WO2015133435A1 - ハニカムフィルタ - Google Patents
ハニカムフィルタ Download PDFInfo
- Publication number
- WO2015133435A1 WO2015133435A1 PCT/JP2015/056084 JP2015056084W WO2015133435A1 WO 2015133435 A1 WO2015133435 A1 WO 2015133435A1 JP 2015056084 W JP2015056084 W JP 2015056084W WO 2015133435 A1 WO2015133435 A1 WO 2015133435A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- outlet
- region
- inlet
- honeycomb filter
- flow path
- Prior art date
Links
- 238000007789 sealing Methods 0.000 claims description 47
- 230000005484 gravity Effects 0.000 claims description 12
- 230000002093 peripheral effect Effects 0.000 description 60
- 238000005192 partition Methods 0.000 description 12
- 230000008929 regeneration Effects 0.000 description 11
- 238000011069 regeneration method Methods 0.000 description 11
- 239000004071 soot Substances 0.000 description 11
- 239000000919 ceramic Substances 0.000 description 8
- 239000002994 raw material Substances 0.000 description 5
- 238000000151 deposition Methods 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 229910000505 Al2TiO5 Inorganic materials 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- AABBHSMFGKYLKE-SNAWJCMRSA-N propan-2-yl (e)-but-2-enoate Chemical compound C\C=C\C(=O)OC(C)C AABBHSMFGKYLKE-SNAWJCMRSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- QNRATNLHPGXHMA-XZHTYLCXSA-N (r)-(6-ethoxyquinolin-4-yl)-[(2s,4s,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]methanol;hydrochloride Chemical compound Cl.C([C@H]([C@H](C1)CC)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OCC)C=C21 QNRATNLHPGXHMA-XZHTYLCXSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229920001732 Lignosulfonate Polymers 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/24—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
- B01D46/2403—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
- B01D46/2418—Honeycomb filters
- B01D46/2451—Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
- B01D46/2484—Cell density, area or aspect ratio
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/24—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
- B01D46/2403—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
- B01D46/2418—Honeycomb filters
- B01D46/2451—Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
- B01D46/2459—Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the plugs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/24—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
- B01D46/2403—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
- B01D46/2418—Honeycomb filters
- B01D46/2451—Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
- B01D46/2455—Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the whole honeycomb or segments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/24—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
- B01D46/2403—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
- B01D46/2418—Honeycomb filters
- B01D46/2451—Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
- B01D46/247—Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/24—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
- B01D46/2403—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
- B01D46/2418—Honeycomb filters
- B01D46/2451—Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
- B01D46/2482—Thickness, height, width, length or diameter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/24—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
- B01D46/2403—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
- B01D46/2418—Honeycomb filters
- B01D46/2451—Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
- B01D46/2486—Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/24—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
- B01D46/2403—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
- B01D46/2418—Honeycomb filters
- B01D46/2451—Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
- B01D46/2486—Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
- B01D46/2492—Hexagonal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/022—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
- F01N3/0222—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2275/00—Filter media structures for filters specially adapted for separating dispersed particles from gases or vapours
- B01D2275/40—Porous blocks
- B01D2275/406—Rigid blocks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/24—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
- B01D46/2403—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
- B01D46/2418—Honeycomb filters
- B01D46/2451—Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
- B01D46/2486—Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
- B01D46/2488—Triangular
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to a honeycomb filter.
- honeycomb filter made of ceramics known as a diesel particulate filter or the like is known.
- various forms of honeycomb filters have been disclosed as described below.
- the filter is required to reduce the temperature gradient without causing an excessive increase in pressure loss in order to improve the thermal shock resistance.
- the present invention has been made in view of the above problems, and provides a honeycomb filter capable of reducing a temperature gradient without causing an excessive increase in pressure loss.
- a honeycomb filter according to the present invention includes an inlet-side end surface, an outlet-side end surface, a plurality of inlet-side channels having an opening at the inlet-side end surface and a sealing portion at the outlet-side end surface, and an opening at the outlet-side end surface. And a porous column having a plurality of outlet-side channels having a sealing portion on the inlet-side end face.
- the central part of the column in the axial direction parallel to the inlet-side flow path and the outlet-side flow path is A first region in which the number of outlet side channels adjacent to the inlet side channel is N io1 (N io1 is any natural number); and The number of outlet-side channels adjacent to the inlet-side channel is N io2 (N io2 is any natural number), and the second region satisfies N io2 ⁇ N io1 .
- the outlet-side channel is not adjacent to other outlet-side channels.
- the first area and the second area are different from each other in the arrangement relationship of the outlet side flow path with respect to the inlet side flow path, so that the pressure loss when the gas passes between the first area and the second area Can make a difference. Therefore, it is possible to control the flow of gas and the deposition state of particles for each location.
- the partition wall forming the outlet side flow channel can effectively function as a filtration wall.
- the center of gravity of the opening shape of the outlet side channel and the opening of the other outlet side channel closest to the outlet side channel The center-of-gravity distance from the center of gravity of the part shape is P1, the center of gravity of the opening shape of the outlet side channel, and the center of gravity of the opening shape of the other outlet side channel closest to the outlet side channel P2 / P1 can be less than 2 when the distance between the center of gravity is P2.
- the total number of the inlet-side flow paths / the total number of the outlet-side flow paths can be larger than one.
- At least one of the shapes of the cross section perpendicular to the axis of the inlet side channel or the outlet side channel is regular six Can be square.
- each of the first region and the second region may not have a flow path in which both the inlet side end surface and the outlet side end surface are sealed.
- the area in the cross section perpendicular to the axis of the combined region of the first region and the second region may occupy 80% or more of the total cross-sectional area of the honeycomb filter.
- each of the sealing portions of the inlet-side channel and the outlet-side channel can have a columnar body filled in the channel.
- cross-sectional areas of the openings of the inlet-side flow path and the outlet-side flow path at both end faces of the column body can be made larger than the cross-sectional areas of the central part in the axial direction, respectively.
- the first region may include a central axis of the column parallel to the inlet-side channel and the outlet-side channel, and the second region may surround the first region.
- the temperature gradient can be reduced without causing an excessive increase in pressure loss.
- FIG. 1 is a perspective view of the honeycomb filter according to the first embodiment.
- 2A is an inlet side end view of the central portion (first region R 1 ) of the honeycomb filter of FIG. 1
- FIG. 2B is a peripheral portion (second region R 2 ) of the honeycomb filter of FIG.
- FIG. 3A is a sectional view taken along the line III-III of the central portion (first region R 1 ) of the honeycomb filter of FIG. 1
- FIG. 3B is a peripheral portion of the honeycomb filter of FIG.
- FIG. 3 is a cross-sectional view taken along the line III-III in the center in the axial direction of the second region R 2 ).
- 4A is an outlet side end view of the central portion (first region R 1 ) of the honeycomb filter of FIG.
- FIG. 4B is a peripheral portion (second region R 2 ) of the honeycomb filter of FIG.
- FIG. 5A is a cross-sectional view of the Va surface parallel to the axis in the vicinity of the inlet side end face 10Ein of the central portion (first region R 1 ) of the honeycomb filter of FIGS. 1 and 2
- FIG. FIG. 5 is a cross-sectional view of the Vb plane parallel to the axis in the vicinity of the outlet side end face 10E out of the central portion (first region R 1 ) of the honeycomb filter of FIGS. 1 and 4.
- FIG. 6 (a) is a cross-sectional view of the VIa plane parallel to the axis in the vicinity of the inlet side end face 10Ein of the peripheral portion (second region R 2 ) of the honeycomb filter of FIGS. 1 and 2, and FIG. 6 (b).
- FIG. 5 is a cross-sectional view of the VIb plane parallel to the axis in the vicinity of the outlet side end face 10E out of the peripheral portion (second region R 2 ) of the honeycomb filter of FIGS. 1 and 4.
- 7A is an inlet side end view of the central portion (first region R 1 ) of the honeycomb filter according to the second embodiment
- FIG. 7B is a peripheral portion of the honeycomb filter according to the second embodiment ( It is an end view on the inlet side of the second region R 2 ).
- FIG. 8A is an outlet side end view of the central portion (first region R 1 ) of the honeycomb filter according to the second embodiment
- FIG. 8B is a peripheral portion of the honeycomb filter according to the second embodiment ( it is an outlet end view of the second region R 2).
- FIG. 9A shows a Va plane parallel to the axis in the vicinity of the inlet side end face of the central portion (first region R 1 ) of the honeycomb filter of the second embodiment (see FIG. 7: corresponding to the Va face in FIG. 1).
- FIG. 9B is a cross-sectional view, and FIG. 9B shows a Vb plane parallel to the axis in the vicinity of the end face on the outlet side of the central portion (first region R 1 ) of the honeycomb filter of the second embodiment (see FIG.
- FIG. 10A shows a VIa plane parallel to the axis in the vicinity of the end face on the inlet side of the peripheral portion (second region R 2 ) of the honeycomb filter of the second embodiment (see FIG. 7: corresponding to the VIa plane in FIG. 1).
- FIG. 10B is a VIb surface parallel to the axis in the vicinity of the outlet side end surface of the peripheral portion (second region R 2 ) of the honeycomb filter of the second embodiment (see FIG. 8: VIb in FIG. 1).
- FIG. FIG. 11 is a schematic diagram illustrating an example of a manufacturing process of the honeycomb filter of the second embodiment.
- a honeycomb filter 100 includes a cylindrical body 10 as shown in FIG.
- the cylindrical body 10 has an inlet side end face 10E in and an outlet side end face 10E out .
- the cylindrical body 10 includes a central portion (first region) R 1 including the central axis of the cylindrical body 10 and a peripheral portion (second region) R that is an annular portion around the central portion R 1 of the cylindrical body 10. has 2, between these regions, the inlet-side passage 70H in having an opening in the inlet side end surface 10E in, and the arrangement of the outlet passage 70H out having an opening on the outlet side end surface 10E out They are different from each other.
- FIG. 5 is a central axial section parallel to the view of the cylindrical body 10 of part R 1
- FIG. 6 is a sectional view parallel to the axis of the cylindrical body 10 of the peripheral portion R 2.
- none of the central portion R 1 and the peripheral portion R 2 has a number of inlet passage 70H in and outlet passage 70H out.
- the directions in which the respective channels extend are parallel to each other and coincide with the longitudinal direction of the column, and this direction is taken as the axial direction.
- inlet passage 70H in respectively have an opening OP of the cap portion 70P out1 to outlet-side end surface 10E out the inlet-side end surface 10E in
- outlet passage 70H out each have an opening OP of the cap portion 70P in1 the inlet side end surface 10E in the outlet-side end surface 10E out.
- inlet passage 70H in respectively have an opening OP of the cap portion 70P out2 to outlet-side end surface 10E out the inlet-side end surface 10E in
- outlet passage 70H out each have an opening OP of the cap portion 70P in2 the inlet-side end surface 10E in the outlet-side end surface 10E out.
- each sealing portion is a columnar body filled in the flow path.
- the height of the sealing portion 70P in1 is H 1
- the height of the sealing portion 70P in2 is H 2 .
- the inlet-side flow path 70H in and the outlet-side flow path 70H out have a hexagonal cross section.
- each of the central portion R 1 and the peripheral portion R 2, 6 one channel around one channel is adjacent.
- three outlet passage H out, and the three other inlet passage H in it is adjacent to one of the inlet passage H in .
- the peripheral portion R 2, 2 single outlet passage H out, and four other inlet passage H in is adjacent to one of the inlet passage H in.
- “two channels are adjacent” means that two channels are separated in the thickness direction of the partition via one partition. In the so-called square channel arrangement, the two channels positioned in an oblique relationship are not adjacent to each other.
- outlet passage 70H out it is not adjacent to other outlet passage 70H out, inlet passage Adjacent only with 70H in .
- the cross-sectional area perpendicular to the axis of the region including the central portion (first region) R 1 and the peripheral portion (second region) R 2 may be 80% or more of the cross-sectional area perpendicular to the axis of the cylindrical body 10. It is preferably 85% or more, and more preferably 90% or more.
- the calculation of the area of each region includes not only the cross-sectional area of the flow path but also the cross-sectional area of the partition wall between the flow paths.
- the cross-sectional area of a portion that does not follow the arrangement rule of each region at the boundary between regions and the cross-sectional area of a portion that is affected by the cross-sectional shape by the outer peripheral wall are excluded.
- Area of the central portion (first region) the area / perimeter of the R 1 (second region) R 2 can be a 0.25-4.
- the shape of the cross section perpendicular to the axis of at least one of the inlet-side flow path 70H in or the outlet-side flow path 70H out is at least the central portion of the honeycomb filter in the axial direction (hereinafter, It is a regular hexagon at the center in the axial direction).
- regular hexagonal channels have the smallest fluid friction coefficient and the cross-sectional shape when the Reynolds numbers with the representative length being the square root of the channel cross-sectional area are the same. Being a regular hexagon contributes to a reduction in pressure loss.
- the cross-sectional shape of the outlet-side flow path 70H out is a regular hexagon and the cross-sectional area of the six adjacent inlet-side flow paths 70H in is smaller than the cross-sectional area of the outlet-side flow path 70H out , the filtration area is increased. This is preferable because the pressure loss when soot accumulates can be reduced.
- the cylindrical body 10 has an outer peripheral wall, between the peripheral portion R 2 of the outer and the outer peripheral wall, a plurality of ends sealed flow path is disposed. Across the sealing channel has respectively a sealing portion sealing portion and the outlet-side end surface 10E out the inlet-side end surface 10E in.
- the both-end sealing flow path can be formed in a portion affected by the cross-sectional shape by the outer peripheral wall.
- the cylindrical body material is porous ceramic.
- ceramics are aluminum titanate, silicon carbide, cordierite.
- Aluminum titanate can include magnesium, silicon, and the like.
- Such a honeycomb filter can be manufactured by the following method. First, the molding raw material is extruded by an extruder, and the obtained molded body is dried as necessary, and then cut to a predetermined length, as shown in (a) and (b) of FIG. A honeycomb formed body having such a cross-sectional shape is manufactured. This honeycomb formed body has a large number of through-holes having a hexagonal cross section.
- the composition of the forming raw material may be anything that gives a porous ceramic after firing.
- a ceramic raw material, an organic binder, a pore forming agent, a solvent, and an additive added as necessary can be included.
- Ceramic raw material is a powder containing elements constituting ceramic.
- the binder can be an organic binder, and examples thereof include celluloses such as methylcellulose, carboxymethylcellulose, hydroxyalkylmethylcellulose, and sodium carboxymethylcellulose; alcohols such as polyvinyl alcohol; and lignin sulfonate.
- the additive include a lubricant, a plasticizer, and a dispersant.
- the honeycomb formed body is fired to obtain the honeycomb filter 100 according to the present embodiment. Further, the honeycomb formed body may be dried before firing.
- one inlet-side flow path 70H the number of outlet passage 70H out adjacent in has decreased at the peripheral portion R 2 as compared to the central portion R 1. Therefore, flow resistance of the gas flowing from the inlet side to the outlet side the peripheral portion R 2 is higher than in the central portion R 1. Therefore, the gas flow is controlled so that the gas flow is concentrated in the central portion R 1 compared to the peripheral portion R 2 . In this case, it is possible to suppress heat removal due to gas at the outer periphery during regeneration, or to selectively collect carbon particles at the center to control combustion behavior and temperature distribution during regeneration.
- the central portion R 1 and the outlet passage 70H out at the periphery R 2 are not adjacent to each other, can function effectively as a barrier wall W Gallo over wall forming the outlet passage 70H out. If the outlet-side flow passages 70H out are adjacent to each other, the partition walls separating the outlet-side flow passages 70H out cannot function as filters, resulting in poor efficiency.
- the central portion R 1 and the peripheral portion R 2 does not contain the ends sealing channel, it can be effectively utilized filter volume.
- they may be different from each other.
- each of the height H 1 of the sealing portion of the central portion R 1 of the inlet-side end surface 10E in the may be mutually the same or may be different from each other.
- each of the height H 2 of the sealing portion of the peripheral portion R 2 of the inlet-side end surface 10E in may be mutually the same or may be different from each other. In this case, it is possible to make a difference in the gas flow by making the heights different.
- the height H 3 of the sealing portion of the central portion R 1 of the outlet-side end surface 10E out, the height H 4 of the sealing portion of the peripheral portion R 2 of the outlet-side end surface 10E out is may be the same with each other, from each other It may be different. Further, each of the height H 3 of the sealing portion of the central portion R 1 of the outlet-side end surface 10E out is may be mutually the same or may be different from each other. Furthermore, each of the height H 4 of the sealing portion of the peripheral portion R 2 of the outlet-side end surface 10E out may be mutually the same or may be different from each other.
- the honeycomb filter according to the second embodiment has the same cross-sectional shape as that of the first embodiment (see FIG. 3) in the axially central portion, and thus N io1 and N ii1 of the central portion R 1 and the peripheral portion R. the second N io2 and N ii2 is the same as the first embodiment, respectively.
- the columnar body is not disposed in the flow path, but the partition wall W itself is deformed to form the sealing portions 70P in1 , 70P in2 , 70P out1. , 70P out2 .
- the cross-sectional area of the unsealed flow path adjacent to the flow path to be sealed is larger at each opening OP than the cross-sectional area of the central portion in the axial direction of each flow path. 7 and 8, the cross-sectional shape of the flow path at the axial center is indicated by a dotted line.
- outlet passage 70H out is sealed by a sealing portion 70P in1, this sealing
- the section 70P in1 has a cross-sectional area at the opening OP of the inlet-side flow path 70H in adjacent to the outlet-side flow path 70H out larger than the cross-sectional area at the central portion in the axial direction.
- outlet passage 70H out is sealed by a sealing portion 70P in2
- the sealing portion 70P in2 expands the cross-sectional area at the opening OP of the inlet-side flow path 70H in adjacent to the outlet-side flow path 70H out as compared with the cross-sectional area at the central portion in the axial direction.
- inlet passage 70H in is sealed by a sealing portion 70P out1
- the sealing The section 70P out1 has a cross-sectional area at the opening OP of the outlet-side flow path 70H out adjacent to the inlet-side flow path 70H in larger than the cross-sectional area at the central portion in the axial direction.
- inlet passage 70H in is sealed by a sealing portion 70P out2
- the sealing portion 70P out2 expands the cross-sectional area at the opening OP of the outlet-side flow path 70H out adjacent to the inlet-side flow path 70H in compared to the cross-sectional area at the central portion in the axial direction.
- the gas passage resistance is higher in the peripheral portion R 2 than in the central portion R 1 . Therefore, it is possible to control the gas flow between the central portion R 1 and the peripheral portion R 2 and.
- the partition walls forming the outlet passage 70H out can function as effectively filtering walls.
- Such a honeycomb filter can be manufactured by the following method. First, a ceramic raw material is extruded by an extruder, and the obtained molded body is dried as necessary, and then cut to a predetermined length to form a honeycomb having a cross-sectional shape as shown in FIG. Manufacture the body.
- the honeycomb molded body has a outlet passage 70H out of the inlet side flow passage 70H in and non-sealing the unsealed opening while penetrating respectively.
- the inlet-side end surface 10E in the resulting unfired honeycomb formed body 100 ' for sealing the outlet passage 70H out.
- a sealing jig 400 having a large number of conical projections 410a is prepared.
- the sealing jig 400 may have a triangular pyramidal protrusion corresponding to the central portion R 1 at the center A 1 and a rhombic pyramidal protrusion corresponding to the peripheral portion R 2 at the periphery A 2 .
- each of the projections 410a is to enter the inlet passage 70H in in, moving the sealing jig 400.
- the partition wall of the inlet-side flow path 70H in is deformed and the cross-sectional area of the flow path is enlarged, while the cross-sectional area of the outlet-side flow path 70H out is reduced.
- the cross-sectional shape of the inlet-side flow path 70H in is a triangle in the central portion R 1 and a rhombus in the peripheral portion, and the outlet-side flow path 70H out is between the partition walls. Is completely crimped and sealed. Note that vibration or ultrasonic waves may be applied to the sealing jig 400.
- the inlet side flow path 70H in of the outlet side end face 10E out is sealed with another sealing jig.
- the projection of the sealing jig to be inserted into the outlet side channel 70H out can be formed in, for example, a hexagonal pyramid shape.
- the honeycomb filter 100 according to the present embodiment is obtained by firing the honeycomb formed body 100 ′ whose both end faces are sealed. Further, the honeycomb formed body may be dried before firing.
- the gas passage resistance is lower in the peripheral portion R 2 than in the central portion R 1 . Therefore, the gas flow is controlled so that the gas flow is concentrated on the peripheral portion R 2 as compared with the central portion R 1 .
- N io2 ⁇ N io1
- the values of N io1 and N io2 are not particularly limited as long as they are any natural numbers.
- N io1 ⁇ N io2 is set between the central portion R 1 as the first region and the peripheral portion R 2 as the second region, but is not limited thereto.
- the right half of the filter cross section may be the first region R 1 and the left half may be the second region R 2 , and the position and shape of the two regions (R 1 and R 2 ) It can be appropriately changed depending on the reproduction method. It is also possible to set three or more areas.
- all the sealing portions are provided with columnar bodies, and in the second embodiment, all the sealing portions are in the form of enlarging the cross-sectional area of the adjacent channel, but the two forms are mixed. Also good.
- P2 / P1 1.7321.
- the hydraulic equivalent diameter DH of the P1 / exit side flow path is less than 3.5.
- the hydraulic equivalent diameter is 4 ⁇ (channel cross-sectional area) / (channel immersion side length).
- the ratio exceeds 3.5, it indicates that the outlet-side flow path is relatively small, and the pressure loss may increase.
- an average hydraulic equivalent diameter may be used.
- P1 / DH 1.29 to 3.25 in the first region and the second region, respectively.
- the total number of inlet side channels / total number of outlet side channels is greater than one.
- the ratio is 1, a checker pattern in a so-called square arrangement is obtained.
- the ratio is greater than 1, the total cross-sectional area of the inlet-side flow path can be made larger than the total cross-sectional area of the outlet-side flow path.
- the volume that can be collected increases.
- the ratio is 2 in the first region, and the ratio is 3 in the second region.
- the honeycomb filter may not be a cylindrical body, but may be another pillar (for example, a prism or an elliptical cylinder), the number of channels and the diameter are not particularly limited, and the cross-sectional shape of each channel is also limited to a hexagon. Further, the arrangement of the flow path and the like are not limited to the above embodiment.
- the cell density can be, for example, 100 to 800 cpsi, preferably 200 to 600 cpsi.
- Example 1 Filter size: cylinder with outer diameter of 5.66 inches and length of 6 inches
- Flow path arrangement Six flow paths (hexagons) were adjacent to each other through a partition wall around one flow path (hexagon). .
- Soot was deposited on each filter at a soot generation rate of 10 g / h, a gas flow rate of 250 kg / h, and a gas temperature of 240 ° C., and a pressure loss was measured when 8 g / L of soot was deposited on each filter.
- the amount of soot deposited was calculated by measuring the filter weight before and after soot deposition. Table 1 shows each pressure loss when the pressure loss of Comparative Example 1 is 1.
Landscapes
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Filtering Materials (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
- Processes For Solid Components From Exhaust (AREA)
Abstract
Description
前記入口側流路及び前記出口側流路に平行な軸方向における柱体の中央部は、
入口側流路に隣接する出口側流路の数がいずれもNio1(Nio1はいずれかの自然数)である第1領域、及び、
入口側流路に隣接する出口側流路の数がいずれもNio2(Nio2はいずれかの自然数)であり、Nio2≠Nio1を満たす第2領域を有する。
前記軸方向における柱体の中央部の前記第1領域及び前記第2領域において、出口側流路は他の出口側流路とは隣接しない。
(第1実施形態)
本実施形態に係るハニカムフィルタ100は、図1に示すような円柱体10を備える。円柱体10は、入口側端面10Ein及び出口側端面10Eoutを有する。この円柱体10は、円柱体10の中心軸を含む中央部(第1領域)R1、及び、円柱体10の中央部R1の周りの環状の部分である周辺部(第2領域)R2を有しており、これらの領域間では、入口側端面10Einに開口部を有する入口側流路70Hin、及び出口側端面10Eoutに開口部を有する出口側流路70Houtの配置が互いに異なっている。
ここで、本明細書において、「2つの流路が隣接する」とは、2つの流路が1つの隔壁を介してその隔壁の厚み方向に隔てられることを意味する。いわゆるスクエア流路配置において斜めの関係に位置する2つの流路は互いに隣接する流路ではない。
続いて、図7~図10を参照して、第2実施形態に係るハニカムフィルタについて説明する。本実施形態では、両端面の構造のみが異なるので、これについてのみ説明する。
例えば、上記実施形態では、中央部R1でNio1=3、Nii1=3、周辺部R2でNio2=2、Nii2=4であるが、中央部と周辺部との間で配置を入れ替えて、中央部R1でNio1=2、Nii1=4、周辺部R2でNio2=3、Nii2=3とすることもできる。この場合、ガスの通過抵抗は中央部R1に比べて周辺部R2が低くなる。したがって、中央部R1に比べて周辺部R2にガスの流れが集中するようにガス流れが制御される。この場合、再生時等に高温ガスを外周部に選択的に供給したり、周辺部にカーボン粒子を選択的に捕集させて再生時に周辺部で燃焼熱の発生を増加させることなどができる。
また、Nio2≠Nio1であれば、Nio1及びNio2の値はいずれかの自然数であれば特に限定されない。
上記第1及び第2実施形態であれば、P2/P1=1.7321となる。
(実施例1)
フィルタサイズ:外径5.66インチ、長さ6インチの円柱
流路の配置:1つの流路(六角形)の周りにそれぞれ6つの流路(六角形)が隔壁を介して隣接していた。中央部R1(半径0.75R以内)でNio1=2、Nii1=4、周辺部R2(半径0.75Rより外側)でNio2=3、Nii2=3、P2/P1=1.73、中央部R1でのP1/DH=2.44、周辺部R2でのP1/DH=1.88、中央部R1及び周辺部R2を合わせた領域の軸に垂直な断面の面積がハニカムフィルタの全断面積に占める割合=0.929
材料:多孔質チタン酸アルミニウム
流路の配置:中央部R1(半径0.75R以内)でNio1=3、Nii1=3、周辺部R2(半径0.75Rより外側)でNio2=2、Nii2=4:図2~図6と同様、中央部R1でのP1/DH=1.88、周辺部R2でのP1/DH=2.44、中央部R1及び周辺部R2を合わせた領域の軸に垂直な断面の面積がハニカムフィルタの全断面積に占める割合=0.899
これ以外は、実施例1と同じとした。
流路の配置:全面的にNio2=3、Nii2=3、中央部R1でのP1/DH=1.88、周辺部R2でのP1/DH=1.88、中央部R1及び周辺部R2を合わせた領域の軸に垂直な断面の面積がハニカムフィルタの全断面積に占める割合=0.938
これ以外は、実施例1と同じとした。
煤発生速度10g/h、ガス流量250kg/h、ガス温度240℃にて各フィルタに対して煤を堆積させ、8g/Lの煤が各フィルタに堆積したときの圧力損失を測定した。煤の堆積量は、煤の堆積前後でのフィルタ重量を測定することにより算出した。比較例1の圧力損失を1としたときのそれぞれの圧力損失を表1に示す。
上述のようにして煤を各フィルタに約8~9g/Lの煤を堆積させた後、ガス流量約105kg/h、ガス温度約680℃で510秒間保持して媒を燃焼させた。そして、再生(燃焼)前後の煤堆積量の変化を再生前の煤堆積量で割ることにより再生効率を求めた。また、フィルタ出口側端面から25mmの位置に中心軸から1.75cm間隔で熱電対を挿入することにより再生時の最大温度勾配を測定した。結果を表1に示す。
Claims (9)
- 入口側端面、出口側端面、前記入口側端面に開口部を有し前記出口側端面に封口部を有する複数の入口側流路、及び、前記出口側端面に開口部を有し前記入口側端面に封口部を有する複数の出口側流路を有する多孔質の柱体を備え、
前記入口側流路及び前記出口側流路に平行な軸方向における柱体の中央部は、
入口側流路に隣接する出口側流路の数がいずれもNio1(Nio1はいずれかの自然数)である第1領域、及び、
入口側流路に隣接する出口側流路の数がいずれもNio2(Nio2はいずれかの自然数)であり、Nio2≠Nio1を満たす第2領域を有し、
前記軸方向における柱体の中央部の前記第1領域及び前記第2領域において、出口側流路は他の出口側流路とは隣接しない、ハニカムフィルタ。 - 前記出口側端面の前記第1領域及び前記第2領域のそれぞれにおいて、前記出口側流路の開口部形状の重心と、前記出口側流路に最も近い他の出口側流路の開口部形状の重心との重心間距離をP1とし、前記出口側流路の開口部形状の重心と、前記出口側流路に2番目に近い他の出口側流路の開口部形状の重心との重心間距離をP2としたときに、P2/P1が2未満である、請求項1に記載のハニカムフィルタ。
- 前記第1領域及び前記第2領域のそれぞれにおいて、前記入口側流路の総数/前記出口側流路の総数が1より大きい、請求項1又は2に記載のハニカムフィルタ。
- 前記軸方向における柱体の中央部の前記第1領域及び前記第2領域のそれぞれにおいて、前記入口側流路又は前記出口側流路の前記軸に垂直な断面の少なくともいずれか一方の形状が正六角形である、請求項1~3のいずれか1項に記載のハニカムフィルタ。
- 前記第1領域及び前記第2領域のそれぞれは、前記入口側端面及び前記出口側端面の両方が封口された流路を有さない、請求項1~4のいずれか1項に記載のハニカムフィルタ。
- 前記第1領域及び第2領域を合わせた領域の前記軸に垂直な断面における面積が、前記ハニカムフィルタの全断面積の80%以上を占める、請求項1~5のいずれか1項に記載のハニカムフィルタ。
- 前記入口側流路及び前記出口側流路の封口部は、それぞれ前記流路に充填された柱状体を有する、請求項1~6のいずれか1項に記載のハニカムフィルタ。
- 前記柱体の両端面における前記入口側流路及び前記出口側流路の開口部の断面積は、それぞれその軸方向中央部の断面積に比べて大きい、請求項1~6のいずれか1項に記載のハニカムフィルタ。
- 前記第1領域は前記入口側流路及び前記出口側流路に平行な前記柱体の中心軸を含み、前記第2領域は前記第1領域を取り囲む、請求項1~8のいずれか1項に記載のハニカムフィルタ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/122,964 US20170072358A1 (en) | 2014-03-03 | 2015-03-02 | Honeycomb filter |
JP2016506481A JPWO2015133435A1 (ja) | 2014-03-03 | 2015-03-02 | ハニカムフィルタ |
EP15758948.2A EP3115096A1 (en) | 2014-03-03 | 2015-03-02 | Honeycomb filter |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014040782 | 2014-03-03 | ||
JP2014-040782 | 2014-03-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015133435A1 true WO2015133435A1 (ja) | 2015-09-11 |
Family
ID=54055241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/056084 WO2015133435A1 (ja) | 2014-03-03 | 2015-03-02 | ハニカムフィルタ |
Country Status (4)
Country | Link |
---|---|
US (1) | US20170072358A1 (ja) |
EP (1) | EP3115096A1 (ja) |
JP (1) | JPWO2015133435A1 (ja) |
WO (1) | WO2015133435A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3235565A4 (en) * | 2014-12-17 | 2018-08-01 | IBIDEN Co., Ltd. | Honeycomb structured body |
WO2020075605A1 (ja) * | 2018-10-12 | 2020-04-16 | イビデン株式会社 | ハニカム構造体 |
JP2021504105A (ja) * | 2017-11-21 | 2021-02-15 | コーニング インコーポレイテッド | 高灰ストレージの、パターンで塞がれるハニカム体及びパティキュレートフィルタ |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1057730A (ja) * | 1996-08-26 | 1998-03-03 | Matsushita Electric Ind Co Ltd | セラミックハニカムフィルタ及びその製造方法 |
JP2003254035A (ja) * | 2002-03-06 | 2003-09-10 | Toyota Motor Corp | パティキュレートフィルタ |
WO2007066671A1 (ja) * | 2005-12-07 | 2007-06-14 | Ngk Insulators, Ltd. | ハニカム構造体及びその製造方法 |
JP2007154870A (ja) * | 2005-11-10 | 2007-06-21 | Denso Corp | 排ガス浄化フィルタ |
JP2007222858A (ja) * | 2006-01-27 | 2007-09-06 | Hitachi Metals Ltd | セラミックハニカムフィルタ |
JP2009101344A (ja) * | 2007-10-05 | 2009-05-14 | Denso Corp | 排ガス浄化フィルタ及びその製造方法 |
JP2009240864A (ja) * | 2008-03-28 | 2009-10-22 | Ngk Insulators Ltd | ハニカム構造体、及びその製造方法 |
JP2010511126A (ja) * | 2006-11-29 | 2010-04-08 | コーニング インコーポレイテッド | 部分ウォールフロー型フィルタおよびディーゼル排気装置および方法 |
-
2015
- 2015-03-02 US US15/122,964 patent/US20170072358A1/en not_active Abandoned
- 2015-03-02 JP JP2016506481A patent/JPWO2015133435A1/ja active Pending
- 2015-03-02 EP EP15758948.2A patent/EP3115096A1/en not_active Withdrawn
- 2015-03-02 WO PCT/JP2015/056084 patent/WO2015133435A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1057730A (ja) * | 1996-08-26 | 1998-03-03 | Matsushita Electric Ind Co Ltd | セラミックハニカムフィルタ及びその製造方法 |
JP2003254035A (ja) * | 2002-03-06 | 2003-09-10 | Toyota Motor Corp | パティキュレートフィルタ |
JP2007154870A (ja) * | 2005-11-10 | 2007-06-21 | Denso Corp | 排ガス浄化フィルタ |
WO2007066671A1 (ja) * | 2005-12-07 | 2007-06-14 | Ngk Insulators, Ltd. | ハニカム構造体及びその製造方法 |
JP2007222858A (ja) * | 2006-01-27 | 2007-09-06 | Hitachi Metals Ltd | セラミックハニカムフィルタ |
JP2010511126A (ja) * | 2006-11-29 | 2010-04-08 | コーニング インコーポレイテッド | 部分ウォールフロー型フィルタおよびディーゼル排気装置および方法 |
JP2009101344A (ja) * | 2007-10-05 | 2009-05-14 | Denso Corp | 排ガス浄化フィルタ及びその製造方法 |
JP2009240864A (ja) * | 2008-03-28 | 2009-10-22 | Ngk Insulators Ltd | ハニカム構造体、及びその製造方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3235565A4 (en) * | 2014-12-17 | 2018-08-01 | IBIDEN Co., Ltd. | Honeycomb structured body |
JP2021504105A (ja) * | 2017-11-21 | 2021-02-15 | コーニング インコーポレイテッド | 高灰ストレージの、パターンで塞がれるハニカム体及びパティキュレートフィルタ |
JP7068453B2 (ja) | 2017-11-21 | 2022-05-16 | コーニング インコーポレイテッド | 高灰ストレージの、パターンで塞がれるハニカム体及びパティキュレートフィルタ |
US11536176B2 (en) | 2017-11-21 | 2022-12-27 | Corning Incorporated | High ash storage, pattern-plugged, honeycomb bodies and particulate filters |
WO2020075605A1 (ja) * | 2018-10-12 | 2020-04-16 | イビデン株式会社 | ハニカム構造体 |
Also Published As
Publication number | Publication date |
---|---|
US20170072358A1 (en) | 2017-03-16 |
EP3115096A1 (en) | 2017-01-11 |
JPWO2015133435A1 (ja) | 2017-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1423266B1 (en) | Honeycomb with varying channel size and die for manufacturing | |
US7384442B2 (en) | Ceramic wall-flow filter including heat absorbing elements and methods of manufacturing same | |
US8236084B2 (en) | Ceramic radial wall flow particulate filter | |
CN109562315B (zh) | 矩形出口蜂窝结构、颗粒过滤器、挤出模具及其制造方法 | |
US9555355B2 (en) | Manufacturing method for honeycomb structure and honeycomb structure | |
CN110475599B (zh) | 图案堵塞的蜂窝体、微粒过滤器及用于其的挤出模头 | |
JP2002250216A (ja) | ディーゼル粒子フィルタ | |
CN107441837B (zh) | 具有弯曲网的基材以及包含该基材的颗粒过滤器 | |
JP6110751B2 (ja) | 目封止ハニカム構造体 | |
WO2016009841A1 (ja) | ハニカムフィルタ | |
WO2015133435A1 (ja) | ハニカムフィルタ | |
JP6887303B2 (ja) | ハニカムフィルタ | |
US11033848B2 (en) | Honeycomb filter | |
US10905992B2 (en) | Honeycomb structural body, method for manufacturing the same, and exhaust gas purification filter | |
JP2018167200A (ja) | ハニカムフィルタ | |
US10918988B2 (en) | Honeycomb filter | |
JP6110750B2 (ja) | 目封止ハニカム構造体 | |
JP2018167199A (ja) | ハニカムフィルタ | |
US20180326338A1 (en) | Honeycomb filter | |
JP6639978B2 (ja) | ハニカムフィルタ | |
JP2018030072A (ja) | ハニカムフィルタ | |
JP2017164690A (ja) | ハニカムフィルタ | |
JP6635757B2 (ja) | ハニカムフィルタ | |
JP2017001234A (ja) | 押出成形用金型 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15758948 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016506481 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15122964 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015758948 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015758948 Country of ref document: EP |