WO2015108141A1 - Retainer for rolling bearing, manufacturing method thereof, and rolling bearing - Google Patents
Retainer for rolling bearing, manufacturing method thereof, and rolling bearing Download PDFInfo
- Publication number
- WO2015108141A1 WO2015108141A1 PCT/JP2015/051052 JP2015051052W WO2015108141A1 WO 2015108141 A1 WO2015108141 A1 WO 2015108141A1 JP 2015051052 W JP2015051052 W JP 2015051052W WO 2015108141 A1 WO2015108141 A1 WO 2015108141A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rolling bearing
- cage
- composite material
- mold
- rolling
- Prior art date
Links
- 238000005096 rolling process Methods 0.000 title claims abstract description 86
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 22
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 56
- 239000002131 composite material Substances 0.000 claims abstract description 49
- 229920005989 resin Polymers 0.000 claims abstract description 45
- 239000011347 resin Substances 0.000 claims abstract description 45
- 239000000463 material Substances 0.000 claims abstract description 34
- 239000002657 fibrous material Substances 0.000 claims abstract description 25
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 16
- 239000004917 carbon fiber Substances 0.000 claims abstract description 16
- 238000000748 compression moulding Methods 0.000 claims abstract description 16
- 239000005011 phenolic resin Substances 0.000 claims abstract description 10
- 239000004745 nonwoven fabric Substances 0.000 claims abstract description 9
- 230000003014 reinforcing effect Effects 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims description 21
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 10
- 230000009969 flowable effect Effects 0.000 claims description 6
- 229920005992 thermoplastic resin Polymers 0.000 claims description 5
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 238000003825 pressing Methods 0.000 claims description 3
- 230000007547 defect Effects 0.000 abstract description 10
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 abstract 1
- 229920001568 phenolic resin Polymers 0.000 abstract 1
- 238000000465 moulding Methods 0.000 description 12
- 238000003754 machining Methods 0.000 description 9
- 239000000835 fiber Substances 0.000 description 8
- 239000003677 Sheet moulding compound Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 6
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 238000001746 injection moulding Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000004696 Poly ether ether ketone Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 229920002530 polyetherether ketone Polymers 0.000 description 3
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 2
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 229920003987 resole Polymers 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 229920004695 VICTREX™ PEEK Polymers 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000013036 cure process Methods 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- MHDVGSVTJDSBDK-UHFFFAOYSA-N dibenzyl ether Chemical compound C=1C=CC=CC=1COCC1=CC=CC=C1 MHDVGSVTJDSBDK-UHFFFAOYSA-N 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000011417 postcuring Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/32—Component parts, details or accessories; Auxiliary operations
- B29C43/36—Moulds for making articles of definite length, i.e. discrete articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/02—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
- B29C43/027—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles having an axis of symmetry
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/38—Ball cages
- F16C33/3837—Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages
- F16C33/3843—Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
- F16C33/3856—Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages made from plastic, e.g. injection moulded window cages
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/06—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
- B29K2105/12—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/04—Bearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/709—Articles shaped in a closed loop, e.g. conveyor belts
- B29L2031/7096—Rings or ring-like articles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/02—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
- F16C19/14—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
- F16C19/16—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
- F16C19/163—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2208/00—Plastics; Synthetic resins, e.g. rubbers
- F16C2208/80—Thermosetting resins
- F16C2208/82—Composites, i.e. fibre reinforced thermosetting resins
Definitions
- the present invention relates to a resin-made rolling bearing cage used for high-speed rotation applications, a manufacturing method thereof, and a rolling bearing incorporating the cage.
- the main shaft is rotatably supported by a bearing with respect to a housing.
- a bearing As the bearing type, combined angular ball bearings and cylindrical roller bearings are often used.
- the contact surface pressure between the rolling elements and the inner and outer rings increases due to centrifugal force, and the heat generation of the bearings significantly proceeds, causing problems such as seizure and wear. Otherwise, the cage may be damaged. For this reason, a rolling bearing for machine tools and a cage that is a component of the rolling bearing are required to have high strength and high rigidity in order to cope with high-speed rotation.
- angular ball bearings and the like are used for the rotation support part of the liquid fuel turbo pump used in the satellite rocket engine.
- This bearing may be used at a high-speed rotation such that the dn value (inner ring inner diameter mm ⁇ inner ring rotation speed rpm) exceeds 1.6 million in a cryogenic environment such as liquid hydrogen or liquid oxygen.
- a cryogenic environment such as liquid hydrogen or liquid oxygen.
- thermoplastic resin having a high elastic modulus such as a carbon reinforced polyetheretherketone resin has a high elastic modulus.
- a cage formed by molding a material containing carbon fiber has been proposed (see Patent Document 1).
- an annular material made of carbon fiber woven fabric impregnated with thermosetting resin, such as CFRP (carbon-fiber-reinforced plastic) is used.
- CFRP carbon-fiber-reinforced plastic
- a cage using a thermoplastic resin as in Patent Document 1 is generally manufactured by injection molding and can be manufactured as a relatively inexpensive and highly accurate product.
- a ring-shaped cage always has a weld portion, and the strength at the weld portion is reduced to 1/2 to 1/3 compared to the tensile strength of other parts, and the usage conditions are designed. When it becomes severer than expected, there is a risk of breaking at the weld.
- Patent Document 2 a sheet winding method is employed, and a woven fabric impregnated with a thermosetting resin monomer is wound around a mandrel and thermally cured in a pressure heating furnace to be pipe-shaped.
- the material is molded and used as the desired cage by machining.
- this material has a high strength and a high elastic modulus, it has more material defects than an injection-molded product, and its mechanical characteristics are likely to be lowered.
- the production yield is poor and the production cost is high.
- the present invention has been made to cope with such a problem, and has a high strength and a high elasticity, but does not have a low strength portion such as a weld portion or a material defect, and is manufactured at a relatively low cost. It is an object of the present invention to provide a rolling bearing retainer that can be manufactured, a method for manufacturing the same, and a rolling bearing incorporating the retainer.
- the rolling bearing cage of the present invention is an annular rolling bearing cage that holds rolling elements in a rolling bearing, and the cage is formed by reinforcing a thermosetting resin of a base material with a fiber material. It is a thermoset of a molded body obtained by compression-molding a composite material in the annular axis direction.
- the fiber material is carbon fiber, and the composite material is obtained by impregnating or coating the thermosetting resin on a non-woven fabric of the carbon fiber.
- the thermosetting resin is a phenol resin.
- the fiber material is contained in an amount of 40 to 60% by volume with respect to the entire composite material.
- the rolling bearing of the present invention has a rolling element and a cage that holds the rolling element, and the cage is the above-described rolling bearing cage of the present invention.
- the rolling bearing retainer manufacturing method of the present invention is a manufacturing method of an annular rolling bearing retainer for retaining a rolling element in a rolling bearing, wherein a base material thermosetting resin is reinforced with a fiber material.
- An arrangement step of arranging the composite material in an annular shape in a press mold, and making the thermosetting resin flowable at room temperature or by heating, and pressing the composite material in the mold In the compression molding process in which the inner diameter and outer diameter of the ring are constrained to a predetermined shape and compressed in the direction of the ring axis, and the composite material is heated in the mold to thermoset the thermosetting resin. And a thermosetting process.
- the mold has a slide core that is movable in the radial direction of the ring, and that forms a pocket of the rolling element, and the thermoplastic is formed around a pocket forming portion of the slide core in the compression molding step.
- the pocket is formed by flowing resin and moving the slide core so as to be pulled out from the ring after the thermosetting step.
- the rolling bearing retainer of the present invention is a thermoset of a molded body obtained by compression-molding a composite material formed by reinforcing a thermosetting resin of a base material with a fiber material in the annular axis direction. There are no welds and there are no defects such as voids. For this reason, it has high reliability compared with injection molded products and sheet winding products, and has excellent mechanical strength (such as tensile strength) and elastic modulus.
- the rolling bearing of the present invention using this rolling bearing cage is used for applications that require high-speed rotation, such as bearings for supporting the spindle of machine tools and turbo pump bearings used in satellite rocket engines. it can. In particular, in addition to high strength and high rigidity at a high level, it is necessary to be maintenance-free for a long period of time, and it can be suitably used as a satellite application that requires high reliability.
- the fiber material is carbon fiber
- the composite material is formed by impregnating or coating a non-woven fabric of carbon fiber with a thermosetting resin, particularly high strength and high elastic modulus of the cage can be achieved.
- the said thermosetting resin is a phenol resin, it has a high glass transition temperature, and has a high intensity
- the method for manufacturing a cage for a rolling bearing includes an arrangement step in which a composite material formed by reinforcing a thermosetting resin of a base material with a fiber material is arranged in an annular shape in a press mold, and at room temperature or heating This makes the thermosetting resin flowable, and compresses the composite material by pressing in the direction of the ring axis while constraining the inner and outer diameters of the ring to a predetermined shape with a mold. Since it has a molding process and a thermosetting process that heats the thermosetting resin by heating the composite material in the mold, there is no weld in the molded body, and there are no defects such as voids. Can be manufactured at a relatively low cost.
- the mold has a slide core that is movable in the radial direction of the ring, and forms a pocket of a rolling element, and a thermoplastic resin is placed around the pocket forming portion of the slide core in the compression molding process. Since the pocket is formed by fluidizing and moving the slide core so as to be pulled out from the ring after the thermosetting step, the inner and outer diameters of the ring and the pocket of the rolling element can be accurately manufactured by one molding. Further, machining for forming the pocket can be omitted, and the manufacturing cost can be reduced.
- FIG. 2 is a perspective view of only a cage in the rolling bearing of FIG. 1. It is a schematic diagram which shows an example of the manufacturing process of the cage for rolling bearings of this invention. It is a schematic diagram which shows the other example of the manufacturing process of the cage for rolling bearings of this invention.
- FIG. 5 is a sectional view taken along line AA in FIG. 4. 6 is a perspective view of a cage used in Comparative Example 1.
