[go: up one dir, main page]

WO2015133849A1 - Graphene oxide nanocomposite membrane having improved gas barrier characteristics and method for manufacturing same - Google Patents

Graphene oxide nanocomposite membrane having improved gas barrier characteristics and method for manufacturing same Download PDF

Info

Publication number
WO2015133849A1
WO2015133849A1 PCT/KR2015/002156 KR2015002156W WO2015133849A1 WO 2015133849 A1 WO2015133849 A1 WO 2015133849A1 KR 2015002156 W KR2015002156 W KR 2015002156W WO 2015133849 A1 WO2015133849 A1 WO 2015133849A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene oxide
group
gas barrier
oxide nanocomposite
nanocomposite membrane
Prior art date
Application number
PCT/KR2015/002156
Other languages
French (fr)
Korean (ko)
Inventor
박호범
김효원
유병민
장승진
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150031035A external-priority patent/KR101972439B1/en
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to US15/123,967 priority Critical patent/US20170015483A1/en
Priority to CN201580012597.4A priority patent/CN106061593B/en
Publication of WO2015133849A1 publication Critical patent/WO2015133849A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • B01D67/00793Dispersing a component, e.g. as particles or powder, in another component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/148Organic/inorganic mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • B01D71/0211Graphene or derivates thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/10Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/80Medical packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays

Definitions

  • the present invention relates to a graphene oxide nanocomposite membrane having improved gas barrier properties and a method for manufacturing the same, and more particularly, graphene oxide coated with graphene oxide having a size of 3 ⁇ m to 50 ⁇ m on a variety of supports with a thickness of 10 nm or more.
  • the present invention relates to a technology capable of being applied to display devices, food and pharmaceutical packaging, etc. with excellent gas barrier properties.
  • Graphene is a material composed of a single layer of hexagonal honeycomb carbon atoms, which is very interesting and has excellent physicochemical properties due to its structural specificity of two-dimensional nanoplatelet structure. I became one. That is, it is the thinnest material in the world, but it has mechanical properties that are 200 times stronger than steel, 100 times more current transmission than copper, and 100 times faster electron transfer speed than silicon. In particular, despite being a single atom layer, it is known that gas and ion molecule blocking properties are excellent with high mechanical strength.
  • the excellent gas and ion molecule blocking characteristics of graphene are realized only in the defect-free graphene structure.
  • the gas and ion molecules easily penetrate into the graphene defects, thereby preventing the characteristic. Since the characteristics are lost, when graphene is formed into a thin film, it is difficult to maintain the blocking characteristics of gas and ion molecules.
  • gas diffusion barriers comprising a polymeric matrix and functionalized graphene having a surface density of 300-2,600 m 2 / g and a bulk density of 40-0.1 kg / m 3.
  • the surface area and bulk density of functionalized graphene are also known.
  • the technical features of the control are thick films in which the functionalized graphene is dispersed in the polymer matrix, and thus the gas barrier properties in the case of thin films are difficult to predict and the results are proved by quantitative data on the gas barrier properties. There is no mention in particular about the effect which becomes (patent document 3).
  • Non-Patent Document 1 graphene / polyurethane nanocomposites containing graphite oxide as a nanofiller in thermoplastic polyurethanes by melt mixing, solution blending, or co-polymerization have also been known. Although the barrier properties of nitrogen gas according to the amount of graphene contained are revealed, the barrier properties of various gases according to the size of the graphene oxide and the thickness of the graphene oxide film are not known (Non-Patent Document 1).
  • Patent Document 1 Korean Patent Publication No. 10-2014-0015926
  • Patent Document 2 Korea Patent Publication No. 10-2013-0001705
  • Patent Documents 3. US published patent US 2010/0096595
  • Non-Patent Document 1 Hyunwoo Kim et al., Chem. Mater. 22 , 3441-3450 (2010)
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a simple structure in which graphene oxide having a controlled size is coated with a nano-thick thin film, or graphene oxide is inserted into a polymer. It is to provide a graphene oxide nanocomposite membrane having excellent barrier properties of various gases and a method of manufacturing the same.
  • the present invention for achieving the above object is a support; And a coating layer having nanopores coated with a graphene oxide having a size of 3 ⁇ m to 50 ⁇ m on a thickness of 10 nm or more on the support.
  • the support is characterized in that any one selected from the group consisting of polymers, ceramics, glass, paper, and metal layers.
  • the polymer may be polyester, polyolefin, polyvinyl chloride, polyurethane, polyacrylate, polycarbonate, polytetrafluoroethylene, polysulfone, polyethersulfone, polyimide, polyetherimide, polyamide, polyacrylonitrile, It is characterized by any one selected from the group consisting of cellulose acetate, cellulose triacetate, and polyvinylidene fluoride.
  • the ceramic is characterized in that any one selected from the group consisting of alumina, magnesia, zirconia, silicon carbide, tungsten carbide, and silicon nitride.
  • the metal layer is characterized in that the metal foil, a metal sheet or a metal film.
  • the material of the metal layer is characterized in that any one selected from the group consisting of copper, nickel, iron, aluminum, and titanium.
  • the graphene oxide is a functionalized graphene oxide characterized in that the hydroxyl group, carboxyl group, carbonyl group, or epoxy group present in the graphene oxide is converted to ester group, ether group, amide group, or amino group.
  • the nanopores are characterized in that the average diameter ranges from 0.5 nm to 1.0 nm.
  • the coating layer is characterized in that it comprises a single layer or a plurality of graphene oxide.
  • Graphene oxide of the single layer is characterized in that the thickness of 0.6 nm ⁇ 1 nm range.
  • the present invention also provides a gas barrier graphene oxide nanocomposite membrane having a structure in which graphene oxide is inserted into a polyethylene glycol diacrylate or polyethylene glycol dimethacrylate polymer.
  • the graphene oxide is characterized in that the size of 100 ⁇ 1000 nm.
  • the content of graphene oxide in the nanocomposite film is characterized in that less than 5% by weight.
  • the present invention provides a display device including the gas barrier graphene oxide nanocomposite membrane.
  • the present invention provides a food wrapper comprising the gas barrier graphene oxide nanocomposite membrane.
  • the present invention provides a pharmaceutical package containing the gas barrier graphene oxide nanocomposite membrane.
  • the present invention comprises the steps of i) dispersing the graphene oxide in distilled water and treating with an ultrasonic mill for 0.1 to 6 hours to obtain a graphene oxide dispersion solution; ii) centrifuging the dispersion solution to form graphene oxide having a size adjusted to 3 ⁇ m ⁇ 50 ⁇ m; iii) obtaining a solution in which the graphene oxide formed in step ii) is dispersed in distilled water again; And iv) coating the dispersion solution of step iii) on a support to form a coating layer having nanopores.
  • the method of manufacturing a gas barrier graphene oxide nanocomposite membrane comprising the same.
  • the graphene oxide is a functionalized graphene oxide characterized in that the hydroxyl group, carboxyl group, carbonyl group, or epoxy group present in the graphene oxide is converted to ester group, ether group, amide group, or amino group.
  • the support is characterized in that any one selected from the group consisting of polymers, ceramics, glass, paper, and metal layers.
  • the polymer may be polyester, polyolefin, polyvinyl chloride, polyurethane, polyacrylate, polycarbonate, polytetrafluoroethylene, polysulfone, polyethersulfone, polyimide, polyetherimide, polyamide, polyacrylonitrile, It is characterized by any one selected from the group consisting of cellulose acetate, cellulose triacetate, and polyvinylidene fluoride.
  • the ceramic is characterized in that any one selected from the group consisting of alumina, magnesia, zirconia, silicon carbide, tungsten carbide, and silicon nitride.
  • the metal layer is characterized in that the metal foil, a metal sheet or a metal film.
  • the material of the metal layer is characterized in that any one selected from the group consisting of copper, nickel, iron, aluminum, and titanium.
  • the coating is characterized in that it is carried out by any one method selected from the group consisting of a direct evaporation method, a transfer method, a spin coating method, and a spray coating method.
  • the spin coating is characterized in that it is performed 3 to 10 times.
  • the nanopores are characterized in that the average diameter ranges from 0.5 nm to 1.0 nm.
  • the coating layer is characterized in that it comprises a single layer or a plurality of graphene oxide.
  • Graphene oxide of the single layer is characterized in that the thickness of 0.6 nm ⁇ 1 nm range.
  • graphene oxide having a size of 3 ⁇ m to 50 ⁇ m is coated with a thin film of nano-thickness on various supports, or graphene oxide is inserted into a polymer. Even with a simple structure, it is excellent in blocking properties of various gases, and thus can be applied to display devices, food and pharmaceutical packaging.
  • 1 is a structure of graphene oxide and functionalized graphene oxide.
  • FIG. 2 is a transmission electron microscope (TEM) photograph of graphene oxide scaled according to Example 1.
  • FIG. 2 is a transmission electron microscope (TEM) photograph of graphene oxide scaled according to Example 1.
  • Figure 3 is a photograph taken of the graphene oxide nanocomposite membrane prepared from Example 1.
  • Figure 4 is a transmission electron microscope (TEM) photograph taken a cross section of the graphene oxide film coated on a polymer support (PES) according to Example 1.
  • TEM transmission electron microscope
  • Figure 5 is a photograph of the graphene oxide nanocomposite according to the content of the graphene oxide prepared from Example 2 (graphene oxide size: 270 nm)
  • FIG. 6 is a scanning electron microscope (SEM) photograph (graphene oxide size: 270 nm) of graphene oxide nanocomposites according to the amount of graphene oxide prepared from Example 2.
  • SEM scanning electron microscope
  • Figure 7 is a photograph of the graphene oxide nanocomposite film according to the size of the graphene oxide prepared from Example 2 (graphene oxide content: 4% by weight)
  • Figure 9 is a graph showing the gas barrier properties and gas permeable pressure of the ultra-thin graphene oxide film according to the size of graphene oxide.
  • SEM 10 is a scanning electron microscope (SEM) photograph of a graphene oxide film having a thickness of about 5 ⁇ m prepared using a conventional vacuum filtration method.
  • FIG. 11 is a graph showing various gas barrier properties according to graphene oxide size of a graphene oxide film prepared using a conventional vacuum filtration method.
  • FIG. 13 is a graph of oxygen permeability of graphene oxide nanocomposites according to the amount of graphene oxide prepared from Example 2 (graphene oxide size: 270 nm).
  • the support may perform a function of a reinforcing material for supporting the coating layer, and various materials contacting the coating layer are possible, and the support may be any one selected from the group consisting of polymer, ceramic, glass, paper, and metal layers. have.
  • the polymer polyester, polyolefin, polyvinyl chloride, polyurethane, polyacrylate, polycarbonate, polytetrafluoroethylene, polysulfone, polyether sulfone, polyimide, polyetherimide, polyamide, polyacrylonitrile
  • Any one selected from the group consisting of cellulose acetate, cellulose triacetate, and polyvinylidene fluoride can be used without limitation, and among these, polyether sulfone may be more preferably used, but is not limited thereto.
  • any one selected from the group consisting of alumina, magnesia, zirconia, silicon carbide, tungsten carbide, and silicon nitride is used, and alumina or silicon carbide is preferably used.
  • the support is composed of a metal layer
  • various forms such as a metal foil, a metal sheet, or a metal film are possible
  • the material of the metal layer may be any one selected from the group consisting of copper, nickel, iron, aluminum, and titanium. Can be.
  • the coating layer having a nano-pores coated with a graphene oxide of 3 ⁇ m ⁇ 50 ⁇ m size in a thickness of 10 nm or more on the various supports.
  • Graphene oxide used in the present invention can be produced in large quantities by oxidizing graphite using an oxidizing agent, and includes a hydrophilic functional group such as a hydroxyl group, a carboxyl group, a carbonyl group, or an epoxy group.
  • a hydrophilic functional group such as a hydroxyl group, a carboxyl group, a carbonyl group, or an epoxy group.
  • graphene oxide is mostly Hummers method [Hummers, WS & Offeman, RE Preparation of graphite oxide. J. Am. Chem. Soc. 80 . 1339 (1958) or by the Hummers method modified in part, bar graphene oxide was also obtained in accordance with the Hummers method in the present invention.
  • the graphene oxide of the present invention is a hydroxyl group, a carboxyl group, a carbonyl group, or a hydrophilic functional group such as an epoxy group present in the graphene oxide chemically reacts with other compounds to ester group, ether group, amide group, or amino group
