[go: up one dir, main page]

WO2015118724A1 - Transparent conductive laminate, method for producing transparent conductive laminate, and electronic device formed using transparent conductive laminate - Google Patents

Transparent conductive laminate, method for producing transparent conductive laminate, and electronic device formed using transparent conductive laminate Download PDF

Info

Publication number
WO2015118724A1
WO2015118724A1 PCT/JP2014/077183 JP2014077183W WO2015118724A1 WO 2015118724 A1 WO2015118724 A1 WO 2015118724A1 JP 2014077183 W JP2014077183 W JP 2014077183W WO 2015118724 A1 WO2015118724 A1 WO 2015118724A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
amount
value
region
indium
Prior art date
Application number
PCT/JP2014/077183
Other languages
French (fr)
Japanese (ja)
Inventor
務 原
智史 永縄
公市 永元
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Publication of WO2015118724A1 publication Critical patent/WO2015118724A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth

Definitions

  • a transparent conductive laminate using tin-doped indium oxide as a material for forming a transparent conductive layer has been widely used.
  • a transparent conductive laminate using zinc oxide with excellent transparency and surface smoothness has been proposed as an alternative to a transparent conductive layer using tin-doped indium oxide containing a large amount of indium, which is an expensive and rare metal.
  • a transparent conductive film is proposed in which an Al 2 O 3 thin film is formed on an organic polymer laminate substrate, and a GZO thin film of ZnO doped with Ga is formed thereon. (For example, refer to Patent Document 1).
  • a transparent conductive laminate having stable performance can be obtained.
  • the interface between the first region and the second region included in the transparent conductive layer is not necessarily clear, but in a state where the composition ratio of each region changes continuously or in steps. Preferably there is.
  • the internal composition ratio changes continuously or stepwise in the thickness direction, and the first region to the second region having different composition ratios are formed in the XPS measurement. It may be a grade which is confirmed.
  • the amount of indium is 0.01 to about the total amount (100 atom%) of zinc amount, gallium amount, oxygen amount and indium amount by XPS elemental analysis measurement. It is preferable to set the value within the range of 8 atom% and the gallium content within the range of 0.1 to 10 atom%. Thus, wet heat characteristics can be improved by setting the indium and gallium concentrations of the transparent conductive layer to values within a predetermined range.
  • the zinc amount is 20 to 60 atom% with respect to the total amount (100 atom%) of zinc amount, gallium amount, oxygen amount and indium amount by XPS elemental analysis measurement.
  • the amount of gallium is a value within the range of 0.1 to 10 atom%
  • the amount of oxygen is within the range of 22 to 79.89 atom%
  • the amount of indium is 0.01 to 8 atom%. It is preferable to set the value within the range.
  • the further excellent wet heat characteristic can be acquired by comprising a transparent conductive laminated body in consideration of each composition amount of the 1st field.
  • Another embodiment of the present invention is an electronic device characterized by using any of the transparent conductive laminates described above as a transparent electrode.
  • the long-term stability of an electronic device can be suitably achieved by using the transparent conductive laminated body excellent in wet heat characteristics for a transparent electrode.
  • the temperature of the substrate when forming the transparent conductive layer on the substrate is set to a value within the range of 10 to 150 ° C. Manufacturing in this way increases the types of base materials that can be used, so that it is possible not only to manufacture a transparent conductive laminate that can be used for many purposes, but it is also economically advantageous.
  • the zinc oxide film has a hexagonal wurtzite crystal structure, and a zinc oxide film doped with gallium (hereinafter referred to as a GZO film) is also shown in FIG. It is known to be a thin film having a hexagonal wurtzite crystal structure and a strong c-axis orientation.
  • the zinc oxide film in the present invention is a zinc oxide film containing zinc oxide and doped with gallium and indium (hereinafter sometimes referred to as an In-GZO film). Since the indium content is relatively small, it is understood that a columnar structure having a high c-axis orientation is taken as shown in FIGS. More specifically, FIG.
  • characteristic curve E does not contain indium, that is, GZO film X-ray diffraction chart.
  • the zinc amount is set to a value in the range of 20 to 60 atom% with respect to the total amount (100 atom%) of zinc amount, gallium amount, oxygen amount and indium amount by XPS elemental analysis measurement,
  • the amount of gallium is set to a value within the range of 0.1 to 10 atom%
  • the amount of oxygen is set to a value within the range of 22 to 79.89 atom%
  • the amount of indium is set to a value within the range of 0.01 to 8 atom%. It is preferable.
  • the zinc amount is set to a value within the range of 35 to 65 atom% with respect to the total amount (100 atom%) of zinc amount, gallium amount, oxygen amount and indium amount by XPS elemental analysis measurement,
  • the amount of gallium is set to a value within the range of 0.1 to 10 atom%
  • the amount of oxygen is set to a value within the range of 17 to 64.89 atom%
  • the amount of indium is set to a value within the range of 0.01 to 8 atom%. It is preferable.
  • the film thickness of the transparent conductive layer including the first region to the second region is a value within the range of 10 to 300 nm. This is because when the thickness of the transparent conductive layer is less than 10 nm, stable formation of the transparent conductive layer including the first region to the second region may become difficult, and the wet heat characteristics are remarkably increased. This is because it may decrease. On the other hand, when the film thickness of the transparent conductive layer exceeds 300 nm, it takes an excessive amount of time to form the transparent conductive layer, which may reduce productivity. Accordingly, the thickness of the transparent conductive layer including the first region to the second region is more preferably in the range of 20 to 250 nm, and still more preferably in the range of 30 to 200 nm.
  • the characteristic curve E is a curve that does not contain indium, that is, a characteristic curve that indicates the wet heat characteristics of the GZO film. From these characteristic curves A to E, it is understood that the wet heat characteristics are dramatically improved by adding a small amount of indium to the transparent conductive layer which is a GZO film. Moreover, the tendency for a wet heat characteristic to improve more by the increase in the compounding quantity of an indium amount is seen. Therefore, it can be understood that the In-GZO film is superior in wet heat characteristics over time because the rate of change in specific resistance in a wet heat environment is low over a long period of time compared to the GZO film.
  • polyester since it is excellent in transparency and versatile, it is preferably at least one selected from the group consisting of polyester, polyimide, polyamide, and cycloolefin polymer.
  • Olefin polymers are more preferred. More specifically, examples of the polyester include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polyarylate.
  • examples of the polyamide include wholly aromatic polyamide, nylon 6, nylon 66, nylon copolymer, and the like.
  • cycloolefin polymers include norbornene polymers, monocyclic olefin polymers, cyclic conjugated diene polymers, vinyl alicyclic hydrocarbon polymers, and hydrides thereof.
  • apell an ethylene-cycloolefin copolymer manufactured by Mitsui Chemicals
  • arton a norbornene polymer manufactured by JSR
  • zeonoa a norbornene polymer manufactured by Nippon Zeon
  • the base material may contain various additives such as an antioxidant, a flame retardant, and a lubricant as long as transparency and the like are not impaired.
  • the gas barrier layer is preferably provided between the base material and the transparent conductive layer, and the material constituting the gas barrier layer is not particularly limited as long as it prevents the permeation of oxygen and water vapor. It is preferable that the gas barrier property is good. More specifically, examples of the constituent material include metals such as aluminum, magnesium, zirconium, titanium, zinc, and tin; silicon oxide, aluminum oxide, zinc oxide, zirconium oxide, titanium oxide, indium oxide, tin oxide, and oxide.
  • the thickness of the gas barrier layer is not particularly limited, and is usually preferably a value within the range of 20 nm to 50 ⁇ m.
  • the film thickness of the gas barrier layer is more preferably set to a value within the range of 30 nm to 1 ⁇ m, and further preferably set to a value within the range of 40 nm to 500 nm.
  • the temperature of the substrate when forming the transparent conductive layer on the substrate is preferably set to a value within the range of 10 to 150 ° C. This is because, if the temperature of the substrate is a value within the range of 10 to 150 ° C., the transparent conductive film formed without changing the substrate even when a resin film is used as the substrate. This is because the composition of the layer can be easily controlled and a transparent conductive layer can be suitably formed.
  • Step 2 Step of forming transparent conductive layer
  • a transparent conductive layer (film thickness) is formed on the alkali-free glass by the DC magnetron sputtering method using the ternary sintered body described above under the following sputtering conditions. : 100 nm) to form a transparent conductive laminate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

The present invention provides a transparent conductive laminate having excellent moist heat characteristics, a method for producing said transparent conductive laminate, and an electronic device formed using such a transparent conductive laminate. Provided is a transparent conductive laminate formed by forming a transparent conductive layer on at least one side of a substrate, said laminate being characterized in that the transparent conductive layer includes zinc oxide and constitutes a zinc oxide film formed by doping gallium and indium, and the zinc oxide film includes a plurality of regions having non-uniform concentration distributions of zinc content, gallium content, oxygen content, and indium content measured by XPS analysis in the depth direction, said plurality of regions including a first region and a second region having different [In]/[Ga] values.

Description

透明導電性積層体、透明導電性積層体の製造方法、および透明導電性積層体を用いてなる電子デバイスTransparent conductive laminate, method for producing transparent conductive laminate, and electronic device using transparent conductive laminate

 本発明は、透明導電性積層体、透明導電性積層体の製造方法、および透明導電性積層体を用いてなる電子デバイスに関し、特に、湿熱特性に優れる透明導電性積層体、透明導電性積層体の製造方法、およびそのような透明導電性積層体を用いてなる電子デバイスに関する。 The present invention relates to a transparent conductive laminate, a method for producing a transparent conductive laminate, and an electronic device using the transparent conductive laminate, and in particular, a transparent conductive laminate and a transparent conductive laminate excellent in wet heat characteristics. And an electronic device using such a transparent conductive laminate.

 従来、液晶デバイスや有機エレクトロルミネッセンスデバイス(有機EL素子)を備えた画像表示装置において、錫ドープ酸化インジウムを透明導電層の形成材料として用いた透明導電性積層体が広く用いられている。
 一方、高価で希少金属であるインジウムを多量に含む錫ドープ酸化インジウムを用いた透明導電層の代替として、透明性や表面平滑性に優れた酸化亜鉛を用いた透明導電性積層体が提案されている。
 より具体的には、有機高分子積層体基材上にAl23薄膜が形成されており、その上にGaをドープしたZnOであるGZO薄膜が形成されている透明導電フィルムが提案されている(例えば、特許文献1参照)。
Conventionally, in an image display device provided with a liquid crystal device or an organic electroluminescence device (organic EL element), a transparent conductive laminate using tin-doped indium oxide as a material for forming a transparent conductive layer has been widely used.
On the other hand, a transparent conductive laminate using zinc oxide with excellent transparency and surface smoothness has been proposed as an alternative to a transparent conductive layer using tin-doped indium oxide containing a large amount of indium, which is an expensive and rare metal. Yes.
More specifically, a transparent conductive film is proposed in which an Al 2 O 3 thin film is formed on an organic polymer laminate substrate, and a GZO thin film of ZnO doped with Ga is formed thereon. (For example, refer to Patent Document 1).

 また、酸化亜鉛を主成分とし、濃度制御容易なドーパントによって、抵抗率の低下を目的とした低抵抗率透明導電体が提案されている。
 すなわち、酸化亜鉛、酸化インジウムおよび酸化ガリウムからなる透明導電体であって、インジウムおよびガリウムの元素濃度をそれぞれ所定範囲内の値とした低抵抗率透明導電体が提案されている(例えば、特許文献2)。
In addition, a low-resistivity transparent conductor has been proposed which has a zinc oxide as a main component and a dopant whose concentration can be easily controlled.
That is, a transparent conductor made of zinc oxide, indium oxide, and gallium oxide, and a low-resistance transparent conductor in which the element concentrations of indium and gallium are each within a predetermined range has been proposed (for example, Patent Documents). 2).

 一方で、極薄膜レベルであっても優れた耐湿熱特性を得ることを目的として、特定の元素をドープした透明導電性酸化亜鉛膜が提案されている。
 すなわち、酸化亜鉛に、Ga及び/又はAlからなる第1元素と、In、Bi、Se、Ce、Cu、Er及びEuからなる群から選択される少なくとも1つからなる第2元素が添加された透明導電性酸化亜鉛膜であって、所定の湿熱試験前後における比抵抗が所定範囲内の値であり、亜鉛と第2元素の原子数量比および膜厚を所定の範囲内の値に規定した透明導電性酸化亜鉛膜が提案されている(例えば、特許文献3)。
On the other hand, a transparent conductive zinc oxide film doped with a specific element has been proposed for the purpose of obtaining excellent moisture and heat resistance characteristics even at an extremely thin film level.
That is, a first element composed of Ga and / or Al and a second element composed of at least one selected from the group consisting of In, Bi, Se, Ce, Cu, Er, and Eu are added to zinc oxide. A transparent conductive zinc oxide film having a specific resistance value within a predetermined range before and after a predetermined wet heat test, and a transparent value in which the atomic quantity ratio and film thickness of zinc and the second element are specified within the predetermined range. A conductive zinc oxide film has been proposed (for example, Patent Document 3).

特許第4917897号公報(特許請求の範囲等)Japanese Patent No. 4917897 (Claims etc.) 特開2006-147325号公報(特許請求の範囲等)JP 2006-147325 A (Claims etc.) 特開2013-147727号公報(特許請求の範囲等)JP 2013-147727 A (Claims etc.)

 しかしながら、特許文献1に開示された透明導電性積層体は、アンダーコート層としてAl23薄膜を必須としているにも関わらず、ガリウムのみをドープした酸化亜鉛膜は、未だ耐湿熱特性が不十分であるという問題が見られた。
 また、特許文献2に開示された低抵抗率透明導電体は、抵抗率の改善は図れたものの、湿熱特性については、何ら考慮されていないという問題が見られた。
 また、特許文献3に開示された透明導電性酸化亜鉛膜は、ある程度の湿熱特性は得られているものの、成膜条件が比較的過酷であり、また膜厚が140nm以下であることを必須としており、用途が比較的狭く限定されるという問題が見られた。
However, although the transparent conductive laminate disclosed in Patent Document 1 requires an Al 2 O 3 thin film as an undercoat layer, a zinc oxide film doped only with gallium still has poor moisture and heat resistance characteristics. There was a problem of being sufficient.
Moreover, although the low resistivity transparent conductor disclosed in Patent Document 2 has improved the resistivity, there has been a problem that no consideration has been given to the wet heat characteristics.
Moreover, although the transparent conductive zinc oxide film disclosed in Patent Document 3 has some wet heat characteristics, the film forming conditions are relatively severe, and the film thickness must be 140 nm or less. However, there has been a problem that the application is relatively narrow and limited.

 そこで、本発明者らは、このような問題を鋭意検討した結果、基材の少なくとも片面に透明導電層を形成してなる透明導電性積層体であって、酸化亜鉛膜が、酸化亜鉛を含むとともに、ガリウムおよびインジウムをドープしてなる酸化亜鉛膜であり、当該酸化亜鉛膜が、XPS分析によって測定される亜鉛量、ガリウム量、酸素量、およびインジウム量に関して不均一な濃度分布を有する特定の構成を有する複数領域を含む透明導電性積層体を構成することにより、湿熱特性に優れることを見出し、本発明を完成させたものである。
 すなわち、本発明は、湿熱特性に優れる透明導電性積層体、透明導電性積層体の製造方法、およびそのような透明導電性積層体を用いてなる電子デバイスを提供することを目的とする。
Therefore, as a result of intensive studies on such problems, the present inventors are a transparent conductive laminate in which a transparent conductive layer is formed on at least one side of a substrate, and the zinc oxide film contains zinc oxide. A zinc oxide film doped with gallium and indium, the zinc oxide film having a non-uniform concentration distribution with respect to zinc content, gallium content, oxygen content, and indium content measured by XPS analysis It has been found that by forming a transparent conductive laminate including a plurality of regions having a configuration, it has excellent wet heat characteristics, and the present invention has been completed.
That is, an object of the present invention is to provide a transparent conductive laminate excellent in wet heat characteristics, a method for producing the transparent conductive laminate, and an electronic device using such a transparent conductive laminate.

 本発明によれば、基材上の少なくとも片面に透明導電層を形成してなる透明導電性積層体であって、透明導電層が、酸化亜鉛を含むとともに、ガリウムおよびインジウムをドープしてなる酸化亜鉛膜であり、当該酸化亜鉛膜が、深さ方向のXPS分析によって測定される亜鉛量、ガリウム量、酸素量、およびインジウム量に関して、不均一な濃度分布を有する複数領域を含んでおり、かつ、当該複数領域が、透明導電層から基材に向かう膜厚方向において、[In]/[Ga]の値が異なる第1領域および第2領域を含むことを特徴とする透明導電性積層体が提供され、上述した問題を解決することができる。
 すなわち、本発明の透明導電層が、酸化亜鉛を含むとともに、ガリウムおよびインジウムをドープしてなる酸化亜鉛膜であって、亜鉛量、ガリウム量、酸素量およびインジウム量に関して、不均一な濃度分布を複数領域含んでいることから、透明導電層の湿熱特性を向上させることができる。
 より具体的には、透明導電層に含まれる第1領域~第2領域の各領域が、上記のような元素量の関係を満足することによって、湿熱特性に優れた透明導電層とすることができる。
 また、第1領域~第2領域の配合組成をXPS測定によって、特定することにより、特定精度が高く、簡便に、配合組成を所定量に制御して、所定関係を満足させることができるため、性能が安定した透明導電性積層体を得ることができる。
 但し、透明導電層に含まれる第1領域~第2領域の界面は必ずしも明確である必要はなく、むしろ、各領域の組成比が連続的または段階的に変化する部分が存在している状態であることが好ましい。
 言うなれば、透明導電層において、厚さ方向に、内部の組成比が連続的または段階的に変化して、XPS測定において、組成比が異なる第1領域~第2領域を形成していることが確認される程度であって良い。
According to the present invention, there is provided a transparent conductive laminate formed by forming a transparent conductive layer on at least one surface on a substrate, the transparent conductive layer containing zinc oxide and being doped with gallium and indium. A zinc film, the zinc oxide film including a plurality of regions having a non-uniform concentration distribution with respect to zinc content, gallium content, oxygen content, and indium content measured by XPS analysis in a depth direction; and The transparent conductive laminate is characterized in that the plurality of regions include a first region and a second region having different values of [In] / [Ga] in the film thickness direction from the transparent conductive layer toward the substrate. Provided and can solve the above-mentioned problems.
That is, the transparent conductive layer of the present invention is a zinc oxide film containing zinc oxide and doped with gallium and indium, and has a non-uniform concentration distribution with respect to zinc content, gallium content, oxygen content and indium content. Since it contains a plurality of regions, the wet heat characteristics of the transparent conductive layer can be improved.
More specifically, each region of the first region to the second region included in the transparent conductive layer satisfies the above-described element amount relationship, whereby a transparent conductive layer having excellent wet heat characteristics can be obtained. it can.
In addition, by specifying the blending composition of the first region to the second region by XPS measurement, it is possible to easily control the blending composition to a predetermined amount and satisfy a predetermined relationship with high accuracy. A transparent conductive laminate having stable performance can be obtained.
However, the interface between the first region and the second region included in the transparent conductive layer is not necessarily clear, but in a state where the composition ratio of each region changes continuously or in steps. Preferably there is.
In other words, in the transparent conductive layer, the internal composition ratio changes continuously or stepwise in the thickness direction, and the first region to the second region having different composition ratios are formed in the XPS measurement. It may be a grade which is confirmed.

 また、本発明を構成するにあたり、第1領域において、[In]/[Ga]の値が、漸次に減少するとともに、第2領域において、[In]/[Ga]の値が、一定値を示すことが好ましい。
 このように透明導電層に含まれる第1領域~第2領域の各領域が、上記のような元素量の関係を満足することによって、湿熱特性に優れた透明導電層とすることができる。
In configuring the present invention, the value of [In] / [Ga] gradually decreases in the first region, and the value of [In] / [Ga] becomes a constant value in the second region. It is preferable to show.
As described above, when each region of the first region to the second region included in the transparent conductive layer satisfies the above-described element amount relationship, a transparent conductive layer having excellent wet heat characteristics can be obtained.

 また、本発明を構成するにあたり、透明導電層において、XPSの元素分析測定による亜鉛量、ガリウム量、酸素量、およびインジウム量の合計量(100atom%)に対して、インジウム量を0.01~8atom%の範囲内の値とし、かつ、ガリウム量を0.1~10atom%の範囲内の値とすることが好ましい。
 このように透明導電層のインジウムおよびガリウム濃度を所定範囲内の値とすることにより、湿熱特性を向上させることができる。
In constituting the present invention, in the transparent conductive layer, the amount of indium is 0.01 to about the total amount (100 atom%) of zinc amount, gallium amount, oxygen amount and indium amount by XPS elemental analysis measurement. It is preferable to set the value within the range of 8 atom% and the gallium content within the range of 0.1 to 10 atom%.
Thus, wet heat characteristics can be improved by setting the indium and gallium concentrations of the transparent conductive layer to values within a predetermined range.

 また、本発明を構成するにあたり、第1領域において、XPSの元素分析測定による亜鉛量、ガリウム量、酸素量、およびインジウム量の合計量(100atom%)に対して、亜鉛量を20~60atom%の範囲内の値とし、ガリウム量を0.1~10atom%の範囲内の値とし、酸素量を22~79.89atom%の範囲内の値とし、かつ、インジウム量を0.01~8atom%の範囲内の値とすることが好ましい。
 このように第1領域の各組成量を考慮して透明導電性積層体を構成することにより、さらに優れた湿熱特性を得ることができる。
Further, in constituting the present invention, in the first region, the zinc amount is 20 to 60 atom% with respect to the total amount (100 atom%) of zinc amount, gallium amount, oxygen amount and indium amount by XPS elemental analysis measurement. The amount of gallium is a value within the range of 0.1 to 10 atom%, the amount of oxygen is within the range of 22 to 79.89 atom%, and the amount of indium is 0.01 to 8 atom%. It is preferable to set the value within the range.
Thus, the further excellent wet heat characteristic can be acquired by comprising a transparent conductive laminated body in consideration of each composition amount of the 1st field.

 また、本発明を構成するにあたり、第2領域において、XPSの元素分析測定による亜鉛量、ガリウム量、酸素量、およびインジウム量の合計量(100atom%)に対して、亜鉛量を35~65atom%の範囲内の値とし、ガリウム量を0.1~10atom%の範囲内の値とし、酸素量を17~64.89atom%の範囲内の値とし、かつ、インジウム量を0.01~8atom%の範囲内の値とすることが好ましい。
 このように第2領域の各組成量を考慮して透明導電性積層体を構成することにより、さらに優れた湿熱特性を得ることができる。
In constructing the present invention, in the second region, the zinc amount is 35 to 65 atom% with respect to the total amount (100 atom%) of zinc amount, gallium amount, oxygen amount and indium amount by XPS elemental analysis measurement. The amount of gallium is a value within the range of 0.1 to 10 atom%, the amount of oxygen is within the range of 17 to 64.89 atom%, and the amount of indium is 0.01 to 8 atom%. It is preferable to set the value within the range.
Thus, the further excellent wet heat characteristic can be acquired by comprising a transparent conductive laminated body in consideration of each composition amount of the 2nd field.

 また、本発明を構成するにあたり、第1領域の[In]/[Ga]の値が、第2領域の[In]/[Ga]の値よりも大きいことが好ましい。
 このように第1領域~第2領域を構成することにより、さらに優れた湿熱特性を得ることができる。
In configuring the present invention, the value of [In] / [Ga] in the first region is preferably larger than the value of [In] / [Ga] in the second region.
By configuring the first region and the second region in this way, further excellent wet heat characteristics can be obtained.

 また、本発明を構成するにあたり、ρ0で表される透明導電層の初期の比抵抗を1×10-4~1×10-1Ω・cmの範囲内の値とし、かつ、膜厚を10~300nmの範囲内の値とすることが好ましい。
 このように構成することにより、所定の膜厚および低比抵抗を有する透明導電層の生産性を向上させることができる。
In configuring the present invention, the initial specific resistance of the transparent conductive layer represented by ρ 0 is set to a value in the range of 1 × 10 −4 to 1 × 10 −1 Ω · cm, and the film thickness is set to A value in the range of 10 to 300 nm is preferable.
By comprising in this way, the productivity of the transparent conductive layer which has a predetermined film thickness and a low specific resistance can be improved.

 また、本発明を構成するにあたり、透明導電層における初期の比抵抗をρ0とし、60℃、相対湿度95%の条件下で、500時間、保管した後の比抵抗をρ1としたときに、ρ10で表わされる比率を1.5以下の値とすることが好ましい。
 このように構成することにより、湿熱特性に優れる透明導電性積層体を得ることができる。
In constructing the present invention, the initial specific resistance of the transparent conductive layer is ρ 0, and the specific resistance after storage for 500 hours at 60 ° C. and relative humidity of 95% is ρ 1. The ratio represented by ρ 1 / ρ 0 is preferably set to a value of 1.5 or less.
By comprising in this way, the transparent conductive laminated body which is excellent in wet heat characteristics can be obtained.

 また、本発明の別の態様は、上述したいずれかの透明導電性積層体を透明電極に用いてなることを特徴とする電子デバイスである。
 このように、湿熱特性に優れる透明導電性積層体を透明電極に用いることにより、電子デバイスの長期安定性を好適に図ることができる。
Another embodiment of the present invention is an electronic device characterized by using any of the transparent conductive laminates described above as a transparent electrode.
Thus, the long-term stability of an electronic device can be suitably achieved by using the transparent conductive laminated body excellent in wet heat characteristics for a transparent electrode.

 また、本発明のさらに別の態様は、基材上の少なくとも片面に透明導電層を形成してなる透明導電性積層体の製造方法であって、下記工程(1)~(2)を含むことを特徴とする透明導電性積層体の製造方法である。
(1)基材および焼結体を準備する工程
(2)基材上の少なくとも片面に、スパッタリング法または蒸着法によって、焼結体から、酸化亜鉛を含むとともに、ガリウムおよびインジウムをドープしてなる酸化亜鉛膜であって、深さ方向のXPS分析によって測定される亜鉛量、ガリウム量、酸素量、およびインジウム量に関して、不均一な濃度分布を有する複数領域を含んでおり、かつ、当該複数領域が、透明導電層から基材に向かう厚さ方向において、[In]/[Ga]の値が異なる第1領域および第2領域を含む酸化亜鉛膜からなる透明導電層を形成する工程
 すなわち、このように製造することによって、湿熱特性に優れた透明導電性積層体を安定的に製造することができる。
Still another embodiment of the present invention is a method for producing a transparent conductive laminate in which a transparent conductive layer is formed on at least one surface on a substrate, and includes the following steps (1) to (2): Is a method for producing a transparent conductive laminate.
(1) Step of preparing a base material and a sintered body (2) At least one surface on the base material is doped with gallium and indium while containing zinc oxide from the sintered body by sputtering or vapor deposition. A zinc oxide film, which includes a plurality of regions having a non-uniform concentration distribution with respect to zinc amount, gallium amount, oxygen amount, and indium amount measured by XPS analysis in the depth direction, and the plurality of regions However, in the thickness direction from the transparent conductive layer to the substrate, a step of forming a transparent conductive layer composed of a zinc oxide film including a first region and a second region having different values of [In] / [Ga] By producing in this way, a transparent conductive laminate excellent in wet heat characteristics can be produced stably.

 また、本発明を実施するにあたり、基材上に、透明導電層を形成する際の基材の温度を10~150℃の範囲内の値とすることが好ましい。
 このように製造することによって、使用可能な基材の種類が増えるため、多用途に使用可能な透明導電性積層体を製造可能であるばかりか、経済的にも有利である。
In practicing the present invention, it is preferable that the temperature of the substrate when forming the transparent conductive layer on the substrate is set to a value within the range of 10 to 150 ° C.
Manufacturing in this way increases the types of base materials that can be used, so that it is possible not only to manufacture a transparent conductive laminate that can be used for many purposes, but it is also economically advantageous.

図1(a)は、実施例2の透明導電性積層体における透明導電層を深さ方向のXPS分析によって測定された元素量(亜鉛量、酸素量、ガリウム量およびインジウム量)を説明するために供する図であり、図1(b)は、ガリウム量及びインジウム量の分布曲線を拡大した図であり、図1(c)は、[In]/[Ga]の値の変化を説明するために供する図である。FIG. 1A illustrates the amounts of elements (zinc content, oxygen content, gallium content and indium content) measured by XPS analysis in the depth direction of the transparent conductive layer in the transparent conductive laminate of Example 2. FIG. 1B is an enlarged view of the distribution curve of the gallium content and the indium content, and FIG. 1C is a diagram for explaining a change in the value of [In] / [Ga]. FIG. 図2(a)~(c)は、本発明の不均一な濃度分布を有する複数領域を含む透明導電層を含む透明導電性積層体の断面を説明するために供する図である。FIGS. 2A to 2C are views for explaining a cross section of a transparent conductive laminate including a transparent conductive layer including a plurality of regions having a non-uniform concentration distribution according to the present invention. 図3は、本発明の酸化亜鉛を含むとともに、ガリウムおよびインジウムをドープしてなる酸化亜鉛膜のIn Plane法によるX線回折チャートである。FIG. 3 is an X-ray diffraction chart by an In Plane method of a zinc oxide film containing the zinc oxide of the present invention and doped with gallium and indium. 図4は、本発明の酸化亜鉛膜のOut of Plane法による002面におけるX線回折チャートである。FIG. 4 is an X-ray diffraction chart on the 002 plane of the zinc oxide film of the present invention by the Out of Plane method. 図5は、GZO膜の結晶構造を説明するために供する写真である。FIG. 5 is a photograph provided to explain the crystal structure of the GZO film. 図6は、本発明の透明導電性積層体の湿熱特性を説明するために供する図である。FIG. 6 is a diagram provided for explaining the wet heat characteristics of the transparent conductive laminate of the present invention. 図7(a)は、実施例1の透明導電性積層体における透明導電層を深さ方向のXPS分析によって測定された元素量(亜鉛量、酸素量、ガリウム量およびインジウム量)を説明するために供する図であり、図7(b)は、ガリウム量及びインジウム量の分布曲線を拡大した図であり、図7(c)は、[In]/[Ga]の値の変化を説明するために供する図である。FIG. 7A illustrates the element amounts (zinc amount, oxygen amount, gallium amount and indium amount) of the transparent conductive layer in the transparent conductive laminate of Example 1 measured by XPS analysis in the depth direction. FIG. 7B is an enlarged view of the distribution curve of the gallium content and the indium content, and FIG. 7C is a diagram for explaining a change in the value of [In] / [Ga]. FIG. 図8(a)は、実施例3の透明導電性積層体における透明導電層を深さ方向のXPS分析によって測定された元素量(亜鉛量、酸素量、ガリウム量およびインジウム量)を説明するために供する図であり、図8(b)は、ガリウム量及びインジウム量の分布曲線を拡大した図であり、図8(c)は、[In]/[Ga]の値の変化を説明するために供する図である。FIG. 8A illustrates the amounts of elements (zinc content, oxygen content, gallium content and indium content) measured by XPS analysis in the depth direction of the transparent conductive layer in the transparent conductive laminate of Example 3. FIG. 8B is an enlarged view of the distribution curve of the gallium content and the indium content, and FIG. 8C is a diagram for explaining the change in the value of [In] / [Ga]. FIG. 図9(a)は、実施例4の透明導電性積層体における透明導電層を深さ方向のXPS分析によって測定された元素量(亜鉛量、酸素量、ガリウム量およびインジウム量)を説明するために供する図であり、図9(b)は、ガリウム量及びインジウム量の分布曲線を拡大した図であり、図9(c)は、[In]/[Ga]の値の変化を説明するために供する図である。FIG. 9A illustrates the amounts of elements (zinc content, oxygen content, gallium content and indium content) measured by XPS analysis in the depth direction of the transparent conductive layer in the transparent conductive laminate of Example 4. FIG. 9B is an enlarged view of the distribution curve of the gallium content and the indium content, and FIG. 9C is a diagram for explaining the change in the value of [In] / [Ga]. FIG. 図10(a)は、比較例1の透明導電性積層体における透明導電層を深さ方向のXPS分析によって測定された元素量(亜鉛量、酸素量、ガリウム量およびインジウム量)を説明するために供する図であり、図10(b)は、ガリウム量及びインジウム量の分布曲線を拡大した図である。FIG. 10A illustrates the element amounts (zinc amount, oxygen amount, gallium amount, and indium amount) measured by XPS analysis in the depth direction of the transparent conductive layer in the transparent conductive laminate of Comparative Example 1. FIG. 10B is an enlarged view of the distribution curves of the gallium content and the indium content.

[第1の実施形態]
 第1の実施形態は、基材上の少なくとも片面に透明導電層を形成してなる透明導電性積層体であって、透明導電層が、酸化亜鉛を含むとともに、ガリウムおよびインジウムをドープしてなる酸化亜鉛膜であり、当該酸化亜鉛膜が、深さ方向のXPS分析によって測定される亜鉛量、ガリウム量、酸素量、およびインジウム量に関して、不均一な濃度分布を有する複数領域を含んでおり、かつ、当該複数領域が、透明導電層から基材に向かう膜厚方向において、[In]/[Ga]の値が異なる第1領域および第2領域を含むことを特徴とする透明導電性積層体である。
 以下、第1の実施形態の透明導電性積層体につき、適宜図面を参照して具体的に説明する。
[First embodiment]
The first embodiment is a transparent conductive laminate in which a transparent conductive layer is formed on at least one surface on a substrate, and the transparent conductive layer contains zinc oxide and is doped with gallium and indium. A zinc oxide film, the zinc oxide film including a plurality of regions having a non-uniform concentration distribution with respect to zinc amount, gallium amount, oxygen amount, and indium amount measured by XPS analysis in a depth direction; And the said several area | region contains the 1st area | region and the 2nd area | region from which the value of [In] / [Ga] differs in the film thickness direction which goes to a base material from a transparent conductive layer, The transparent conductive laminated body characterized by the above-mentioned It is.
Hereinafter, the transparent conductive laminate of the first embodiment will be specifically described with reference to the drawings as appropriate.

1.透明導電層
 透明導電層は、図2(a)に示すように、透明導電層10が、酸化亜鉛を含むとともに、ガリウムおよびインジウムをドープしてなる酸化亜鉛膜であって、基材に向かう膜厚方向において、深さ方向のXPS分析によって測定される亜鉛量、ガリウム量、酸素量、およびインジウム量に関して、不均一な濃度分布を有する複数領域を含んでおり、かつ、当該複数領域が、透明導電層から基材に向かう膜厚方向において、[In]/[Ga]の値が異なる第1領域10aおよび第2領域10bを含むことを特徴とする。
 すなわち、透明導電層に含まれる第1領域~第2領域の各領域が上記のような元素分布の関係を満足することによって、湿熱特性や透明性に優れた透明導電層とすることができる。
1. Transparent conductive layer The transparent conductive layer is a zinc oxide film in which the transparent conductive layer 10 contains zinc oxide and is doped with gallium and indium, as shown in FIG. In the thickness direction, it includes a plurality of regions having non-uniform concentration distribution with respect to zinc amount, gallium amount, oxygen amount and indium amount measured by XPS analysis in the depth direction, and the plurality of regions are transparent It includes a first region 10a and a second region 10b having different values of [In] / [Ga] in the film thickness direction from the conductive layer toward the substrate.
That is, when each region of the first region to the second region included in the transparent conductive layer satisfies the above element distribution relationship, a transparent conductive layer excellent in wet heat characteristics and transparency can be obtained.

(1)結晶構造
 酸化亜鉛膜は、六方晶系ウルツ鉱型の結晶構造を有しており、ガリウムをドープした酸化亜鉛膜(以下、GZO膜と称する)もまた、図5に示すように、六方晶系ウルツ鉱型の結晶構造を有しており、c軸配向性の強い薄膜であることが知られている。
 また、本発明における酸化亜鉛膜は、酸化亜鉛を含むとともに、ガリウムおよびインジウムをドープしてなる酸化亜鉛膜(以下、In-GZO膜と称する場合がある)であるが、インジウムをドープしても、インジウム量が比較的少量であるため、図3、図4に示すように、c軸配向性の高い柱状構造をとっていることが理解される。
 より具体的には、図3は、インジウムの濃度を変化させた場合におけるIn plane法によるX線回折チャートを示している。ここで、特性曲線Aは、重量比がZnO:Ga23:In23=94.0:5.7:0.3である焼結体から得られたIn-GZO膜のX線回折チャートであり、特性曲線Bは、重量比がZnO:Ga23:In23=93.5:5.7:1.0である焼結体から得られたIn-GZO膜のX線回折チャートであり、特性曲線Cは、重量比がZnO:Ga23:In23=89.3:5.7:5.0である焼結体から得られたIn-GZO膜のX線回折チャートであり、特性曲線Dは、重量比がZnO:Ga23:In23=84.3:5.7:10.0である焼結体から得られたIn-GZO膜のX線回折チャートであり、特性曲線Eは、インジウムを含まない、すなわち、GZO膜のX線回折チャートである。
(1) Crystal structure The zinc oxide film has a hexagonal wurtzite crystal structure, and a zinc oxide film doped with gallium (hereinafter referred to as a GZO film) is also shown in FIG. It is known to be a thin film having a hexagonal wurtzite crystal structure and a strong c-axis orientation.
The zinc oxide film in the present invention is a zinc oxide film containing zinc oxide and doped with gallium and indium (hereinafter sometimes referred to as an In-GZO film). Since the indium content is relatively small, it is understood that a columnar structure having a high c-axis orientation is taken as shown in FIGS.
More specifically, FIG. 3 shows an X-ray diffraction chart by the In plane method when the concentration of indium is changed. Here, the characteristic curve A is an X-ray of an In-GZO film obtained from a sintered body having a weight ratio of ZnO: Ga 2 O 3 : In 2 O 3 = 94.0: 5.7: 0.3. It is a diffraction chart, and the characteristic curve B shows an In-GZO film obtained from a sintered body having a weight ratio of ZnO: Ga 2 O 3 : In 2 O 3 = 93.5: 5.7: 1.0. It is an X-ray diffraction chart, and a characteristic curve C shows In-GZO obtained from a sintered body having a weight ratio of ZnO: Ga 2 O 3 : In 2 O 3 = 89.3: 5.7: 5.0. It is an X-ray diffraction chart of the film, and the characteristic curve D shows the In obtained from the sintered body whose weight ratio is ZnO: Ga 2 O 3 : In 2 O 3 = 84.3: 5.7: 10.0. -GZO film X-ray diffraction chart, characteristic curve E does not contain indium, that is, GZO film X-ray diffraction chart.

 また、図4は、002面におけるOut of plane法によるX線回折チャートを示している。ここで、図3と同様に、特性曲線Aは、重量比がZnO:Ga23:In23=94.0:5.7:0.3である焼結体から得られたIn-GZO膜のX線回折チャートであり、特性曲線Bは、重量比がZnO:Ga23:In23=93.5:5.7:1.0である焼結体から得られたIn-GZO膜のX線回折チャートであり、特性曲線Cは、重量比がZnO:Ga23:In23=89.3:5.7:5.0である焼結体から得られたIn-GZO膜のX線回折チャートであり、特性曲線Dは、重量比がZnO:Ga23:In23=84.3:5.7:10.0である焼結体から得られたIn-GZO膜のX線回折チャートであり、特性曲線Eは、インジウムを含まない、すなわち、GZO膜のX線回折チャートである。
 図3~図4より、In-GZO膜は、GZO膜と同様の回折ピークを示していることから、結晶構造も類似していることが理解される。
FIG. 4 shows an X-ray diffraction chart of the 002 plane by the out of plane method. Here, as in FIG. 3, the characteristic curve A is an In obtained from a sintered body having a weight ratio of ZnO: Ga 2 O 3 : In 2 O 3 = 94.0: 5.7: 0.3. -GZO film X-ray diffraction chart, characteristic curve B obtained from a sintered body having a weight ratio of ZnO: Ga 2 O 3 : In 2 O 3 = 93.5: 5.7: 1.0 3 is an X-ray diffraction chart of an In-GZO film, and a characteristic curve C is obtained from a sintered body having a weight ratio of ZnO: Ga 2 O 3 : In 2 O 3 = 89.3: 5.7: 5.0. It is an X-ray diffraction chart of the obtained In-GZO film, and the characteristic curve D shows that the weight ratio is ZnO: Ga 2 O 3 : In 2 O 3 = 84.3: 5.7: 10.0. 2 is an X-ray diffraction chart of an In—GZO film obtained from the body, and a characteristic curve E is an X-ray diffraction chart of the GZO film that does not contain indium.
3 to 4, it can be understood that the In-GZO film shows the same diffraction peak as that of the GZO film, and the crystal structure is similar.

(2)構成
 また、透明導電層において、XPSの元素分析測定による亜鉛量、ガリウム量、酸素量、およびインジウム量の合計量(100atom%)に対して、インジウム量を0.01~8atom%の範囲内の値とし、かつ、ガリウム量を0.1~10atom%の範囲内の値とすることが好ましい。
 すなわち、透明導電層において、インジウム量が0.01atom%未満の値となると、好適な湿熱特性が得られない場合があり、一方、インジウム量が8atom%を超えた値となると、電気特性が低下する場合があるためである。
 また、ガリウム量が、上記範囲外の値となると、電気特性が劣る場合があるためである。
 したがって、湿熱特性を良好なものとする点から、透明導電層において、XPSの元素分析測定による亜鉛量、ガリウム量、酸素量、およびインジウム量の合計量(100atom%)に対して、インジウム濃度を0.02~7atom%の範囲内の値とし、かつ、ガリウム濃度を0.5~10atom%の範囲内の値とすることがより好ましい。
 なお、XPSの元素分析測定による各元素量は、透明導電層全体において、深さ方向のXPS分析によって測定される、各深さにおける元素量の平均値を意味する。
(2) Configuration Further, in the transparent conductive layer, the indium content is 0.01 to 8 atom% with respect to the total amount (100 atom%) of zinc content, gallium content, oxygen content and indium content by XPS elemental analysis measurement. It is preferable to set the value within the range and the gallium content within the range of 0.1 to 10 atom%.
That is, in the transparent conductive layer, when the amount of indium is less than 0.01 atom%, suitable wet heat characteristics may not be obtained. On the other hand, when the amount of indium exceeds 8 atom%, the electrical characteristics deteriorate. It is because there is a case to do.
Moreover, it is because an electrical property may be inferior when the amount of gallium becomes a value outside the above range.
Therefore, in order to improve the wet heat characteristics, in the transparent conductive layer, the indium concentration is set to the total amount (100 atom%) of zinc amount, gallium amount, oxygen amount and indium amount by XPS elemental analysis measurement. More preferably, the value is in the range of 0.02 to 7 atom%, and the gallium concentration is in the range of 0.5 to 10 atom%.
In addition, each element amount by the elemental analysis measurement of XPS means the average value of the element amount in each depth measured by the XPS analysis of the depth direction in the whole transparent conductive layer.

(3)第1領域
 図1(a)~(c)および図2(a)に示すように、透明導電層10における第1領域10aは、亜鉛量、ガリウム量、酸素量、およびインジウム量に関して、不均一な濃度分布を有する複数領域の一つであり、かつ、基材表面から最も離れて形成されており、深さ方向のXPS分析において、インジウム量/ガリウム量([In]/[Ga])の値が漸次に減少することが好ましい。
 ここで、透明導電層10について、深さ方向のXPS分析によって測定した結果を、例えば、図1(a)~(b)に示す。
 また、図1(a)~(b)から、[In]/[Ga]を算出した結果を、図1(c)に示す。
 すなわち、図1より、第1領域において、基材に向かって、ガリウム量が、インジウム量に比較し、大きく増加していることが理解される。
 なお、第1領域において、酸素量およびインジウム量が減少するとともに、ガリウム量および亜鉛量が増加することが好ましい。
 この理由は、各元素がこのような構成となることによって、良好な湿熱特性が得られるためである。
(3) First Region As shown in FIGS. 1 (a) to 1 (c) and FIG. 2 (a), the first region 10a in the transparent conductive layer 10 has a zinc content, a gallium content, an oxygen content, and an indium content. , One of a plurality of regions having a non-uniform concentration distribution and formed farthest from the substrate surface, and in XPS analysis in the depth direction, indium content / gallium content ([In] / [Ga ]) Is preferably gradually reduced.
Here, the results of the transparent conductive layer 10 measured by XPS analysis in the depth direction are shown, for example, in FIGS.
FIG. 1C shows the result of calculating [In] / [Ga] from FIGS. 1A to 1B.
That is, it can be understood from FIG. 1 that in the first region, the amount of gallium is greatly increased toward the base material compared to the amount of indium.
In the first region, it is preferable that the amount of oxygen and the amount of indium decrease, and the amount of gallium and the amount of zinc increase.
The reason is that good wet heat characteristics can be obtained when each element has such a structure.

 また、第1領域において、XPSの元素分析測定による亜鉛量、ガリウム量、酸素量、およびインジウム量の合計量(100atom%)に対して、亜鉛量を20~60atom%の範囲内の値とし、ガリウム量を0.1~10atom%の範囲内の値とし、酸素量を22~79.89atom%の範囲内の値とし、かつ、インジウム量を0.01~8atom%の範囲内の値とすることが好ましい。 Further, in the first region, the zinc amount is set to a value in the range of 20 to 60 atom% with respect to the total amount (100 atom%) of zinc amount, gallium amount, oxygen amount and indium amount by XPS elemental analysis measurement, The amount of gallium is set to a value within the range of 0.1 to 10 atom%, the amount of oxygen is set to a value within the range of 22 to 79.89 atom%, and the amount of indium is set to a value within the range of 0.01 to 8 atom%. It is preferable.

 すなわち、第1領域におけるインジウム量が0.01atom%未満の値となると、湿熱特性が著しく低下する場合があるためである。
 一方、第1領域におけるインジウム量が8atom%を超えた値となると、相対的に亜鉛量およびガリウム量が減少し、配合成分のバランスが崩れて結晶構造が変化する場合があるためである。
 したがって、湿熱特性を良好なものとする点から、第1領域において、XPSの元素分析測定による亜鉛量、ガリウム量、酸素量、およびインジウム量の合計量(100atom%)に対して、亜鉛量を25~55atom%の範囲内の値とし、ガリウム量を0.1~5atom%の範囲内の値とし、酸素量を33~74.88atom%の範囲内の値とし、かつ、インジウム量を0.02~7atom%の範囲内の値とすることがより好ましい。
 なお、XPSの元素分析測定による第1領域における各元素量は、深さ方向のXPS分析による測定において、[In]/[Ga]の値が漸次に減少する範囲における元素量の平均値を意味するが、第1領域は極薄膜であるため、測定値が1点のみである場合は、その値を意味する。
That is, when the amount of indium in the first region is less than 0.01 atom%, the wet heat characteristics may be significantly deteriorated.
On the other hand, when the amount of indium in the first region exceeds 8 atom%, the amount of zinc and the amount of gallium are relatively decreased, and the balance of the blending components may be lost to change the crystal structure.
Therefore, in order to improve the wet heat characteristics, in the first region, the zinc amount is set to the total amount (100 atom%) of zinc amount, gallium amount, oxygen amount, and indium amount by XPS elemental analysis measurement. The value is in the range of 25 to 55 atom%, the gallium amount is in the range of 0.1 to 5 atom%, the oxygen amount is in the range of 33 to 74.88 atom%, and the indium amount is 0.8. A value in the range of 02 to 7 atom% is more preferable.
In addition, each element amount in the first region by XPS elemental analysis measurement means an average value of element amounts in a range where the value of [In] / [Ga] gradually decreases in the measurement by XPS analysis in the depth direction. However, since the first region is an extremely thin film, when the measured value is only one point, that value is meant.

(4)第2領域
 図1(a)~(c)および図2(a)に示すように、透明導電層10における第2領域10bは、深さ方向のXPS分析によって測定される亜鉛量、ガリウム量、酸素量、およびインジウム量に関して、不均一な濃度分布を有する複数領域の一つであり、基材側に位置し、亜鉛量、ガリウム量、酸素量、およびインジウム量の合計量(100atom%)に対して、[In]/[Ga]の値が、一定値を示すことが好ましい。
 この理由は、このように第2領域が、膜厚方向において組成比が大きく変化しない領域となることにより、良好な湿熱特性が得られるためである。
 なお、[In]/[Ga]の値が、一定値を示すとは、[In]/[Ga]の値の増減が、±0.5の範囲内の値となることを意味する。
(4) Second region As shown in FIGS. 1 (a) to 1 (c) and FIG. 2 (a), the second region 10b in the transparent conductive layer 10 has an amount of zinc measured by XPS analysis in the depth direction, One of a plurality of regions having a non-uniform concentration distribution with respect to the amount of gallium, the amount of oxygen, and the amount of indium, located on the substrate side, and the total amount of zinc, gallium, oxygen, and indium (100 atoms) %), The value of [In] / [Ga] preferably represents a constant value.
The reason for this is that good wet heat characteristics can be obtained when the second region becomes a region in which the composition ratio does not change significantly in the film thickness direction.
Note that the value of [In] / [Ga] being a constant value means that the increase / decrease in the value of [In] / [Ga] is a value within a range of ± 0.5.

 したがって、第2領域において、XPSの元素分析測定による亜鉛量、ガリウム量、酸素量、およびインジウム量の合計量(100atom%)に対して、亜鉛量を35~65atom%の範囲内の値とし、ガリウム量を0.1~10atom%の範囲内の値とし、酸素量を17~64.89atom%の範囲内の値とし、かつ、インジウム量を0.01~8atom%の範囲内の値とすることが好ましい。 Therefore, in the second region, the zinc amount is set to a value within the range of 35 to 65 atom% with respect to the total amount (100 atom%) of zinc amount, gallium amount, oxygen amount and indium amount by XPS elemental analysis measurement, The amount of gallium is set to a value within the range of 0.1 to 10 atom%, the amount of oxygen is set to a value within the range of 17 to 64.89 atom%, and the amount of indium is set to a value within the range of 0.01 to 8 atom%. It is preferable.

 すなわち、第2領域におけるインジウム量が0.01atom%未満の値となると、湿熱特性が著しく低下する場合があるためである。
 一方、第2領域におけるインジウム量が8atom%を超えた値となると、相対的に亜鉛量およびガリウム量が減少し、配合成分のバランスが崩れて結晶構造が変化する場合があるためである。
 したがって、湿熱特性を良好なものとする点から、第2領域において、XPSの元素分析測定による亜鉛量、ガリウム量、酸素量、およびインジウム量の合計量(100atom%)に対して、亜鉛量を40~60atom%の範囲内の値とし、ガリウム量を0.5~10atom%の範囲内の値とし、酸素量を23~59.48atom%の範囲内の値とし、かつ、インジウム量を0.02~7atom%の範囲内の値とすることがより好ましい。
 なお、XPSの元素分析測定による第2領域における各元素量は、深さ方向のXPS分析による測定において、[In]/[Ga]の値が一定値を示す範囲における元素量の平均値を意味する。
That is, when the amount of indium in the second region is less than 0.01 atom%, the wet heat characteristics may be significantly deteriorated.
On the other hand, when the amount of indium in the second region exceeds 8 atom%, the amount of zinc and the amount of gallium are relatively decreased, and the balance of the blending components may be lost to change the crystal structure.
Therefore, in order to improve the wet heat characteristics, in the second region, the zinc amount is set to the total amount (100 atom%) of zinc amount, gallium amount, oxygen amount and indium amount by XPS elemental analysis measurement. The value is in the range of 40 to 60 atom%, the gallium amount is in the range of 0.5 to 10 atom%, the oxygen amount is in the range of 23 to 59.48 atom%, and the indium amount is 0.8. A value in the range of 02 to 7 atom% is more preferable.
In addition, each element amount in the second region by XPS elemental analysis measurement means an average value of element amounts in a range in which the value of [In] / [Ga] shows a constant value in measurement by XPS analysis in the depth direction. To do.

(5)[In]/[Ga]
 また、第1領域および第2領域において、第1領域の[In]/[Ga]の値が、第2領域の[In]/[Ga]の値よりも大きいことが好ましい。
 すなわち、第1領域から第2領域に向かって、ガリウム量とインジウム量が変化することで、上述のように、第1領域の[In]/[Ga]の値が、第2領域の[In]/[Ga]の値よりも大きくなっていることが好ましい。
 より具体的には、第1領域から第2領域に向かって、上述のように、ガリウム量が大きく増加するおよびインジウム量が減少するまたはいずれか1方であることが好ましい。
 また、第1領域の[In]/[Ga]の値が、第2領域の[In]/[Ga]の値よりも0.03以上大きいことがより好ましい。
 この理由は、第1領域および第2領域がこのような構成であることにより、良好な湿熱特性が得られるためである。
(5) [In] / [Ga]
In the first region and the second region, the value of [In] / [Ga] in the first region is preferably larger than the value of [In] / [Ga] in the second region.
That is, as the amount of gallium and the amount of indium change from the first region toward the second region, the value of [In] / [Ga] in the first region is changed to [In] in the second region as described above. ] / [Ga] is preferably larger.
More specifically, it is preferable that the amount of gallium increases greatly and the amount of indium decreases or any one of them as described above from the first region toward the second region.
Further, it is more preferable that the value of [In] / [Ga] in the first region is 0.03 or more larger than the value of [In] / [Ga] in the second region.
The reason for this is that good wet heat characteristics can be obtained when the first region and the second region have such a configuration.

(6)膜厚
 また、本発明において、第1領域~第2領域を含む透明導電層の膜厚が10~300nmの範囲内の値であることが好ましい。
 この理由は、透明導電層の膜厚が10nm未満の値となると、第1領域~第2領域を含む透明導電層の安定的形成が困難となる場合が生じるばかりか、湿熱特性等が、著しく低下する場合があるためである。
 一方、透明導電層の膜厚が300nmを超えた値になると、透明導電層の形成に過度に時間を要し、生産性が低下する場合があるためである。
 したがって、第1領域~第2領域を含む透明導電層の膜厚が20~250nmの範囲内の値であることがより好ましく、30~200nmの範囲内の値であることがさらに好ましい。
(6) Film thickness In the present invention, it is preferable that the film thickness of the transparent conductive layer including the first region to the second region is a value within the range of 10 to 300 nm.
This is because when the thickness of the transparent conductive layer is less than 10 nm, stable formation of the transparent conductive layer including the first region to the second region may become difficult, and the wet heat characteristics are remarkably increased. This is because it may decrease.
On the other hand, when the film thickness of the transparent conductive layer exceeds 300 nm, it takes an excessive amount of time to form the transparent conductive layer, which may reduce productivity.
Accordingly, the thickness of the transparent conductive layer including the first region to the second region is more preferably in the range of 20 to 250 nm, and still more preferably in the range of 30 to 200 nm.

 さらにまた、本発明の透明導電層の各領域における膜厚については、第1領域における膜厚が15nm以下の値であることが好ましい。
 この理由は、このように各領域の膜厚をこのような範囲にすることによって、優れた湿熱特性等を得ることができるためである。
 したがって、第1領域における膜厚が10nm以下の値であることがより好ましく、5nm以下の値であることがさらに好ましい。
 なお、第1領域における膜厚の下限は、通常、0.1nm以上である。
Furthermore, regarding the film thickness in each region of the transparent conductive layer of the present invention, the film thickness in the first region is preferably 15 nm or less.
This is because excellent wet heat characteristics and the like can be obtained by setting the film thickness of each region in such a range.
Therefore, the film thickness in the first region is more preferably 10 nm or less, and even more preferably 5 nm or less.
In addition, the minimum of the film thickness in a 1st area | region is 0.1 nm or more normally.

(7)湿熱特性
 また、図2(a)~(c)に例示される透明導電層10、10´における初期の比抵抗をρ0とし、60℃、相対湿度95%の条件下で、500時間、保管した後の比抵抗をρ1としたときに、ρ10で表わされる比率を1.5以下の値とすることが好ましい。
 なお、透明導電層の比抵抗(ρ0、ρ1)は、実施例1において具体的に説明するように、表面抵抗測定装置を用いて、測定することができる。
(7) Humid heat characteristics In addition, the initial specific resistance of the transparent conductive layers 10 and 10 ′ illustrated in FIGS. 2A to 2C is ρ 0 , and is 500 under the conditions of 60 ° C. and relative humidity 95%. It is preferable to set the ratio represented by ρ 1 / ρ 0 to a value of 1.5 or less, where ρ 1 is the specific resistance after storage for hours.
In addition, the specific resistance (ρ 0 , ρ 1 ) of the transparent conductive layer can be measured using a surface resistance measuring device as specifically described in Example 1.

 ここで、図6を参照して、透明導電性積層体における、透明導電層の構成と、環境試験前後における比抵抗の変化との関係を説明する。
 すなわち、図6の横軸に、60℃、相対湿度95%の条件下での保管経過時間が採って示してあり、縦軸に、ρ10で表わされる比率が採って示してある。
 そして、特性曲線Aは、重量比がZnO:Ga23:In23=94.0:5.7:0.3である焼結体から得られたIn-GZO膜の湿熱特性を示す曲線であり、特性曲線Bは、重量比がZnO:Ga23:In23=93.5:5.7:1.0である焼結体から得られたIn-GZO膜の湿熱特性を示す曲線であり、特性曲線Cは、重量比がZnO:Ga23:In23=89.3:5.7:5.0である焼結体から得られたIn-GZO膜の湿熱特性を示す曲線であり、特性曲線Dは、重量比がZnO:Ga23:In23=84.3:5.7:10.0である焼結体から得られたIn-GZO膜の湿熱特性を示す曲線であり、特性曲線Eは、インジウムを含まない、すなわち、GZO膜の湿熱特性を示す曲線である。
 これらの特性曲線A~Eより、GZO膜である透明導電層に、インジウムを少量添加することにより、湿熱特性が劇的に向上していることが理解される。
 また、インジウム量の配合量の増加により、より湿熱特性が向上する傾向が見られている。
 したがって、GZO膜に比較し、In-GZO膜は、湿熱環境下での比抵抗の変化の割合が長期にわたって低いことから、経時における湿熱特性が優れていることが理解される。
Here, with reference to FIG. 6, the relationship between the structure of a transparent conductive layer in a transparent conductive laminated body and the change of the specific resistance before and behind an environmental test is demonstrated.
That is, the horizontal axis of FIG. 6 shows the elapsed storage time under conditions of 60 ° C. and 95% relative humidity, and the vertical axis shows the ratio represented by ρ 1 / ρ 0. .
The characteristic curve A shows the wet heat characteristics of the In-GZO film obtained from the sintered body having a weight ratio of ZnO: Ga 2 O 3 : In 2 O 3 = 94.0: 5.7: 0.3. The characteristic curve B shows an In-GZO film obtained from a sintered body having a weight ratio of ZnO: Ga 2 O 3 : In 2 O 3 = 93.5: 5.7: 1.0. The characteristic curve C is a curve showing wet heat characteristics, and the characteristic curve C is an In − obtained from a sintered body having a weight ratio of ZnO: Ga 2 O 3 : In 2 O 3 = 89.3: 5.7: 5.0. is a curve showing the moist heat characteristics of the GZO film, the characteristic curve D, the weight ratio of ZnO: Ga 2 O 3: in 2 O 3 = 84.3: 5.7: obtained a sintered body which is a 10.0 The characteristic curve E is a curve that does not contain indium, that is, a characteristic curve that indicates the wet heat characteristics of the GZO film.
From these characteristic curves A to E, it is understood that the wet heat characteristics are dramatically improved by adding a small amount of indium to the transparent conductive layer which is a GZO film.
Moreover, the tendency for a wet heat characteristic to improve more by the increase in the compounding quantity of an indium amount is seen.
Therefore, it can be understood that the In-GZO film is superior in wet heat characteristics over time because the rate of change in specific resistance in a wet heat environment is low over a long period of time compared to the GZO film.

(8)比抵抗
 また、図2(a)~(c)に例示される透明導電層10、10´の初期の比抵抗(ρ0)を1×10-4~1×10-1Ω・cmの範囲内の値とすることが好ましい。
 なお、透明導電層の比抵抗(ρ)は、実施例1において具体的に説明するように、透明導電性積層体の膜厚(d)および測定した表面抵抗率(R)より、算出することができる。
(8) Specific Resistance The initial specific resistance (ρ 0 ) of the transparent conductive layers 10 and 10 ′ illustrated in FIGS. 2A to 2C is 1 × 10 −4 to 1 × 10 −1 Ω · A value in the range of cm is preferable.
The specific resistance (ρ) of the transparent conductive layer should be calculated from the film thickness (d) of the transparent conductive laminate and the measured surface resistivity (R), as specifically described in Example 1. Can do.

2.基材
(1)種類
 図1に例示する基材12としては、透明性に優れるものであれば特に限定されず、ガラス、セラミック、樹脂フィルム等が挙げられる。樹脂フィルムの材料としては、ポリイミド、ポリアミド、ポリアミドイミド、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリオレフィン、ポリエステル、ポリカーボネート、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンスルフィド、ポリアリレート、アクリル系樹脂、シクロオレフィン系ポリマ、芳香族系重合体、ポリウレタン系ポリマ等が挙げられる。
 特に、本発明の透明導電性積層体が柔軟性に優れるものとするためには、基材が樹脂フィルムであることが好ましい。
 また、これら樹脂フィルムの中でも、透明性に優れ、かつ、汎用性があることから、ポリエステル、ポリイミド、ポリアミド又はシクロオレフィン系ポリマからなる群から選ばれる少なくとも1種であることが好ましく、ポリエステル又はシクロオレフィン系ポリマがより好ましい。
 より具体的には、ポリエステルとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリアリレート等が挙げられる。
 また、ポリアミドとしては、全芳香族ポリアミド、ナイロン6、ナイロン66、ナイロン共重合体等が挙げられる。
 また、シクロオレフィン系ポリマとしては、ノルボルネン系重合体、単環の環状オレフィン系重合体、環状共役ジエン系重合体、ビニル脂環式炭化水素重合体、及びこれらの水素化物が挙げられる。例えば、アぺル(三井化学社製のエチレン-シクロオレフィン共重合体)、アートン(JSR社製のノルボルネン系重合体)、ゼオノア(日本ゼオン社製のノルボルネン系重合体)等が挙げられる。
2. Type of base material (1) The base material 12 illustrated in FIG. 1 is not particularly limited as long as it is excellent in transparency, and examples thereof include glass, ceramics, and resin films. Resin film materials include polyimide, polyamide, polyamideimide, polyphenylene ether, polyetherketone, polyetheretherketone, polyolefin, polyester, polycarbonate, polysulfone, polyethersulfone, polyphenylene sulfide, polyarylate, acrylic resin, cyclohexane Examples thereof include olefin polymers, aromatic polymers, polyurethane polymers and the like.
In particular, in order for the transparent conductive laminate of the present invention to be excellent in flexibility, the substrate is preferably a resin film.
Among these resin films, since it is excellent in transparency and versatile, it is preferably at least one selected from the group consisting of polyester, polyimide, polyamide, and cycloolefin polymer. Olefin polymers are more preferred.
More specifically, examples of the polyester include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polyarylate.
Examples of the polyamide include wholly aromatic polyamide, nylon 6, nylon 66, nylon copolymer, and the like.
Examples of cycloolefin polymers include norbornene polymers, monocyclic olefin polymers, cyclic conjugated diene polymers, vinyl alicyclic hydrocarbon polymers, and hydrides thereof. Examples thereof include apell (an ethylene-cycloolefin copolymer manufactured by Mitsui Chemicals), arton (a norbornene polymer manufactured by JSR), zeonoa (a norbornene polymer manufactured by Nippon Zeon), and the like.

(2)膜厚
 また、図2に例示する基材12の膜厚は、使用目的等に応じて決定すればよいが、柔軟性および取り扱いが容易であるという点から、1~1000μmの範囲内の値とすることが好ましく、5~250μmの範囲内の値とすることがより好ましく、10~200μmの範囲内の値とすることがさらに好ましい。
(2) Film thickness The film thickness of the substrate 12 illustrated in FIG. 2 may be determined according to the purpose of use and the like, but is within the range of 1 to 1000 μm from the viewpoint of flexibility and easy handling. The value is preferably in the range of 5 to 250 μm, more preferably in the range of 10 to 200 μm.

(3)添加剤
 また、基材には、上述した樹脂成分の他に、透明性等を損なわない範囲で、酸化防止剤、難燃剤、滑剤等の各種添加剤を含んでも良い。
(3) Additives In addition to the resin component described above, the base material may contain various additives such as an antioxidant, a flame retardant, and a lubricant as long as transparency and the like are not impaired.

3.他層
 さらに、本発明の透明導電性積層体には、必要に応じて、各種他層を設けることができる。
 このような他層としては、例えば、ガスバリア層、プライマー層、平坦化層、ハードコート層、保護層、帯電防止層、防汚層、防眩層、カラーフィルター、接着剤層、装飾層、印刷層等が挙げられる。
 ここで、プライマー層は、基材と透明導電層の密着性を向上させるために設ける層であり、材料としては、例えば、ウレタン系樹脂、アクリル系樹脂、シランカップリング剤、エポキシ系樹脂、ポリエステル系樹脂、紫外線硬化型樹脂等の公知のものを用いることができる。
3. Other layers Furthermore, various other layers can be provided in the transparent conductive laminate of the present invention as necessary.
Examples of such other layers include gas barrier layers, primer layers, planarization layers, hard coat layers, protective layers, antistatic layers, antifouling layers, antiglare layers, color filters, adhesive layers, decorative layers, and printing. Layer and the like.
Here, a primer layer is a layer provided in order to improve the adhesiveness of a base material and a transparent conductive layer, As a material, a urethane type resin, an acrylic resin, a silane coupling agent, an epoxy resin, polyester, for example Known resins such as a resin and an ultraviolet curable resin can be used.

 また、ガスバリア層は、基材と透明導電層の間に設けることが好ましく、ガスバリア層を構成する材料としては、酸素および水蒸気の透過を阻止するものではれば、特に制約はないが、透明性がよく、ガスバリア性が良好なものが好ましい。
 より具体的には、構成材料としては、例えば、アルミニウム、マグネシウム、ジルコニウム、チタン、亜鉛、錫等の金属;酸化ケイ素、酸化アルミニウム、酸化亜鉛、酸化ジルコニウム、酸化チタン、酸化インジウム、酸化錫、酸化亜鉛錫等の無機酸化物;窒化ケイ素等の無機窒化物;無機酸窒化物;無機炭化物;無機硫化物;無機酸窒化炭化物;高分子化合物およびこれらの複合体から選ばれる少なくとも1種であることが好ましい。
 また、かかるガスバリア層は、各種高分子樹脂、硬化剤、老化防止剤、光安定剤、難燃剤等の他の配合成分を含んでいても良い。
Further, the gas barrier layer is preferably provided between the base material and the transparent conductive layer, and the material constituting the gas barrier layer is not particularly limited as long as it prevents the permeation of oxygen and water vapor. It is preferable that the gas barrier property is good.
More specifically, examples of the constituent material include metals such as aluminum, magnesium, zirconium, titanium, zinc, and tin; silicon oxide, aluminum oxide, zinc oxide, zirconium oxide, titanium oxide, indium oxide, tin oxide, and oxide. Inorganic oxides such as zinc tin; inorganic nitrides such as silicon nitride; inorganic oxynitrides; inorganic carbides; inorganic sulfides; inorganic oxynitride carbides; at least one selected from polymer compounds and composites thereof Is preferred.
The gas barrier layer may contain other compounding components such as various polymer resins, curing agents, anti-aging agents, light stabilizers, and flame retardants.

 また、ガスバリア層を形成する方法としては、特に限定されず、例えば、上述の材料を蒸着法、スパッタリング法、イオンプレーティング法、熱CVD法、プラズマCVD法等により基材上に形成する方法や、上記材料を有機溶剤に溶解または分散した溶液を公知の塗布方法によって基材上に塗布し、得られた塗膜を適度に乾燥して形成する方法、得られた塗膜に対して大気圧プラズマ、イオン注入法、ランプアニール処理等の表面改質を行って形成する方法等が挙げられる。 In addition, the method for forming the gas barrier layer is not particularly limited. For example, a method for forming the above-described material on a substrate by a vapor deposition method, a sputtering method, an ion plating method, a thermal CVD method, a plasma CVD method, or the like. , A method in which a solution obtained by dissolving or dispersing the above material in an organic solvent is coated on a substrate by a known coating method, and the resulting coating film is appropriately dried to form an atmospheric pressure with respect to the resulting coating film. Examples thereof include a method of forming by surface modification such as plasma, ion implantation, and lamp annealing.

 また、ガスバリア層の厚みは特に制限されるものではなく、通常20nm~50μmの範囲内の値であることが好ましい。
 この理由は、このような所定膜厚のガスバリア層とすることによって、さらに優れたガスバリア性や密着性が得られるとともに、柔軟性と、被膜強度とを両立させることができるためである。
 したがって、ガスバリア層の膜厚を、30nm~1μmの範囲内の値とすることがより好ましく、40nm~500nmの範囲内の値とすることがさらに好ましい。
Further, the thickness of the gas barrier layer is not particularly limited, and is usually preferably a value within the range of 20 nm to 50 μm.
The reason for this is that by using such a gas barrier layer having a predetermined film thickness, further excellent gas barrier properties and adhesion can be obtained, and at the same time, both flexibility and coating strength can be achieved.
Therefore, the film thickness of the gas barrier layer is more preferably set to a value within the range of 30 nm to 1 μm, and further preferably set to a value within the range of 40 nm to 500 nm.

 また、ガスバリア層の40℃、相対湿度90%の雰囲気下で測定される水蒸気透過率を0.1g/m2/day以下の値とすることが好ましく、0.05g/m2/day以下の値とすることがより好ましく、0.01g/m2/day以下の値とすることがさらに好ましい。
 この理由は、このような水蒸気透過率の値とすることによって、透明導電層が劣化することを防ぎ、耐湿熱性に優れたガスバリア性が得られるためである。
 なお、ガスバリア層の水蒸気透過率としては、公知方法で測定することができ、例えば、市販の水蒸気透過率測定装置を用いて測定することができる。
Further, 40 ° C. of the gas barrier layer, a water vapor permeability as measured in an atmosphere of 90% RH is preferably not more than the value 0.1g / m 2 / day, 0.05g / m 2 / day or less of More preferably, the value is 0.01 g / m 2 / day or less.
The reason for this is that by setting such a value of water vapor transmission rate, the transparent conductive layer can be prevented from deteriorating and gas barrier properties excellent in moisture and heat resistance can be obtained.
In addition, it can measure by a well-known method as a water vapor transmission rate of a gas barrier layer, For example, it can measure using a commercially available water vapor transmission rate measuring apparatus.

4.透明導電性積層体
(1)態様
 図2(a)~(c)に例示される透明導電性積層体50、50´、50´´は、基材12上の片面または両面に透明導電層10、10´を形成してなる透明導電性積層体であって、透明導電層が、XPS分析によって測定される特定の組成比の第1領域10a、第2領域10bを透明導電層から基材に向かう膜厚方向において含んで構成されている。
 また、図2(c)に示すように、基材と透明導電層との間にガスバリア層14を含んだ場合であっても好ましい態様である。
 なお、本発明において、透明導電層の透明性に関して、所定厚さ、例えば、20~600nmのいずれかにおいて、波長550nmの光線透過率が70%以上の値であることが好ましく、80%以上の値であることがより好ましく、90%以上の値であることがさらに好ましい。
 また、透明導電性積層体の透明性に関して、所定厚さ、例えば10μm~1mmのいずれかにおいて、波長550nmの光線透過率が50%以上の値であることが好ましく、60%以上の値であることがより好ましく、70%以上の値であることがさらに好ましい。
4). Transparent Conductive Laminate (1) Aspect The transparent conductive laminates 50, 50 ′, 50 ″ illustrated in FIGS. 2 (a) to 2 (c) are transparent conductive layers 10 on one side or both sides of the substrate 12. 10 'is a transparent conductive laminate, and the transparent conductive layer has the first region 10a and the second region 10b having a specific composition ratio measured by XPS analysis from the transparent conductive layer to the substrate. It is comprised including in the film thickness direction which goes.
Moreover, as shown in FIG.2 (c), it is a preferable aspect even if it is a case where the gas barrier layer 14 is included between the base material and the transparent conductive layer.
In the present invention, regarding the transparency of the transparent conductive layer, the light transmittance at a wavelength of 550 nm is preferably 70% or more at a predetermined thickness, for example, any of 20 to 600 nm, and 80% or more. More preferably, the value is 90% or more.
Further, regarding the transparency of the transparent conductive laminate, the light transmittance at a wavelength of 550 nm is preferably 50% or more at a predetermined thickness, for example, 10 μm to 1 mm, and is a value of 60% or more. More preferably, the value is more preferably 70% or more.

(2)比抵抗
 図2(a)~(c)に例示される透明導電性積層体50、50´、50´´の比抵抗(ρ)は、事実上、透明導電層10、10´の比抵抗と同一であることから、再度の説明は省略する。
(2) Specific Resistance The specific resistance (ρ) of the transparent conductive laminates 50, 50 ′, 50 ″ illustrated in FIGS. 2 (a) to 2 (c) is substantially the same as that of the transparent conductive layers 10, 10 ′. Since it is the same as the specific resistance, the description thereof will be omitted.

[第2の実施形態]
 第2の実施形態は、基材上の少なくとも片面に透明導電層を形成してなる透明導電性積層体の製造方法であって、下記工程(1)~(2)を含むことを特徴とする透明導電性積層体の製造方法である。
(1)基材および焼結体を準備する工程
(2)基材上の少なくとも片面に、スパッタリング法または蒸着法によって、焼結体から、酸化亜鉛を含むとともに、ガリウムおよびインジウムをドープしてなる酸化亜鉛膜であって、深さ方向のXPS分析によって測定される亜鉛量、ガリウム量、酸素量、およびインジウム量に関して、不均一な濃度分布を有する複数領域を含んでおり、かつ、当該複数領域が、透明導電層から基材に向かう厚さ方向において、[In]/[Ga]の値が異なる第1領域および第2領域を含む酸化亜鉛膜からなる透明導電層を形成する工程
 以下、第2の実施形態の透明導電性積層体の製造方法について、具体的に説明する。
[Second Embodiment]
The second embodiment is a method for producing a transparent conductive laminate in which a transparent conductive layer is formed on at least one surface on a substrate, and includes the following steps (1) to (2). It is a manufacturing method of a transparent conductive laminated body.
(1) Step of preparing a base material and a sintered body (2) At least one surface on the base material is doped with gallium and indium while containing zinc oxide from the sintered body by sputtering or vapor deposition. A zinc oxide film, which includes a plurality of regions having a non-uniform concentration distribution with respect to zinc amount, gallium amount, oxygen amount, and indium amount measured by XPS analysis in the depth direction, and the plurality of regions Forming a transparent conductive layer comprising a zinc oxide film including a first region and a second region having different values of [In] / [Ga] in the thickness direction from the transparent conductive layer toward the substrate. The manufacturing method of the transparent conductive laminated body of 2 embodiment is demonstrated concretely.

1.工程(1):基材および焼結体を準備する工程
 図2(a)~(c)に例示される透明導電層は、酸化亜鉛を主成分とするとともに、酸化ガリウムおよび酸化インジウムをさらに含む焼結体から成膜することが好ましい。
 また、透明導電層を形成する焼結体において、当該焼結体の全体量に対して、酸化亜鉛の配合量を70~99.98重量%の範囲内の値とし、酸化ガリウムの配合量を0.01~15重量%の範囲内の値とし、かつ、酸化インジウムの配合量を0.01~15重量の範囲内の値とすることが好ましい。
 この理由は、配合量が制御された酸化亜鉛-酸化ガリウム-酸化インジウムの三元系焼結体を用いることにより、湿熱特性に優れた透明導電層を効率的に成膜することができ、ひいては、生産効率を向上させることができるためである。
 より具体的には、焼結体の全体量に対して、酸化インジウムの配合量が0.01重量%未満の場合は、成膜後の透明導電層に含まれるインジウムの量が著しく少なくなり、十分な湿熱特性が得られない場合があるためである。
 一方、酸化インジウムの量が15重量%を超える場合は、成膜後の透明導電層に含まれるインジウムの量が増加するため、比抵抗が著しく大きな値となる場合があるためである。
 したがって、焼結体の全体量に対して、酸化亜鉛の配合量を76~99.4重量%の範囲内の値とし、酸化ガリウムの配合量を0.5~12重量%の範囲内の値とし、かつ、酸化インジウムの配合量を0.1~12重量の範囲内の値とすることがより好ましい。
 また、焼結体の全体量に対して、酸化亜鉛の配合量を80~98.7重量%の範囲内の値とし、酸化ガリウムの配合量を1~10重量%の範囲内の値とし、かつ、酸化インジウムの配合量を0.3~10重量%の範囲内の値とすることがさらに好ましい。
 なお、基材の詳細については、既に記載した通りであるため、省略する。
1. Step (1): Step of Preparing Substrate and Sintered Body The transparent conductive layer exemplified in FIGS. 2 (a) to (c) has zinc oxide as a main component and further contains gallium oxide and indium oxide. It is preferable to form a film from the sintered body.
In the sintered body forming the transparent conductive layer, the blending amount of zinc oxide is set to a value in the range of 70 to 99.98% by weight with respect to the total amount of the sintered body, and the blending amount of gallium oxide is It is preferable to set the value within the range of 0.01 to 15% by weight and the blending amount of indium oxide within the range of 0.01 to 15% by weight.
The reason for this is that by using a ternary sintered body of zinc oxide-gallium oxide-indium oxide in which the blending amount is controlled, a transparent conductive layer having excellent wet heat characteristics can be efficiently formed. This is because production efficiency can be improved.
More specifically, when the blending amount of indium oxide is less than 0.01% by weight with respect to the total amount of the sintered body, the amount of indium contained in the transparent conductive layer after film formation is significantly reduced. This is because sufficient wet heat characteristics may not be obtained.
On the other hand, when the amount of indium oxide exceeds 15% by weight, the amount of indium contained in the transparent conductive layer after film formation increases, so that the specific resistance may be a remarkably large value.
Accordingly, the zinc oxide content is in the range of 76 to 99.4% by weight and the gallium oxide content is in the range of 0.5 to 12% by weight with respect to the total amount of the sintered body. More preferably, the blending amount of indium oxide is set to a value within the range of 0.1 to 12 weights.
Further, the blending amount of zinc oxide is set to a value within the range of 80 to 98.7% by weight, and the blending amount of gallium oxide is set to a value within the range of 1 to 10% by weight with respect to the total amount of the sintered body. Further, it is more preferable that the blending amount of indium oxide is a value within the range of 0.3 to 10% by weight.
The details of the base material are the same as described above, and will be omitted.

2.工程(2):透明導電層の形成方法
 透明導電層を形成する方法として、例えば、スパッタリング法や蒸着法に代表される物理的作製法と、化学気相成長法に代表される化学的作製法が挙げられる。
 これらの中でも、簡便に透明導電体層が形成できることから、スパッタリング法または蒸着法が好ましい。すなわち、スパッタリング法または蒸着法により形成することにより、形成される透明導電層の組成を容易に制御することができるため、効率よく透明導電層を形成することができる。
2. Step (2): Method for forming transparent conductive layer As a method for forming a transparent conductive layer, for example, a physical production method represented by sputtering or vapor deposition, and a chemical production method represented by chemical vapor deposition Is mentioned.
Among these, a sputtering method or a vapor deposition method is preferable because a transparent conductor layer can be easily formed. That is, since the composition of the formed transparent conductive layer can be easily controlled by forming by sputtering or vapor deposition, the transparent conductive layer can be formed efficiently.

 より具体的なスパッタリング法として、DCスパッタリング法、DCマグネトロンスパッタリング法、RFスパッタリング法、RFマグネトロンスパッタリング法、DC+RF重畳スパッタリング法、DC+RF重畳マグネトロンスパッタリング法、対向ターゲットスパッタリング法、ECRスパッタリング法、デュアルマグネトロンスパッタリング法等が挙げられる。
 また、より具体的な蒸着法として、抵抗加熱法、電子線加熱法、レーザー加熱法、アーク蒸着法、および誘導加熱法等が挙げられる。
More specific sputtering methods include DC sputtering method, DC magnetron sputtering method, RF sputtering method, RF magnetron sputtering method, DC + RF superposition sputtering method, DC + RF superposition magnetron sputtering method, counter target sputtering method, ECR sputtering method, dual magnetron sputtering method. Etc.
More specific vapor deposition methods include a resistance heating method, an electron beam heating method, a laser heating method, an arc vapor deposition method, and an induction heating method.

 また、スパッタリングまたは蒸着の条件としては、特に限定されないが、背圧としては、1×10-2Pa以下の値が好ましく、1×10-3Pa以下の値がより好ましい。
 また、アルゴンガスを系内に導入する形成方法を選択した場合、系内圧力を0.1~5Pa、より好ましくは0.2~1Paの範囲内の値とすることが好ましい。
 さらに、スパッタリング法または蒸着法で、系内に導入するガス種は、アルゴン(Ar)もしくはアルゴン(Ar)と酸素(O2)の混合ガスを用いることが生産コスト上好ましいが、Ar以外の希ガス、窒素(N2)等を用いても良い。混合ガスを用いる場合、かかる混合比(O2/(Ar+O2))を0.01~20の範囲内の値とすることが好ましく、0.1~10の範囲内の値とすることがさらに好ましい。
 この理由は、アルゴンと酸素の混合比が上記範囲であれば、形成される透明導電層の組成を容易に制御することができるため、比抵抗が低く、かつ耐湿熱性に優れ、さらに、反射率が低い導電層を成膜することができるためである。
The conditions for sputtering or vapor deposition are not particularly limited, but the back pressure is preferably 1 × 10 −2 Pa or less, and more preferably 1 × 10 −3 Pa or less.
In addition, when a formation method in which argon gas is introduced into the system is selected, the internal pressure is preferably set to a value in the range of 0.1 to 5 Pa, more preferably 0.2 to 1 Pa.
Furthermore, it is preferable in terms of production cost that argon (Ar) or a mixed gas of argon (Ar) and oxygen (O 2 ) is used as a gas species to be introduced into the system by sputtering or vapor deposition, but rare gases other than Ar are used. Gas, nitrogen (N 2 ), or the like may be used. When a mixed gas is used, the mixing ratio (O 2 / (Ar + O 2 )) is preferably set to a value within the range of 0.01 to 20, and more preferably set to a value within the range of 0.1 to 10. preferable.
The reason for this is that, if the mixing ratio of argon and oxygen is in the above range, the composition of the transparent conductive layer to be formed can be easily controlled. Therefore, the specific resistance is low and the heat and moisture resistance is excellent. This is because a low conductive layer can be formed.

 また、基材上に透明導電層を形成する際の基材の温度を10~150℃の範囲内の値とすることが好ましい。
 この理由は、基材の温度が10~150℃の範囲内の値であれば、基材として、樹脂フィルムを用いた場合であっても、基材を変化させることなく、形成される透明導電層の組成を容易に制御することができ、好適に透明導電層を形成することができるためである。
In addition, the temperature of the substrate when forming the transparent conductive layer on the substrate is preferably set to a value within the range of 10 to 150 ° C.
This is because, if the temperature of the substrate is a value within the range of 10 to 150 ° C., the transparent conductive film formed without changing the substrate even when a resin film is used as the substrate. This is because the composition of the layer can be easily controlled and a transparent conductive layer can be suitably formed.

[第3の実施形態]
 第3の実施形態は、上述したいずれかの透明導電性積層体を透明電極に用いてなることを特徴とする電子デバイスである。
 より具体的には、所定の透明導電性積層体を備えた透明電極を搭載してなる液晶ディスプレイ、有機ELディスプレイ、無機ELディスプレイ、電子ペーパー、太陽電池、有機トランジスタ、有機EL照明、無機EL照明、熱電変換デバイス、ガスセンサー等が挙げられる。
[Third embodiment]
The third embodiment is an electronic device characterized by using any of the transparent conductive laminates described above as a transparent electrode.
More specifically, a liquid crystal display, an organic EL display, an inorganic EL display, an electronic paper, a solar cell, an organic transistor, an organic EL illumination, and an inorganic EL illumination each having a transparent electrode provided with a predetermined transparent conductive laminate. , Thermoelectric conversion devices, gas sensors and the like.

 すなわち、本発明の電子デバイスは、第1の実施形態に記載の透明導電性積層体を備えているので、透明性に優れ、比抵抗が十分に小さく、かつ、長期に渡って比抵抗の上昇が抑制できる導電性を発揮することができる。 That is, since the electronic device of the present invention includes the transparent conductive laminate described in the first embodiment, it is excellent in transparency, has a sufficiently small specific resistance, and increases in specific resistance over a long period of time. Can exhibit conductivity that can be suppressed.

 以下、本発明を実施例によってさらに詳細に説明する。但し、以下の説明は、本発明を例示的に示すものであり、本発明はこれらの記載に制限されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the following description shows the present invention by way of example, and the present invention is not limited to these descriptions.

[実施例1]
1.透明導電性積層体の製造
(1)工程1:基材および焼結体を準備する工程
 基材として、無アルカリガラス(コーニング社製、イーグルXG、厚み:700μm)を準備した。
 また、酸化亜鉛-酸化ガリウム-酸化インジウムの三元系焼結体(ZnO:Ga23:In23=94.0重量%:5.7重量%:0.3重量%)を準備した。
[Example 1]
1. Production of transparent conductive laminate (1) Step 1: Step of preparing base material and sintered body As a base material, alkali-free glass (Corning Corp., Eagle XG, thickness: 700 μm) was prepared.
Also, a zinc oxide-gallium oxide-indium oxide ternary sintered body (ZnO: Ga 2 O 3 : In 2 O 3 = 94.0 wt%: 5.7 wt%: 0.3 wt%) was prepared. did.

(2)工程2:透明導電層の形成工程
 次いで、無アルカリガラスに対し、DCマグネトロンスパッタリング法により、上述の三元系焼結体を用いて、下記スパッタリング条件にて、透明導電層(膜厚:100nm)を形成して、透明導電性積層体とした。
 基材温度:20℃
 DC出力:500W
 キャリアガス:アルゴン(Ar)
 成膜圧力:0.6Pa
 成膜時間:35sec.
(2) Step 2: Step of forming transparent conductive layer Next, a transparent conductive layer (film thickness) is formed on the alkali-free glass by the DC magnetron sputtering method using the ternary sintered body described above under the following sputtering conditions. : 100 nm) to form a transparent conductive laminate.
Substrate temperature: 20 ° C
DC output: 500W
Carrier gas: Argon (Ar)
Deposition pressure: 0.6Pa
Deposition time: 35 sec.

2.透明導電性積層体の評価
 得られた透明導電性積層体につき、以下の測定を行い、評価した。
2. Evaluation of transparent conductive laminate The obtained transparent conductive laminate was measured and evaluated as follows.

(1)深さ方向のXPS分析
 XPS測定分析装置(アルバックファイ社製、Quantum2000)を用いて、得られた透明導電性積層体における透明導電層の深さ方向の亜鉛、ガリウム、インジウム、酸素およびケイ素の元素分析を行った。得られたXPS測定による元素量チャートを、図7に示す。
 また、かかる元素量チャートから、透明導電層において、所定組成比をそれぞれ備えた第1領域及び第2領域を含む複数領域が形成されているか否かを確認した。
 すなわち、所定組成比を有する第1~第2領域のすべてが確認され、透明導電層から基材に向かう膜厚方向において、[In]/[Ga]の値が減少する第1領域が確認された場合を○評価とし、[In]/[Ga]の値が減少する第1領域が確認されなかった場合を×評価とした。得られた結果を表1に示す。
(1) XPS analysis in the depth direction Using an XPS measurement analyzer (manufactured by ULVAC-PHI, Quantum 2000), zinc, gallium, indium, oxygen in the depth direction of the transparent conductive layer in the obtained transparent conductive laminate, and Elemental analysis of silicon was performed. FIG. 7 shows an element amount chart obtained by XPS measurement.
Moreover, from this element amount chart, it was confirmed whether or not a plurality of regions including a first region and a second region each having a predetermined composition ratio were formed in the transparent conductive layer.
That is, all of the first to second regions having a predetermined composition ratio are confirmed, and the first region in which the value of [In] / [Ga] decreases is confirmed in the film thickness direction from the transparent conductive layer toward the substrate. The case where the first region where the value of [In] / [Ga] decreases was not confirmed was evaluated as x evaluation. The obtained results are shown in Table 1.

(2)X線回折測定
 X線回折装置((株)リガク製、全自動水平型多目的X線回折装置 Smart Lab)を用いて、得られた透明導電性積層体における透明導電層の結晶構造をIn plane法およびOut of plane法により確認した。得られた結果を図3および図4の特性曲線Aに示す。
(2) X-ray diffraction measurement Using an X-ray diffractometer (manufactured by Rigaku Corporation, fully automatic horizontal multi-purpose X-ray diffractometer Smart Lab), the crystal structure of the transparent conductive layer in the obtained transparent conductive laminate is obtained. This was confirmed by the In plane method and the Out of plane method. The obtained results are shown in the characteristic curve A of FIGS.

(3)透明導電層の膜厚(d)
 得られた透明導電性積層体の透明導電層における膜厚(d)を、分光エリプソメーターM-2000U(J.A.ウーラム・ジャパン社製)を用いて測定した。
(3) Film thickness of transparent conductive layer (d)
The film thickness (d) in the transparent conductive layer of the obtained transparent conductive laminate was measured using a spectroscopic ellipsometer M-2000U (manufactured by JA Woollam Japan).

(4)ρ1/ρ0の算出
 得られた透明導電性積層体の透明導電層における初期の表面抵抗率(R0)を、表面抵抗測定装置として、LORESTA-GP MCP-T600(三菱化学(株)製)およびプローブとして、PROBE TYPE ASP(三菱化学アナリテック(株)製)を用いて、温度23℃、50%RHの環境条件下、測定した。
 次いで、得られた透明導電性積層体を、60℃、95%RH環境下に、500時間置き、取り出し後、23℃50%RH環境下で1日調温・調湿を行い、湿熱試験後の表面抵抗率(R1)を測定した。
 次いで、得られた表面抵抗率(R0およびR1)および膜厚(d)から下式(1)および(2)より、初期の比抵抗(ρ0)および湿熱試験後の比抵抗(ρ1)を算出して、ρ1/ρ0の比率を得た。得られた結果を表1に示す。
 なお、図6に、実施例1等における湿熱試験経過時間と、湿熱試験前後における比抵抗の比率(ρ1/ρ0)との関係を示す。
0=ρ0/d  (1)
1=ρ1/d (2)
(4) Calculation of ρ 1 / ρ 0 The initial surface resistivity (R 0 ) in the transparent conductive layer of the obtained transparent conductive laminate was used as a surface resistance measuring device as a LORESTA-GP MCP-T600 (Mitsubishi Chemical ( As a probe and a probe type ASP (manufactured by Mitsubishi Chemical Analytech Co., Ltd.), the measurement was performed under environmental conditions of a temperature of 23 ° C. and 50% RH.
Next, the obtained transparent conductive laminate was placed in an environment of 60 ° C. and 95% RH for 500 hours, taken out, and then subjected to temperature / humidity control in a 23 ° C. and 50% RH environment for 1 day. The surface resistivity (R 1 ) was measured.
Next, from the obtained surface resistivity (R 0 and R 1 ) and film thickness (d), from the following formulas (1) and (2), the initial specific resistance (ρ 0 ) and the specific resistance after the wet heat test (ρ 1 ) was calculated to obtain a ratio of ρ 1 / ρ 0 . The obtained results are shown in Table 1.
FIG. 6 shows the relationship between the wet heat test elapsed time in Example 1 and the specific resistance ratio (ρ 1 / ρ 0 ) before and after the wet heat test.
R 0 = ρ 0 / d (1)
R 1 = ρ 1 / d (2)

[実施例2]
 実施例2においては、スパッタリングに用いた三元系焼結体の重量比をZnO:Ga23:In23=93.3:5.7:1.0に変えたほかは、実施例1と同様に透明導電性積層体を製造し、評価した。得られた結果を表1に示すとともに、得られたXPS測定による元素量チャートを図1に、得られたX線回折ピークを図3および図4の特性曲線Bに示す。
[Example 2]
In Example 2, the weight ratio of the ternary sintered body used for sputtering was changed to ZnO: Ga 2 O 3 : In 2 O 3 = 93.3: 5.7: 1.0. A transparent conductive laminate was produced and evaluated in the same manner as in Example 1. The obtained results are shown in Table 1, the obtained element amount chart by XPS measurement is shown in FIG. 1, and the obtained X-ray diffraction peaks are shown in the characteristic curve B of FIG. 3 and FIG.

[実施例3]
 実施例3においては、スパッタリングに用いた三元系焼結体の重量比をZnO:Ga23:In23=89.3:5.7:5.0に変えたほかは、実施例1と同様に透明導電性積層体を製造し、評価した。得られた結果を表1に示すとともに、得られたXPS測定による元素量チャートを図8に、得られたX線回折ピークを図3および図4の特性曲線Cに示す。
[Example 3]
In Example 3, except that the weight ratio of the ternary sintered body used for sputtering was changed to ZnO: Ga 2 O 3 : In 2 O 3 = 89.3: 5.7: 5.0 A transparent conductive laminate was produced and evaluated in the same manner as in Example 1. The obtained results are shown in Table 1, the obtained element amount chart by XPS measurement is shown in FIG. 8, and the obtained X-ray diffraction peaks are shown in the characteristic curve C of FIG. 3 and FIG.

[実施例4]
 実施例4においては、スパッタリングに用いた三元系焼結体の重量比をZnO:Ga23:In23=84.3:5.7:10.0に変えたほかは、実施例1と同様に透明導電性積層体を製造し、評価した。得られた結果を表1に示すとともに、得られたXPS測定による元素量チャートを図9に、得られたX線回折ピークを図3および図4の特性曲線Dに示す。
[Example 4]
In Example 4, except that the weight ratio of the ternary sintered body used for sputtering was changed to ZnO: Ga 2 O 3 : In 2 O 3 = 84.3: 5.7: 10.0 A transparent conductive laminate was produced and evaluated in the same manner as in Example 1. The obtained results are shown in Table 1, the obtained element amount chart by XPS measurement is shown in FIG. 9, and the obtained X-ray diffraction peaks are shown in the characteristic curve D of FIG. 3 and FIG.

[実施例5]
 実施例5においては、形成工程を直流アークプラズマ蒸着法とし、三元系焼結体の重量比をZnO:Ga23:In23=95.0:4.0:1.0に変えたほかは、実施例1と同様に基材として無アルカリガラスを用いて透明導電性積層体を製造し、評価した。得られた結果を表1に示す。また、成膜条件は下記の通りとした。
 なお、図示しないものの、X線回折ピークはスパッタリング法で得られた膜と同様に、c軸配向した六方晶ウルツ鉱型結晶質であった。
 基材温度:20℃
 放電電流:150A
 キャリアガス:アルゴン(Ar)、酸素(O2
 酸素比率:全ガス流量に対して6%
 成膜圧力:0.2Pa
 成膜時間:25sec.
[Example 5]
In Example 5, the forming process is a DC arc plasma deposition method, and the weight ratio of the ternary sintered body is ZnO: Ga 2 O 3 : In 2 O 3 = 95.0: 4.0: 1.0. Except for the change, a transparent conductive laminate was produced and evaluated using non-alkali glass as a base material in the same manner as in Example 1. The obtained results are shown in Table 1. The film forming conditions were as follows.
Although not shown, the X-ray diffraction peak was a c-axis oriented hexagonal wurtzite crystal, similar to the film obtained by the sputtering method.
Substrate temperature: 20 ° C
Discharge current: 150A
Carrier gas: Argon (Ar), Oxygen (O 2 )
Oxygen ratio: 6% of the total gas flow rate
Deposition pressure: 0.2Pa
Deposition time: 25 sec.

[比較例1]
 比較例1においては、スパッタリングに用いた焼結体として、重量比をZnO:Ga23=94.3:5.7の焼結体を用いたほかは、実施例1と同様に透明導電性積層体を製造し、評価した。得られた結果を表1に示すとともに、得られたXPS測定による元素量チャートを図10に、得られたX線回折ピークを図3および図4の特性曲線Eに示す。
[Comparative Example 1]
In Comparative Example 1, the transparent conductive material was the same as in Example 1 except that a sintered body having a weight ratio of ZnO: Ga 2 O 3 = 94.3: 5.7 was used as the sintered body used for sputtering. The conductive laminate was manufactured and evaluated. The obtained results are shown in Table 1, the obtained element amount chart by XPS measurement is shown in FIG. 10, and the obtained X-ray diffraction peaks are shown in the characteristic curve E of FIGS.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

 表1より、実施例で得られた透明導電性積層体は、透明導電層が、所定の結晶構造を有し、XPS分析による組成比が異なる第1領域および第2領域を含み、かつ、各領域が特定の構成を備える酸化亜鉛膜であることが確認され、湿熱特性が極めて優れた透明導電性積層体が効率的に得られるようになった。
 一方、比較例1のインジウムを含まないGZO膜を含む透明導電性積層体は、所定の第1~第2領域を含んでおらず、環境試験後の比抵抗が著しく大きくなった。
From Table 1, the transparent conductive laminate obtained in the Examples includes a first region and a second region in which the transparent conductive layer has a predetermined crystal structure and different composition ratios by XPS analysis, and each It was confirmed that the region is a zinc oxide film having a specific configuration, and a transparent conductive laminate having extremely excellent wet heat characteristics can be obtained efficiently.
On the other hand, the transparent conductive laminate including the GZO film not containing indium in Comparative Example 1 did not include the predetermined first and second regions, and the specific resistance after the environmental test was significantly increased.

 以上、詳述したように、本発明の透明導電性積層体によれば、基材上の少なくとも片面に透明導電層を形成してなる透明導電性積層体であって、透明導電層が、亜鉛、ガリウム、および酸素を含むとともに、インジウムをドープしてなる酸化亜鉛膜であり、深さ方向のXPS分析によって測定される亜鉛量、ガリウム量、酸素量、およびインジウム量に関して、不均一な濃度分布を有する複数領域を含んでおり、かつ、当該複数領域が、特定の第1領域および第2領域を含むことによって、湿熱特性が極めて優れた透明導電性積層体が効率的に得られるようになった。
 しかも、本発明の製造方法によれば、XPS測定によって、異なる組成比を有する第1~第2領域を含む透明導電層を、容易かつ精度良く安定的製造することができる。
 よって、本発明の透明導電性積層体は、所定の湿熱特性が所望される電気製品、電子部品、画像表示装置(有機エレクトロルミネッセンス素子、無機エレクトロルミネッセンス素子、液晶表示装置、電子ペーパー等)太陽電池等の各種用途において、透明電極等として、有効に使用されることが期待される。
As described above in detail, according to the transparent conductive laminate of the present invention, it is a transparent conductive laminate formed by forming a transparent conductive layer on at least one surface on a substrate, and the transparent conductive layer is made of zinc. Is a zinc oxide film containing indium, gallium, and oxygen and doped with indium, and has a non-uniform concentration distribution with respect to zinc content, gallium content, oxygen content, and indium content measured by XPS analysis in the depth direction And a plurality of regions including the specific first region and the second region, a transparent conductive laminate having extremely excellent wet heat characteristics can be efficiently obtained. It was.
Moreover, according to the manufacturing method of the present invention, the transparent conductive layer including the first and second regions having different composition ratios can be easily and accurately manufactured stably by XPS measurement.
Therefore, the transparent conductive laminate of the present invention is an electric product, electronic component, or image display device (organic electroluminescence element, inorganic electroluminescence element, liquid crystal display device, electronic paper, etc.) solar cell in which a predetermined wet heat characteristic is desired. In various applications such as, it is expected to be used effectively as a transparent electrode.

10、10´:透明導電層
10a:第1領域、10b:第2領域
12:基材
14:ガスバリア層
20:GZO膜
50、50´、50´´:透明導電性積層体
10, 10 ': Transparent conductive layer 10a: First region, 10b: Second region 12: Base material 14: Gas barrier layer 20: GZO films 50, 50', 50 ": Transparent conductive laminate

Claims (11)

 基材上の少なくとも片面に透明導電層を形成してなる透明導電性積層体であって、
 前記透明導電層が、酸化亜鉛を含むとともに、ガリウムおよびインジウムをドープしてなる酸化亜鉛膜であり、
 当該酸化亜鉛膜が、深さ方向のXPS分析によって測定される亜鉛量、ガリウム量、酸素量、およびインジウム量に関して、不均一な濃度分布を有する複数領域を含んでおり、
 かつ、当該複数領域が、前記透明導電層から前記基材に向かう膜厚方向において、[In]/[Ga]の値が異なる第1領域および第2領域を含むことを特徴とする透明導電積層体。
A transparent conductive laminate formed by forming a transparent conductive layer on at least one side of a substrate,
The transparent conductive layer contains zinc oxide and is a zinc oxide film doped with gallium and indium,
The zinc oxide film includes a plurality of regions having a non-uniform concentration distribution with respect to zinc amount, gallium amount, oxygen amount, and indium amount measured by XPS analysis in the depth direction,
And the said several area | region contains the 1st area | region and the 2nd area | region from which the value of [In] / [Ga] differs in the film thickness direction which goes to the said base material from the said transparent conductive layer, The transparent conductive lamination characterized by the above-mentioned. body.
 前記第1領域において、前記[In]/[Ga]の値が、漸次に減少するとともに、
 前記第2領域において、前記[In]/[Ga]の値が、一定値を示すことを特徴とする請求項1に記載の透明導電性積層体。
In the first region, the value of [In] / [Ga] gradually decreases,
2. The transparent conductive laminate according to claim 1, wherein in the second region, the value of [In] / [Ga] is a constant value.
 前記透明導電層において、XPSの元素分析測定による亜鉛量、ガリウム量、酸素量、およびインジウム量の合計量(100atom%)に対して、インジウム量を0.01~8atom%の範囲内の値とし、かつ、ガリウム量を0.1~10atom%の範囲内の値とすることを特徴とする請求項1または2に記載の透明導電性積層体。 In the transparent conductive layer, the amount of indium is a value in the range of 0.01 to 8 atom% with respect to the total amount (100 atom%) of zinc amount, gallium amount, oxygen amount and indium amount by XPS elemental analysis measurement. The transparent conductive laminate according to claim 1 or 2, wherein the amount of gallium is set to a value within a range of 0.1 to 10 atom%.  前記第1領域において、XPSの元素分析測定による亜鉛量、ガリウム量、酸素量、およびインジウム量の合計量(100atom%)に対して、亜鉛量を20~60atom%の範囲内の値とし、ガリウム量を0.1~10atom%の範囲内の値とし、酸素量を22~79.89atom%の範囲内の値とし、かつ、インジウム量を0.01~8atom%の範囲内の値とすることを特徴とする請求項1~3のいずれか一項に記載の透明導電性積層体。 In the first region, with respect to the total amount (100 atom%) of zinc amount, gallium amount, oxygen amount and indium amount as measured by XPS elemental analysis, the zinc amount is set to a value within a range of 20 to 60 atom%, and gallium The amount is set to a value within the range of 0.1 to 10 atom%, the oxygen amount is set to a value within the range of 22 to 79.89 atom%, and the indium amount is set to a value within the range of 0.01 to 8 atom%. The transparent conductive laminate according to any one of claims 1 to 3, wherein:  前記第2領域において、XPSの元素分析測定による亜鉛量、ガリウム量、酸素量、およびインジウム量の合計量(100atom%)に対して、亜鉛量を35~65atom%の範囲内の値とし、ガリウム量を0.1~10atom%の範囲内の値とし、酸素量を17~64.89atom%の範囲内の値とし、かつ、インジウム量を0.01~8atom%の範囲内の値とすることを特徴とする請求項1~4のいずれか一項に記載の透明導電性積層体。 In the second region, with respect to the total amount (100 atom%) of zinc amount, gallium amount, oxygen amount and indium amount by XPS elemental analysis measurement, the zinc amount is set to a value within the range of 35 to 65 atom%, and gallium The amount is set to a value within the range of 0.1 to 10 atom%, the oxygen amount is set to a value within the range of 17 to 64.89 atom%, and the indium amount is set to a value within the range of 0.01 to 8 atom%. The transparent conductive laminate according to any one of claims 1 to 4, wherein:  前記第1領域の[In]/[Ga]の値が、前記第2領域の[In]/[Ga]の値よりも大きいことを特徴とする請求項1~5のいずれか一項に記載の透明導電性積層体。 The value of [In] / [Ga] in the first region is larger than the value of [In] / [Ga] in the second region, according to any one of claims 1 to 5. Transparent conductive laminate.  ρ0で表される前記透明導電層の初期の比抵抗を1×10-4~1×10-1Ω・cmの範囲内の値とし、かつ、膜厚を10~300nmの範囲内の値とすることを特徴とする請求項1~6のいずれか一項に記載の透明導電性積層体。 The initial specific resistance of the transparent conductive layer represented by ρ 0 is a value in the range of 1 × 10 −4 to 1 × 10 −1 Ω · cm, and the film thickness is in the range of 10 to 300 nm. The transparent conductive laminate according to any one of claims 1 to 6, wherein:  前記透明導電層における初期の比抵抗をρ0とし、60℃、相対湿度95%の条件下で、500時間、保管した後の比抵抗をρ1としたときに、ρ10で表わされる比率を1.5以下の値とすることを特徴とする請求項1~7のいずれか一項に記載の透明導電性積層体。 The initial resistivity in the transparent conductive layer and [rho 0, 60 ° C., under a relative humidity of 95% for 500 hours, the specific resistance after storage when a [rho 1, represented by ρ 1 / ρ 0 The transparent conductive laminate according to any one of claims 1 to 7, characterized in that the ratio is 1.5 or less.  請求項1~8のいずれか一項に記載の透明導電性積層体を透明電極に用いてなることを特徴とする電子デバイス。 An electronic device comprising the transparent conductive laminate according to any one of claims 1 to 8 as a transparent electrode.  基材上の少なくとも片面に透明導電層を形成してなる透明導電性積層体の製造方法であって、下記工程(1)~(2)を含むことを特徴とする透明導電性積層体の製造方法。
(1)前記基材および焼結体を準備する工程
(2)前記基材上の少なくとも片面に、スパッタリング法または蒸着法によって、前記焼結体から、酸化亜鉛を含むとともに、ガリウムおよびインジウムをドープしてなる酸化亜鉛膜であって、
 深さ方向のXPS分析によって測定される亜鉛量、ガリウム量、酸素量、およびインジウム量に関して、不均一な濃度分布を有する複数領域を含んでおり、かつ、当該複数領域が、前記透明導電層から前記基材に向かう厚さ方向において、[In]/[Ga]の値が異なる第1領域および第2領域を含む前記酸化亜鉛膜からなる前記透明導電層を形成する工程
A method for producing a transparent conductive laminate comprising a transparent conductive layer formed on at least one surface of a substrate, comprising the following steps (1) to (2): Method.
(1) Step of preparing the base material and the sintered body (2) At least one surface on the base material contains zinc oxide and doped with gallium and indium from the sintered body by sputtering or vapor deposition. A zinc oxide film,
The zinc content, the gallium content, the oxygen content, and the indium content measured by XPS analysis in the depth direction include a plurality of regions having a non-uniform concentration distribution, and the plurality of regions are separated from the transparent conductive layer. Forming the transparent conductive layer made of the zinc oxide film including a first region and a second region having different values of [In] / [Ga] in a thickness direction toward the substrate;
 前記基材上に、前記透明導電層を形成する際の前記基材の温度を10~150℃の範囲内の値とすることを特徴とする請求項10に記載の透明導電性積層体の製造方法。 11. The production of a transparent conductive laminate according to claim 10, wherein the temperature of the substrate when forming the transparent conductive layer on the substrate is set to a value within the range of 10 to 150 ° C. Method.
PCT/JP2014/077183 2014-02-07 2014-10-10 Transparent conductive laminate, method for producing transparent conductive laminate, and electronic device formed using transparent conductive laminate WO2015118724A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-021981 2014-02-07
JP2014021981 2014-02-07

Publications (1)

Publication Number Publication Date
WO2015118724A1 true WO2015118724A1 (en) 2015-08-13

Family

ID=53777543

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2014/077183 WO2015118724A1 (en) 2014-02-07 2014-10-10 Transparent conductive laminate, method for producing transparent conductive laminate, and electronic device formed using transparent conductive laminate
PCT/JP2015/053362 WO2015119238A1 (en) 2014-02-07 2015-02-06 Transparent conductive laminate, method for producing transparent conductive laminate, and electronic device formed using transparent conductive laminate

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053362 WO2015119238A1 (en) 2014-02-07 2015-02-06 Transparent conductive laminate, method for producing transparent conductive laminate, and electronic device formed using transparent conductive laminate

Country Status (4)

Country Link
JP (1) JPWO2015119238A1 (en)
CN (1) CN105814647B (en)
TW (2) TW201532078A (en)
WO (2) WO2015118724A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106200107A (en) * 2016-09-30 2016-12-07 京东方科技集团股份有限公司 A kind of display base plate, display floater and display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6308191B2 (en) * 2015-09-16 2018-04-11 住友電気工業株式会社 Oxide sintered body and method for manufacturing the same, sputter target, and method for manufacturing semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105198A1 (en) * 2007-02-26 2008-09-04 Murata Manufacturing Co., Ltd. Conductive film and method for production of conductive film
JP2011074479A (en) * 2009-10-01 2011-04-14 Hakusui Tech Co Ltd Target for ion plating for producing zinc oxide-based transparent conductive thin film, and zinc oxide-based transparent conductive thin film
WO2011122497A1 (en) * 2010-03-31 2011-10-06 リンテック株式会社 Transparent conductive film, method for producing same, and electronic device using transparent conductive film

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147325A (en) * 2004-11-19 2006-06-08 Nikko Materials Co Ltd Low resistivity transparent conductor
US7867636B2 (en) * 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4904934B2 (en) * 2006-06-08 2012-03-28 東ソー株式会社 Zinc oxide-based transparent conductive film, liquid crystal display using the same, and zinc oxide-based sputtering target
CN101924144A (en) * 2009-06-09 2010-12-22 黄麟 Crystalline silicon solar battery and preparation method thereof
CN101660120A (en) * 2009-09-15 2010-03-03 中国科学院上海硅酸盐研究所 Multi-element doping n-type zinc-oxide-base transparent conducting film and preparation method thereof
JP4875135B2 (en) * 2009-11-18 2012-02-15 出光興産株式会社 In-Ga-Zn-O-based sputtering target
JP5626978B2 (en) * 2010-09-08 2014-11-19 富士フイルム株式会社 THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, AND APPARATUS HAVING THE THIN FILM TRANSISTOR
CN102694066B (en) * 2012-04-01 2015-03-11 成都旭双太阳能科技有限公司 Method for improving photoelectric conversion efficiency of solar cell panel
CN102623569A (en) * 2012-04-11 2012-08-01 保定天威薄膜光伏有限公司 Method for producing textured transparent conductive oxide film of thin-film solar cell
TWI631579B (en) * 2012-07-03 2018-08-01 Jx日鑛日石金屬股份有限公司 Sintered body and amorphous film
KR101293647B1 (en) * 2012-07-27 2013-08-13 삼성코닝정밀소재 주식회사 Transparent conductive oxide thin film layer substrate, method of fabricating thereof, oled and photovoltaic including the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105198A1 (en) * 2007-02-26 2008-09-04 Murata Manufacturing Co., Ltd. Conductive film and method for production of conductive film
JP2011074479A (en) * 2009-10-01 2011-04-14 Hakusui Tech Co Ltd Target for ion plating for producing zinc oxide-based transparent conductive thin film, and zinc oxide-based transparent conductive thin film
WO2011122497A1 (en) * 2010-03-31 2011-10-06 リンテック株式会社 Transparent conductive film, method for producing same, and electronic device using transparent conductive film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106200107A (en) * 2016-09-30 2016-12-07 京东方科技集团股份有限公司 A kind of display base plate, display floater and display device

Also Published As

Publication number Publication date
TWI659435B (en) 2019-05-11
CN105814647A (en) 2016-07-27
CN105814647B (en) 2017-12-15
WO2015119238A1 (en) 2015-08-13
TW201603053A (en) 2016-01-16
TW201532078A (en) 2015-08-16
JPWO2015119238A1 (en) 2017-03-30

Similar Documents

Publication Publication Date Title
TWI609093B (en) Conductive film and electronic device having conductive film
TWI645983B (en) Transparent conductive film, method for producing transparent conductive film, and electronic device using transparent conductive film
WO2015118724A1 (en) Transparent conductive laminate, method for producing transparent conductive laminate, and electronic device formed using transparent conductive laminate
KR101884643B1 (en) Zinc-doped tine oxide based transparent conducting oxide, multilayered transparent conducting film using the same and method for preparing the same
TWI635962B (en) Transparent conductive laminate, method for producing transparent conductive laminate, and electronic device using transparent conductive laminate
TWI676185B (en) Transparent conductive film and its producing method thereof
JP6209459B2 (en) Transparent conductive laminate, method for producing transparent conductive laminate, and electronic device using transparent conductive laminate
US9546415B2 (en) Composite transparent electrodes
JP2017033897A (en) Transparent conductive laminate and manufacturing method of transparent conductive laminate
US10490317B2 (en) Conductive laminate and transparent electrode including same
KR101816972B1 (en) Transparent electrode with TiO2/Ag/TiO2 multilayered structure and method for preparing the same
TW201811118A (en) Transparent conductive film and method for producing transparent conductive film
JP2015147983A (en) Transparent conductive film, method for manufacturing the same and electronic device formed using transparent conductive film
JP2012158821A (en) Method for producing thin film and vapor deposition material for co-vapor deposition for forming thin film, thin film obtained by the method, thin film sheet having the thin film, and laminated sheet
KR101803994B1 (en) Multiple-layer, multiple film including the same and electronic device including the same
WO2023106314A1 (en) Multilayer body having function of transparent conductive film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14881942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14881942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP