[go: up one dir, main page]

WO2015146287A1 - ビーム生成ユニットおよびx線小角散乱装置 - Google Patents

ビーム生成ユニットおよびx線小角散乱装置 Download PDF

Info

Publication number
WO2015146287A1
WO2015146287A1 PCT/JP2015/052879 JP2015052879W WO2015146287A1 WO 2015146287 A1 WO2015146287 A1 WO 2015146287A1 JP 2015052879 W JP2015052879 W JP 2015052879W WO 2015146287 A1 WO2015146287 A1 WO 2015146287A1
Authority
WO
WIPO (PCT)
Prior art keywords
rays
ray
generation unit
channel
mirror
Prior art date
Application number
PCT/JP2015/052879
Other languages
English (en)
French (fr)
Inventor
表 和彦
和輝 伊藤
Original Assignee
株式会社リガク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リガク filed Critical 株式会社リガク
Priority to EP15767729.5A priority Critical patent/EP3124961A4/en
Priority to CN201580011600.0A priority patent/CN106062542B/zh
Priority to JP2016510094A priority patent/JP6392850B2/ja
Priority to KR1020167019645A priority patent/KR102243222B1/ko
Priority to US15/114,209 priority patent/US10145808B2/en
Publication of WO2015146287A1 publication Critical patent/WO2015146287A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/201Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials by measuring small-angle scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/10Scattering devices; Absorbing devices; Ionising radiation filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • G01N2223/054Investigating materials by wave or particle radiation by diffraction, scatter or reflection small angle scatter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • G01N2223/056Investigating materials by wave or particle radiation by diffraction, scatter or reflection diffraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/315Accessories, mechanical or electrical features monochromators

Definitions

  • the present invention relates to a beam generation unit and an X-ray small angle scattering apparatus that generate X-rays irradiated on a sample in order to detect scattered X-rays or diffracted X-rays.
  • an apparatus configuration that forms a parallel X-ray beam by arranging three slits is known as an apparatus for X-ray small angle scattering measurement because of a request to irradiate X-rays having a small scattering angle (patent) Document 1, Non-Patent Document 1).
  • a slit is used to form a thin beam, but when the X-ray beam hits the end of the slit, parasitic scattering occurs, and a tail remains in the direction of the scattering angle outside the generated beam.
  • parasitic scattering is removed by the second and third slits provided at a distance.
  • an apparatus with a large dimension is required.
  • FIG. 7 is a plan view showing an optical system using the conventional Bonzeheart method.
  • X-rays reflected by a mirror are incident on a collimator 918 to irradiate the sample S0, and the X-rays scattered by the sample are detected through an analyzer 919.
  • an apparatus configured with such an optical system a scattered beam in the direction of the scattering angle is removed, and high-resolution measurement is possible.
  • an anisotropic pattern cannot be obtained simultaneously by a one-dimensional detector or a two-dimensional detector.
  • the apparatus described in Patent Document 1 cuts the parasitic scattering of the pinhole collimator with a channel cut monochromator crystal and detects it with a two-dimensional detector.
  • the property of X-ray divergence remains, and the tail cannot be sufficiently removed, so that the beam is expanded. This is because the arrangement of the channel cut monochromator crystal is only (+, ⁇ , +, ⁇ ), and the tail caused by the spatial divergence cannot be removed.
  • the present invention has been made in view of such circumstances, and provides a beam generation unit and an X-ray small angle scattering apparatus that can simultaneously obtain an anisotropic image with a compact configuration and a high signal background ratio. With the goal.
  • the beam generation unit of the present invention is a beam generation unit that generates X-rays to irradiate a sample in order to detect scattered X-rays or diffracted X-rays.
  • a slit that is provided on the road and shapes the X-ray beam shape, and is arranged at (+,-,-, +), removes the parasitic scattering of the parallel beam shaped by the slit, and is a parallel and minute X-ray.
  • two channel-cut monochromator crystals that generate a beam.
  • the beam generation unit of the present invention arranges the channel cut monochromator crystal at (+, ⁇ , ⁇ , +) after the slit, thereby removing the scattering by the slit and the spatial beam.
  • High-resolution analysis is possible by removing the tail.
  • the distance from the X-ray source to the sample can be reduced as compared with the three-slit configuration, and the apparatus size can be reduced.
  • an anisotropic pattern can be measured simultaneously without moving the detector.
  • the beam generation unit of the present invention is disposed in front of the slit, reflects X-rays in an optical path plane formed by the two channel cut monochromator crystals, and is perpendicular to the optical path plane.
  • a first mirror for preventing directional X-ray divergence is further provided. Thereby, the divergence of the beam irradiated to a sample can be prevented and sufficient intensity
  • the beam generating unit of the present invention is characterized in that the first mirror is a condensing mirror that focuses on the detector. Thereby, intensity
  • each of the two channel cut monochromator crystals has a pair of symmetrical cut surfaces. This facilitates the arrangement and adjustment of the channel cut monochromator crystal.
  • the beam generating unit of the present invention is characterized in that one of the two channel cut monochromator crystals has a pair of asymmetric cut surfaces. Thereby, it is possible to generate an X-ray beam having higher parallelism and higher intensity.
  • the beam generation unit of the present invention is disposed in front of the slit, reflects in a plane perpendicular to the optical path plane formed by the two channel cut monochromator crystals, and in the optical path plane.
  • a second mirror for shaping the diverging beam into a parallel beam is further provided. Thereby, a high-intensity X-ray beam can be created and the intensity of the X-ray beam can be increased.
  • the X-ray small angle scattering apparatus of the present invention is characterized by including a goniometer having the beam generating unit mounted on a rotating arm.
  • small-angle scattering can be measured in any direction within the driving range of the rotary arm of the goniometer.
  • a liquid can be stored and X-rays can be irradiated from below.
  • the X-ray small angle scattering apparatus of the present invention further includes a two-dimensional detector for detecting scattered X-rays or diffracted X-rays generated by irradiating the sample with the X-rays generated by the beam generating unit. It is characterized by that. Thereby, X-rays scattered at a small angle by the sample can be detected with high angular resolution.
  • the channel cut monochromator crystal is arranged at (+, ⁇ , ⁇ , +) after the slit, an anisotropic image is simultaneously formed with a compact configuration and a high signal background ratio. can get.
  • FIG. 1 It is a perspective view which shows the X-ray small angle scattering apparatus of this invention. It is a side view which shows the X-ray small angle scattering apparatus of this invention. It is a top view which shows the X-ray small angle scattering apparatus of this invention.
  • (A)-(d) is a top view which shows a beam generation unit, respectively. It is a graph which shows the intensity
  • the general size measured by small-angle scattering is 1 to 100 nm, and small-angle scattering enables analysis of structures on the level of several nanometers such as fine particles, liquid crystals, and alloy internal structures.
  • the X-ray small angle scattering apparatus 100 includes an X-ray source, a beam generation unit 110, a goniometer and a detector 120.
  • a minute point X-ray source (microfocus X-ray source) of 0.1 mm or less as the X-ray source. This makes it possible to form a focal spot having a high intensity with a small spot size. Note that the X-ray source is omitted in the schematic configuration shown in FIGS.
  • the beam generation unit 110 generates X-rays having a parallel and minute spot size with which the sample S0 is irradiated, and detects the diffracted X-rays with a one-dimensional detector or a two-dimensional detector. Since a one-dimensional detector or a two-dimensional detector is used as the detector 120, an anisotropic diffraction pattern can be acquired simultaneously.
  • the beam generation unit 110 includes a first mirror 111, a second mirror 112, a slit 115, and two channel cut monochromator crystals 117 and 118.
  • Each of the two channel-cut monochromator crystals 117 and 118 has a pair of crystals each having a diffraction surface that reflects X-rays.
  • the beam generation unit 110 is preferably used for irradiating the sample S0 with the generated beam at a minute angle and detecting small-angle scattered X-rays. As a result, it is possible to generate an X-ray minute beam suitable for small angle scattering. As a result, for example, small angle scattering can be measured for small particles of 100 nm or less.
  • the application of the beam generation unit 110 is not necessarily limited to small angle scattering, but is particularly effective for small angle scattering.
  • the first mirror 111 is disposed in front of the slit 115, reflects X-rays in the X-ray optical path plane formed by the two channel cut monochromator crystals 117 and 118, and is perpendicular to the X-ray optical path plane. Prevents X-ray divergence in any direction. As a result, it is possible to prevent divergence of the beam irradiated to the sample S0 in the optical path plane formed by the two channel cut monochromator crystals 117 and 118, and to secure sufficient intensity. By arranging the first mirror 111 and securing the strength, even scattering by a polycrystalline or non-crystalline sample other than a single crystal can be sufficiently detected.
  • the first mirror 111 is preferably a condensing mirror that is curved with a predetermined curvature and focuses on the detector 120. Thereby, intensity
  • the distance from the X-ray source to the sample S0 is 700 mm, and the camera length is 400 to 500 mm.
  • the first mirror 111 having a range of about 0.8 °
  • arctan having a base of 700 mm and a height of 0.3 mm is about 0.4 mrad.
  • the X-rays thus expanded can be collected by the first mirror 111 to increase the intensity.
  • the reflectance of the mirror is considered to be 1, actually it is slightly smaller than 1.
  • the first mirror 111 may be a parabolic mirror and does not have to diverge.
  • the second mirror 112 is a mirror that is curved with a predetermined curvature, and is disposed in front of the slit 115 and is X-rayed in a plane perpendicular to the optical path surface formed by the two channel-cut monochromator crystals 117 and 118.
  • the X-ray generated from the source is reflected, and the divergent beam is shaped into a parallel beam in the optical path plane.
  • an X-ray beam with high brightness can be produced and the intensity of the X-ray beam can be increased.
  • the second mirror 112 makes the focal length of incident X-rays constant.
  • the second mirror 112 can shape a focus-sized beam according to the application. For example, it is possible to increase the intensity by setting the focal spot size, which was 70 ⁇ m, to 100 ⁇ m to 200 ⁇ m. For example, the width of the second mirror 112 can be increased up to about 1 mm. Thus, it is possible to increase the intensity by widening the beam width.
  • a parabolic mirror can be used, and a beam having a desired focal size can be formed by the slit 115 and the size can be adjusted by the second mirror 112.
  • the beam generation unit 110 by arranging the second mirror 112, a beam parallel to the direction perpendicular to the optical path surface can be generated. Furthermore, if the spot size of the X-ray beam is reduced, the angular resolution in the optical path plane is increased. In the optical path plane, a condensing element is inserted, and by narrowing the beam size in the direction perpendicular to the optical path plane, the beam divergence in the direction parallel to the plane also becomes parallel with a small width of the natural crystal. Eventually, accurate angle information in a plane perpendicular to the optical path surface in two dimensions can be obtained in addition to the one-dimensional direction.
  • the first mirror 111 and the second mirror 112 can be used as an integrated mirror in which two pieces are vertically bonded, but may be provided separately.
  • the focus size can be widened to give priority to the intensity, or it can be narrowed down to increase the resolution.
  • first mirror 111 When the first mirror 111 is installed at a position close to the X-ray source and the second mirror 112 is installed at a position close to the sample S0, X-rays generated from the X-ray source are The first mirror 111 and the second mirror 112 are reflected in this order and are incident on the two channel-cut monochromator crystals 117 and 118. However, it is not necessary to limit the arrangement, and an arrangement in which these are interchanged may be used.
  • any of a total reflection mirror, a multilayer mirror, and a crystal plate can be used as the first mirror 111 or the second mirror 112.