  • converted functionalized graphene oxide For example, the carboxyl group of graphene oxide is converted into an ester group by reaction with an alcohol, the hydroxyl group of graphene oxide is converted to an ether group by reaction with an alkyl halide, and the carboxyl group of graphene oxide is reacted with an alkyl amine. Converted to an amide group, or an epoxy group of graphene oxide is converted to an amino group by an alkyl amine ring-opening reaction.
  • graphene oxide thin film according to the present invention in order for the graphene oxide thin film according to the present invention to exhibit excellent barrier properties for gases having various molecular sizes, it is preferable to control the size of graphene oxide in the range of 3 ⁇ m to 50 ⁇ m, in particular, 3 ⁇ m to 10 ⁇ m. The range is more preferable because graphene oxide exhibits excellent gas barrier properties even when formed into an ultra-thin film.
  • Figure 1 shows the structure of the graphene oxide obtained by the Hummers method from graphite, the functionalized graphene oxide produced by the reaction of the graphene oxide with other compounds.
  • the graphene oxide coating layer formed on various supports includes a single layer or a plurality of layers of graphene oxide, and the graphene oxide of the single layer has a thickness in the range of 0.6 nm to 1 nm.
  • a single layer of graphene oxide may be stacked to form a plurality of layers of graphene oxide, wherein the interlayer distance of the graphene oxide is about 0.34 nm to 0.5 nm, so that an additional path of movement between grain boundaries is generated.
  • the graphene oxide coating layer more preferably comprises a plurality of laminated graphene oxide. desirable.
  • the graphene oxide coating layer When the graphene oxide coating layer is thick, it is a natural result that the gas barrier property is improved, but in the present invention, as described above, when the size of the graphene oxide is controlled in the range of 3 ⁇ m to 50 ⁇ m, the graphene oxide Even if the thickness of the coating layer is formed as an ultra-thin film of at least 10 nm, since the gas barrier properties can exhibit an excellent effect, the thickness of the graphene oxide coating layer is preferably 10 nm or more. In addition, the graphene oxide coating layer forms nanopores with an average diameter in the range of 0.5 nm to 1.0 nm.
  • the present invention in addition to the gas barrier graphene oxide nanocomposite membrane coated with graphene oxide on a variety of supports, including the support of the polymer material as described above, in the polyethylene glycol diacrylate or polyethylene glycol dimethacrylate polymer Provided is a gas barrier graphene oxide nanocomposite membrane having a pin oxide-inserted structure.
  • the number average molecular weight (Mn) of the polyethylene glycol diacrylate or polyethylene glycol dimethacrylate macromer is in the range of 250 to 1000 in the polymerization reaction, in particular in the ultraviolet (UV) polymerization reaction using a photoinitiator and the formation of a crosslinked structure. Suitable.
  • the graphene oxide is preferably in the size range of 100 ⁇ 1000 nm, if the size of the graphene oxide is less than 100 nm gas barrier properties may fall, if the size exceeds 1000 nm cross-linked polyethylene glycol It may be difficult to uniformly disperse and insert into the diacrylate or polyethyleneglycol dimethacrylate polymer.
  • the content of graphene oxide in the gas barrier graphene oxide nanocomposite membrane having a structure in which graphene oxide is inserted in the polyethylene glycol diacrylate or polyethylene glycol dimethacrylate polymer is 5% by weight or less, the gas permeability is reduced. It is desirable to maximize the.
  • the present invention comprises the steps of i) dispersing the graphene oxide in distilled water and treating with an ultrasonic mill for 0.1 to 6 hours to obtain a graphene oxide dispersion solution; ii) centrifuging the dispersion solution to form graphene oxide having a size adjusted to 3 ⁇ m ⁇ 50 ⁇ m; iii) obtaining a solution in which the graphene oxide formed in step ii) is dispersed in distilled water again; And iv) coating the dispersion solution of step iii) on a support to form a coating layer having nanopores.
  • the method of manufacturing a gas barrier graphene oxide nanocomposite membrane comprising the same.
  • the graphene oxide of step i) may be a functionalized graphene oxide in which a hydroxyl group, a carboxyl group, a carbonyl group, or an epoxy group present in the graphene oxide is converted to an ester group, an ether group, an amide group, or an amino group.
  • the graphene oxide may be dispersed in distilled water and treated with an ultrasonic grinder for 0.1 to 6 hours to improve dispersibility of graphene oxide in the dispersion solution.
  • the dispersion solution obtained in step iii) is a 0.01 to 0.5% by weight aqueous solution of graphene oxide adjusted to pH 10.0 using 1M aqueous sodium hydroxide solution, it is uniform if the concentration of the aqueous solution of graphene oxide is less than 0.01% by weight It is difficult to obtain a coating layer, and if the concentration is more than 0.5% by weight, the viscosity is too high, so a problem that a smooth coating can not be performed, the concentration of the graphene oxide aqueous solution is preferably 0.01 to 0.5% by weight.
  • the support of step iv) is capable of performing the function of the reinforcing material for supporting the coating layer is possible various materials in contact with the coating layer, the support is selected from the group consisting of polymer, ceramic, glass, paper, and metal layer It may be either one.
  • polyether sulfone may be more preferably used, but is not limited thereto.
  • any one selected from the group consisting of alumina, magnesia, zirconia, silicon carbide, tungsten carbide, and silicon nitride is used, and alumina or silicon carbide is preferably used.
  • the support is composed of a metal layer
  • various forms such as a metal foil, a metal sheet, or a metal film are possible
  • the material of the metal layer may be any one selected from the group consisting of copper, nickel, iron, aluminum, and titanium. Can be.
  • any known coating method may be used without limitation, but may be performed by any one method selected from the group consisting of a direct evaporation method, a transfer method, a spin coating method, and a spray coating method. It is preferable that a uniform coating layer can be obtained simply, and spin coating method is especially preferable.
  • the spin coating is preferably performed 3 to 10 times. If the spin coating is performed less than 3 times, it is difficult to expect a function as a gas barrier layer. If the spin coating is performed 10 times or more, the thickness of the coating layer becomes too thick. There is a disadvantage that it is difficult to obtain one coating layer.
  • the coating layer may include a single layer or a plurality of layers of graphene oxide, and the graphene oxide of the single layer has a thickness in the range of 0.6 nm to 1 nm, and the graphene oxide coating layer has an average diameter.
  • the nanopores in the range of 0.5 nm to 1.0 nm are formed.
  • Graphene oxide prepared by the Hummers method was dispersed in distilled water and treated with an ultrasonic mill for 3 hours to obtain a graphene oxide dispersion solution. Centrifuge the dispersion solution After forming the graphene oxide adjusted to 3 ⁇ m and dispersed in distilled water again to obtain a 0.1 wt% aqueous solution of graphene oxide adjusted to pH 10.0 using 1M aqueous sodium hydroxide solution. 1 mL of the graphene oxide aqueous solution was spin-coated five times on a porous polyether sulfone (PES) support to prepare a graphene oxide nanocomposite membrane having a graphene oxide coating layer having a thickness of 10 nm.
  • PES polyether sulfone
  • Polyethylene glycol diacrylate (PEGDA) macromer (number average molecular weight 250) and deionized water were mixed at a ratio of 7: 3 (weight ratio), followed by stirring for 12 hours to obtain a uniform solution.
  • the graphene oxide prepared by the Hummers method was added to the solution by 1% by weight of PEGDA macromer and 0.1% by weight of 1-hydroxycyclohexyl phenyl ketone as a photoinitiator, sonicated for 2 hours, and then stirred for 24 hours. A precursor solution was obtained.
  • a graphene oxide nanocomposite film was prepared by irradiating 312 nm UV for 5 minutes under a nitrogen atmosphere (in this case, graphene oxide was used having a size of 270 nm and 800 nm, The content was also changed to 1, 2, 3, 4% by weight based on PEGDA macromer).
  • the gas barrier properties of the graphene oxide nanocomposite membranes prepared in Examples 1 and 2 were measured by a constant pressure / transformation volume measurement device equipped with gas chromatography.
  • Figure 2 shows a transmission electron microscope (TEM) of the graphene oxide obtained after centrifugation of the graphene oxide dispersion solution according to an embodiment of the present invention, it can be seen that the size is adjusted to about 3 ⁇ m.
  • TEM transmission electron microscope
  • the graphene oxide nanocomposite film prepared according to the embodiment forms a graphene oxide coating layer on the polyether sulfone support.
  • TEM 4 is a transmission electron microscope (TEM) image of a cross-section of a graphene oxide film coated with a 10 nm thickness on a porous polyether sulfone (PES) support according to an embodiment of the present invention, graphene oxide uniformly without defects It can be seen that it is laminated.
  • TEM transmission electron microscope
  • the graphene oxide nanocomposite according to the content of the graphene oxide prepared from Example 2 of Figure 5 increases as the graphene oxide content increases to confirm that the darker color It can be seen that the graphene oxide is uniformly dispersed and inserted in the crosslinked PEGDA polymer while increasing the graphene oxide content.
  • Figure 6 shows a scanning electron microscope (SEM) picture (graphene oxide size: 270 nm) of the graphene oxide nanocomposite according to the content of the graphene oxide prepared from Example 2, containing graphene oxide
  • SEM scanning electron microscope
  • Fig. 7 shows a photograph (graphene oxide content: 4% by weight) of the graphene oxide nanocomposite according to the size of the graphene oxide prepared from Example 2, the size of the graphene oxide 800 at 270 nm Even with increasing nm, it can be seen that graphene oxide is uniformly dispersed and inserted in the crosslinked PEGDA polymer.
  • a graphene oxide film without a support using a conventional vacuum filtration method Prepared. 10 is a scanning electron micrograph of a graphene oxide film having a thickness of about 5 ⁇ m manufactured by a conventional vacuum filtration method, and it can be seen that graphene oxide having a two-dimensional structure is stacked without gaps.
  • FIG. 11 shows a gas barrier property of a graphene oxide film prepared by preparing a graphene oxide film without a support by a conventional vacuum filtration method, and controlling the graphene oxide to have a specific size (0.5, 1.0, and 5.0 ⁇ m).
  • a specific size 0.5, 1.0, and 5.0 ⁇ m.
  • FIG. 12 is a graph of theoretically calculating the gas permeation channel length at the same thickness of the film of graphene oxide of various sizes, confirming that the gas permeation channel length gradually increases as the size of the graphene oxide increases at the same thickness.
  • the film is manufactured using graphene oxide having a specific size (3.0 ⁇ m), it can be seen that the gas permeation channel length increases to show excellent blocking characteristics. It shows a match.
  • FIG. 13 shows a graph of oxygen permeability (graphene oxide size: 270 nm) of graphene oxide nanocomposites according to the content of graphene oxide prepared from Example 2, and as the content of graphene oxide increases, oxygen It can be seen that the permeability gradually decreases, and in particular, when the content of graphene oxide in the graphene oxide nanocomposite film is 4% by weight, the oxygen permeability is 83 compared to that of the PEGDA polymer containing no graphene oxide. It can be seen that the percentage decreases.
  • FIG. 14 shows a graph of oxygen permeability (graphene oxide content: 4 wt%) of graphene oxide nanocomposite membrane according to the size of graphene oxide prepared from Example 2, as graphene oxide increases in size. It can be seen that the gas barrier property is improved, and in particular, when the size of the graphene oxide inserted into the graphene oxide nanocomposite membrane is 800 nm, the oxygen permeability is higher than that of the PEGDA polymer containing no graphene oxide. It can be seen that the reduction by 90%.
  • the graphene oxide nanocomposite membrane prepared according to the present invention the graphene oxide adjusted to a size of 3 ⁇ m ⁇ 50 ⁇ m is coated with a thin film of nano-thickness on various supports, or the graphene oxide is inserted into the polymer Its simple structure makes it suitable for display devices, food and pharmaceutical packaging because of its excellent barrier properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention relates to a technique of manufacturing a graphene oxide nanocomposite membrane in which 3㎛ to 5㎛-sized graphene oxide is coated with a thickness of 10nm or more on various supports, or a graphene oxide nanocomposite membrane having a structure in which graphene oxide is inserted into a polymer. The graphene oxide nanocomposite membrane manufactured according to the present invention has excellent barrier characteristics against various gases even when graphene oxide, of which the size is controlled to 3㎛ to 5㎛, is coated as a nanometer-thick thin film on various supports or the graphene oxide nanocomposite membrane has a simple structure in which graphene oxide is inserted into a polymer, and thus the graphene oxide nanocomposite membrane can be applied to the packaging of display devices, food, and medical products.

Description

기체 차단 특성이 향상된 그래핀 옥사이드 나노복합막 및 그 제조방법Graphene oxide nanocomposite membrane with improved gas barrier properties and its manufacturing method
본 발명은 기체 차단 특성이 향상된 그래핀 옥사이드 나노복합막 및 그 제조방법에 관한 것으로, 보다 상세하게는 다양한 지지체 위에 3 ㎛~50 ㎛ 크기의 그래핀 옥사이드가 10 nm 이상의 두께로 코팅된 그래핀 옥사이드 나노복합막, 또는 그래핀 옥사이드가 고분자 중합체 내에 삽입된 구조의 그래핀 옥사이드 나노복합막을 제조함으로써, 기체 차단 특성이 우수하여 디스플레이 소자, 식품 및 의약품 포장 등에 응용이 가능한 기술에 관한 것이다.The present invention relates to a graphene oxide nanocomposite membrane having improved gas barrier properties and a method for manufacturing the same, and more particularly, graphene oxide coated with graphene oxide having a size of 3 μm to 50 μm on a variety of supports with a thickness of 10 nm or more. By manufacturing a nano-composite membrane or a graphene oxide nanocomposite membrane having a structure in which graphene oxide is inserted into a polymer polymer, the present invention relates to a technology capable of being applied to display devices, food and pharmaceutical packaging, etc. with excellent gas barrier properties.
그래핀은 육각형 벌집 모양의 단일 탄소원자 층으로 구성된 물질로서, 2차원 나노판상구조라는 구조적 특이성으로 인하여 매우 흥미롭고 우수한 물리화학적 성질을 나타내기 때문에 2004년 발견된 이후 산·학계에서 가장 주목 받는 소재 중의 하나가 되었다. 즉, 세상에 존재하는 가장 얇은 물질이지만 강철보다 200배 이상 강한 기계적 특성과 구리보다 100배 이상의 전류투과 특성 및 실리콘보다 100배 빠른 전자이동속도를 갖는다. 특히, 단일원자 층임에도 불구하고 높은 기계적 강도로 기체 및 이온분자 차단 특성이 우수한 것으로 알려져 있다.Graphene is a material composed of a single layer of hexagonal honeycomb carbon atoms, which is very interesting and has excellent physicochemical properties due to its structural specificity of two-dimensional nanoplatelet structure. I became one. That is, it is the thinnest material in the world, but it has mechanical properties that are 200 times stronger than steel, 100 times more current transmission than copper, and 100 times faster electron transfer speed than silicon. In particular, despite being a single atom layer, it is known that gas and ion molecule blocking properties are excellent with high mechanical strength.
그러나 그래핀의 기체 및 이온분자 차단 특성이 우수한 점은 결함 없는 그래핀 구조에서만 구현되는 특징으로서 그래핀 내에 결함이 생길 경우, 기체 및 이온분자들은 그래핀 결함 부분으로 손쉽게 투과하게 되어 그 특유의 차단 특성을 잃어버리게 되므로, 그래핀이 박막으로 형성되면 기체 및 이온분자의 차단 특성을 유지하기 어려운 문제점이 있다.However, the excellent gas and ion molecule blocking characteristics of graphene are realized only in the defect-free graphene structure. When defects occur in the graphene, the gas and ion molecules easily penetrate into the graphene defects, thereby preventing the characteristic. Since the characteristics are lost, when graphene is formed into a thin film, it is difficult to maintain the blocking characteristics of gas and ion molecules.
이러한 그래핀의 기체 및 이온분자의 차단 특성과 관련하여 다양한 기술개발이 이루어지고 있는바, 최근 친수성 그래핀층과 소수성 그래핀층이 적층된 그래핀 적층체를 하나 이상 포함하는 그래핀 적층 배리어 필름으로서, 그래핀층의 두께를 0.01 ㎛~1,000 ㎛로 조절한 그래핀 적층 필름을 제조하고, 그 배리어 특성을 이용하여 식품 포장지 등에 응용하고자 하는 시도가 있었으나, 그 구조가 다소 복잡하고 산소 투과량과 수증기 투과량에 대한 데이터만 제시되어 있어 다양한 기체의 차단 특성에 관해서는 알려진 바 없다(특허문헌 1).Various technical developments have been made in relation to the blocking characteristics of the gas and ion molecules of the graphene, and as a graphene lamination barrier film including at least one graphene laminate in which a hydrophilic graphene layer and a hydrophobic graphene layer are laminated, An attempt was made to prepare a graphene laminated film in which the thickness of the graphene layer was adjusted to 0.01 μm to 1,000 μm, and to apply it to food packaging using the barrier property. Since only data are presented, it is unknown about the blocking property of various gases (Patent Document 1).
또한, 복수개의 그래핀층 및 각각의 그래핀층 사이에 복수개의 고분자층을 포함하는 그래핀/고분자 복합 보호막도 공지되어 있으나, 역시 그래핀 복합막의 구조가 복잡하고 기체 및 수분 차단용으로 응용이 가능하다고 개시되어 있을 뿐, 기체 차단 특성에 관한 구체적인 결과가 개시되지 않아 실제 산업에 적용하는 데는 한계가 있다(특허문헌 2).In addition, although a graphene / polymer composite protective film including a plurality of graphene layers and a plurality of polymer layers between each graphene layer is also known, the structure of the graphene composite membrane is also complicated and applicable for gas and moisture blocking. Although it is only disclosed, the specific result regarding gas barrier property is not disclosed, and there exists a limit to apply to an actual industry (patent document 2).
그리고 고분자 매트릭스 및 300~2,600 m2/g의 표면적, 40~0.1 kg/m3의 벌크 밀도를 갖는 관능화 그래핀을 포함하는 기체 확산 배리어도 알려져 있는데, 관능화 그래핀의 표면적과 벌크 밀도를 제어한 것에 기술적 특징이 있는 것으로서 고분자 매트릭스 내에 관능화 그래핀이 분산되어 있는 형태의 후막이므로, 박막일 경우의 기체 차단 특성에 관해서는 그 결과를 예측하기 어렵고 실제로 기체 차단 특성에 대한 정량적 데이터로 입증되는 작용효과에 대해서도 구체적으로 언급된 바 없다(특허문헌 3).Also known are gas diffusion barriers comprising a polymeric matrix and functionalized graphene having a surface density of 300-2,600 m 2 / g and a bulk density of 40-0.1 kg / m 3. The surface area and bulk density of functionalized graphene are also known. The technical features of the control are thick films in which the functionalized graphene is dispersed in the polymer matrix, and thus the gas barrier properties in the case of thin films are difficult to predict and the results are proved by quantitative data on the gas barrier properties. There is no mention in particular about the effect which becomes (patent document 3).
또한, 용융 혼합, 용액 블렌딩 또는 동시 중합법에 의하여 그라파이트 옥사이드가 나노 필러로 열가소성 폴리우레탄에 함유된 그래핀/폴리우레탄 나노복합체와 그 기체 배리어 특성에 관한 연구도 공지되었는데, 열가소성 폴리우레탄에 필러로 함유된 그래핀의 함량에 따른 질소 기체의 배리어 특성을 밝힌 것이지만, 그래핀 옥사이드의 크기 및 그래핀 옥사이드 필름의 두께 조절에 따른 다양한 기체의 차단 특성에 관해서는 알려진바 없다(비특허문헌 1).In addition, graphene / polyurethane nanocomposites containing graphite oxide as a nanofiller in thermoplastic polyurethanes by melt mixing, solution blending, or co-polymerization have also been known. Although the barrier properties of nitrogen gas according to the amount of graphene contained are revealed, the barrier properties of various gases according to the size of the graphene oxide and the thickness of the graphene oxide film are not known (Non-Patent Document 1).
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
특허문헌 1. 한국공개특허 제10-2014-0015926호 Patent Document 1. Korean Patent Publication No. 10-2014-0015926
특허문헌 2. 한국공개특허 제10-2013-0001705호 Patent Document 2. Korea Patent Publication No. 10-2013-0001705
특허문헌 3. 미국공개특허 US 2010/0096595 Patent Documents 3. US published patent US 2010/0096595
[비특허문헌][Non-Patent Documents]
비특허문헌 1. Hyunwoo Kim et al., Chem. Mater. 22, 3441-3450(2010)[Non-Patent Document 1] Hyunwoo Kim et al., Chem. Mater. 22 , 3441-3450 (2010)
본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 본 발명의 목적은 지지체 위에 크기가 제어된 그래핀 옥사이드가 나노 두께의 박막으로 코팅되거나, 또는 그래핀 옥사이드가 고분자 중합체 내에 삽입된 단순한 구조를 가져도 다양한 기체의 차단 특성이 우수한 그래핀 옥사이드 나노복합막 및 그 제조방법을 제공하고자 하는 것이다.The present invention has been made in view of the above problems, and an object of the present invention is to provide a simple structure in which graphene oxide having a controlled size is coated with a nano-thick thin film, or graphene oxide is inserted into a polymer. It is to provide a graphene oxide nanocomposite membrane having excellent barrier properties of various gases and a method of manufacturing the same.
상기한 바와 같은 목적을 달성하기 위한 본 발명은 지지체; 및 상기 지지체 위에 3 ㎛~50 ㎛ 크기의 그래핀 옥사이드가 10 nm 이상의 두께로 코팅된 나노기공을 갖는 코팅층;을 포함하는 기체 차단성 그래핀 옥사이드 나노복합막을 제공한다.The present invention for achieving the above object is a support; And a coating layer having nanopores coated with a graphene oxide having a size of 3 μm to 50 μm on a thickness of 10 nm or more on the support.
상기 지지체는 고분자, 세라믹, 유리, 종이, 및 금속층으로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 한다.The support is characterized in that any one selected from the group consisting of polymers, ceramics, glass, paper, and metal layers.
상기 고분자는 폴리에스테르, 폴리올레핀, 폴리비닐클로라이드, 폴리우레탄, 폴리아크릴레이트, 폴리카보네이트, 폴리테트라플루오로에틸렌, 폴리술폰, 폴리에테르술폰, 폴리이미드, 폴리에테르이미드, 폴리아미드, 폴리아크릴로니트릴, 셀룰로오즈 아세테이트, 셀룰로오스 트리아세테이트, 및 폴리비닐리덴플루오라이드로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 한다.The polymer may be polyester, polyolefin, polyvinyl chloride, polyurethane, polyacrylate, polycarbonate, polytetrafluoroethylene, polysulfone, polyethersulfone, polyimide, polyetherimide, polyamide, polyacrylonitrile, It is characterized by any one selected from the group consisting of cellulose acetate, cellulose triacetate, and polyvinylidene fluoride.
상기 세라믹은 알루미나, 마그네시아, 지르코니아, 탄화규소, 탄화텅스텐, 및 질화규소로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 한다.The ceramic is characterized in that any one selected from the group consisting of alumina, magnesia, zirconia, silicon carbide, tungsten carbide, and silicon nitride.
상기 금속층은 금속 호일, 금속 시트 또는 금속 필름인 것을 특징으로 한다.The metal layer is characterized in that the metal foil, a metal sheet or a metal film.
상기 금속층의 물질은 구리, 니켈, 철, 알루미늄, 및 티타늄으로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 한다.The material of the metal layer is characterized in that any one selected from the group consisting of copper, nickel, iron, aluminum, and titanium.
상기 그래핀 옥사이드는 그래핀 옥사이드에 존재하는 히드록실기, 카르복실기, 카르보닐기, 또는 에폭시기가 에스테르기, 에테르기, 아미드기, 또는 아미노기로 전환된 관능화 그래핀 옥사이드인 것을 특징으로 한다.The graphene oxide is a functionalized graphene oxide characterized in that the hydroxyl group, carboxyl group, carbonyl group, or epoxy group present in the graphene oxide is converted to ester group, ether group, amide group, or amino group.
상기 나노기공은 평균직경이 0.5 nm~1.0 nm 범위의 것을 특징으로 한다.The nanopores are characterized in that the average diameter ranges from 0.5 nm to 1.0 nm.
상기 코팅층은 단일층 또는 복수층의 그래핀 옥사이드를 포함하는 것을 특징으로 한다.The coating layer is characterized in that it comprises a single layer or a plurality of graphene oxide.
상기 단일층의 그래핀 옥사이드는 그 두께가 0.6 nm~1 nm 범위의 것을 특징으로 한다.Graphene oxide of the single layer is characterized in that the thickness of 0.6 nm ~ 1 nm range.
또한, 본 발명은 폴리에틸렌글리콜 디아크릴레이트 또는 폴리에틸렌글리콜 디메타크릴레이트 중합체 내에 그래핀 옥사이드가 삽입된 구조의 기체 차단성 그래핀 옥사이드 나노복합막을 제공한다.The present invention also provides a gas barrier graphene oxide nanocomposite membrane having a structure in which graphene oxide is inserted into a polyethylene glycol diacrylate or polyethylene glycol dimethacrylate polymer.
상기 그래핀 옥사이드는 그 크기가 100~1000 nm인 것을 특징으로 한다.The graphene oxide is characterized in that the size of 100 ~ 1000 nm.
상기 나노복합막 내 그래핀 옥사이드의 함량은 5 중량% 이하인 것을 특징으로 한다.The content of graphene oxide in the nanocomposite film is characterized in that less than 5% by weight.
또한, 본 발명은 상기 기체 차단성 그래핀 옥사이드 나노복합막을 포함하는 디스플레이 소자를 제공한다.In addition, the present invention provides a display device including the gas barrier graphene oxide nanocomposite membrane.
또한, 본 발명은 상기 기체 차단성 그래핀 옥사이드 나노복합막을 포함하는 식품 포장지를 제공한다.In addition, the present invention provides a food wrapper comprising the gas barrier graphene oxide nanocomposite membrane.
또한, 본 발명은 상기 기체 차단성 그래핀 옥사이드 나노복합막을 포함하는 의약품 포장지를 제공한다. In addition, the present invention provides a pharmaceutical package containing the gas barrier graphene oxide nanocomposite membrane.
또한, 본 발명은 i) 그래핀 옥사이드를 증류수에 분산시키고 초음파 분쇄기로 0.1~6 시간 처리하여 그래핀 옥사이드 분산용액을 얻는 단계; ii) 상기 분산용액을 원심분리 하여 크기가 3 ㎛~50 ㎛로 조절된 그래핀 옥사이드를 형성하는 단계; iii) 상기 ii) 단계에서 형성된 그래핀 옥사이드를 다시 증류수에 분산시킨 용액을 얻는 단계; 및 iv) 상기 iii) 단계의 분산용액을 지지체 위에 코팅하여 나노기공을 갖는 코팅층을 형성하는 단계;를 포함하는 기체 차단성 그래핀 옥사이드 나노복합막의 제조방법을 제공한다.In addition, the present invention comprises the steps of i) dispersing the graphene oxide in distilled water and treating with an ultrasonic mill for 0.1 to 6 hours to obtain a graphene oxide dispersion solution; ii) centrifuging the dispersion solution to form graphene oxide having a size adjusted to 3 μm˜50 μm; iii) obtaining a solution in which the graphene oxide formed in step ii) is dispersed in distilled water again; And iv) coating the dispersion solution of step iii) on a support to form a coating layer having nanopores. The method of manufacturing a gas barrier graphene oxide nanocomposite membrane comprising the same.