- the cage for rolling bearings of the present invention is an annular cage, and is a thermoset of a molded body obtained by compression-molding a composite material formed by reinforcing a thermosetting resin of a base material with a fiber material in the annular axis direction. It is.
- the direction in which the molded body is compressed is at least the annular axis direction, and when the composite material is arranged in the press mold and compressed in the annular axis direction, depending on the arrangement and shape of the composite material in the mold
- the molded body is partially compressed in the radial direction and other directions in addition to the annular axis direction.
- this retainer is prepared by preparing a press mold, placing the composite material in a ring in the mold, and if necessary, melting and allowing it to flow, It is manufactured by compression molding, heating the mold and thermosetting in the mold. Details of the manufacturing method will be described later.
- the composite material used in the present invention is preferably a sheet molding compound (SMC) material in which a fiber material is impregnated or coated with a thermosetting resin as a base material.
- SMC material one manufactured by a known method can be adopted.
- the thermosetting resin is in a semi-cured state.
- the width of the sheet material is greater than the width of the cage after molding.
- the thickness of the sheet material is not particularly limited, but is set to a thickness that can be disposed in a clearance portion of a press mold, which will be described later, and does not cause defects.
- the sheet material may be a stack of a plurality of sheets.
- thermosetting resin used for the composite material is not particularly limited, and for example, phenol resin, epoxy resin, unsaturated polyester resin, vinyl ester resin, polyimide resin, polyamideimide resin, and the like can be used. Among these, it is preferable to use a phenol resin as a cage base material from the viewpoint of having high strength and elastic modulus under a wide range of temperature conditions. Further, as the phenol resin, any kind such as a resol type, a novolak type, a benzyl ether type, and the like can be used. Among them, it is preferable to use a resol type because it is excellent in the covering property to the fiber material and the thermosetting property. Moreover, when using a phenol resin, you may use other resin together as long as it is a range which does not have a bad influence on the thermosetting property of this phenol resin.
- the fiber material is not particularly limited as long as it has a reinforcing effect, and for example, carbon fiber, glass fiber, aramid fiber, phenol fiber, alumina fiber, metal fiber and the like can be used. These fiber materials may be used alone or in combination of two or more. Moreover, about a shape, it is preferable to set it as a short fiber or a nonwoven fabric. In the case of long fibers, the fibers do not flow easily during molding. Therefore, when the cage mold has a complicated shape, composition segregation occurs, and there is a possibility that the strength may vary greatly depending on the part.
- the fiber material is preferably a carbon fiber short fiber or a non-woven fabric, because the rolling bearing cage can have particularly high strength and high elastic modulus.
- the carbon fiber is not particularly limited, and may be any of pitch type or PAN type classified from raw materials.
- the carbon fiber yarn constituting the nonwoven fabric generally available 1K, 3K, 6K, and 12K yarns can be used.
- the yarn is a carbon fiber bundle, for example, a bundle of monofilaments having a fiber diameter of 4 to 10 ⁇ m per bundle (1000 for 1K). Examples of such a non-woven fabric commercially available include Krehafeld G and Klecafelt X (manufactured by Kureha Co., Ltd.).
- the composition of the thermosetting resin and the fiber material in the composite material may have any composition as long as the cage can be molded.
- the fiber material is preferably 40% by volume to 60% by volume (the remainder is a thermosetting resin except for a small amount of compounding agent) with respect to the entire composite material.
- FIG. 1 is an axial sectional view of an angular ball bearing which is an example of a rolling bearing of the present invention
- FIG. 2 is a perspective view of a cage in the rolling bearing of FIG.
- the rolling bearing 1 holds an inner ring 2, an outer ring 3, a plurality of rolling elements 4 interposed between the inner ring 2 and the outer ring 3, and the rolling elements 4 at regular intervals in the circumferential direction.
- a cage 5 is the above-described rolling bearing cage of the present invention.
- the inner ring 2 and the outer ring 3 and the rolling element 4 are in contact with each other at a predetermined angle ⁇ (contact angle) with respect to the radial center line, and can carry a radial load and an axial load in one direction. .
- the cage 5 is provided with a plurality of rolling element holding pockets 6 for holding balls as rolling elements in an annular cage body 5 a at regular intervals in the circumferential direction.
- the planar shape of the pocket 6 is a flat circular shape, but may be a perfect circle.
- the flat circular shape means a pocket that approximates the radius of the ball on both sides with a gap that matches the amount of pocket gap (difference between pocket inner diameter and ball diameter) required for a perfect circle shape.
- the bearing form of the rolling bearing of the present invention is not limited to this.
- a bearing type for example, it can be applied to roller bearings such as deep groove ball bearings, cylindrical roller bearings, and needle roller bearings.
- FIG. 3 is a schematic diagram showing a manufacturing process (press molding) of the rolling bearing cage of the present invention. This manufacturing process comprises at least the following steps (1) to (3).
- a composite material 15 formed by reinforcing a thermosetting resin as a base material with a fiber material is arranged in an annular shape in the press mold 11.
- the press mold 11 includes an inner diameter mold 12, an outer diameter mold 13, a lower mold 16, and an upper mold 14.
- the inner diameter mold 12 and the outer diameter mold 13 are arranged at the same center, and are fixed to the lower mold 16 with bolts or the like.
- the composite material 15 is disposed in an annular clearance portion surrounded by the inner diameter mold 12, the outer diameter mold 13, and the lower mold 16.
- An inner diameter surface of the cage is formed by the inner diameter mold 12, and an outer diameter surface of the cage is formed by the outer diameter mold 13.
- the composite material 15 can be disposed in the mold in advance by being formed into an annular shape by, for example, overlapping a plurality of sheets by an arbitrary method before being disposed in the mold. Further, a composite material having an arbitrary shape may be packed in the clearance portion of the mold and arranged in an annular shape.
- the thermosetting resin of the composite material 15 is made flowable. While constraining the diameter to a predetermined shape, the pressure is compressed in the direction of the annular axis. More specifically, the inner mold 12 constrains the inner diameter of the composite material ring, the outer diameter mold 13 constrains the outer diameter of the composite material ring, and the upper mold has a shape that is partially fitted to the clearance portion. By moving the mold 14 to the bottom dead center, the composite material 15 becomes a compression molded body 15 ′ compressed in the annular axis direction.
- the constraint refers to a state in which the composite material is placed in light contact with the mold or with a gap before compression molding, but is compressed in close contact with the compression gradually. . When performing this step, it is sufficient that the composite resin disposed in the mold is in a flowable state, and it does not matter whether the composite material is heated and melted before molding.
- thermosetting step After the press is moved and pressed to perform compression molding, the composite material is heated in the mold 11 to thermoset the thermosetting resin.
- the composite material is heated by heating the mold to a temperature equal to or higher than the thermosetting start temperature of the thermosetting resin.
- the thermosetting conditions are appropriately set according to the resin type of the composite material to be used.
- an annular shaped material is obtained by the above process.
- the cage is obtained by taking this out of the mold and forming the pockets by post-processing.
- the pocket forming means for example, any means such as machining, laser processing, and water cutting can be adopted.
- a post-cure process may be added after molding for the purpose of improving dimensional shrinkage and mechanical properties during use. In general, by adding this step, fatigue properties, tensile strength, and chemical resistance are improved.
- a cage having a desired shape may be formed by machining.
- FIG. 4 is a schematic view showing a manufacturing process (with press molding / slide core) of the rolling bearing cage of the present invention
- FIG. 5 is a cross-sectional view taken along line AA in FIG.
- the press mold 21 includes an inner diameter mold 22, a lower mold 26, an upper mold 24, and a plurality of slide cores 23.
- An outer diameter mold is formed by the plurality of slide cores 23.
- these slide cores 23 are movable in the radial direction of the ring and move radially from the center of the ring (in the direction of the arrow in the figure).
- the structure of the slide core is not limited to that shown in the figure, and may be on the inner diameter mold side.
- the method of moving radially to the outer diameter side as the outer diameter mold side is preferable because the degree of freedom in mold design is high.
- thermosetting resin when the thermosetting resin is made flowable by heating or the like, and the composite material 25 is pressed in the annular axis direction by the upper mold 24, pocket formation of the slide core 23 is formed.
- the thermoplastic resin can also flow around the portion 23a.
- a compression molded body 25 ′ is obtained in which the fiber material is included and the pocket portion is formed without defects.
- the mold has a slide core structure and the pockets are integrally formed, so that a high-strength cage that does not have a weld part, which is inevitable in injection molding, can be formed at a time. Can be manufactured.
- Example 1 The press mold shown in FIG. 3 was used.
- a sheet molding compound (SMC) material was used as the composite material.
- This composite material is obtained by impregnating and coating a carbon fiber nonwoven fabric with a phenol resin at a ratio shown in Table 1.
- the composite material was placed in the clearance portion between the inner diameter mold and the outer diameter mold, and heated with a heater so that the base resin flowed.
- Move the upper mold downward in the figure compress and compress the composite material in the annular axis direction at a constant pressure of 100 to 150 kgf / cm 2 , then heat the mold with a heater to thermoset the base resin I let you.
- a ring-shaped material having an outer diameter of 43.2 mm, an inner diameter of 36 mm, and a width of 13.5 mm was obtained. Subsequently, pockets ( ⁇ 8.0 mm, 8 equally spaced) were formed on the ring-shaped material by machining to obtain a cage.
- Comparative Example 1 An injection mold having the same inner diameter, outer diameter, and width as those in Example 1 was manufactured, and injection molding was performed using PEEK450CA30 (manufactured by Victrex) to obtain a cage 31 shown in FIG.
- the composition of the used PEEK material is as shown in Table 1. Further, the position 32 of the gate (one-point gate, ⁇ 2 mm) at the time of injection molding was set to a location shown in FIG. Further, reference numeral 33 in FIG. 6 denotes a weld position.
- test piece (cage) molded by press molding (Example 1) and injection molding (Comparative Example 1) to a jig for a meniscus with a diameter of 35.28 mm (98% of the test piece inner diameter).
