit volume correlates with the impact pressure. As the amount of gas dissolved in water is smaller, higher impact pressure can be obtained. In the present embodiment, the amount of gas dissolved in the water Lr is reduced so as to obtain a high impact pressure.
- FIG. 6 is a view showing the relationship between the size of the diameter of a bubble (bubble diameter) present in water and the pressure inside the bubble (the vapor pressure in the bubble).
- the horizontal axis indicates the bubble diameter.
- the vertical axis shows the vapor pressure in the bubble.
- line A1 shows the relationship between the bubble diameter and the vapor pressure in the bubble in a virtual state in which no dissolved gas exists in water.
- Line A2 shows the relationship between the bubble diameter and the vapor pressure in the bubble when the amount of gas dissolved in water per unit volume is small.
- Line A3 shows the relationship between the bubble diameter and the vapor pressure in the bubble in a state where the amount of gas dissolved in water per unit volume is large.
- cavitation refers to the process of bubble formation, growth, contraction and collapse.
- the air bubble shrinks and the air bubble diameter reaches a certain size, the air bubble collapses.
- Impact pressure is generated at the collapse of the bubble. It is known that the pressure of impact pressure generated in the collapse of the bubble changes depending on the vapor pressure in the bubble at the time of the collapse. The higher the vapor pressure in the bubbles, the higher the impact pressure.
- the vapor pressure in the bubble is determined by the balance with the surface tension of the bubble.
- the vapor pressure in the bubble is high. Therefore, in the bubble contraction process in which the bubble diameter gradually decreases, the vapor pressure in the bubble gradually increases.
- the vapor pressure in bubbles changes in accordance with the amount of gas dissolved in water.
- the vapor pressure in the bubbles is high. Therefore, when the amount of gas dissolved in water is small, the impact pressure is high.
- the water jet peening apparatus 1 reduces the amount of gas dissolved in the water injected from the injection port 4 of the injection nozzle 5.
- the processing device 2 for reducing the amount of gas dissolved in the water Lr is provided in the supply device 3, and the water (processed water) Ls in which the amount of dissolved gas is reduced is supplied to the injection nozzle 5.
- the processing device 2 includes a degassing device capable of reducing the amount of gas dissolved in the water Lr.
- the degassing system of the degassing apparatus is a degassing system using cavitation.
- the processing device 2 includes a cavitation generator 21.
- cavitation occurs in water, the dissolved gas of water forms bubbles with water vapor. Most of the dissolved gas is generally air (nitrogen gas and oxygen gas). Nitrogen gas and oxygen gas dissolve in water to almost saturated amount depending on their partial pressure.
- the bubble collapses the water vapor contained in the bubble is liquefied immediately, but it takes time for the dissolved gas in the bubble to be redissolved in water.
- the water jet peening apparatus 1 generates cavitation in the water Lr in the processing apparatus 2 to generate bubbles containing dissolved gas, and generates water (primary treated water) Lt containing the bubbles, and then the primary treated water By removing air bubbles from Lt, the amount of dissolved gas is reduced to generate treated water Ls.
- FIG. 7 is a view schematically showing an example of the cavitation generator 21 according to the present embodiment.
- the cavitation generator 21 includes a pipe 24 having a contraction portion 23.
- the water Lr pressurized by the pump 12 flows through the pipe 24.
- the flow path of the pipe 24 includes the contraction portion 23.
- the dimension (cross-sectional area) of the flow path of the contraction portion 23 is smaller than the dimension of the flow path of the pipe 24 on the upstream side of the contraction portion 23 and the dimension of the flow path of the pipe 24 on the downstream side.
- the flow reducing portion 23 is formed by the orifice plate 25A.
- the flow velocity of the water Lr supplied from the pump 12 to the flow path of the pipe 24 is high in the contraction portion 23, and the pressure of the water Lr is low in the contraction portion 23.
- the pressure of the water Lr is reduced to the saturated vapor pressure by the contraction portion 23, bubbles are generated in the water Lr.
- Water (primary treated water) Lt containing air bubbles generated in the contraction portion 23 flows downstream from the contraction portion 23. After growth and contraction, some of the bubbles generated in the contraction portion 23 disintegrate immediately downstream of the contraction portion 23.
- cavitation generator 21 including the pipe 24 having the contraction portion 23 is generated by the cavitation generator 21 including the pipe 24 having the contraction portion 23.
- FIG. 8, FIG. 9, and FIG. 10 is a schematic view showing an example of the cavitation generator 21.
- the flow reducing portion 23 may be formed by the nozzle 25 ⁇ / b> B.
- the contraction portion 23 may be formed by the throat 25 ⁇ / b> C.
- the flow reducing portion 23 may be formed by the valve 25D.
- the valve 25D can adjust the dimensions (cross-sectional area, opening degree) of the flow passage of the contraction portion 23.
- FIG. 11 is a view schematically showing an example of the separation device 22 according to the present embodiment.
- the separation device 22 includes an intermediate tank 26 that stores primary treated water Lt supplied from the cavitation generator 21.
- the air bubbles (gas phase) move near the surface (upper surface) of the primary treated water Lt of the intermediate tank 26 by gravity (difference in specific gravity).
- Water (liquid phase) moves below the gas phase.
- the separation device 22 including the intermediate tank 26 moves the gas phase to the upper part of the internal space of the intermediate tank 26 and transfers the liquid phase to the lower part of the internal space of the intermediate tank 26 to obtain primary treated water.
- the gas component is separated from Lt, and the primary treated water Lt is divided into a gas phase and a liquid phase.
- the primary treated water Lt from which the gas component is separated becomes treated water Ls in which the dissolved gas is reduced.
- the inlet 13 ⁇ / b> R of the pipe 13 connected to the high pressure pump 14 is disposed at the lower part of the internal space of the intermediate tank 26.
- the high pressure pump 14 is operated in a state where the inlet 13R of the pipe 13 is disposed at the lower part of the internal space of the intermediate tank 26, the water (treated water) Ls existing in the lower part of the internal space of the intermediate tank 26 is the pipe 13 , And is supplied to the injection nozzle 5 through the pipe 16. Since the gas phase is present in the upper part of the internal space of the intermediate tank 26, it is suppressed from flowing into the pipe 13 through the inlet 13R.
- the separation device 22 may have a rotatable propeller 27 disposed in the intermediate tank 26.
- the gas phase and the liquid phase may be centrifuged by rotating the propeller 27 in a state where the intermediate tank 26 is filled with the primary treated water Lt.
- the construction apparatus 6 including the injection nozzle 5 and the reactor vessel 101 are disposed in the space WH filled with the water Lr.
- the pump 7 By the operation of the pump 7, the water Lr in the space WH where the construction device 6 and the reactor vessel 101 are disposed is supplied to the water supply tank 9.
- the water supply tank 9 stores water Lr from the space WH.
- the gas phase moves to the upper part of the water supply tank 9 and the liquid phase moves to the lower part of the water supply tank 9 by gravity action (difference in specific gravity). That is, when the water Lr supplied from the space WH contains a gas component, the water Lr is separated in the gas-liquid separation in the water supply tank 9.
- the water Lr of the water supply tank 9 is supplied to the processing device 2 by the operation of the pump 12. Of the gas phase and liquid phase separated in the water supply tank 9, only the liquid phase is supplied to the pump 12 and the supply of the gas phase to the pump 12 is suppressed. Thereby, the malfunction of the pump 12 is suppressed.
- the water Lr boosted by the pump 12 is supplied to the processing device 2.
- the processing device 2 processes the water Lr sent from the space WH.
- the processing device 2 performs processing to reduce the amount of gas dissolved in the water Lr.
- the water Lr pressurized by the pump 12 is supplied to the cavitation generator 21 of the processing device 2.
- the cavitation generator 21 reduces the pressure of the water Lr in the contraction portion 23 to generate cavitation in the water Lr.
- the occurrence of cavitation generates bubbles containing dissolved gas dissolved in the water Lr. A part of generated bubbles collapses, and a part of bubbles mainly composed of dissolved gas remains.
- the water Lr containing the remaining air bubbles is sent to the separation device 22 as primary treated water Lt.
- the separation device 22 separates the gas component from the primary treated water Lt containing bubbles (gas component) generated by the occurrence of cavitation to generate treated water Ls.
- the separation device 22 performs gas-liquid separation of the primary treated water Lt containing air bubbles, using gravity action (difference in specific gravity). The amount of gas dissolved in the treated water Ls from which the gas component has been separated is sufficiently small.
- the treated water Ls generated by the treatment device 2 is supplied to the injection nozzle 5 disposed in the space WH filled with the water Lr by the operation of the high pressure pump 14.
- the treated water Ls is injected from the injection port 4 in a mode in which the injection port 4 of the injection nozzle 5 and the construction target are opposed in the space WH.
- the amount of gas dissolved in water correlates with the pressure of impact pressure generated based on the water.
- the treatment object can be constructed with a high impact pressure by injecting the treated water Ls in which the amount of gas dissolved in the water is sufficiently reduced from the injection port 4 of the injection nozzle 5 facing the object to be constructed . Thereby, the tensile residual stress of a construction subject is reduced.
- the construction object can be constructed with a high impact pressure. Therefore, the tensile residual stress of the object to be installed can be further reduced, and further converted to compressive residual stress.
- the cavitation generator 21 of the processing device 2 As a method of reducing the amount of dissolved gas, cavitation is generated in the water Lr by the cavitation generator 21 of the processing device 2, the dissolved gas is bubbled by the cavitation, and the generated bubbles are separated by the separator 22. As a result, the treated water Ls in which the amount of dissolved gas is reduced is generated. Thereby, treated water Ls can be generated at a high processing speed with a simple structure.
- the water Lr in the space WH in which the reactor vessel 101 is disposed is used.
- the treated water Ls can be generated from the water Lr with a simple structure only by devising the shape of the pipe 24 and providing the contraction portion 23.
- the water Lr in the space WH is subjected to the dissolved gas amount reduction process and used for water jet peening. That is, the water jet peening process is performed by circulating the water Lr. Thereby, the increase in the water Lr which contacts the reactor vessel 101 is suppressed.
- FIG. 12 is a view showing an example of a water jet peening apparatus 1B according to the present embodiment.
- the water jet peening apparatus 1B has a processing apparatus 2B that reduces the amount of gas dissolved in the water Lr.
- the processing device 2B includes a degassing device. In the present embodiment, the processing device 2B does not generate primary treated water (Lt).
- the degassing system of the processing apparatus (degassing apparatus) 2B may be selected from at least one of a heating boiling degassing system and a vacuum reduced pressure degassing system. Also, as the degassing method, a membrane degassing method using a hollow fiber membrane degassing module may be selected.
- the heating and boiling degassing method is a method of reducing the amount of gas dissolved in water by heating and boiling water and reducing the solubility of the gas.
- the solubility of the gas decreases with increasing temperature.
- the vacuum reduced pressure degassing method is a method of reducing the amount of gas dissolved in water by reducing the pressure of water in vacuum and making the partial pressure of the gas in contact with the water substantially zero.
- the solubility of a gas is proportional to the partial pressure of the gas in contact with water, and as the partial pressure decreases, the solubility also decreases.
- the membrane degassing method uses a thin film (hollow fiber membrane) in which water permeation is suppressed and gas permeation is permitted, one space of the thin film is filled with a liquid in which gas is dissolved, and the other space of the thin film is depressurized By moving the gas only to the other space.
- a thin film high fiber membrane
- At least one of an ultrasonic degassing method and a centrifugal degassing method may be selected.
- the object to be subjected to water jet peening is the instrumentation nozzle 136 (in-core instrumentation cylinder 145), the groove weld portion 147, and the lower mirror 101e. I decided to be at least one.
- the installation object of the water jet peening may be the inlet-side nozzle of the reactor vessel 101 as described with reference to FIGS. 1 and 2 or the outlet-side nozzle of the reactor vessel 101.
- the object to be installed is not limited to the members of the reactor vessel 101.
- piping connecting the pressurizer 102 and the steam generator 103, the pressurizer 102, the steam generator 103 and the primary cooling water pump 104 It may be connected piping and at least a part of the steam generator 103.
- the object to be installed is not limited to the structure of the reactor system CS1, but may be the structure of the turbine system CS2.
- the construction target is a pipe connecting the steam generator 103 and the steam turbine 107, the steam turbine 107, the moisture separation heater 111, the condenser 112, and the condenser 112 and the steam generator 103. It may be at least a part of the piping.
- the nuclear power plant NP includes the pressurized water reactor.
- Nuclear power plant NP may include a boiling water reactor (BWR: Boiling Water Reactor).
- the object to be subjected to water jet peening is not limited to the structure of the nuclear power plant NP. Structures of various plants such as a thermal power plant and a geothermal power plant may be objects of water jet peening.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
Abstract
This water jet peening system (1) is equipped with: a supply device (3) that has a treatment device (2) for reducing the amount of gas dissolved in water and supplies the treated water generated by the treatment device; and a nozzle (5) that has a jetting port that is disposed in a water-filled space and ejects the treated water supplied from the supply device.
Description
本発明は、ウォータージェットピーニング装置及びウォータージェットピーニング方法に関する。
The present invention relates to a water jet peening apparatus and a water jet peening method.
構造物の溶接部に引張残留応力が存在する場合、特許文献1に開示されているようなウォータージェットピーニング装置を使って引張残留応力を改善することが行われる。
If tensile residual stress is present at the welds of the structure, a water jet peening apparatus as disclosed in US Pat.
ウォータージェットピーニング装置は、水中に配置されたノズルの噴射口から水(高圧水)を噴射する。その噴射された水に含まれる気泡が崩壊するときに発生する衝撃圧が施工対象物に当たることにより、その施工対象物の引張残留応力が低減される。施工対象物の引張残留応力が十分に低減されるように、衝撃圧の圧力の増大が望まれる。
A water jet peening apparatus injects water (high pressure water) from the injection port of the nozzle arrange | positioned in water. The impact force generated when the bubbles contained in the jetted water collapse hits the construction object, thereby reducing the tensile residual stress of the construction object. It is desirable to increase the pressure of the impact pressure so that the tensile residual stress of the construction object is sufficiently reduced.
本発明の態様は、施工対象物の引張残留応力を低減できるウォータージェットピーニング装置及びウォータージェットピーニング方法を提供することを目的とする。
The aspect of this invention aims at providing the water jet peening apparatus and the water jet peening method which can reduce the tensile residual stress of construction object.
本発明の第1の態様は、水に溶存するガス量を低減する処理装置を有し、前記処理装置で生成された処理水を供給する供給装置と、水が満たされた空間に配置され、前記供給装置から供給された前記処理水を噴射する噴射口を有するノズルと、を備えるウォータージェットピーニング装置を提供する。
According to a first aspect of the present invention, there is provided a treatment device for reducing the amount of gas dissolved in water, and a supply device for supplying treated water generated by the treatment device, and a treatment device disposed in a space filled with water, And a nozzle having an injection port for injecting the treated water supplied from the supply device.
本発明の第2の態様は、水に溶存するガス量を低減する処理を行うことと、前記処理で生成された処理水を、水が満たされた空間に配置されたノズルに供給することと、前記空間において前記ノズルの噴射口と施工対象物とを対向させた状態で、前記噴射口から前記処理水を噴射することと、を含むウォータージェットピーニング方法を提供する。
According to a second aspect of the present invention, there is provided a process of reducing the amount of gas dissolved in water, and supplying the treated water generated in the process to a nozzle disposed in a space filled with water. Water jet peening method including jetting the treated water from the jet port in a state where the jet port of the nozzle and the construction target are opposed in the space.
本発明の態様によれば、施工対象物の引張残留応力を低減できる。
According to the aspect of the present invention, the tensile residual stress of a construction subject can be reduced.
以下、本発明に係る実施形態について図面を参照しながら説明するが、本発明はこれに限定されない。以下で説明する各実施形態の構成要素は、適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。また、以下の実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto. The components of each embodiment described below can be combined as appropriate. In addition, some components may not be used. In addition, constituent elements in the following embodiments include those that can be easily replaced by persons skilled in the art or those that are substantially the same.
<第1実施形態>
第1実施形態について説明する。図1は、本実施形態に係る原子力発電プラントNPの一例を示す概略構成図である。図1に示すように、原子力発電プラントNPは、原子炉系CS1と、タービン系CS2とを有する。本実施形態において、原子力発電プラントNPは、加圧水型原子炉(PWR:Pressurized Water Reactor)を含み、原子炉系CS1で生成された高温高圧な1次冷却水(熱水)とタービン系CS2を循環する2次冷却水との熱交換を行って2次冷却水の蒸気を生成する蒸気発生器103を備えている。 First Embodiment
The first embodiment will be described. FIG. 1 is a schematic configuration view showing an example of a nuclear power plant NP according to the present embodiment. As shown in FIG. 1, the nuclear power plant NP has a reactor system CS1 and a turbine system CS2. In the present embodiment, the nuclear power plant NP includes a pressurized water reactor (PWR: Pressurized Water Reactor), and circulates the high temperature and high pressure primary cooling water (hot water) generated in the reactor system CS1 and the turbine system CS2. Asteam generator 103 is provided which performs heat exchange with secondary cooling water to generate secondary cooling water vapor.
第1実施形態について説明する。図1は、本実施形態に係る原子力発電プラントNPの一例を示す概略構成図である。図1に示すように、原子力発電プラントNPは、原子炉系CS1と、タービン系CS2とを有する。本実施形態において、原子力発電プラントNPは、加圧水型原子炉(PWR:Pressurized Water Reactor)を含み、原子炉系CS1で生成された高温高圧な1次冷却水(熱水)とタービン系CS2を循環する2次冷却水との熱交換を行って2次冷却水の蒸気を生成する蒸気発生器103を備えている。 First Embodiment
The first embodiment will be described. FIG. 1 is a schematic configuration view showing an example of a nuclear power plant NP according to the present embodiment. As shown in FIG. 1, the nuclear power plant NP has a reactor system CS1 and a turbine system CS2. In the present embodiment, the nuclear power plant NP includes a pressurized water reactor (PWR: Pressurized Water Reactor), and circulates the high temperature and high pressure primary cooling water (hot water) generated in the reactor system CS1 and the turbine system CS2. A
原子炉系CS1は、原子炉容器101と、加圧器102と、1次冷却水ポンプ104とを備えている。原子炉容器101、加圧器102、蒸気発生器103、及び1次冷却水ポンプ104のそれぞれは、原子炉格納容器100に格納される。原子炉容器101は、炉心129及び燃料集合体120を収容する。原子炉容器101で加熱され、加圧器102によって加圧された高温高圧な1次冷却水(熱水)は、蒸気発生器103に供給される。蒸気発生器103で熱交換された低温の1次冷却水は、原子炉容器101に供給される。
The reactor system CS1 includes a reactor vessel 101, a pressurizer 102, and a primary cooling water pump 104. Each of the reactor vessel 101, the pressurizer 102, the steam generator 103, and the primary cooling water pump 104 is stored in the reactor containment vessel 100. The reactor vessel 101 accommodates the core 129 and the fuel assembly 120. The high-temperature and high-pressure primary cooling water (hot water) heated by the reactor vessel 101 and pressurized by the pressurizer 102 is supplied to the steam generator 103. The low temperature primary cooling water heat-exchanged by the steam generator 103 is supplied to the reactor vessel 101.
タービン系CS2は、高圧タービン108及び低圧タービン109を含む蒸気タービン107と、蒸気タービン107により駆動されて発電する発電機110と、湿分分離加熱器111と、蒸気タービン107で仕事をした蒸気を冷却して液化する復水器112と、給水ポンプ116と、復水ポンプ113と、低圧給水加熱器114と、脱気器115と、高圧給水加熱器117とを備えている。蒸気タービン107は、蒸気発生器103から供給された蒸気により作動する。復水器112は、例えば海水を使って蒸気を冷却して水に戻す。給水ポンプ116は、復水器112からの2次冷却水が蒸気発生器103に供給されるように作動する。
The turbine system CS2 includes a steam turbine 107 including a high pressure turbine 108 and a low pressure turbine 109, a generator 110 driven by the steam turbine 107 to generate electric power, a moisture separation heater 111, and steam generated by the steam turbine 107. A condenser 112 for cooling and liquefying, a feed water pump 116, a condensate pump 113, a low pressure feed water heater 114, a deaerator 115, and a high pressure feed water heater 117 are provided. The steam turbine 107 operates with the steam supplied from the steam generator 103. The condenser 112 cools the steam back to water using, for example, seawater. The feed water pump 116 operates so that the secondary cooling water from the condenser 112 is supplied to the steam generator 103.
図2は、本実施形態に係る原子炉容器101の近傍を示す縦断面図である。図2に示すように、原子炉容器101は、容器本体101aと、容器蓋101bとを有する。原子炉容器101の内部に炉心129が配置される。炉心129の内部に、複数の燃料集合体120と、複数の制御棒130とが配置される。制御棒駆動装置133は、制御棒クラスタ駆動軸135を上下方向に移動することによって、原子炉容器101の出力を制御する。
FIG. 2 is a longitudinal sectional view showing the vicinity of the nuclear reactor vessel 101 according to the present embodiment. As shown in FIG. 2, the nuclear reactor vessel 101 has a vessel body 101 a and a vessel lid 101 b. A core 129 is disposed inside the reactor vessel 101. A plurality of fuel assemblies 120 and a plurality of control rods 130 are disposed in the core 129. The control rod drive device 133 controls the output of the nuclear reactor vessel 101 by moving the control rod cluster drive shaft 135 in the vertical direction.
原子炉容器101は、容器本体101aの下鏡101eを貫通するように配置される複数の計装管台136を有する。計装管台136の上端部は、原子炉容器101の内部に配置され、計装管台136の下端部は、原子炉容器101の外部に配置される。計装管台136の上端部に、炉内計装案内管137が接続される。計装管台136の下端部に、コンジットチューブ138が接続される。
The nuclear reactor vessel 101 has a plurality of instrumentation nozzles 136 arranged to penetrate the lower mirror 101 e of the vessel body 101 a. The upper end portion of the instrumentation nozzle 136 is disposed inside the reactor vessel 101, and the lower end portion of the instrumentation nozzle 136 is disposed outside the reactor vessel 101. An in-core instrumentation guide tube 137 is connected to the upper end of the instrumentation nozzle 136. The conduit tube 138 is connected to the lower end of the instrumentation nozzle 136.
シンブルチューブ141が、コンジットチューブ138、計装管台136、及び炉内計装案内管137を介して、燃料集合体120まで挿入可能に配置される。シンブルチューブ141は、中性子束を計測可能な中性子束検出器を有する。
The thimble tube 141 is disposed so as to be insertable to the fuel assembly 120 via the conduit tube 138, the instrumentation nozzle 136, and the in-core instrumentation guide tube 137. The thimble tube 141 has a neutron flux detector capable of measuring the neutron flux.
制御棒駆動装置133は、制御棒クラスタ駆動軸135を移動することにより、燃料集合体120から制御棒130を引き抜いたり、燃料集合体120に制御棒130を挿入したりすることができる。燃料集合体120から制御棒130が引き抜かれることにより、炉心129における核分裂で発生した熱エネルギーにより、原子炉容器101の1次冷却水が加熱され、その加熱された1次冷却水が蒸気発生器103に供給される。また、燃料集合体120に対する制御棒130の挿入量が調整されることにより、炉心129で生成される中性子数が調整される。また、燃料集合体120に制御棒130が全て挿入されることにより、原子炉は停止する。
The control rod drive device 133 can pull out the control rod 130 from the fuel assembly 120 or insert the control rod 130 into the fuel assembly 120 by moving the control rod cluster drive shaft 135. The control rod 130 is pulled out of the fuel assembly 120, and the heat energy generated by nuclear fission in the core 129 heats the primary cooling water of the reactor vessel 101, and the heated primary cooling water is a steam generator. It is supplied to 103. Further, by adjusting the insertion amount of the control rod 130 into the fuel assembly 120, the number of neutrons generated in the core 129 is adjusted. Also, the reactor is shut down by inserting all the control rods 130 into the fuel assembly 120.
図3は、本実施形態に係る計装管台136の一例を示す断面図である。図3に示すように、計装管台136は、炉内計装筒145を含み、容器本体101aの下鏡101eに形成された孔146に配置される。計装管台136は、下鏡101eの内面に溶接により固定される。計装管台136と下鏡101eとの間に、溶接部(開先溶接部)147が設けられる。
FIG. 3 is a cross-sectional view showing an example of the instrumentation nozzle 136 according to the present embodiment. As shown in FIG. 3, the instrumentation nozzle 136 includes an in-core instrumentation cylinder 145 and is disposed in a hole 146 formed in the lower mirror 101 e of the container body 101 a. The instrumentation nozzle 136 is fixed to the inner surface of the lower mirror 101 e by welding. A welding portion (groove welding portion) 147 is provided between the instrumentation nozzle 136 and the lower mirror 101 e.
本実施形態において、容器本体101aは、母材となる低合金鋼と、その低合金鋼の内面に肉盛溶接されたステンレス鋼とを含む。炉内計装筒145は、ニッケル基合金製である。炉内計装筒145が孔146に配置された状態で、ニッケル基合金製の材料により、容器本体101aと炉内計装筒145とが溶接される。これにより、溶接部147が生成される。
In the present embodiment, the container main body 101a includes a low alloy steel as a base material and a stainless steel overlay welded on the inner surface of the low alloy steel. The in-core instrumentation cylinder 145 is made of a nickel base alloy. With the in-core instrument cylinder 145 disposed in the hole 146, the vessel body 101a and the in-core instrument cylinder 145 are welded by a material made of a nickel-based alloy. Thereby, a welded portion 147 is generated.
溶接により、計装管台136(炉内計装筒145)、開先溶接部147、及びその周囲に配置される容器本体101a(下鏡101e)に引張応力が残留する可能性があり、その結果、応力腐食割れが発生する可能性がある。
The tensile stress may remain in the instrumentation nozzle 136 (in-core instrumentation cylinder 145), the groove weld portion 147, and the container main body 101a (lower mirror 101e) disposed around the welding by welding, As a result, stress corrosion cracking may occur.
本実施形態においては、ウォータージェットピーニングにより、施工対象物である計装管台136(炉内計装筒145)の表面、開先溶接部147、及び下鏡101eの表面(内面)を施工して、施工対象物の引張残留応力を緩和して、応力腐食割れの発生を抑制する。
In the present embodiment, the surface (inner surface) of the instrumentation nozzle 136 (in-core instrumentation cylinder 145), the groove weld portion 147, and the lower mirror 101e are constructed by water jet peening. To reduce the tensile residual stress of the construction object, and to suppress the occurrence of stress corrosion cracking.
ウォータージェットピーニングは、応力を改善する施工対象物を水中に浸漬させた状態で、水中に配置されたノズルの噴射口から水(高圧水)を噴射する施工方法である。ノズルから噴射された水に含まれる気泡が崩壊することによって衝撃圧が発生する。その衝撃圧が水中の施工対象物に当たることよって、その施工対象物の表面付近の引張残留応力が緩和される。
Water jet peening is a construction method in which water (high pressure water) is jetted from a jet nozzle of a nozzle disposed in water in a state where a construction target for improving stress is immersed in water. An impact pressure is generated by the collapse of air bubbles contained in the water injected from the nozzle. When the impact pressure hits the object to be installed in water, the tensile residual stress in the vicinity of the surface of the object to be applied is relaxed.
すなわち、水中に配置されたノズルから、気泡を含む高圧水が噴射されると、ノズルの周囲に存在する静止水とノズルから噴射された高圧水との境界に生じるせん断力によって渦が発生し、その渦の近傍で局所的な圧力低下が生じる。このとき、局所的に水の蒸気圧を下回った領域においては気泡が発生する。ノズルから噴射される時点で高圧水に含まれていた気泡、及び噴射後の水流内で発生した気泡は、低圧下で成長し、圧力回復下で収縮する。圧力がさらに回復したとき、気泡が崩壊する。気泡が崩壊するときに衝撃圧が発生する。このような気泡の発生、成長、収縮、及び崩壊の過程は、キャビテーションと呼ばれる。
That is, when high pressure water containing bubbles is jetted from a nozzle placed in water, a shear force is generated by the shear force generated at the boundary between the stationary water present around the nozzle and the high pressure water jetted from the nozzle, A local pressure drop occurs in the vicinity of the vortex. At this time, bubbles are generated in a region locally lower than the water vapor pressure. Bubbles contained in high pressure water at the time of injection from the nozzle and bubbles generated in the water flow after injection grow under low pressure and contract under pressure recovery. When the pressure is further restored, the bubbles collapse. An impact pressure is generated when the bubble collapses. The process of such bubble generation, growth, contraction and collapse is called cavitation.
キャビテーションにより衝撃圧が発生し、その衝撃圧が施工対象物に当たることによって、その施工対象物の少なくとも一部が塑性変形する。これにより、施工対象物の表面付近の引張残留応力が緩和される。例えば、施工対象物の表面付近に引張応力が残留している場合、施工対象物に衝撃圧が当たることによって、圧縮応力に変換される。
An impact pressure is generated by the cavitation, and the impact pressure strikes the object to be construction, whereby at least a part of the object to be construction is plastically deformed. Thereby, the tensile residual stress in the vicinity of the surface of the construction object is relaxed. For example, when tensile stress remains in the vicinity of the surface of the construction object, it is converted into compressive stress by impact pressure being applied to the construction object.
次に、本実施形態に係るウォータージェットピーニング装置1の一例について説明する。図4は、本実施形態に係るウォータージェットピーニング装置1の一例を模式的に示す図である。図5は、図4の一部を拡大した図である。
Next, an example of the water jet peening apparatus 1 according to the present embodiment will be described. FIG. 4: is a figure which shows typically an example of the water jet peening apparatus 1 which concerns on this embodiment. FIG. 5 is an enlarged view of a part of FIG. 4.
図4及び図5に示すように、ウォータージェットピーニング装置1は、水(冷却水)Lrに溶存するガス量を低減する処理装置2を有し、処理装置2で生成された処理水Lsを供給する供給装置3と、水Lrが満たされた空間WHに配置され、供給装置3から供給された処理水Lsを噴射する噴射口4を有する噴射ノズル5とを備えている。ウォータージェットピーニング装置1は、制御装置50に制御される。
As shown in FIGS. 4 and 5, the water jet peening apparatus 1 has a processing device 2 for reducing the amount of gas dissolved in water (cooling water) Lr, and supplies the treated water Ls generated by the processing device 2 And an injection nozzle 5 disposed in a space WH filled with the water Lr and having an injection port 4 for injecting the treated water Ls supplied from the supply device 3. The water jet peening apparatus 1 is controlled by a controller 50.
本実施形態においては、ウォータージェットピーニング装置1の少なくとも一部が計装管台136(炉内計装筒145)に装着された状態で、施工対象物(炉内計装筒145の表面及び下鏡101eの表面など)の引張残留応力を緩和するための施工が行われる。
In the present embodiment, in a state where at least a part of the water jet peening apparatus 1 is attached to the instrumentation nozzle 136 (in-core instrumentation cylinder 145), the construction object (surface and bottom of in-core instrumentation cylinder 145) The construction for relieving the tensile residual stress of the surface of the mirror 101e etc. is performed.
図4に示すように、原子力発電プラントNPは、原子炉建屋の作業フロアFRと、作業フロアFRよりも下方に設けられ、水Lrが満たされた空間WHとを有する。空間WHに噴射ノズル5及び原子炉容器101が配置される。
As shown in FIG. 4, the nuclear power plant NP has a working floor FR of the reactor building and a space WH provided below the working floor FR and filled with water Lr. The injection nozzle 5 and the reactor vessel 101 are disposed in the space WH.
図4及び図5に示すように、ウォータージェットピーニング装置1は、空間WHに配置される施工装置6を有する。施工装置6は、本体61と、接続部材62と、処理水Lsを噴射する噴射口4を有する噴射ノズル5とを有する。
As shown in FIGS. 4 and 5, the water jet peening apparatus 1 has a construction apparatus 6 disposed in the space WH. The construction apparatus 6 has a main body 61, a connection member 62, and an injection nozzle 5 having an injection port 4 for injecting the treated water Ls.
接続部材62は、本体61の下部に配置され、その本体61から下方に突出する。接続部材62は、計装管台136(炉内計装筒145)と接続される。これにより、本体61が計装管台136に固定される。
The connecting member 62 is disposed at the lower part of the main body 61 and protrudes downward from the main body 61. The connection member 62 is connected to the instrumentation nozzle 136 (in-core instrumentation cylinder 145). Thereby, the main body 61 is fixed to the instrumentation nozzle 136.
噴射ノズル5は、空間WHに配置され、水Lrの中において噴射口4から処理水(高圧水)LSを噴射する。噴射ノズル5の噴射動作は、制御装置50に制御される。噴射ノズル5は、施工対象物の表面と対向するように、本体61に設けられる。本実施形態において、施工対象物の表面は、計装管台136(炉内計装筒145)の外面、下鏡101eの内面、開先溶接部147の表面の少なくとも一つを含む。空間WHに配置された噴射ノズル5の噴射口4と施工対象物とが対向された状態で、噴射口4から処理水Lsが噴射される。
The injection nozzle 5 is disposed in the space WH, and injects the treated water (high pressure water) LS from the injection port 4 in the water Lr. The injection operation of the injection nozzle 5 is controlled by the control device 50. The injection | spray nozzle 5 is provided in the main body 61 so that the surface of a construction target object may be opposed. In the present embodiment, the surface of the installation target includes at least one of the outer surface of the instrumentation nozzle 136 (in-core instrumentation cylinder 145), the inner surface of the lower mirror 101e, and the surface of the grooved weld portion 147. The treated water Ls is injected from the injection port 4 in a state where the injection port 4 of the injection nozzle 5 disposed in the space WH is opposed to the construction target.
図4に示すように、供給装置3の少なくとも一部は、空間WHの外側に配置される。本実施形態において、供給装置3の少なくとも一部は、作業フロアFRに配置される。供給装置3は、空間WHから送られた水Lrが収容される給水タンク9と、給水タンク9から送られた水Lrに溶存するガス量を低減する処理装置2と、処理装置2で生成された処理水Lsを噴射ノズル5に供給するための高圧ポンプ14とを備えている。高圧ポンプ14は、制御装置50に制御される。
As shown in FIG. 4, at least a part of the supply device 3 is disposed outside the space WH. In the present embodiment, at least a part of the supply device 3 is disposed on the work floor FR. The supply device 3 is generated by the water supply tank 9 in which the water Lr sent from the space WH is stored, the processing device 2 for reducing the amount of gas dissolved in the water Lr sent from the water supply tank 9, and the processing device 2 The high pressure pump 14 for supplying the treated water Ls to the injection nozzle 5 is provided. The high pressure pump 14 is controlled by the controller 50.
また、供給装置3は、空間WHと給水タンク9とを接続する配管8と、配管8に配置されたポンプ7とを備えている。ポンプ7は、制御装置50に制御される。ポンプ7の作動により、空間WHの水Lrが配管8を介して給水タンク9に供給される。給水タンク9は、空間WHから送られた水Lrを貯める。なお、配管8に、配管8の流路を開閉可能なバルブ機構が設けられてもよい。
Further, the supply device 3 includes a pipe 8 connecting the space WH and the water supply tank 9, and a pump 7 disposed in the pipe 8. The pump 7 is controlled by the controller 50. By the operation of the pump 7, the water Lr in the space WH is supplied to the water supply tank 9 through the pipe 8. The water supply tank 9 stores the water Lr sent from the space WH. The pipe 8 may be provided with a valve mechanism capable of opening and closing the flow path of the pipe 8.
また、供給装置3は、給水タンク9と処理装置2とを接続する配管10と、配管10に配置された流量計11と、配管10に配置されたポンプ12とを備えている。ポンプ12は、制御装置50に制御される。流量計11は、配管10における単位時間当たりの水Lrの流量を検出する。流量計11の検出結果は、制御装置50に出力される。ポンプ12の作動により、給水タンク9の水Lrが配管10を介して処理装置2に供給される。制御装置50は、流量計11の検出結果に基づいて、ポンプ12を制御してもよい。処理装置2は、給水タンク9から供給された水Lrに溶存するガス量を低減する。
The supply device 3 further includes a pipe 10 connecting the water supply tank 9 and the processing device 2, a flow meter 11 disposed in the pipe 10, and a pump 12 disposed in the pipe 10. The pump 12 is controlled by the controller 50. The flow meter 11 detects the flow rate of the water Lr per unit time in the pipe 10. The detection result of the flow meter 11 is output to the control device 50. By the operation of the pump 12, the water Lr of the water supply tank 9 is supplied to the processing device 2 through the pipe 10. The controller 50 may control the pump 12 based on the detection result of the flow meter 11. The processing device 2 reduces the amount of gas dissolved in the water Lr supplied from the water supply tank 9.
処理装置2は、水Lrに溶存するガス量を低減可能な脱気装置を含む。本実施形態において、処理装置2は、水Lrにキャビテーションを発生させて水Lrに溶存するガス量を低減するキャビテーション発生装置21と、キャビテーション発生装置21で生成された一次処理水Ltから気体成分を分離して処理水Lsを生成する分離装置22とを含む。
The processing device 2 includes a degassing device capable of reducing the amount of gas dissolved in the water Lr. In the present embodiment, the processing device 2 generates a cavitation in the water Lr to reduce the amount of gas dissolved in the water Lr, and a gas component from the primary treated water Lt generated by the cavitation generator 21. And a separation device 22 that separates to generate treated water Ls.
また、供給装置3は、処理装置2と高圧ポンプ14とを接続する配管13と、高圧ポンプ14と噴射ノズル5とを接続する配管16と、配管16に配置された圧力計15とを備えている。圧力計15は、配管13における処理水Lsの圧力を検出する。圧力計15の検出結果は、制御装置50に出力される。高圧ポンプ14の作動により、処理装置2で生成された処理水Lsが配管16を介して噴射ノズル5に供給される。制御装置50は、圧力計15の検出結果に基づいて、高圧ポンプ14を制御してもよい。噴射ノズル5は、空間WH(水中)に配置された状態で、噴射口4から処理水Lsを噴射する。
The supply device 3 further includes a pipe 13 connecting the processing device 2 and the high pressure pump 14, a pipe 16 connecting the high pressure pump 14 and the injection nozzle 5, and a pressure gauge 15 disposed in the pipe 16. There is. The pressure gauge 15 detects the pressure of the treated water Ls in the pipe 13. The detection result of the pressure gauge 15 is output to the control device 50. By the operation of the high pressure pump 14, the treated water Ls generated by the processing device 2 is supplied to the injection nozzle 5 via the pipe 16. The controller 50 may control the high pressure pump 14 based on the detection result of the pressure gauge 15. The injection nozzle 5 injects the treated water Ls from the injection port 4 in a state of being disposed in the space WH (in water).
施工対象物の引張残留応力を十分に低減するため、施工対象物に当たる衝撃圧の圧力は高いことが望ましい。単位体積当たりの水に溶存するガス量と衝撃圧とは相関する。水に溶存するガス量が少ないほど高い衝撃圧が得られる。本実施形態においては、高い衝撃圧が得られるように、水Lrに溶存するガス量が低減される。
In order to sufficiently reduce the tensile residual stress of the construction object, it is desirable that the pressure of the impact pressure striking the construction object be high. The amount of gas dissolved in water per unit volume correlates with the impact pressure. As the amount of gas dissolved in water is smaller, higher impact pressure can be obtained. In the present embodiment, the amount of gas dissolved in the water Lr is reduced so as to obtain a high impact pressure.
図6は、水中に存在する気泡の直径の寸法(気泡径)と、その気泡の内部の圧力(気泡内蒸気圧)との関係を示す図である。図6に示すグラフにおいて、横軸は、気泡径を示す。縦軸は、気泡内蒸気圧を示す。
FIG. 6 is a view showing the relationship between the size of the diameter of a bubble (bubble diameter) present in water and the pressure inside the bubble (the vapor pressure in the bubble). In the graph shown in FIG. 6, the horizontal axis indicates the bubble diameter. The vertical axis shows the vapor pressure in the bubble.
図6において、ラインA1は、水に溶存ガスが存在しない仮想状態における気泡径と気泡内蒸気圧との関係を示す。ラインA2は、単位体積当たりの水に溶存するガス量が少ない状態における気泡径と気泡内蒸気圧との関係を示す。ラインA3は、単位体積当たりの水に溶存するガス量が多い状態における気泡径と気泡内蒸気圧との関係を示す。
In FIG. 6, line A1 shows the relationship between the bubble diameter and the vapor pressure in the bubble in a virtual state in which no dissolved gas exists in water. Line A2 shows the relationship between the bubble diameter and the vapor pressure in the bubble when the amount of gas dissolved in water per unit volume is small. Line A3 shows the relationship between the bubble diameter and the vapor pressure in the bubble in a state where the amount of gas dissolved in water per unit volume is large.
上述のように、キャビテーションとは、気泡の発生、成長、収縮、及び崩壊の過程をいう。気泡が収縮し、気泡径がある大きさに達した時点で、その気泡は崩壊する。気泡の崩壊において衝撃圧が発生する。気泡の崩壊において発生する衝撃圧の圧力は、崩壊時の気泡内蒸気圧に応じて変化することが知られている。気泡内蒸気圧が高いほど、衝撃圧は高くなる。
As mentioned above, cavitation refers to the process of bubble formation, growth, contraction and collapse. When the air bubble shrinks and the air bubble diameter reaches a certain size, the air bubble collapses. Impact pressure is generated at the collapse of the bubble. It is known that the pressure of impact pressure generated in the collapse of the bubble changes depending on the vapor pressure in the bubble at the time of the collapse. The higher the vapor pressure in the bubbles, the higher the impact pressure.
気泡内蒸気圧は、気泡の表面張力とのバランスによって決定される。気泡径が小さいと、気泡内蒸気圧は高い。したがって、気泡径が徐々に小さくなる気泡の収縮過程において、気泡内蒸気圧は徐々に増大する。
The vapor pressure in the bubble is determined by the balance with the surface tension of the bubble. When the bubble diameter is small, the vapor pressure in the bubble is high. Therefore, in the bubble contraction process in which the bubble diameter gradually decreases, the vapor pressure in the bubble gradually increases.
水に溶存ガスが存在しない仮想状態の場合、図6のラインA1で示すように、気泡径が徐々に小さくなる収縮過程において、気泡内蒸気圧は徐々に増大する。
In the virtual state in which no dissolved gas exists in water, as shown by line A1 in FIG. 6, the vapor pressure in the bubbles gradually increases in the contraction process in which the bubble diameter gradually decreases.
水に溶存ガスが存在する状態の場合、図6のラインA2及びラインA3で示すように、気泡径が徐々に小さくなる収縮過程において、気泡内蒸気圧は徐々に増大する。水に溶存ガスが存在する状態の場合、気泡内蒸気圧は、ある気泡径でピーク値に達し、そのピーク値以上に増大しない。
When dissolved gas is present in water, as shown by line A2 and line A3 in FIG. 6, the vapor pressure in the bubbles gradually increases in the contraction process in which the bubble diameter gradually decreases. In the presence of dissolved gas in water, the vapor pressure in the bubbles reaches a peak value at a bubble size and does not increase beyond the peak value.
図6に示すように、気泡内蒸気圧は、水に溶存するガス量に応じて変化する。水に溶存するガス量が少ないと、気泡内蒸気圧は高い。したがって、水に溶存するガス量が少ないと、衝撃圧は高い。
As shown in FIG. 6, the vapor pressure in bubbles changes in accordance with the amount of gas dissolved in water. When the amount of gas dissolved in water is small, the vapor pressure in the bubbles is high. Therefore, when the amount of gas dissolved in water is small, the impact pressure is high.
このように、高い衝撃圧を得るためには、水に溶存するガス量は少ないことが望ましい。高い衝撃圧を得るため、本実施形態において、ウォータージェットピーニング装置1は、噴射ノズル5の噴射口4から噴射される水に溶存するガス量を低減する。本実施形態においては、水Lrに溶存するガス量を低減する処理装置2が供給装置3に設けられ、溶存するガス量が低減された水(処理水)Lsが噴射ノズル5に供給される。
Thus, in order to obtain high impact pressure, it is desirable that the amount of gas dissolved in water be small. In order to obtain a high impact pressure, in the present embodiment, the water jet peening apparatus 1 reduces the amount of gas dissolved in the water injected from the injection port 4 of the injection nozzle 5. In the present embodiment, the processing device 2 for reducing the amount of gas dissolved in the water Lr is provided in the supply device 3, and the water (processed water) Ls in which the amount of dissolved gas is reduced is supplied to the injection nozzle 5.
処理装置2は、水Lrに溶存するガス量を低減可能な脱気装置を含む。本実施形態において、脱気装置の脱気方式は、キャビテーションを用いる脱気方式である。処理装置2は、キャビテーション発生装置21を含む。水にキャビテーションが発生すると、水の溶存ガスが水蒸気とともに気泡を形成する。溶存ガスの大半は、一般に空気(窒素ガス及び酸素ガス)である。窒素ガス及び酸素ガスはそれぞれの分圧に応じてほぼ飽和量まで水に溶解する。気泡が崩壊した場合、気泡に含まれる水蒸気は直ちに液化するが、その気泡中の溶存ガスが水に再び溶解するのに時間を要する。すなわち、気泡の崩壊過程において、水蒸気部分は直ちに消滅するものの、溶存ガス部分は直ちに消滅せず、水中に残留する。ウォータージェットピーニング装置1は、処理装置2において水Lrにキャビテーションを発生させて溶存ガスを含む気泡を発生させ、その気泡を含む水(1次処理水)Ltを生成した後、その1次処理水Ltから気泡を除去することによって、溶存するガス量が低減された処理水Lsを生成する。
The processing device 2 includes a degassing device capable of reducing the amount of gas dissolved in the water Lr. In the present embodiment, the degassing system of the degassing apparatus is a degassing system using cavitation. The processing device 2 includes a cavitation generator 21. When cavitation occurs in water, the dissolved gas of water forms bubbles with water vapor. Most of the dissolved gas is generally air (nitrogen gas and oxygen gas). Nitrogen gas and oxygen gas dissolve in water to almost saturated amount depending on their partial pressure. When the bubble collapses, the water vapor contained in the bubble is liquefied immediately, but it takes time for the dissolved gas in the bubble to be redissolved in water. That is, in the bubble collapse process, although the water vapor part disappears immediately, the dissolved gas part does not disappear immediately but remains in water. The water jet peening apparatus 1 generates cavitation in the water Lr in the processing apparatus 2 to generate bubbles containing dissolved gas, and generates water (primary treated water) Lt containing the bubbles, and then the primary treated water By removing air bubbles from Lt, the amount of dissolved gas is reduced to generate treated water Ls.
図7は、本実施形態に係るキャビテーション発生装置21の一例を模式的に示す図である。図7に示すように、キャビテーション発生装置21は、縮流部23を有する配管24を含む。ポンプ12で昇圧された水Lrは、配管24を流れる。配管24の流路は、縮流部23を含む。縮流部23の流路の寸法(断面積)は、縮流部23の上流側の配管24の流路の寸法及び下流側の配管24の流路の寸法よりも小さい。本実施形態において、縮流部23は、オリフィス板25Aによって形成されている。
FIG. 7 is a view schematically showing an example of the cavitation generator 21 according to the present embodiment. As shown in FIG. 7, the cavitation generator 21 includes a pipe 24 having a contraction portion 23. The water Lr pressurized by the pump 12 flows through the pipe 24. The flow path of the pipe 24 includes the contraction portion 23. The dimension (cross-sectional area) of the flow path of the contraction portion 23 is smaller than the dimension of the flow path of the pipe 24 on the upstream side of the contraction portion 23 and the dimension of the flow path of the pipe 24 on the downstream side. In the present embodiment, the flow reducing portion 23 is formed by the orifice plate 25A.
ポンプ12から配管24の流路に供給された水Lrの流速は、縮流部23において高くなり、水Lrの圧力は、縮流部23において低くなる。縮流部23により水Lrの圧力が飽和蒸気圧力まで低下すると、水Lrに気泡が発生する。縮流部23において発生した気泡を含む水(1次処理水)Ltは、縮流部23から下流に流れる。縮流部23において発生した気泡の一部は、成長及び収縮した後、縮流部23の下流において直ちに崩壊する。このように、縮流部23を有する配管24を含むキャビテーション発生装置21によって、気泡の発生、成長、収縮、及び崩壊の過程を含むキャビテーションが発生する。
The flow velocity of the water Lr supplied from the pump 12 to the flow path of the pipe 24 is high in the contraction portion 23, and the pressure of the water Lr is low in the contraction portion 23. When the pressure of the water Lr is reduced to the saturated vapor pressure by the contraction portion 23, bubbles are generated in the water Lr. Water (primary treated water) Lt containing air bubbles generated in the contraction portion 23 flows downstream from the contraction portion 23. After growth and contraction, some of the bubbles generated in the contraction portion 23 disintegrate immediately downstream of the contraction portion 23. Thus, cavitation including the process of bubble generation, growth, contraction, and collapse is generated by the cavitation generator 21 including the pipe 24 having the contraction portion 23.
図8、図9、及び図10のそれぞれは、キャビテーション発生装置21の一例を示す模式図である。図8に示すように、縮流部23がノズル25Bによって形成されてもよい。図9に示すように、縮流部23がスロート25Cによって形成されてもよい。図10に示すように、縮流部23が弁25Dによって形成されてもよい。弁25Dは、縮流部23の流路の寸法(断面積、開度)を調整可能である。
Each of FIG. 8, FIG. 9, and FIG. 10 is a schematic view showing an example of the cavitation generator 21. As shown in FIG. As shown in FIG. 8, the flow reducing portion 23 may be formed by the nozzle 25 </ b> B. As shown in FIG. 9, the contraction portion 23 may be formed by the throat 25 </ b> C. As shown in FIG. 10, the flow reducing portion 23 may be formed by the valve 25D. The valve 25D can adjust the dimensions (cross-sectional area, opening degree) of the flow passage of the contraction portion 23.
上述のように、気泡の一部は縮流部23の下流において直ちに崩壊するものの、溶存ガスを主体とする気泡の一部は直ちに消滅せず、1次処理水Lt中に残留する。キャビテーション発生装置21によって生成された気泡を含む1次処理水Ltは、分離装置22に供給される。
As described above, although some of the bubbles immediately collapse downstream of the constriction portion 23, some of the bubbles mainly composed of the dissolved gas do not disappear immediately, but remain in the primary treated water Lt. Primary treated water Lt containing air bubbles generated by the cavitation generator 21 is supplied to the separator 22.
図11は、本実施形態に係る分離装置22の一例を模式的に示す図である。分離装置22は、キャビテーション発生装置21から供給された1次処理水Ltを貯める中間タンク26を含む。気泡を含む1次処理水Ltが中間タンク26に供給されると、重力作用(比重の違い)により、気泡(気相)は中間タンク26の1次処理水Ltの表面(上面)付近に移動し、水(液相)は、気相よりも下方に移動する。このように、中間タンク26を含む分離装置22は、気相を中間タンク26の内部空間の上部に移動させ、液相を中間タンク26の内部空間の下部に移動させることによって、1次処理水Ltから気体成分を分離して、1次処理水Ltを気相と液相とに分ける。気体成分が分離された1次処理水Ltは、溶存ガスが低減された処理水Lsとなる。
FIG. 11 is a view schematically showing an example of the separation device 22 according to the present embodiment. The separation device 22 includes an intermediate tank 26 that stores primary treated water Lt supplied from the cavitation generator 21. When the primary treated water Lt containing air bubbles is supplied to the intermediate tank 26, the air bubbles (gas phase) move near the surface (upper surface) of the primary treated water Lt of the intermediate tank 26 by gravity (difference in specific gravity). Water (liquid phase) moves below the gas phase. Thus, the separation device 22 including the intermediate tank 26 moves the gas phase to the upper part of the internal space of the intermediate tank 26 and transfers the liquid phase to the lower part of the internal space of the intermediate tank 26 to obtain primary treated water. The gas component is separated from Lt, and the primary treated water Lt is divided into a gas phase and a liquid phase. The primary treated water Lt from which the gas component is separated becomes treated water Ls in which the dissolved gas is reduced.
高圧ポンプ14と接続された配管13の流入口13Rは、中間タンク26の内部空間の下部に配置される。配管13の流入口13Rが中間タンク26の内部空間の下部に配置された状態で、高圧ポンプ14が作動すると、その中間タンク26の内部空間の下部に存在する水(処理水)Lsが配管13を介して高圧ポンプ14に移動し、配管16を介して噴射ノズル5に供給される。気相は中間タンク26の内部空間の上部に存在するため、流入口13Rを介して配管13に流入することが抑制される。
The inlet 13 </ b> R of the pipe 13 connected to the high pressure pump 14 is disposed at the lower part of the internal space of the intermediate tank 26. When the high pressure pump 14 is operated in a state where the inlet 13R of the pipe 13 is disposed at the lower part of the internal space of the intermediate tank 26, the water (treated water) Ls existing in the lower part of the internal space of the intermediate tank 26 is the pipe 13 , And is supplied to the injection nozzle 5 through the pipe 16. Since the gas phase is present in the upper part of the internal space of the intermediate tank 26, it is suppressed from flowing into the pipe 13 through the inlet 13R.
なお、分離装置22は、中間タンク26に配置される回転可能なプロペラ27を有してもよい。中間タンク26に1次処理水Ltが満たされている状態でプロペラ27が回転することにより、気相と液相とが遠心分離されてもよい。
The separation device 22 may have a rotatable propeller 27 disposed in the intermediate tank 26. The gas phase and the liquid phase may be centrifuged by rotating the propeller 27 in a state where the intermediate tank 26 is filled with the primary treated water Lt.
次に、本実施形態に係るウォータージェットピーニング装置1を用いるウォータージェットピーニング方法の一例について説明する。
Next, an example of a water jet peening method using the water jet peening apparatus 1 according to the present embodiment will be described.
水Lrが満たされた空間WHに、噴射ノズル5を含む施工装置6及び原子炉容器101が配置される。ポンプ7の作動により、施工装置6及び原子炉容器101が配置された空間WHの水Lrが給水タンク9に供給される。
The construction apparatus 6 including the injection nozzle 5 and the reactor vessel 101 are disposed in the space WH filled with the water Lr. By the operation of the pump 7, the water Lr in the space WH where the construction device 6 and the reactor vessel 101 are disposed is supplied to the water supply tank 9.
給水タンク9は、空間WHからの水Lrを貯める。給水タンク9に水Lrが貯められると、重力作用(比重の違い)により、気相は給水タンク9の上部に移動し、液相は給水タンク9の下部に移動する。すなわち、空間WHから供給された水Lrが気体成分を含む場合、給水タンク9において、その水Lrが気液分離される。
The water supply tank 9 stores water Lr from the space WH. When the water Lr is stored in the water supply tank 9, the gas phase moves to the upper part of the water supply tank 9 and the liquid phase moves to the lower part of the water supply tank 9 by gravity action (difference in specific gravity). That is, when the water Lr supplied from the space WH contains a gas component, the water Lr is separated in the gas-liquid separation in the water supply tank 9.
ポンプ12の作動により、給水タンク9の水Lrが処理装置2に供給される。給水タンク9において気液分離された気相及び液相のうち、専ら液相のみがポンプ12に供給され、気相がポンプ12に供給されることが抑制される。これにより、ポンプ12の動作不良が抑制される。ポンプ12により昇圧された水Lrは、処理装置2に供給される。
The water Lr of the water supply tank 9 is supplied to the processing device 2 by the operation of the pump 12. Of the gas phase and liquid phase separated in the water supply tank 9, only the liquid phase is supplied to the pump 12 and the supply of the gas phase to the pump 12 is suppressed. Thereby, the malfunction of the pump 12 is suppressed. The water Lr boosted by the pump 12 is supplied to the processing device 2.
処理装置2は、空間WHから送られた水Lrを処理する。処理装置2は、水Lrに溶存するガス量を低減する処理を行う。ポンプ12で昇圧された水Lrが処理装置2のキャビテーション発生装置21に供給される。キャビテーション発生装置21は、縮流部23において水Lrの圧力を低減して、水Lrにキャビテーションを発生させる。キャビテーションが発生することにより、水Lrに溶存する溶存ガスを含む気泡が発生する。発生した気泡の一部は崩壊し、溶存ガスを主体とする気泡の一部は残留する。残留した気泡を含む水Lrは、1次処理水Ltとして、分離装置22に送られる。
The processing device 2 processes the water Lr sent from the space WH. The processing device 2 performs processing to reduce the amount of gas dissolved in the water Lr. The water Lr pressurized by the pump 12 is supplied to the cavitation generator 21 of the processing device 2. The cavitation generator 21 reduces the pressure of the water Lr in the contraction portion 23 to generate cavitation in the water Lr. The occurrence of cavitation generates bubbles containing dissolved gas dissolved in the water Lr. A part of generated bubbles collapses, and a part of bubbles mainly composed of dissolved gas remains. The water Lr containing the remaining air bubbles is sent to the separation device 22 as primary treated water Lt.
分離装置22は、キャビテーションの発生により生成された、気泡(気体成分)を含む1次処理水Ltから、その気体成分を分離して処理水Lsを生成する。上述のように、本実施形態において、分離装置22は、重力作用(比重の違い)を利用して、気泡を含む1次処理水Ltを気液分離する。気体成分が分離された処理水Lsに溶存するガス量は十分に少ない。
The separation device 22 separates the gas component from the primary treated water Lt containing bubbles (gas component) generated by the occurrence of cavitation to generate treated water Ls. As described above, in the present embodiment, the separation device 22 performs gas-liquid separation of the primary treated water Lt containing air bubbles, using gravity action (difference in specific gravity). The amount of gas dissolved in the treated water Ls from which the gas component has been separated is sufficiently small.
処理装置2で生成された処理水Lsは、高圧ポンプ14の作動により、水Lrが満たされた空間WHに配置された噴射ノズル5に供給される。空間WHにおいて噴射ノズル5の噴射口4と施工対象物とが対向された様態で、噴射口4から処理水Lsが噴射される。
The treated water Ls generated by the treatment device 2 is supplied to the injection nozzle 5 disposed in the space WH filled with the water Lr by the operation of the high pressure pump 14. The treated water Ls is injected from the injection port 4 in a mode in which the injection port 4 of the injection nozzle 5 and the construction target are opposed in the space WH.
上述のように、水に溶存するガス量と、その水に基づいて発生する衝撃圧の圧力とは相関する。水に溶存するガス量が十分に低減された処理水Lsが、施工対象物と対向する噴射ノズル5の噴射口4から噴射されることによって、高い衝撃圧で施工対象物を施工することができる。これにより、施工対象物の引張残留応力が低減される。
As described above, the amount of gas dissolved in water correlates with the pressure of impact pressure generated based on the water. The treatment object can be constructed with a high impact pressure by injecting the treated water Ls in which the amount of gas dissolved in the water is sufficiently reduced from the injection port 4 of the injection nozzle 5 facing the object to be constructed . Thereby, the tensile residual stress of a construction subject is reduced.
以上説明したように、本実施形態によれば、水に溶存するガス量と、その水を噴射ノズル5の噴射口4から噴射したときに発生する衝撃圧とが相関することに着目して、噴射ノズル5の噴射口4から噴射させる水(処理水)Lsの溶存ガス量を低減するようにしたので、高い衝撃圧で施工対象物を施工することができる。したがって、施工対象物の引張残留応力をより低減、さらには圧縮残留応力に転換することができる。
As described above, according to the present embodiment, focusing on the correlation between the amount of gas dissolved in water and the impact pressure generated when the water is injected from the injection port 4 of the injection nozzle 5, Since the amount of dissolved gas of the water (processed water) Ls to be injected from the injection port 4 of the injection nozzle 5 is reduced, the construction object can be constructed with a high impact pressure. Therefore, the tensile residual stress of the object to be installed can be further reduced, and further converted to compressive residual stress.
本実施形態においては、溶存ガス量の低減方法として、処理装置2のキャビテーション発生装置21で水Lrにキャビテーションを発生させ、そのキャビテーションにより溶存ガスを気泡化し、生成された気泡を分離装置22で分離することによって、溶存ガス量が低減された処理水Lsを生成する。これにより、簡易な構造において高い処理速度で処理水Lsを生成することができる。本実施形態においては、原子炉容器101が配置された空間WHの水Lrを利用する。配管24の形状を工夫して縮流部23を設けるだけで、簡易な構造で、水Lrから処理水Lsを生成することができる。
In the present embodiment, as a method of reducing the amount of dissolved gas, cavitation is generated in the water Lr by the cavitation generator 21 of the processing device 2, the dissolved gas is bubbled by the cavitation, and the generated bubbles are separated by the separator 22. As a result, the treated water Ls in which the amount of dissolved gas is reduced is generated. Thereby, treated water Ls can be generated at a high processing speed with a simple structure. In the present embodiment, the water Lr in the space WH in which the reactor vessel 101 is disposed is used. The treated water Ls can be generated from the water Lr with a simple structure only by devising the shape of the pipe 24 and providing the contraction portion 23.
また、本実施形態においては、空間WHの水Lrが溶存ガス量低減処理を実行され、ウォータージェットピーニングに使用される。すなわち、水Lrを循環させて、ウォータージェットピーニング処理が実行される。これにより、原子炉容器101に接触する水Lrの増加が抑制される。
Further, in the present embodiment, the water Lr in the space WH is subjected to the dissolved gas amount reduction process and used for water jet peening. That is, the water jet peening process is performed by circulating the water Lr. Thereby, the increase in the water Lr which contacts the reactor vessel 101 is suppressed.
<第2実施形態>
第2実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略又は省略する。 Second Embodiment
The second embodiment will be described. In the following description, the component parts identical or equivalent to those of the above-described embodiment are denoted by the same reference numerals, and the description thereof is simplified or omitted.
第2実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略又は省略する。 Second Embodiment
The second embodiment will be described. In the following description, the component parts identical or equivalent to those of the above-described embodiment are denoted by the same reference numerals, and the description thereof is simplified or omitted.
図12は、本実施形態に係るウォータージェットピーニング装置1Bの一例を示す図である。ウォータージェットピーニング装置1Bは、水Lrに溶存するガス量を低減する処理装置2Bを有する。処理装置2Bは、脱気装置を含む。本実施形態において、処理装置2Bは、1次処理水(Lt)を生成しない。
FIG. 12 is a view showing an example of a water jet peening apparatus 1B according to the present embodiment. The water jet peening apparatus 1B has a processing apparatus 2B that reduces the amount of gas dissolved in the water Lr. The processing device 2B includes a degassing device. In the present embodiment, the processing device 2B does not generate primary treated water (Lt).
処理装置(脱気装置)2Bの脱気方式として、加熱沸騰脱気方式及び真空減圧脱気方式の少なくとも一方から選択されてもよい。また、脱気方式として、中空糸膜脱気モジュールを利用した膜脱気方式が選択されてもよい。
The degassing system of the processing apparatus (degassing apparatus) 2B may be selected from at least one of a heating boiling degassing system and a vacuum reduced pressure degassing system. Also, as the degassing method, a membrane degassing method using a hollow fiber membrane degassing module may be selected.
加熱沸騰脱気方式は、水を加熱沸騰し、ガスの溶解度を下げることによって、水に溶存するガス量を低減する方法である。一般に、ガスの溶解度は温度が高くなると低下する。水Lrを加熱することによって、水Lrに溶存するガス量を低減することができる。
The heating and boiling degassing method is a method of reducing the amount of gas dissolved in water by heating and boiling water and reducing the solubility of the gas. In general, the solubility of the gas decreases with increasing temperature. By heating the water Lr, the amount of gas dissolved in the water Lr can be reduced.
真空減圧脱気方式は、水を真空減圧し、水と接するガスの分圧をほぼゼロとすることによって、水に溶存するガス量を低減する方法である。一般に、ガスの溶解度は水と接するガスの分圧に比例し、分圧が低下するとともに溶解度も低下する。水Lrを真空減圧することによって、水Lrに溶存するガス量を低減することができる。
The vacuum reduced pressure degassing method is a method of reducing the amount of gas dissolved in water by reducing the pressure of water in vacuum and making the partial pressure of the gas in contact with the water substantially zero. In general, the solubility of a gas is proportional to the partial pressure of the gas in contact with water, and as the partial pressure decreases, the solubility also decreases. By depressurizing the water Lr in a vacuum, the amount of gas dissolved in the water Lr can be reduced.
膜脱気方式は、水の透過が抑制され、ガスの透過が許容された薄膜(中空糸膜)を用い、薄膜の一方の空間にガスが溶存した液体を満たし、薄膜の他方の空間を減圧することによって、ガスのみを他方の空間に移動させる方法である。
The membrane degassing method uses a thin film (hollow fiber membrane) in which water permeation is suppressed and gas permeation is permitted, one space of the thin film is filled with a liquid in which gas is dissolved, and the other space of the thin film is depressurized By moving the gas only to the other space.
なお、脱気方式として、超音波脱気方式及び遠心脱気方式の少なくとも一方が選択されてもよい。
As the degassing method, at least one of an ultrasonic degassing method and a centrifugal degassing method may be selected.
なお、上述の第1実施形態及び第2実施形態においては、ウォータージェットピーニングの施工対象物が、計装管台136(炉内計装筒145)、開先溶接部147、及び下鏡101eの少なくとも一つであることとした。ウォータージェットピーニングの施工対象物が、図1及び図2を参照して説明したような、原子炉容器101の入口側管台でもよいし、原子炉容器101の出口側管台でもよい。
In the first and second embodiments described above, the object to be subjected to water jet peening is the instrumentation nozzle 136 (in-core instrumentation cylinder 145), the groove weld portion 147, and the lower mirror 101e. I decided to be at least one. The installation object of the water jet peening may be the inlet-side nozzle of the reactor vessel 101 as described with reference to FIGS. 1 and 2 or the outlet-side nozzle of the reactor vessel 101.
また、施工対象物は、原子炉容器101の部材に限られず、例えば、加圧器102と蒸気発生器103とを接続する配管、加圧器102、蒸気発生器103と1次冷却水ポンプ104とを接続する配管、及び蒸気発生器103の少なくとも一部でもよい。
Further, the object to be installed is not limited to the members of the reactor vessel 101. For example, piping connecting the pressurizer 102 and the steam generator 103, the pressurizer 102, the steam generator 103 and the primary cooling water pump 104 It may be connected piping and at least a part of the steam generator 103.
また、施工対象物は、原子炉系CS1の構造物に限定されず、タービン系CS2の構造物でもよい。例えば、施工対象物が、蒸気発生器103と蒸気タービン107とを接続する配管、蒸気タービン107、湿分分離加熱器111、復水器112、及び復水器112と蒸気発生器103とを接続する配管の少なくとも一部でもよい。
Further, the object to be installed is not limited to the structure of the reactor system CS1, but may be the structure of the turbine system CS2. For example, the construction target is a pipe connecting the steam generator 103 and the steam turbine 107, the steam turbine 107, the moisture separation heater 111, the condenser 112, and the condenser 112 and the steam generator 103. It may be at least a part of the piping.
なお、上述の各実施形態においては、原子力発電プラントNPが加圧水型原子炉を含むこととした。原子力発電プラントNPは、沸騰水型原子炉(BWR:Boiling Water Reactor)を含んでもよい。
In each of the above-described embodiments, the nuclear power plant NP includes the pressurized water reactor. Nuclear power plant NP may include a boiling water reactor (BWR: Boiling Water Reactor).
なお、ウォータージェットピーニングの施工対象物は、原子力発電プラントNPの構造物に限定されない。火力発電プラント及び地熱発電プラントのような各種のプラントの構造物が、ウォータージェットピーニングの施工対象物でもよい。
The object to be subjected to water jet peening is not limited to the structure of the nuclear power plant NP. Structures of various plants such as a thermal power plant and a geothermal power plant may be objects of water jet peening.
1 ウォータージェットピーニング装置
2 処理装置
3 供給装置
4 噴射口
5 噴射ノズル
6 施工装置
7 ポンプ
8 配管
9 給水タンク
10 配管
11 流量計
12 ポンプ
13 配管
13R 流入口
14 高圧ポンプ
15 圧力計
16 配管
21 キャビテーション発生装置
22 分離装置
23 縮流部
24 配管
25A オリフィス板
25B ノズル
25C スロート
25D 弁
26 中間タンク
27 プロペラ
61 本体
62 接続部材
100 原子炉格納容器
101 原子炉容器
101a 容器本体
101b 容器蓋
101e 下鏡
102 加圧器
103 蒸気発生器
104 1次冷却水ポンプ
107 蒸気タービン
108 高圧タービン
109 低圧タービン
110 発電機
111 湿分分離加熱器
112 復水器
113 復水ポンプ
114 低圧給水加熱器
115 脱気器
116 給水ポンプ
117 高圧給水加熱器
120 燃料集合体
129 炉心
130 制御棒
133 制御棒駆動装置
135 制御棒クラスタ駆動軸
136 計装管台
137 炉内計装案内管
138 コンジットチューブ
141 シンブルチューブ
145 炉内計装筒
146 孔
147 開先溶接部
CS1 原子炉系
CS2 タービン系
FR 作業フロア
Lr 水
Ls 処理水
Lt 1次処理水
NP 原子力発電プラント
WH 空間 DESCRIPTION OFSYMBOLS 1 water jet peening apparatus 2 processing apparatus 3 supply apparatus 4 injection port 5 injection nozzle 6 construction apparatus 7 pump 8 piping 9 water supply tank 10 piping 11 flow meter 12 pump 13 piping 13 R inlet 14 high pressure pump 15 pressure gauge 16 piping 21 cavitation generation Device 22 Separator 23 Condensing part 24 Piping 25A Orifice plate 25B Nozzle 25C Throat 25D Valve 26 Intermediate tank 27 Propeller 61 Body 62 Connecting member 100 Reactor containment vessel 101 Reactor vessel 101a Vessel body 101b Vessel lid 101e Lower mirror 102 Pressurizer 103 steam generator 104 primary cooling water pump 107 steam turbine 108 high pressure turbine 109 low pressure turbine 110 generator 111 moisture separation heater 112 condenser 113 condensate pump 114 low pressure feed heater 115 deaerator 116 feed pump 117 high pressure feed water heater 120 fuel assembly 129 core 130 control rod 133 control rod drive 135 control rod cluster drive shaft 136 instrumentation nozzle 137 in-core instrumentation guide tube 138 conduit tube 141 thimble tube 145 in-core instrumentation tube 146 Hole 147 Welded section CS1 Reactor system CS2 Turbine system FR Working floor Lr Water Ls Treated water Lt Primary treated water NP Nuclear power plant WH Space
2 処理装置
3 供給装置
4 噴射口
5 噴射ノズル
6 施工装置
7 ポンプ
8 配管
9 給水タンク
10 配管
11 流量計
12 ポンプ
13 配管
13R 流入口
14 高圧ポンプ
15 圧力計
16 配管
21 キャビテーション発生装置
22 分離装置
23 縮流部
24 配管
25A オリフィス板
25B ノズル
25C スロート
25D 弁
26 中間タンク
27 プロペラ
61 本体
62 接続部材
100 原子炉格納容器
101 原子炉容器
101a 容器本体
101b 容器蓋
101e 下鏡
102 加圧器
103 蒸気発生器
104 1次冷却水ポンプ
107 蒸気タービン
108 高圧タービン
109 低圧タービン
110 発電機
111 湿分分離加熱器
112 復水器
113 復水ポンプ
114 低圧給水加熱器
115 脱気器
116 給水ポンプ
117 高圧給水加熱器
120 燃料集合体
129 炉心
130 制御棒
133 制御棒駆動装置
135 制御棒クラスタ駆動軸
136 計装管台
137 炉内計装案内管
138 コンジットチューブ
141 シンブルチューブ
145 炉内計装筒
146 孔
147 開先溶接部
CS1 原子炉系
CS2 タービン系
FR 作業フロア
Lr 水
Ls 処理水
Lt 1次処理水
NP 原子力発電プラント
WH 空間 DESCRIPTION OF
Claims (9)
- 水に溶存するガス量を低減する処理装置を有し、前記処理装置で生成された処理水を供給する供給装置と、
水が満たされた空間に配置され、前記供給装置から供給された前記処理水を噴射する噴射口を有するノズルと、
を備えるウォータージェットピーニング装置。 A supply device that has a treatment device that reduces the amount of gas dissolved in water, and that supplies treated water generated by the treatment device;
A nozzle disposed in a space filled with water and having an injection port for injecting the treated water supplied from the supply device;
A water jet peening device comprising: - 前記処理装置は、前記水にキャビテーションを発生させて前記ガス量を低減するキャビテーション発生装置を含む請求項1に記載のウォータージェットピーニング装置。 The water jet peening apparatus according to claim 1, wherein the processing apparatus includes a cavitation generator that generates cavitation in the water to reduce the amount of gas.
- 前記キャビテーション発生装置は、縮流部を有する配管を含む請求項2に記載のウォータージェットピーニング装置。 The water jet peening apparatus according to claim 2, wherein the cavitation generator includes a pipe having a contraction portion.
- 前記処理装置は、前記キャビテーション発生装置で生成された1次処理水から気体成分を分離して前記処理水を生成する分離装置を含む請求項2又は請求項3に記載のウォータージェットピーニング装置。 The water jet peening apparatus according to claim 2 or 3, wherein the treatment device includes a separation device that separates a gas component from the primary treatment water generated by the cavitation generator to generate the treatment water.
- 前記処理装置は、前記空間から送られた水を処理する請求項1から請求項4のいずれか一項に記載のウォータージェットピーニング装置。 The water jet peening apparatus according to any one of claims 1 to 4, wherein the processing apparatus processes water sent from the space.
- 水に溶存するガス量を低減する処理を行うことと、
前記処理で生成された処理水を、水が満たされた空間に配置されたノズルに供給することと、
前記空間において前記ノズルの噴射口と施工対象物とを対向させた状態で、前記噴射口から前記処理水を噴射することと、
を含むウォータージェットピーニング方法。 Performing treatment to reduce the amount of gas dissolved in water;
Supplying the treated water generated by the treatment to a nozzle disposed in a space filled with water;
Injecting the treated water from the injection port in a state where the injection port of the nozzle and the construction target are opposed in the space;
Water jet peening method including. - 前記処理は、前記水にキャビテーションを発生させることを含む請求項6に記載のウォータージェットピーニング方法。 The water jet peening method according to claim 6, wherein the treatment includes generating cavitation in the water.
- 前記処理は、前記キャビテーションの発生により生成された1次処理水から気体成分を分離して前記処理水を生成することを含む請求項7に記載のウォータージェットピーニング方法。 The water jet peening method according to claim 7, wherein the treatment includes separating a gas component from primary treatment water generated by the generation of the cavitation to generate the treatment water.
- 前記空間の水が前記処理される請求項6から請求項8のいずれか一項に記載のウォータージェットピーニング方法。 The water jet peening method according to any one of claims 6 to 8, wherein the water in the space is treated.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014070478A JP2015188992A (en) | 2014-03-28 | 2014-03-28 | Water jet peening device and water jet peening method |
JP2014-070478 | 2014-03-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015146485A1 true WO2015146485A1 (en) | 2015-10-01 |
Family
ID=54195016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/055890 WO2015146485A1 (en) | 2014-03-28 | 2015-02-27 | Water jet peening system and water jet peening method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2015188992A (en) |
WO (1) | WO2015146485A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07328860A (en) * | 1994-06-10 | 1995-12-19 | Babcock Hitachi Kk | Water jet peening apparatus and water jet peening method |
EP0960950A1 (en) * | 1998-05-27 | 1999-12-01 | Waterjet Technology, Inc. | Method and apparatus for ultrahigh pressure water jet peening |
JP2002059320A (en) * | 2000-08-21 | 2002-02-26 | Japan Science & Technology Corp | Ultrasonic processing device and processing method |
-
2014
- 2014-03-28 JP JP2014070478A patent/JP2015188992A/en active Pending
-
2015
- 2015-02-27 WO PCT/JP2015/055890 patent/WO2015146485A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07328860A (en) * | 1994-06-10 | 1995-12-19 | Babcock Hitachi Kk | Water jet peening apparatus and water jet peening method |
EP0960950A1 (en) * | 1998-05-27 | 1999-12-01 | Waterjet Technology, Inc. | Method and apparatus for ultrahigh pressure water jet peening |
JP2002059320A (en) * | 2000-08-21 | 2002-02-26 | Japan Science & Technology Corp | Ultrasonic processing device and processing method |
Also Published As
Publication number | Publication date |
---|---|
JP2015188992A (en) | 2015-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3847962B2 (en) | Power plant heating water heating system | |
CN104508754B (en) | Core steam feed system | |
JP6063581B2 (en) | Reactor with liquid metal coolant | |
KR20130118862A (en) | Compact nuclear reactor with integral steam generator | |
JP6488075B2 (en) | Water jet peening equipment | |
US20130121453A1 (en) | Pressurized water reactor with upper plenum including cross-flow blocking weir | |
JP6125261B2 (en) | Water jet peening compressive residual stress test method | |
KR20100016314A (en) | Nuclear reactor downcomer flow deflector | |
JP5606361B2 (en) | Guide device for neutron flux detector | |
US10760603B2 (en) | Apparatuses and methods for structurally replacing cracked welds in nuclear power plants | |
WO2014115812A1 (en) | Water jet peening device and method for executing water jet peening | |
US20150325319A1 (en) | Nozzle repair method and nuclear reactor vessel | |
WO2015146485A1 (en) | Water jet peening system and water jet peening method | |
JP2009075001A (en) | Nuclear reactor | |
JP5404173B2 (en) | Simulation test apparatus and simulation test method | |
TWI672707B (en) | Nuclear reactor | |
RU2200990C2 (en) | Nuclear steam-generating plant with pressurized water reactor | |
Suzuki et al. | Performance of core exit thermocouple for PWR accident management action in vessel top break LOCA simulation experiment at OECD/NEA ROSA project | |
JP2014048115A (en) | Nozzle stub repairing method and nuclear reactor vessel | |
JP2014163760A (en) | Reactor vessel lid structure | |
JP4801446B2 (en) | Steam turbine plant | |
JP2010236851A (en) | Steam flow vortex straightener | |
JP2016137547A (en) | Water jet peening device and water jet peening construction method | |
JPH04223296A (en) | Atomic power plant, passive safe injecting apparatus and stand-by condensing porous dispersing apparatus | |
JP2012173039A (en) | Power plant and method of forming corrosion-resistant coating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15769278 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase | ||
122 | Ep: pct application non-entry in european phase |
Ref document number: 15769278 Country of ref document: EP Kind code of ref document: A1 |