상기 그래핀 옥사이드는 그래핀 옥사이드에 존재하는 히드록실기, 카르복실기, 카르보닐기, 또는 에폭시기가 에스테르기, 에테르기, 아미드기, 또는 아미노기로 전환된 관능화 그래핀 옥사이드인 것을 특징으로 한다.The graphene oxide is a functionalized graphene oxide characterized in that the hydroxyl group, carboxyl group, carbonyl group, or epoxy group present in the graphene oxide is converted to ester group, ether group, amide group, or amino group.
상기 지지체는 고분자, 세라믹, 유리, 종이, 및 금속층으로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 한다.The support is characterized in that any one selected from the group consisting of polymers, ceramics, glass, paper, and metal layers.
상기 고분자는 폴리에스테르, 폴리올레핀, 폴리비닐클로라이드, 폴리우레탄, 폴리아크릴레이트, 폴리카보네이트, 폴리테트라플루오로에틸렌, 폴리술폰, 폴리에테르술폰, 폴리이미드, 폴리에테르이미드, 폴리아미드, 폴리아크릴로니트릴, 셀룰로오즈 아세테이트, 셀룰로오스 트리아세테이트, 및 폴리비닐리덴플루오라이드로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 한다.The polymer may be polyester, polyolefin, polyvinyl chloride, polyurethane, polyacrylate, polycarbonate, polytetrafluoroethylene, polysulfone, polyethersulfone, polyimide, polyetherimide, polyamide, polyacrylonitrile, It is characterized by any one selected from the group consisting of cellulose acetate, cellulose triacetate, and polyvinylidene fluoride.
상기 세라믹은 알루미나, 마그네시아, 지르코니아, 탄화규소, 탄화텅스텐, 및 질화규소로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 한다.The ceramic is characterized in that any one selected from the group consisting of alumina, magnesia, zirconia, silicon carbide, tungsten carbide, and silicon nitride.
상기 금속층은 금속 호일, 금속 시트 또는 금속 필름인 것을 특징으로 한다.The metal layer is characterized in that the metal foil, a metal sheet or a metal film.
상기 금속층의 물질은 구리, 니켈, 철, 알루미늄, 및 티타늄으로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 한다.The material of the metal layer is characterized in that any one selected from the group consisting of copper, nickel, iron, aluminum, and titanium.
상기 코팅은 직접증발법, 전사법, 스핀 코팅법, 및 스프레이 코팅법으로 이루어진 군으로부터 선택된 어느 하나의 방법으로 수행되는 것을 특징으로 한다.The coating is characterized in that it is carried out by any one method selected from the group consisting of a direct evaporation method, a transfer method, a spin coating method, and a spray coating method.
상기 스핀 코팅은 3~10회 수행하는 것을 특징으로 한다.The spin coating is characterized in that it is performed 3 to 10 times.
상기 나노기공은 평균직경이 0.5 nm~1.0 nm 범위의 것을 특징으로 한다.The nanopores are characterized in that the average diameter ranges from 0.5 nm to 1.0 nm.
상기 코팅층은 단일층 또는 복수층의 그래핀 옥사이드를 포함하는 것을 특징으로 한다.The coating layer is characterized in that it comprises a single layer or a plurality of graphene oxide.
상기 단일층의 그래핀 옥사이드는 그 두께가 0.6 nm~1 nm 범위의 것을 특징으로 한다.Graphene oxide of the single layer is characterized in that the thickness of 0.6 nm ~ 1 nm range.
본 발명에 따라 제조된 그래핀 옥사이드 나노복합막에 따르면, 크기가 3 ㎛~50 ㎛로 조절된 그래핀 옥사이드가 다양한 지지체 위에 나노 두께의 박막으로 코팅되거나, 또는 그래핀 옥사이드가 고분자 중합체 내에 삽입된 단순한 구조를 가져도 다양한 기체의 차단 특성이 우수하여 디스플레이 소자, 식품 및 의약품 포장 등에 응용이 가능하다.According to the graphene oxide nanocomposite membrane prepared according to the present invention, graphene oxide having a size of 3 μm to 50 μm is coated with a thin film of nano-thickness on various supports, or graphene oxide is inserted into a polymer. Even with a simple structure, it is excellent in blocking properties of various gases, and thus can be applied to display devices, food and pharmaceutical packaging.
도 1은 그래핀 옥사이드 및 관능화 그래핀 옥사이드의 구조.1 is a structure of graphene oxide and functionalized graphene oxide.
도 2는 실시예 1에 따라 크기가 조절된 그래핀 옥사이드의 투과전자현미경(TEM) 사진.2 is a transmission electron microscope (TEM) photograph of graphene oxide scaled according to Example 1. FIG.
도 3은 실시예 1로부터 제조된 그래핀 옥사이드 나노복합막의 촬영 사진.Figure 3 is a photograph taken of the graphene oxide nanocomposite membrane prepared from Example 1.
도 4는 실시예 1에 따라 고분자 지지체(PES) 위에 코팅된 그래핀 옥사이드 필름의 단면을 촬영한 투과전자현미경(TEM) 사진.Figure 4 is a transmission electron microscope (TEM) photograph taken a cross section of the graphene oxide film coated on a polymer support (PES) according to Example 1.
도 5는 실시예 2로부터 제조된 그래핀 옥사이드의 함량에 따른 그래핀 옥사이드 나노복합막의 촬영 사진(그래핀 옥사이드 크기 : 270 nm)Figure 5 is a photograph of the graphene oxide nanocomposite according to the content of the graphene oxide prepared from Example 2 (graphene oxide size: 270 nm)
도 6은 실시예 2로부터 제조된 그래핀 옥사이드의 함량에 따른 그래핀 옥사이드 나노복합막의 주사전자현미경(SEM) 사진(그래핀 옥사이드 크기 : 270 nm).FIG. 6 is a scanning electron microscope (SEM) photograph (graphene oxide size: 270 nm) of graphene oxide nanocomposites according to the amount of graphene oxide prepared from Example 2. FIG.
도 7은 실시예 2로부터 제조된 그래핀 옥사이드의 크기에 따른 그래핀 옥사이드 나노복합막의 촬영 사진(그래핀 옥사이드 함량 : 4 중량%) Figure 7 is a photograph of the graphene oxide nanocomposite film according to the size of the graphene oxide prepared from Example 2 (graphene oxide content: 4% by weight)
도 8은 기체크로마토그래피가 장착된 일정압력/변압부피 측정장치의 구성도.8 is a configuration of a constant pressure / pressure volume measurement device equipped with gas chromatography.
도 9는 그래핀 옥사이드의 크기에 따른 초박막 그래핀 옥사이드 필름의 기체 차단 특성 및 기체투과 가능한 압력을 나타낸 그래프.Figure 9 is a graph showing the gas barrier properties and gas permeable pressure of the ultra-thin graphene oxide film according to the size of graphene oxide.
도 10은 통상의 진공여과법을 이용하여 제조된 두께가 약 5 ㎛인 그래핀 옥사이드 필름의 주사전자현미경(SEM) 사진.10 is a scanning electron microscope (SEM) photograph of a graphene oxide film having a thickness of about 5 μm prepared using a conventional vacuum filtration method.
도 11은 통상의 진공여과법을 이용하여 제조된 그래핀 옥사이드 필름의 그래핀 옥사이드 크기에 따른 다양한 기체 차단 특성을 나타낸 그래프.11 is a graph showing various gas barrier properties according to graphene oxide size of a graphene oxide film prepared using a conventional vacuum filtration method.
도 12는 그래핀 옥사이드의 크기와 그래핀 옥사이드 박막의 두께에 따른 이론적 기체 차단 특성을 나타낸 그래프.12 is a graph showing the theoretical gas barrier properties according to the size of the graphene oxide and the thickness of the graphene oxide thin film.
도 13은 실시예 2로부터 제조된 그래핀 옥사이드의 함량에 따른 그래핀 옥사이드 나노복합막의 산소 투과도 그래프(그래핀 옥사이드 크기 : 270 nm).FIG. 13 is a graph of oxygen permeability of graphene oxide nanocomposites according to the amount of graphene oxide prepared from Example 2 (graphene oxide size: 270 nm).
도 14는 실시예 2로부터 제조된 그래핀 옥사이드의 크기에 따른 그래핀 옥사이드 나노복합막의 산소 투과도 그래프(그래핀 옥사이드 함량 : 4 중량%).14 is a graph of oxygen permeability of graphene oxide nanocomposites according to the size of graphene oxide prepared from Example 2 (graphene oxide content: 4% by weight).
이하에서는 본 발명에 따른 다양한 지지체 위에 3 ㎛~50 ㎛ 크기의 그래핀 옥사이드가 10 nm 이상의 두께로 코팅된 그래핀 옥사이드 나노복합막 및 그 제조방법에 관하여 첨부된 도면과 함께 상세히 설명하기로 한다.Hereinafter, a graphene oxide nanocomposite film coated with a graphene oxide having a thickness of 3 μm to 50 μm and having a thickness of 10 nm or more on various supports according to the present invention will be described in detail with the accompanying drawings.
먼저, 지지체는 코팅층을 지지하는 보강재의 기능을 수행할 수 있는 것으로코팅층과 접촉하는 다양한 소재들이 가능한바, 그 지지체로서는 고분자, 세라믹, 유리, 종이, 및 금속층으로 이루어진 군으로부터 선택된 어느 하나의 것일 수 있다. 특히, 고분자로서는 폴리에스테르, 폴리올레핀, 폴리비닐클로라이드, 폴리우레탄, 폴리아크릴레이트, 폴리카보네이트, 폴리테트라플루오로에틸렌, 폴리술폰, 폴리에테르술폰, 폴리이미드, 폴리에테르이미드, 폴리아미드, 폴리아크릴로니트릴, 셀룰로오즈 아세테이트, 셀룰로오스 트리아세테이트, 및 폴리비닐리덴플루오라이드로 이루어진 군으로부터 선택된 어느 하나의 것을 제한 없이 사용할 수 있으며, 그 중에서도 폴리에테르술폰이 더욱 바람직하게 사용될 수 있으나, 이들에 한정되는 것은 아니다.First, the support may perform a function of a reinforcing material for supporting the coating layer, and various materials contacting the coating layer are possible, and the support may be any one selected from the group consisting of polymer, ceramic, glass, paper, and metal layers. have. In particular, as the polymer, polyester, polyolefin, polyvinyl chloride, polyurethane, polyacrylate, polycarbonate, polytetrafluoroethylene, polysulfone, polyether sulfone, polyimide, polyetherimide, polyamide, polyacrylonitrile Any one selected from the group consisting of cellulose acetate, cellulose triacetate, and polyvinylidene fluoride can be used without limitation, and among these, polyether sulfone may be more preferably used, but is not limited thereto.
또한, 세라믹 소재의 지지체로서는 알루미나, 마그네시아, 지르코니아, 탄화규소, 탄화텅스텐, 및 질화규소로 이루어진 군으로부터 선택된 어느 하나의 것을 사용하며, 알루미나 또는 탄화규소를 바람직하게 사용한다.As the support of the ceramic material, any one selected from the group consisting of alumina, magnesia, zirconia, silicon carbide, tungsten carbide, and silicon nitride is used, and alumina or silicon carbide is preferably used.
또한, 지지체를 금속층으로 구성할 경우에는 금속 호일, 금속 시트 또는 금속 필름 등 다양한 형태가 가능하며, 이러한 금속층의 물질은 구리, 니켈, 철, 알루미늄, 및 티타늄으로 이루어진 군으로부터 선택된 어느 하나의 것을 사용할 수 있다.In addition, when the support is composed of a metal layer, various forms such as a metal foil, a metal sheet, or a metal film are possible, and the material of the metal layer may be any one selected from the group consisting of copper, nickel, iron, aluminum, and titanium. Can be.
다음으로, 본 발명에 따라 상기 다양한 지지체 위에 3 ㎛~50 ㎛ 크기의 그래핀 옥사이드가 10 nm 이상의 두께로 코팅된 나노기공을 갖는 코팅층에 대하여 상세히 설명한다.  Next, according to the present invention will be described in detail with respect to the coating layer having a nano-pores coated with a graphene oxide of 3 ㎛ ~ 50 ㎛ size in a thickness of 10 nm or more on the various supports.
본 발명에 사용되는 그래핀 옥사이드는 산화제를 이용하여 그라파이트를 산화시킴으로써 대량으로 제조할 수 있는 것으로, 히드록실기, 카르복실기, 카르보닐기, 또는 에폭시기와 같은 친수성 작용기를 포함하고 있다. 현재 그래핀 옥사이드는 대부분 Hummers method[Hummers, W.S. & Offeman, R.E. Preparation of graphite oxide. J. Am. Chem. Soc. 80. 1339(1958)]에 의해 제조되거나 일부 변형된 Hummers method에 의해 제조되고 있는바, 본 발명에서도 Hummers method에 따라 그래핀 옥사이드를 얻었다. Graphene oxide used in the present invention can be produced in large quantities by oxidizing graphite using an oxidizing agent, and includes a hydrophilic functional group such as a hydroxyl group, a carboxyl group, a carbonyl group, or an epoxy group. Currently graphene oxide is mostly Hummers method [Hummers, WS & Offeman, RE Preparation of graphite oxide. J. Am. Chem. Soc. 80 . 1339 (1958) or by the Hummers method modified in part, bar graphene oxide was also obtained in accordance with the Hummers method in the present invention.
또한, 본 발명의 그래핀 옥사이드는 상기 그래핀 옥사이드에 존재하는 히드록실기, 카르복실기, 카르보닐기, 또는 에폭시기와 같은 친수성 작용기가 다른 화합물과 화학적으로 반응하여 에스테르기, 에테르기, 아미드기, 또는 아미노기로 전환된 관능화 그래핀 옥사이드를 사용할 수도 있다. 예를 들면, 그래핀 옥사이드의 카르복실기가 알코올과 반응하여 에스테르기로 전환된 것, 그래핀 옥사이드의 히드록실기가 알킬 할라이드와 반응하여 에테르기로 전환된 것, 그래핀 옥사이드의 카르복실기가 알킬 아민과 반응하여 아미드기로 전환된 것, 또는 그래핀 옥사이드의 에폭시기가 알킬 아민과 개환반응에 의하여 아미노기로 전환된 것 등이 있다.In addition, the graphene oxide of the present invention is a hydroxyl group, a carboxyl group, a carbonyl group, or a hydrophilic functional group such as an epoxy group present in the graphene oxide chemically reacts with other compounds to ester group, ether group, amide group, or amino group It is also possible to use converted functionalized graphene oxide. For example, the carboxyl group of graphene oxide is converted into an ester group by reaction with an alcohol, the hydroxyl group of graphene oxide is converted to an ether group by reaction with an alkyl halide, and the carboxyl group of graphene oxide is reacted with an alkyl amine. Converted to an amide group, or an epoxy group of graphene oxide is converted to an amino group by an alkyl amine ring-opening reaction.
이러한 그래핀 옥사이드의 크기와 관련하여서는 일반적으로 그 크기가 클수록 기체에 대한 배리어 특성을 갖게 되고, 50 ㎛ 미만인 경우에는 배리어 특성과는 반대로 오히려 기체투과 특성을 나타내는 경향이 있지만, 본 발명에서는 그래핀 옥사이드의 크기를 50 ㎛ 미만으로 조절하여도 그래핀 옥사이드 코팅층의 두께를 함께 조절함으로써 기체에 대한 배리어 특성을 향상시킬 수 있으므로, 그래핀 옥사이드의 크기는 최대 50 ㎛로 조절한다. 다만, 그래핀 옥사이드의 크기가 너무 작은 경우에는 분자 크기가 각각 다른 다양한 기체에 대한 배리어 특성을 유지하기 어려운 점이 있는바, 그 크기를 최소 3 ㎛로 조절하여야 한다. 즉, 본 발명에 따른 그래핀 옥사이드 박막이 분자 크기가 다양한 기체에 대한 우수한 배리어 특성을 나타내기 위해서는 그래핀 옥사이드의 크기를 3 ㎛~50 ㎛ 범위에서 제어하는 것이 바람직하며, 특히 3 ㎛~10 ㎛ 범위의 것이 그래핀 옥사이드가 초박막으로 형성되어도 우수한 기체 차단 특성을 나타내므로 더욱 바람직하다. 도 1에는 그라파이트로부터 Hummers method에 의해 얻어지는 그래핀 옥사이드, 그래핀 옥사이드가 다른 화합물과 반응하여 생성되는 관능화 그래핀 옥사이드의 구조를 나타내었다.In relation to the size of the graphene oxide in general, the larger the size has a barrier property to the gas, if less than 50 ㎛ tends to show the gas permeation characteristics, as opposed to the barrier properties, in the present invention, graphene oxide Since the barrier properties to the gas can be improved by adjusting the thickness of the graphene oxide coating layer even when the size of the graphene oxide is less than 50 μm, the size of the graphene oxide is adjusted to a maximum of 50 μm. However, when the size of graphene oxide is too small, it is difficult to maintain barrier properties for various gases having different molecular sizes, and thus the size of the graphene oxide should be adjusted to at least 3 μm. That is, in order for the graphene oxide thin film according to the present invention to exhibit excellent barrier properties for gases having various molecular sizes, it is preferable to control the size of graphene oxide in the range of 3 μm to 50 μm, in particular, 3 μm to 10 μm. The range is more preferable because graphene oxide exhibits excellent gas barrier properties even when formed into an ultra-thin film. Figure 1 shows the structure of the graphene oxide obtained by the Hummers method from graphite, the functionalized graphene oxide produced by the reaction of the graphene oxide with other compounds.
한편, 본 발명에 따르면 다양한 지지체 위에 형성되는 그래핀 옥사이드 코팅층은 단일층 또는 복수층의 그래핀 옥사이드를 포함하는 것으로서, 상기 단일층의 그래핀 옥사이드는 그 두께가 0.6 nm~1 nm 범위의 것이다. 또한, 단일층의 그래핀 옥사이드가 적층되어 복수층의 그래핀 옥사이드를 형성할 수도 있는데, 그래핀 옥사이드의 층간 거리는 약 0.34 nm~0.5 nm 정도로 작아 결정입계면(grain boundary) 사이에 추가적인 이동 경로가 발생하며, 결정입계면 틈새의 기공 및 채널 크기를 조정함으로써 분자 크기가 다양한 기체에 대한 배리어 특성을 향상시키는 것이 가능하므로, 상기 그래핀 옥사이드 코팅층은 복수층의 적층된 그래핀 옥사이드를 포함하는 것이 더욱 바람직하다.Meanwhile, according to the present invention, the graphene oxide coating layer formed on various supports includes a single layer or a plurality of layers of graphene oxide, and the graphene oxide of the single layer has a thickness in the range of 0.6 nm to 1 nm. In addition, a single layer of graphene oxide may be stacked to form a plurality of layers of graphene oxide, wherein the interlayer distance of the graphene oxide is about 0.34 nm to 0.5 nm, so that an additional path of movement between grain boundaries is generated. It is possible to improve the barrier properties for gases having various molecular sizes by adjusting the pore size and channel size of the grain boundary gap, the graphene oxide coating layer more preferably comprises a plurality of laminated graphene oxide. desirable.
상기 그래핀 옥사이드 코팅층은 그 두께가 두꺼워지면 기체 차단 특성이 향상되는 것은 당연한 결과라 하겠으되, 본 발명에서는 앞서 언급한 것처럼 그래핀 옥사이드의 크기를 3 ㎛~50 ㎛ 범위로 제어하면, 그래핀 옥사이드 코팅층의 두께가 최소 10 nm인 초박막으로 형성되더라도 기체 차단 특성이 우수한 효과를 나타낼 수 있으므로, 그래핀 옥사이드 코팅층의 두께는 10 nm 이상인 것이 바람직하다. 게다가 이러한 그래핀 옥사이드 코팅층은 평균직경이 0.5 nm~1.0 nm 범위의 나노기공을 형성한다.When the graphene oxide coating layer is thick, it is a natural result that the gas barrier property is improved, but in the present invention, as described above, when the size of the graphene oxide is controlled in the range of 3 μm to 50 μm, the graphene oxide Even if the thickness of the coating layer is formed as an ultra-thin film of at least 10 nm, since the gas barrier properties can exhibit an excellent effect, the thickness of the graphene oxide coating layer is preferably 10 nm or more. In addition, the graphene oxide coating layer forms nanopores with an average diameter in the range of 0.5 nm to 1.0 nm.
또한, 본 발명은 상술한 바와 같이 고분자 소재의 지지체를 비롯한 다양한 지지체 위에 그래핀 옥사이드를 코팅한 기체 차단성 그래핀 옥사이드 나노복합막 이외에, 폴리에틸렌글리콜 디아크릴레이트 또는 폴리에틸렌글리콜 디메타크릴레이트 중합체 내에 그래핀 옥사이드가 삽입된 구조의 기체 차단성 그래핀 옥사이드 나노복합막을 제공한다.In addition, the present invention, in addition to the gas barrier graphene oxide nanocomposite membrane coated with graphene oxide on a variety of supports, including the support of the polymer material as described above, in the polyethylene glycol diacrylate or polyethylene glycol dimethacrylate polymer Provided is a gas barrier graphene oxide nanocomposite membrane having a pin oxide-inserted structure.
즉, 말단에 탄소-탄소 이중결합을 갖는 상기 폴리에틸렌글리콜 디아크릴레이트 또는 폴리에틸렌글리콜 디메타크릴레이트 마크로머를 고분자로 중합 및 가교구조를 형성하는 과정에서 일종의 충전제로서 그래핀 옥사이드가 중합체 내에 삽입됨으로써 기체 차단 효과를 더욱 향상시키는 것이다. 이때, 상기 폴리에틸렌글리콜 디아크릴레이트 또는 폴리에틸렌글리콜 디메타크릴레이트 마크로머의 수평균분자량(Mn)은 250~1000 범위의 것이 중합반응, 특히 광개시제를 사용한 자외선(UV) 중합반응 및 가교구조의 형성에 적합하다.That is, in the process of polymerizing the polyethylene glycol diacrylate or polyethylene glycol dimethacrylate macromer having a carbon-carbon double bond at the terminal with a polymer and forming a crosslinked structure, graphene oxide is inserted into the polymer as a filler to form a gas. It is to further improve the blocking effect. At this time, the number average molecular weight (Mn) of the polyethylene glycol diacrylate or polyethylene glycol dimethacrylate macromer is in the range of 250 to 1000 in the polymerization reaction, in particular in the ultraviolet (UV) polymerization reaction using a photoinitiator and the formation of a crosslinked structure. Suitable.
또한, 상기 그래핀 옥사이드는 크기가 100~1000 nm 범위의 것이 바람직한데, 그래핀 옥사이드의 크기가 100 nm 미만이면 기체 차단성이 떨어질 수 있고, 그 크기가 1000 nm를 초과하면 가교구조의 폴리에틸렌글리콜 디아크릴레이트 또는 폴리에틸렌글리콜 디메타크릴레이트 중합체 내에 균일하게 분산 및 삽입되기 어려울 수 있다.In addition, the graphene oxide is preferably in the size range of 100 ~ 1000 nm, if the size of the graphene oxide is less than 100 nm gas barrier properties may fall, if the size exceeds 1000 nm cross-linked polyethylene glycol It may be difficult to uniformly disperse and insert into the diacrylate or polyethyleneglycol dimethacrylate polymer.
그리고 상기 폴리에틸렌글리콜 디아크릴레이트 또는 폴리에틸렌글리콜 디메타크릴레이트 중합체 내에 그래핀 옥사이드가 삽입된 구조의 기체 차단성 그래핀 옥사이드 나노복합막 내 그래핀 옥사이드의 함량이 5 중량% 이하이면 기체투과도의 감소 효과를 극대화할 수 있어 바람직하다. In addition, when the content of graphene oxide in the gas barrier graphene oxide nanocomposite membrane having a structure in which graphene oxide is inserted in the polyethylene glycol diacrylate or polyethylene glycol dimethacrylate polymer is 5% by weight or less, the gas permeability is reduced. It is desirable to maximize the.
또한, 본 발명은 i) 그래핀 옥사이드를 증류수에 분산시키고 초음파 분쇄기로 0.1~6 시간 처리하여 그래핀 옥사이드 분산용액을 얻는 단계; ii) 상기 분산용액을 원심분리 하여 크기가 3 ㎛~50 ㎛로 조절된 그래핀 옥사이드를 형성하는 단계; iii) 상기 ii) 단계에서 형성된 그래핀 옥사이드를 다시 증류수에 분산시킨 용액을 얻는 단계; 및 iv) 상기 iii) 단계의 분산용액을 지지체 위에 코팅하여 나노기공을 갖는 코팅층을 형성하는 단계;를 포함하는 기체 차단성 그래핀 옥사이드 나노복합막의 제조방법을 제공한다.In addition, the present invention comprises the steps of i) dispersing the graphene oxide in distilled water and treating with an ultrasonic mill for 0.1 to 6 hours to obtain a graphene oxide dispersion solution; ii) centrifuging the dispersion solution to form graphene oxide having a size adjusted to 3 μm˜50 μm; iii) obtaining a solution in which the graphene oxide formed in step ii) is dispersed in distilled water again; And iv) coating the dispersion solution of step iii) on a support to form a coating layer having nanopores. The method of manufacturing a gas barrier graphene oxide nanocomposite membrane comprising the same.
상기 i) 단계의 그래핀 옥사이드는 그래핀 옥사이드에 존재하는 히드록실기, 카르복실기, 카르보닐기, 또는 에폭시기가 에스테르기, 에테르기, 아미드기, 또는 아미노기로 전환된 관능화 그래핀 옥사이드일 수도 있다.The graphene oxide of step i) may be a functionalized graphene oxide in which a hydroxyl group, a carboxyl group, a carbonyl group, or an epoxy group present in the graphene oxide is converted to an ester group, an ether group, an amide group, or an amino group.
그리고 상기 i) 단계에서는 그래핀 옥사이드를 증류수에 분산시켜 초음파 분쇄기로 0.1~6 시간 처리함으로써 분산용액 내 그래핀 옥사이드의 분산성을 향상시킬 수 있다. 또한, 상기 iii) 단계에서 얻어지는 분산용액은 1M 수산화나트륨 수용액을 사용하여 pH를 10.0으로 조절한 0.01~0.5 중량%의 그래핀 옥사이드 수용액으로서, 그래핀 옥사이드 수용액의 농도가 0.01 중량% 미만이면 균일한 코팅층을 얻기 어렵고, 그 농도가 0.5 중량%를 초과하면 점도가 너무 높아 원활한 코팅을 수행할 수 없는 문제가 발생하므로, 그래핀 옥사이드 수용액의 농도는 0.01~0.5 중량%가 바람직하다.In the step i), the graphene oxide may be dispersed in distilled water and treated with an ultrasonic grinder for 0.1 to 6 hours to improve dispersibility of graphene oxide in the dispersion solution. In addition, the dispersion solution obtained in step iii) is a 0.01 to 0.5% by weight aqueous solution of graphene oxide adjusted to pH 10.0 using 1M aqueous sodium hydroxide solution, it is uniform if the concentration of the aqueous solution of graphene oxide is less than 0.01% by weight It is difficult to obtain a coating layer, and if the concentration is more than 0.5% by weight, the viscosity is too high, so a problem that a smooth coating can not be performed, the concentration of the graphene oxide aqueous solution is preferably 0.01 to 0.5% by weight.
또한, 상기 iv) 단계의 지지체는 코팅층을 지지하는 보강재의 기능을 수행할 수 있는 것으로 코팅층과 접촉하는 다양한 소재들이 가능한바, 그 지지체로서는 고분자, 세라믹, 유리, 종이, 및 금속층으로 이루어진 군으로부터 선택된 어느 하나의 것일 수 있다. 특히, 고분자로서는 폴리에스테르, 폴리올레핀, 폴리비닐클로라이드, 폴리우레탄, 폴리아크릴레이트, 폴리카보네이트, 폴리테트라플루오로에틸렌, 폴리술폰, 폴리에테르술폰, 폴리이미드, 폴리에테르이미드, 폴리아미드, 폴리아크릴로니트릴, 셀룰로오즈 아세테이트, 셀룰로오스 트리아세테이트, 및 폴리비닐리덴플루오라이드로 이루어진 군으로부터 선택된 어느 하나의 것을 제한 없이 사용할 수 있으며, 그 중에서도 폴리에테르술폰이 더욱 바람직하게 사용될 수 있으나, 이들에 한정되는 것은 아니다.In addition, the support of step iv) is capable of performing the function of the reinforcing material for supporting the coating layer is possible various materials in contact with the coating layer, the support is selected from the group consisting of polymer, ceramic, glass, paper, and metal layer It may be either one. In particular, as the polymer, polyester, polyolefin, polyvinyl chloride, polyurethane, polyacrylate, polycarbonate, polytetrafluoroethylene, polysulfone, polyether sulfone, polyimide, polyetherimide, polyamide, polyacrylonitrile Any one selected from the group consisting of cellulose acetate, cellulose triacetate, and polyvinylidene fluoride can be used without limitation, and among these, polyether sulfone may be more preferably used, but is not limited thereto.
또한, 세라믹 소재의 지지체로서는 알루미나, 마그네시아, 지르코니아, 탄화규소, 탄화텅스텐, 및 질화규소로 이루어진 군으로부터 선택된 어느 하나의 것을 사용하며, 알루미나 또는 탄화규소를 바람직하게 사용한다.As the support of the ceramic material, any one selected from the group consisting of alumina, magnesia, zirconia, silicon carbide, tungsten carbide, and silicon nitride is used, and alumina or silicon carbide is preferably used.
또한, 지지체를 금속층으로 구성할 경우에는 금속 호일, 금속 시트 또는 금속 필름 등 다양한 형태가 가능하며, 이러한 금속층의 물질은 구리, 니켈, 철, 알루미늄, 및 티타늄으로 이루어진 군으로부터 선택된 어느 하나의 것을 사용할 수 있다.In addition, when the support is composed of a metal layer, various forms such as a metal foil, a metal sheet, or a metal film are possible, and the material of the metal layer may be any one selected from the group consisting of copper, nickel, iron, aluminum, and titanium. Can be.
상기 iv) 단계에서 코팅층을 형성함에 있어서는 공지의 코팅법이라면 어느 것이나 제한 없이 이용할 수 있으나, 직접증발법, 전사법, 스핀 코팅법, 및 스프레이 코팅법으로 이루어진 군으로부터 선택된 어느 하나의 방법으로 수행하는 것이 바람직하며, 그 중에서도 스핀 코팅법이 간편하게 균일한 코팅층을 얻을 수 있어 더욱 바람직하다.In forming the coating layer in step iv), any known coating method may be used without limitation, but may be performed by any one method selected from the group consisting of a direct evaporation method, a transfer method, a spin coating method, and a spray coating method. It is preferable that a uniform coating layer can be obtained simply, and spin coating method is especially preferable.
상기 스핀 코팅은 3~10회 수행하는 것이 바람직한데, 스핀 코팅을 3회 미만으로 수행하면 기체 차단층으로서의 기능을 기대하기 어렵고, 10회 이상 스핀 코팅을 수행하면 코팅층의 두께가 너무 두꺼워지게 되어 균일한 코팅층을 얻기 어려운 단점이 있다.The spin coating is preferably performed 3 to 10 times. If the spin coating is performed less than 3 times, it is difficult to expect a function as a gas barrier layer. If the spin coating is performed 10 times or more, the thickness of the coating layer becomes too thick. There is a disadvantage that it is difficult to obtain one coating layer.
상기 iv) 단계에서 코팅층은 단일층 또는 복수층의 그래핀 옥사이드를 포함할 수 있으며, 상기 단일층의 그래핀 옥사이드는 그 두께가 0.6 nm~1 nm 범위의 것으로서, 이러한 그래핀 옥사이드 코팅층은 평균직경이 0.5 nm~1.0 nm 범위의 나노기공을 형성한다.In step iv), the coating layer may include a single layer or a plurality of layers of graphene oxide, and the graphene oxide of the single layer has a thickness in the range of 0.6 nm to 1 nm, and the graphene oxide coating layer has an average diameter. The nanopores in the range of 0.5 nm to 1.0 nm are formed.
이하 구체적인 실시예를 상세히 설명한다.Hereinafter, specific embodiments will be described in detail.
(실시예 1)(Example 1)
Hummers method에 의하여 제조된 그래핀 옥사이드를 증류수에 분산시키고 초음파 분쇄기로 3시간 처리하여 그래핀 옥사이드 분산용액을 얻었다. 상기 분산용액을 원심분리 하여 크기가 3 ㎛로 조절된 그래핀 옥사이드를 형성한 후, 다시 증류수에 분산시켜 1M 수산화나트륨 수용액을 사용하여 pH를 10.0으로 조절한 0.1 중량% 농도의 그래핀 옥사이드 수용액을 얻었다. 상기 그래핀 옥사이드 수용액 1mL를 다공성 폴리에테르술폰(PES) 지지체 위에 5회 스핀 코팅하여 10 nm 두께의 그래핀 옥사이드 코팅층을 형성한 그래핀 옥사이드 나노복합막을 제조하였다.Graphene oxide prepared by the Hummers method was dispersed in distilled water and treated with an ultrasonic mill for 3 hours to obtain a graphene oxide dispersion solution. Centrifuge the dispersion solution After forming the graphene oxide adjusted to 3 ㎛ and dispersed in distilled water again to obtain a 0.1 wt% aqueous solution of graphene oxide adjusted to pH 10.0 using 1M aqueous sodium hydroxide solution. 1 mL of the graphene oxide aqueous solution was spin-coated five times on a porous polyether sulfone (PES) support to prepare a graphene oxide nanocomposite membrane having a graphene oxide coating layer having a thickness of 10 nm.
(실시예 2)(Example 2)
폴리에틸렌글리콜 디아크릴레이트(PEGDA) 마크로머(수평균분자량 250)와 탈이온수를 7:3(중량비)의 비율로 혼합한 후 12시간 교반하여 균일한 용액을 얻었다. 상기 용액에 Hummers method에 의하여 제조된 그래핀 옥사이드를 PEGDA 마크로머 대비 1 중량% 및 광개시제로서 1-히드록시사이클로헥실 페닐 케톤을 0.1 중량% 첨가하여 2시간 동안 초음파 처리한 다음, 24시간 동안 교반하여 전구체 용액을 얻었다. 상기 전구체 용액을 유리판에 캐스팅한 후, 질소 분위기 하에서 312 nm UV를 5분 동안 조사하여 그래핀 옥사이드 나노복합막을 제조하였다(이때, 그래핀 옥사이드는 그 크기가 270 nm, 800 nm인 것을 사용하였고, 그 함량도 PEGDA 마크로머 대비 1, 2, 3, 4 중량%로 변화시켜 제조하였다). Polyethylene glycol diacrylate (PEGDA) macromer (number average molecular weight 250) and deionized water were mixed at a ratio of 7: 3 (weight ratio), followed by stirring for 12 hours to obtain a uniform solution. The graphene oxide prepared by the Hummers method was added to the solution by 1% by weight of PEGDA macromer and 0.1% by weight of 1-hydroxycyclohexyl phenyl ketone as a photoinitiator, sonicated for 2 hours, and then stirred for 24 hours. A precursor solution was obtained. After casting the precursor solution on a glass plate, a graphene oxide nanocomposite film was prepared by irradiating 312 nm UV for 5 minutes under a nitrogen atmosphere (in this case, graphene oxide was used having a size of 270 nm and 800 nm, The content was also changed to 1, 2, 3, 4% by weight based on PEGDA macromer).
(시험예)(Test example)
실시예 1, 2로부터 제조된 그래핀 옥사이드 나노복합막의 기체 차단 특성을 기체크로마토그래피가 장착된 일정압력/변압부피 측정장치로 측정하였다.The gas barrier properties of the graphene oxide nanocomposite membranes prepared in Examples 1 and 2 were measured by a constant pressure / transformation volume measurement device equipped with gas chromatography.
도 2는 본 발명의 실시예에 따라 그래핀 옥사이드 분산용액을 원심분리 한 후 얻어지는 그래핀 옥사이드의 투과전자현미경(TEM) 사진을 나타낸 것으로, 그 크기가 3 ㎛ 정도로 조절된 것을 알 수 있다.Figure 2 shows a transmission electron microscope (TEM) of the graphene oxide obtained after centrifugation of the graphene oxide dispersion solution according to an embodiment of the present invention, it can be seen that the size is adjusted to about 3 ㎛.
도 3의 카메라 촬영 사진으로부터는 실시예에 따라 제조된 그래핀 옥사이드 나노복합막은 폴리에테르술폰 지지체 위에 그래핀 옥사이드 코팅층을 형성하고 있음을 알 수 있다.It can be seen from the camera photograph of FIG. 3 that the graphene oxide nanocomposite film prepared according to the embodiment forms a graphene oxide coating layer on the polyether sulfone support.
도 4는 본 발명의 실시예에 따라 다공성 폴리에테르술폰(PES) 지지체 위에 10 nm 두께로 코팅된 그래핀 옥사이드 필름의 단면을 촬영한 투과전자현미경(TEM) 사진으로서 결함 없이 그래핀 옥사이드가 균일하게 적층되어 있음을 알 수 있다.4 is a transmission electron microscope (TEM) image of a cross-section of a graphene oxide film coated with a 10 nm thickness on a porous polyether sulfone (PES) support according to an embodiment of the present invention, graphene oxide uniformly without defects It can be seen that it is laminated.
한편, 도 5의 실시예 2로부터 제조된 그래핀 옥사이드의 함량에 따른 그래핀 옥사이드 나노복합막의 촬영 사진(그래핀 옥사이드 크기 : 270 nm)으로부터 그래핀 옥사이드 함량이 증가할수록 더 짙은 색을 나타냄을 확인할 수 있어, 그래핀 옥사이드 함량이 증가하면서도 가교구조의 PEGDA 중합체 내에 그래핀 옥사이드가 균일하게 분산 및 삽입되어 있음을 알 수 있다. On the other hand, the graphene oxide nanocomposite according to the content of the graphene oxide prepared from Example 2 of Figure 5 (graphene oxide size: 270 nm) from the graphene oxide content increases as the graphene oxide content increases to confirm that the darker color It can be seen that the graphene oxide is uniformly dispersed and inserted in the crosslinked PEGDA polymer while increasing the graphene oxide content.
또한, 도 6에는 실시예 2로부터 제조된 그래핀 옥사이드의 함량에 따른 그래핀 옥사이드 나노복합막의 주사전자현미경(SEM) 사진(그래핀 옥사이드 크기 : 270 nm)을 나타내었는바, 그래핀 옥사이드가 함유되지 않은 PEGDA 중합체(pristine PEG) 막의 경우에는 표면이 매끈한 반면, 그래핀 옥사이드가 함유된 복합막(GO 2 중량%, GO 4 중량%)에서는 그래핀 옥사이드에 의한 층상구조의 형태를 확인할 수 있다. In addition, Figure 6 shows a scanning electron microscope (SEM) picture (graphene oxide size: 270 nm) of the graphene oxide nanocomposite according to the content of the graphene oxide prepared from Example 2, containing graphene oxide In the case of non-PEDDA polymer (pristine PEG) film, the surface is smooth, whereas in the composite film containing graphene oxide (GO 2% by weight, GO 4% by weight) it can be confirmed the layered structure of the graphene oxide.
게다가 도 7에는 실시예 2로부터 제조된 그래핀 옥사이드의 크기에 따른 그래핀 옥사이드 나노복합막의 촬영 사진(그래핀 옥사이드 함량 : 4 중량%)을 나타내었는바, 그래핀 옥사이드의 크기가 270 nm에서 800 nm로 증가하여도 가교구조의 PEGDA 중합체 내에 그래핀 옥사이드가 균일하게 분산 및 삽입되어 있음을 알 수 있다.In addition, Fig. 7 shows a photograph (graphene oxide content: 4% by weight) of the graphene oxide nanocomposite according to the size of the graphene oxide prepared from Example 2, the size of the graphene oxide 800 at 270 nm Even with increasing nm, it can be seen that graphene oxide is uniformly dispersed and inserted in the crosslinked PEGDA polymer.
또한, 본 발명에 따른 그래핀 옥사이드 필름의 기체 차단 특성을 도 8에 나타낸 바와 같은 기체크로마토그래피가 장착된 일정압력/변압부피 측정 장치를 이용하여 평가하였는바, 도 9로부터 그래핀 옥사이드의 크기가 증가할수록 기체가 투과하기 시작하는 압력이 점차 증가하는 것을 확인할 수 있으며, 특히 3.0 ㎛(=3000 nm)의 크기를 갖는 그래핀 옥사이드를 사용하여 박막 필름을 제조하였을 경우 상대적으로 높은 압력 (180 mbar)을 가하여도 기체가 전혀 투과하지 못하는 것을 알 수 있다.In addition, the gas barrier properties of the graphene oxide film according to the present invention was evaluated using a gas pressure chromatography-constant pressure / transformation volume measuring apparatus as shown in FIG. It can be seen that the pressure at which gas starts to penetrate gradually increases, especially when a thin film is manufactured using graphene oxide having a size of 3.0 μm (= 3000 nm), and relatively high pressure (180 mbar) It can be seen that the gas does not penetrate at all even if it is added.
한편, 지지체의 유무에 따른 그래핀 옥사이드 박막 필름의 기체 차단 특성에 영향을 미치는 그래핀 옥사이드의 크기와 그래핀 옥사이드 박막 필름의 두께를 알아보기 위하여 통상의 진공여과법으로 지지체가 없는 그래핀 옥사이드 필름을 제조하였다. 도 10은 통상의 진공여과법으로 제조된 두께가 약 5 ㎛인 그래핀 옥사이드 필름의 주사전자현미경 사진으로서 2차원 구조인 그래핀 옥사이드가 빈틈없이 적층된 것을 알 수 있다.On the other hand, in order to determine the size of the graphene oxide and the thickness of the graphene oxide thin film to affect the gas barrier properties of the graphene oxide thin film according to the presence or absence of the support, a graphene oxide film without a support using a conventional vacuum filtration method Prepared. 10 is a scanning electron micrograph of a graphene oxide film having a thickness of about 5 μm manufactured by a conventional vacuum filtration method, and it can be seen that graphene oxide having a two-dimensional structure is stacked without gaps.
또한, 도 11은 통상의 진공여과법으로 지지체가 없는 그래핀 옥사이드 필름을 제조하되, 그래핀 옥사이드가 특정 크기 (0.5, 1.0, 및 5.0 ㎛)를 갖도록 제어한 그래핀 옥사이드 필름의 기체 차단 특성을 나타낸 것으로서, 그래핀 옥사이드의 크기가 증가할수록 기체 투과특성에서 차단 특성으로 변하는 것을 알 수 있으며, 특히 그래핀 옥사이드의 크기가 3.0 ㎛ 이상에서 우수한 기체 차단특성을 갖는 것을 확인할 수 있어, 지지체가 없어도 그래핀 옥사이드의 크기를 제어함으로써 기체 차단 특성을 향상시킬 수 있는 것이다.In addition, FIG. 11 shows a gas barrier property of a graphene oxide film prepared by preparing a graphene oxide film without a support by a conventional vacuum filtration method, and controlling the graphene oxide to have a specific size (0.5, 1.0, and 5.0 μm). As the size of the graphene oxide increases, it can be seen that the gas permeation characteristics are changed to the barrier properties, and in particular, the size of the graphene oxide can be confirmed to have excellent gas barrier properties at 3.0 μm or more. By controlling the size of the oxide it is possible to improve the gas barrier properties.
아울러 도 12는 다양한 크기의 그래핀 옥사이드의 필름의 같은 두께에서의 기체투과 채널길이를 이론적으로 계산한 그래프로서, 같은 두께에서 그래핀 옥사이드의 크기가 커질수록 기체투과 채널길이가 점차 증가하는 것을 확인할 수 있으며, 특정한 크기(3.0 ㎛)를 갖는 그래핀 옥사이드를 사용하여 필름을 제조하였을 경우 기체투과 채널길이가 크기 증가하여 우수한 차단 특성을 나타냄을 알 수 있는바, 본 발명에 따른 시험예의 측정결과와 일치함을 보여주고 있다.12 is a graph of theoretically calculating the gas permeation channel length at the same thickness of the film of graphene oxide of various sizes, confirming that the gas permeation channel length gradually increases as the size of the graphene oxide increases at the same thickness. When the film is manufactured using graphene oxide having a specific size (3.0 μm), it can be seen that the gas permeation channel length increases to show excellent blocking characteristics. It shows a match.
또한, 도 13에는 실시예 2로부터 제조된 그래핀 옥사이드의 함량에 따른 그래핀 옥사이드 나노복합막의 산소 투과도 그래프(그래핀 옥사이드 크기 : 270 nm)를 나타내었는바, 그래핀 옥사이드의 함량이 증가할수록 산소투과도가 점차 감소함을 알 수 있고, 특히 그래핀 옥사이드 나노복합막 내 그래핀 옥사이드의 함량이 4 중량%인 경우에는 그래핀 옥사이드가 함유되지 않은 PEGDA 중합체(pristine PEG) 막에 비하여 산소 투과도가 83%까지 감소함을 확인할 수 있다.In addition, FIG. 13 shows a graph of oxygen permeability (graphene oxide size: 270 nm) of graphene oxide nanocomposites according to the content of graphene oxide prepared from Example 2, and as the content of graphene oxide increases, oxygen It can be seen that the permeability gradually decreases, and in particular, when the content of graphene oxide in the graphene oxide nanocomposite film is 4% by weight, the oxygen permeability is 83 compared to that of the PEGDA polymer containing no graphene oxide. It can be seen that the percentage decreases.
또한, 도 14에는 실시예 2로부터 제조된 그래핀 옥사이드의 크기에 따른 그래핀 옥사이드 나노복합막의 산소 투과도 그래프(그래핀 옥사이드 함량 : 4 중량%)를 나타내었는바, 그래핀 옥사이드의 크기가 증가할수록 기체 차단성이 향상됨을 알 수 있고, 특히 그래핀 옥사이드 나노복합막 내 삽입되는 그래핀 옥사이드의 크기가 800 nm인 경우에는 그래핀 옥사이드가 함유되지 않은 PEGDA 중합체(pristine PEG) 막에 비하여 산소 투과도가 90%까지 감소함을 확인할 수 있다. In addition, FIG. 14 shows a graph of oxygen permeability (graphene oxide content: 4 wt%) of graphene oxide nanocomposite membrane according to the size of graphene oxide prepared from Example 2, as graphene oxide increases in size. It can be seen that the gas barrier property is improved, and in particular, when the size of the graphene oxide inserted into the graphene oxide nanocomposite membrane is 800 nm, the oxygen permeability is higher than that of the PEGDA polymer containing no graphene oxide. It can be seen that the reduction by 90%.
따라서 본 발명에 따라 제조된 그래핀 옥사이드 나노복합막에 따르면, 크기가 3 ㎛~50 ㎛로 조절된 그래핀 옥사이드가 다양한 지지체 위에 나노 두께의 박막으로 코팅되거나, 또는 그래핀 옥사이드가 고분자 중합체 내에 삽입된 단순한 구조를 가져도 다양한 기체의 차단 특성이 우수하여 디스플레이 소자, 식품 및 의약품 포장 등에 응용이 가능하다.Therefore, according to the graphene oxide nanocomposite membrane prepared according to the present invention, the graphene oxide adjusted to a size of 3 ㎛ ~ 50 ㎛ is coated with a thin film of nano-thickness on various supports, or the graphene oxide is inserted into the polymer Its simple structure makes it suitable for display devices, food and pharmaceutical packaging because of its excellent barrier properties.

Claims (28)

  1. 지지체; 및 Support; And
    상기 지지체 위에 3 ㎛~50 ㎛ 크기의 그래핀 옥사이드가 10 nm 이상의 두께로 코팅된 나노기공을 갖는 코팅층;을 포함하는 기체 차단성 그래핀 옥사이드 나노복합막.A gas barrier graphene oxide nanocomposite membrane comprising a; coating layer having a nano-pores coated with a graphene oxide of 3 ㎛ ~ 50 ㎛ size in a thickness of 10 nm or more.
  2. 제1항에 있어서, 상기 지지체는 고분자, 세라믹, 유리, 종이, 및 금속층으로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 하는 기체 차단성 그래핀 옥사이드 나노복합막.The gas barrier graphene oxide nanocomposite membrane of claim 1, wherein the support is any one selected from the group consisting of a polymer, a ceramic, a glass, a paper, and a metal layer.
  3. 제2항에 있어서, 상기 고분자는 폴리에스테르, 폴리올레핀, 폴리비닐클로라이드, 폴리우레탄, 폴리아크릴레이트, 폴리카보네이트, 폴리테트라플루오로에틸렌, 폴리술폰, 폴리에테르술폰, 폴리이미드, 폴리에테르이미드, 폴리아미드, 폴리아크릴로니트릴, 셀룰로오즈 아세테이트, 셀룰로오스 트리아세테이트, 및 폴리비닐리덴플루오라이드로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 하는 기체 차단성 그래핀 옥사이드 나노복합막.The method of claim 2, wherein the polymer is polyester, polyolefin, polyvinylchloride, polyurethane, polyacrylate, polycarbonate, polytetrafluoroethylene, polysulfone, polyethersulfone, polyimide, polyetherimide, polyamide Gas barrier graphene oxide nanocomposite membrane, characterized in that any one selected from the group consisting of polyacrylonitrile, cellulose acetate, cellulose triacetate, and polyvinylidene fluoride.
  4. 제2항에 있어서, 상기 세라믹은 알루미나, 마그네시아, 지르코니아, 탄화규소, 탄화텅스텐, 및 질화규소로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 하는 기체 차단성 그래핀 옥사이드 나노복합막.3. The gas barrier graphene oxide nanocomposite film of claim 2, wherein the ceramic is any one selected from the group consisting of alumina, magnesia, zirconia, silicon carbide, tungsten carbide, and silicon nitride.
  5. 제2항에 있어서, 상기 금속층은 금속 호일, 금속 시트 또는 금속 필름인 것을 특징으로 하는 기체 차단성 그래핀 옥사이드 나노복합막.3. The gas barrier graphene oxide nanocomposite film of claim 2, wherein the metal layer is a metal foil, a metal sheet, or a metal film.
  6. 제5항에 있어서, 상기 금속층의 물질은 구리, 니켈, 철, 알루미늄, 및 티타늄으로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 하는 기체 차단성 그래핀 옥사이드 나노복합막.The gas barrier graphene oxide nanocomposite film of claim 5, wherein the material of the metal layer is any one selected from the group consisting of copper, nickel, iron, aluminum, and titanium.
  7. 제1항에 있어서, 상기 그래핀 옥사이드는 그래핀 옥사이드에 존재하는 히드록실기, 카르복실기, 카르보닐기, 또는 에폭시기가 에스테르기, 에테르기, 아미드기, 또는 아미노기로 전환된 관능화 그래핀 옥사이드인 것을 특징으로 하는 기체 차단성 그래핀 옥사이드 나노복합막.According to claim 1, The graphene oxide is a functionalized graphene oxide characterized in that the hydroxyl group, carboxyl group, carbonyl group, or epoxy group present in the graphene oxide is converted to an ester group, ether group, amide group, or amino group Gas-blocking graphene oxide nanocomposite membrane.
  8. 제1항에 있어서, 상기 나노기공은 평균직경이 0.5 nm~1.0 nm 범위의 것을 특징으로 하는 기체 차단성 그래핀 옥사이드 나노복합막.The gas barrier graphene oxide nanocomposite membrane of claim 1, wherein the nanopores have an average diameter in a range of 0.5 nm to 1.0 nm.
  9. 제1항에 있어서, 상기 코팅층은 단일층 또는 복수층의 그래핀 옥사이드를 포함하는 것을 특징으로 하는 기체 차단성 그래핀 옥사이드 나노복합막.The gas barrier graphene oxide nanocomposite film of claim 1, wherein the coating layer comprises a single layer or a plurality of layers of graphene oxide.
  10. 제9항에 있어서, 상기 단일층의 그래핀 옥사이드는 그 두께가 0.6 nm~1 nm 범위의 것을 특징으로 하는 기체 차단성 그래핀 옥사이드 나노복합막.10. The gas barrier graphene oxide nanocomposite film of claim 9, wherein the graphene oxide of the single layer has a thickness in the range of 0.6 nm to 1 nm.
  11. 폴리에틸렌글리콜 디아크릴레이트 또는 폴리에틸렌글리콜 디메타크릴레이트 중합체 내에 그래핀 옥사이드가 삽입된 구조의 기체 차단성 그래핀 옥사이드 나노복합막.A gas barrier graphene oxide nanocomposite membrane having a structure in which graphene oxide is inserted into a polyethylene glycol diacrylate or polyethylene glycol dimethacrylate polymer.
  12. 제11항에 있어서, 상기 그래핀 옥사이드는 그 크기가 100~1000 nm인 것을 특징으로 하는 기체 차단성 그래핀 옥사이드 나노복합막.12. The gas barrier graphene oxide nanocomposite film of claim 11, wherein the graphene oxide has a size of 100 to 1000 nm.
  13. 제11항에 있어서, 상기 나노복합막 내 그래핀 옥사이드의 함량은 5 중량% 이하인 것을 특징으로 하는 기체 차단성 그래핀 옥사이드 나노복합막.12. The gas barrier graphene oxide nanocomposite film of claim 11, wherein the graphene oxide content in the nanocomposite film is 5 wt% or less.
  14. i) 그래핀 옥사이드를 증류수에 분산시키고 초음파 분쇄기로 0.1~6 시간 처리하여 그래핀 옥사이드 분산용액을 얻는 단계;i) dispersing graphene oxide in distilled water and treating with an ultrasonic grinder for 0.1 to 6 hours to obtain a graphene oxide dispersion solution;
    ii) 상기 분산용액을 원심분리 하여 크기가 3 ㎛~50 ㎛로 조절된 그래핀 옥사이드를 형성하는 단계;ii) centrifuging the dispersion solution to form graphene oxide having a size adjusted to 3 μm˜50 μm;
    iii) 상기 ii) 단계에서 형성된 그래핀 옥사이드를 다시 증류수에 분산시킨 용액을 얻는 단계; 및iii) obtaining a solution in which the graphene oxide formed in step ii) is dispersed in distilled water again; And
    iv) 상기 iii) 단계의 분산용액을 지지체 위에 코팅하여 나노기공을 갖는 코팅층을 형성하는 단계;를 포함하는 기체 차단성 그래핀 옥사이드 나노복합막의 제조방법.iv) coating the dispersion solution of step iii) on a support to form a coating layer having nanopores; a method of manufacturing a gas barrier graphene oxide nanocomposite membrane comprising a.
  15. 제14항에 있어서, 상기 그래핀 옥사이드는 그래핀 옥사이드에 존재하는 히드록실기, 카르복실기, 카르보닐기, 또는 에폭시기가 에스테르기, 에테르기, 아미드기, 또는 아미노기로 전환된 관능화 그래핀 옥사이드인 것을 특징으로 하는 기체 차단성 그래핀 옥사이드 나노복합막의 제조방법.The method of claim 14, wherein the graphene oxide is a functionalized graphene oxide characterized in that the hydroxyl group, carboxyl group, carbonyl group, or epoxy group present in the graphene oxide is converted to an ester group, ether group, amide group, or amino group Method for producing a gas barrier graphene oxide nanocomposite membrane to be.
  16. 제14항에 있어서, 상기 지지체는 고분자, 세라믹, 유리, 종이, 및 금속층으로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 하는 기체 차단성 그래핀 옥사이드 나노복합막의 제조방법.15. The method of claim 14, wherein the support is any one selected from the group consisting of a polymer, a ceramic, a glass, a paper, and a metal layer.
  17. 제16항에 있어서, 상기 고분자는 폴리에스테르, 폴리올레핀, 폴리비닐클로라이드, 폴리우레탄, 폴리아크릴레이트, 폴리카보네이트, 폴리테트라플루오로에틸렌, 폴리술폰, 폴리에테르술폰, 폴리이미드, 폴리에테르이미드, 폴리아미드, 폴리아크릴로니트릴, 셀룰로오즈 아세테이트, 셀룰로오스 트리아세테이트, 및 폴리비닐리덴플루오라이드로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 하는 기체 차단성 그래핀 옥사이드 나노복합막의 제조방법.The method of claim 16, wherein the polymer is polyester, polyolefin, polyvinylchloride, polyurethane, polyacrylate, polycarbonate, polytetrafluoroethylene, polysulfone, polyethersulfone, polyimide, polyetherimide, polyamide , Polyacrylonitrile, cellulose acetate, cellulose triacetate, and polyvinylidene fluoride, any one selected from the group consisting of gas-blocking graphene oxide nanocomposite film production method.
  18. 제16항에 있어서, 상기 세라믹은 알루미나, 마그네시아, 지르코니아, 탄화규소, 탄화텅스텐, 및 질화규소로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 하는 기체 차단성 그래핀 옥사이드 나노복합막의 제조방법.17. The method of claim 16, wherein the ceramic is any one selected from the group consisting of alumina, magnesia, zirconia, silicon carbide, tungsten carbide, and silicon nitride.
  19. 제16항에 있어서, 상기 금속층은 금속 호일, 금속 시트 또는 금속 필름인 것을 특징으로 하는 기체 차단성 그래핀 옥사이드 나노복합막의 제조방법.The method of claim 16, wherein the metal layer is a metal foil, a metal sheet, or a metal film.
  20. 제19항에 있어서, 상기 금속층의 물질은 구리, 니켈, 철, 알루미늄, 및 티타늄으로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 하는 기체 차단성 그래핀 옥사이드 나노복합막의 제조방법.20. The method of claim 19, wherein the material of the metal layer is any one selected from the group consisting of copper, nickel, iron, aluminum, and titanium.
  21. 제14항에 있어서, 상기 코팅은 직접증발법, 전사법, 스핀 코팅법, 및 스프레이 코팅법으로 이루어진 군으로부터 선택된 어느 하나의 방법으로 수행되는 것을 특징으로 하는 기체 차단성 그래핀 옥사이드 나노복합막의 제조방법.The method of claim 14, wherein the coating is performed by any one method selected from the group consisting of a direct evaporation method, a transfer method, a spin coating method, and a spray coating method. Way.
  22. 제21항에 있어서, 상기 스핀 코팅은 3~10회 수행하는 것을 특징으로 하는 기체 차단성 그래핀 옥사이드 나노복합막의 제조방법.The method of claim 21, wherein the spin coating is performed 3 to 10 times.
  23. 제14항에 있어서, 상기 나노기공은 평균직경이 0.5 nm~1.0 nm 범위의 것을 특징으로 하는 기체 차단성 그래핀 옥사이드 나노복합막의 제조방법.15. The method of claim 14, wherein the nanopores have an average diameter in the range of 0.5 nm to 1.0 nm.
  24. 제14항에 있어서, 상기 코팅층은 단일층 또는 복수층의 그래핀 옥사이드를 포함하는 것을 특징으로 하는 기체 차단성 그래핀 옥사이드 나노복합막의 제조방법.The method of claim 14, wherein the coating layer comprises a single layer or a plurality of layers of graphene oxide.
  25. 제24항에 있어서, 상기 단일층의 그래핀 옥사이드는 그 두께가 0.6 nm~1 nm 범위의 것을 특징으로 하는 기체 차단성 그래핀 옥사이드 나노복합막의 제조방법.25. The method of claim 24, wherein the graphene oxide of the single layer has a thickness in the range of 0.6 nm to 1 nm.
  26. 제1항 내지 제13항 중 어느 한 항에 따른 기체 차단성 그래핀 옥사이드 나노복합막을 포함하는 디스플레이 소자.A display device comprising the gas barrier graphene oxide nanocomposite film according to any one of claims 1 to 13.
  27. 제1항 내지 제13항 중 어느 한 항에 따른 기체 차단성 그래핀 옥사이드 나노복합막을 포함하는 식품 포장지.A food wrapper comprising the gas barrier graphene oxide nanocomposite membrane according to any one of claims 1 to 13.
  28. 제1항 내지 제13항 중 어느 한 항에 따른 기체 차단성 그래핀 옥사이드 나노복합막을 포함하는 의약품 포장지.A pharmaceutical package comprising the gas barrier graphene oxide nanocomposite membrane according to any one of claims 1 to 13.
PCT/KR2015/002156 2014-03-07 2015-03-06 Graphene oxide nanocomposite membrane having improved gas barrier characteristics and method for manufacturing same WO2015133849A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/123,967 US20170015483A1 (en) 2014-03-07 2015-03-06 Graphene oxide nanocomposite membrane having improved gas barrier characteristics and method for manufacturing the same
CN201580012597.4A CN106061593B (en) 2014-03-07 2015-03-06 Graphene oxide nanocomposite film with improved gas barrier properties and preparation method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0027163 2014-03-07
KR20140027163 2014-03-07
KR10-2015-0031035 2015-03-05
KR1020150031035A KR101972439B1 (en) 2014-03-07 2015-03-05 Graphene oxide nanocomposite membrane for improved gas barrier and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2015133849A1 true WO2015133849A1 (en) 2015-09-11

Family

ID=54055581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/002156 WO2015133849A1 (en) 2014-03-07 2015-03-06 Graphene oxide nanocomposite membrane having improved gas barrier characteristics and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2015133849A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018075552A1 (en) * 2016-10-19 2018-04-26 Aria Cv, Inc. Diffusion resistant implantable devices for reducing pulsatile pressure
CN109092087A (en) * 2018-09-28 2018-12-28 南京科技职业学院 A kind of graphene oxide modified polyamide composite nanometer filtering film and preparation method thereof
WO2019158707A1 (en) * 2018-02-16 2019-08-22 Ahlstrom-Munksjö Oyj A method of manufacturing a graphene/graphehe oxide layer and a graphene/graphehe oxide-coated support
US10682448B2 (en) 2014-06-19 2020-06-16 Aria Cv, Inc. Systems and methods for treating pulmonary hypertension
US10702682B2 (en) 2010-11-22 2020-07-07 Aria Cv, Inc. System and method for reducing pulsatile pressure
CN111547716A (en) * 2020-06-19 2020-08-18 天津单从新材料科技有限公司 Preparation method of independent self-supporting artificial nano graphite film
US11141581B2 (en) 2019-09-06 2021-10-12 Aria Cv, Inc. Diffusion and infusion resistant implantable devices for reducing pulsatile pressure
EP3665009B1 (en) * 2017-05-26 2022-03-23 Graphitene Ltd. Multilayer film for packaging and method of manufacture thereof
CN115534368A (en) * 2022-09-21 2022-12-30 湖北航天化学技术研究所 Preparation method of graphene-based anti-migration layer
US11583420B2 (en) 2010-06-08 2023-02-21 Regents Of The University Of Minnesota Vascular elastance
CN116219565A (en) * 2023-02-06 2023-06-06 东华大学 Multifunctional Lyocell fiber capable of improving fibrillation and preparation method thereof
CN117067737B (en) * 2023-08-14 2024-02-09 青岛中海环境工程有限公司 Polytetrafluoroethylene composite membrane for compost fermentation and processing technology thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110084110A (en) * 2010-01-15 2011-07-21 성균관대학교산학협력단 Graphene protective film for blocking gas and water, method for forming the same and use thereof
KR20130001705A (en) * 2011-06-27 2013-01-04 에스케이이노베이션 주식회사 Graphene/polymer composite protective film, method of forming the same and uses of the same
WO2013109891A1 (en) * 2012-01-20 2013-07-25 Brown University Substrate with graphene-based layer
KR101308967B1 (en) * 2011-09-09 2013-09-17 한국과학기술연구원 Process of preparing polymer/NGPs nanocomposite films with enhanced gas barrier properties
KR20140015927A (en) * 2012-07-27 2014-02-07 율촌화학 주식회사 Lamination barrier film
KR20140106844A (en) * 2013-02-27 2014-09-04 노재상 Encapsulation Film Comprising Thin Layer Composed of Graphene Oxide or Reduced Graphene Oxide and Method of Forming the Same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110084110A (en) * 2010-01-15 2011-07-21 성균관대학교산학협력단 Graphene protective film for blocking gas and water, method for forming the same and use thereof
KR20130001705A (en) * 2011-06-27 2013-01-04 에스케이이노베이션 주식회사 Graphene/polymer composite protective film, method of forming the same and uses of the same
KR101308967B1 (en) * 2011-09-09 2013-09-17 한국과학기술연구원 Process of preparing polymer/NGPs nanocomposite films with enhanced gas barrier properties
WO2013109891A1 (en) * 2012-01-20 2013-07-25 Brown University Substrate with graphene-based layer
KR20140015927A (en) * 2012-07-27 2014-02-07 율촌화학 주식회사 Lamination barrier film
KR20140106844A (en) * 2013-02-27 2014-09-04 노재상 Encapsulation Film Comprising Thin Layer Composed of Graphene Oxide or Reduced Graphene Oxide and Method of Forming the Same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11583420B2 (en) 2010-06-08 2023-02-21 Regents Of The University Of Minnesota Vascular elastance
US11406803B2 (en) 2010-11-22 2022-08-09 Aria Cv, Inc. System and method for reducing pulsatile pressure
US10702682B2 (en) 2010-11-22 2020-07-07 Aria Cv, Inc. System and method for reducing pulsatile pressure
US10751519B2 (en) 2010-11-22 2020-08-25 Aria Cv, Inc. System and method for reducing pulsatile pressure
US11938291B2 (en) 2010-11-22 2024-03-26 Aria Cv, Inc. System and method for reducing pulsatile pressure
US11992636B2 (en) 2014-06-19 2024-05-28 Aria Cv, Inc. Systems and methods for treating pulmonary hypertension
US10682448B2 (en) 2014-06-19 2020-06-16 Aria Cv, Inc. Systems and methods for treating pulmonary hypertension
US11511089B2 (en) 2014-06-19 2022-11-29 Aria Cv, Inc. Systems and methods for treating pulmonary hypertension
WO2018075552A1 (en) * 2016-10-19 2018-04-26 Aria Cv, Inc. Diffusion resistant implantable devices for reducing pulsatile pressure
US11331105B2 (en) 2016-10-19 2022-05-17 Aria Cv, Inc. Diffusion resistant implantable devices for reducing pulsatile pressure
EP3665009B1 (en) * 2017-05-26 2022-03-23 Graphitene Ltd. Multilayer film for packaging and method of manufacture thereof
US12122677B2 (en) 2018-02-16 2024-10-22 Ahlstrom Oyj Method of manufacturing a graphene/graphehe oxide layer and a graphene/graphehe oxide-coated support
WO2019158707A1 (en) * 2018-02-16 2019-08-22 Ahlstrom-Munksjö Oyj A method of manufacturing a graphene/graphehe oxide layer and a graphene/graphehe oxide-coated support
EP4177397A1 (en) * 2018-02-16 2023-05-10 Ahlstrom-Munksjö Oyj A method of manufacturing a graphene/graphehe oxide layer and a graphene/graphehe oxide-coated support
CN109092087A (en) * 2018-09-28 2018-12-28 南京科技职业学院 A kind of graphene oxide modified polyamide composite nanometer filtering film and preparation method thereof
US11141581B2 (en) 2019-09-06 2021-10-12 Aria Cv, Inc. Diffusion and infusion resistant implantable devices for reducing pulsatile pressure
US11833343B2 (en) 2019-09-06 2023-12-05 Aria Cv, Inc. Diffusion and infusion resistant implantable devices for reducing pulsatile pressure
CN111547716A (en) * 2020-06-19 2020-08-18 天津单从新材料科技有限公司 Preparation method of independent self-supporting artificial nano graphite film
CN115534368B (en) * 2022-09-21 2024-04-05 湖北航天化学技术研究所 Preparation method of graphene-based migration-preventing layer
CN115534368A (en) * 2022-09-21 2022-12-30 湖北航天化学技术研究所 Preparation method of graphene-based anti-migration layer
CN116219565A (en) * 2023-02-06 2023-06-06 东华大学 Multifunctional Lyocell fiber capable of improving fibrillation and preparation method thereof
CN117067737B (en) * 2023-08-14 2024-02-09 青岛中海环境工程有限公司 Polytetrafluoroethylene composite membrane for compost fermentation and processing technology thereof

Similar Documents

Publication Publication Date Title
WO2015133849A1 (en) Graphene oxide nanocomposite membrane having improved gas barrier characteristics and method for manufacturing same
CN106061593B (en) Graphene oxide nanocomposite film with improved gas barrier properties and preparation method thereof
WO2015133848A1 (en) Graphene oxide nanocomposite membrane for gas separation, reduced graphene oxide nanocomposite membrane, and method for manufacturing same
WO2014175517A1 (en) Composite separation film comprising graphene oxide coating layer and manufacturing method therefor
Yu et al. Preparation and characterization of PVDF–SiO2 composite hollow fiber UF membrane by sol–gel method
WO2014171599A1 (en) Composite separating membrane including coating layer of graphene oxide/bile acid or salt thereof and method of manufacturing same
Cuiming et al. Fundamental studies of a new hybrid (inorganic–organic) positively charged membrane: membrane preparation and characterizations
Ye et al. The effect of sonication treatment of graphene oxide on the mechanical properties of the assembled films
WO2015163595A1 (en) Method for producing graphene-based nano carbon fiber using inter-layer self-assembly
EP3178542B1 (en) Carbon film for fluid separation and fluid separation film module
KR102429550B1 (en) Bipolar membrane containing polydopamine
WO2017115921A1 (en) Graphene dispersion, method for preparing graphene-polymer composite, and method for manufacturing barrier film using same
WO2014148705A1 (en) Method for producing carbon nanotube composite
WO2017090835A1 (en) Barrier film manufacturing method and barrier film
US8388744B1 (en) Systems and methods for using a boehmite bond-coat with polyimide membranes for gas separation
Van Gestel et al. New types of graphene-based membranes with molecular sieve properties for He, H2 and H2O
US9919264B2 (en) Enhanced graphene oxide membranes and methods for making same
Zhang et al. Preparation of thermally stable 3-glycidyloxypropyl-POSS-derived polysilsesquioxane RO membranes for water desalination
CN114479654A (en) Preparation method of organic intercalated hydrotalcite-aramid coating liquid and application of organic intercalated hydrotalcite-aramid coating liquid in coating of lithium battery diaphragm
WO2016171486A1 (en) Graphene oxide/polymer composite material functionalized with sulfonated poly(ether-ether-ketone) and gas barrier film comprising same
JP5170607B2 (en) Fiber-reinforced clay film and method for producing the same
WO2020226296A1 (en) Secondary battery separator comprising dispersant, and manufacturing method therefor
TWI837117B (en) Protective film containing graphite film
WO2016171490A1 (en) Gas barrier membrane using graphene oxide prepared by solution mixing method, and method for preparing same
WO2020111631A1 (en) Method for manufacturing reduced graphene oxide of which element composition ratio is adjusted

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15757760

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15123967

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15757760

Country of ref document: EP

Kind code of ref document: A1