- the maximum test force (N) when pulled in the outer diameter direction of the test piece at a tensile speed of 5 mm / min was divided by the cross-sectional area of the test piece (mm 2 ) to obtain tensile strength (MPa).
- n 5
- Comparative Example 1 which is an injection-molded body of PEEK material
- the weld was damaged in the tensile test, and the tensile strength was about 88 MPa.
- the compression molded body of the SMC material of Example 1 showed high tensile strength because there was no weld.
- Example 2 4 and 5 was used, and the same SMC material as in Example 1 was used as the composite material.
- the outer diameter mold is composed of eight pocket molding slide cores, the temperature-adjusted composite material is arranged as shown in FIG. 4 (upper figure), the upper mold is movable, Similarly, it was compression molded and thermoset. Subsequently, the slide core was moved radially as indicated by the arrow in FIG. 5, and then the cage as the molded body was taken out.
- the cage ring was cut at a part in the circumferential direction and the cross section was visually confirmed. No defects such as voids were found.
- the cage for rolling bearings of the present invention has high strength and high elasticity, but does not have low strength and material defects such as welds, and can be manufactured at a relatively low cost. It can be used as a cage for rolling bearings.
- bearings that support the spindles of machine tools such as machining centers, CNC lathes, and milling machines that require high-speed rotation, high strength, high rigidity, and high reliability, and liquid fuel turbo pumps used in satellite rocket engines It can utilize suitably as a bearing for the rotation support part.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Rolling Contact Bearings (AREA)
Abstract
A rolling bearing retainer with high strength and high elasticity, free from material defects and low-strength regions such as welds, and manufacturable at relatively low cost, a manufacturing method of said retainer, and a rolling bearing that integrates said retainer are provided. This cylindrical retainer (5) for a rolling bearing retains a rolling element in a rolling bearing, and is the heat-cured product of a molded body that is formed by compression-molding a composite material in the annular axis direction, said composite material being formed by reinforcing a thermosetting resin base material with a fiber material. In particular, the fiber material is carbon fibers, and the composite material is formed by impregnating or covering a nonwoven fabric of said carbon fibers with a thermosetting resin such as phenolic resin.
Description
本発明は、高速回転用途に使用される、樹脂製の転がり軸受用保持器およびその製造方法、並びに該保持器を組み込んだ転がり軸受に関する。
The present invention relates to a resin-made rolling bearing cage used for high-speed rotation applications, a manufacturing method thereof, and a rolling bearing incorporating the cage.
マシニングセンタ、CNC旋盤、フライス盤などの工作機械において、その主軸はハウジングに対して軸受で回転自在に支持される。軸受形式としては、組合せアンギュラ玉軸受や円筒ころ軸受が使用される場合が多い。工作機械の加工精度や生産性を高めるためには主軸の回転速度の高速化が有利である。しかし、転がり軸受を高速回転下で使用すると遠心力により転動体と内外輪との間の接触面圧が増大し、軸受の発熱が著しく進行して、焼付きや摩耗などの問題が起こるおそれや、保持器が破損するなどのおそれがある。このため、工作機械用の転がり軸受およびその構成部材である保持器には、高速回転に対応すべく、高強度や高剛性が要求される。
In machine tools such as machining centers, CNC lathes, and milling machines, the main shaft is rotatably supported by a bearing with respect to a housing. As the bearing type, combined angular ball bearings and cylindrical roller bearings are often used. In order to improve the machining accuracy and productivity of machine tools, it is advantageous to increase the rotation speed of the spindle. However, when rolling bearings are used under high speed rotation, the contact surface pressure between the rolling elements and the inner and outer rings increases due to centrifugal force, and the heat generation of the bearings significantly proceeds, causing problems such as seizure and wear. Otherwise, the cage may be damaged. For this reason, a rolling bearing for machine tools and a cage that is a component of the rolling bearing are required to have high strength and high rigidity in order to cope with high-speed rotation.
また、人工衛星のロケットエンジンに用いられる液体燃料用ターボポンプの回転支持部にはアンギュラ玉軸受などが用いられている。この軸受は、液体水素あるいは液体酸素中という極低温環境下で、例えばdn値(内輪内径mm×内輪回転数rpm)が160万をこえるような高速回転で使用される場合がある。また、人工衛星が方向を変えるときに発生する慣性力が人工衛星の回転部分に作用すると回転部分に使用されている軸受にモーメント荷重が発生し、転動体およびこれを保持する保持器にも非常に大きな荷重がかかる。このため、人工衛星用の転がり軸受およびその構成部材である保持器についても、高強度や高剛性が要求される。
Also, angular ball bearings and the like are used for the rotation support part of the liquid fuel turbo pump used in the satellite rocket engine. This bearing may be used at a high-speed rotation such that the dn value (inner ring inner diameter mm × inner ring rotation speed rpm) exceeds 1.6 million in a cryogenic environment such as liquid hydrogen or liquid oxygen. In addition, if the inertial force generated when the satellite changes its direction acts on the rotating part of the satellite, a moment load is generated on the bearing used in the rotating part, and the rolling element and the cage that holds it are also very A large load is applied. For this reason, high strength and high rigidity are also required for rolling bearings for artificial satellites and cages that are constituent members thereof.
従来、上記した工作機械の主軸などのような高速回転を支える転がり軸受の樹脂製保持器として、例えば、炭素強化ポリエーテルエーテルケトン樹脂のように、弾性率の高い熱可塑性樹脂に弾性率の高い炭素繊維を配合した材料を成形してなる保持器が提案されている(特許文献1参照)。また、更なる高速回転に適用しようとする場合には、CFRP(炭素繊維強化プラスチック:carbon-fiber-reinforced plastic)のように炭素繊維の織布に熱硬化性樹脂を含浸させた材料を円環形状に成形し、機械加工で目的形状とした樹脂製保持器が提案されている(特許文献2参照)。
Conventionally, as a resin cage for a rolling bearing that supports high-speed rotation such as the main shaft of the machine tool described above, a thermoplastic resin having a high elastic modulus such as a carbon reinforced polyetheretherketone resin has a high elastic modulus. A cage formed by molding a material containing carbon fiber has been proposed (see Patent Document 1). In addition, when applying to further high-speed rotation, an annular material made of carbon fiber woven fabric impregnated with thermosetting resin, such as CFRP (carbon-fiber-reinforced plastic), is used. A resin cage that has been molded into a shape and made into a target shape by machining has been proposed (see Patent Document 2).
特許文献1のような熱可塑性樹脂を用いた保持器は、一般的に射出成形で製造され、比較的安価で高い精度の製品として作製できる。しかしながら、円環形状である保持器は、必ずウエルド部分が発生し、該ウエルド部における強度は、他の部位の引張強度と比較して1/2~1/3と小さくなり、使用条件が設計時の想定よりも厳しくなる場合には、該ウエルド部にて破壊するおそれがある。
A cage using a thermoplastic resin as in Patent Document 1 is generally manufactured by injection molding and can be manufactured as a relatively inexpensive and highly accurate product. However, a ring-shaped cage always has a weld portion, and the strength at the weld portion is reduced to 1/2 to 1/3 compared to the tensile strength of other parts, and the usage conditions are designed. When it becomes severer than expected, there is a risk of breaking at the weld.
また、特許文献2では、シートワインディング法などを採用し、予め熱硬化性樹脂のモノマーを含浸させた織布をマンドレルに巻きつけ、加圧加熱炉にて熱硬化させることでパイプ形状の素形材を成形し、機械加工にて目的とする保持器としている。この素材は高強度・高弾性率であるものの、射出成形品に比べて材料欠陥が多く、機械的特性が下振れしやすく、用途によっては工業製品としての信頼性が十分とはいえない。また、成形に時間がかかるため製造の歩留まりが悪く、製造コストが高くなる。
In Patent Document 2, a sheet winding method is employed, and a woven fabric impregnated with a thermosetting resin monomer is wound around a mandrel and thermally cured in a pressure heating furnace to be pipe-shaped. The material is molded and used as the desired cage by machining. Although this material has a high strength and a high elastic modulus, it has more material defects than an injection-molded product, and its mechanical characteristics are likely to be lowered. Depending on the application, it cannot be said that the reliability as an industrial product is sufficient. Moreover, since it takes time to mold, the production yield is poor and the production cost is high.
本発明はこのような問題に対処するためになされたものであり、高強度・高弾率でありながら、ウエルド部のような強度が低い箇所や材料欠陥がなく、比較的安価に製造することができる転がり軸受用保持器およびその製造方法、並びに該保持器を組み込んだ転がり軸受を提供することを目的とする。
The present invention has been made to cope with such a problem, and has a high strength and a high elasticity, but does not have a low strength portion such as a weld portion or a material defect, and is manufactured at a relatively low cost. It is an object of the present invention to provide a rolling bearing retainer that can be manufactured, a method for manufacturing the same, and a rolling bearing incorporating the retainer.
本発明の転がり軸受用保持器は、転がり軸受における転動体を保持する円環状の転がり軸受用保持器であって、該保持器は、母材の熱硬化性樹脂を繊維材で強化してなる複合材を円環軸方向に圧縮成形した成形体の熱硬化物であることを特徴とする。また、上記繊維材が炭素繊維であり、上記複合材は該炭素繊維の不織布に上記熱硬化性樹脂を含浸または被覆してなることを特徴とする。また、上記熱硬化性樹脂が、フェノール樹脂であることを特徴とする。また、上記繊維材は、上記複合材全体に対して40体積%~60体積%含まれることを特徴とする。
The rolling bearing cage of the present invention is an annular rolling bearing cage that holds rolling elements in a rolling bearing, and the cage is formed by reinforcing a thermosetting resin of a base material with a fiber material. It is a thermoset of a molded body obtained by compression-molding a composite material in the annular axis direction. The fiber material is carbon fiber, and the composite material is obtained by impregnating or coating the thermosetting resin on a non-woven fabric of the carbon fiber. Further, the thermosetting resin is a phenol resin. Further, the fiber material is contained in an amount of 40 to 60% by volume with respect to the entire composite material.
本発明の転がり軸受は、転動体および該転動体を保持する保持器を有し、該保持器が上記本発明の転がり軸受用保持器であることを特徴とする。
The rolling bearing of the present invention has a rolling element and a cage that holds the rolling element, and the cage is the above-described rolling bearing cage of the present invention.
本発明の転がり軸受用保持器の製造方法は、転がり軸受における転動体を保持する円環状の転がり軸受用保持器の製造方法であって、母材の熱硬化性樹脂を繊維材で強化してなる複合材を円環形状にプレス成形金型内に配置する配置工程と、常温または加熱することで上記熱硬化性樹脂を流動可能な状態にし、プレスにて、上記複合材を、上記金型で円環の内径および外径を所定形状に拘束しながら円環軸方向に加圧して圧縮する圧縮成形工程と、上記金型内で上記複合材を加熱して上記熱硬化性樹脂を熱硬化する熱硬化工程とを備えることを特徴とする。
The rolling bearing retainer manufacturing method of the present invention is a manufacturing method of an annular rolling bearing retainer for retaining a rolling element in a rolling bearing, wherein a base material thermosetting resin is reinforced with a fiber material. An arrangement step of arranging the composite material in an annular shape in a press mold, and making the thermosetting resin flowable at room temperature or by heating, and pressing the composite material in the mold In the compression molding process in which the inner diameter and outer diameter of the ring are constrained to a predetermined shape and compressed in the direction of the ring axis, and the composite material is heated in the mold to thermoset the thermosetting resin. And a thermosetting process.
上記金型に、円環の径方向に移動可能であり、上記転動体のポケットを形成するためのスライドコアを有し、上記圧縮成形工程において上記スライドコアのポケット形成部の周囲に上記熱可塑性樹脂を流動させ、上記熱硬化工程後に上記スライドコアを円環から引き抜くように移動させることで上記ポケットを形成することを特徴とする。
The mold has a slide core that is movable in the radial direction of the ring, and that forms a pocket of the rolling element, and the thermoplastic is formed around a pocket forming portion of the slide core in the compression molding step. The pocket is formed by flowing resin and moving the slide core so as to be pulled out from the ring after the thermosetting step.
本発明の転がり軸受用保持器は、母材の熱硬化性樹脂を繊維材で強化してなる複合材を円環軸方向に圧縮成形した成形体の熱硬化物であるので、成形体中にウエルド部がなく、ボイドなどの欠陥もない。このため、射出成形品やシートワインディング品と比較して高い信頼性を有し、優れた機械的強度(引張強度など)と弾性率を有する。この転がり軸受用保持器を用いた本発明の転がり軸受は、工作機械の主軸を支持する軸受や人工衛星のロケットエンジンに用いられるターボポンプ用軸受のように、高速回転が要求される用途に利用できる。特に、高いレベルでの高強度・高剛性に加えて長期にわたりメンテナンスフリーであることが必要であり、高い信頼性が要求される人工衛星用途として好適に利用できる。
The rolling bearing retainer of the present invention is a thermoset of a molded body obtained by compression-molding a composite material formed by reinforcing a thermosetting resin of a base material with a fiber material in the annular axis direction. There are no welds and there are no defects such as voids. For this reason, it has high reliability compared with injection molded products and sheet winding products, and has excellent mechanical strength (such as tensile strength) and elastic modulus. The rolling bearing of the present invention using this rolling bearing cage is used for applications that require high-speed rotation, such as bearings for supporting the spindle of machine tools and turbo pump bearings used in satellite rocket engines. it can. In particular, in addition to high strength and high rigidity at a high level, it is necessary to be maintenance-free for a long period of time, and it can be suitably used as a satellite application that requires high reliability.
上記繊維材が炭素繊維であり、複合材は該炭素繊維の不織布に熱硬化性樹脂を含浸または被覆してなるので、特に保持器の高強度化および高弾性率化が図れる。また、上記熱硬化性樹脂が、フェノール樹脂であるので、高いガラス転移温度を有し、室温から180℃までの広い温度条件でも高い強度と弾性率を有する。
Since the fiber material is carbon fiber, and the composite material is formed by impregnating or coating a non-woven fabric of carbon fiber with a thermosetting resin, particularly high strength and high elastic modulus of the cage can be achieved. Moreover, since the said thermosetting resin is a phenol resin, it has a high glass transition temperature, and has a high intensity | strength and an elasticity modulus also in the wide temperature conditions from room temperature to 180 degreeC.
本発明の転がり軸受用保持器の製造方法は、母材の熱硬化性樹脂を繊維材で強化してなる複合材を円環形状にプレス成形金型内に配置する配置工程と、常温または加熱することで上記熱硬化性樹脂を流動可能な状態にし、プレスにて、複合材を金型で円環の内径および外径を所定形状に拘束しながら円環軸方向に加圧して圧縮する圧縮成形工程と、金型内で複合材を加熱して熱硬化性樹脂を熱硬化する熱硬化工程とを備えるので、成形体中にウエルド部がなく、ボイドなどの欠陥もない円環状の保持器を比較的安価に製造できる。
The method for manufacturing a cage for a rolling bearing according to the present invention includes an arrangement step in which a composite material formed by reinforcing a thermosetting resin of a base material with a fiber material is arranged in an annular shape in a press mold, and at room temperature or heating This makes the thermosetting resin flowable, and compresses the composite material by pressing in the direction of the ring axis while constraining the inner and outer diameters of the ring to a predetermined shape with a mold. Since it has a molding process and a thermosetting process that heats the thermosetting resin by heating the composite material in the mold, there is no weld in the molded body, and there are no defects such as voids. Can be manufactured at a relatively low cost.
また、上記金型に、円環の径方向に移動可能であり、転動体のポケットを形成するためのスライドコアを有し、圧縮成形工程においてスライドコアのポケット形成部の周囲に熱可塑性樹脂を流動させ、熱硬化工程後にスライドコアを円環から引き抜くように移動させることでポケットを形成するので、円環の内径および外径と、転動体のポケットとを精度よく一度の成形で製造できる。また、ポケットを形成する機械加工を省略でき、製造コストの低減が図れる。
Further, the mold has a slide core that is movable in the radial direction of the ring, and forms a pocket of a rolling element, and a thermoplastic resin is placed around the pocket forming portion of the slide core in the compression molding process. Since the pocket is formed by fluidizing and moving the slide core so as to be pulled out from the ring after the thermosetting step, the inner and outer diameters of the ring and the pocket of the rolling element can be accurately manufactured by one molding. Further, machining for forming the pocket can be omitted, and the manufacturing cost can be reduced.
本発明の転がり軸受用保持器は、円環状の保持器であり、母材の熱硬化性樹脂を繊維材で強化してなる複合材を円環軸方向に圧縮成形した成形体の熱硬化物である。該成形体が圧縮されている方向が、少なくとも円環軸方向であり、プレス成形金型に複合材を配置して円環軸方向に圧縮する場合、複合材の金型内配置や形状によっては、該成形体は円環軸方向以外に、径方向やその他の方向に一部圧縮されている。この保持器は、例えば、プレス成形金型を用意し、上記複合材を金型内に円環になるように配置し、必要であれば溶融して流動可能な状態にした後、プレスにて圧縮成形し、金型を加熱して金型内で熱硬化させて製造される。製造方法の詳細については後述する。
The cage for rolling bearings of the present invention is an annular cage, and is a thermoset of a molded body obtained by compression-molding a composite material formed by reinforcing a thermosetting resin of a base material with a fiber material in the annular axis direction. It is. The direction in which the molded body is compressed is at least the annular axis direction, and when the composite material is arranged in the press mold and compressed in the annular axis direction, depending on the arrangement and shape of the composite material in the mold The molded body is partially compressed in the radial direction and other directions in addition to the annular axis direction. For example, this retainer is prepared by preparing a press mold, placing the composite material in a ring in the mold, and if necessary, melting and allowing it to flow, It is manufactured by compression molding, heating the mold and thermosetting in the mold. Details of the manufacturing method will be described later.
本発明に使用する複合材としては、母材となる熱硬化性樹脂を繊維材に含浸または被覆したシートモールディングコンパウンド(SMC)材が好ましい。SMC材は、公知の方法で製造されるものを採用できる。例えば、母材となる熱硬化性樹脂に、硬化促進剤、無機充填材、離型剤などを配合したペーストを作製し、これを繊維材に含浸または被覆させて得られるシート材であり、必要に応じて熱硬化性樹脂が半硬化状態とされている。シート材の幅は、成形後の保持器の幅よりも大きいものとする。また、シート材の厚みは特に限定されないが、後述するプレス金型のクリアランス部に配置でき、かつ、欠陥ができない程度の厚みとする。なお、シート材は、複数枚を重ね合わせたものであってもよい。
The composite material used in the present invention is preferably a sheet molding compound (SMC) material in which a fiber material is impregnated or coated with a thermosetting resin as a base material. As the SMC material, one manufactured by a known method can be adopted. For example, it is a sheet material obtained by preparing a paste in which a curing accelerator, an inorganic filler, a release agent, etc. are blended with a thermosetting resin as a base material, and impregnating or covering this with a fiber material. Accordingly, the thermosetting resin is in a semi-cured state. The width of the sheet material is greater than the width of the cage after molding. Further, the thickness of the sheet material is not particularly limited, but is set to a thickness that can be disposed in a clearance portion of a press mold, which will be described later, and does not cause defects. The sheet material may be a stack of a plurality of sheets.
複合材に用いる熱硬化性樹脂としては、特に制限されず、例えば、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ポリイミド樹脂、ポリアミドイミド樹脂などを使用できる。これらの中でも、保持器母材として幅広い温度条件で高い強度と弾性率を有する観点から、フェノール樹脂を用いることが好ましい。また、フェノール樹脂としては、レゾール型、ノボラック型、ベンジルエーテル型などの任意の種類を使用できる。その中でも、繊維材への被覆性や熱硬化特性に優れることからレゾール型を用いることが好ましい。また、フェノール樹脂を用いる際に、該フェノール樹脂の熱硬化性に悪影響を与えない範囲であれば他の樹脂を併用してもよい。
The thermosetting resin used for the composite material is not particularly limited, and for example, phenol resin, epoxy resin, unsaturated polyester resin, vinyl ester resin, polyimide resin, polyamideimide resin, and the like can be used. Among these, it is preferable to use a phenol resin as a cage base material from the viewpoint of having high strength and elastic modulus under a wide range of temperature conditions. Further, as the phenol resin, any kind such as a resol type, a novolak type, a benzyl ether type, and the like can be used. Among them, it is preferable to use a resol type because it is excellent in the covering property to the fiber material and the thermosetting property. Moreover, when using a phenol resin, you may use other resin together as long as it is a range which does not have a bad influence on the thermosetting property of this phenol resin.
繊維材としては、補強効果を有するものであれば、その材質は特に限定されず、例えば、炭素繊維、ガラス繊維、アラミド繊維、フェノール繊維、アルミナ繊維、金属繊維などを使用できる。これらの繊維材は、単独で使用してもよく、2種以上を併用してもよい。また、形状については、短繊維または不織布とすることが好ましい。長繊維では、成形時に繊維が流動しにくいため、保持器の金型が複雑形状の場合には、組成偏析が生じ、部位によって強度に大きな違いが生じるおそれがある。
The fiber material is not particularly limited as long as it has a reinforcing effect, and for example, carbon fiber, glass fiber, aramid fiber, phenol fiber, alumina fiber, metal fiber and the like can be used. These fiber materials may be used alone or in combination of two or more. Moreover, about a shape, it is preferable to set it as a short fiber or a nonwoven fabric. In the case of long fibers, the fibers do not flow easily during molding. Therefore, when the cage mold has a complicated shape, composition segregation occurs, and there is a possibility that the strength may vary greatly depending on the part.
転がり軸受用保持器を特に高強度・高弾性率とできるため、繊維材としては上記の中でも、炭素繊維の短繊維または不織布とすることが好ましい。炭素繊維としては、特に限定されず、原材料から分類されるピッチ系またはPAN系のいずれのものであってもよい。また、不織布を構成する炭素繊維の糸としては一般的に入手可能な1K、3K、6K、12Kの糸を用いることができる。なお、上記糸は炭素繊維束であり、例えば、繊維径4~10μmのモノフィラメントを1束あたり所定本数(1Kなら1000本)集合したものである。このような不織布の市販品としては、例えば、クレハフェルトG、クレカフェルトX(株式会社クレハ社製)などが挙げられる。
Among the above, the fiber material is preferably a carbon fiber short fiber or a non-woven fabric, because the rolling bearing cage can have particularly high strength and high elastic modulus. The carbon fiber is not particularly limited, and may be any of pitch type or PAN type classified from raw materials. Further, as the carbon fiber yarn constituting the nonwoven fabric, generally available 1K, 3K, 6K, and 12K yarns can be used. The yarn is a carbon fiber bundle, for example, a bundle of monofilaments having a fiber diameter of 4 to 10 μm per bundle (1000 for 1K). Examples of such a non-woven fabric commercially available include Krehafeld G and Klecafelt X (manufactured by Kureha Co., Ltd.).
複合材における熱硬化性樹脂と繊維材との割合は、保持器を成形可能な範囲であればどのような組成でもよい。例えば、複合材全体に対して、繊維材が40体積%~60体積%(微量配合剤を除き残部が熱硬化性樹脂)が好ましい。繊維材の割合をこの範囲内とすることで、成形性を確保しつつ、特に高強度・高弾性率の保持器とできる。
The composition of the thermosetting resin and the fiber material in the composite material may have any composition as long as the cage can be molded. For example, the fiber material is preferably 40% by volume to 60% by volume (the remainder is a thermosetting resin except for a small amount of compounding agent) with respect to the entire composite material. By setting the ratio of the fiber material within this range, it is possible to obtain a cage having particularly high strength and high elastic modulus while ensuring moldability.
本発明の転がり軸受用保持器および転がり軸受を図1および図2に基づいて説明する。図1は、本発明の転がり軸受の一例であるアンギュラ玉軸受の軸方向断面であり、図2は図1の転がり軸受における保持器の斜視図である。図1に示すように、転がり軸受1は、内輪2、外輪3と、内輪2と外輪3との間に介在する複数の転動体4と、この転動体4を周方向に一定間隔で保持する保持器5とを備えている。保持器5が上述の本発明の転がり軸受用保持器である。内輪2および外輪3と、転動体4とは径方向中心線に対して所定の角度θ(接触角)を有して接触しており、ラジアル荷重と一方向のアキシアル荷重を負荷することができる。
The rolling bearing cage and rolling bearing of the present invention will be described with reference to FIGS. FIG. 1 is an axial sectional view of an angular ball bearing which is an example of a rolling bearing of the present invention, and FIG. 2 is a perspective view of a cage in the rolling bearing of FIG. As shown in FIG. 1, the rolling bearing 1 holds an inner ring 2, an outer ring 3, a plurality of rolling elements 4 interposed between the inner ring 2 and the outer ring 3, and the rolling elements 4 at regular intervals in the circumferential direction. And a cage 5. The cage 5 is the above-described rolling bearing cage of the present invention. The inner ring 2 and the outer ring 3 and the rolling element 4 are in contact with each other at a predetermined angle θ (contact angle) with respect to the radial center line, and can carry a radial load and an axial load in one direction. .
図2に示すように、保持器5は、円環状の保持器本体5aに転動体であるボールを保持する転動体保持用ポケット6が周方向に一定間隔で複数設けられている。ポケット6の平面形状は、平円形状であるが、真円でもよい。ここで、平円形状とは、真円形状で必要とされるポケット隙間(ポケット内径とボール直径との差)量と一致させる隙間を間にして、その両側にボールの半径にほぼ近似するポケット面の半径で構成させた平円とする形状をいう。回転軸周方向のポケット隙間量を大きくして、ボールの進み遅れを吸収することにより、保持器にかかる負荷を減らすことができる平円形状であることが好ましい。
As shown in FIG. 2, the cage 5 is provided with a plurality of rolling element holding pockets 6 for holding balls as rolling elements in an annular cage body 5 a at regular intervals in the circumferential direction. The planar shape of the pocket 6 is a flat circular shape, but may be a perfect circle. Here, the flat circular shape means a pocket that approximates the radius of the ball on both sides with a gap that matches the amount of pocket gap (difference between pocket inner diameter and ball diameter) required for a perfect circle shape. A shape that is a flat circle composed of the radius of the surface. It is preferable to have a flat circular shape that can reduce the load applied to the cage by increasing the pocket clearance in the circumferential direction of the rotation axis and absorbing the advance and delay of the ball.
人工衛星のロケットエンジンに用いられる液体燃料用ターボポンプ用の転がり軸受では、人工衛星が方向を変えるときに発生する慣性力が人工衛星の回転部分に作用すると回転部分に使用されている軸受にモーメント荷重が発生し、軸受の転動体と保持器との間には進み遅れが発生する。転動体が保持器を押す力が大きくなり保持器の案内隙間以上に移動しようとすると保持器に曲げ変形が生ずる。本発明の転がり軸受用保持器では、成形体中にウエルド部や欠陥がなく高強度(例えば、引張強度で100MPa以上)であるので、軸受に慣性力によるモーメント荷重が作用した場合でも変形を抑制できる。
In rolling bearings for liquid fuel turbo pumps used in satellite rocket engines, moments are applied to the bearings used in rotating parts when the inertial force generated when the satellite changes direction acts on the rotating parts of the satellite. A load is generated, and a lead / lag occurs between the rolling elements of the bearing and the cage. When the rolling element increases the force pushing the cage and moves beyond the guide clearance of the cage, bending deformation occurs in the cage. In the rolling bearing cage of the present invention, since there is no weld or defect in the molded body and it has high strength (eg, tensile strength of 100 MPa or more), deformation is suppressed even when moment load due to inertial force acts on the bearing. it can.
図1および図2に基づきアンギュラ玉軸受について説明したが、本発明の転がり軸受の軸受形態はこれに限定されるものではない。軸受形式としては、例えば、深溝玉軸受、円筒ころ軸受、針状ころ軸受などのころ軸受などにも適用できる。
Although the angular ball bearing has been described based on FIG. 1 and FIG. 2, the bearing form of the rolling bearing of the present invention is not limited to this. As a bearing type, for example, it can be applied to roller bearings such as deep groove ball bearings, cylindrical roller bearings, and needle roller bearings.
本発明の転がり軸受用保持器の製造方法の一例を図3に基づいて説明する。図3は、本発明の転がり軸受用保持器の製造工程(プレス成形)を示す模式図である。この製造工程は少なくとも以下の(1)~(3)の工程から構成される。
An example of a method for manufacturing the rolling bearing cage of the present invention will be described with reference to FIG. FIG. 3 is a schematic diagram showing a manufacturing process (press molding) of the rolling bearing cage of the present invention. This manufacturing process comprises at least the following steps (1) to (3).
(1)配置工程
母材の熱硬化性樹脂を繊維材で強化してなる複合材15を円環形状にプレス成形金型11内に配置する。プレス成形金型11は、内径金型12、外径金型13、下部金型16、および上部金型14から構成される。内径金型12および外径金型13は、同一中心に配置され、ボルトなどで下部金型16に固定されている。複合材15は、内径金型12と外径金型13と下部金型16とで囲まれる円環形状のクリアランス部に配置される。内径金型12により保持器の内径面が、外径金型13により保持器の外径面が形成される。 (1) Arrangement Step Acomposite material 15 formed by reinforcing a thermosetting resin as a base material with a fiber material is arranged in an annular shape in the press mold 11. The press mold 11 includes an inner diameter mold 12, an outer diameter mold 13, a lower mold 16, and an upper mold 14. The inner diameter mold 12 and the outer diameter mold 13 are arranged at the same center, and are fixed to the lower mold 16 with bolts or the like. The composite material 15 is disposed in an annular clearance portion surrounded by the inner diameter mold 12, the outer diameter mold 13, and the lower mold 16. An inner diameter surface of the cage is formed by the inner diameter mold 12, and an outer diameter surface of the cage is formed by the outer diameter mold 13.
母材の熱硬化性樹脂を繊維材で強化してなる複合材15を円環形状にプレス成形金型11内に配置する。プレス成形金型11は、内径金型12、外径金型13、下部金型16、および上部金型14から構成される。内径金型12および外径金型13は、同一中心に配置され、ボルトなどで下部金型16に固定されている。複合材15は、内径金型12と外径金型13と下部金型16とで囲まれる円環形状のクリアランス部に配置される。内径金型12により保持器の内径面が、外径金型13により保持器の外径面が形成される。 (1) Arrangement Step A
複合材15は、金型内配置前において、複数枚のシートを任意の方法で重ね合わせるなどにより、予め円環形状としたものを金型内に配置できる。また、金型のクリアランス部に任意形状の複合材を詰めて円環形状に配置してもよい。
The composite material 15 can be disposed in the mold in advance by being formed into an annular shape by, for example, overlapping a plurality of sheets by an arbitrary method before being disposed in the mold. Further, a composite material having an arbitrary shape may be packed in the clearance portion of the mold and arranged in an annular shape.
(2)圧縮成形工程
常温(25℃)または加熱することで複合材15の熱硬化性樹脂を流動可能な状態にし、プレスにて、複合材15を、金型11で円環の内径および外径を所定形状に拘束しながら円環軸方向に加圧して圧縮する。より詳細には、内径金型12で複合材円環の内径を拘束し、外径金型13で複合材円環の外径を拘束し、上記クリアランス部に一部嵌合する形状の上部金型14を下死点まで移動させることで、複合材15が円環軸方向に圧縮された圧縮成形体15’となる。なお、ここでの拘束とは、圧縮成形前においては複合材が金型と軽接触または隙間を有して配置されているが、圧縮に伴ない徐々に密に接して圧縮される状態をいう。この工程を行なう際において、金型内に配置した複合材の樹脂が流動可能な状態であればよく、成形前の複合材の加熱溶融の有無は問わない。 (2) Compression molding process At normal temperature (25 ° C.) or by heating, the thermosetting resin of thecomposite material 15 is made flowable. While constraining the diameter to a predetermined shape, the pressure is compressed in the direction of the annular axis. More specifically, the inner mold 12 constrains the inner diameter of the composite material ring, the outer diameter mold 13 constrains the outer diameter of the composite material ring, and the upper mold has a shape that is partially fitted to the clearance portion. By moving the mold 14 to the bottom dead center, the composite material 15 becomes a compression molded body 15 ′ compressed in the annular axis direction. Here, the constraint refers to a state in which the composite material is placed in light contact with the mold or with a gap before compression molding, but is compressed in close contact with the compression gradually. . When performing this step, it is sufficient that the composite resin disposed in the mold is in a flowable state, and it does not matter whether the composite material is heated and melted before molding.
常温(25℃)または加熱することで複合材15の熱硬化性樹脂を流動可能な状態にし、プレスにて、複合材15を、金型11で円環の内径および外径を所定形状に拘束しながら円環軸方向に加圧して圧縮する。より詳細には、内径金型12で複合材円環の内径を拘束し、外径金型13で複合材円環の外径を拘束し、上記クリアランス部に一部嵌合する形状の上部金型14を下死点まで移動させることで、複合材15が円環軸方向に圧縮された圧縮成形体15’となる。なお、ここでの拘束とは、圧縮成形前においては複合材が金型と軽接触または隙間を有して配置されているが、圧縮に伴ない徐々に密に接して圧縮される状態をいう。この工程を行なう際において、金型内に配置した複合材の樹脂が流動可能な状態であればよく、成形前の複合材の加熱溶融の有無は問わない。 (2) Compression molding process At normal temperature (25 ° C.) or by heating, the thermosetting resin of the
(3)熱硬化工程
プレスを可動させ加圧して圧縮成形した後、金型11内で複合材を加熱して熱硬化性樹脂を熱硬化する。複合材の加熱は、該金型を熱硬化性樹脂の熱硬化開始温度以上に加熱することで行なう。熱硬化条件は、用いる複合材の樹脂種類に応じて適宜設定する。なお、(2)(3)の工程については、圧縮成形しながら金型を加熱して熱硬化を同時に行なってもよい。 (3) Thermosetting step After the press is moved and pressed to perform compression molding, the composite material is heated in the mold 11 to thermoset the thermosetting resin. The composite material is heated by heating the mold to a temperature equal to or higher than the thermosetting start temperature of the thermosetting resin. The thermosetting conditions are appropriately set according to the resin type of the composite material to be used. In addition, about the process of (2) (3), you may heat a metal mold | die and heat-cure simultaneously with compression molding.
プレスを可動させ加圧して圧縮成形した後、金型11内で複合材を加熱して熱硬化性樹脂を熱硬化する。複合材の加熱は、該金型を熱硬化性樹脂の熱硬化開始温度以上に加熱することで行なう。熱硬化条件は、用いる複合材の樹脂種類に応じて適宜設定する。なお、(2)(3)の工程については、圧縮成形しながら金型を加熱して熱硬化を同時に行なってもよい。 (3) Thermosetting step After the press is moved and pressed to perform compression molding, the composite material is heated in the mold 11 to thermoset the thermosetting resin. The composite material is heated by heating the mold to a temperature equal to or higher than the thermosetting start temperature of the thermosetting resin. The thermosetting conditions are appropriately set according to the resin type of the composite material to be used. In addition, about the process of (2) (3), you may heat a metal mold | die and heat-cure simultaneously with compression molding.
転動体のポケットを形成するスライドコアなどを設けない場合、上記の工程により円環形状の素形材が得られる。これを金型から取り出し、ポケットを後加工で形成することで保持器が得られる。ポケットの形成手段は、例えば、機械加工、レーザ加工、ウォータカットなどの任意の手段を採用できる。
When a slide core or the like for forming a rolling element pocket is not provided, an annular shaped material is obtained by the above process. The cage is obtained by taking this out of the mold and forming the pockets by post-processing. As the pocket forming means, for example, any means such as machining, laser processing, and water cutting can be adopted.
使用中の寸法収縮や機械的特性を向上させる目的で成形後にポストキュア工程を加えてもよい。一般的には本工程を加えることで、疲労特性や引張強度、耐薬品性が向上する。また、成形後および/またはポストキュア後に幅公差などプレス成形のみで目的とする寸法公差に成形できない場合には、機械加工で目的形状の保持器としてもよい。
A post-cure process may be added after molding for the purpose of improving dimensional shrinkage and mechanical properties during use. In general, by adding this step, fatigue properties, tensile strength, and chemical resistance are improved. In addition, after forming and / or post-curing, if a desired dimensional tolerance cannot be formed only by press forming such as width tolerance, a cage having a desired shape may be formed by machining.
本発明の転がり軸受用保持器の製造方法の他の例を図4および図5に基づいて説明する。図4は、本発明の転がり軸受用保持器の製造工程(プレス成形・スライドコア有)を示す模式図であり、図5は図4におけるA-A線断面図である。この製造方法は、上記の(1)~(3)の工程については同じである。ここで、プレス成形金型21は、内径金型22、下部金型26、上部金型24、および複数のスライドコア23から構成される。複数のスライドコア23により外径金型が形成される。図5に示すように、これらのスライドコア23は、円環の径方向に移動可能であり円環中心から放射状に可動する(図中矢印方向)。スライドコアの構造は、該図に示すものに限定されず、内径金型側としてもよい。一般的には、該図に示すように外径金型側として外径側に放射状に可動させる方式である方が、金型設計の自由度が高いため好ましい。
Another example of the method for manufacturing a rolling bearing cage according to the present invention will be described with reference to FIGS. FIG. 4 is a schematic view showing a manufacturing process (with press molding / slide core) of the rolling bearing cage of the present invention, and FIG. 5 is a cross-sectional view taken along line AA in FIG. This manufacturing method is the same for the steps (1) to (3). Here, the press mold 21 includes an inner diameter mold 22, a lower mold 26, an upper mold 24, and a plurality of slide cores 23. An outer diameter mold is formed by the plurality of slide cores 23. As shown in FIG. 5, these slide cores 23 are movable in the radial direction of the ring and move radially from the center of the ring (in the direction of the arrow in the figure). The structure of the slide core is not limited to that shown in the figure, and may be on the inner diameter mold side. Generally, as shown in the figure, the method of moving radially to the outer diameter side as the outer diameter mold side is preferable because the degree of freedom in mold design is high.
図4に示すように、圧縮成形工程において、熱硬化性樹脂を加熱などにより流動可能な状態にし、複合材25を上部金型24で円環軸方向に加圧すると、スライドコア23のポケット形成部23aの周囲にも熱可塑性樹脂を流動させることができる。樹脂流動時には繊維材も含まれた形で流動し、ポケット部の周囲も欠陥なく形成された圧縮成形体25’が得られる。熱硬化工程後にスライドコア23を円環から引き抜くように、円環中心から放射状に可動させた後、成形体である保持器を取り出す。得られた保持器に対しては、図3の場合と同様にポストキュアや後加工を施してもよい。
As shown in FIG. 4, in the compression molding process, when the thermosetting resin is made flowable by heating or the like, and the composite material 25 is pressed in the annular axis direction by the upper mold 24, pocket formation of the slide core 23 is formed. The thermoplastic resin can also flow around the portion 23a. When the resin flows, a compression molded body 25 ′ is obtained in which the fiber material is included and the pocket portion is formed without defects. After moving the slide core 23 radially from the center of the ring so that the slide core 23 is pulled out from the ring after the thermosetting process, the cage as the molded body is taken out. The obtained cage may be post-cured or post-processed as in the case of FIG.
図4および図5に示すように、金型をスライドコア構造とし、ポケットを一体成形とすることで、射出成形では不可避であるウエルド部を有さない、高強度の保持器を一度の成形で製造できる。
As shown in FIG. 4 and FIG. 5, the mold has a slide core structure and the pockets are integrally formed, so that a high-strength cage that does not have a weld part, which is inevitable in injection molding, can be formed at a time. Can be manufactured.
以下に実施例を挙げて本発明をさらに説明するが、本発明はこれにより何ら制限されるものではない。
Hereinafter, the present invention will be further described with reference to examples, but the present invention is not limited thereto.
実施例1
図3に示すプレス成形金型を用いた。複合材にはシートモールディングコンパウンド(SMC)材を用いた。この複合材は、表1に示す割合で炭素繊維不織布にフェノール樹脂を含浸被覆したものである。最初に、図3(上図)に示すように、複合材を内径金型と外径金型とのクリアランス部に配置し、母材樹脂が流動するようヒーターにて加熱した。上部金型を図中下方向に可動し、一定圧力100~150kgf/cm2にて複合材を円環軸方向に加圧圧縮した後、ヒーターで金型を加熱して母材樹脂を熱硬化させた。これにより、外径43.2mm、内径36mm、幅13.5mmのリング状素形材を得た。続いて、このリング状素形材に、機械加工でポケット(φ8.0mm、8等配)を形成して保持器を得た。 Example 1
The press mold shown in FIG. 3 was used. A sheet molding compound (SMC) material was used as the composite material. This composite material is obtained by impregnating and coating a carbon fiber nonwoven fabric with a phenol resin at a ratio shown in Table 1. First, as shown in FIG. 3 (upper figure), the composite material was placed in the clearance portion between the inner diameter mold and the outer diameter mold, and heated with a heater so that the base resin flowed. Move the upper mold downward in the figure, compress and compress the composite material in the annular axis direction at a constant pressure of 100 to 150 kgf / cm 2 , then heat the mold with a heater to thermoset the base resin I let you. As a result, a ring-shaped material having an outer diameter of 43.2 mm, an inner diameter of 36 mm, and a width of 13.5 mm was obtained. Subsequently, pockets (φ8.0 mm, 8 equally spaced) were formed on the ring-shaped material by machining to obtain a cage.
図3に示すプレス成形金型を用いた。複合材にはシートモールディングコンパウンド(SMC)材を用いた。この複合材は、表1に示す割合で炭素繊維不織布にフェノール樹脂を含浸被覆したものである。最初に、図3(上図)に示すように、複合材を内径金型と外径金型とのクリアランス部に配置し、母材樹脂が流動するようヒーターにて加熱した。上部金型を図中下方向に可動し、一定圧力100~150kgf/cm2にて複合材を円環軸方向に加圧圧縮した後、ヒーターで金型を加熱して母材樹脂を熱硬化させた。これにより、外径43.2mm、内径36mm、幅13.5mmのリング状素形材を得た。続いて、このリング状素形材に、機械加工でポケット(φ8.0mm、8等配)を形成して保持器を得た。 Example 1
The press mold shown in FIG. 3 was used. A sheet molding compound (SMC) material was used as the composite material. This composite material is obtained by impregnating and coating a carbon fiber nonwoven fabric with a phenol resin at a ratio shown in Table 1. First, as shown in FIG. 3 (upper figure), the composite material was placed in the clearance portion between the inner diameter mold and the outer diameter mold, and heated with a heater so that the base resin flowed. Move the upper mold downward in the figure, compress and compress the composite material in the annular axis direction at a constant pressure of 100 to 150 kgf / cm 2 , then heat the mold with a heater to thermoset the base resin I let you. As a result, a ring-shaped material having an outer diameter of 43.2 mm, an inner diameter of 36 mm, and a width of 13.5 mm was obtained. Subsequently, pockets (φ8.0 mm, 8 equally spaced) were formed on the ring-shaped material by machining to obtain a cage.
比較例1
内径、外径、幅を実施例1と同形状とした射出成形金型を製作し、PEEK450CA30(ビクトレックス社製)を用いて射出成形して、図6に示す保持器31を得た。用いたPEEK材の組成は表1に示すとおりである。また、射出成形時のゲート(1点ゲート、φ2mm)の位置32は、図6に示す箇所とした。また、図6における33はウエルドの位置である。 Comparative Example 1
An injection mold having the same inner diameter, outer diameter, and width as those in Example 1 was manufactured, and injection molding was performed using PEEK450CA30 (manufactured by Victrex) to obtain acage 31 shown in FIG. The composition of the used PEEK material is as shown in Table 1. Further, the position 32 of the gate (one-point gate, φ2 mm) at the time of injection molding was set to a location shown in FIG. Further, reference numeral 33 in FIG. 6 denotes a weld position.
内径、外径、幅を実施例1と同形状とした射出成形金型を製作し、PEEK450CA30(ビクトレックス社製)を用いて射出成形して、図6に示す保持器31を得た。用いたPEEK材の組成は表1に示すとおりである。また、射出成形時のゲート(1点ゲート、φ2mm)の位置32は、図6に示す箇所とした。また、図6における33はウエルドの位置である。 Comparative Example 1
An injection mold having the same inner diameter, outer diameter, and width as those in Example 1 was manufactured, and injection molding was performed using PEEK450CA30 (manufactured by Victrex) to obtain a
プレス成形(実施例1)および射出成形(比較例1)にて、それぞれ成形した試験片(保持器)を、径35.28mm(試験片内径の98%)の半月板の治具にセットし、引張速度5mm/minで試験片の外径方向に引っ張ったときの最大試験力(N)を試験片断面積(mm2)で除して引張強度(MPa)とした。試験片はそれぞれn=5とし、平均値を表1に示した。
Set each test piece (cage) molded by press molding (Example 1) and injection molding (Comparative Example 1) to a jig for a meniscus with a diameter of 35.28 mm (98% of the test piece inner diameter). The maximum test force (N) when pulled in the outer diameter direction of the test piece at a tensile speed of 5 mm / min was divided by the cross-sectional area of the test piece (mm 2 ) to obtain tensile strength (MPa). Each test piece was set to n = 5, and the average value is shown in Table 1.
表1に示すように、PEEK材の射出成形体である比較例1では、引張試験においてウエルド部で破損し、引張強度は約88MPaであった。これに対して、実施例1のSMC材の圧縮成形体では、ウエルド部がないため高い引張強度を示した。
As shown in Table 1, in Comparative Example 1, which is an injection-molded body of PEEK material, the weld was damaged in the tensile test, and the tensile strength was about 88 MPa. On the other hand, the compression molded body of the SMC material of Example 1 showed high tensile strength because there was no weld.
実施例2
図4および図5に示すプレス成形金型を用い、複合材には実施例1と同じSMC材を用いた。8個のポケット成形用のスライドコアで外径金型を構成し、事前に温調した複合材を、図4(上図)のように配置し、上部金型を可動し、実施例1と同様に圧縮成形して熱硬化させた。続いて、スライドコアを図5の矢印のように、放射状に可動させた後、成形体である保持器を取り出した。 Example 2
4 and 5 was used, and the same SMC material as in Example 1 was used as the composite material. The outer diameter mold is composed of eight pocket molding slide cores, the temperature-adjusted composite material is arranged as shown in FIG. 4 (upper figure), the upper mold is movable, Similarly, it was compression molded and thermoset. Subsequently, the slide core was moved radially as indicated by the arrow in FIG. 5, and then the cage as the molded body was taken out.
図4および図5に示すプレス成形金型を用い、複合材には実施例1と同じSMC材を用いた。8個のポケット成形用のスライドコアで外径金型を構成し、事前に温調した複合材を、図4(上図)のように配置し、上部金型を可動し、実施例1と同様に圧縮成形して熱硬化させた。続いて、スライドコアを図5の矢印のように、放射状に可動させた後、成形体である保持器を取り出した。 Example 2
4 and 5 was used, and the same SMC material as in Example 1 was used as the composite material. The outer diameter mold is composed of eight pocket molding slide cores, the temperature-adjusted composite material is arranged as shown in FIG. 4 (upper figure), the upper mold is movable, Similarly, it was compression molded and thermoset. Subsequently, the slide core was moved radially as indicated by the arrow in FIG. 5, and then the cage as the molded body was taken out.
実施例1および実施例2の保持器について、保持器円環を円周方向の一部で切断し、その断面を目視により確認したところ、ボイドなどの欠陥は見られなかった。
For the cages of Example 1 and Example 2, the cage ring was cut at a part in the circumferential direction and the cross section was visually confirmed. No defects such as voids were found.
本発明の転がり軸受用保持器は、高強度・高弾率でありながら、ウエルド部のような強度が低い箇所や材料欠陥がなく、比較的安価に製造することができるので、高速回転用途に使用される転がり軸受の保持器として利用できる。特に、高速回転・高強度・高剛性・高信頼性が要求される、マシニングセンタ、CNC旋盤、フライス盤などの工作機械の主軸を支持する軸受や、人工衛星のロケットエンジンに用いられる液体燃料用ターボポンプの回転支持部用の軸受として好適に利用できる。
The cage for rolling bearings of the present invention has high strength and high elasticity, but does not have low strength and material defects such as welds, and can be manufactured at a relatively low cost. It can be used as a cage for rolling bearings. In particular, bearings that support the spindles of machine tools such as machining centers, CNC lathes, and milling machines that require high-speed rotation, high strength, high rigidity, and high reliability, and liquid fuel turbo pumps used in satellite rocket engines It can utilize suitably as a bearing for the rotation support part.
1 転がり軸受
2 内輪
3 外輪
4 転動体
5 保持器
6 ポケット
11、21 プレス成形金型
12、22 内径金型
13 外径金型
23 スライドコア
14、24 上部金型
15、25 複合材
16、26 下部金型
31 保持器(射出成形体)
32 ゲート位置
33 ウエルド位置 DESCRIPTION OFSYMBOLS 1 Rolling bearing 2 Inner ring 3 Outer ring 4 Rolling body 5 Cage 6 Pocket 11, 21 Press molding die 12, 22 Inner diameter die 13 Outer diameter die 23 Slide core 14, 24 Upper die 15, 25 Composite material 16, 26 Lower mold 31 Cage (Injection molded product)
32Gate position 33 Weld position
2 内輪
3 外輪
4 転動体
5 保持器
6 ポケット
11、21 プレス成形金型
12、22 内径金型
13 外径金型
23 スライドコア
14、24 上部金型
15、25 複合材
16、26 下部金型
31 保持器(射出成形体)
32 ゲート位置
33 ウエルド位置 DESCRIPTION OF
32
Claims (7)
- 転がり軸受における転動体を保持する円環状の転がり軸受用保持器であって、
該保持器は、母材の熱硬化性樹脂を繊維材で強化してなる複合材を円環軸方向に圧縮成形した成形体の熱硬化物であることを特徴とする転がり軸受用保持器。 An annular rolling bearing cage for holding rolling elements in a rolling bearing,
A cage for a rolling bearing, wherein the cage is a thermoset of a molded body obtained by compression-molding a composite material obtained by reinforcing a thermosetting resin as a base material with a fiber material in the annular axis direction. - 前記繊維材が炭素繊維であり、前記複合材は該炭素繊維の不織布に前記熱硬化性樹脂を含浸または被覆してなることを特徴とする請求項1記載の転がり軸受用保持器。 The rolling bearing retainer according to claim 1, wherein the fiber material is carbon fiber, and the composite material is formed by impregnating or coating the non-woven fabric of the carbon fiber with the thermosetting resin.
- 前記熱硬化性樹脂が、フェノール樹脂であることを特徴とする請求項1記載の転がり軸受用保持器。 The rolling bearing retainer according to claim 1, wherein the thermosetting resin is a phenol resin.
- 前記繊維材は、前記複合材全体に対して40体積%~60体積%含まれることを特徴とする請求項1記載の転がり軸受用保持器。 2. The cage for a rolling bearing according to claim 1, wherein the fiber material is contained in an amount of 40 volume% to 60 volume% with respect to the entire composite material.
- 転動体および該転動体を保持する保持器を有する転がり軸受であって、
前記保持器が請求項1記載の転がり軸受用保持器であることを特徴とする転がり軸受。 A rolling bearing having a rolling element and a cage for holding the rolling element,
The rolling bearing according to claim 1, wherein the cage is a rolling bearing cage. - 転がり軸受における転動体を保持する円環状の転がり軸受用保持器の製造方法であって、
母材の熱硬化性樹脂を繊維材で強化してなる複合材を円環形状にプレス成形金型内に配置する配置工程と、
常温または加熱することで前記熱硬化性樹脂を流動可能な状態にし、プレスにて、前記複合材を、前記金型で円環の内径および外径を所定形状に拘束しながら円環軸方向に加圧して圧縮する圧縮成形工程と、
前記金型内で前記複合材を加熱して前記熱硬化性樹脂を熱硬化する熱硬化工程とを備えることを特徴とする転がり軸受用保持器の製造方法。 A method of manufacturing an annular rolling bearing retainer that holds rolling elements in a rolling bearing,
An arrangement step of arranging a composite material formed by reinforcing a thermosetting resin of a base material with a fiber material in an annular shape in a press mold;
Making the thermosetting resin flowable at room temperature or by heating, press the composite material in the axial direction of the ring while constraining the inner and outer diameters of the ring to a predetermined shape with the mold. A compression molding process of compressing by pressing;
A method for manufacturing a rolling bearing cage, comprising: a thermosetting step of heating the composite material in the mold to thermoset the thermosetting resin. - 前記金型に、円環の径方向に移動可能であり、前記転動体のポケットを形成するためのスライドコアを有し、
前記圧縮成形工程において前記スライドコアのポケット形成部の周囲に前記熱可塑性樹脂を流動させ、前記熱硬化工程後に前記スライドコアを円環から引き抜くように移動させることで前記ポケットを形成することを特徴とする請求項6記載の転がり軸受用保持器の製造方法。 The mold is movable in the radial direction of the ring, and has a slide core for forming a pocket of the rolling element,
The pocket is formed by causing the thermoplastic resin to flow around the pocket forming portion of the slide core in the compression molding step and moving the slide core so as to be pulled out from the ring after the thermosetting step. A method for manufacturing a rolling bearing cage according to claim 6.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-006701 | 2014-01-17 | ||
JP2014006701A JP2015135153A (en) | 2014-01-17 | 2014-01-17 | Retainer for roller bearing, manufacturing method therefor, and roller bearing |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015108141A1 true WO2015108141A1 (en) | 2015-07-23 |
Family
ID=53543025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/051052 WO2015108141A1 (en) | 2014-01-17 | 2015-01-16 | Retainer for rolling bearing, manufacturing method thereof, and rolling bearing |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2015135153A (en) |
WO (1) | WO2015108141A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023092259A1 (en) * | 2021-11-23 | 2023-06-01 | 洛阳轴承研究所有限公司 | Porous phenolic bakelite cage material and preparation method therefor, and bearing cage |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6695547B2 (en) * | 2015-10-09 | 2020-05-20 | 北陸プレス工業株式会社 | Rolling bearing rolling element retainer and molding method |
EP4338941A4 (en) | 2021-05-14 | 2024-12-25 | NSK Ltd. | METHOD FOR MANUFACTURING COMPOSITE MATERIAL MOLDED ARTICLE, METHOD FOR MANUFACTURING RETAINING ELEMENT AND ROLLER BEARING, AND METHOD FOR MANUFACTURING GEARBOX COMPONENT |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04248021A (en) * | 1991-01-23 | 1992-09-03 | Ntn Corp | Holder for rolling bearing |
WO1999001676A1 (en) * | 1997-07-01 | 1999-01-14 | Koyo Seiko Co., Ltd. | Bearing retainer of synthetic resin, method of manufacturing the same, and roller bearing |
WO2012043612A1 (en) * | 2010-09-28 | 2012-04-05 | Ntn株式会社 | Retainer for rolling bearing, and rolling bearing |
JP2012107703A (en) * | 2010-11-17 | 2012-06-07 | Nsk Ltd | Cage for rolling bearing, method of manufacturing the same, and rolling bearing |
WO2014073383A1 (en) * | 2012-11-06 | 2014-05-15 | Ntn株式会社 | Conical roller bearing cage |
-
2014
- 2014-01-17 JP JP2014006701A patent/JP2015135153A/en active Pending
-
2015
- 2015-01-16 WO PCT/JP2015/051052 patent/WO2015108141A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04248021A (en) * | 1991-01-23 | 1992-09-03 | Ntn Corp | Holder for rolling bearing |
WO1999001676A1 (en) * | 1997-07-01 | 1999-01-14 | Koyo Seiko Co., Ltd. | Bearing retainer of synthetic resin, method of manufacturing the same, and roller bearing |
WO2012043612A1 (en) * | 2010-09-28 | 2012-04-05 | Ntn株式会社 | Retainer for rolling bearing, and rolling bearing |
JP2012107703A (en) * | 2010-11-17 | 2012-06-07 | Nsk Ltd | Cage for rolling bearing, method of manufacturing the same, and rolling bearing |
WO2014073383A1 (en) * | 2012-11-06 | 2014-05-15 | Ntn株式会社 | Conical roller bearing cage |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023092259A1 (en) * | 2021-11-23 | 2023-06-01 | 洛阳轴承研究所有限公司 | Porous phenolic bakelite cage material and preparation method therefor, and bearing cage |
Also Published As
Publication number | Publication date |
---|---|
JP2015135153A (en) | 2015-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10458471B2 (en) | Sliding member | |
EP3372855B1 (en) | Sliding member | |
JP5759239B2 (en) | Non-lubricated plain bearing with self-lubricating liner | |
KR100803055B1 (en) | Apparatus for manufacturing spherical bearing assembly and method for manufacturing same | |
JP5715504B2 (en) | Multilayer bearing manufacturing method and multilayer bearing | |
JP5595705B2 (en) | Sliding face material and multilayer sliding member provided with the sliding face material | |
WO2015108141A1 (en) | Retainer for rolling bearing, manufacturing method thereof, and rolling bearing | |
EP2623802A1 (en) | Retainer for rolling bearing, and rolling bearing | |
JP5859183B2 (en) | Sliding face material and multilayer sliding member provided with the sliding face material | |
CN100470070C (en) | Winding type self-lubricating bearing and its manufacturing method | |
JP2012132535A (en) | Cage for rolling bearing and rolling bearing | |
JP5215630B2 (en) | Sliding member | |
JP5249726B2 (en) | Fiber reinforced resin composition for sliding member and laminated sliding member | |
JP2009091447A (en) | Fiber reinforced resin composition for sliding member and laminated sliding member | |
CN104471270A (en) | Brake pad for yaw control, and brake member | |
JP2015232382A (en) | Cage for rolling bearing and rolling bearing | |
JP4928410B2 (en) | Manufacturing method of multilayer sliding member | |
JP5872761B2 (en) | Roller bearing cage and rolling bearing using the same | |
KR100938098B1 (en) | Manufacturing method of wear ring | |
CZ37694A3 (en) | Process for producing shaped body from synthetic resin | |
EP4338941A1 (en) | Method for producing composite material molded article, method for producing retainer and rolling bearing, and method for producing gearbox constituent component | |
JP6747076B2 (en) | Uniaxial actuator | |
JP5872762B2 (en) | Manufacturing method of rolling bearing | |
JP5844671B2 (en) | Filament wind molding and method for producing the same | |
JP2015110303A (en) | Flywheel and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15737419 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15737419 Country of ref document: EP Kind code of ref document: A1 |