  • the total reflection mirror is formed by curving a glass plate itself or a reflection plate formed by depositing Ni (nickel), Au (gold), Pt (platinum) or the like on the surface of the glass plate. .
  • the multilayer mirror is formed by alternately laminating layers having different electron densities on a substrate having a smooth surface.
  • Specific X-rays for example, CuK ⁇ rays can be efficiently diffracted by periodically repeating a multi-layered multilayer structure.
  • a glass plate, a silicon wafer or the like is used as the material of the substrate.
  • the crystal plate can be formed using a single crystal plate such as ⁇ -SiO 2 (quartz), Si (silicon), Ge (germanium) or the like.
  • the slit 115 is provided on the X-ray optical path and shapes the X-ray beam shape.
  • the hole shape of the slit 115 is not limited, and may be a line shape or a square shape. However, in order to prevent scattering from the edge of the slit 115, a circular pinhole is preferable.
  • the two channel cut monochromator crystals 117 and 118 are arranged at (+, ⁇ , ⁇ , +) after the slit 115 and remove scattering of the parallel beam shaped by the slit 115.
  • scattering by the slit 115 is removed, and a spatial beam tail is removed to enable high-resolution analysis.
  • the beam generating unit 110 can also be used to detect so-called small angle scattering. Further, the distance from the X-ray source to the sample S0 can be reduced as compared with the configuration of the apparatus using three slits.
  • a channel cut monochromator crystal is a parallel wall on both sides used for reflection when a groove is cut into a single crystal block. Since the entire crystal block is made of a single crystal, all X-rays that are Bragg-reflected on one crystal wall cause Bragg reflection on the other crystal wall.
  • the channel cut monochromator crystal is formed by cutting a groove by processing a complete crystal such as germanium or silicon.
  • a highly accurate monochromatic beam can be obtained by reflecting X-rays by a pair of X-ray reflecting surfaces formed on both sides of the groove.
  • the first channel cut monochromator crystal 117 is disposed on the X-ray incident side of the second channel cut monochromator crystal 118, and includes a first crystal 117a and a second crystal 117b, and the respective crystals 117a, 117b. Is formed with an opposing cut surface.
  • the first channel cut monochromator crystal 117 is arranged so that the X-ray diffracted by the first channel cut monochromator crystal 117 is incident on the second channel cut monochromator crystal 118.
  • the first channel-cut monochromator crystal 117 diffracts the X-rays at a crystal plane having the same index as the index of the crystal plane on which the second channel-cut monochromator crystal 118 diffracts the X-rays.
  • the shape and arrangement can be made incident on the channel cut monochromator crystal 118.
  • the second channel cut monochromator crystal 118 has a third crystal 118a and a fourth crystal 118b, and opposing crystal planes are formed on each crystal wall.
  • the (+) or ( ⁇ ) arrangement refers to an arrangement of crystals that are diffracted in a bending direction determined by setting the first diffraction bending direction to (+). Therefore, the arrangement of the crystals that diffract the same bending as the first diffraction bending direction is (+), and the arrangement of the crystals that diffract the bending opposite to the first diffraction bending direction is ( ⁇ ). It is.
  • the first channel-cut monochromator crystal 117 is provided so as to be able to diffract X-rays in an arrangement that becomes (+, ⁇ ) with respect to incident X-rays.
  • the second channel-cut monochromator crystal 118 emits X-rays at a position where the X-rays diffracted by the first channel-cut monochromator crystal 117 can enter (-, +) with respect to the incident X-rays. It is provided so that it can be diffracted. In this way, the cross-sectional shape of the X-ray beam can be shaped into a square or a circle.
  • the scattering of the slit 115 can be removed by the channel cut monochromator crystals 117 and 118, and a beam without a tail can be produced. Then, about 1.5 m is required as the distance from the X-ray source to the sample S0. With the beam generation unit 110 as described above, this distance can be shortened to 10 cm to 15 cm, and the sample S0 can be placed immediately behind it.
  • the four crystals 117a, 117b, 118a, and 118b are preferably formed as two channel-cut monochromator crystals 117 and 118, but may be a combination of separately formed crystals.
  • the channel-cut monochromator crystals 117 and 118 diffract X-rays at the subsequent stage of the slit 115 and remove the parasitic scattered X-rays whose direction has changed at the slit 115. Furthermore, by arranging two channel-cut monochromator crystals 117 and 118, not only the divergence ⁇ (divergence) in the divergence angle direction of the X-ray beam but also the dispersion ⁇ ( ⁇ E) of the wavelength (energy) at the same time is removed. ing. In the conventional configuration, even if it is limited by ⁇ , ⁇ E is wider and the tail is created by slipping to some extent, but this can be removed in the configuration of the beam generation unit 110.
  • the beam generation unit 110 can also remove the chromatic dispersion, but the intensity of the X-rays is likely to decrease. However, this decrease in intensity can be compensated by the first mirror 111.
  • crystal materials that can be used for these channel cut monochromator crystals 117 and 118 include, but are not limited to, germanium and silicon.
  • An example of the crystal plane used is Ge (220).
  • the goniometer has the beam generating unit 110 mounted on the first rotating arm.
  • the first rotating arm is rotatable with respect to the sample S0.
  • small angle scattering can be measured in the driving range of the first rotating arm of the goniometer.
  • the liquid can be stored in a container and irradiated with X-rays from below.
  • the beam generating unit 110 is configured in a compact manner, it can be mounted on the rotating arm of the goniometer and freely change the direction, and a beam emitted from the bottom to the top can be used. It is also possible to use a beam emitted from below.
  • the goniometer is equipped with a ⁇ turntable and a second rotary arm.
  • the ⁇ rotating disk and the second rotating arm are configured such that when the ⁇ rotating disk rotates by an angle ⁇ around the same rotation axis, the second rotating arm rotates by an angle 2 ⁇ in conjunction with this. ing.
  • sample table (sample holder) is mounted on the ⁇ rotating disk, and the sample is held on this sample table.
  • the sample stage rotates with the rotation of the ⁇ rotating disk, and the positional relationship regarding the relative angle between the X-ray incident surface of the sample held on the sample stage and the X-ray source is changed. Thereby, the incident angle of the X-ray with respect to the sample is changed.
  • the detector 120 is mounted on the second rotating arm.
  • the detector 120 rotates around the X-ray incident surface of the sample together with the second rotating arm. Thereby, the positional relationship regarding the relative angle between the X-ray incident surface of the sample held on the sample stage and the detector 120 is changed, and the detector 120 reaches the position where the diffracted X-ray diffracted from the sample is detected.
  • the camera length from the sample S0 to the detector 120 can be arbitrarily set according to the measurement object. About 1m may be required, and it may be smaller.
  • the size of the apparatus must be 10 m to 20 m.
  • the beam generation unit 110 a highly parallel and minute beam can be used. The size can be reduced to several meters, and the X-ray small angle scattering apparatus 100 can be realized in a very compact manner.
  • the detector 120 is disposed at a position where X-rays diffracted by the sample are incident.
  • the detector 120 may be a one-dimensional detector having position resolution in the linear direction, or may be a two-dimensional detector having position resolution in a plane. By using a two-dimensional detector, X-rays scattered at a small angle on the sample can be detected with high angular resolution.
  • a PSPC, a linear CCD sensor, or the like can be considered.
  • a two-dimensional CCD sensor or a photon counting type pixel two-dimensional detector can be considered.
  • Example 2 Spectrum measurement was performed on the X-ray beams generated by the beam generation unit (Example) and the 4-crystal, 2-crystal beam generation unit (Comparative Example).
  • 4A to 4D are plan views showing the configuration of the beam generation unit. In either case, the distance from the X-ray source to the detection position was 750 mm.
  • FIG. 4A shows the configuration of a beam generation unit using a slit.
  • Two channel-cut monochromator crystals are arranged at the rear stage of the incident slit 115 having a width of 0.1 mm (+, ⁇ , ⁇ , +).
  • the X-rays were collimated by arranging so as to be. CuK ⁇ ray was used as the X-ray source, Ge spectral crystal was used as the channel cut monochromator crystal, and Ge (220) was used as the crystal plane (the same applies to the following comparative examples).
  • the collimated X-ray was detected by scanning with a light receiving slit 130 having a width of 0.1 mm.
  • the configuration shown in FIG. 4B may be used.
  • the two channel-cut monochromator crystals 127 and 118 (four crystals 127a, 127b, 118a, and 118b) are arranged to be (+, ⁇ , ⁇ , +) after the entrance slit 115. is doing.
  • the channel cut monochromator crystal 127 has a pair of asymmetric cut surfaces. Thereby, it is possible to generate an X-ray beam having higher parallelism and higher intensity.
  • Both of the two channel cut monochromator crystals may have a pair of asymmetric cut surfaces.
  • FIG. 4C shows a configuration of a beam generation unit of four crystals, and two channel-cut monochromator crystals 217 and 218 (four crystals 217a, 217b, 218a, and 218b) are (+, ⁇ , -, +), And one more (-, +) arrangement channel-cut monochromator crystal 219 (two crystals 219a, 219b) was scanned as an analyzer.
  • FIG. 4D shows the configuration of a two-crystal beam generating unit, in which one channel-cut monochromator crystal 317 (two crystals 317a and 317b) is arranged so as to be (+, ⁇ ). Then, another channel-cut monochromator crystal 318 (two crystals 318a and 318b) with ( ⁇ , +) arrangement was scanned as an analyzer.
  • FIG. 5 is a graph showing the measurement result of the intensity distribution of the X-ray beam generated by each beam generation unit.
  • the tail could be sufficiently removed in the beam generation unit using the slit and the beam generation unit of four crystals.
  • the tail remained in the 4-crystal beam generation unit, the tail can be removed in the same manner as the beam generation unit using the slit, but in this case, measurement using a one-dimensional detector or a two-dimensional detector is not possible.
  • FIG. 6 is a graph showing the measurement result of the intensity distribution of the X-ray beam of the example. From this measurement result, it can be seen that there is a slight tail but is almost zero. In addition, the X-ray intensity dropped by 4 to 5 digits due to a slight difference in detection position, and a rectangular X-ray beam with a good tail cut was obtained.
  • X-ray small angle scattering device 110 Beam generating unit 111 First mirror 112 Second mirror 115 Slit 117 First channel cut monochromator crystal 117a First crystal 117b Second channel cut monochromator crystal 118a Third crystal 118b Fourth crystal 120 Detector 127 First channel cut monochromator crystal 130 Light receiving slit

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

 コンパクトな構成でかつ高い信号バックグラウンド比で非等方の像を同時に撮れる微小ビーム生成ユニットおよびX線小角散乱装置を提供する。1次元検出器または2次元検出器により回折X線を検出するため、試料に照射する微小なスポットサイズのX線を生成する微小ビーム生成ユニット110であって、X線光路上に設けられ、X線を平行ビームに整形するスリット115と、(+,-,-,+)に配置され、スリットで整形された平行ビームの寄生散乱を除去する2個のチャンネルカットモノクロメータ結晶117、118と、を備える。これにより、コンパクトな構成でかつ高い信号バックグラウンド比で非等方の像を同時に得ることができる。

Description

ビーム生成ユニットおよびX線小角散乱装置
 本発明は、散乱X線または回折X線を検出するため、試料に照射するX線を生成するビーム生成ユニットおよびX線小角散乱装置に関する。
 従来、X線小角散乱測定では散乱角の小さいX線を照射する要請から、X線小角散乱測定用の装置として3スリットの配置により平行X線ビームを形成する装置構成が知られている(特許文献1、非特許文献1)。細いビームを形成するためにはスリットが用いられるが、X線ビームがスリットの端に当たると寄生散乱が生じ、生成されたビーム外の散乱角方向にテールが残ってしまう。3スリットの装置では、距離をおいて設けた第2、第3のスリットにより寄生散乱を除去している。しかし、このような装置では、スリット同士の距離をとる必要があるため、大きい寸法の装置が必要となる。
 一方、受光側に配置されたチャンネルカットモノクロメータ結晶をスキャンしながら0次元の検出器で回折線を検出するボンゼハート法を用いた装置等が知られている(特許文献2、3、非特許文献2)。図7は、従来のボンゼハート法を用いた光学系を示す平面図である。ボンゼハート法では、図7に示すようにミラーで反射されたX線をコリメータ918に入射させて生成したX線を試料S0に照射し、試料で散乱されたX線をアナライザ919に通して検出している。このような光学系で構成された装置では、散乱角方向への散乱ビームを除去し、高分解能の測定を可能にしている。しかし、1次元検出器または2次元検出器により非等方のパターンを同時に得ることができない。
 これらに対し、特許文献1記載の装置は、ピンホールコリメータの寄生散乱をチャネルカットモノクロメータ結晶でカットし、2次元検出器で検出している。しかし、このような装置では、X線が発散しようとする性質は残ったままになり、テールを十分に除去できずビームが広がってしまう。これは、チャンネルカットモノクロメータ結晶の配置が(+,-,+,-)にしかならず、空間的な発散により生じるテールを除去できないためである。
米国特許公開US2013/0064354号公報 特開2008-014861号公報 特開2008-014862号公報 特開平06-130002号公報
Hideki Matsuoka, Koji Kakigami, Norio Ise, Yuji Kobayashi, Yoshio Machitani, Tetsuo Kikuchi, Toshiyuki Kato, Ultra-small-angle x-ray-scattering study:Preliminary experiments in colloidal suspensions, Proc.Natl.Acad.Sci.USA, August 1991, vol.88, pp.6618-6619 Bonse-Hart camera(USAXS), [online], 2013.7.2, ESRF(European Synchrotron Radiation Facility), URL:http://www.esrf.eu/UsersAndScience/Experiments/SoftMatter/ID02/BeamlineLayout/EH1
 上記のように、従来のいずれの方法によっても、コンパクトな装置構成で、非等方の像を同時に取得し、像におけるビームの発散を十分に除去することは困難である。
 本発明は、このような事情に鑑みてなされたものであり、コンパクトな構成でかつ高い信号バックグラウンド比で非等方の像を同時に得られるビーム生成ユニットおよびX線小角散乱装置を提供することを目的とする。
 (1)上記の目的を達成するため、本発明のビーム生成ユニットは、散乱X線または回折X線を検出するため、試料に照射するX線を生成するビーム生成ユニットであって、X線光路上に設けられ、X線のビーム形状を整形するスリットと、(+,-,-,+)に配置され、前記スリットで整形された平行ビームの寄生散乱を除去し、平行かつ微小なX線ビームを生成する2個のチャンネルカットモノクロメータ結晶と、を備えることを特徴としている。
 このように、本発明のビーム生成ユニットは、スリットの後段にチャンネルカットモノクロメータ結晶を(+,-,-,+)に配置しているため、スリットによる散乱を除去するとともに空間的なビームのテールを除去することで高分解能の解析を可能にしている。また、3スリットの構成に比べてX線源から試料までの距離を小さくでき装置サイズを小さくできる。また、散乱X線または回折X線を1次元検出器または2次元検出器で検出することにより、検出器を移動することなく非等方のパターンが同時に測定できる。
 (2)また、本発明のビーム生成ユニットは、前記スリットの前段に配置され、前記2個のチャンネルカットモノクロメータ結晶により形成される光路面内でX線を反射し、前記光路面に垂直な方向のX線の発散を防止する第1のミラーを更に備えることを特徴としている。これにより、試料に照射されるビームの発散を防止し、十分な強度を確保することができる。
 (3)また、本発明のビーム生成ユニットは、前記第1のミラーが、検出器上に焦点を結ぶ集光ミラーであることを特徴としている。これにより、試料に照射されるビームスポットを微小にしつつ、強度を大きくすることができる。
 (4)また、本発明のビーム生成ユニットは、前記2個のチャンネルカットモノクロメータ結晶は、いずれも対称な一対のカット面を有することを特徴としている。これにより、チャンネルカットモノクロメータ結晶の配置や調整が容易になる。
 (5)また、本発明のビーム生成ユニットは、前記2個のチャンネルカットモノクロメータ結晶のいずれかは、非対称な一対のカット面を有することを特徴としている。これにより、さらに平行度が高く強度の大きいX線ビームを生成することができる。
 (6)また、本発明のビーム生成ユニットは、前記スリットの前段に配置され、前記2個のチャンネルカットモノクロメータ結晶により形成される光路面に垂直な面内で反射し、前記光路面内で発散ビームを平行ビームに整形する第2のミラーを更に備えることを特徴としている。これにより、輝度の高いX線ビームを作り、X線ビームの強度をかせぐことができる。
 (7)また、本発明のX線小角散乱装置は、上記のビーム生成ユニットを回転アームに搭載したゴニオメータを備えることを特徴としている。これにより、ゴニオメータの回転アームの駆動範囲内で自由な向きで小角散乱の測定ができる。例えば、液体を溜めて下からX線を照射することもできる。
 (8)また、本発明のX線小角散乱装置は、前記ビーム生成ユニットにより生成されたX線が試料に照射されて生じた散乱X線または回折X線を検出する2次元検出器を更に備えることを特徴としている。これにより、試料で小角散乱されたX線を高い角度分解能で検出できる。
 本発明によれば、スリットの後段にチャンネルカットモノクロメータ結晶を(+,-,-,+)に配置しているため、コンパクトな構成でかつ高い信号バックグラウンド比で非等方の像を同時に得られる。
本発明のX線小角散乱装置を示す斜視図である。 本発明のX線小角散乱装置を示す側面図である。 本発明のX線小角散乱装置を示す平面図である。 (a)~(d)それぞれビーム生成ユニットを示す平面図である。 各ビーム生成ユニットにより生成されたX線ビームの発散角に対する強度を示すグラフである。 実施例のX線ビームの発散角に対する強度を示すグラフである。 従来のボンゼハート法を用いた光学系を示す平面図である。
 次に、本発明の実施の形態について、図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては同一の参照番号を付し、重複する説明は省略する。
 [第1の実施形態]
 (X線小角散乱装置)
 X線小角散乱は、X線を物質に照射したときの散乱X線のうち、散乱角が小さいもの(通常、10°以下)を測定することにより物質の構造を解析する手法である。X線の波長をλ、散乱角を2θとすると、Braggの法則λ=2dsinθから、より小さな散乱角の散乱X線を測定することは、実空間では大きな構造を測定することに対応する。小角散乱で測定される一般的なサイズは1~100nmであり、小角散乱により微粒子や液晶、合金の内部構造といった数ナノメートルレベルでの構造の分析が可能である。
 図1~図3は、それぞれX線小角散乱装置100の概略を示す斜視図、側面図および平面図である。図1~図3に示すように、X線小角散乱装置100は、X線源、ビーム生成ユニット110、ゴニオメータおよび検出器120を備えている。
 X線源には、0.1mm以下の微小点X線源(マイクロフォーカスのX線源)を用いることが好ましい。これにより、微小なスポットサイズで強度の大きい焦点を形成できる。なお、図1~図3に示す概略構成ではX線源は省略されている。
 (ビーム生成ユニット)
 ビーム生成ユニット110は、試料S0に照射する平行かつ微小なスポットサイズのX線を生成し、1次元検出器または2次元検出器により回折X線を検出する。なお、検出器120として1次元検出器または2次元検出器を用いるため、非等方の回折パターンを同時に取得できる。
 ビーム生成ユニット110は、第1のミラー111、第2のミラー112、スリット115および2個のチャンネルカットモノクロメータ結晶117、118を備えている。2個のチャンネルカットモノクロメータ結晶117、118は、それぞれX線を反射する回折面を有する一対の結晶を配置している。
 ビーム生成ユニット110は、生成されたビームを微小角で試料S0に照射し、小角散乱X線を検出することに用いられるのが好ましい。これにより、小角散乱の用途に適したX線の微小ビームを生成することができる。その結果、例えば、100nm以下の小さい粒子について小角散乱の測定を行なうことができる。なお、ビーム生成ユニット110の用途は必ずしも小角散乱に限られないが、小角散乱に特に有効である。
 (第1のミラー)
 第1のミラー111は、スリット115の前段に配置され、2個のチャンネルカットモノクロメータ結晶117、118により形成されるX線光路面内でX線を反射し、上記のX線光路面に垂直な方向のX線の発散を防止する。その結果、2個のチャンネルカットモノクロメータ結晶117、118により形成される光路面内において試料S0に照射されるビームの発散を防止し、十分な強度を確保することができる。第1のミラー111を配置し強度を確保することで、単結晶以外の多結晶体や非結晶体の試料による散乱であっても十分に検出することが可能になる。
 第1のミラー111は、所定の曲率で湾曲し、検出器120上に焦点を結ぶ集光ミラーであることが好ましい。これにより、試料S0に照射されるビームスポットを微小にしつつ、強度を大きくすることができる。
 例えば、第1のミラー111が楕円ミラーであり、X線源から試料S0までの距離が700mmでカメラ長を400~500mmにする場合を考える。このとき、0.8°程度の範囲を有する第1のミラー111により0.3mmに集光する場合には、底辺700mm、高さ0.3mmのarctanは、約0.4mradである。
 この場合には、第1のミラー111の有無による強度の比は、0.8°=14mrad/0.4mrad=35となる。このように拡がったX線を第1のミラー111により集めて強度をかせぐことができる。なお、ミラーの反射率を1と考えているが、実際には若干1より小さい。また、第1のミラー111は、放物面ミラーであってもよく、発散してなければよい。
 (第2のミラー)
 第2のミラー112は、所定の曲率で湾曲したミラーであり、スリット115の前段に配置され、2個のチャンネルカットモノクロメータ結晶117、118により形成される光路面に垂直な面内でX線源から発生したX線を反射し、上記の光路面内で発散ビームを平行ビームに整形する。その結果、輝度の高いX線ビームを作り、X線ビームの強度をかせぐことができる。
 第2のミラー112は、入射X線の焦点距離を一定にする。第2のミラー112は、用途に応じて焦点サイズのビームを整形できる。例えば、70μmであった焦点サイズを100μm~200μmにしてもっと強度をかせぐことができる。第2のミラー112は、例えば、最大で1mmくらいまで幅を広げることができる。このように、ビーム幅を広げることで強度をかせぐことが可能である。第2のミラー112としては、放物面ミラーを用いることができ、スリット115で希望の焦点サイズのビームを作り、さらに第2のミラー112でサイズ調整することもできる。
 なお、従来のボンゼハート法による光学系の場合には、光路面に垂直な方向はビームが平行かどうかが分からず、光路面に平行な方向しか平行度を正確に測ることはできない。ビーム生成ユニット110では、第2のミラー112を配置することで、光路面に垂直な方向にも平行なビームを生成できる。さらに、X線ビームのスポットサイズを小さくしてやれば光路面内の角度分解能が高くなる。光路面内については集光素子を入れ、光路面に垂直な方向のビームサイズを絞ることによって面に平行な方向のビーム発散もナチュラルな結晶の小幅で平行になったものがでてくる。結局、1次元の方向だけでなくて、2次元で光路面に垂直な平面内の精度の良い角度情報が得られる。
 図1に示すように、第1のミラー111および第2のミラー112は、2枚を垂直に貼り合わせた一体型のミラーとして利用することができるが、別々に設けてもよい。これらのミラーとしてどのようなミラーを用いるかにより、焦点サイズを広げて強度を優先にすることもできるし、絞って分解能を上げることもできる。
 なお、第1のミラー111がX線源に近い位置に設置され、第2のミラー112が試料S0に近い位置に設置されている場合には、X線源から発生したX線を、第1のミラー111、第2のミラー112の順番で反射させて2個のチャンネルカットモノクロメータ結晶117、118に入射させることになる。しかし、配置を限定する必要はなく、これらを入れ換えた配置であってもよい。
 また、第1のミラー111または第2のミラー112には、全反射ミラー、多層膜ミラーおよび結晶板のいずれかを用いることができる。全反射ミラーは、ガラス板それ自体や、ガラス板の表面にNi(ニッケル)、Au(金)、Pt(白金)等を成膜して形成された反射板等を湾曲させることによって形成される。
 多層膜ミラーは、電子密度の異なる層を滑らかな表面を持った基板上に交互に複数回積層することによって形成される。多層の積層構造を周期的に複数層繰り返すことにより、特定X線、例えばCuKα線を効率良く回折できる。基板の材料としてはガラス板、シリコンウエーハ等が用いられる。結晶板は、α-SiO2(水晶)、Si(シリコン)、Ge(ゲルマニウム)等の単結晶板を用いて形成できる。
 (スリット)
 スリット115は、X線光路上に設けられ、X線のビーム形状を整形する。スリット115の孔形状は限定されず、ライン状や四角形であってよいが、スリット115の縁からの散乱を防止するためには円形のピンホールであることが好ましい。
 (チャンネルカットモノクロメータ結晶)
 2個のチャンネルカットモノクロメータ結晶117、118は、スリット115の後段において(+,-,-,+)に配置され、スリット115で整形された平行ビームの散乱を除去する。このような配置により、スリット115による散乱を取り除くとともに空間的なビームのテールを除去することで高分解能の解析が可能にしている。その結果、いわゆる小角散乱の検出にもビーム生成ユニット110を用いることができる。また、3スリットを用いる装置の構成に比べてX線源から試料S0までの距離を小さくできる。
 チャンネルカットモノクロメータ結晶とは、単一の結晶ブロックに溝を切ったときの反射に利用される平行な両側の壁である。結晶ブロックは、全体が一体の結晶からなるため、一方の結晶壁でブラッグ反射したX線は全て他方の結晶壁でブラッグ反射を起こす。チャンネルカットモノクロメータ結晶は、ゲルマニウムやシリコンなどの完全結晶を加工して溝を切ることによって形成される。溝の両側に形成される一対のX線反射面によってX線を反射させることにより、精度の高い単色ビームが得られる。
 第1のチャンネルカットモノクロメータ結晶117は、第2のチャンネルカットモノクロメータ結晶118のX線入射側に配置され、第1の結晶117aおよび第2の結晶117bを有し、それぞれの結晶117a、117bには、対向するカット面が形成されている。
 第1のチャンネルカットモノクロメータ結晶117は、第1のチャンネルカットモノクロメータ結晶117で回折されたX線が、第2のチャンネルカットモノクロメータ結晶118に入射するように配置されている。また、第1のチャンネルカットモノクロメータ結晶117は、X線を第2のチャンネルカットモノクロメータ結晶118がX線を回折させる結晶面の指数と同じ指数の結晶面でX線を回折させて第2のチャンネルカットモノクロメータ結晶118に入射させることができる形状および配置を有する。
 第2のチャンネルカットモノクロメータ結晶118は、第3の結晶118aおよび第4の結晶118bを有し、それぞれの結晶壁には、対向するカット面が形成されている。
 チャンネルカットモノクロメータ結晶における、(+)または(-)の配置とは、第1の回折の折れ曲がり方向を(+)として決められる折れ曲がり方向に回折させる結晶の配置を指す。したがって、第1の回折の折れ曲がり方向と同じ折れ曲がりの回折をさせる結晶の配置は、(+)であり、第1の回折の折れ曲がり方向と逆の折れ曲がりの回折をさせる結晶の配置は、(-)である。
 第1のチャンネルカットモノクロメータ結晶117は、入射X線に対して(+,-)となる配置でX線を回折することができるように設けられている。第2のチャンネルカットモノクロメータ結晶118は、第1のチャンネルカットモノクロメータ結晶117で回折されたX線が入射できる位置に、入射X線に対して(-,+)となる配置でX線を回折することができるように設けられている。このようにして、X線ビームの断面形状を正方形または円に整形することができる。
 ビーム生成ユニット110においては、スリット115の散乱はチャンネルカットモノクロメータ結晶117、118で除去でき、テールの生じないビームを作れるが、これと同程度に散乱を防止する構成を3ピンホールで実現しようとすると、X線源から試料S0までの距離として1.5m程度が必要になる。上記のようなビーム生成ユニット110であれば、この距離を10cm~15cmに短縮して構成でき、そのすぐ後ろに試料S0を置ける。
 4個の結晶117a、117b、118a、118bは、2個ずつのチャンネルカットモノクロメータ結晶117、118として形成されることが好ましいが、別々に形成されたものの組み合わせであってもよい。
 このような構成により、チャンネルカットモノクロメータ結晶117、118が、スリット115の後段でX線を回折させ、スリット115で向きの変わった寄生散乱のX線を除去している。さらに、2個のチャンネルカットモノクロメータ結晶117、118を配置することで、X線ビームの発散角方向の発散Δθ(発散)だけでなく、同時に波長(エネルギー)の分散Δλ(ΔE)も除去している。従来の構成ではΔθで制限しても、ΔEの方が幅広くなり、ある程度すり抜けてテールを作っていたが、ビーム生成ユニット110の構成ではこれを除去できる。
 このように、ビーム生成ユニット110は、波長分散も除去できるが、そのためにX線の強度も落ちやすい。しかし、この強度の減少は、第1のミラー111で補うことができる。
 これらのチャンネルカットモノクロメータ結晶117、118に用いることができる結晶の材料としては、ゲルマニウムやシリコンが挙げられるが、これらに限定されるものではない。また、用いられる結晶面としては、例えばGe(220)が挙げられる。
 (ゴニオメータ)
 ゴニオメータは、第1の回転アーム上にビーム生成ユニット110を搭載している。第1の回転アームは、試料S0に対して回転可能になっている。これにより、ゴニオメータの第1の回転アームの駆動範囲で小角散乱の測定ができる。例えば、液体は封入が困難であるため、液体を容器に溜めて下からX線を照射することもできる。
 上記のように、ビーム生成ユニット110はコンパクトに構成されているため、ゴニオメータの回転アームに載せて方向を自由に変えて測定でき、下から上に放射されるビームを用いることもできるし、上から下に放射されるビームを用いることもできる。
 また、ゴニオメータは、θ回転盤と、第2の回転アームと備えている。これらθ回転盤と第2の回転アームは、同一の回転軸を中心にしてθ回転盤が角度θだけ回転したとき、これに連動して第2の回転アームが角度2θだけ回転する構成となっている。
 θ回転盤には、試料台(試料保持部)が搭載してあり、この試料台に試料が保持される。このθ回転盤の回転とともに試料台が回転して、試料台に保持された試料のX線入射面とX線源との間の相対角度に関する位置関係を変更する。これにより、試料に対するX線の入射角度が変更される。
 第2の回転アームには、検出器120が搭載されている。検出器120は、第2の回転アームとともに試料のX線入射面の周囲を回転する。これにより、試料台に保持された試料のX線入射面と検出器120との間の相対角度に関する位置関係が変更され、試料から回折してくる回折X線を検出する位置まで検出器120が移動する。なお、試料S0から検出器120までのカメラ長は、測定対象に応じて任意に設定できる。1m程度必要になるかもしれないし、もっと小さくてもよい場合もありうる。
 なお、平行度が高いX線ビームを試料から十分に離して検出すれば、ビームサイズが微小でなくても小角散乱測定が可能になるが、それだと装置を大きくする必要が生じる。例えば、従来技術を使ったものであれば、装置の大きさを10m~20mにしなければならなかったのを、ビーム生成ユニット110を用いることで、高平行かつ微小なビームを使えるため、装置の大きさを数m程度にでき、非常にコンパクトにX線小角散乱装置100を実現できる。
 (検出器)
 検出器120は、試料で回折されたX線が入射する位置に配置されている。検出器120は、直線方向に位置分解能を持つ1次元検出器でもよく、平面内で位置分解能を持つ2次元検出器であってもよい。2次元検出器を用いることで、試料で小角散乱されたX線を高い角度分解能で検出できる。1次元検出器としては、PSPCや線状CCDセンサ等が考えられる。2次元検出器としては、2次元CCDセンサや、フォトンカウンティング型ピクセル2次元検出器が考えられる。
 (実施例)
 上記のビーム生成ユニット(実施例)および4結晶、2結晶によるビーム生成ユニット(比較例)でそれぞれ生成されたX線ビームのスペクトラム測定を行なった。図4(a)~(d)は、それぞれビーム生成ユニットの構成を示す平面図である。いずれもX線源から検出位置までの距離は、750mmとした。
 図4(a)は、スリットを用いたビーム生成ユニットの構成を示しており、幅0.1mmの入射スリット115の後段に2個のチャンネルカットモノクロメータ結晶を(+,-,-,+)となるように配置してX線をコリメートした。X線源として、CuKα線を用い、チャンネルカットモノクロメータ結晶には、Geの分光結晶を用い、Ge(220)を結晶面とした(以下の比較例でも同様)。コリメートされたX線は、幅0.1mmの受光スリット130でスキャンして検出した。
 図4(a)に示す構成に代えて、図4(b)に示す構成を用いてもよい。この場合にも、入射スリット115の後段に2個のチャンネルカットモノクロメータ結晶127、118(4個の結晶127a、127b、118a、118b)を(+,-,-,+)となるように配置している。そして、チャンネルカットモノクロメータ結晶127は、非対称な一対のカット面を有している。これにより、さらに平行度が高く強度の大きいX線ビームを生成することができる。なお、2個のチャンネルカットモノクロメータ結晶の両方が非対称な一対のカット面を有していてもよい。
 図4(c)は、4結晶のビーム生成ユニットの構成を示しており、2個のチャンネルカットモノクロメータ結晶217、218(4個の結晶217a、217b、218a、218b)を(+,-,-,+)となるように配置して、さらに1個の(-,+)配置のチャンネルカットモノクロメータ結晶219(2個の結晶219a、219b)をアナライザーとしてスキャンした。
 図4(d)は、2結晶のビーム生成ユニットの構成を示しており、1個のチャンネルカットモノクロメータ結晶317(2個の結晶317a、317b)を(+,-)となるように配置して、さらに1個の(-,+)配置のチャンネルカットモノクロメータ結晶318(2個の結晶318a、318b)をアナライザーとしてスキャンした。
 図5は、各ビーム生成ユニットにより生成されたX線ビームの強度分布の測定結果を示すグラフである。図5に示すように、スリットを用いたビーム生成ユニットおよび4結晶のビーム生成ユニットでは、十分にテールを除去することができた。2結晶のビーム生成ユニットでは、テールが残った。なお、4結晶のビーム生成ユニットでは、スリットを用いたビーム生成ユニットと同様にテールを除去できているが、この場合には1次元検出器や2次元検出器を用いた測定ができない。
 図6は、実施例のX線ビームの強度分布の測定結果を示すグラフである。この測定結果から、わずかにテールが生じているが、ほぼゼロであることが分かる。また、わずかな検出位置の違いで、X線強度が4桁~5桁落ちており、矩形的でテール切れのよいX線ビームが得られた。
100 X線小角散乱装置
110 ビーム生成ユニット
111 第1のミラー
112 第2のミラー
115 スリット
117 第1のチャンネルカットモノクロメータ結晶
117a 第1の結晶
117b 第2のチャンネルカットモノクロメータ結晶
118a 第3の結晶
118b 第4の結晶
120 検出器
127 第1のチャンネルカットモノクロメータ結晶
130 受光スリット

Claims (8)

  1.  散乱X線または回折X線を検出するため、試料に照射するX線を生成するビーム生成ユニットであって、
     X線光路上に設けられ、X線のビーム形状を整形するスリットと、
     (+,-,-,+)に配置され、前記スリットで整形された平行ビームの寄生散乱を除去し、平行かつ微小なX線ビームを生成する2個のチャンネルカットモノクロメータ結晶と、を備えることを特徴とするビーム生成ユニット。
  2.  前記スリットの前段に配置され、前記2個のチャンネルカットモノクロメータ結晶により形成される光路面内でX線を反射し、前記光路面に垂直な方向のX線の発散を防止する第1のミラーを更に備えることを特徴とする請求項1記載のビーム生成ユニット。
  3.  前記第1のミラーは、検出器上に焦点を結ぶ集光ミラーであることを特徴とする請求項2記載のビーム生成ユニット。
  4.  前記2個のチャンネルカットモノクロメータ結晶は、いずれも対称な一対のカット面を有することを特徴とする請求項1から請求項3のいずれかに記載のビーム生成ユニット。
  5.  前記2個のチャンネルカットモノクロメータ結晶のいずれかは、非対称な一対のカット面を有することを特徴とする請求項1から請求項3のいずれかに記載のビーム生成ユニット。
  6.  前記スリットの前段に配置され、前記2個のチャンネルカットモノクロメータ結晶により形成される光路面に垂直な面内で反射し、前記光路面内で発散ビームを平行ビームに整形する第2のミラーを更に備えることを特徴とする請求項1から請求項5のいずれかに記載のビーム生成ユニット。
  7.  請求項1から請求項6のいずれかに記載のビーム生成ユニットを回転アームに搭載したゴニオメータを備えることを特徴とするX線小角散乱装置。
  8.  前記ビーム生成ユニットにより生成されたX線が試料に照射されて生じた散乱X線または回折X線を検出する2次元検出器を更に備えることを特徴とする請求項7記載のX線小角散乱装置。
PCT/JP2015/052879 2014-03-27 2015-02-02 ビーム生成ユニットおよびx線小角散乱装置 WO2015146287A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15767729.5A EP3124961A4 (en) 2014-03-27 2015-02-02 Beam generation unit and small-angle x-ray scattering device
CN201580011600.0A CN106062542B (zh) 2014-03-27 2015-02-02 射束生成单元以及小角度x射线散射装置
JP2016510094A JP6392850B2 (ja) 2014-03-27 2015-02-02 ビーム生成ユニットおよびx線小角散乱装置
KR1020167019645A KR102243222B1 (ko) 2014-03-27 2015-02-02 빔 생성 유닛 및 x선 소각 산란 장치
US15/114,209 US10145808B2 (en) 2014-03-27 2015-02-02 Beam generation unit and X-ray small-angle scattering apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-066608 2014-03-27
JP2014066608 2014-03-27

Publications (1)

Publication Number Publication Date
WO2015146287A1 true WO2015146287A1 (ja) 2015-10-01

Family

ID=54194827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052879 WO2015146287A1 (ja) 2014-03-27 2015-02-02 ビーム生成ユニットおよびx線小角散乱装置

Country Status (6)

Country Link
US (1) US10145808B2 (ja)
EP (1) EP3124961A4 (ja)
JP (1) JP6392850B2 (ja)
KR (1) KR102243222B1 (ja)
CN (1) CN106062542B (ja)
WO (1) WO2015146287A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018016430A1 (ja) * 2016-07-16 2019-04-25 株式会社リガク 複合検査システム

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3553507A1 (en) * 2018-04-13 2019-10-16 Malvern Panalytical B.V. X-ray analysis apparatus
DE102018219751A1 (de) * 2018-07-09 2020-01-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Probenuntersuchungsvorrichtung mittels röntgen-ultrakleinwinkelstreuung
WO2020028412A1 (en) * 2018-07-31 2020-02-06 Lam Research Corporation Determining tilt angle in patterned arrays of high aspect ratio structures
EP3603516A1 (de) * 2018-08-02 2020-02-05 Siemens Healthcare GmbH Röntgenvorrichtung und verfahren zum betrieb der röntgenvorrichtung
JP7239502B2 (ja) * 2020-01-06 2023-03-14 株式会社日立製作所 X線撮像装置及びx線撮像方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0949811A (ja) * 1995-08-08 1997-02-18 Rigaku Corp X線回折装置の光学系切換装置
JP2001066398A (ja) * 1999-08-27 2001-03-16 Rigaku Corp X線測定装置
JP2002286658A (ja) * 2001-03-28 2002-10-03 Rigaku Corp X線反射率測定装置およびその方法
JP2013508683A (ja) * 2009-10-14 2013-03-07 リガク イノベイティブ テクノロジーズ インコーポレイテッド 多重配置x線光学装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06130002A (ja) 1992-10-13 1994-05-13 Rigaku Corp 小角領域x線装置
CN100570344C (zh) * 2005-03-10 2009-12-16 中国科学院上海光学精密机械研究所 时间分辨x射线衍射仪
JP4278108B2 (ja) 2006-07-07 2009-06-10 株式会社リガク 超小角x線散乱測定装置
JP4994722B2 (ja) 2006-07-07 2012-08-08 株式会社リガク 超小角x線散乱測定の測定結果表示方法、及び超小角x線散乱測定に基づく配向度の解析方法
FR2959344B1 (fr) 2010-04-26 2013-03-22 Commissariat Energie Atomique Dispositif optique pour analyser un echantillon par diffusion d'un faisceau de rayon x, dispositif de collimation et collimateur associes
EP2662023A1 (en) * 2011-01-07 2013-11-13 Kabushiki Kaisha Toshiba, Inc. Collimator and x-ray computed tomography apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0949811A (ja) * 1995-08-08 1997-02-18 Rigaku Corp X線回折装置の光学系切換装置
JP2001066398A (ja) * 1999-08-27 2001-03-16 Rigaku Corp X線測定装置
JP2002286658A (ja) * 2001-03-28 2002-10-03 Rigaku Corp X線反射率測定装置およびその方法
JP2013508683A (ja) * 2009-10-14 2013-03-07 リガク イノベイティブ テクノロジーズ インコーポレイテッド 多重配置x線光学装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3124961A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018016430A1 (ja) * 2016-07-16 2019-04-25 株式会社リガク 複合検査システム

Also Published As

Publication number Publication date
EP3124961A1 (en) 2017-02-01
US20170010226A1 (en) 2017-01-12
KR20160137951A (ko) 2016-12-02
US10145808B2 (en) 2018-12-04
CN106062542A (zh) 2016-10-26
EP3124961A4 (en) 2017-11-22
CN106062542B (zh) 2019-06-07
JPWO2015146287A1 (ja) 2017-04-13
KR102243222B1 (ko) 2021-04-22
JP6392850B2 (ja) 2018-09-19

Similar Documents

Publication Publication Date Title
JP6392850B2 (ja) ビーム生成ユニットおよびx線小角散乱装置
TWI449904B (zh) X射線散射測定裝置及x射線散射測定方法
US9823203B2 (en) X-ray surface analysis and measurement apparatus
US9448190B2 (en) High brightness X-ray absorption spectroscopy system
CN110530907B (zh) X射线吸收测量系统
JP4278108B2 (ja) 超小角x線散乱測定装置
JP5990734B2 (ja) 蛍光x線分析装置
JP6656519B2 (ja) X線回折装置
JP7308233B2 (ja) 小角x線散乱計測計
KR20150146453A (ko) X선 산란계측 장치
WO2013108876A1 (ja) X線回折装置
US9031203B2 (en) X-ray beam system offering 1D and 2D beams
JP6564572B2 (ja) X線装置
JP6009156B2 (ja) 回折装置
Chapman et al. Convergent-beam attosecond x-ray crystallography
JP5483840B2 (ja) X線撮像装置及びx線撮像方法
JP5504502B2 (ja) X線及び中性子線の反射率曲線測定方法及び測定装置
JPH09222401A (ja) 微小領域x線回折装置
CN115053125A (zh) X射线散射设备
JPH04299240A (ja) レーザープラズマ軟x線用分光回折装置
HK1071435A (en) Detecting unit for x-ray diffraction measurements
JPH02276952A (ja) X線構造解析装置
JP2002310949A (ja) トモグラフ像撮影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15767729

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510094

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167019645

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015767729

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015767729

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15114209

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE