[go: up one dir, main page]

WO2015133295A1 - Constant current circuit - Google Patents

Constant current circuit Download PDF

Info

Publication number
WO2015133295A1
WO2015133295A1 PCT/JP2015/054749 JP2015054749W WO2015133295A1 WO 2015133295 A1 WO2015133295 A1 WO 2015133295A1 JP 2015054749 W JP2015054749 W JP 2015054749W WO 2015133295 A1 WO2015133295 A1 WO 2015133295A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
current
amount
circuit
path
Prior art date
Application number
PCT/JP2015/054749
Other languages
French (fr)
Japanese (ja)
Inventor
佑典 矢野
佑樹 杉沢
克馬 塚本
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2015133295A1 publication Critical patent/WO2015133295A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is DC
    • G05F3/10Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors

Definitions

  • the present invention relates to a constant current circuit that draws a constant amount of current from the outside.
  • constant current circuits there is a constant current circuit having a function capable of changing the current drawn from the outside.
  • This constant current circuit is used when the amount of current supplied to an electrical device must be adjusted according to the ambient temperature, or depending on the variation in input / output characteristics of each large-scale electrical device. Used when the amount of current supplied to the device must be fine tuned.
  • a current mirror circuit is often used for the constant current circuit.
  • a current mirror circuit composed of an NPN-type first bipolar transistor and an NPN-type second bipolar transistor, the collector and the voltage between the base and the emitter of the first bipolar transistor and the second bipolar transistor, respectively. The amount of current flowing between the emitters changes as well.
  • the current mirror circuit is provided with a first path through which current flows through the collector and emitter of the first bipolar transistor and a second path through which current flows through the collector and emitter of the second bipolar transistor. Further, the bases of the first bipolar transistor and the second bipolar transistor are connected to each other, and the collector and the base are connected in the first bipolar transistor. The emitters of the first bipolar transistor and the second bipolar transistor are grounded.
  • the constant current circuit described in Patent Document 1 further uses N (N: natural number) bipolar transistors in which the amount of current between the collector and the emitter with respect to the voltage between the base and the emitter changes in the same manner as the second bipolar transistor. Yes.
  • N bipolar transistors the collector is connected to the collector of the second bipolar transistor and the emitter is connected to the emitter of the second bipolar transistor.
  • the base of each of the N bipolar transistors is connected to the base of the second bipolar transistor through a switch. Accordingly, N + 1 bipolar transistors including the second bipolar transistor are provided in the second path.
  • Each of the N bipolar transistors connected as described above operates in the same manner as the second bipolar transistor. For this reason, for example, when the circuit is configured such that the same amount of current as the current flowing in the first path flows between the collector and the emitter of the second bipolar transistor, k (N or less) in the N switches When (natural number) are turned on, an amount of current obtained by multiplying the amount of current flowing through the first path by k + 1 flows through the second path. In the constant current circuit described in Patent Document 1, the amount of current flowing through the second current path can be changed by adjusting the number of switches to be turned on.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a small and inexpensive constant current circuit that is easy to manufacture.
  • the constant current circuit according to the present invention is a constant current circuit in which a predetermined number of times the amount of current flowing through the first current path flows from the outside into the second current path, and the amount of current flowing through the first current path. It is characterized by having a change part which changes.
  • a current mirror circuit is used so that an amount of current obtained by multiplying the amount of current flowing through the first current path by a predetermined number flows into the second current path from the outside. Then, the amount of current flowing through the first current path is changed. As a result, the amount of current flowing through the second current path is also changed. Therefore, for example, even when a current mirror circuit is used, only two transistors are required, so that the manufacturing is easy, the circuit scale is small, and the manufacturing is performed at low cost.
  • the constant current circuit includes a first resistor provided in the first current path, and a second resistor having one end connected to the first current path, and between the both ends of the first current path.
  • a predetermined voltage is applied to the first current path by changing the potential at the other end of the second resistor and opening the other end of the second resistor.
  • the configuration is such that the amount of current flowing in the is changed.
  • the first resistor is provided in the first current path, and a predetermined voltage is applied between both ends of the first current path. Thereby, a current flows from one end of the first current path through the first resistor. Furthermore, one end of the second resistor is connected to the first current path.
  • the first resistor and the second resistor A resistor is connected in parallel. Since the combined resistance value of the first resistor and the second resistor connected in parallel is smaller than the resistance value of the first resistor, a large amount of current flows through the first current path.
  • the resistance value of the first resistor is higher than the combined resistance value of the first resistor and the second resistor, the resistance value in the first current path increases and the amount of current flowing in the first current path decreases.
  • the potential at one end of the second resistor is lower than the potential at the other end of the first resistor, a part of the current flowing through the first current path flows through the second resistor. The current flowing through the current further decreases.
  • the amount of current flowing through the first current path is changed. Therefore, the amount of current flowing through the first current path is easily changed.
  • a voltage is applied across the first current path, and the changing unit adjusts a height of the voltage to adjust a current flowing through the first current path. It is configured to change the amount.
  • a voltage is applied to one end of the first current path, whereby a current flows through the first current path. Then, the amount of current flowing through the first current path is changed by adjusting the height of the voltage applied across the first current path. For this reason, it is possible to change the amount of current flowing through the first current path with a simple configuration.
  • FIG. 2 is a circuit diagram of a constant current circuit in the first embodiment.
  • FIG. It is explanatory drawing of the operation
  • FIG. 4 is a circuit diagram of a constant current circuit in a second embodiment.
  • FIG. 1 is a circuit diagram of a constant current circuit according to the first embodiment.
  • This constant current circuit 1 is suitably mounted on a vehicle and includes an input terminal T1.
  • the constant current circuit 1 sucks current from the input terminal T1.
  • the constant current circuit 1 includes a microcomputer (hereinafter referred to as a microcomputer) 10, a current mirror circuit 11, and resistors R1, R2, R3, and R4 in addition to the input terminal T1.
  • the current mirror circuit 11 has NPN-type bipolar transistors 20 and 21.
  • the microcomputer 10 has a first end, a second end, a third end, and a fourth end.
  • the first end, the second end, and the third end are connected to one ends of the resistors R1, R2, and R3, and the fourth end is grounded.
  • a predetermined voltage Vcc for example, 5 volts is applied to the first end of the microcomputer 10 and one end of the resistor R1.
  • the other end of the resistor R1 is connected to the other ends of the resistors R2 and R3 and one end of the resistor R4.
  • the other end of the resistor R4 is connected to the collector and base of the bipolar transistor 20 and the base of the bipolar transistor 21.
  • the emitters of the bipolar transistors 20 and 21 are grounded, and the collector of the bipolar transistor 21 is connected to an input terminal T1 to which current is input from the outside.
  • the constant current circuit 1 is provided with a first current path through which the current flows from one end of the resistor R1 to the resistor R4 and the collector and emitter of the bipolar transistor 20 in this order. Further, the constant current circuit 1 is provided with a second current path through which current flows from the input terminal T1 in the order of the collector and emitter of the bipolar transistor 21.
  • the resistor R1 provided in the first current path corresponds to the first resistor.
  • the amount of current flowing between the collector and the emitter varies in a large / small manner according to the high / low voltage between the base and the emitter.
  • the amount of current flowing between the collector and emitter of the bipolar transistor 21 is multiplied by a predetermined number between the collector and emitter of the bipolar transistor 21. Amount of current flows.
  • the voltage Vcc is applied between both ends of the first current path, that is, between one end of the resistor R1 and the emitter of the bipolar transistor 20. Thereby, a current flows through the first current path by applying the voltage Vcc. Since the same voltage is applied to the bases of the bipolar transistors 20 and 21, a current obtained by multiplying the amount Iref of the current flowing through the first current path by a predetermined number of times is supplied from the outside via the input terminal T 1. Flow into the path.
  • the voltage Vcc is generated by a regulator (not shown), for example.
  • the regulator generates a predetermined voltage Vcc from an output voltage of a battery (not shown).
  • the microcomputer 10 adjusts the potential at one end and opens the one end of each of the resistors R2 and R3 whose other ends are connected to the first current path, so that the current flowing through the first current path is reduced. Change the quantity Iref. Specifically, the microcomputer 10 applies a voltage Vcc based on the potential of the emitter of the bipolar transistor 20 to one end of each of the resistors R2 and R3, or grounds one end to thereby set the potential at one end. adjust. Each of the resistors R2 and R3 functions as a second resistor.
  • FIG. 2 is an explanatory diagram of the operation performed by the constant current circuit.
  • the current amount Iref when the microcomputer 10 adjusts and releases the potential described above can be calculated from the circuit shown in FIG.
  • the voltage Vcc is applied to one end of the resistor Ra
  • one end of each of the resistors R4 and Rb is connected to the other end of the resistor Ra
  • the other end of the resistor Rb is grounded.
  • the current mirror circuit 11, the resistor R4, and the input terminal T1 are connected in the same manner as the constant current circuit 1 shown in FIG.
  • the microcomputer 10 adjusts the potential at one end and opens the one end of each of the resistors R2 and R3, so that the resistance values ra and rb of the resistors Ra and Rb change, and the current amount Iref. Is adjusted.
  • the resistance value of the resistor R4 is r4 and the voltage between the base and the emitter of the bipolar transistor 20 is Vbe
  • the current amount Iref is (rb ⁇ Vcc ⁇ (ra + rb) ⁇ Vbe) as shown in FIG. (rb ⁇ r4 + ra ⁇ r4 + ra ⁇ rb) divided by the value.
  • the output state that the microcomputer 10 outputs to one end of the resistor R2 is a state where the voltage Vcc is applied to one end of the resistor R2, a state where one end of the resistor R2 is opened, and one end of the resistor R2 is grounded.
  • the output state that the microcomputer 10 outputs to one end of the resistor R3 is the same as the output state that the microcomputer 10 outputs to one end of the resistor R2.
  • the resistor Ra shown in FIG. I is a combined resistance of resistors R1, R2, and R3 connected in parallel, and the resistance value of the resistor Rb is infinite.
  • Iref (Vcc ⁇ Vbe) / (ra + r4) (1)
  • the combined resistance value of the resistors R1, R2, and R3 connected in parallel is smaller than the resistance values of the resistors R1, R2, and R3, and further, the combined resistance value of the two resistors R1, R2, and R3 connected in parallel. It is smaller than any of the resistance values of the resistors. For this reason, the current amount Iref is large.
  • the resistor Ra shown in FIG. 2 is a combined resistor of the resistors R1 and R3 connected in parallel, and the resistance value of the resistor Rb is infinite.
  • the combined resistance value of the resistors R1, R3 connected in parallel is larger than the combined resistance value of the resistors R1, R2, R3 connected in parallel. Therefore, as can be seen from the equation (1), the current amount Iref when one end of the resistor R2 is opened while the voltage Vcc is applied to one end of the resistor R3 is equal to one end of each of the resistors R2 and R3. Is smaller than the current amount Iref when the voltage Vcc is applied.
  • resistor R2 when one end of the resistor R2 is grounded in a state where the voltage Vcc is applied to one end of the resistor R3, as shown in the equivalent circuit shown on the right side of FIG. Is a combined resistance of resistors R1 and R3 connected in parallel, and resistor Rb is resistor R2.
  • the combined resistance value of the resistors R1, R2, and R3 connected in parallel is smaller than the combined resistance value of the resistors R1 and R2 connected in parallel. Therefore, in a state where the voltage Vcc is applied to one end of the resistor R2, the current amount Iref (see the left side of FIG. 3) when the voltage Vcc is applied to one end of the resistor R3 is It is larger than the current amount Iref (see the left side of FIG. 4) when the circuit is opened.
  • the resistance value of the resistor Rb is infinite. Since the resistance value of the resistor R1 is larger than the combined resistance value of the resistors R1 and R2 connected in parallel, the current when one end of each of the resistors R2 and R3 is opened is understood from the equation (1).
  • the amount Iref is smaller than the current amount Iref when the voltage Vcc is applied to one end of the resistor R2 in a state where one end of the resistor R3 is open.
  • the combined resistance value of the resistors R1 and R3 connected in parallel is smaller than the resistance value of the resistor R1. For this reason, in a state where one end of the resistor R2 is open, the current amount Iref (see the center of FIG. 3) when the voltage Vcc is applied to one end of the resistor R3 is open at one end of the resistor R3. It is larger than the current amount Iref in the case (see the center of FIG. 4).
  • the resistor Ra shown in FIG. 2 is the resistor R1, as can be seen from the equivalent circuit shown on the right side of FIG.
  • the resistor Rb is the resistor R2.
  • the current amount Iref when one end of the resistor R2 is grounded while the resistor R3 is open is smaller than the current amount Iref when one end of each of the resistors R2 and R3 is open. .
  • the combined resistance value of the resistors R1 and R3 connected in parallel is smaller than the resistance value of the resistor R1. Therefore, in the state where one end of the resistor R2 is grounded, the current amount Iref (see the right side of FIG. 3) when the voltage Vcc is applied to one end of the resistor R3 is such that one end of the resistor R3 is open. In this case, it is larger than the current amount Iref (see the right side of FIG. 4).
  • the resistor Ra shown in FIG. Is a combined resistance of resistors R1 and R2, and the resistor Rb is a resistor R3.
  • the current amount Iref is the largest in a state where one end of the resistor R3 is grounded.
  • the resistor Ra shown in FIG. 2 is the resistor R1, as can be seen from the equivalent circuit shown in the center of FIG.
  • the resistor Rb is the resistor R3. Since the resistance value of the resistor R1 is larger than the combined resistance value of the resistors R1 and R2 connected in parallel, the current amount Iref when one end of the resistor R2 is opened while one end of the resistor R3 is grounded is This is smaller than the current amount Iref when the voltage Vcc is applied to one end of the resistor R2 in a state where one end of the resistor R3 is grounded.
  • the current amount Iref (see the center of FIG. 4) when one end of the resistor R3 is opened is equal to the current amount Iref when one end of the resistor R3 is grounded. (See the center in FIG. 5).
  • the resistor Rb is a combined resistor of resistors R2 and R3 connected in parallel.
  • the combined resistance value of the resistors R2 and R3 connected in parallel is smaller than the resistance value of the resistor R3.
  • the resistance value of the resistor R2 is larger than the combined resistance value of the resistors R2 and R3 connected in parallel. For this reason, in a state where one end of the resistor R2 is grounded, the current amount Iref (see the right side of FIG. 4) when one end of the resistor R3 is opened is the current when one end of the resistor R3 is grounded. The amount is larger than the amount Iref (see the right side of FIG. 5).
  • the current amount Iref when the microcomputer 10 applies the voltage Vcc to one end of the resistor R2 is the largest.
  • the amount of current Iref when the microcomputer 10 opens one end of the resistor R2 is large.
  • the amount of current Iref when the microcomputer 10 grounds one end of the resistor R2 is the smallest.
  • the microcomputer 10 changes the output state to one end of the resistor R3 in a state where the output state to one end of the resistor R2 is fixed, the output state to one end of the resistor R3 is also fixed.
  • the state changes in the same manner as when the microcomputer 10 changes the output state to one end of the resistor R2.
  • the microcomputer 10 changes the amount of current Iref by either adjusting the potential at one end and opening at one end of each of the resistors R2 and R3. Since the constant current circuit 1 only needs to include two bipolar transistors 20 and 21, the constant current circuit 1 can be manufactured easily and inexpensively, and the scale of the constant current circuit 1 is small. In addition, the microcomputer 10 can easily change the amount of current flowing through the first current path by either adjusting the potential at one end or opening the one end of each of the resistors R2 and R3. The microcomputer 10 functions as a changing unit.
  • the microcomputer 10 can adjust the amount of current flowing from the outside into the second current path via the input terminal T1 by changing the current amount Iref.
  • the number of values of the current amount Iref that can be changed is nine.
  • the voltage applied by the microcomputer 10 to one end of the resistors R2 and R3 in order to adjust the potential is not limited to the voltage Vcc, and may be a predetermined voltage having a height different from the voltage Vcc.
  • the voltage applied to one end of each of the resistors R2 and R3 may be different.
  • the position where the other ends of the resistors R2 and R3 are connected is not limited to the other end of the resistor R1, and may be connected to the first current path.
  • the other ends of the resistors R2 and R3 may be connected to one end of the resistor R1, and the first end of the microcomputer 10 may be connected to the other end of the resistor R1.
  • the microcomputer 10 adjusts the potential at one end of each of the resistors R2 and R3, for example, by connecting one end to the other end of the resistor R1 or by grounding one end.
  • the number of resistors whose other end is connected to the first current path and potential adjustment at one end and opening of the other end are not limited to two, may be one or three or more. The greater the number, the greater the number of values of the current amount Iref that can be changed. Therefore, the microcomputer 10 can adjust the current amount Iref in detail.
  • FIG. 6 is a circuit diagram of a constant current circuit according to the second embodiment.
  • the constant current circuit 3 is different from the constant current circuit 1 according to the first embodiment in the configuration for changing the amount of current flowing through the first current path.
  • the differences between the second embodiment and the first embodiment will be described. Since the other configuration except the configuration to be described later is the same as that of the first embodiment, the same reference numerals are given and the description thereof is omitted.
  • the constant current circuit 3 is suitably mounted on a vehicle, like the constant current circuit 1 in the first embodiment, and includes a current mirror circuit 11, a resistor R4, and an input terminal T1.
  • the bipolar transistors 20 and 21, the input terminal T1, and the resistor R4 of the current mirror circuit 11 are connected as in the first embodiment.
  • the constant current circuit 3 also sucks current from the input terminal T1.
  • the constant current circuit 3 further includes a microcomputer 30 and a D / A converter 31.
  • the microcomputer 30 is connected to the D / A converter 31, and the D / A converter 31 is connected to one end of the resistor R4.
  • a current path through which the current flows from the one end of the resistor R4 on the D / A converter 31 side in the order of the resistor R4 and the collector and emitter of the bipolar transistor 20 is provided as a first current path.
  • the second current path is a current path in which current flows from the input terminal T1 in the order of the collector and emitter of the bipolar transistor 21.
  • the constant current circuit 3 includes the current mirror circuit 11 as in the constant current circuit 1 in the first embodiment, an amount of current obtained by multiplying the amount Iref of the current flowing through the first current path by a predetermined number is externally supplied. , Flows into the second current path via the input terminal T1.
  • the D / A converter 31 applies a voltage between both ends of the first current path, that is, one end of the resistor R 4 and the emitter of the bipolar transistor 20. Thereby, a current flows through the first current path.
  • the D / A converter 31 receives a digital signal from the microcomputer 30 indicating the voltage level to be applied between both ends of the first current path.
  • the D / A converter 31 applies a voltage having a height indicated by the digital signal input from the microcomputer 30 between both ends of the first current path.
  • the microcomputer 30 adjusts the height of the voltage Vda by outputting a digital signal indicating various heights to the D / A converter 31 for the voltage applied between both ends of the first current path. Thereby, the microcomputer 30 changes the current amount Iref.
  • the microcomputer 30 functions as a changing unit in the second embodiment.
  • the constant current circuit 3 only needs to include two bipolar transistors 20 and 21. Therefore, the constant current circuit 3 can be manufactured easily and inexpensively, The scale of the current circuit 3 is small. Further, the current amount Iref is easily changed by the microcomputer 30 adjusting the height of the voltage Vda applied by the D / A converter 31. Therefore, the current amount Iref can be changed with a simple configuration.
  • the microcomputer 10 can adjust the amount of current flowing from the outside into the second current path via the input terminal T1 by changing the current amount Iref.
  • the configuration in which the voltage is applied across the first current path is not limited to the configuration in which the D / A converter 31 applies the voltage across the first current path.
  • a battery voltage (not shown) may be applied to various voltages.
  • a configuration in which a DC / DC converter that transforms into a voltage is applied across both ends of the first current path may be employed.
  • the current mirror circuit 11 is not limited to the configuration using the two bipolar transistors 20 and 21.
  • the current mirror circuit 11 may be configured using two FETs (Field-Effect-Transistor). Good.
  • the two FETs are connected in the same manner as the bipolar transistors 20 and 21.
  • the drain, source, and gate of one FET correspond to the collector, emitter, and base of the bipolar transistor 20
  • the drain, source, and gate of the other FET correspond to the collector, emitter, and base of the bipolar transistor 21.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

 A constant current circuit (1) is provided with: a first current path in which a current flows from one end of a resistor (R1) and through a resistor (R4) and the collector and emitter of a bipolar transistor (20) in that order; and a second current path in which current flows from outside through an input terminal (T1) and through the collector and emitter of a bipolar transistor (21) in that order. Through the second current path flows a current having a value that is a prescribed number of times greater than the current flowing through the first current path. A microcomputer (10) adjusts the potential on one end of the resistors (R2, R3), respectively, or opens one end up so as to change the amount (Iref) of current flowing through the first current path.

Description

定電流回路Constant current circuit
 本発明は、外部から一定量の電流を引き込む定電流回路に関する。 The present invention relates to a constant current circuit that draws a constant amount of current from the outside.
 車両には多数の電気機器が搭載されており、電気機器への給電又は電気機器の動作等を制御するために、一定の電流を外部から引き込む定電流回路が用いられている。 Many electric devices are mounted on the vehicle, and a constant current circuit that draws a constant current from the outside is used in order to control power feeding to the electric device or operation of the electric device.
 このような定電流回路の中には、外部から引き込む電流を変更することができる機能を有する定電流回路がある。この定電流回路は、電気機器に供給している電流の量を周囲温度に応じて調整しなければいけない場合、又は、大量に生産された電気機器夫々が有する入出力特性のばらつきに応じて電気機器に供給される電流の量を微調整しなければならない場合に用いられる。 Among such constant current circuits, there is a constant current circuit having a function capable of changing the current drawn from the outside. This constant current circuit is used when the amount of current supplied to an electrical device must be adjusted according to the ambient temperature, or depending on the variation in input / output characteristics of each large-scale electrical device. Used when the amount of current supplied to the device must be fine tuned.
 定電流回路にはカレントミラー回路がよく用いられる。NPN型の第1バイポーラトランジスタと、NPN型の第2バイポーラトランジスタとによって構成されるカレントミラー回路では、第1バイポーラトランジスタ及び第2バイポーラトランジスタ夫々について、ベース及びエミッタ間の電圧に対して、コレクタ及びエミッタ間を流れる電流の量が同様に変化する。カレントミラー回路には、第1バイポーラトランジスタのコレクタ及びエミッタを介して電流が流れる第1経路と、第2バイポーラトランジスタのコレクタ及びエミッタを介して電流が流れる第2経路とが設けられている。更に、第1バイポーラトランジスタ及び第2バイポーラトランジスタのベースは互いに接続されており、第1バイポーラトランジスタにおいて、コレクタとベースとが接続されている。第1バイポーラトランジスタ及び第2バイポーラトランジスタ夫々のエミッタは接地されている。 A current mirror circuit is often used for the constant current circuit. In a current mirror circuit composed of an NPN-type first bipolar transistor and an NPN-type second bipolar transistor, the collector and the voltage between the base and the emitter of the first bipolar transistor and the second bipolar transistor, respectively. The amount of current flowing between the emitters changes as well. The current mirror circuit is provided with a first path through which current flows through the collector and emitter of the first bipolar transistor and a second path through which current flows through the collector and emitter of the second bipolar transistor. Further, the bases of the first bipolar transistor and the second bipolar transistor are connected to each other, and the collector and the base are connected in the first bipolar transistor. The emitters of the first bipolar transistor and the second bipolar transistor are grounded.
 以上のように構成されたカレントミラー回路では、第1バイポーラトランジスタ及び第2バイポーラトランジスタのベースに同一の電圧が印加されるため、第1経路に流れる電流の量を所定数倍した量の電流が第2経路に流れる。そして、第1経路に一定の電流を流すことで、第2経路にも一定の電流を流すことができる。 In the current mirror circuit configured as described above, since the same voltage is applied to the bases of the first bipolar transistor and the second bipolar transistor, a current obtained by multiplying the amount of current flowing through the first path by a predetermined number of times is generated. Flow to the second path. A constant current can be passed through the second path by passing a constant current through the first path.
 特許文献1に記載の定電流回路では、ベース及びエミッタ間の電圧に対するコレクタ及びエミッタ間の電流量が第2バイポーラトランジスタと同様に変化するN(N:自然数)個のバイポーラトランジスタが更に用いられている。N個のバイポーラトランジスタについて、コレクタは第2バイポーラトランジスタのコレクタに接続され、エミッタは第2バイポーラトランジスタのエミッタに接続されている。N個のバイポーラトランジスタ夫々のベースは、スイッチを介して第2バイポーラトランジスタのベースに接続されている。これにより、第2経路には、第2バイポーラトランジスタを含むN+1個のバイポーラトランジスタが設けられる。 The constant current circuit described in Patent Document 1 further uses N (N: natural number) bipolar transistors in which the amount of current between the collector and the emitter with respect to the voltage between the base and the emitter changes in the same manner as the second bipolar transistor. Yes. For N bipolar transistors, the collector is connected to the collector of the second bipolar transistor and the emitter is connected to the emitter of the second bipolar transistor. The base of each of the N bipolar transistors is connected to the base of the second bipolar transistor through a switch. Accordingly, N + 1 bipolar transistors including the second bipolar transistor are provided in the second path.
 以上のように接続されたN個のバイポーラトランジスタ夫々は第2バイポーラトランジスタと同様に作用する。このため、例えば、第1経路に流れる電流と同量の電流が第2バイポーラトランジスタのコレクタ及びエミッタ間を流れるように回路が構成されている場合において、N個のスイッチ中のk(N以下の自然数)個がオンとなったとき、第1経路に流れる電流の量をk+1倍した量の電流が第2経路に流れる。
 特許文献1に記載の定電流回路では、オンにするスイッチの数を調整することにより、第2電流経路に流れる電流の量を変更することができる。
Each of the N bipolar transistors connected as described above operates in the same manner as the second bipolar transistor. For this reason, for example, when the circuit is configured such that the same amount of current as the current flowing in the first path flows between the collector and the emitter of the second bipolar transistor, k (N or less) in the N switches When (natural number) are turned on, an amount of current obtained by multiplying the amount of current flowing through the first path by k + 1 flows through the second path.
In the constant current circuit described in Patent Document 1, the amount of current flowing through the second current path can be changed by adjusting the number of switches to be turned on.
特開平6-29758号公報JP-A-6-29758
 しかしながら、特許文献1に記載の定電流回路において、第2経路に流れる電流の量を細かく制御するためには、第1経路に少量の電流を流して、多数のバイポーラトランジスタを設ける必要がある。従って、特許文献1に記載の定電流回路には、回路の規模が大きくなり製造費用が嵩むという問題がある。 However, in the constant current circuit described in Patent Document 1, in order to finely control the amount of current flowing through the second path, it is necessary to provide a large number of bipolar transistors by flowing a small amount of current through the first path. Therefore, the constant current circuit described in Patent Document 1 has a problem that the circuit scale increases and the manufacturing cost increases.
 更に、ベース及びエミッタ間の電圧に対するコレクタ及びエミッタ間の電流量が同様に変化する多数のバイポーラトランジスタを設ける必要があるため、製造が難しいという問題がある。 Furthermore, since it is necessary to provide a large number of bipolar transistors in which the amount of current between the collector and the emitter with respect to the voltage between the base and the emitter changes in the same manner, there is a problem that the manufacture is difficult.
 本発明は斯かる事情に鑑みてなされたものであり、その目的とするところは、製造が容易である小型で安価な定電流回路を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a small and inexpensive constant current circuit that is easy to manufacture.
 本発明に係る定電流回路は、第1電流経路に流れる電流の量を所定数倍した量の電流が外部から第2電流経路に流れ込む定電流回路において、前記第1電流経路に流れる電流の量を変更する変更部を備えることを特徴とする。 The constant current circuit according to the present invention is a constant current circuit in which a predetermined number of times the amount of current flowing through the first current path flows from the outside into the second current path, and the amount of current flowing through the first current path. It is characterized by having a change part which changes.
 本発明にあっては、例えばカレントミラー回路を用いて、第1電流経路に流れる電流の量を所定数倍した量の電流が外部から第2電流経路に流れ込むように構成してある。そして、第1電流経路に流れる電流の量を変更する。これにより、第2電流経路に流れる電流の量も変更される。
 従って、例えばカレントミラー回路を用いた場合であっても、2つのトランジスタしか必要とされないため、製造が容易であり、回路規模が小さく、安価に製造が行われる。
In the present invention, for example, a current mirror circuit is used so that an amount of current obtained by multiplying the amount of current flowing through the first current path by a predetermined number flows into the second current path from the outside. Then, the amount of current flowing through the first current path is changed. As a result, the amount of current flowing through the second current path is also changed.
Therefore, for example, even when a current mirror circuit is used, only two transistors are required, so that the manufacturing is easy, the circuit scale is small, and the manufacturing is performed at low cost.
 本発明に係る定電流回路は、前記第1電流経路に設けられた第1抵抗と、一端が該第1電流経路に接続してある第2抵抗とを備え、前記第1電流経路の両端間に所定電圧が印加されており、前記変更部は、前記第2抵抗の他端における電位の調整、及び、該第2抵抗の他端の開放のいずれかを行うことによって、前記第1電流経路に流れる電流の量を変更するように構成してあることを特徴とする。 The constant current circuit according to the present invention includes a first resistor provided in the first current path, and a second resistor having one end connected to the first current path, and between the both ends of the first current path. A predetermined voltage is applied to the first current path by changing the potential at the other end of the second resistor and opening the other end of the second resistor. The configuration is such that the amount of current flowing in the is changed.
 本発明にあっては、第1抵抗が第1電流経路に設けられており、第1電流経路の両端間には所定電圧が印加されている。これにより、電流が第1電流経路の一端から第1抵抗を介して流れる。更に、第2抵抗の一端が第1電流経路に接続してある。 In the present invention, the first resistor is provided in the first current path, and a predetermined voltage is applied between both ends of the first current path. Thereby, a current flows from one end of the first current path through the first resistor. Furthermore, one end of the second resistor is connected to the first current path.
 例えば、第1抵抗の一端に第2抵抗の一端が接続されている場合において、第2抵抗の他端における電位を第1抵抗の他端における電位と一致させたとき、第1抵抗と第2抵抗とが並列に接続される。並列に接続された第1抵抗及び第2抵抗の合成抵抗値は第1抵抗の抵抗値よりも小さいので、第1電流経路に多量の電流が流れる。次に、第2抵抗の一端を開放したとき、電流が第2抵抗に流れることはない。そして、第1抵抗の抵抗値は、第1抵抗及び第2抵抗の合成抵抗値よりも高いため、第1電流経路における抵抗値は上昇し、第1電流経路に流れる電流の量は減少する。更に、第2抵抗の一端における電位を第1抵抗の他端における電位よりも低い電位にした場合、第1電流経路に流れている電流の一部が第2抵抗に流れるため、第1電流経路に流れる電流は更に減少する。 For example, in the case where one end of the second resistor is connected to one end of the first resistor, when the potential at the other end of the second resistor is matched with the potential at the other end of the first resistor, the first resistor and the second resistor A resistor is connected in parallel. Since the combined resistance value of the first resistor and the second resistor connected in parallel is smaller than the resistance value of the first resistor, a large amount of current flows through the first current path. Next, when one end of the second resistor is opened, no current flows through the second resistor. Since the resistance value of the first resistor is higher than the combined resistance value of the first resistor and the second resistor, the resistance value in the first current path increases and the amount of current flowing in the first current path decreases. Further, when the potential at one end of the second resistor is lower than the potential at the other end of the first resistor, a part of the current flowing through the first current path flows through the second resistor. The current flowing through the current further decreases.
 以上のように、第2抵抗の他端における電位の調整、及び、第2抵抗の他端の開放のいずれかを行うことによって、第1電流経路に流れる電流の量が変更される。従って、第1電流経路に流れる電流の量が容易に変更される。 As described above, by adjusting either the potential at the other end of the second resistor or opening the other end of the second resistor, the amount of current flowing through the first current path is changed. Therefore, the amount of current flowing through the first current path is easily changed.
 本発明に係る定電流回路は、前記第1電流経路の両端間に電圧を印加されており、前記変更部は、前記電圧の高さを調整することによって、前記第1電流経路に流れる電流の量を変更するように構成してあることを特徴とする。 In the constant current circuit according to the present invention, a voltage is applied across the first current path, and the changing unit adjusts a height of the voltage to adjust a current flowing through the first current path. It is configured to change the amount.
 本発明にあっては、第1電流経路の一端に電圧が印加されており、これにより、第1電流経路に電流が流れる。そして、第1電流経路の両端間に印加されている電圧の高さを調整することによって、第1電流経路に流れる電流の量を変更する。このため、簡単な構成で第1電流経路に流れる電流の量を変更することが可能となる。 In the present invention, a voltage is applied to one end of the first current path, whereby a current flows through the first current path. Then, the amount of current flowing through the first current path is changed by adjusting the height of the voltage applied across the first current path. For this reason, it is possible to change the amount of current flowing through the first current path with a simple configuration.
 本発明によれば、製造が容易である小型で安価な定電流回路を実現することができる。 According to the present invention, a small and inexpensive constant current circuit that is easy to manufacture can be realized.
実施の形態1における定電流回路の回路図である。2 is a circuit diagram of a constant current circuit in the first embodiment. FIG. 定電流回路が行う動作の説明図である。It is explanatory drawing of the operation | movement which a constant current circuit performs. マイコンの各出力状態における定電流回路の等価回路図である。It is an equivalent circuit diagram of the constant current circuit in each output state of the microcomputer. マイコンの各出力状態における定電流回路の等価回路図である。It is an equivalent circuit diagram of the constant current circuit in each output state of the microcomputer. マイコンの各出力状態における定電流回路の等価回路図である。It is an equivalent circuit diagram of the constant current circuit in each output state of the microcomputer. 実施の形態2における定電流回路の回路図である。FIG. 4 is a circuit diagram of a constant current circuit in a second embodiment.
 以下、本発明をその実施の形態を示す図面に基づいて詳述する。
(実施の形態1)
 図1は実施の形態1における定電流回路の回路図である。この定電流回路1は、車両に好適に搭載され、入力端子T1を備える。定電流回路1は入力端子T1から電流を吸い込む。定電流回路1は、入力端子T1に加えて、マイクロコンピュータ(以下、マイコンと記載する)10、カレントミラー回路11及び抵抗R1,R2,R3,R4を備える。カレントミラー回路11はNPN型のバイポーラトランジスタ20,21を有する。
Hereinafter, the present invention will be described in detail with reference to the drawings illustrating embodiments thereof.
(Embodiment 1)
FIG. 1 is a circuit diagram of a constant current circuit according to the first embodiment. This constant current circuit 1 is suitably mounted on a vehicle and includes an input terminal T1. The constant current circuit 1 sucks current from the input terminal T1. The constant current circuit 1 includes a microcomputer (hereinafter referred to as a microcomputer) 10, a current mirror circuit 11, and resistors R1, R2, R3, and R4 in addition to the input terminal T1. The current mirror circuit 11 has NPN-type bipolar transistors 20 and 21.
 マイコン10は、第1端、第2端、第3端及び第4端を有する。マイコン10について、第1端、第2端及び第3端夫々が抵抗R1,R2,R3の一端が接続されており、第4端は接地されている。マイコン10の第1端と、抵抗R1の一端とには所定の電圧Vcc、例えば5ボルトが印加されている。抵抗R1の他端は、抵抗R2,R3夫々の他端と、抵抗R4の一端とに接続されている。 The microcomputer 10 has a first end, a second end, a third end, and a fourth end. In the microcomputer 10, the first end, the second end, and the third end are connected to one ends of the resistors R1, R2, and R3, and the fourth end is grounded. A predetermined voltage Vcc, for example, 5 volts is applied to the first end of the microcomputer 10 and one end of the resistor R1. The other end of the resistor R1 is connected to the other ends of the resistors R2 and R3 and one end of the resistor R4.
 抵抗R4の他端は、バイポーラトランジスタ20のコレクタ及びベースと、バイポーラトランジスタ21のベースとに接続されている。バイポーラトランジスタ20,21夫々のエミッタは接地されており、バイポーラトランジスタ21のコレクタは、外部から電流が入力される入力端子T1に接続されている。 The other end of the resistor R4 is connected to the collector and base of the bipolar transistor 20 and the base of the bipolar transistor 21. The emitters of the bipolar transistors 20 and 21 are grounded, and the collector of the bipolar transistor 21 is connected to an input terminal T1 to which current is input from the outside.
 定電流回路1には、抵抗R1の一端から、電流が抵抗R4、並びに、バイポーラトランジスタ20のコレクタ及びエミッタの順に流れる第1電流経路が設けられている。更に、定電流回路1には、入力端子T1から電流がバイポーラトランジスタ21のコレクタ及びエミッタの順に流れる第2電流経路が設けられている。第1電流経路に設けられている抵抗R1は第1抵抗に該当する。 The constant current circuit 1 is provided with a first current path through which the current flows from one end of the resistor R1 to the resistor R4 and the collector and emitter of the bipolar transistor 20 in this order. Further, the constant current circuit 1 is provided with a second current path through which current flows from the input terminal T1 in the order of the collector and emitter of the bipolar transistor 21. The resistor R1 provided in the first current path corresponds to the first resistor.
 バイポーラトランジスタ20,21夫々について、ベース及びエミッタ間の電圧の高/低に応じて、コレクタ及びエミッタ間に流れる電流の量が多/少に変化する。バイポーラトランジスタ20,21夫々のベース及びエミッタ間に同一の電圧が印加された場合、バイポーラトランジスタ21のコレクタ及びエミッタ間には、バイポーラトランジスタ20のコレクタ及びエミッタ間に流れる電流の量を所定数倍した量の電流が流れる。 For each of the bipolar transistors 20 and 21, the amount of current flowing between the collector and the emitter varies in a large / small manner according to the high / low voltage between the base and the emitter. When the same voltage is applied between the base and emitter of each of the bipolar transistors 20 and 21, the amount of current flowing between the collector and emitter of the bipolar transistor 21 is multiplied by a predetermined number between the collector and emitter of the bipolar transistor 21. Amount of current flows.
 定電流回路1では、電圧Vccが第1電流経路の両端間、即ち、抵抗R1の一端とバイポーラトランジスタ20のエミッタ間に印加されている。これにより、電圧Vccの印加によって第1電流経路に電流が流れる。そして、バイポーラトランジスタ20,21夫々のベースに同一の電圧が印加されるので、第1電流経路に流れる電流の量Irefを所定数倍した量の電流が外部から入力端子T1を介して第2電流経路に流れ込む。 In the constant current circuit 1, the voltage Vcc is applied between both ends of the first current path, that is, between one end of the resistor R1 and the emitter of the bipolar transistor 20. Thereby, a current flows through the first current path by applying the voltage Vcc. Since the same voltage is applied to the bases of the bipolar transistors 20 and 21, a current obtained by multiplying the amount Iref of the current flowing through the first current path by a predetermined number of times is supplied from the outside via the input terminal T 1. Flow into the path.
 なお、定電流回路1が車両に搭載されている場合、電圧Vccは、例えば図示しないレギュレータによって生成される。レギュレータは図示しないバッテリの出力電圧から所定の電圧Vccを生成する。 When the constant current circuit 1 is mounted on a vehicle, the voltage Vcc is generated by a regulator (not shown), for example. The regulator generates a predetermined voltage Vcc from an output voltage of a battery (not shown).
 マイコン10は、他端が第1電流経路に接続してある抵抗R2,R3夫々について、一端における電位の調整、及び、一端の開放のいずれかを行うことによって、第1電流経路に流れる電流の量Irefを変更する。
 具体的には、マイコン10は、抵抗R2,R3夫々について、一端に、バイポーラトランジスタ20のエミッタの電位を基準とした電圧Vccを印加するか、又は、一端を接地することによって、一端における電位を調整する。抵抗R2,R3夫々は第2抵抗として機能する。
The microcomputer 10 adjusts the potential at one end and opens the one end of each of the resistors R2 and R3 whose other ends are connected to the first current path, so that the current flowing through the first current path is reduced. Change the quantity Iref.
Specifically, the microcomputer 10 applies a voltage Vcc based on the potential of the emitter of the bipolar transistor 20 to one end of each of the resistors R2 and R3, or grounds one end to thereby set the potential at one end. adjust. Each of the resistors R2 and R3 functions as a second resistor.
 図2は定電流回路が行う動作の説明図である。マイコン10が前述した電位の調整と開放とを行った場合における電流量Irefを、図2に示す回路から算出することができる。図2が示す回路では、抵抗Raの一端に電圧Vccが印加されており、抵抗Raの他端に抵抗R4,Rb夫々の一端が接続され、抵抗Rbの他端は接地されている。カレントミラー回路11、抵抗R4及び入力端子T1は、図1に示す定電流回路1と同様に接続されている。 FIG. 2 is an explanatory diagram of the operation performed by the constant current circuit. The current amount Iref when the microcomputer 10 adjusts and releases the potential described above can be calculated from the circuit shown in FIG. In the circuit shown in FIG. 2, the voltage Vcc is applied to one end of the resistor Ra, one end of each of the resistors R4 and Rb is connected to the other end of the resistor Ra, and the other end of the resistor Rb is grounded. The current mirror circuit 11, the resistor R4, and the input terminal T1 are connected in the same manner as the constant current circuit 1 shown in FIG.
 マイコン10が、抵抗R2,R3夫々について、一端における電位の調整と、一端の開放とを行うことによって、後述するように、抵抗Ra,Rb夫々の抵抗値ra,rbが変化し、電流量Irefが調整される。抵抗R4の抵抗値をr4とし、バイポーラトランジスタ20のベース及びエミッタ間の電圧をVbeとした場合、電流量Irefは、図2に示すように、(rb×Vcc-(ra+rb)×Vbe)を(rb×r4+ra×r4+ra×rb)で割った値で表される。 As will be described later, the microcomputer 10 adjusts the potential at one end and opens the one end of each of the resistors R2 and R3, so that the resistance values ra and rb of the resistors Ra and Rb change, and the current amount Iref. Is adjusted. When the resistance value of the resistor R4 is r4 and the voltage between the base and the emitter of the bipolar transistor 20 is Vbe, the current amount Iref is (rb × Vcc− (ra + rb) × Vbe) as shown in FIG. (rb × r4 + ra × r4 + ra × rb) divided by the value.
 図3、図4及び図5は、マイコン10の各出力状態における定電流回路の等価回路図である。マイコン10が抵抗R2の一端へ出力する出力状態は、抵抗R2の一端に電圧Vccが印加されている状態、抵抗R2の一端が開放されている状態、及び、抵抗R2の一端が接地されている状態のいずれかである。マイコン10が抵抗R3の一端へ出力する出力状態は、マイコン10が抵抗R2の一端へ出力する出力状態と同様である。 3, 4, and 5 are equivalent circuit diagrams of the constant current circuit in each output state of the microcomputer 10. The output state that the microcomputer 10 outputs to one end of the resistor R2 is a state where the voltage Vcc is applied to one end of the resistor R2, a state where one end of the resistor R2 is opened, and one end of the resistor R2 is grounded. One of the states. The output state that the microcomputer 10 outputs to one end of the resistor R3 is the same as the output state that the microcomputer 10 outputs to one end of the resistor R2.
 図3の左側、中央及び右側夫々には、抵抗R3の一端に電圧Vccが印加されている状態で、抵抗R2の一端に電圧Vccが印加されている場合、抵抗R2の一端が開放されている場合、及び、抵抗R2の一端が接地されている場合夫々における定電流回路1の等価回路が示されている。 In each of the left side, the center, and the right side of FIG. 3, when the voltage Vcc is applied to one end of the resistor R2 while the voltage Vcc is applied to one end of the resistor R3, one end of the resistor R2 is opened. In this case, an equivalent circuit of the constant current circuit 1 is shown in each case and when one end of the resistor R2 is grounded.
 マイコン10が、抵抗R3の一端に電圧Vccを印加している状態で、抵抗R2の一端に電圧Vccを印加した場合、図3の左側に示す等価回路からわかるように、図2に示す抵抗Raは、並列に接続された抵抗R1,R2,R3の合成抵抗であり、抵抗Rbの抵抗値は無限大である。 When the microcomputer 10 applies the voltage Vcc to one end of the resistor R2 while the voltage Vcc is applied to one end of the resistor R3, as shown in the equivalent circuit shown on the left side of FIG. 3, the resistor Ra shown in FIG. Is a combined resistance of resistors R1, R2, and R3 connected in parallel, and the resistance value of the resistor Rb is infinite.
 抵抗Rbの抵抗値が無限大である場合、図2に示す電流量Irefは、下記の(1)式によって表される。
 Iref=(Vcc-Vbe)/(ra+r4)・・・(1)
 並列に接続された抵抗R1,R2,R3の合成抵抗値は、抵抗R1,R2,R3夫々の抵抗値よりも小さく、更には、抵抗R1,R2,R3中の2つが並列に接続された合成抵抗の抵抗値のいずれよりも小さい。このため、電流量Irefは多量である。
When the resistance value of the resistor Rb is infinite, the current amount Iref shown in FIG. 2 is expressed by the following equation (1).
Iref = (Vcc−Vbe) / (ra + r4) (1)
The combined resistance value of the resistors R1, R2, and R3 connected in parallel is smaller than the resistance values of the resistors R1, R2, and R3, and further, the combined resistance value of the two resistors R1, R2, and R3 connected in parallel. It is smaller than any of the resistance values of the resistors. For this reason, the current amount Iref is large.
 次に、マイコン10が、抵抗R3の一端に電圧Vccを印加している状態で、抵抗R2の一端を開放した場合、抵抗R2に電流が流れることはない。このため、図3の中央に示す等価回路からわかるように、図2に示す抵抗Raは、並列に接続された抵抗R1,R3の合成抵抗であり、抵抗Rbの抵抗値は無限大である。 Next, when the microcomputer 10 opens one end of the resistor R2 while the voltage Vcc is applied to one end of the resistor R3, no current flows through the resistor R2. Therefore, as can be seen from the equivalent circuit shown in the center of FIG. 3, the resistor Ra shown in FIG. 2 is a combined resistor of the resistors R1 and R3 connected in parallel, and the resistance value of the resistor Rb is infinite.
 前述したように、並列に接続された抵抗R1,R3の合成抵抗値は、並列に接続された抵抗R1,R2,R3の合成抵抗値よりも大きい。このため、(1)式からもわかるように、抵抗R3の一端に電圧Vccが印加されている状態で抵抗R2の一端が開放されている場合における電流量Irefは、抵抗R2,R3夫々の一端に電圧Vccが印加されている場合における電流量Irefよりも少量である。 As described above, the combined resistance value of the resistors R1, R3 connected in parallel is larger than the combined resistance value of the resistors R1, R2, R3 connected in parallel. Therefore, as can be seen from the equation (1), the current amount Iref when one end of the resistor R2 is opened while the voltage Vcc is applied to one end of the resistor R3 is equal to one end of each of the resistors R2 and R3. Is smaller than the current amount Iref when the voltage Vcc is applied.
 次に、マイコン10が、抵抗R3の一端に電圧Vccを印加している状態で、抵抗R2の一端を接地した場合、図3の右側に示す等価回路からわかるように、図2に示す抵抗Raは、並列に接続された抵抗R1,R3の合成抵抗であり、抵抗Rbは抵抗R2である。 Next, when one end of the resistor R2 is grounded in a state where the voltage Vcc is applied to one end of the resistor R3, as shown in the equivalent circuit shown on the right side of FIG. Is a combined resistance of resistors R1 and R3 connected in parallel, and resistor Rb is resistor R2.
 図3の右側に示す等価回路では、第1電流経路を流れている電流の一部が抵抗R2に流れる。このため、抵抗R3の一端に電圧Vccが印加されている状態で抵抗R2の一端が接地されている場合における電流量Irefは、抵抗R3の一端に電圧Vccが印加されている状態で抵抗R2の一端が開放されている場合における電流量Irefよりも少量である。 In the equivalent circuit shown on the right side of FIG. 3, a part of the current flowing through the first current path flows through the resistor R2. For this reason, when the voltage Vcc is applied to one end of the resistor R3 and the one end of the resistor R2 is grounded, the current amount Iref is the resistance R2 in the state where the voltage Vcc is applied to one end of the resistor R3. The amount is smaller than the current amount Iref when one end is opened.
 図4の左側、中央及び右側夫々には、抵抗R3の一端が開放されている状態で、抵抗R2の一端に電圧Vccが印加されている場合、抵抗R2の一端が開放されている場合、及び、抵抗R2の一端が接地されている場合夫々における定電流回路1の等価回路が示されている。 In each of the left side, the center, and the right side of FIG. 4, when one end of the resistor R2 is open and the voltage Vcc is applied to one end of the resistor R2, the one end of the resistor R2 is open, and The equivalent circuit of the constant current circuit 1 is shown when one end of the resistor R2 is grounded.
 マイコン10が抵抗R3の一端を開放している場合、抵抗R3に電流は流れない。従って、マイコン10が、抵抗R3の一端を開放している状態で、抵抗R2の一端に電圧Vccを印加した場合、図4の左側に示す等価回路からわかるように、図2に示す抵抗Raは、並列に接続された抵抗R1,R2の合成抵抗であり、抵抗Rbの抵抗値は無限大である。このとき、抵抗R3の一端が開放されている状態において、電流量Irefは最も多量である。 When the microcomputer 10 opens one end of the resistor R3, no current flows through the resistor R3. Therefore, when the microcomputer 10 applies the voltage Vcc to one end of the resistor R2 with one end of the resistor R3 open, as shown in the equivalent circuit shown on the left side of FIG. 4, the resistor Ra shown in FIG. The combined resistance of the resistors R1 and R2 connected in parallel, and the resistance value of the resistor Rb is infinite. At this time, the current amount Iref is the largest in a state where one end of the resistor R3 is open.
 前述したように、並列に接続された抵抗R1,R2,R3の合成抵抗値は、並列に接続された抵抗R1,R2の合成抵抗値よりも小さい。このため、抵抗R2の一端に電圧Vccが印加されている状態においては、抵抗R3の一端に電圧Vccが印加されている場合における電流量Iref(図3の左側参照)は、抵抗R3の一端が開放されている場合における電流量Iref(図4の左側参照)よりも多量である。 As described above, the combined resistance value of the resistors R1, R2, and R3 connected in parallel is smaller than the combined resistance value of the resistors R1 and R2 connected in parallel. Therefore, in a state where the voltage Vcc is applied to one end of the resistor R2, the current amount Iref (see the left side of FIG. 3) when the voltage Vcc is applied to one end of the resistor R3 is It is larger than the current amount Iref (see the left side of FIG. 4) when the circuit is opened.
 マイコン10が、抵抗R3の一端を開放されている状態で、抵抗R2の一端を開放した場合、図4の中央に示す等価回路からわかるように、図2に示す抵抗Raは抵抗R1であり、抵抗Rbの抵抗値は無限大である。抵抗R1の抵抗値は、並列に接続された抵抗R1,R2の合成抵抗値よりも大きいため、(1)式からもわかるように、抵抗R2,R3夫々の一端が開放されている場合における電流量Irefは、抵抗R3の一端が開放されている状態で抵抗R2の一端に電圧Vccが印加されている場合における電流量Irefよりも少量である。 When the microcomputer 10 opens one end of the resistor R3 with one end of the resistor R3 open, as can be seen from the equivalent circuit shown in the center of FIG. 4, the resistor Ra shown in FIG. The resistance value of the resistor Rb is infinite. Since the resistance value of the resistor R1 is larger than the combined resistance value of the resistors R1 and R2 connected in parallel, the current when one end of each of the resistors R2 and R3 is opened is understood from the equation (1). The amount Iref is smaller than the current amount Iref when the voltage Vcc is applied to one end of the resistor R2 in a state where one end of the resistor R3 is open.
 並列に接続された抵抗R1,R3の合成抵抗値は抵抗R1の抵抗値よりも小さい。このため、抵抗R2の一端が開放されている状態において、抵抗R3の一端に電圧Vccが印加されている場合における電流量Iref(図3の中央参照)は、抵抗R3の一端が開放されている場合における電流量Iref(図4の中央参照)よりも多量である。 The combined resistance value of the resistors R1 and R3 connected in parallel is smaller than the resistance value of the resistor R1. For this reason, in a state where one end of the resistor R2 is open, the current amount Iref (see the center of FIG. 3) when the voltage Vcc is applied to one end of the resistor R3 is open at one end of the resistor R3. It is larger than the current amount Iref in the case (see the center of FIG. 4).
 マイコン10が、抵抗R3の一端を開放している状態で、抵抗R2の一端を接地した場合、図4の右側に示す等価回路からわかるように、図2に示す抵抗Raは抵抗R1であり、抵抗Rbは抵抗R2である。図4の右側に示す等価回路では、第1電流経路に流れている電流の一部が抵抗R2に流れる。このため、抵抗R3が開放されている状態で抵抗R2の一端が接地されている場合における電流量Irefは、抵抗R2,R3夫々の一端を開放されている場合における電流量Irefよりも少量である。 When the microcomputer 10 opens one end of the resistor R3 and grounds one end of the resistor R2, the resistor Ra shown in FIG. 2 is the resistor R1, as can be seen from the equivalent circuit shown on the right side of FIG. The resistor Rb is the resistor R2. In the equivalent circuit shown on the right side of FIG. 4, a part of the current flowing in the first current path flows through the resistor R2. For this reason, the current amount Iref when one end of the resistor R2 is grounded while the resistor R3 is open is smaller than the current amount Iref when one end of each of the resistors R2 and R3 is open. .
 並列に接続された抵抗R1,R3の合成抵抗値は抵抗R1の抵抗値よりも小さい。このため、抵抗R2の一端が接地されている状態において、抵抗R3の一端に電圧Vccが印加されている場合における電流量Iref(図3の右側参照)は、抵抗R3の一端が開放されている場合における電流量Iref(図4の右側参照)よりも多量である。 The combined resistance value of the resistors R1 and R3 connected in parallel is smaller than the resistance value of the resistor R1. Therefore, in the state where one end of the resistor R2 is grounded, the current amount Iref (see the right side of FIG. 3) when the voltage Vcc is applied to one end of the resistor R3 is such that one end of the resistor R3 is open. In this case, it is larger than the current amount Iref (see the right side of FIG. 4).
 図5の左側、中央及び右側夫々には、抵抗R3の一端が接地されている状態で、抵抗R2の一端に電圧Vccが印加されている場合、抵抗R2の一端が開放されている場合、及び、抵抗R2の一端が接地されている場合夫々における定電流回路1の等価回路が示されている。 In each of the left side, the center, and the right side of FIG. 5, when one end of the resistor R3 is grounded, the voltage Vcc is applied to one end of the resistor R2, the one end of the resistor R2 is opened, and The equivalent circuit of the constant current circuit 1 is shown when one end of the resistor R2 is grounded.
 マイコン10が、抵抗R3の一端を接地している状態で、抵抗R2の一端に電圧Vccを印加した場合、図5の左側に示す等価回路からわかるように、図2に示す抵抗Raは、並列に接続された抵抗R1,R2の合成抵抗であり、抵抗Rbは抵抗R3である。このとき、抵抗R3の一端が接地されている状態において、電流量Irefは最も多量である。 When the microcomputer 10 applies the voltage Vcc to one end of the resistor R2 while the one end of the resistor R3 is grounded, as shown in the equivalent circuit shown on the left side of FIG. 5, the resistor Ra shown in FIG. Is a combined resistance of resistors R1 and R2, and the resistor Rb is a resistor R3. At this time, the current amount Iref is the largest in a state where one end of the resistor R3 is grounded.
 抵抗R3の一端が接地されている場合、第1電流経路に流れている電流の一部が抵抗R3に流れる。このため、抵抗R2の一端に電圧Vccが印加されている状態において、抵抗R3の一端が開放されている場合における電流量Iref(図4の左側参照)は、抵抗R3の一端が接地されている場合における電流量Iref(図5の左側参照)よりも多量である。 When one end of the resistor R3 is grounded, a part of the current flowing through the first current path flows through the resistor R3. Therefore, in the state where the voltage Vcc is applied to one end of the resistor R2, the current amount Iref (see the left side of FIG. 4) when the one end of the resistor R3 is opened is grounded at one end of the resistor R3. In this case, it is larger than the current amount Iref (see the left side of FIG. 5).
 マイコン10が、抵抗R3の一端を接地している状態で、抵抗R2の一端を開放した場合、図5の中央に示す等価回路からわかるように、図2に示す抵抗Raは抵抗R1であり、抵抗Rbは抵抗R3である。抵抗R1の抵抗値は、並列に接続された抵抗R1,R2の合成抵抗値よりも大きいため、抵抗R3の一端が接地されている状態で抵抗R2の一端を開放した場合における電流量Irefは、抵抗R3の一端が接地されている状態で抵抗R2の一端に電圧Vccが印加されている場合における電流量Irefよりも少量である。 When the microcomputer 10 opens one end of the resistor R2 while the one end of the resistor R3 is grounded, the resistor Ra shown in FIG. 2 is the resistor R1, as can be seen from the equivalent circuit shown in the center of FIG. The resistor Rb is the resistor R3. Since the resistance value of the resistor R1 is larger than the combined resistance value of the resistors R1 and R2 connected in parallel, the current amount Iref when one end of the resistor R2 is opened while one end of the resistor R3 is grounded is This is smaller than the current amount Iref when the voltage Vcc is applied to one end of the resistor R2 in a state where one end of the resistor R3 is grounded.
 前述したように、抵抗R3の一端が接地されている場合、第1電流経路に流れる電流の一部が抵抗R3に流れる。このため、抵抗R2が開放されている状態において、抵抗R3の一端を開放されている場合における電流量Iref(図4の中央参照)は、抵抗R3の一端が接地されている場合における電流量Iref(図5の中央参照)よりも多量である。 As described above, when one end of the resistor R3 is grounded, a part of the current flowing through the first current path flows through the resistor R3. Therefore, in the state where the resistor R2 is opened, the current amount Iref (see the center of FIG. 4) when one end of the resistor R3 is opened is equal to the current amount Iref when one end of the resistor R3 is grounded. (See the center in FIG. 5).
 マイコン10が、抵抗R3の一端が接地されている状態で、抵抗R2の一端を接地した場合、図5の右側に示す等価回路からわかるように、図2に示す抵抗Raは抵抗R1であり、抵抗Rbは、並列に接続された抵抗R2,R3の合成抵抗である。並列に接続された抵抗R2,R3の合成抵抗値は抵抗R3の抵抗値よりも小さい。このため、抵抗R3の一端が接地されている状態において、抵抗R2の一端が接地されている場合に第1電流経路から分流する電流の量は、抵抗R2の一端が開放されている場合に第1電流経路から分流する電流の量よりも多量である。従って、抵抗R2,R3夫々の一端が接地されている場合における電流量Irefは、抵抗R3の一端が接地されている状態で抵抗R2の一端が開放されている場合における電流量Irefよりも少量である。 When the microcomputer 10 grounds one end of the resistor R2 while one end of the resistor R3 is grounded, as can be seen from the equivalent circuit shown on the right side of FIG. 5, the resistor Ra shown in FIG. The resistor Rb is a combined resistor of resistors R2 and R3 connected in parallel. The combined resistance value of the resistors R2 and R3 connected in parallel is smaller than the resistance value of the resistor R3. For this reason, when one end of the resistor R2 is grounded when one end of the resistor R2 is grounded, the amount of current shunted from the first current path is the same as when the one end of the resistor R2 is open. The amount is larger than the amount of current shunted from one current path. Therefore, the current amount Iref when one end of each of the resistors R2 and R3 is grounded is smaller than the current amount Iref when one end of the resistor R2 is opened while one end of the resistor R3 is grounded. is there.
 前述したように、抵抗R2の抵抗値は、並列に接続された抵抗R2,R3の合成抵抗値よりも大きい。このため、抵抗R2の一端が接地されている状態において、抵抗R3の一端が開放されている場合における電流量Iref(図4の右側参照)は、抵抗R3の一端が接地されている場合における電流量Iref(図5の右側参照)よりも多量である。 As described above, the resistance value of the resistor R2 is larger than the combined resistance value of the resistors R2 and R3 connected in parallel. For this reason, in a state where one end of the resistor R2 is grounded, the current amount Iref (see the right side of FIG. 4) when one end of the resistor R3 is opened is the current when one end of the resistor R3 is grounded. The amount is larger than the amount Iref (see the right side of FIG. 5).
 以上のように、抵抗R3の一端への出力状態が固定されている状態においては、マイコン10が抵抗R2の一端に電圧Vccを印加した場合における電流量Irefが最も多量である。次に、マイコン10が抵抗R2の一端を開放した場合における電流量Irefが多い。そして、マイコン10が抵抗R2の一端を接地した場合における電流量Irefが最も少量である。 As described above, in a state where the output state to one end of the resistor R3 is fixed, the current amount Iref when the microcomputer 10 applies the voltage Vcc to one end of the resistor R2 is the largest. Next, the amount of current Iref when the microcomputer 10 opens one end of the resistor R2 is large. The amount of current Iref when the microcomputer 10 grounds one end of the resistor R2 is the smallest.
 抵抗R2の一端への出力状態が固定されている状態で、マイコン10が抵抗R3の一端への出力状態を変更した場合における電流量Irefも、抵抗R3の一端への出力状態が固定されている状態で、マイコン10が抵抗R2の一端への出力状態を変更した場合と同様に変化する。 When the microcomputer 10 changes the output state to one end of the resistor R3 in a state where the output state to one end of the resistor R2 is fixed, the output state to one end of the resistor R3 is also fixed. The state changes in the same manner as when the microcomputer 10 changes the output state to one end of the resistor R2.
 定電流回路1では、マイコン10は、抵抗R2,R3夫々について、一端における電位の調整、及び、一端における開放のいずれかを行うことによって、電流量Irefを変更する。定電流回路1は2つのバイポーラトランジスタ20,21を備えるだけでよいため、定電流回路1を容易にかつ安価に製造することができ、定電流回路1の規模は小さい。また、マイコン10は、抵抗R2,R3夫々について、一端における電位の調整、及び、一端における開放のいずれかを行うことによって、容易に第1電流経路に流れる電流の量を変更することができる。マイコン10は変更部として機能する。 In the constant current circuit 1, the microcomputer 10 changes the amount of current Iref by either adjusting the potential at one end and opening at one end of each of the resistors R2 and R3. Since the constant current circuit 1 only needs to include two bipolar transistors 20 and 21, the constant current circuit 1 can be manufactured easily and inexpensively, and the scale of the constant current circuit 1 is small. In addition, the microcomputer 10 can easily change the amount of current flowing through the first current path by either adjusting the potential at one end or opening the one end of each of the resistors R2 and R3. The microcomputer 10 functions as a changing unit.
 マイコン10は、電流量Irefを変更することによって、外部から入力端子T1を介して第2電流経路に流れ込む電流の量を調整することができる。抵抗R2,R3の抵抗値が互いに異なる場合、変更可能な電流量Irefの値の数は9つである。 The microcomputer 10 can adjust the amount of current flowing from the outside into the second current path via the input terminal T1 by changing the current amount Iref. When the resistance values of the resistors R2 and R3 are different from each other, the number of values of the current amount Iref that can be changed is nine.
 なお、マイコン10が、電位を調整するために、抵抗R2,R3の一端に印加する電圧は電圧Vccに限定されず、電圧Vccと高さが異なる所定の電圧であってもよく、更には、抵抗R2,R3夫々の一端に印加する電圧は異なっていてもよい。また、抵抗R2,R3の他端が接続される位置は、抵抗R1の他端に限定されず、第1電流経路に接続されていればよい。例えば、抵抗R2,R3夫々の他端を抵抗R1の一端に接続し、マイコン10の第1端を抵抗R1の他端に接続してもよい。この場合、マイコン10は、抵抗R2,R3夫々について、例えば、一端を抵抗R1の他端に接続するか、又は、一端を接地することによって、一端における電位を調整する。 Note that the voltage applied by the microcomputer 10 to one end of the resistors R2 and R3 in order to adjust the potential is not limited to the voltage Vcc, and may be a predetermined voltage having a height different from the voltage Vcc. The voltage applied to one end of each of the resistors R2 and R3 may be different. Further, the position where the other ends of the resistors R2 and R3 are connected is not limited to the other end of the resistor R1, and may be connected to the first current path. For example, the other ends of the resistors R2 and R3 may be connected to one end of the resistor R1, and the first end of the microcomputer 10 may be connected to the other end of the resistor R1. In this case, the microcomputer 10 adjusts the potential at one end of each of the resistors R2 and R3, for example, by connecting one end to the other end of the resistor R1 or by grounding one end.
 更に、他端が第1電流経路に接続され、一端における電位の調整及び一端の開放が行われる抵抗の数は、2つに限定されず、1つ又は3つ以上であってもよい。この数が多い程、変更可能な電流量Irefの値の数が多いため、マイコン10は電流量Irefを詳細に調整することができる。 Furthermore, the number of resistors whose other end is connected to the first current path and potential adjustment at one end and opening of the other end are not limited to two, may be one or three or more. The greater the number, the greater the number of values of the current amount Iref that can be changed. Therefore, the microcomputer 10 can adjust the current amount Iref in detail.
(実施の形態2)
 図6は実施の形態2における定電流回路の回路図である。この定電流回路3は、実施の形態1における定電流回路1と比較して、第1電流経路に流す電流の量を変更する構成が異なる。
 以下では、実施の形態2について、実施の形態1と異なる点を説明する。後述する構成を除く他の構成については、実施の形態1と同様であるため、同様の符号を付してその説明を省略する。
(Embodiment 2)
FIG. 6 is a circuit diagram of a constant current circuit according to the second embodiment. The constant current circuit 3 is different from the constant current circuit 1 according to the first embodiment in the configuration for changing the amount of current flowing through the first current path.
In the following, the differences between the second embodiment and the first embodiment will be described. Since the other configuration except the configuration to be described later is the same as that of the first embodiment, the same reference numerals are given and the description thereof is omitted.
 定電流回路3は、実施の形態1における定電流回路1と同様に、車両に好適に搭載され、カレントミラー回路11、抵抗R4及び入力端子T1を備える。カレントミラー回路11のバイポーラトランジスタ20,21、入力端子T1及び抵抗R4は実施の形態1と同様に接続されている。定電流回路3も入力端子T1から電流を吸い込む。 The constant current circuit 3 is suitably mounted on a vehicle, like the constant current circuit 1 in the first embodiment, and includes a current mirror circuit 11, a resistor R4, and an input terminal T1. The bipolar transistors 20 and 21, the input terminal T1, and the resistor R4 of the current mirror circuit 11 are connected as in the first embodiment. The constant current circuit 3 also sucks current from the input terminal T1.
 定電流回路3は、更に、マイコン30及びD/Aコンバータ31を備える。マイコン30はD/Aコンバータ31に接続されており、D/Aコンバータ31は抵抗R4の一端に接続されている。 The constant current circuit 3 further includes a microcomputer 30 and a D / A converter 31. The microcomputer 30 is connected to the D / A converter 31, and the D / A converter 31 is connected to one end of the resistor R4.
 定電流回路3では、抵抗R4のD/Aコンバータ31側の一端から、電流が抵抗R4、並びに、バイポーラトランジスタ20のコレクタ及びエミッタの順に流れる電流経路が第1電流経路として設けられている。第2電流経路は、実施の形態1と同様に、入力端子T1から電流がバイポーラトランジスタ21のコレクタ及びエミッタの順に流れる電流経路である。 In the constant current circuit 3, a current path through which the current flows from the one end of the resistor R4 on the D / A converter 31 side in the order of the resistor R4 and the collector and emitter of the bipolar transistor 20 is provided as a first current path. Similar to the first embodiment, the second current path is a current path in which current flows from the input terminal T1 in the order of the collector and emitter of the bipolar transistor 21.
 定電流回路3は、実施の形態1における定電流回路1と同様にカレントミラー回路11を備えているため、第1電流経路に流れる電流の量Irefを所定数倍した量の電流が、外部から、入力端子T1を介して第2電流経路に流れ込む。 Since the constant current circuit 3 includes the current mirror circuit 11 as in the constant current circuit 1 in the first embodiment, an amount of current obtained by multiplying the amount Iref of the current flowing through the first current path by a predetermined number is externally supplied. , Flows into the second current path via the input terminal T1.
 D/Aコンバータ31は、第1電流経路の両端、即ち、抵抗R4の一端と、バイポーラトランジスタ20のエミッタ間に電圧を印加する。これにより、第1電流経路に電流が流れる。D/Aコンバータ31には、第1電流経路の両端間に印加すべき電圧の高さを示すデジタル信号がマイコン30から入力されている。D/Aコンバータ31は、マイコン30から入力されたデジタル信号が示す高さの電圧を第1電流経路の両端間に印加する。
 D/Aコンバータ31が第1電流経路の両端間に印加する電圧をVdaとした場合、電流量Irefは下記式によって算出される。
 Iref=(Vda-Vbe)/r4
The D / A converter 31 applies a voltage between both ends of the first current path, that is, one end of the resistor R 4 and the emitter of the bipolar transistor 20. Thereby, a current flows through the first current path. The D / A converter 31 receives a digital signal from the microcomputer 30 indicating the voltage level to be applied between both ends of the first current path. The D / A converter 31 applies a voltage having a height indicated by the digital signal input from the microcomputer 30 between both ends of the first current path.
When the voltage applied across the first current path by the D / A converter 31 is Vda, the current amount Iref is calculated by the following equation.
Iref = (Vda−Vbe) / r4
 マイコン30は、第1電流経路の両端間に印加する電圧ついて、種々の高さを示すデジタル信号をD/Aコンバータ31に出力することによって、電圧Vdaの高さを調整する。これにより、マイコン30は電流量Irefを変更する。マイコン30は実施の形態2における変更部として機能する。 The microcomputer 30 adjusts the height of the voltage Vda by outputting a digital signal indicating various heights to the D / A converter 31 for the voltage applied between both ends of the first current path. Thereby, the microcomputer 30 changes the current amount Iref. The microcomputer 30 functions as a changing unit in the second embodiment.
 定電流回路3も、実施の形態1における定電流回路1と同様に、2つのバイポーラトランジスタ20,21を備えるだけでよいため、定電流回路3を容易にかつ安価に製造することができ、定電流回路3の規模は小さい。また、D/Aコンバータ31が印加する電圧Vdaの高さをマイコン30が調整することによって、電流量Irefは容易に変更される。従って、簡単な構成で電流量Irefを変更することができる。 Similarly to the constant current circuit 1 in the first embodiment, the constant current circuit 3 only needs to include two bipolar transistors 20 and 21. Therefore, the constant current circuit 3 can be manufactured easily and inexpensively, The scale of the current circuit 3 is small. Further, the current amount Iref is easily changed by the microcomputer 30 adjusting the height of the voltage Vda applied by the D / A converter 31. Therefore, the current amount Iref can be changed with a simple configuration.
 マイコン10は、電流量Irefを変更することによって、外部から入力端子T1を介して第2電流経路に流れ込む電流の量を調整することができる。 The microcomputer 10 can adjust the amount of current flowing from the outside into the second current path via the input terminal T1 by changing the current amount Iref.
 なお、第1電流経路の両端間に電圧を印加する構成は、D/Aコンバータ31が第1電流経路の両端間に印加する構成に限定されず、例えば、図示しないバッテリの電圧を種々の電圧に変圧するDC/DCコンバータが第1電流経路の両端間に印加する構成であってもよい。 The configuration in which the voltage is applied across the first current path is not limited to the configuration in which the D / A converter 31 applies the voltage across the first current path. For example, a battery voltage (not shown) may be applied to various voltages. A configuration in which a DC / DC converter that transforms into a voltage is applied across both ends of the first current path may be employed.
 また、実施の形態1及び2において、カレントミラー回路11は、2つのバイポーラトランジスタ20,21を用いた構成に限定されず、例えば、2つのFET(Field Effect Transistor)を用いた構成であってもよい。例えば、2つのNチャネル型のFETを用いた構成では、この2つのFETはバイポーラトランジスタ20,21と同様に接続される。ここで、一方のFETのドレイン、ソース及びゲートがバイポーラトランジスタ20のコレクタ、エミッタ及びベースに対応し、他方のFETのドレイン、ソース及びゲートがバイポーラトランジスタ21のコレクタ、エミッタ及びベースに対応する。 In the first and second embodiments, the current mirror circuit 11 is not limited to the configuration using the two bipolar transistors 20 and 21. For example, the current mirror circuit 11 may be configured using two FETs (Field-Effect-Transistor). Good. For example, in a configuration using two N-channel FETs, the two FETs are connected in the same manner as the bipolar transistors 20 and 21. Here, the drain, source, and gate of one FET correspond to the collector, emitter, and base of the bipolar transistor 20, and the drain, source, and gate of the other FET correspond to the collector, emitter, and base of the bipolar transistor 21.
 開示された実施の形態1及び2は、全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上述の説明ではなく請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。 The disclosed embodiments 1 and 2 should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1,3 定電流回路
 10,30 マイコン(変更部)
 31 D/Aコンバータ
 R1 抵抗(第1抵抗)
 R2,R3 抵抗(第2抵抗)
1,3 Constant current circuit 10,30 Microcomputer (change part)
31 D / A converter R1 resistance (first resistance)
R2, R3 resistance (second resistance)

Claims (3)

  1.  第1電流経路に流れる電流の量を所定数倍した量の電流が外部から第2電流経路に流れ込む定電流回路において、
     前記第1電流経路に流れる電流の量を変更する変更部
     を備えることを特徴とする定電流回路。
    In a constant current circuit in which an amount of current that is a predetermined number of times the amount of current flowing in the first current path flows into the second current path from the outside,
    A constant current circuit, comprising: a changing unit that changes an amount of current flowing through the first current path.
  2.  前記第1電流経路に設けられた第1抵抗と、
     一端が該第1電流経路に接続してある第2抵抗と
     を備え、
     前記第1電流経路の両端間に所定電圧が印加されており、
     前記変更部は、前記第2抵抗の他端における電位の調整、及び、該第2抵抗の他端の開放のいずれかを行うことによって、前記第1電流経路に流れる電流の量を変更するように構成してあること
     を特徴とする請求項1に記載の定電流回路。
    A first resistor provided in the first current path;
    A second resistor having one end connected to the first current path;
    A predetermined voltage is applied across the first current path;
    The changing unit changes the amount of current flowing through the first current path by adjusting the potential at the other end of the second resistor and opening the other end of the second resistor. The constant current circuit according to claim 1, wherein the constant current circuit is configured as follows.
  3.  前記第1電流経路の両端間に電圧を印加されており、
     前記変更部は、前記電圧の高さを調整することによって、前記第1電流経路に流れる電流の量を変更するように構成してあること
     を特徴とする請求項1に記載の定電流回路。
    A voltage is applied across the first current path;
    The constant current circuit according to claim 1, wherein the changing unit is configured to change an amount of current flowing through the first current path by adjusting a height of the voltage.
PCT/JP2015/054749 2014-03-05 2015-02-20 Constant current circuit WO2015133295A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-043037 2014-03-05
JP2014043037A JP2015170029A (en) 2014-03-05 2014-03-05 constant current circuit

Publications (1)

Publication Number Publication Date
WO2015133295A1 true WO2015133295A1 (en) 2015-09-11

Family

ID=54055105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054749 WO2015133295A1 (en) 2014-03-05 2015-02-20 Constant current circuit

Country Status (2)

Country Link
JP (1) JP2015170029A (en)
WO (1) WO2015133295A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08190437A (en) * 1994-08-04 1996-07-23 Mitsubishi Electric Corp Semiconductor device and supply voltage generating circuit
JP2004280683A (en) * 2003-03-18 2004-10-07 Denso Corp Constant-current control circuit
JP2009230373A (en) * 2008-03-21 2009-10-08 Toyota Industries Corp Constant current circuit
JP2013125459A (en) * 2011-12-15 2013-06-24 Seiko Instruments Inc Reference current generation circuit and reference voltage generation circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08190437A (en) * 1994-08-04 1996-07-23 Mitsubishi Electric Corp Semiconductor device and supply voltage generating circuit
JP2004280683A (en) * 2003-03-18 2004-10-07 Denso Corp Constant-current control circuit
JP2009230373A (en) * 2008-03-21 2009-10-08 Toyota Industries Corp Constant current circuit
JP2013125459A (en) * 2011-12-15 2013-06-24 Seiko Instruments Inc Reference current generation circuit and reference voltage generation circuit

Also Published As

Publication number Publication date
JP2015170029A (en) 2015-09-28

Similar Documents

Publication Publication Date Title
US9298200B2 (en) Constant voltage circuit with drooping and foldback overcurrent protection
JP7356072B2 (en) regulator device
US10831227B2 (en) Reference voltage circuit with low temperature drift
US20070029983A1 (en) Linear voltage regulator with selectable output voltage
JP6610446B2 (en) Power supply control device
JP5631918B2 (en) Overcurrent protection circuit and power supply device
JP7223225B2 (en) Power supply control semiconductor device and variable output voltage power supply
JP6440533B2 (en) Voltage switching device
CN102332908B (en) There is the semiconductor integrated circuit of variable resistance circuit
JP2013058093A (en) Constant-voltage power supply circuit
US8797098B2 (en) Variable gain amplifier
US20180284822A1 (en) Low leakage low dropout regulator with high bandwidth and power supply rejection
US20060097709A1 (en) Linear voltage regulator
WO2015133295A1 (en) Constant current circuit
JP5860644B2 (en) LVDS output circuit
JP6572804B2 (en) Gate drive circuit
JP6202208B2 (en) Power semiconductor device current detection device
JP2007219901A (en) Reference current source circuit
US11378598B2 (en) Semiconductor integrated circuit device and current detection circuit
JP6302639B2 (en) Current monitoring circuit
US20100060249A1 (en) Current-restriction circuit and driving method therefor
US12003230B2 (en) Systems for controlling a slew rate of a switch
JP6961732B2 (en) Current detection circuit and integrated circuit
JP2008171070A (en) Power supply device and electronic device using it
CN104950973A (en) Reference voltage generating circuit and reference voltage source

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15759021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15759021

Country of ref document: EP

Kind code of ref document: A1