[go: up one dir, main page]

WO2015108036A1 - Method for producing stretched film - Google Patents

Method for producing stretched film Download PDF

Info

Publication number
WO2015108036A1
WO2015108036A1 PCT/JP2015/050670 JP2015050670W WO2015108036A1 WO 2015108036 A1 WO2015108036 A1 WO 2015108036A1 JP 2015050670 W JP2015050670 W JP 2015050670W WO 2015108036 A1 WO2015108036 A1 WO 2015108036A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
stretching
thermoplastic resin
stretched
thickness
Prior art date
Application number
PCT/JP2015/050670
Other languages
French (fr)
Japanese (ja)
Inventor
弘志 稲澤
邦博 清家
山本 省吾
かおり 平郡
健一 藤澤
Original Assignee
東洋鋼鈑株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014006469A external-priority patent/JP6377355B2/en
Priority claimed from JP2014006470A external-priority patent/JP6338865B2/en
Application filed by 東洋鋼鈑株式会社 filed Critical 東洋鋼鈑株式会社
Priority to KR1020167021806A priority Critical patent/KR102181046B1/en
Priority to CN201580004804.1A priority patent/CN105916654B/en
Publication of WO2015108036A1 publication Critical patent/WO2015108036A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/16Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0011Combinations of extrusion moulding with other shaping operations combined with compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/19Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/915Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means
    • B29C48/9155Pressure rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • B29C2049/787Thickness
    • B29C2049/78715Thickness of the blown article thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets

Definitions

  • the present invention relates to a method for producing a stretched film.
  • a method of preparing a film as a material and stretching the prepared film is used.
  • the film is held in a heating furnace while holding both ends of the film with clips.
  • a simultaneous biaxial stretching method in which heating and stretching are simultaneously performed in the length direction and the width direction by clips that are conveyed and gripped at both ends of the film in a heating furnace.
  • the film is stretched by heating to the necessary stretching ratio by pulling the film in the length direction and the width direction.
  • a large stress is applied to both ends of the film, which is the part gripped by the clip, resulting in tears at both ends of the film and where the thickness of the film is thin. It may break.
  • the film for heat stretching is formed by melt extrusion of a thermoplastic resin with a molding die, so that the thickness of a part of the film is reduced during melt extrusion. Therefore, there is a problem that the thinned portion is torn when the heat stretching is performed and the entire film is broken.
  • neck-in that extends in the length direction and narrows the film width after being melt-extruded and taken up by a cooling roll or the like.
  • the phenomenon occurs.
  • Such neck-in is considered to occur as follows. That is, the thermoplastic resin melt-extruded from the molding die has a thermoplastic resin adjacent to each other at the center in the width direction of the film, so that the flow direction of the thermoplastic resin is limited, Plane extension is performed along a predetermined surface inside the thermoplastic resin, whereby shrinkage in the width direction is suppressed, and shrinkage is mainly performed in the thickness direction.
  • the thermoplastic resin melt-extruded from the forming die has no thermoplastic resin adjacent to the outer side surface at the portion that becomes both ends in the width direction of the film, so that the thermoplastic resin flows freely. Then, it extends uniaxially around a predetermined axis inside the thermoplastic resin, and thereby contracts in the width direction in addition to the thickness direction. Therefore, in the formed film, the boundary part between the width direction center part and the width direction both ends will be dented in the thickness direction by the difference in the shrinkage
  • the present invention has been made in view of such a situation, and in producing a stretched film by heating and stretching the film, it is possible to prevent the film from being broken, and to provide a stretched film excellent in productivity and quality. It aims at providing the manufacturing method of the stretched film which can be obtained.
  • the present inventors can The inventors have found that the object can be achieved and have completed the present invention.
  • thermoplastic resin melt-extruded from a molding die
  • it is cooled by a roll and solidified to form a pre-stretch film forming step, and the pre-stretch film forming step.
  • a minimum thickness of the boundary portion formed between said central portion and the both end portions and t b, the average thickness of the central portion in the case of the t c, the minimized thickness t b of the boundary There is provided a method for producing a stretched film, wherein the pre-stretch film is formed so that the ratio “t b / t c ” to the average thickness t c of the central portion is 0.75 or more. .
  • an acrylic resin is preferably used as the thermoplastic resin.
  • the thermoplastic resin a first thermoplastic resin that forms an inner region located on the inner side in the width direction of the film before stretching, and an outer region located on the outer side in the width direction of the film before stretching. It is preferable to use a second thermoplastic resin different from the first thermoplastic resin.
  • an acrylic resin is preferably used as the first thermoplastic resin.
  • thermoplastic resin having a glass transition temperature difference of 10 ° C. or less as the first thermoplastic resin and the second thermoplastic resin.
  • the maximum thickness of the end portions in the case of a t e, the ratio "t e / t c" between the maximum thickness t e of the end portions and the average thickness t c of the central portion It is preferable to form the pre-stretch film in the pre-stretch film forming step so as to be in the range of 1.0 to 2.0.
  • the pre-stretch film in the pre-stretch film forming step so that “/ t c ” is 8.0 or less.
  • the heat stretching of the pre-stretched film in the stretching step is performed by simultaneous biaxial stretching that simultaneously stretches in the length direction and the width direction of the pre-stretched film.
  • stretching in the said extending process shall be 3 times or less.
  • the heat stretching of the pre-stretched film in the stretching step is performed so that the thickness of the central portion of the stretched film after the heat stretching is in the range of 15 to 50 ⁇ m.
  • the manufacturing method of this invention performs the smoothing in the said smoothing process by removing the area
  • a stretched film production method capable of appropriately performing heat-stretching and obtaining a stretched film excellent in productivity and quality is provided. Can be provided.
  • FIG. 1 is a diagram for explaining a method of producing a pre-stretch film.
  • FIG. 2 is a view for explaining neck-in of a melt-extruded thermoplastic resin.
  • FIG. 3 is a view for explaining shrinkage of the melt-extruded thermoplastic resin.
  • FIG. 4 is a diagram illustrating an example of the thickness of the unstretched film with respect to the position in the width direction.
  • FIG. 5 is a diagram for explaining a method of stretching a pre-stretched film by a simultaneous biaxial stretching method in a stretching step.
  • FIG. 6 is a graph showing the results of measuring the thickness of the pre-stretched film and stretched film produced in Examples and Comparative Examples with respect to the width direction position.
  • FIG. 1 is a diagram for explaining a method of producing a pre-stretch film.
  • FIG. 2 is a view for explaining neck-in of a melt-extruded thermoplastic resin.
  • FIG. 3 is a view for
  • FIG. 7 is a diagram for explaining a method of producing a pre-stretch film (composite film) made of the first thermoplastic resin and the second thermoplastic resin.
  • FIG. 8 is a diagram for explaining neck-in of a thermoplastic resin melt-extruded when a composite film is manufactured.
  • FIG. 9 is a diagram for explaining an example of a thermoplastic resin that shrinks immediately after being melt-extruded when a composite film is manufactured.
  • FIG. 10 is a diagram illustrating an example of the thickness of the composite film with respect to the position in the width direction.
  • FIG. 11 is a diagram for explaining a method of stretching a composite film by a simultaneous biaxial stretching method in a stretching step.
  • FIG. 12 is a graph showing the glass transition temperature of a mixed resin obtained by blending polyethylene terephthalate (PET) with polycarbonate (PC).
  • FIG. 13 is a diagram for explaining another example of a composite film that shrinks immediately after being melt-extruded.
  • FIG. 14 is a graph showing the results of measuring the thickness of the composite films and stretched films produced in Examples and Comparative Examples with respect to the width direction position.
  • the method for producing a stretched film according to the first embodiment includes a pre-stretch film forming step of forming a pre-stretch film by melt-extruding a thermoplastic resin with a molding T-die, and the pre-stretch film in the length direction. And a stretching step of heating and stretching in the width direction.
  • the pre-stretching film forming step is a step of obtaining the pre-stretching film 100 by melt-extruding a thermoplastic resin from a T die.
  • FIG. 1 is a figure for demonstrating the film formation process before extending
  • thermoplastic resin is supplied to the T dice 220 through the feed block 210 in a state of being melted by heating.
  • the feed block 210 is connected to a melt extruder (not shown) for melt-extruding a thermoplastic resin.
  • the melt extruder is not particularly limited, and either a single screw extruder or a twin screw extruder can be used.
  • the thermoplastic resin is supplied to the feed block 210 by being melt-extruded at a temperature equal to or higher than the melting point (melting) temperature by a melt extruder.
  • the thermoplastic resin may be selected according to the intended use of the stretched film.
  • acrylic resin PMMA
  • cyclic olefin copolymer COC
  • PC polycarbonate
  • PET polyester terephthalate
  • thermoplastic resin supplied from the feed block 210 is widened in the width direction by the manifold 221 provided in the T die 220, and is thereby extruded from the die slip 222 into a sheet shape.
  • the extruded sheet-like thermoplastic resin is continuously taken up by the touch roll 230 and the cooling roll 240, and sandwiched and cooled to be solidified to obtain the unstretched film 100.
  • stretching is wound up by the film winding roll (not shown) before extending
  • FIG. 2 is a view showing a cross section of the die slip 222 of the T-die 220 and the pre-stretching film 100 formed in the present embodiment. The relationship with the width of the film 100 is shown.
  • the thermoplastic resin is melt-extruded by the width of the die slip 222 by the T-die 220, but after being melt-extruded until taken up by the cooling roll 240.
  • neck-in that shrinks in the width direction occurs, and the width of the resulting unstretched film 100 becomes smaller than the width dimension of the die slip 222.
  • thermoplastic resin melt-extruded from the T-die 220 contracts in the direction of the arrow shown in FIG. 2, that is, the direction at which the center of the unstretched film 100 is indicated by the arrow ( It is generated by contracting in the direction (thickness direction and width direction) indicated by the arrows. Then, the thermoplastic resin melt-extruded from the T-die 220 contracts by neck-in so that the cross-sectional shape becomes as shown in FIG.
  • FIG. 3 is a diagram for explaining the shrinkage of the melt-extruded thermoplastic resin.
  • the thermoplastic resin melt-extruded from the T-die 220 is, as shown in FIG. 3, the thermoplastic resin due to the presence of the adjacent thermoplastic resin in the portion that becomes the central portion 110 of the unstretched film 100.
  • the thermoplastic resin contracts in the thickness direction as indicated by the arrows due to the planar extension extending along the surface ⁇ located at or near the center in the thickness direction.
  • the thermoplastic resin melt-extruded from the T-die 220 has a thermoplastic resin adjacent to the outer side surfaces of both end portions 120 at the portions to be the both end portions 120 of the unstretched film 100 as shown in FIG.
  • thermoplastic resin does not exist, the thermoplastic resin flows relatively freely.
  • the uniaxial extension extending about the axis ⁇ passing through the center of the both ends 120 or near the center position causes the width in addition to the thickness direction as shown by the arrows. It also shrinks in the direction.
  • the boundary part 130 of the shape dented in the thickness direction is formed by the difference in the shrinkage
  • FIG. 4 is a figure which shows an example of the result of having measured the thickness with respect to the position of the width direction about the film 100 before extending
  • the boundary portion 130 of the formed pre-stretching film 100 is too thin with respect to the thickness of the central portion 110, the boundary where the thickness is thin when the pre-stretching film 100 is heat stretched in the stretching step. There is a problem that cracks are likely to occur in the portion 130 and heating and stretching cannot be performed appropriately.
  • the average thickness of the central portion 110 is set to t c for the unstretched film 100 formed by melt extrusion using a T-die 220 and drawing by a cooling roll 240.
  • the minimum thickness of the boundary 130 is t b
  • the ratio of these thicknesses “t b / t c ” is adjusted to 0.75 or more to heat the unstretched film 100 as will be described later.
  • the average thickness t c of the central portion 110 shown in FIG. 4 is an average value of the thickness of the portion where the thickness of the central portion 110 is stable.
  • the thickness is ⁇ 5 with respect to the center of the central portion 110. It can be an average value of thickness in a region within ⁇ 10%.
  • the minimum thickness t b of the boundary portion 130, of the two minimum thickness of the boundary portion 130 of the pre-stretch film 100 a more thinner thickness.
  • the stretching step is a step of heating and stretching the pre-stretching film 100 obtained by the pre-stretching film forming step in the length direction and the width direction.
  • FIG. 5 is a figure for demonstrating an extending process.
  • the unstretched film 100 is sent out from the above-described unstretched film winding roll, and the length direction and the width direction are held while the unstretched film 100 is held by the clip 310 as shown in FIG.
  • the film 100 before stretching is heated and stretched by a simultaneous biaxial stretching method in which the film is stretched simultaneously.
  • the unstretched film 100 is continuously fed out from the unstretched film winding roll, the unstretched film 100 is gripped at regular intervals using a plurality of clips, and each of the clips 310 is stretched before stretching.
  • the film 100 is transported into the stretching furnace 320, and in the stretching furnace 320, the pre-stretching film 100 is pulled in the length direction and the width direction by each clip 310 to be stretched.
  • the unstretched film 100 is transported while being held by the clip 310, so that it passes through the stretching furnace 320, and is stretched in the pre-tropical zone in the stretching furnace 320.
  • the pre-film 100 is preheated to a temperature that is about 10 to 30 ° C.
  • a stretched film can be obtained by cooling and solidifying in the cooling heat fixed zone following this. And the stretched film can be obtained continuously by opening the clip 310 and winding up with a roll.
  • a pair of guide rails for moving the clip 310 so as to pass through the drawing furnace 320 is provided.
  • the pair of guide rails are respectively installed at the position of the clip 310 that holds the upper side of the pre-stretching film 100 shown in FIG. 5 and the position of the clip 310 that holds the lower side. They are parallel, separated from each other in the width direction of the pre-stretching film 100 in the stretching band, and parallel to each other in the cooling heat fixing band.
  • the distance between the pair of guide rails in the cooling heat fixing band is determined in consideration of the shrinkage when the stretched film heated and stretched in the stretching band is solidified.
  • the width of the stretched film on the side On the basis of the width of the stretched film on the side, it may be approximated by several percent in the width direction.
  • the clip 310 that holds the unstretched film 100 moves along such a guide rail so that the unstretched film 100 can be conveyed and stretched.
  • the pre-stretching film 100 is stretched in the stretching zone in the stretching furnace 320 using the clip 310 that moves along such a guide rail. That is, in the stretching zone in the stretching furnace 320, the clip 310 that holds the unstretched film 100 is moved so as to spread in the width direction along the guide rail, and at the same time, the interval between the clips 310 is increased. Thus, the unstretched film 100 is pulled in the length direction and the width direction as indicated by arrows in FIG. Thereby, the film 100 before extending
  • stretching is heat-stretched, Then, it is cooled and solidified in the cooling heat fixing zone in the stretching furnace 320, and is wound up by a roll installed outside the stretching furnace 320.
  • a stretched film can be obtained continuously.
  • the stretch ratio with respect to the stretching direction is preferably within 3 times, more preferably within 2.5 times, and even more preferably within 2 times. .
  • the stretched film obtained by heating and stretching the pre-stretched film 100 has a thickness of the central portion 110 of preferably 15 to 50 ⁇ m, more preferably 20 to 40 ⁇ m.
  • the stretched film obtained by heating and stretching the pre-stretched film 100 may be removed by cutting the both ends 120 as necessary. Thereby, the part of the both ends 120 with especially thick thickness in a stretched film can be removed, and the thickness of the whole stretched film can be equalize
  • a stretched film is obtained by forming the unstretched film 100 made of a thermoplastic resin in the pre-stretching film forming step and heating and stretching the pre-stretched film 100 in the stretching step. be able to.
  • the pre-stretch film 100 when the pre-stretch film 100 is formed by the pre-stretch film forming step, the ratio “t b ” between the average thickness t c of the central portion 110 and the minimum thickness t b of the boundary portion 130.
  • the thickness of the unstretched film 100 is adjusted so that “/ t c ” is 0.75 or more.
  • stretching has a low extending
  • the stretching stress at the boundary portion 130 gradually increases, and when the stretching stress necessary for stretching at the central portion 110 is reached, the central portion 110 is also stretched following the boundary portion 130. Become so.
  • the boundary portion 130 breaks before the central portion 110 starts to be stretched while the boundary portion 130 is being stretched. End up.
  • the thickness of the boundary portion 130 is too small with respect to the central portion 110, the impact when releasing the unstretched film 100 from the clip 310 and the obtained stretched film after heating and stretching as shown in FIG. Cracks are also generated in the boundary portion 130 due to the stress at the time of winding on the roll.
  • the average thickness t c of the central portion 110 and the minimum of the boundary portion 130 of the unstretched film 100 formed by being melt-extruded by the T-die 220 and then pulled by the cooling roll 240 By adjusting the ratio “t b / t c ” to the thickness t b within the above range, when the film 100 before stretching is heated and stretched, the occurrence of cracks at the boundary portion 130 can be effectively prevented, The productivity of the film can be improved.
  • the ratio “t b / t c ” between the average thickness t c of the central portion 110 and the minimum thickness t b of the boundary portion 130 may be 0.75 or more as described above. , Preferably 0.8 or more, more preferably 0.9 or more.
  • the ratio “t b / t c ” between the average thickness t c of the central portion 110 and the minimum thickness t b of the boundary portion 130 is adjusted to the above range for the pre-stretch film 100 to be formed.
  • the method used for example, a method using a resin having a lower extensional viscosity as the thermoplastic resin, a method of adjusting the slit width of the die slip 222 of the T die 220, and the method of using the T die 220 and the cooling roll 240.
  • a method of reducing the distance, a method of reducing the take-up speed of the pre-stretching film 100 by the cooling roll 240, or the like can be used alone or in combination.
  • the type of applicable thermoplastic resin is not limited, and the slit width of the die slip 222 is adjusted from the viewpoint of not reducing the production efficiency of the pre-stretching film 100. It is preferable to use the method to do.
  • the ratio "t s / t c" of the average thickness t c of the slit width t s and the central portion 110 of the die lip 222 preferably It adjusts so that it may be 8.0 or less, More preferably, it is 6.0 or less, More preferably, it is 5.0 or less.
  • the thickness of the unstretched film 100 obtained by melt extrusion with the T die 220 can be made more uniform, and the ratio “t b ” between the average thickness t c of the central portion 110 and the minimum thickness t b of the boundary portion 130. / T c ”can be appropriately adjusted to the above range.
  • the pre-stretched film 100 to be formed the ratio "t b / t c" with minimum thickness t b of the average thickness t c and the boundary portion 130 of the central portion 110 as described above the
  • the maximum thickness of the both end portions 120 it is possible to more effectively prevent the pre-stretching film 100 from being broken during the heat stretching.
  • the maximum thickness of the end portions 120 when the t e, the average of the maximum thickness t e and the central portion 110 of the end portions 120 is preferably adjusted to 1.0 to 3.0, more preferably 1.0 to 2.0, and still more preferably 1.0 to 1.5.
  • the pressure concentrates on both ends 120 and the pressure is not uniformly transmitted to the entire unstretched film 100, and the thickness of the unstretched film 100 varies, and this is heated.
  • the thickness of the stretched film obtained by stretching also tends to vary.
  • both end portions 120 it is preferable to smooth the side surfaces of both end portions 120 before heating and stretching the pre-stretch film 100 formed by the pre-stretch film forming step.
  • smoothing the side surfaces of both end portions 120 of the pre-stretching film 100 when the pre-stretching film 100 is heated and stretched by pulling the both end portions 120 of the pre-stretching film 100 in the stretching step, Concentration of local stress due to roughness can be prevented, generation of tears at both ends 120 can be prevented, and productivity of the stretched film can be improved.
  • the method for smoothing the side surfaces of both end portions 120 of the unstretched film 100 is not particularly limited, but a method of trimming a predetermined width from both side surfaces of both end portions 120 with a cutter, a method for polishing the end portions of both end portions 120, For example, a method of heat-pressing the end portions of the both end portions 120 can be used.
  • the smoothing of the side surfaces of both end portions 120 reduces the unevenness of the side surfaces of both end portions 120, and when the pre-stretch film 100 is pulled in the length direction, stress is not concentrated on a part of both end portions 120. You can go to
  • any cutter can be used as long as it can smoothly smooth the side surfaces of both ends 120 by trimming.
  • You can use a rotary shear cutter that continuously rotates while rubbing the blade and lower blade and cut by shearing, or a laser cutter that uses a solid laser, semiconductor laser, liquid laser, gas laser, etc. From the viewpoint that the stress applied to the pre-stretching film 100 can be reduced and the occurrence of cracks in the pre-stretching film 100 during trimming can be prevented, a laser cutter is preferable.
  • both end portions 120 of the pre-stretched film 100 it is preferable to trim the both end portions 120 while heating. Thereby, the side surfaces of both end portions 120 can be made smoother, and breakage of the pre-stretching film 100 when the pre-stretching film 100 is heated and stretched can be more appropriately prevented.
  • a simultaneous biaxial stretching method in which the pre-stretching film 100 is heated and stretched in both the length direction and the width direction is used.
  • the heat stretching in the length direction of the pre-stretching film 100 can be performed in the same manner as the simultaneous biaxial stretching method shown in FIG. That is, the film 100 before stretching is conveyed into the stretching furnace 320 while being gripped by the clip 310, and then heated and stretched only in the length direction by the clip 310 gripping the film 100 before stretching in the stretching furnace 320. Can be used.
  • the unstretched film 100 is clipped 310 as shown in FIG.
  • stretching while gripping with it is possible to improve the productivity of the stretched film compared to the conventional sequential biaxial stretching method, and the obtained stretched film has excellent quality can do.
  • the conventional sequential biaxial stretching method is a method in which the pre-stretching film 100 produced by the method shown in FIG. 1 is first heat stretched in the length direction and then heat stretched in the width direction.
  • the film 100 before stretching is heated and stretched in the length direction by being conveyed by a plurality of rolls, and then the width of the film 100 while being held by the clip 310 as shown in FIG. Heat stretch in the direction.
  • the stretching in the length direction of the pre-stretching film 100 in the sequential biaxial stretching method is specifically performed as follows. That is, according to the sequential biaxial stretching method, the pre-stretching film 100 is preheated to the glass transition temperature of the thermoplastic resin constituting the pre-stretching film 100 while being transported by a plurality of preheated preheated rolls. The heated unstretched film 100 is continuously transported by a cooling roll while keeping heat by an infrared heater or the like. At this time, by making the conveyance speed by the cooling roll faster than the conveyance speed by the pre-tropical roll, a tension is generated between the pre-tropical roll and the cooling roll. Is stretched in the length direction to a necessary stretching ratio.
  • the sequential biaxial stretching method when the pre-stretching film 100 is stretched in the length direction, the surface of the pre-stretching film 100 comes into contact with the preheating roll and the cooling roll. Scratches may occur on the surface, and the appearance quality of the obtained stretched film may be deteriorated. Further, in the sequential biaxial stretching method, when the film 100 before stretching is heated and stretched in the length direction, since the both ends 120 of the film 100 before stretching are not fixed with clips or the like, the film 100 before stretching is heated. There exists a possibility that it may shrink
  • the film 100 before stretching is stretched in the length direction by using the simultaneous biaxial stretching method described above or the method of uniaxial stretching only in the length direction described above. (That is, by using a method of stretching in the length direction while holding the pre-stretching film 100 with the clip 310 as shown in FIG. 5), it is possible to avoid contact with the roll.
  • the stretched film obtained by heating and stretching the pre-stretched film 100 can improve the appearance quality by reducing the scratches on the surface, and is particularly suitable for use in optical films and the like that have strict requirements on the appearance quality. it can.
  • stretching is hold
  • fever is carried out. This can be prevented and the productivity of the stretched film can be improved.
  • thermoplastic resin PA and the second thermoplastic resin PC different from the first thermoplastic resin are melt-coextruded by a molding T die.
  • stretching to a length direction and the width direction are provided.
  • the pre-stretching film forming step is a step of forming the pre-stretching film 100 by melt coextruding the first thermoplastic resin PA and the second thermoplastic resin PC from a T die.
  • FIG. 7 is a figure for demonstrating the film formation process before extending
  • the pre-stretch film 100 the first thermoplastic resin PA that forms an inner region located on the inner side in the width direction of the pre-stretch film 100, and the width of the pre-stretch film 100 A film made of the second thermoplastic resin PC forming the outer region located on the outer side in the direction is obtained.
  • the inner region formed by the first thermoplastic resin PA coincides with the central portion 110 of the first embodiment described above, and the outer region formed by the second thermoplastic resin PC is the above-mentioned.
  • region may be inconsistent with the center part 110 and the both ends 120, respectively.
  • the inner region made of the first thermoplastic resin PA has a shape covering a part of the outer region made of the second thermoplastic resin PC, and the inner region and the outer region are It may be inconsistent with the center part 110 and the both end parts 120, respectively.
  • both end portions 120 of the unstretched film 100 are for reinforcing the central portion 110 when the unstretched film 100 is heated and stretched, and are cut as necessary after the unstretched film 100 is stretched by heating. Can be removed.
  • thermoplastic resin PA and the second thermoplastic resin PC are supplied to the T dice 220 through the feed block 210 in a state of being heated and melted.
  • the feed block 210 includes a first melt extruder (not shown) for melt-extruding the first thermoplastic resin PA and a melt-extrusion for the second thermoplastic resin PC.
  • Second melt extruders are connected to each other. These melt extruders are not particularly limited, and any of a single screw extruder and a twin screw extruder can be used.
  • the first thermoplastic resin PA and the second thermoplastic resin PC are melt-extruded at a temperature equal to or higher than the melting point (melting) temperature by the respective melt extruders, thereby providing a feed block. 210 is supplied.
  • the unstretched film 100 obtained by the T dice 220 is as shown in FIG.
  • the first thermoplastic resin PA and the second thermoplastic resin PA and the second thermoplastic resin PA are formed such that both end portions 120 made of the second thermoplastic resin PC are formed at both ends of the central portion 110 made of the first thermoplastic resin PA.
  • the thermoplastic resin PC is supplied.
  • the feed block 210 has an inlet for supplying the first thermoplastic resin PA and an inlet for supplying the first thermoplastic resin PA in the widening direction of the T die 220. On both sides, an inlet for supplying the second thermoplastic resin PC is separately provided.
  • the first thermoplastic resin PA and the second thermoplastic resin PC respectively introduced from the inlet of the feed block 210 are merged in the feed block 210, and at the outlet of the feed block 210, T
  • the first thermoplastic resin PA flows in the central portion
  • the second thermoplastic resin PC flows out in a manner such that the second thermoplastic resin PC flows in both end portions of the first thermoplastic resin PA. This is supplied to the T dice 220.
  • the first thermoplastic resin PA and the second thermoplastic resin PC supplied from the feed block 210 are fed in the width direction (first thermal resin) by the manifold 221 provided in the T die 220. In the direction in which the plastic resin PA and the second thermoplastic resin PC are lined up), and thereby co-extruded from the die slip 222 into a sheet shape.
  • the co-extruded sheet-like first thermoplastic resin PA and second thermoplastic resin PC are continuously taken up by the touch roll 230 and the cooling roll 240 as shown in FIG. And by solidifying the pre-stretched film 100 provided with a central portion 110 made of the first thermoplastic resin PA and both end portions 120 formed at both ends of the central portion 110 and made of the second thermoplastic resin PC. Make it.
  • stretching is wound up by the film winding roll (not shown) before extending
  • stretching which consists of 1st thermoplastic resin PA and 2nd thermoplastic resin PC which are obtained in this way the film 100 before extending
  • neck-in that shrinks in the width direction occurs after being melt-extruded from the die slip 222 of the T die 220 and taken up by the cooling roll 240.
  • FIG. 8 is a diagram showing a cross section of the die slip 222 of the T-die 220 and the pre-stretching film 100 formed in the present embodiment, and the dimensions in the width direction of the die slip 222 and the pre-stretching formed. The relationship with the width of the film 100 is shown.
  • the pre-stretch film 100 when the pre-stretch film 100 is formed, the first thermoplastic resin PA and the second thermoplastic resin PC are melt-extruded by the T die 220 with the width of the die slip 222.
  • Neck-in that shrinks in the width direction occurs as indicated by the arrow shown in FIG. 8 after being melt extruded and taken up by the cooling roll 240, and the width of the film 100 before stretching is the width of the die slip 222. Smaller than the direction dimension.
  • Such a neck-in is a portion where the thermoplastic resin melt-extruded from the T-die 220 contracts in the direction of the arrow shown in FIG.
  • the inner region in the width direction of the front film 100 is shrunk in the thickness direction as indicated by the arrows, and the portions (that is, the outer regions in the width direction of the pre-stretching film 100) that are both ends 120 of the pre-stretching film 100 are indicated by the arrows
  • it is generated by shrinking in the thickness direction and width direction.
  • the first thermoplastic resin PA and the second thermoplastic resin PC melt-extruded from the T die 220 are contracted by neck-in, so that the cross-sectional shape becomes as shown in FIG.
  • FIG. 9 is a diagram for explaining the shrinkage of the melt-extruded first thermoplastic resin PA and second thermoplastic resin PC.
  • the first thermoplastic resin PA and the second thermoplastic resin PC melt-extruded from the T-die 220 are portions that become the central portion 110 of the pre-stretch film 100 (see FIG. 9).
  • the flow direction of the thermoplastic resin is limited by the presence of the adjacent thermoplastic resin, so that the thermoplastic resin is aligned along the plane ⁇ located at or near the center of the thickness direction. Due to the planar expansion, the film contracts in the thickness direction as indicated by the arrow.
  • thermoplastic resin melt-extruded from the T-die 220 is formed on the outer side surfaces of both end portions 120 as shown in FIG. Since the adjacent thermoplastic resin does not exist, the thermoplastic resin flows relatively freely, and as a result, the uniaxial extension extending about the axis ⁇ passing through the center of the both ends 120 or near the center position is indicated by an arrow. As well as shrinking in the width direction in addition to the thickness direction. Thereby, between the center part 110 and the both ends 120, that is, between the inner region and the outer region in the width direction, a boundary portion 130 having a shape recessed in the thickness direction is formed due to the difference in the shrinking form of the thermoplastic resin. It is formed.
  • FIG. 10 is a figure which shows an example of the result of having measured the thickness with respect to the position of the width direction about the film 100 before extending
  • the boundary portion 130 of the formed pre-stretching film 100 is too thin with respect to the thickness of the central portion 110, the boundary where the thickness is thin when the pre-stretching film 100 is heat stretched in the stretching step. There is a problem that cracks are likely to occur in the portion 130 and heating and stretching cannot be performed appropriately.
  • the average thickness of the central portion 110 is t c for the unstretched film 100 formed by being melt-extruded by the T-die 220 and taken by the cooling roll 240.
  • the minimum thickness of the boundary 130 is t b
  • the ratio of these thicknesses “t b / t c ” is adjusted to 0.75 or more to heat the unstretched film 100 as will be described later.
  • the average thickness t c of the central portion 110 shown in FIG. 10 is the average value of the thickness of the portion where the thickness of the central portion 110 is stable.
  • the thickness is ⁇ 5 based on the center of the central portion 110. It can be an average value of thickness in a region within ⁇ 10%.
  • the minimum thickness t b of the boundary portion 130, of the two minimum thickness of the boundary portion 130 of the pre-stretch film 100 a more thinner thickness.
  • the stretching step is a step of heating and stretching the pre-stretching film 100 obtained by the pre-stretching film forming step in the length direction and the width direction.
  • FIG. 11 is a figure for demonstrating an extending process.
  • the unstretched film winding roll 100 is fed out from the unstretched film take-up roll described above, and the length of the stretched film 100 is gripped by the clips 310 as shown in FIG.
  • the film 100 before stretching is heated and stretched by a simultaneous biaxial stretching method in which the film and the width direction are simultaneously stretched.
  • the unstretched film 100 is continuously fed out from the unstretched film winding roll, and the two ends 120 of the unstretched film 100 are gripped at regular intervals using a plurality of clips.
  • the unstretched film 100 is conveyed into the stretching furnace 320 by 310, and in the stretching furnace 320, the unstretched film 100 is pulled in the length direction and the width direction by the respective clips 310.
  • the unstretched film 100 is transported while being held by the clip 310, so that it passes through the stretching furnace 320, and is stretched in the pre-tropical zone in the stretching furnace 320.
  • the pre-film 100 is preheated to a temperature about 10 to 30 ° C.
  • a stretched film can be obtained by cooling and solidifying in the cooling heat fixed zone following this. And the stretched film can be obtained continuously by opening the clip 310 and winding up with a roll.
  • a pair of guide rails for moving the clip 310 so as to pass through the drawing furnace 320 is provided.
  • the pair of guide rails are respectively installed at the position of the clip 310 that holds the upper ends 120 of the pre-stretch film 100 shown in FIG. 11 and the position of the clip 310 that holds the lower ends 120.
  • they are parallel to each other, in the stretching zone, they are separated from each other in the width direction of the pre-stretching film 100, and in the cooling heat fixing zone, they are also parallel to each other.
  • the distance between the pair of guide rails in the cooling heat fixing band is determined in consideration of the shrinkage when the stretched film heated and stretched in the stretching band is solidified. On the basis of the width of the stretched film on the side, it may be approximated by several percent in the width direction.
  • the clip 310 that holds the both end portions 120 of the unstretched film 100 moves along such guide rails so that the unstretched film 100 can be conveyed and stretched.
  • the pre-stretching film 100 is stretched in the stretching zone in the stretching furnace 320 using the clip 310 that moves along such a guide rail. That is, in the stretching zone in the stretching furnace 320, the clip 310 holding the both ends 120 of the unstretched film 100 is moved so as to spread in the width direction along the guide rail, and the interval between the clips 310 is also increased.
  • both end portions 120 of the unstretched film 100 are pulled in the length direction and the width direction as indicated by arrows in FIG. Thereby, the center part 110 and the both ends 120 of the film 100 before extending
  • the thickness of the central portion 110 of the unstretched film 100 after heat stretching is preferably 15 to 50 ⁇ m, more preferably 20 to 40 ⁇ m.
  • the stretched film obtained by heating and stretching the pre-stretched film 100 may be removed by cutting both ends 120 as necessary. Thereby, a stretched film can be made into the film which consists only of the center part 110.
  • FIG. 1 the stretched film obtained by heating and stretching the pre-stretched film 100 may be removed by cutting both ends 120 as necessary.
  • the pre-stretching film forming step before stretching, includes the central portion 110 made of the first thermoplastic resin PA and the both end portions 120 made of the second thermoplastic resin PC.
  • a stretched film can be obtained by forming the film 100 and heating and stretching the central portion 110 and both end portions 120 of the unstretched film 100 by a stretching step.
  • the pre-stretch film 100 when the pre-stretch film 100 is formed by the pre-stretch film forming step, the ratio “t b ” between the average thickness t c of the central portion 110 and the minimum thickness t b of the boundary portion 130.
  • the thickness of the unstretched film 100 is adjusted so that “/ t c ” is 0.75 or more.
  • stretching has a low extending
  • the stretching stress at the boundary portion 130 gradually increases, and when the stretching stress necessary for stretching at the central portion 110 is reached, the central portion 110 is also stretched following the boundary portion 130. Become so.
  • the boundary portion 130 breaks before the central portion 110 starts to be stretched while the boundary portion 130 is being stretched. End up.
  • the thickness of the boundary portion 130 is too thin with respect to the central portion 110, after the heat stretching as shown in FIG. 11, the impact when releasing the unstretched film 100 from the clip 310, and the obtained stretched film Cracks are also generated in the boundary portion 130 due to the stress at the time of winding on the roll.
  • the central portion 110 and the both end portions 120 are formed of the same thermoplastic resin (that is, In the same way, when the film 100 before stretching shown in FIG. 9 is a single-layer film made of one kind of resin, when being melt-extruded from the T-die 220, the central portion 110 (inner region in the width direction) ) And the end portion 120 (outer region in the width direction), the boundary portion becomes thin due to the difference in the contraction form of the thermoplastic resin.
  • the average thickness t c of the central portion 110 and the boundary portion 130 By adjusting the ratio “t b / t c ” to the minimum thickness t b within the above range, it is possible to effectively prevent the occurrence of cracks at the boundary 130 when the film 100 before stretching is heated and stretched, Productivity of the stretched film can be improved.
  • the film 100 before being stretched may be imprinted, or that a deposit may be mixed in the product roll of the stretched film and deteriorate the quality of the stretched film. Further, when such a deposit of rubber elastic particles is formed, when the film 100 before stretching is heated and stretched using the clip 310 as shown in FIG. There is also a risk that the deposit will enter the film, and the pre-stretched film 100 may be easily broken.
  • the ratio “t b / t c ” between the average thickness t c of the central portion 110 and the minimum thickness t b of the boundary portion 130 may be 0.75 or more as described above. , Preferably 0.8 or more, more preferably 0.9 or more.
  • the ratio “t b / t c ” between the average thickness t c of the central portion 110 and the minimum thickness t b of the boundary portion 130 is adjusted to the above range for the pre-stretch film 100 to be formed.
  • the method used for example, a method using a resin having a lower extensional viscosity as the thermoplastic resin, a method of adjusting the slit width of the die slip 222 of the T die 220, and the method of using the T die 220 and the cooling roll 240.
  • a method of reducing the distance, a method of reducing the take-up speed of the pre-stretching film 100 by the cooling roll 240, or the like can be used alone or in combination.
  • the type of applicable thermoplastic resin is not limited, and the slit width of the die slip 222 is adjusted from the viewpoint of not reducing the production efficiency of the pre-stretching film 100. It is preferable to use the method to do.
  • the ratio "t s / t c" of the average thickness t c of the slit width t s and the central portion 110 of the die lip 222 preferably It adjusts so that it may be 8.0 or less, More preferably, it is 6.0 or less, More preferably, it is 5.0 or less.
  • the thickness of the unstretched film 100 obtained by melt extrusion with the T die 220 can be made more uniform, and the ratio “t b ” between the average thickness t c of the central portion 110 and the minimum thickness t b of the boundary portion 130. / T c ”can be appropriately adjusted to the above range.
  • the pre-stretched film 100 to be formed the ratio "t b / t c" with minimum thickness t b of the average thickness t c and the boundary portion 130 of the central portion 110 as described above the
  • the maximum thickness of the both end portions 120 it is possible to more effectively prevent the pre-stretching film 100 from being broken during the heat stretching.
  • the maximum thickness of the end portions 120 when the t e, the average of the maximum thickness t e and the central portion 110 of the end portions 120 is preferably adjusted to 1.0 to 3.0, more preferably 1.0 to 2.0, and still more preferably 1.0 to 1.5.
  • the maximum thickness t e of the end portions 120 is too thick, the unstretched film 100 obtained by melt co-extrusion by a T die 220, the touch roll 230 and the cooling When pinching with the roll 240, the both end portions 120 are too thick, so that the pressure is concentrated on the both end portions 120 and the pressure is not uniformly transmitted to the whole unstretched film 100, and thereby the thickness of the unstretched film 100 varies.
  • the thickness of the stretched film obtained by heating and stretching the pre-stretching film 100 also tends to vary.
  • the first thermoplastic resin PA for forming the central portion 110 may be selected according to the intended use of a stretched film, such as an acrylic resin (PMMA). , Cyclic olefin copolymer (COC) and the like can be used.
  • PMMA acrylic resin
  • COC Cyclic olefin copolymer
  • the second thermoplastic resin PC for forming the end portions 120 for example, the glass transition temperature Tg 1 of the first thermoplastic resin PA, glass transition temperature Tg 2 of the second thermoplastic resin PC It is preferable to use a thermoplastic resin having a difference (
  • a thermoplastic resin having a difference (
  • the difference in glass transition temperature between the first thermoplastic resin PA and the second thermoplastic resin PC (
  • the second thermoplastic resin PC specifically, the following thermoplastic resin can be used based on the viewpoint described above.
  • the second thermoplastic resin PC when an acrylic resin is used for the first thermoplastic resin PA, one kind of polyethylene naphthalate (PEN), cyclic olefin polymer (COP), etc. is used alone.
  • PEN polyethylene naphthalate
  • COP cyclic olefin polymer
  • a mixed resin in which two or more kinds are mixed can be used.
  • thermoplastic resin PC a resin obtained by adding a small amount of rubber elastic particles to the above-described first thermoplastic resin PA within a range not inhibiting the productivity of the stretched film may be used.
  • the second thermoplastic resin PC has a glass transition temperature higher than that of the first thermoplastic resin PA, and the difference between the thermoplastic resin (heat-resistant thermoplastic resin) exceeding 10 ° C.
  • a mixed resin formed by blending a thermoplastic resin (low temperature meltable thermoplastic resin) having a glass transition temperature lower than that of the first thermoplastic resin PA can be used.
  • the glass transition temperature of the obtained mixed resin is adjusted with the first thermoplastic resin PA by adjusting the blending ratio of the heat-resistant thermoplastic resin and the low-melting thermoplastic resin.
  • ) is preferably adjusted to be in the above range.
  • thermoplastic resin PA a polycarbonate having a high glass transition temperature of about 150 ° C. is used as the second thermoplastic resin PC.
  • PC polycarbonate having a high glass transition temperature of about 150 ° C.
  • PET polyethylene terephthalate
  • thermoplastic resin PC polycarbonate (PC), cyclic olefin polymer (COP), or the like can be used as the heat-resistant thermoplastic resin.
  • polyester such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), acrylonitrile / butadiene / styrene (ABS), polyethylene (PE), glass from the first thermoplastic resin.
  • An acrylic resin, polyester (PEs), polybutylene terephthalate (PBT), or the like having a low transition temperature can be used.
  • polycarbonate PC
  • polyethylene terephthalate polyethylene terephthalate (low-melting thermoplastic resin)
  • PET polyethylene terephthalate
  • FIG. 12 is a graph showing the results of measuring the glass transition temperature of a mixed resin obtained by blending polyethylene terephthalate (PET) with polycarbonate (PC).
  • PET polyethylene terephthalate
  • PC polycarbonate
  • DSC differential scanning calorimetry
  • the mixed resin in which polycarbonate (PC) is blended with polyethylene terephthalate (PET) can change the glass transition temperature according to the content ratio of polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the glass transition temperature Tg 2 of the second thermoplastic resin PC can be easily adjusted.
  • ) between the glass transition temperature Tg 1 and the other thermoplastic resin PA can be controlled within the above range.
  • both end portions 120 it is preferable to smooth the side surfaces of both end portions 120 before heating and stretching the pre-stretch film 100 formed by the pre-stretch film forming step.
  • smoothing the side surfaces of both end portions 120 of the pre-stretching film 100 when the pre-stretching film 100 is heated and stretched by pulling the both end portions 120 of the pre-stretching film 100 in the stretching step, Concentration of local stress due to roughness can be prevented, generation of tears at both ends 120 can be prevented, and productivity of the stretched film can be improved.
  • the method for smoothing the side surfaces of both end portions 120 of the unstretched film 100 is not particularly limited, but a method of trimming a predetermined width from both side surfaces of both end portions 120 with a cutter, a method for polishing the end portions of both end portions 120, For example, a method of heat-pressing the end portions of the both end portions 120 can be used.
  • the smoothing of the side surfaces of both end portions 120 reduces the unevenness of the side surfaces of both end portions 120, and when the pre-stretch film 100 is pulled in the length direction, stress is not concentrated on a part of both end portions 120.
  • any cutter can be used as long as it can smoothly smooth the side surfaces of both ends 120 by trimming.
  • You can use a rotary shear cutter that continuously rotates while rubbing the blade and lower blade and cut by shearing, or a laser cutter that uses a solid laser, semiconductor laser, liquid laser, gas laser, etc.
  • a laser cutter is preferable from the viewpoint that the stress applied to the unstretched film 100 can be reduced and the occurrence of cracks in the unstretched film 100 during trimming can be prevented.
  • both end portions 120 of the pre-stretched film 100 it is preferable to trim the both end portions 120 while heating. Thereby, the side surfaces of both end portions 120 can be made smoother, and breakage of the pre-stretching film 100 when the pre-stretching film 100 is heated and stretched can be more appropriately prevented.
  • a simultaneous biaxial stretching method in which the film 100 before stretching is heated and stretched in both the length direction and the width direction is used.
  • the heat stretching in the length direction of the pre-stretching film 100 can be performed in the same manner as the simultaneous biaxial stretching method shown in FIG.
  • the clips 310 are conveyed into the stretching furnace 320 while holding the both ends 120 of the unstretched film 100 with the clips 310, and then each clip 310 holding the both ends 120 of the unstretched film 100 in the stretching furnace 320.
  • a method of performing heat stretching only in the length direction can be used by widening the interval between the clips 310 without moving the clip in the width direction.
  • both end portions of the unstretched film 100 as shown in FIG. 11 in both the case where simultaneous biaxial stretching is performed in the length direction and the width direction, and the case where uniaxial stretching is performed only in the length direction.
  • stretching 120 while holding it with the clip 310 the productivity of the stretched film can be improved as compared with the conventionally used sequential biaxial stretching method, and the resulting stretched film can be improved in quality. It can be excellent.
  • the conventional sequential biaxial stretching method is a method in which the pre-stretched film 100 produced by the method shown in FIG. 7 is first stretched by heating in the length direction and then stretched in the width direction.
  • the film 100 before stretching is heated and stretched in the length direction by being conveyed by a plurality of rolls, and thereafter, both ends 120 of the film 100 before stretching are clipped by clips 310 as shown in FIG. Heat and stretch in the width direction while gripping.
  • the stretching in the length direction of the pre-stretching film 100 in the sequential biaxial stretching method is specifically performed as follows. That is, according to the sequential biaxial stretching method, the pre-stretched film 100 is preheated to about the glass transition temperature of both end portions 120 while being transported by a plurality of preheated rolls that have been preheated. While being further heated to a temperature about 10 to 30 ° C. higher than the glass transition temperature of the both ends 120 by an infrared heater or the like, it is continuously conveyed by a cooling roll. At this time, by making the conveyance speed by the cooling roll faster than the conveyance speed by the pre-tropical roll, a tension is generated between the pre-tropical roll and the cooling roll. Is stretched in the length direction to a necessary stretching ratio.
  • the sequential biaxial stretching method when the pre-stretching film 100 is stretched in the length direction, the surface of the pre-stretching film 100 comes into contact with the preheating roll and the cooling roll. Scratches may occur on the surface, and the appearance quality of the obtained stretched film may be deteriorated. Further, in the sequential biaxial stretching method, when the film 100 before stretching is heated and stretched in the length direction, since the both ends 120 of the film 100 before stretching are not fixed with clips or the like, the film 100 before stretching is heated. There exists a possibility that it may shrink
  • the film 100 before stretching is stretched in the length direction by using the simultaneous biaxial stretching method described above or the method of uniaxial stretching only in the length direction described above. (That is, by using a method of stretching in the length direction while holding both ends 120 of the unstretched film 100 with the clip 310 as shown in FIG. 11) to avoid contact with the roll. Therefore, scratches on the surface of the pre-stretching film 100 after heat stretching can be reduced.
  • the appearance quality can be improved, and in particular, it is preferably used for an optical film or the like that has a severe requirement for the appearance quality. Can do.
  • the both ends 120 of the film 100 before stretching are gripped by the clips 310. Shrinkage in the direction can be prevented, and the productivity of the stretched film can be improved.
  • the unstretched film 100 includes a central portion 110 made of the first thermoplastic resin PA and both end portions 120 made of the second thermoplastic resin PC.
  • the first thermoplastic resin PA and the second thermoplastic resin PC are within a range that does not hinder the production of the stretched film. It may be mixed.
  • the viscosity of the second thermoplastic resin PC that forms the outer region of the unstretched film 100 is equal to the viscosity of the first thermoplastic resin PA that forms the inner region of the unstretched film 100.
  • the center portion 110 may have a shape that covers a part of both end portions 120 as shown in FIG. 13.
  • the boundary portion 130 of the unstretched film 100 is formed at a position shifted from the boundary between the central portion 110 and both end portions 120.
  • the boundary portion 130 of the unstretched film 100 is recessed in the thickness direction due to the difference in shrinkage between the inner region and the outer region in the width direction of the thermoplastic resin melt-extruded from the T die 220. It is formed by the end. Therefore, as shown in FIG. 13, the pre-stretch film 100 in which the first thermoplastic resin and the second thermoplastic resin are mixed is formed by the difference in contraction form depending on the position in the width direction of the pre-stretch film 100.
  • the boundary portion 130 to be formed is formed at a position deviated from the boundary between the first thermoplastic resin PA and the second thermoplastic resin PC.
  • the second thermoplastic resin PC when performing melt coextrusion with the T-die 220, when the viscosity of the second thermoplastic resin PC is higher than the viscosity of the first thermoplastic resin PA, in the obtained pre-stretch film 100, Contrary to the unstretched film 100 shown in FIG. 13, the second thermoplastic resin PC having a higher viscosity flows on the surface of the central portion 110 and covers a part of the first thermoplastic resin PA. Become.
  • Example 1 An acrylic resin (glass transition temperature Tg 1 : 123 ° C., elongation at break at room temperature: 5%) was prepared as a thermoplastic resin for forming the pre-stretch film 100.
  • the glass transition temperature was measured by differential scanning calorimetry (DSC), and the elongation at break was measured by a tensile tester (manufactured by Orientec Co., Ltd., model number: RTC-1210A). The same applies to Example 2 and Comparative Example 1 below.
  • a pre-stretch film 100 was produced under the following conditions.
  • the produced unstretched film 100 had an overall width of about 310 mm.
  • the average thickness t c of the central portion 110 is 160 .mu.m
  • the minimum thickness t b of the boundary portion 130 is 128 .mu.m
  • the maximum thickness t e of the both end portions 120 in 290 ⁇ m
  • the thickness ratio “t b / t c ” was 0.8
  • “t e / t c ” was 1.81
  • “t s / t c ” was 5.0.
  • the results are shown in FIG.
  • the thickness corresponding to the position in the width direction of the unstretched film 100 is shown.
  • stretching was formed in the position of each about 40 mm from the edge part of the width direction of the film 100 before extending
  • T-die 220 outlet width direction dimension 380mm Slit width t s of die slip 222: 0.8 mm Distance between T dice 220 and cooling roll 240: 60 mm Take-up speed of cooling roll 240: 5 mpm
  • the obtained unstretched film 100 is gripped by a clip 310 and, as shown in FIG. 5, is stretched by heating in the length direction and the width direction under the following conditions by a simultaneous biaxial stretching method, and then by a roll.
  • a stretched film was obtained by winding.
  • the film 100 before stretching did not break while the film 100 before stretching was heated and stretched.
  • the thickness of the stretched film obtained was measured, the thickness of the portion corresponding to the boundary portion 130 was comparatively thick at 30 ⁇ m or more, and the product effective width (region having a thickness of 40 ⁇ m or more at the central portion 110) was 390 mm.
  • a stretched film secured relatively widely could be obtained. The results are shown in FIG.
  • Stretcher entrance speed 1 mpm Outlet speed of stretching machine: 2 mpm
  • Stretch ratio 100% in length direction x 100% in width direction (twice in length direction x double in width direction)
  • Clip 310 gripping position position 15 mm from the end of the film 100 before stretching Pretropical temperature, distance: 140 ° C., 350 mm Stretch zone temperature, distance: 140 ° C., 500 mm Cooling heat fixing temperature, distance: 90 ° C, 700mm
  • Example 2 In making the pre-stretch film 100, except that was enlarged slit width t s of die lip 222 to 1.2mm, with the pre-stretch film 100 and a stretched film in the same manner as in Example 1, measuring the thickness did. The result of having measured thickness about the film 100 before extending
  • the produced unstretched film 100 has an average thickness t c of the central portion 110 of 160 ⁇ m and a minimum thickness t b of the boundary portion 130 of 120 ⁇ m, and the ratio of these thicknesses “t b / t c ”. but 0.75, "t s / t c" was 7.5.
  • stretching before heat drawing becomes thin, and, as a result, the stretched film after heat drawing is shown in FIG. As shown, the product effective width (region having a thickness of 40 ⁇ m or more in the central portion 110) was reduced.
  • Example 2 As in Example 1, while the film 100 before stretching was heated and stretched, the film 100 before stretching did not break, and a stretched film excellent in quality was continuously produced. We were able to.
  • the produced unstretched film 100 has an average thickness t c of the central portion 110 of 158 ⁇ m and a minimum thickness t b of the boundary portion 110 of 110 ⁇ m, and the ratio of these thicknesses “t b / t c ”. was 0.70.
  • Comparative Example 1 in the prepared film 100 before stretching, the minimum thickness t b of the boundary portion 130 was too thin with respect to the average thickness t c of the central portion 110. Cracks occurred in the boundary portion 130 of the front film 100, the breakage of the pre-stretch film 100 occurred frequently, and the productivity of the stretched film was reduced.
  • the frequency of pre-stretching film 100 at the time of heat stretching is reduced by changing the temperature of the pre-tropical zone and the stretch zone during heat stretching from 140 ° C. to 150 ° C.
  • the obtained stretched film had a very small minimum thickness of about 8 ⁇ m in the portion corresponding to the boundary portion 130, the stress at the time of releasing the clip 310 from the stretched film after heat stretching. In addition, due to the stress when winding the obtained stretched film on a roll, a crack was generated in a portion corresponding to the boundary portion 130, and the stretched film was broken.
  • the ratio “t b / t c ” of the minimum thickness t b of the boundary portion 130 to the average thickness t c of the central portion 110 is 0.75 or more for the pre-stretch film 100 before performing the heat stretching.
  • the pre-stretched film 100 when the pre-stretched film 100 was heated and stretched, it was possible to suppress breakage of the pre-stretched film 100, so that it was possible to obtain a stretched film excellent in quality, and production of a stretched film It was possible to improve the performance.
  • the ratio “t b / t c ” of the minimum thickness t b of the boundary portion 130 to the average thickness t c of the central portion 110 is 0.75 for the unstretched film 100 before heat stretching.
  • Comparative Example 1 which was less than the above, during the heat stretching of the pre-stretched film 100, the pre-stretched film 100 was frequently broken, resulting in poor stretched film productivity.
  • Example 3 An acrylic resin (glass transition temperature Tg 1 : 123 ° C., elongation at break at room temperature: 5%) is prepared as the first thermoplastic resin PA for forming the central portion 110 of the film 100 before stretching, and the film before stretching As a second thermoplastic resin PC for forming both end portions 120 of 100, an acrylic resin (glass transition temperature Tg 2 : 125 ° C., elongation at break at room temperature: 7%) added with a small amount of rubber elastic particles is prepared. did.
  • the glass transition temperature is measured by differential scanning calorimetry (DSC), and the elongation at break at room temperature is measured by a tensile tester (Orientec Co., Ltd.). Manufactured, model number: RTC-1210A). The same applies to Example 4 and Comparative Example 2 below.
  • the prepared first thermoplastic resin PA and second thermoplastic resin PC are respectively supplied to the feed block 210 by a twin-screw extruder, and by the method shown in FIG. Was made.
  • the produced unstretched film 100 had an overall width of about 315 mm.
  • the average thickness t c of the central portion 110 is 160 .mu.m
  • the minimum thickness t b of the boundary portion 130 133Myuemu maximum thickness t e of the both end portions 120 in 270 ⁇ m
  • the thickness ratio “t b / t c ” was 0.83
  • “t e / t c ” was 1.69
  • “t s / t c ” was 5.0.
  • FIG. 14A, FIG. 14B and FIG. 14C described later the thickness corresponding to the position in the width direction of the unstretched film 100 is shown. As shown in FIG.
  • the boundary portion 130 of the unstretched film 100 was formed at a position of about 50 mm from the end portion in the width direction of the composite film 100.
  • an acrylic resin to which rubber elastic particles were added was used as the second thermoplastic resin PC.
  • the film 100 before stretching was melt-coextruded. It was possible to suppress the precipitation of rubber elastic particles during the process.
  • T-die 220 outlet width direction dimension 380mm Slit width t s of die slip 222: 0.8 mm Distance between T dice 220 and cooling roll 240: 60 mm
  • the obtained unstretched film 100 is gripped at both ends 120 by clips 310 and heated and stretched in the length direction and the width direction under the following conditions by the simultaneous biaxial stretching method as shown in FIG. Then, a stretched film was continuously obtained by winding with a roll.
  • the film 100 before stretching did not break while the film 100 before stretching was heated and stretched.
  • the thickness of the obtained stretched film was measured, the thickness of the portion corresponding to the boundary portion 130 was relatively thick as 30 ⁇ m or more, and the product effective width (region having a thickness of 40 ⁇ m or more in the central portion 110) was 450 mm. A stretched film secured relatively widely could be obtained. The results are shown in FIG.
  • Example 4 In making the pre-stretch film 100, except that was enlarged slit width t s of die lip 222 to 1.2mm, with the pre-stretch film 100 and a stretched film in the same manner as in Example 3, measuring the thickness did. The result of having measured thickness about the film 100 before extending
  • Example 4 the produced unstretched film 100 has an average thickness t c of the central portion 110 of 147 ⁇ m and a minimum thickness t b of the boundary portion 110 of 110 ⁇ m, and the ratio of these thicknesses “t b / t c ”. was 0.75.
  • Example 4 although compared with Example 3 mentioned above, as shown in FIG.14 (B), although the boundary part 130 of the film 100 before extending
  • thermoplastic resin PC for forming both end portions 120 of the unstretched film 100
  • an acrylic resin glass transition temperature Tg 2 : 125 ° C., elongation at break at room temperature: increased amount of rubber elastic particles added: Except for using 28%)
  • a film 100 before stretching and a stretched film were obtained in the same manner as in Example 3, and the thickness was measured.
  • stretching and a stretched film is shown in FIG.14 (C).
  • the produced unstretched film 100 has an average thickness t c of the central portion 110 of 155 ⁇ m and a minimum thickness t b of the boundary portion of 102 ⁇ m, and the ratio of these thicknesses “t b / t c ”. was 0.66.
  • the ratio “t b / t c ” of the minimum thickness t b of the boundary portion 130 to the average thickness t c of the central portion 110 was set to 0.75 or more.
  • Example 3 when the pre-stretched film 100 was heated and stretched, the pre-stretched film 100 could be prevented from being broken, so that a stretched film excellent in quality could be obtained. I was able to improve.
  • Example 3 with respect to the average thickness t c of the central portion 110, since the ratio "t s / t c" of the slit width t s of die lip 222 and 8.0 or less, as shown in FIG. 14 (A) Furthermore, the obtained stretched film had a uniform thickness and an excellent quality.
  • the ratio “t b / t c ” of the minimum thickness t b of the boundary portion 130 to the average thickness t c of the central portion 110 is less than 0.75 for the unstretched film 100 before heat stretching.
  • the film 100 before stretching was frequently broken during the heat stretching of the film 100 before stretching, and the productivity of the stretched film was inferior.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

This method for producing a stretched film has a step for forming a pre-stretching film (100) by using rollers (230, 240) to cool/solidify a thermoplastic resin melt-extruded from molding dies (220), and a step for forming a stretched film by heating/stretching the pre-stretching film (100) in at least one direction, and the method is characterized in that in the step for forming the pre-stretching film (100), the pre-stretching film (100) is formed in a manner such that the center of the pre-stretching film (100) contracts by means of planar stretching and the two edges contract by means of single-axis stretching, and so if the minimum thickness of the boundary formed between the center and the two edges is tb and the average thickness of the center is tc, the ratio (tb/tc) of the minimum thickness tb and the average thickness tc is at least 0.75.

Description

延伸フィルムの製造方法Method for producing stretched film

 本発明は、延伸フィルムの製造方法に関する。 The present invention relates to a method for producing a stretched film.

 延伸フィルムを製造する際には、材料となるフィルムを準備し、準備したフィルムを延伸する方法が用いられ、フィルムを延伸する方法としては、フィルムの両端部をクリップで把持しながら加熱炉内に搬送し、加熱炉内にて、フィルムの両端部を把持しているクリップにより長さ方向および幅方向に同時に加熱延伸を行う同時二軸延伸法などが知られている。 When producing a stretched film, a method of preparing a film as a material and stretching the prepared film is used. As a method of stretching the film, the film is held in a heating furnace while holding both ends of the film with clips. There is known a simultaneous biaxial stretching method in which heating and stretching are simultaneously performed in the length direction and the width direction by clips that are conveyed and gripped at both ends of the film in a heating furnace.

 このような同時二軸延伸法においては、加熱炉内にて、フィルムを長さ方向および幅方向に引っ張ることで、必要な延伸倍率まで加熱延伸させるものであるが、フィルムを延伸させる際には、クリップにより把持される部分であるフィルムの両端部に大きな応力が加わることで、フィルムの両端部や、フィルムにおける厚みが薄くなっている部分に裂け目が生じてしまい、これをきっかけとしてフィルム全体が破断してしまうことがある。 In such a simultaneous biaxial stretching method, in the heating furnace, the film is stretched by heating to the necessary stretching ratio by pulling the film in the length direction and the width direction. In addition, a large stress is applied to both ends of the film, which is the part gripped by the clip, resulting in tears at both ends of the film and where the thickness of the film is thin. It may break.

 これに対し、たとえば、特許文献1では、同時二軸延伸による加熱延伸時におけるフィルムの破断を防止するために、加熱延伸前のフィルムについて、クリップにより把持される両端部を、中央部よりも厚くすることで補強する技術が開示されている。 On the other hand, for example, in Patent Document 1, in order to prevent breakage of the film at the time of heat stretching by simultaneous biaxial stretching, both ends held by the clips are made thicker than the center portion of the film before heat stretching. Thus, a technique for reinforcing is disclosed.

特開平11-105131号公報JP-A-11-105131

 しかしながら、上記特許文献1の技術では、加熱延伸するためのフィルムは、成形用ダイスによる熱可塑性樹脂の溶融押出により形成されるものであるため、溶融押出時にフィルムの一部の厚みが薄くなってしまい、そのため、加熱延伸を行う際にこの薄くなった部分が裂けてフィルム全体が破断してしまうという問題がある。 However, in the technique of Patent Document 1 above, the film for heat stretching is formed by melt extrusion of a thermoplastic resin with a molding die, so that the thickness of a part of the film is reduced during melt extrusion. Therefore, there is a problem that the thinned portion is torn when the heat stretching is performed and the entire film is broken.

 すなわち、成形用ダイスから溶融押出された熱可塑性樹脂のフィルムにおいては、溶融押出されてから冷却ロールなどによって引取られるまでの間に、長さ方向に伸長するとともにフィルム幅が狭くなるネックインと呼ばれる現象が発生する。このようなネックインは、次のようにして発生すると考えられている。すなわち、成形用ダイスから溶融押出された熱可塑性樹脂は、フィルムの幅方向中央となる部分では、熱可塑性樹脂同士が隣接して存在するため、熱可塑性樹脂の流動方向が制限されることで、熱可塑性樹脂内部の所定の面に沿って平面伸長することとなり、これにより、幅方向の収縮は抑制され、主に厚み方向に収縮する。一方、成形用ダイスから溶融押出された熱可塑性樹脂は、フィルムの幅方向両端となる部分では、外側の側面には隣接する熱可塑性樹脂が存在しないため、熱可塑性樹脂が自由に流動することで、熱可塑性樹脂内部の所定の軸を中心に一軸伸長することとなり、これにより、厚み方向に加えて幅方向にも収縮する。そのため、形成されたフィルムにおいては、幅方向中央部と幅方向両端部との間の境界部は、熱可塑性樹脂の収縮形態の差異により、厚み方向に凹んでしまい、厚みが薄くなってしまう。そして、このようなフィルムを加熱延伸する際には、厚みが薄い境界部に亀裂が発生し、これによりフィルム全体が破断し易くなってしまうという問題がある。 That is, in a thermoplastic resin film melt-extruded from a molding die, it is called neck-in that extends in the length direction and narrows the film width after being melt-extruded and taken up by a cooling roll or the like. The phenomenon occurs. Such neck-in is considered to occur as follows. That is, the thermoplastic resin melt-extruded from the molding die has a thermoplastic resin adjacent to each other at the center in the width direction of the film, so that the flow direction of the thermoplastic resin is limited, Plane extension is performed along a predetermined surface inside the thermoplastic resin, whereby shrinkage in the width direction is suppressed, and shrinkage is mainly performed in the thickness direction. On the other hand, the thermoplastic resin melt-extruded from the forming die has no thermoplastic resin adjacent to the outer side surface at the portion that becomes both ends in the width direction of the film, so that the thermoplastic resin flows freely. Then, it extends uniaxially around a predetermined axis inside the thermoplastic resin, and thereby contracts in the width direction in addition to the thickness direction. Therefore, in the formed film, the boundary part between the width direction center part and the width direction both ends will be dented in the thickness direction by the difference in the shrinkage | contraction form of a thermoplastic resin, and thickness will become thin. And when such a film is heat-stretched, there is a problem that cracks are generated at the thin boundary portion, which makes it easy to break the entire film.

 本発明はこのような実状に鑑みてなされたものであり、フィルムを加熱延伸して延伸フィルムを製造する際において、フィルムの破断を防止することができ、生産性および品質に優れた延伸フィルムを得ることができる延伸フィルムの製造方法を提供することを目的とする。 The present invention has been made in view of such a situation, and in producing a stretched film by heating and stretching the film, it is possible to prevent the film from being broken, and to provide a stretched film excellent in productivity and quality. It aims at providing the manufacturing method of the stretched film which can be obtained.

 本発明者等は、加熱延伸する前のフィルムについて、フィルムの中央部の平均厚みに対して、フィルムの中央部と両端部との間に形成された境界部の厚みを調整することにより、上記目的を達成できることを見出し、本発明を完成させるに至った。 By adjusting the thickness of the boundary portion formed between the central portion and both end portions of the film with respect to the average thickness of the central portion of the film, the present inventors can The inventors have found that the object can be achieved and have completed the present invention.

 すなわち、本発明によれば、熱可塑性樹脂を、成形用ダイスから溶融押出しした後に、ロールによって引取ることで冷却して固化させ、延伸前フィルムを形成する延伸前フィルム形成工程と、前記延伸前フィルムを、少なくとも一方向に加熱延伸することにより、延伸フィルムを形成する延伸工程と、を有する延伸フィルムの製造方法であって、前記延伸前フィルム形成工程において、前記延伸前フィルムの中央部が、前記延伸前フィルムの厚み方向の中央位置または中央位置近傍に位置する特定の面に沿って伸長する平面伸長により、前記特定の面に向かって収縮し、かつ、前記延伸前フィルムの両端部が、前記両端部の中心または中心位置近傍を通る特定の軸を中心として伸長する一軸伸長により、前記特定の軸を中心として収縮することで、前記中央部と前記両端部との間に形成される境界部の極小厚みをtとし、前記中央部の平均厚みをtとした場合に、前記境界部の極小厚みtと前記中央部の平均厚みtとの比「t/t」が、0.75以上となるように、前記延伸前フィルムの形成を行うことを特徴とする延伸フィルムの製造方法が提供される。 That is, according to the present invention, after the thermoplastic resin is melt-extruded from a molding die, it is cooled by a roll and solidified to form a pre-stretch film forming step, and the pre-stretch film forming step. A stretched step of forming a stretched film by heat-stretching the film in at least one direction, wherein in the pre-stretch film forming step, the central portion of the unstretched film is By stretching in a plane extending along a specific surface located near the central position in the thickness direction of the film before stretching or near the central position, both ends of the film before stretching are contracted toward the specific surface, By uniaxial extension that extends around a specific axis that passes through the center of the both ends or near the center position, it contracts around the specific axis. In, a minimum thickness of the boundary portion formed between said central portion and the both end portions and t b, the average thickness of the central portion in the case of the t c, the minimized thickness t b of the boundary There is provided a method for producing a stretched film, wherein the pre-stretch film is formed so that the ratio “t b / t c ” to the average thickness t c of the central portion is 0.75 or more. .

 本発明の製造方法において、前記熱可塑性樹脂として、アクリル樹脂を用いることが好ましい。
 本発明の製造方法において、前記熱可塑性樹脂として、前記延伸前フィルムの幅方向内側に位置する内側領域を形成する第1の熱可塑性樹脂と、前記延伸前フィルムの幅方向外側に位置する外側領域を形成し、前記第1の熱可塑性樹脂とは異なる第2の熱可塑性樹脂と、を用いることが好ましい。
 本発明の製造方法において、前記第1の熱可塑性樹脂として、アクリル樹脂を用いることが好ましい。
 本発明の製造方法において、前記第2の熱可塑性樹脂として、ポリカーボネート(PC)に、前記アクリル樹脂よりも低いガラス転移温度を有する熱可塑性樹脂を配合してなる混合樹脂を用いることが好ましい。
 本発明の製造方法において、前記第1の熱可塑性樹脂および前記第2の熱可塑性樹脂として、ガラス転移温度の差が10℃以下である熱可塑性樹脂を用いることが好ましい。
 本発明の製造方法において、前記両端部の最大厚みをtとした場合に、前記両端部の最大厚みtと前記中央部の平均厚みtとの比「t/t」が、1.0~2.0の範囲となるように、前記延伸前フィルム形成工程における前記延伸前フィルムの形成を行うことが好ましい。
 本発明の製造方法において、前記成形用ダイスの出口のスリット幅をtとした場合に、前記成形用ダイスの出口のスリット幅tと前記中央部の平均厚みtとの比「t/t」が、8.0以下となるように、前記延伸前フィルム形成工程における前記延伸前フィルムの形成を行うことが好ましい。
 本発明の製造方法において、前記延伸工程における前記延伸前フィルムの加熱延伸を、前記延伸前フィルムの長さ方向および幅方向に同時に延伸する同時二軸延伸により行うことが好ましい。
 本発明の製造方法において、前記延伸工程における前記延伸前フィルムの加熱延伸の延伸方向に対する延伸倍率を、3倍以内とすることが好ましい。
 本発明の製造方法において、前記延伸工程における前記延伸前フィルムの加熱延伸を、加熱延伸後の前記延伸フィルムの中央部の厚みが15~50μmの範囲となるように行うことが好ましい。
 また、本発明の製造方法において、前記延伸工程の前に、前記延伸前フィルムの厚みを規定している両側面を平滑化する平滑化工程を有することが好ましい。
 さらに、本発明の製造方法は、前記平滑化工程における平滑化を、前記延伸前フィルムの幅方向の両端に位置する領域を除去することにより行うことが好ましい。
In the production method of the present invention, an acrylic resin is preferably used as the thermoplastic resin.
In the production method of the present invention, as the thermoplastic resin, a first thermoplastic resin that forms an inner region located on the inner side in the width direction of the film before stretching, and an outer region located on the outer side in the width direction of the film before stretching. It is preferable to use a second thermoplastic resin different from the first thermoplastic resin.
In the production method of the present invention, an acrylic resin is preferably used as the first thermoplastic resin.
In the manufacturing method of this invention, it is preferable to use the mixed resin formed by mix | blending the thermoplastic resin which has a glass transition temperature lower than the said acrylic resin with a polycarbonate (PC) as said 2nd thermoplastic resin.
In the production method of the present invention, it is preferable to use a thermoplastic resin having a glass transition temperature difference of 10 ° C. or less as the first thermoplastic resin and the second thermoplastic resin.
In the production method of the present invention, the maximum thickness of the end portions in the case of a t e, the ratio "t e / t c" between the maximum thickness t e of the end portions and the average thickness t c of the central portion, It is preferable to form the pre-stretch film in the pre-stretch film forming step so as to be in the range of 1.0 to 2.0.
In the production method of the present invention, wherein when the slit width of the outlet of the molding die was t s, the ratio "t s and the average thickness t c of the slit width t s and the central portion of the outlet of the molding die It is preferable to form the pre-stretch film in the pre-stretch film forming step so that “/ t c ” is 8.0 or less.
In the production method of the present invention, it is preferable that the heat stretching of the pre-stretched film in the stretching step is performed by simultaneous biaxial stretching that simultaneously stretches in the length direction and the width direction of the pre-stretched film.
In the manufacturing method of this invention, it is preferable that the draw ratio with respect to the extending | stretching direction of the heat stretching of the said film before extending | stretching in the said extending process shall be 3 times or less.
In the production method of the present invention, it is preferable that the heat stretching of the pre-stretched film in the stretching step is performed so that the thickness of the central portion of the stretched film after the heat stretching is in the range of 15 to 50 μm.
Moreover, in the manufacturing method of this invention, it is preferable to have the smoothing process of smoothing the both side surfaces which prescribe | regulate the thickness of the said film before extending | stretching before the said extending process.
Furthermore, it is preferable that the manufacturing method of this invention performs the smoothing in the said smoothing process by removing the area | region located in the both ends of the width direction of the said film before extending | stretching.

 本発明によれば、フィルムを加熱延伸して延伸フィルムを製造する際において、適切に加熱延伸を行うことができ、生産性および品質に優れた延伸フィルムを得ることができる延伸フィルムの製造方法を提供することができる。 According to the present invention, when producing a stretched film by heat-stretching the film, a stretched film production method capable of appropriately performing heat-stretching and obtaining a stretched film excellent in productivity and quality is provided. Can be provided.

図1は、延伸前フィルムを作製する方法を説明するための図である。FIG. 1 is a diagram for explaining a method of producing a pre-stretch film. 図2は、溶融押出された熱可塑性樹脂のネックインについて説明するための図である。FIG. 2 is a view for explaining neck-in of a melt-extruded thermoplastic resin. 図3は、溶融押出された熱可塑性樹脂の収縮について説明するための図である。FIG. 3 is a view for explaining shrinkage of the melt-extruded thermoplastic resin. 図4は、延伸前フィルムの幅方向位置に対する厚みの一例を示す図である。FIG. 4 is a diagram illustrating an example of the thickness of the unstretched film with respect to the position in the width direction. 図5は、延伸工程において同時二軸延伸法により延伸前フィルムを延伸する方法を説明するための図である。FIG. 5 is a diagram for explaining a method of stretching a pre-stretched film by a simultaneous biaxial stretching method in a stretching step. 図6は、実施例および比較例で作製した延伸前フィルムおよび延伸フィルムの幅方向位置に対する厚みを測定した結果を示すグラフである。FIG. 6 is a graph showing the results of measuring the thickness of the pre-stretched film and stretched film produced in Examples and Comparative Examples with respect to the width direction position. 図7は、第1の熱可塑性樹脂および第2の熱可塑性樹脂からなる延伸前フィルム(複合フィルム)を作製する方法を説明するための図である。FIG. 7 is a diagram for explaining a method of producing a pre-stretch film (composite film) made of the first thermoplastic resin and the second thermoplastic resin. 図8は、複合フィルムを製造する際において、溶融押出された熱可塑性樹脂のネックインについて説明するための図である。FIG. 8 is a diagram for explaining neck-in of a thermoplastic resin melt-extruded when a composite film is manufactured. 図9は、複合フィルムを製造する際において、溶融押出された直後に収縮する熱可塑性樹脂の一例について説明するための図である。FIG. 9 is a diagram for explaining an example of a thermoplastic resin that shrinks immediately after being melt-extruded when a composite film is manufactured. 図10は、複合フィルムの幅方向位置に対する厚みの一例を示す図である。FIG. 10 is a diagram illustrating an example of the thickness of the composite film with respect to the position in the width direction. 図11は、延伸工程において同時二軸延伸法により、複合フィルムを延伸する方法を説明するための図である。FIG. 11 is a diagram for explaining a method of stretching a composite film by a simultaneous biaxial stretching method in a stretching step. 図12は、ポリカーボネート(PC)にポリエチレンテレフタレート(PET)を配合して得た混合樹脂のガラス転移温度を示すグラフである。FIG. 12 is a graph showing the glass transition temperature of a mixed resin obtained by blending polyethylene terephthalate (PET) with polycarbonate (PC). 図13は、複合フィルムにおいて、溶融押出された直後に収縮する別の例について説明するための図である。FIG. 13 is a diagram for explaining another example of a composite film that shrinks immediately after being melt-extruded. 図14は、実施例および比較例で作製した複合フィルムおよび延伸フィルムの幅方向位置に対する厚みを測定した結果を示すグラフである。FIG. 14 is a graph showing the results of measuring the thickness of the composite films and stretched films produced in Examples and Comparative Examples with respect to the width direction position.

<<第1実施形態>>
 以下、図面に基づいて、本発明の第1実施形態について説明する。
 第1実施形態に係る延伸フィルムの製造方法は、熱可塑性樹脂を成形用のTダイスによって溶融押出しすることにより延伸前フィルムを形成する延伸前フィルム形成工程と、この延伸前フィルムを、長さ方向および幅方向に加熱延伸する延伸工程と、を備える。
<< first embodiment >>
Hereinafter, a first embodiment of the present invention will be described based on the drawings.
The method for producing a stretched film according to the first embodiment includes a pre-stretch film forming step of forming a pre-stretch film by melt-extruding a thermoplastic resin with a molding T-die, and the pre-stretch film in the length direction. And a stretching step of heating and stretching in the width direction.

<延伸前フィルム形成工程>
 延伸前フィルム形成工程は、熱可塑性樹脂をTダイスから溶融押出しすることで、延伸前フィルム100を得る工程である。ここで、図1は、延伸前フィルム形成工程を説明するための図である。
<Film forming step before stretching>
The pre-stretching film forming step is a step of obtaining the pre-stretching film 100 by melt-extruding a thermoplastic resin from a T die. Here, FIG. 1 is a figure for demonstrating the film formation process before extending | stretching.

 延伸前フィルム形成工程においては、まず、熱可塑性樹脂を、加熱溶融させた状態で、フィードブロック210を通じてTダイス220に供給する。 In the pre-stretching film forming step, first, the thermoplastic resin is supplied to the T dice 220 through the feed block 210 in a state of being melted by heating.

 本実施形態においては、フィードブロック210には、熱可塑性樹脂を溶融押出するための溶融押出機(不図示)が連結されている。溶融押出機としては、特に限定されず、単軸押出機、二軸押出機のいずれも用いることができる。そして、本実施形態においては、熱可塑性樹脂を、溶融押出機により融点(溶融)温度以上の温度で溶融押出することで、フィードブロック210に供給する。 In the present embodiment, the feed block 210 is connected to a melt extruder (not shown) for melt-extruding a thermoplastic resin. The melt extruder is not particularly limited, and either a single screw extruder or a twin screw extruder can be used. In this embodiment, the thermoplastic resin is supplied to the feed block 210 by being melt-extruded at a temperature equal to or higher than the melting point (melting) temperature by a melt extruder.

 なお、本実施形態においては、熱可塑性樹脂としては、必要とする延伸フィルムの用途などに応じて選択すればよく、たとえば、アクリル樹脂(PMMA)、環状オレフィンコポリマー(COC)、ポリカーボネート(PC)、ポリエステルテレフタレート(PET)などのうち1種を単独で使用、または2種以上を混合した混合樹脂を用いることができる。 In the present embodiment, the thermoplastic resin may be selected according to the intended use of the stretched film. For example, acrylic resin (PMMA), cyclic olefin copolymer (COC), polycarbonate (PC), One type of polyester terephthalate (PET) or the like can be used alone, or a mixed resin in which two or more types are mixed can be used.

 そして、Tダイス220において、フィードブロック210から供給された熱可塑性樹脂が、Tダイス220内に設けられたマニホールド221により幅方向に拡幅し、これにより、ダイスリップ222からシート形状に押出しされる。 In the T die 220, the thermoplastic resin supplied from the feed block 210 is widened in the width direction by the manifold 221 provided in the T die 220, and is thereby extruded from the die slip 222 into a sheet shape.

 次いで、押出したシート状の熱可塑性樹脂を、図1に示すように、連続的にタッチロール230および冷却ロール240によって引取り、挟圧して冷却および固化させることにより、延伸前フィルム100を得る。 Next, as shown in FIG. 1, the extruded sheet-like thermoplastic resin is continuously taken up by the touch roll 230 and the cooling roll 240, and sandwiched and cooled to be solidified to obtain the unstretched film 100.

 そして、本実施形態においては、作製した延伸前フィルム100は、延伸前フィルム巻取りロール(不図示)によって巻き取られるようになっており、これにより延伸前フィルム100を連続的に得ることができる。 And in this embodiment, the produced film 100 before extending | stretching is wound up by the film winding roll (not shown) before extending | stretching, and, thereby, the film 100 before extending | stretching can be obtained continuously. .

 なお、このようにして得られる延伸前フィルム100においては、Tダイス220のダイスリップ222から溶融押出されてから冷却ロール240によって引取られるまでの間に、幅方向に収縮するネックインと呼ばれる現象が発生する。 In the pre-stretched film 100 obtained in this way, a phenomenon called neck-in that shrinks in the width direction after being melt-extruded from the die slip 222 of the T-die 220 and taken up by the cooling roll 240 is present. appear.

 ここで、図2は、Tダイス220のダイスリップ222、および本実施形態において形成される延伸前フィルム100の断面を示す図であり、ダイスリップ222の幅方向の寸法と、形成される延伸前フィルム100の幅との関係を表している。本実施形態においては、延伸前フィルム100を形成する際には、熱可塑性樹脂は、Tダイス220によりダイスリップ222の幅で溶融押出されるが、溶融押出されてから冷却ロール240によって引取られるまでの間に、図2に示す矢印のとおり、幅方向に収縮するネックインが発生し、得られる延伸前フィルム100の幅は、ダイスリップ222の幅方向の寸法より小さくなる。 Here, FIG. 2 is a view showing a cross section of the die slip 222 of the T-die 220 and the pre-stretching film 100 formed in the present embodiment. The relationship with the width of the film 100 is shown. In the present embodiment, when the pre-stretch film 100 is formed, the thermoplastic resin is melt-extruded by the width of the die slip 222 by the T-die 220, but after being melt-extruded until taken up by the cooling roll 240. In the meantime, as indicated by the arrows shown in FIG. 2, neck-in that shrinks in the width direction occurs, and the width of the resulting unstretched film 100 becomes smaller than the width dimension of the die slip 222.

 なお、このようなネックインは、Tダイス220から溶融押出された熱可塑性樹脂が、図2に示す矢印の向きに収縮する、すなわち、延伸前フィルム100の中央となる部分が矢印で示す向き(厚み方向)に収縮し、延伸前フィルム100の両端となる部分が矢印で示す向き(厚み方向および幅方向)に収縮することによって発生する。そして、Tダイス220から溶融押出された熱可塑性樹脂は、ネックインによって収縮することにより、断面形状が図2示すようなものとなる。 In such a neck-in, the thermoplastic resin melt-extruded from the T-die 220 contracts in the direction of the arrow shown in FIG. 2, that is, the direction at which the center of the unstretched film 100 is indicated by the arrow ( It is generated by contracting in the direction (thickness direction and width direction) indicated by the arrows. Then, the thermoplastic resin melt-extruded from the T-die 220 contracts by neck-in so that the cross-sectional shape becomes as shown in FIG.

 ここで、図3は、溶融押出された熱可塑性樹脂の収縮について説明するための図である。本実施形態においては、Tダイス220から溶融押出された熱可塑性樹脂は、図3に示すように、延伸前フィルム100の中央部110となる部分では、隣接する熱可塑性樹脂の存在により熱可塑性樹脂の流動方向が制限され、これにより、熱可塑性樹脂が、厚み方向中央位置または中央位置近傍に位置する面αに沿って伸長する平面伸長により、矢印で示すとおり厚み方向に収縮する。一方、Tダイス220から溶融押出された熱可塑性樹脂は、延伸前フィルム100の両端部120となる部分では、図3に示すように、両端部120の外側の側面には隣接する熱可塑性樹脂が存在しないため、熱可塑性樹脂が比較的自由に流動し、これにより、両端部120の中心または中心位置近傍を通る軸βを中心として伸長する一軸伸長により、矢印で示すとおり厚み方向に加えて幅方向にも収縮する。これにより、中央部110と両端部120との間には、熱可塑性樹脂の収縮形態の差異により、厚み方向に凹んだ形状の境界部130が形成される。 Here, FIG. 3 is a diagram for explaining the shrinkage of the melt-extruded thermoplastic resin. In the present embodiment, the thermoplastic resin melt-extruded from the T-die 220 is, as shown in FIG. 3, the thermoplastic resin due to the presence of the adjacent thermoplastic resin in the portion that becomes the central portion 110 of the unstretched film 100. Thus, the thermoplastic resin contracts in the thickness direction as indicated by the arrows due to the planar extension extending along the surface α located at or near the center in the thickness direction. On the other hand, the thermoplastic resin melt-extruded from the T-die 220 has a thermoplastic resin adjacent to the outer side surfaces of both end portions 120 at the portions to be the both end portions 120 of the unstretched film 100 as shown in FIG. Since the thermoplastic resin does not exist, the thermoplastic resin flows relatively freely. As a result, the uniaxial extension extending about the axis β passing through the center of the both ends 120 or near the center position causes the width in addition to the thickness direction as shown by the arrows. It also shrinks in the direction. Thereby, between the center part 110 and the both ends 120, the boundary part 130 of the shape dented in the thickness direction is formed by the difference in the shrinkage | contraction form of a thermoplastic resin.

 そのため、図1に示す方法により形成される延伸前フィルム100は、図4に示すように、中央部110と両端部120との間の境界部130が、特に厚みが薄くなってしまう。なお、図4は、延伸前フィルム100について、幅方向の位置に対する厚みを測定した結果の一例を示す図である。 Therefore, in the pre-stretch film 100 formed by the method shown in FIG. 1, the boundary portion 130 between the central portion 110 and both end portions 120 is particularly thin as shown in FIG. In addition, FIG. 4 is a figure which shows an example of the result of having measured the thickness with respect to the position of the width direction about the film 100 before extending | stretching.

 ここで、形成した延伸前フィルム100について、境界部130の厚みが、中央部110の厚みに対して薄くなりすぎると、延伸工程にて延伸前フィルム100を加熱延伸する際に、厚みが薄い境界部130に亀裂が発生し易くなり、適切に加熱延伸を行うことができなくなってしまうという問題がある。 Here, when the thickness of the boundary portion 130 of the formed pre-stretching film 100 is too thin with respect to the thickness of the central portion 110, the boundary where the thickness is thin when the pre-stretching film 100 is heat stretched in the stretching step. There is a problem that cracks are likely to occur in the portion 130 and heating and stretching cannot be performed appropriately.

 これに対し、本実施形態においては、Tダイス220により溶融押出しし、冷却ロール240によって引取ることにより形成した延伸前フィルム100について、図4に示すように、中央部110の平均厚みをtとし、境界部130の極小厚みをtとした場合に、これらの厚みの比「t/t」を0.75以上に調整することにより、後述するように、延伸前フィルム100を加熱延伸する際における、境界部130の亀裂を有効に防止することができ、延伸フィルムの生産性を向上させることができる。 On the other hand, in this embodiment, as shown in FIG. 4, the average thickness of the central portion 110 is set to t c for the unstretched film 100 formed by melt extrusion using a T-die 220 and drawing by a cooling roll 240. When the minimum thickness of the boundary 130 is t b , the ratio of these thicknesses “t b / t c ” is adjusted to 0.75 or more to heat the unstretched film 100 as will be described later. When stretching, the boundary 130 can be effectively prevented from cracking, and the productivity of the stretched film can be improved.

 なお、図4に示す中央部110の平均厚みtとしては、中央部110の厚みが安定している部分の厚みの平均値とし、たとえば、中央部110の中心を基準として、厚みが±5~10%以内の領域における厚みの平均値とすることができる。また、境界部130の極小厚みtとしては、延伸前フィルム100における2か所の境界部130の極小厚みのうち、より薄い方の厚みとする。 Note that the average thickness t c of the central portion 110 shown in FIG. 4 is an average value of the thickness of the portion where the thickness of the central portion 110 is stable. For example, the thickness is ± 5 with respect to the center of the central portion 110. It can be an average value of thickness in a region within ˜10%. As the minimum thickness t b of the boundary portion 130, of the two minimum thickness of the boundary portion 130 of the pre-stretch film 100, a more thinner thickness.

<延伸工程>
 延伸工程は、延伸前フィルム形成工程により得られた延伸前フィルム100を、長さ方向および幅方向に加熱延伸する工程である。ここで、図5は、延伸工程を説明するための図である。本実施形態においては、延伸工程では、上述した延伸前フィルム巻取りロールから延伸前フィルム100を送り出し、図5に示すように、延伸前フィルム100をクリップ310で把持しながら長さ方向および幅方向に同時に延伸する同時二軸延伸法により、延伸前フィルム100の加熱延伸を行う。
<Extension process>
The stretching step is a step of heating and stretching the pre-stretching film 100 obtained by the pre-stretching film forming step in the length direction and the width direction. Here, FIG. 5 is a figure for demonstrating an extending process. In the present embodiment, in the stretching step, the unstretched film 100 is sent out from the above-described unstretched film winding roll, and the length direction and the width direction are held while the unstretched film 100 is held by the clip 310 as shown in FIG. The film 100 before stretching is heated and stretched by a simultaneous biaxial stretching method in which the film is stretched simultaneously.

 具体的には、延伸工程では、延伸前フィルム巻取りロールから延伸前フィルム100を連続的に送り出し、複数のクリップを用いて延伸前フィルム100を一定間隔ごとに把持し、各クリップ310により延伸前フィルム100を延伸炉320内に搬送し、延伸炉320内において、各クリップ310により延伸前フィルム100を長さ方向および幅方向に引っ張って延伸する。この際においては、延伸前フィルム100は、クリップ310により把持された状態のまま搬送されることで、延伸炉320内を通過するようになっており、延伸炉320内の予熱帯にて、延伸前フィルム100は、これを構成する熱可塑性樹脂のガラス転移温度よりも10~30℃程度高い温度まで予備加熱された後、延伸炉320内の延伸帯にて、保熱されたままクリップ310により長さ方向および幅方向に引っ張られて、長さ方向および幅方向に延伸される。そして、これに続く、冷却熱固定帯において冷却および固化されることにより、延伸フィルムを得ることができる。そして、クリップ310を開放し、ロールにて巻き取られることで、連続的に延伸フィルムを得ることができる。 Specifically, in the stretching step, the unstretched film 100 is continuously fed out from the unstretched film winding roll, the unstretched film 100 is gripped at regular intervals using a plurality of clips, and each of the clips 310 is stretched before stretching. The film 100 is transported into the stretching furnace 320, and in the stretching furnace 320, the pre-stretching film 100 is pulled in the length direction and the width direction by each clip 310 to be stretched. At this time, the unstretched film 100 is transported while being held by the clip 310, so that it passes through the stretching furnace 320, and is stretched in the pre-tropical zone in the stretching furnace 320. The pre-film 100 is preheated to a temperature that is about 10 to 30 ° C. higher than the glass transition temperature of the thermoplastic resin that constitutes the film, and is then kept in the drawing zone in the drawing furnace 320 by the clip 310 while keeping the heat. It is pulled in the length direction and the width direction and stretched in the length direction and the width direction. And a stretched film can be obtained by cooling and solidifying in the cooling heat fixed zone following this. And the stretched film can be obtained continuously by opening the clip 310 and winding up with a roll.

 なお、本実施形態においては、延伸炉320内を通過するようにして、クリップ310が移動するための一対のガイドレールが設置されている。一対のガイドレールは、図5に示す延伸前フィルム100の上側を把持するクリップ310の位置と、下側を把持するクリップ310の位置にそれぞれ設置されており、延伸炉320内の予熱帯では互いに平行であり、延伸帯では互いに延伸前フィルム100の幅方向に離れていき、冷却熱固定帯ではまた互いに平行となっている。あるいは、冷却熱固定帯においては、延伸帯にて加熱延伸された延伸フィルムの固化時の収縮分を考慮して、冷却熱固定帯内で、一対のガイドレール同士の距離を、延伸帯の出側における延伸フィルムの幅を基準として、幅方向に数%程度近づけるようにしてもよい。本実施形態においては、延伸前フィルム100を把持したクリップ310が、このようなガイドレールに沿って移動することで、延伸前フィルム100を搬送および延伸できるようになっている。 In the present embodiment, a pair of guide rails for moving the clip 310 so as to pass through the drawing furnace 320 is provided. The pair of guide rails are respectively installed at the position of the clip 310 that holds the upper side of the pre-stretching film 100 shown in FIG. 5 and the position of the clip 310 that holds the lower side. They are parallel, separated from each other in the width direction of the pre-stretching film 100 in the stretching band, and parallel to each other in the cooling heat fixing band. Alternatively, in the cooling heat fixing band, the distance between the pair of guide rails in the cooling heat fixing band is determined in consideration of the shrinkage when the stretched film heated and stretched in the stretching band is solidified. On the basis of the width of the stretched film on the side, it may be approximated by several percent in the width direction. In the present embodiment, the clip 310 that holds the unstretched film 100 moves along such a guide rail so that the unstretched film 100 can be conveyed and stretched.

 本実施形態においては、このようなガイドレールに沿って移動するクリップ310を用いて、延伸炉320内の延伸帯にて、延伸前フィルム100を延伸する。すなわち、延伸炉320内の延伸帯にて、延伸前フィルム100を把持したクリップ310を、ガイドレールに沿って幅方向に広がるようにして移動させ、併せてクリップ310同士の間隔を広げる制御を行うことで、延伸前フィルム100を、図5に示す矢印のように、長さ方向および幅方向に引っ張る。これにより、延伸前フィルム100が、長さ方向および幅方向に必要な延伸倍率となるまで加熱延伸される。そして、延伸前フィルム100は、加熱延伸された後、延伸炉320内の冷却熱固定帯において冷却および固化され、延伸炉320の外に設置されたロールによって巻き取られるようになっており、これにより連続的に延伸フィルムを得ることができる。 In this embodiment, the pre-stretching film 100 is stretched in the stretching zone in the stretching furnace 320 using the clip 310 that moves along such a guide rail. That is, in the stretching zone in the stretching furnace 320, the clip 310 that holds the unstretched film 100 is moved so as to spread in the width direction along the guide rail, and at the same time, the interval between the clips 310 is increased. Thus, the unstretched film 100 is pulled in the length direction and the width direction as indicated by arrows in FIG. Thereby, the film 100 before extending | stretching is heat-stretched until it becomes a draw ratio required in the length direction and the width direction. And the film 100 before extending | stretching is heat-stretched, Then, it is cooled and solidified in the cooling heat fixing zone in the stretching furnace 320, and is wound up by a roll installed outside the stretching furnace 320. Thus, a stretched film can be obtained continuously.

 なお、本実施形態においては、延伸工程と、延伸前フィルム形成工程とを一貫した連続ライン(工程)とし、延伸フィルムを得ることも可能である。 In this embodiment, it is possible to obtain a stretched film by making the stretching step and the pre-stretching film forming step into a continuous line (step).

 また、本実施形態においては、延伸前フィルム100を加熱延伸する際には、延伸方向に対する延伸倍率は、好ましくは3倍以内、より好ましくは2.5倍以内、さらに好ましくは2倍以内である。これにより、加熱延伸中における延伸前フィルム100の破断をより有効に防止し、延伸前フィルム100の加熱延伸を適切に行うことができる。 In this embodiment, when the pre-stretch film 100 is stretched by heating, the stretch ratio with respect to the stretching direction is preferably within 3 times, more preferably within 2.5 times, and even more preferably within 2 times. . Thereby, the fracture | rupture of the film 100 before extending | stretching during heat-stretching can be prevented more effectively, and the heat-stretching of the film 100 before extending | stretching can be performed appropriately.

 また、本実施形態においては、延伸前フィルム100を加熱延伸して得られる延伸フィルムは、中央部110の部分の厚みが、好ましくは15~50μm、より好ましくは20~40μmである。延伸フィルムにおける中央部110の部分の厚みを上記範囲に制御することにより、加熱延伸中における延伸前フィルム100の破断をより有効に防止し、延伸前フィルム100の加熱延伸を適切に行うことができる。 In this embodiment, the stretched film obtained by heating and stretching the pre-stretched film 100 has a thickness of the central portion 110 of preferably 15 to 50 μm, more preferably 20 to 40 μm. By controlling the thickness of the central portion 110 in the stretched film within the above range, it is possible to more effectively prevent the pre-stretching film 100 from being broken during the heat stretching and appropriately heat-stretch the pre-stretching film 100. .

 さらに、本実施形態においては、延伸前フィルム100を加熱延伸して得られた延伸フィルムについて、必要に応じて両端部120の部分を切断して除去してもよい。これにより、延伸フィルムにおける特に厚みが厚い両端部120の部分を除去することができ、延伸フィルム全体の厚みを均一化することができる。 Furthermore, in the present embodiment, the stretched film obtained by heating and stretching the pre-stretched film 100 may be removed by cutting the both ends 120 as necessary. Thereby, the part of the both ends 120 with especially thick thickness in a stretched film can be removed, and the thickness of the whole stretched film can be equalize | homogenized.

 以上のようにして、本実施形態においては、延伸前フィルム形成工程により、熱可塑性樹脂からなる延伸前フィルム100を形成し、延伸工程により延伸前フィルム100を加熱延伸することにより、延伸フィルムを得ることができる。 As described above, in this embodiment, a stretched film is obtained by forming the unstretched film 100 made of a thermoplastic resin in the pre-stretching film forming step and heating and stretching the pre-stretched film 100 in the stretching step. be able to.

 ここで、本実施形態においては、延伸前フィルム形成工程により延伸前フィルム100を形成する際には、中央部110の平均厚みtと、境界部130の極小厚みtとの比「t/t」が0.75以上となるように延伸前フィルム100の厚みを調整する。これにより、延伸工程にて延伸前フィルム100を加熱延伸する際に、厚みが薄い境界部130における亀裂の発生を有効に防止することができ、延伸フィルムの生産性を向上させることができる。 Here, in the present embodiment, when the pre-stretch film 100 is formed by the pre-stretch film forming step, the ratio “t b ” between the average thickness t c of the central portion 110 and the minimum thickness t b of the boundary portion 130. The thickness of the unstretched film 100 is adjusted so that “/ t c ” is 0.75 or more. Thereby, when heat-stretching the film 100 before extending | stretching at an extending | stretching process, generation | occurrence | production of the crack in the boundary part 130 with thin thickness can be prevented effectively, and productivity of a stretched film can be improved.

 なお、延伸前フィルム100を加熱延伸する際においては、延伸前フィルム100のうち境界部130は、厚みが薄いことにより延伸に必要な延伸応力が低く、優先的に延伸されることとなる。そして、境界部130において延伸が進むことにより、境界部130の延伸応力が徐々に増加し、中央部110の延伸に必要な延伸応力に達すると、境界部130に続いて中央部110も延伸されるようになる。この際において、中央部110に対して境界部130の厚みが薄すぎると、境界部130が延伸されている間に、中央部110の延伸が開始される前に、境界部130が破断してしまう。また、中央部110に対して境界部130の厚みが薄すぎると、図5に示すように加熱延伸した後、延伸前フィルム100をクリップ310から解放する際の衝撃や、得られた延伸フィルムをロールに巻き取る際の応力によっても、境界部130に亀裂が発生してしまう。 In addition, when the film 100 before extending | stretching is heat-stretched, the boundary part 130 among the films 100 before extending | stretching has a low extending | stretching stress required for extending | stretching by thinness, and will be extended preferentially. As the stretching proceeds at the boundary portion 130, the stretching stress at the boundary portion 130 gradually increases, and when the stretching stress necessary for stretching at the central portion 110 is reached, the central portion 110 is also stretched following the boundary portion 130. Become so. At this time, if the thickness of the boundary portion 130 is too thin with respect to the central portion 110, the boundary portion 130 breaks before the central portion 110 starts to be stretched while the boundary portion 130 is being stretched. End up. Further, if the thickness of the boundary portion 130 is too small with respect to the central portion 110, the impact when releasing the unstretched film 100 from the clip 310 and the obtained stretched film after heating and stretching as shown in FIG. Cracks are also generated in the boundary portion 130 due to the stress at the time of winding on the roll.

 ここで、従来より、同時二軸延伸により加熱延伸する際におけるフィルムの破断を防止する方法として、加熱延伸前のフィルムの両端部を中央部に比べて厚く形成する方法が知られている。しかしながら、延伸するためのフィルムをTダイス220による溶融押出により作製する場合には、上述したようにフィルムの両端部を厚くしたとしても、フィルムの中央部と両端部との間に形成される境界部については、図3に示すように、厚みが薄くなってしまい、フィルムを加熱延伸する際において、このような境界部に亀裂が発生してしまうという問題がある。 Here, conventionally, as a method for preventing breakage of the film during heat stretching by simultaneous biaxial stretching, a method of forming both end portions of the film before heat stretching thicker than the central portion is known. However, when the film to be stretched is produced by melt extrusion using the T-die 220, the boundary formed between the center portion and both end portions of the film even if both end portions of the film are thickened as described above. As shown in FIG. 3, the thickness of the portion is reduced, and there is a problem that a crack occurs at such a boundary portion when the film is heated and stretched.

 これに対し、本実施形態によれば、Tダイス220により溶融押出した後、冷却ロール240によって引取ることにより形成する延伸前フィルム100について、中央部110の平均厚みtと境界部130の極小厚みtとの比「t/t」を上記範囲に調整することにより、延伸前フィルム100を加熱延伸する際に、境界部130における亀裂の発生を有効に防止することができ、延伸フィルムの生産性を向上させることができる。 On the other hand, according to the present embodiment, the average thickness t c of the central portion 110 and the minimum of the boundary portion 130 of the unstretched film 100 formed by being melt-extruded by the T-die 220 and then pulled by the cooling roll 240. By adjusting the ratio “t b / t c ” to the thickness t b within the above range, when the film 100 before stretching is heated and stretched, the occurrence of cracks at the boundary portion 130 can be effectively prevented, The productivity of the film can be improved.

 なお、本実施形態においては、中央部110の平均厚みtと境界部130の極小厚みtとの比「t/t」は、上述したように0.75以上であればよいが、好ましくは0.8以上、より好ましくは0.9以上である。 In the present embodiment, the ratio “t b / t c ” between the average thickness t c of the central portion 110 and the minimum thickness t b of the boundary portion 130 may be 0.75 or more as described above. , Preferably 0.8 or more, more preferably 0.9 or more.

 また、本実施形態においては、形成する延伸前フィルム100について、上述した中央部110の平均厚みtと境界部130の極小厚みtとの比「t/t」を上記範囲に調整する方法としては、特に限定されないが、たとえば、熱可塑性樹脂として伸長粘度がより低い樹脂を用いる方法、Tダイス220のダイスリップ222のスリット幅を調整する方法、Tダイス220と冷却ロール240との距離を小さくする方法、冷却ロール240による延伸前フィルム100の引取り速度を低下させる方法などを、単独または組合せて用いることができる。 In the present embodiment, the ratio “t b / t c ” between the average thickness t c of the central portion 110 and the minimum thickness t b of the boundary portion 130 is adjusted to the above range for the pre-stretch film 100 to be formed. There are no particular restrictions on the method used, for example, a method using a resin having a lower extensional viscosity as the thermoplastic resin, a method of adjusting the slit width of the die slip 222 of the T die 220, and the method of using the T die 220 and the cooling roll 240. A method of reducing the distance, a method of reducing the take-up speed of the pre-stretching film 100 by the cooling roll 240, or the like can be used alone or in combination.

 なお、本実施形態においては、これらの方法のうち、適用可能な熱可塑性樹脂の種類が限定されず、また延伸前フィルム100の作製効率を低下させないという観点より、ダイスリップ222のスリット幅を調整する方法を用いることが好ましい。この際には、ダイスリップ222のスリット幅をtとした場合に、ダイスリップ222のスリット幅tと中央部110の平均厚みtとの比「t/t」を、好ましくは8.0以下、より好ましくは6.0以下、さらに好ましくは5.0以下となるように調整する。これにより、Tダイス220により溶融押出して得られる延伸前フィルム100の厚みをより均一化することができ、中央部110の平均厚みtと境界部130の極小厚みtとの比「t/t」を適切に上記範囲に調整することができる。 In this embodiment, among these methods, the type of applicable thermoplastic resin is not limited, and the slit width of the die slip 222 is adjusted from the viewpoint of not reducing the production efficiency of the pre-stretching film 100. It is preferable to use the method to do. At this time, when the slit width of the die lip 222 was t s, the ratio "t s / t c" of the average thickness t c of the slit width t s and the central portion 110 of the die lip 222, preferably It adjusts so that it may be 8.0 or less, More preferably, it is 6.0 or less, More preferably, it is 5.0 or less. Thereby, the thickness of the unstretched film 100 obtained by melt extrusion with the T die 220 can be made more uniform, and the ratio “t b ” between the average thickness t c of the central portion 110 and the minimum thickness t b of the boundary portion 130. / T c ”can be appropriately adjusted to the above range.

 また、本実施形態においては、形成する延伸前フィルム100については、上述したように中央部110の平均厚みtと境界部130の極小厚みtとの比「t/t」を上記範囲に調整することに加えて、両端部120の最大厚みを適度なものとなるように調整することにより、加熱延伸時における延伸前フィルム100の破断をより有効に防止することができる。 In the present embodiment, the pre-stretched film 100 to be formed, the ratio "t b / t c" with minimum thickness t b of the average thickness t c and the boundary portion 130 of the central portion 110 as described above the In addition to adjusting to the range, by adjusting the maximum thickness of the both end portions 120 so as to be moderate, it is possible to more effectively prevent the pre-stretching film 100 from being broken during the heat stretching.

 具体的には、延伸前フィルム100を形成する際において、図4に示すように、両端部120の最大厚みをtとした場合に、両端部120の最大厚みtと中央部110の平均厚みtとの比「t/t」を、好ましくは1.0~3.0、より好ましくは1.0~2.0、さらに好ましくは1.0~1.5に調整する。ここで、両端部120の最大厚みtとしては、延伸前フィルム100の両端部120(幅方向における一方の端部および他方の端部)の厚みのうち、より厚い方の厚みとする。なお、中央部110の平均厚みtに対して、両端部120の最大厚みtが厚すぎる場合には、Tダイス220により溶融押出して得た延伸前フィルム100を、タッチロール230および冷却ロール240によって挟圧する際に、両端部120が厚すぎることで、両端部120に圧力が集中して延伸前フィルム100全体に圧力が均一に伝わらず、延伸前フィルム100の厚みがばらつき、これを加熱延伸して得られる延伸フィルムの厚みもばらついてしまう傾向にある。一方、中央部110の平均厚みtに対して、両端部120の最大厚みtが薄すぎる場合には、Tダイス220により溶融押出された延伸前フィルム100がネックインする際において、両端部120が熱可塑性樹脂を引っ張る力が強くなる傾向にあり、これにより、境界部130の厚みがより薄くなり、加熱延伸時に延伸前フィルム100が破断し易くなってしまう。 Specifically, in the case of forming the pre-stretch film 100, as shown in FIG. 4, the maximum thickness of the end portions 120 when the t e, the average of the maximum thickness t e and the central portion 110 of the end portions 120 The ratio “t e / t c ” with respect to the thickness t c is preferably adjusted to 1.0 to 3.0, more preferably 1.0 to 2.0, and still more preferably 1.0 to 1.5. Here, the maximum thickness t e of the ends 120, of the thickness of the end portions 120 of the pre-stretched film 100 (the one end portion and another end portion in the width direction), and more thicker thickness. Incidentally, with respect to the average thickness t c of the central portion 110, when the maximum thickness t e of the end portions 120 is too thick, the unstretched film 100 obtained melt extrusion by a T die 220, the touch roll 230 and the chill roll When the two ends 120 are too thick when pinched by 240, the pressure concentrates on both ends 120 and the pressure is not uniformly transmitted to the entire unstretched film 100, and the thickness of the unstretched film 100 varies, and this is heated. The thickness of the stretched film obtained by stretching also tends to vary. On the other hand, with respect to the average thickness t c of the central portion 110, when the maximum thickness t e of the end portions 120 is too thin, the time of pre-stretched film 100 is melt extruded by T die 220 is neck-in at both ends 120 tends to increase the pulling force of the thermoplastic resin, whereby the thickness of the boundary portion 130 becomes thinner, and the pre-stretching film 100 is likely to break during the heat stretching.

 なお、本実施形態においては、延伸前フィルム形成工程により形成した延伸前フィルム100について、加熱延伸する前に、両端部120の側面を平滑化することが好ましい。延伸前フィルム100の両端部120の側面を平滑化することによれば、延伸工程において延伸前フィルム100の両端部120を引っ張って延伸前フィルム100を加熱延伸する際に、両端部120の側面の粗さに起因する局所的な応力の集中を防止し、両端部120での裂け目の発生を防止することができ、延伸フィルムの生産性を向上させることができる。 In the present embodiment, it is preferable to smooth the side surfaces of both end portions 120 before heating and stretching the pre-stretch film 100 formed by the pre-stretch film forming step. By smoothing the side surfaces of both end portions 120 of the pre-stretching film 100, when the pre-stretching film 100 is heated and stretched by pulling the both end portions 120 of the pre-stretching film 100 in the stretching step, Concentration of local stress due to roughness can be prevented, generation of tears at both ends 120 can be prevented, and productivity of the stretched film can be improved.

 延伸前フィルム100の両端部120の側面を平滑化する方法としては、特に限定されないが、両端部120の両側面から所定幅をカッターによりトリミングする方法、両端部120の端部を研磨する方法、両端部120の端部を加熱押圧成形する方法などを用いることができる。なお、両端部120の側面の平滑化は、両端部120の側面の凹凸を低減させ、延伸前フィルム100を長さ方向に引っ張った際に、両端部120の一部に応力が集中しなくなる程度に行えばよい。 The method for smoothing the side surfaces of both end portions 120 of the unstretched film 100 is not particularly limited, but a method of trimming a predetermined width from both side surfaces of both end portions 120 with a cutter, a method for polishing the end portions of both end portions 120, For example, a method of heat-pressing the end portions of the both end portions 120 can be used. The smoothing of the side surfaces of both end portions 120 reduces the unevenness of the side surfaces of both end portions 120, and when the pre-stretch film 100 is pulled in the length direction, stress is not concentrated on a part of both end portions 120. You can go to

 延伸前フィルム100の両端部120をカッターによりトリミングする場合には、カッターとしては、トリミングによって両端部120の側面を良好に平滑化できるものであれば何でもよく、たとえば、レザー刃や、円形の上刃と下刃とを擦り合わせながら連続回転させて剪断により切断を行うロータリーシェアカッターや、固体レーザー、半導体レーザー、液体レーザーまたは気体レーザーなどを使用したレーザーカッターなどを用いることができるが、トリミング時に延伸前フィルム100に加わる応力を低減することができ、トリミング時における延伸前フィルム100への亀裂の発生を防止することができるという観点より、レーザーカッターが好ましい。 When trimming the both ends 120 of the unstretched film 100 with a cutter, any cutter can be used as long as it can smoothly smooth the side surfaces of both ends 120 by trimming. You can use a rotary shear cutter that continuously rotates while rubbing the blade and lower blade and cut by shearing, or a laser cutter that uses a solid laser, semiconductor laser, liquid laser, gas laser, etc. From the viewpoint that the stress applied to the pre-stretching film 100 can be reduced and the occurrence of cracks in the pre-stretching film 100 during trimming can be prevented, a laser cutter is preferable.

 なお、延伸前フィルム100の両端部120をトリミングする際には、両端部120を加熱しながらトリミングすることが好ましい。これにより、両端部120の側面をより平滑なものとすることができ、延伸前フィルム100を加熱延伸する際における延伸前フィルム100の破断をより適切に防止することができる。 In addition, when trimming both end portions 120 of the pre-stretched film 100, it is preferable to trim the both end portions 120 while heating. Thereby, the side surfaces of both end portions 120 can be made smoother, and breakage of the pre-stretching film 100 when the pre-stretching film 100 is heated and stretched can be more appropriately prevented.

 また、上述した例においては、延伸前フィルム100を加熱延伸する方法として、図5に示すように、延伸前フィルム100を、長さ方向および幅方向の両方向に加熱延伸する同時二軸延伸法を用いる例を示したが、本実施形態においては、延伸前フィルム100を、長さ方向のみに一軸延伸する方法を用いてもよい。 Moreover, in the example mentioned above, as shown in FIG. 5, as a method of heating and stretching the pre-stretching film 100, a simultaneous biaxial stretching method in which the pre-stretching film 100 is heated and stretched in both the length direction and the width direction is used. Although the example used is shown, in this embodiment, you may use the method of uniaxially stretching the film 100 before extending | stretching only to a length direction.

 この際においては、延伸前フィルム100の長さ方向への加熱延伸は、図5に示す同時二軸延伸法と同様にして行うことができる。すなわち、延伸前フィルム100をクリップ310で把持しながら延伸炉320内に搬送し、その後、延伸炉320内にて、延伸前フィルム100を把持しているクリップ310により、長さ方向のみに加熱延伸を行う方法を用いることができる。 In this case, the heat stretching in the length direction of the pre-stretching film 100 can be performed in the same manner as the simultaneous biaxial stretching method shown in FIG. That is, the film 100 before stretching is conveyed into the stretching furnace 320 while being gripped by the clip 310, and then heated and stretched only in the length direction by the clip 310 gripping the film 100 before stretching in the stretching furnace 320. Can be used.

 本実施形態においては、長さ方向および幅方向に同時二軸延伸を行う場合や、長さ方向のみに一軸延伸を行う場合のいずれにおいても、図5に示すように延伸前フィルム100をクリップ310で把持しながら延伸を行うことにより、従来より用いられている逐次二軸延伸法と比較して、延伸フィルムの生産性を向上させることができ、さらに得られる延伸フィルムを品質に優れたものとすることができる。 In this embodiment, in both cases where simultaneous biaxial stretching is performed in the length direction and width direction, and when uniaxial stretching is performed only in the length direction, the unstretched film 100 is clipped 310 as shown in FIG. By stretching while gripping with, it is possible to improve the productivity of the stretched film compared to the conventional sequential biaxial stretching method, and the obtained stretched film has excellent quality can do.

 なお、従来の逐次二軸延伸法は、図1に示す方法により作製された延伸前フィルム100を、まず長さ方向に加熱延伸し、その後、幅方向に加熱延伸を行う方法である。逐次二軸延伸法においては、延伸前フィルム100を複数のロールによって搬送することで長さ方向に加熱延伸した後、図5に示すようにして、延伸前フィルム100をクリップ310で把持しながら幅方向に加熱延伸する。 Note that the conventional sequential biaxial stretching method is a method in which the pre-stretching film 100 produced by the method shown in FIG. 1 is first heat stretched in the length direction and then heat stretched in the width direction. In the sequential biaxial stretching method, the film 100 before stretching is heated and stretched in the length direction by being conveyed by a plurality of rolls, and then the width of the film 100 while being held by the clip 310 as shown in FIG. Heat stretch in the direction.

 ここで、逐次二軸延伸法における延伸前フィルム100の長さ方向への延伸は、具体的には次のようにして行われる。すなわち、逐次二軸延伸法によれば、延伸前フィルム100を予め加熱された複数の予熱ロールにより搬送しながら、延伸前フィルム100を構成する熱可塑性樹脂のガラス転移温度程度まで予備加熱し、予備加熱した延伸前フィルム100を、赤外線ヒータなどにより保熱しながら、連続的に冷却ロールにより搬送する。この際において、冷却ロールによる搬送速度を、予熱帯ロールによる搬送速度よりも速くすることで、予熱帯ロールと冷却ロールとの間で張力が発生し、この張力を利用して、延伸前フィルム100を長さ方向に必要な延伸倍率まで延伸させる。 Here, the stretching in the length direction of the pre-stretching film 100 in the sequential biaxial stretching method is specifically performed as follows. That is, according to the sequential biaxial stretching method, the pre-stretching film 100 is preheated to the glass transition temperature of the thermoplastic resin constituting the pre-stretching film 100 while being transported by a plurality of preheated preheated rolls. The heated unstretched film 100 is continuously transported by a cooling roll while keeping heat by an infrared heater or the like. At this time, by making the conveyance speed by the cooling roll faster than the conveyance speed by the pre-tropical roll, a tension is generated between the pre-tropical roll and the cooling roll. Is stretched in the length direction to a necessary stretching ratio.

 ここで、逐次二軸延伸法においては、延伸前フィルム100を長さ方向に延伸する際に、延伸前フィルム100の表面が、予熱ロールおよび冷却ロールに触れることとなるため、延伸前フィルム100の表面に擦り傷が発生してしまい、得られる延伸フィルムの外観品質が低下してしまうおそれがある。また、逐次二軸延伸法においては、延伸前フィルム100を長さ方向に加熱延伸する際に、延伸前フィルム100の両端部120がクリップなどで固定されていないため、延伸前フィルム100が熱により幅方向に収縮してしまい、延伸フィルムの生産性が低下してしまうおそれがある。 Here, in the sequential biaxial stretching method, when the pre-stretching film 100 is stretched in the length direction, the surface of the pre-stretching film 100 comes into contact with the preheating roll and the cooling roll. Scratches may occur on the surface, and the appearance quality of the obtained stretched film may be deteriorated. Further, in the sequential biaxial stretching method, when the film 100 before stretching is heated and stretched in the length direction, since the both ends 120 of the film 100 before stretching are not fixed with clips or the like, the film 100 before stretching is heated. There exists a possibility that it may shrink | contract in the width direction and productivity of a stretched film may fall.

 これに対し、本実施形態によれば、延伸前フィルム100について、長さ方向への延伸を、上述した同時二軸延伸法、または上述した長さ方向のみに一軸延伸する方法を用いて行うことにより(すなわち、図5に示すように、延伸前フィルム100をクリップ310で把持しながら、長さ方向に延伸を行う方法を用いて行うことにより)、ロールとの接触を回避することができるため、延伸前フィルム100を加熱延伸して得られる延伸フィルムについて、表面の擦り傷を低減することで外観品質を向上させることができ、特に、外観品質の要求が厳しい光学フィルムなどに好適に用いることができる。さらに、本実施形態によれば、延伸前フィルム100を長さ方向に延伸する際に、延伸前フィルム100をクリップ310で把持しているため、延伸前フィルム100について、熱による幅方向の収縮を防止することができ、延伸フィルムの生産性を向上させることができる。 On the other hand, according to this embodiment, the film 100 before stretching is stretched in the length direction by using the simultaneous biaxial stretching method described above or the method of uniaxial stretching only in the length direction described above. (That is, by using a method of stretching in the length direction while holding the pre-stretching film 100 with the clip 310 as shown in FIG. 5), it is possible to avoid contact with the roll. The stretched film obtained by heating and stretching the pre-stretched film 100 can improve the appearance quality by reducing the scratches on the surface, and is particularly suitable for use in optical films and the like that have strict requirements on the appearance quality. it can. Furthermore, according to this embodiment, since the film 100 before extending | stretching is hold | gripped with the clip 310 when extending | stretching the film 100 before extending | stretching to a length direction, about the film 100 before extending | stretching, the shrinkage | contraction of the width direction by a heat | fever is carried out. This can be prevented and the productivity of the stretched film can be improved.

<<第2実施形態>>
 次いで、図面に基づいて、本発明の第2実施形態について説明する。
 第2実施形態に係る延伸フィルムの製造方法は、第1の熱可塑性樹脂PA、および第1の熱可塑性樹脂とは異なる第2の熱可塑性樹脂PCを、成形用のTダイスによって溶融共押出しすることにより延伸前フィルム(複合フィルム)を形成する延伸前フィルム形成工程と、この延伸前フィルムを、長さ方向および幅方向に加熱延伸する延伸工程と、を備える。
<< Second Embodiment >>
Next, a second embodiment of the present invention will be described based on the drawings.
In the method for producing a stretched film according to the second embodiment, the first thermoplastic resin PA and the second thermoplastic resin PC different from the first thermoplastic resin are melt-coextruded by a molding T die. The film formation process before extending | stretching which forms the film (composite film) before extending | stretching by this, and the extending process which heat-extends this film before extending | stretching to a length direction and the width direction are provided.

<延伸前フィルム形成工程>
 延伸前フィルム形成工程は、第1の熱可塑性樹脂PAおよび第2の熱可塑性樹脂PCを、Tダイスから溶融共押出しすることで延伸前フィルム100を形成する工程である。ここで、図7は、延伸前フィルム形成工程を説明するための図である。本実施形態においては、延伸前フィルム100として、図7に示すように、延伸前フィルム100の幅方向内側に位置する内側領域を形成する第1の熱可塑性樹脂PAと、延伸前フィルム100の幅方向外側に位置する外側領域を形成する第2の熱可塑性樹脂PCとからなるフィルムを得る。本実施形態では、第1の熱可塑性樹脂PAにより形成される内側領域が、上述した第1実施形態の中央部110と一致し、第2の熱可塑性樹脂PCにより形成される外側領域が、上述した第1実施形態の両端部120と一致する例を示すが、内側領域および外側領域は、それぞれ中央部110および両端部120と不一致であってもよい。たとえば、後述する図13に示すように、第1の熱可塑性樹脂PAからなる内側領域が、第2の熱可塑性樹脂PCからなる外側領域の一部を覆う形状となり、内側領域および外側領域が、それぞれ中央部110および両端部120と不一致であってもよい。
 なお、延伸前フィルム100の中央部110は、後述する延伸工程により加熱延伸されることで延伸フィルムとなる部分である。また、延伸前フィルム100の両端部120は、延伸前フィルム100の加熱延伸を行う際に中央部110を補強するためのものであり、延伸前フィルム100を加熱延伸した後に必要に応じて切断して除去することができる。延伸前フィルム100を切断する際には中央部110の両端の一部を切断することで両端部120を完全に除去することが望ましい。この場合には、中央部110の両端の一部も除去することになるが、後述するクリップ310で把持された部分は全て除去することが好ましい。
<Film forming step before stretching>
The pre-stretching film forming step is a step of forming the pre-stretching film 100 by melt coextruding the first thermoplastic resin PA and the second thermoplastic resin PC from a T die. Here, FIG. 7 is a figure for demonstrating the film formation process before extending | stretching. In the present embodiment, as shown in FIG. 7, as the pre-stretch film 100, the first thermoplastic resin PA that forms an inner region located on the inner side in the width direction of the pre-stretch film 100, and the width of the pre-stretch film 100 A film made of the second thermoplastic resin PC forming the outer region located on the outer side in the direction is obtained. In the present embodiment, the inner region formed by the first thermoplastic resin PA coincides with the central portion 110 of the first embodiment described above, and the outer region formed by the second thermoplastic resin PC is the above-mentioned. Although the example which corresponds with the both ends 120 of 1st Embodiment was shown, an inner side area | region and an outer side area | region may be inconsistent with the center part 110 and the both ends 120, respectively. For example, as shown in FIG. 13 to be described later, the inner region made of the first thermoplastic resin PA has a shape covering a part of the outer region made of the second thermoplastic resin PC, and the inner region and the outer region are It may be inconsistent with the center part 110 and the both end parts 120, respectively.
In addition, the center part 110 of the film 100 before extending | stretching is a part which becomes a stretched film by heat-stretching by the extending process mentioned later. Further, both end portions 120 of the unstretched film 100 are for reinforcing the central portion 110 when the unstretched film 100 is heated and stretched, and are cut as necessary after the unstretched film 100 is stretched by heating. Can be removed. When cutting the unstretched film 100, it is desirable to completely remove both ends 120 by cutting part of both ends of the central portion 110. In this case, a part of both ends of the central portion 110 is also removed, but it is preferable to remove all portions held by the clip 310 described later.

 延伸前フィルム形成工程においては、まず、第1の熱可塑性樹脂PAおよび第2の熱可塑性樹脂PCを、加熱溶融させた状態で、フィードブロック210を通じてTダイス220に供給する。 In the pre-stretching film forming step, first, the first thermoplastic resin PA and the second thermoplastic resin PC are supplied to the T dice 220 through the feed block 210 in a state of being heated and melted.

 本実施形態においては、フィードブロック210には、第1の熱可塑性樹脂PAを溶融押出するための第1の溶融押出機(不図示)と、第2の熱可塑性樹脂PCを溶融押出するための第2の溶融押出機(不図示)がそれぞれ連結されている。これらの溶融押出機としては、特に限定されず、単軸押出機、二軸押出機のいずれも用いることができる。そして、本実施形態においては、第1の熱可塑性樹脂PAおよび第2の熱可塑性樹脂PCを、各溶融押出機により、それぞれ、融点(溶融)温度以上の温度で溶融押出することで、フィードブロック210に供給する。 In the present embodiment, the feed block 210 includes a first melt extruder (not shown) for melt-extruding the first thermoplastic resin PA and a melt-extrusion for the second thermoplastic resin PC. Second melt extruders (not shown) are connected to each other. These melt extruders are not particularly limited, and any of a single screw extruder and a twin screw extruder can be used. In the present embodiment, the first thermoplastic resin PA and the second thermoplastic resin PC are melt-extruded at a temperature equal to or higher than the melting point (melting) temperature by the respective melt extruders, thereby providing a feed block. 210 is supplied.

 なお、フィードブロック210から、第1の熱可塑性樹脂PAおよび第2の熱可塑性樹脂PCをTダイス220に供給する際においては、Tダイス220により得られる延伸前フィルム100が、図7に示すように、第1の熱可塑性樹脂PAからなる中央部110の両端に、第2の熱可塑性樹脂PCからなる両端部120が形成された構成となるように、第1の熱可塑性樹脂PAおよび第2の熱可塑性樹脂PCの供給を行う。 When the first thermoplastic resin PA and the second thermoplastic resin PC are supplied from the feed block 210 to the T dice 220, the unstretched film 100 obtained by the T dice 220 is as shown in FIG. In addition, the first thermoplastic resin PA and the second thermoplastic resin PA and the second thermoplastic resin PA are formed such that both end portions 120 made of the second thermoplastic resin PC are formed at both ends of the central portion 110 made of the first thermoplastic resin PA. The thermoplastic resin PC is supplied.

 具体的には、フィードブロック210には、第1の熱可塑性樹脂PAを供給するための入口と、第1の熱可塑性樹脂PAを供給するための入口に対して、Tダイス220の拡幅方向における両脇に、第2の熱可塑性樹脂PCを供給するための入口とが別々に設けられている。そして、本実施形態では、フィードブロック210の入口からそれぞれ流入させた第1の熱可塑性樹脂PAおよび第2の熱可塑性樹脂PCは、フィードブロック210内で合流し、フィードブロック210の出口において、Tダイス220の拡幅方向に対して、中央部分に第1の熱可塑性樹脂PAが流れ、この第1の熱可塑性樹脂PAの両端部分に第2の熱可塑性樹脂PCが流れるような態様で流出させ、Tダイス220に供給するようになっている。 Specifically, the feed block 210 has an inlet for supplying the first thermoplastic resin PA and an inlet for supplying the first thermoplastic resin PA in the widening direction of the T die 220. On both sides, an inlet for supplying the second thermoplastic resin PC is separately provided. In the present embodiment, the first thermoplastic resin PA and the second thermoplastic resin PC respectively introduced from the inlet of the feed block 210 are merged in the feed block 210, and at the outlet of the feed block 210, T With respect to the widening direction of the die 220, the first thermoplastic resin PA flows in the central portion, and the second thermoplastic resin PC flows out in a manner such that the second thermoplastic resin PC flows in both end portions of the first thermoplastic resin PA. This is supplied to the T dice 220.

 そして、Tダイス220において、フィードブロック210から供給された第1の熱可塑性樹脂PAおよび第2の熱可塑性樹脂PCが、Tダイス220内に設けられたマニホールド221により、幅方向(第1の熱可塑性樹脂PAおよび第2の熱可塑性樹脂PCが並んでいる方向)に拡幅し、これにより、ダイスリップ222からシート形状に共押出しされる。 In the T die 220, the first thermoplastic resin PA and the second thermoplastic resin PC supplied from the feed block 210 are fed in the width direction (first thermal resin) by the manifold 221 provided in the T die 220. In the direction in which the plastic resin PA and the second thermoplastic resin PC are lined up), and thereby co-extruded from the die slip 222 into a sheet shape.

 次いで、共押出ししたシート状の第1の熱可塑性樹脂PAおよび第2の熱可塑性樹脂PCを、図7に示すように、連続的にタッチロール230および冷却ロール240によって引取り、挟圧して冷却および固化させることにより、第1の熱可塑性樹脂PAからなる中央部110と、中央部110の両端に形成され、第2の熱可塑性樹脂PCからなる両端部120とを備えた延伸前フィルム100を作製する。 Next, the co-extruded sheet-like first thermoplastic resin PA and second thermoplastic resin PC are continuously taken up by the touch roll 230 and the cooling roll 240 as shown in FIG. And by solidifying the pre-stretched film 100 provided with a central portion 110 made of the first thermoplastic resin PA and both end portions 120 formed at both ends of the central portion 110 and made of the second thermoplastic resin PC. Make it.

 そして、本実施形態においては、作製した延伸前フィルム100は、延伸前フィルム巻取りロール(不図示)によって巻き取られるようになっており、これにより延伸前フィルム100を連続的に得ることができる。 And in this embodiment, the produced film 100 before extending | stretching is wound up by the film winding roll (not shown) before extending | stretching, and, thereby, the film 100 before extending | stretching can be obtained continuously. .

 なお、このようにして得られる第1の熱可塑性樹脂PAおよび第2の熱可塑性樹脂PCからなる延伸前フィルム100においても、上述した第1実施形態における単独の熱可塑性樹脂からなる延伸前フィルム100と同様に、Tダイス220のダイスリップ222から溶融押出されてから冷却ロール240によって引取られるまでの間に、幅方向に収縮するネックインと呼ばれる現象が発生する。 In addition, also in the film 100 before extending | stretching which consists of 1st thermoplastic resin PA and 2nd thermoplastic resin PC which are obtained in this way, the film 100 before extending | stretching which consists of a single thermoplastic resin in 1st Embodiment mentioned above. In the same manner as described above, a phenomenon called neck-in that shrinks in the width direction occurs after being melt-extruded from the die slip 222 of the T die 220 and taken up by the cooling roll 240.

 ここで、図8は、Tダイス220のダイスリップ222、および本実施形態において形成される延伸前フィルム100の断面を示す図であり、ダイスリップ222の幅方向の寸法と、形成される延伸前フィルム100の幅との関係を表している。本実施形態においては、延伸前フィルム100を形成する際には、第1の熱可塑性樹脂PAおよび第2の熱可塑性樹脂PCは、Tダイス220によりダイスリップ222の幅で溶融押出されるが、溶融押出されてから冷却ロール240によって引取られるまでの間に、図8に示す矢印のとおり、幅方向に収縮するネックインが発生し、得られる延伸前フィルム100の幅は、ダイスリップ222の幅方向の寸法より小さくなる。 Here, FIG. 8 is a diagram showing a cross section of the die slip 222 of the T-die 220 and the pre-stretching film 100 formed in the present embodiment, and the dimensions in the width direction of the die slip 222 and the pre-stretching formed. The relationship with the width of the film 100 is shown. In the present embodiment, when the pre-stretch film 100 is formed, the first thermoplastic resin PA and the second thermoplastic resin PC are melt-extruded by the T die 220 with the width of the die slip 222. Neck-in that shrinks in the width direction occurs as indicated by the arrow shown in FIG. 8 after being melt extruded and taken up by the cooling roll 240, and the width of the film 100 before stretching is the width of the die slip 222. Smaller than the direction dimension.

 なお、このようなネックインは、Tダイス220から溶融押出された熱可塑性樹脂が、図8に示す矢印の向きに収縮する、すなわち、延伸前フィルム100の中央部110となる部分(すなわち、延伸前フィルム100の幅方向の内側領域)が矢印で示すように厚み方向に収縮し、延伸前フィルム100の両端部120となる部分(すなわち、延伸前フィルム100の幅方向の外側領域)が矢印で示すように厚み方向および幅方向に収縮することによって発生する。そして、Tダイス220から溶融押出された第1の熱可塑性樹脂PAおよび第2の熱可塑性樹脂PCは、ネックインによって収縮することにより、断面形状が図8示すようなものとなる。 Such a neck-in is a portion where the thermoplastic resin melt-extruded from the T-die 220 contracts in the direction of the arrow shown in FIG. The inner region in the width direction of the front film 100 is shrunk in the thickness direction as indicated by the arrows, and the portions (that is, the outer regions in the width direction of the pre-stretching film 100) that are both ends 120 of the pre-stretching film 100 are indicated by the arrows As shown, it is generated by shrinking in the thickness direction and width direction. Then, the first thermoplastic resin PA and the second thermoplastic resin PC melt-extruded from the T die 220 are contracted by neck-in, so that the cross-sectional shape becomes as shown in FIG.

 ここで、図9は、溶融押出された第1の熱可塑性樹脂PAおよび第2の熱可塑性樹脂PCの収縮について説明するための図である。本実施形態においては、Tダイス220から溶融押出された第1の熱可塑性樹脂PAおよび第2の熱可塑性樹脂PCは、図9に示すように、延伸前フィルム100の中央部110となる部分(幅方向の内側領域)では、隣接する熱可塑性樹脂の存在により熱可塑性樹脂の流動方向が制限され、これにより、熱可塑性樹脂が、厚み方向中央位置または中央位置近傍に位置する面αに沿って伸長する平面伸長により、矢印で示すとおり厚み方向に収縮する。一方、Tダイス220から溶融押出された熱可塑性樹脂は、延伸前フィルム100の両端部120となる部分(幅方向の外側領域)では、図9に示すように、両端部120の外側の側面には隣接する熱可塑性樹脂が存在しないため、熱可塑性樹脂が比較的自由に流動し、これにより、両端部120の中心または中心位置近傍を通る軸βを中心として伸長する一軸伸長により、矢印で示すとおり厚み方向に加えて幅方向にも収縮する。これにより、中央部110と両端部120との間、すなわち、幅方向の内側領域と外側領域の間には、熱可塑性樹脂の収縮形態の差異により、厚み方向に凹んだ形状の境界部130が形成される。 Here, FIG. 9 is a diagram for explaining the shrinkage of the melt-extruded first thermoplastic resin PA and second thermoplastic resin PC. In the present embodiment, the first thermoplastic resin PA and the second thermoplastic resin PC melt-extruded from the T-die 220 are portions that become the central portion 110 of the pre-stretch film 100 (see FIG. 9). In the inner region in the width direction), the flow direction of the thermoplastic resin is limited by the presence of the adjacent thermoplastic resin, so that the thermoplastic resin is aligned along the plane α located at or near the center of the thickness direction. Due to the planar expansion, the film contracts in the thickness direction as indicated by the arrow. On the other hand, the thermoplastic resin melt-extruded from the T-die 220 is formed on the outer side surfaces of both end portions 120 as shown in FIG. Since the adjacent thermoplastic resin does not exist, the thermoplastic resin flows relatively freely, and as a result, the uniaxial extension extending about the axis β passing through the center of the both ends 120 or near the center position is indicated by an arrow. As well as shrinking in the width direction in addition to the thickness direction. Thereby, between the center part 110 and the both ends 120, that is, between the inner region and the outer region in the width direction, a boundary portion 130 having a shape recessed in the thickness direction is formed due to the difference in the shrinking form of the thermoplastic resin. It is formed.

 そのため、図7に示す方法により形成される延伸前フィルム100は、図10に示すように、中央部110と両端部120との間の境界部130が、特に厚みが薄くなってしまう。なお、図10は、延伸前フィルム100について、幅方向の位置に対する厚みを測定した結果の一例を示す図である。 Therefore, in the pre-stretch film 100 formed by the method shown in FIG. 7, the boundary portion 130 between the central portion 110 and both end portions 120 is particularly thin as shown in FIG. In addition, FIG. 10 is a figure which shows an example of the result of having measured the thickness with respect to the position of the width direction about the film 100 before extending | stretching.

 ここで、形成した延伸前フィルム100について、境界部130の厚みが、中央部110の厚みに対して薄くなりすぎると、延伸工程にて延伸前フィルム100を加熱延伸する際に、厚みが薄い境界部130に亀裂が発生し易くなり、適切に加熱延伸を行うことができなくなってしまうという問題がある。 Here, when the thickness of the boundary portion 130 of the formed pre-stretching film 100 is too thin with respect to the thickness of the central portion 110, the boundary where the thickness is thin when the pre-stretching film 100 is heat stretched in the stretching step. There is a problem that cracks are likely to occur in the portion 130 and heating and stretching cannot be performed appropriately.

 これに対し、本実施形態においては、Tダイス220により溶融押出しし、冷却ロール240によって引取ることにより形成した延伸前フィルム100について、図10に示すように、中央部110の平均厚みをtとし、境界部130の極小厚みをtとした場合に、これらの厚みの比「t/t」を0.75以上に調整することにより、後述するように、延伸前フィルム100を加熱延伸する際における、境界部130の亀裂を有効に防止することができ、延伸フィルムの生産性を向上させることができる。 On the other hand, in this embodiment, as shown in FIG. 10, the average thickness of the central portion 110 is t c for the unstretched film 100 formed by being melt-extruded by the T-die 220 and taken by the cooling roll 240. When the minimum thickness of the boundary 130 is t b , the ratio of these thicknesses “t b / t c ” is adjusted to 0.75 or more to heat the unstretched film 100 as will be described later. When stretching, the boundary 130 can be effectively prevented from cracking, and the productivity of the stretched film can be improved.

 なお、図10に示す中央部110の平均厚みtとしては、中央部110の厚みが安定している部分の厚みの平均値とし、たとえば、中央部110の中心を基準として、厚みが±5~10%以内の領域における厚みの平均値とすることができる。また、境界部130の極小厚みtとしては、延伸前フィルム100における2か所の境界部130の極小厚みのうち、より薄い方の厚みとする。 Note that the average thickness t c of the central portion 110 shown in FIG. 10 is the average value of the thickness of the portion where the thickness of the central portion 110 is stable. For example, the thickness is ± 5 based on the center of the central portion 110. It can be an average value of thickness in a region within ˜10%. As the minimum thickness t b of the boundary portion 130, of the two minimum thickness of the boundary portion 130 of the pre-stretch film 100, a more thinner thickness.

<延伸工程>
 延伸工程は、延伸前フィルム形成工程により得られた延伸前フィルム100を、長さ方向および幅方向に加熱延伸する工程である。ここで、図11は、延伸工程を説明するための図である。本実施形態においては、延伸工程では、上述した延伸前フィルム巻取りロールから延伸前フィルム100を送り出し、図11に示すように、延伸前フィルム100の両端部120をクリップ310で把持しながら長さ方向および幅方向に同時に延伸する同時二軸延伸法により、延伸前フィルム100の加熱延伸を行う。
<Extension process>
The stretching step is a step of heating and stretching the pre-stretching film 100 obtained by the pre-stretching film forming step in the length direction and the width direction. Here, FIG. 11 is a figure for demonstrating an extending process. In the present embodiment, in the stretching step, the unstretched film winding roll 100 is fed out from the unstretched film take-up roll described above, and the length of the stretched film 100 is gripped by the clips 310 as shown in FIG. The film 100 before stretching is heated and stretched by a simultaneous biaxial stretching method in which the film and the width direction are simultaneously stretched.

 具体的には、延伸工程では、延伸前フィルム巻取りロールから延伸前フィルム100を連続的に送り出し、複数のクリップを用いて延伸前フィルム100の両端部120を一定間隔ごとに把持し、各クリップ310により延伸前フィルム100を延伸炉320内に搬送し、延伸炉320内において、各クリップ310により延伸前フィルム100を長さ方向および幅方向に引っ張って延伸する。この際においては、延伸前フィルム100は、クリップ310により把持された状態のまま搬送されることで、延伸炉320内を通過するようになっており、延伸炉320内の予熱帯にて、延伸前フィルム100は、これを構成する両端部120における第2の熱可塑性樹脂PCのガラス転移温度よりも10~30℃程度高い温度まで予備加熱された後、延伸炉320内の延伸帯にて、保熱されたままクリップ310により長さ方向および幅方向に引っ張られて、長さ方向および幅方向に延伸される。そして、これに続く、冷却熱固定帯において冷却および固化されることにより、延伸フィルムを得ることができる。そして、クリップ310を開放し、ロールにて巻き取られることで、連続的に延伸フィルムを得ることができる。 Specifically, in the stretching step, the unstretched film 100 is continuously fed out from the unstretched film winding roll, and the two ends 120 of the unstretched film 100 are gripped at regular intervals using a plurality of clips. The unstretched film 100 is conveyed into the stretching furnace 320 by 310, and in the stretching furnace 320, the unstretched film 100 is pulled in the length direction and the width direction by the respective clips 310. At this time, the unstretched film 100 is transported while being held by the clip 310, so that it passes through the stretching furnace 320, and is stretched in the pre-tropical zone in the stretching furnace 320. The pre-film 100 is preheated to a temperature about 10 to 30 ° C. higher than the glass transition temperature of the second thermoplastic resin PC at both ends 120 constituting the front film 100, and then in the stretching zone in the stretching furnace 320, It is pulled in the length direction and the width direction by the clip 310 while keeping heat, and is stretched in the length direction and the width direction. And a stretched film can be obtained by cooling and solidifying in the cooling heat fixed zone following this. And the stretched film can be obtained continuously by opening the clip 310 and winding up with a roll.

 なお、本実施形態においては、延伸炉320内を通過するようにして、クリップ310が移動するための一対のガイドレールが設置されている。一対のガイドレールは、図11に示す延伸前フィルム100の上側の両端部120を把持するクリップ310の位置と、下側の両端部120を把持するクリップ310の位置にそれぞれ設置されており、延伸炉320内の予熱帯では互いに平行であり、延伸帯では互いに延伸前フィルム100の幅方向に離れていき、冷却熱固定帯ではまた互いに平行となっている。あるいは、冷却熱固定帯においては、延伸帯にて加熱延伸された延伸フィルムの固化時の収縮分を考慮して、冷却熱固定帯内で、一対のガイドレール同士の距離を、延伸帯の出側における延伸フィルムの幅を基準として、幅方向に数%程度近づけるようにしてもよい。本実施形態においては、延伸前フィルム100の両端部120を把持したクリップ310が、このようなガイドレールに沿って移動することで、延伸前フィルム100を搬送および延伸できるようになっている。 In the present embodiment, a pair of guide rails for moving the clip 310 so as to pass through the drawing furnace 320 is provided. The pair of guide rails are respectively installed at the position of the clip 310 that holds the upper ends 120 of the pre-stretch film 100 shown in FIG. 11 and the position of the clip 310 that holds the lower ends 120. In the pre-tropical zone in the furnace 320, they are parallel to each other, in the stretching zone, they are separated from each other in the width direction of the pre-stretching film 100, and in the cooling heat fixing zone, they are also parallel to each other. Alternatively, in the cooling heat fixing band, the distance between the pair of guide rails in the cooling heat fixing band is determined in consideration of the shrinkage when the stretched film heated and stretched in the stretching band is solidified. On the basis of the width of the stretched film on the side, it may be approximated by several percent in the width direction. In the present embodiment, the clip 310 that holds the both end portions 120 of the unstretched film 100 moves along such guide rails so that the unstretched film 100 can be conveyed and stretched.

 本実施形態においては、このようなガイドレールに沿って移動するクリップ310を用いて、延伸炉320内の延伸帯にて、延伸前フィルム100を延伸する。すなわち、延伸炉320内の延伸帯にて、延伸前フィルム100の両端部120を把持したクリップ310を、ガイドレールに沿って幅方向に広がるようにして移動させ、併せてクリップ310同士の間隔を広げる制御を行うことで、延伸前フィルム100の両端部120を、図11に示す矢印のように長さ方向および幅方向に引っ張る。これにより、延伸前フィルム100の中央部110および両端部120が、それぞれ長さ方向および幅方向に、必要な延伸倍率となるまで加熱延伸される。そして、加熱延伸された延伸前フィルム100は、延伸炉320内の冷却熱固定帯において冷却および固化され、延伸炉320の外に設置されたロールによって巻き取られるようになっており、これにより連続的に延伸フィルムを得ることができる。 In this embodiment, the pre-stretching film 100 is stretched in the stretching zone in the stretching furnace 320 using the clip 310 that moves along such a guide rail. That is, in the stretching zone in the stretching furnace 320, the clip 310 holding the both ends 120 of the unstretched film 100 is moved so as to spread in the width direction along the guide rail, and the interval between the clips 310 is also increased. By performing the spreading control, both end portions 120 of the unstretched film 100 are pulled in the length direction and the width direction as indicated by arrows in FIG. Thereby, the center part 110 and the both ends 120 of the film 100 before extending | stretching are heat-stretched until it becomes a draw ratio required in a length direction and the width direction, respectively. And the film 100 before extending | stretching heat-stretched is cooled and solidified in the cooling heat fixed zone in the extending furnace 320, and is wound up with the roll installed outside the extending furnace 320, and, thereby, continuous Thus, a stretched film can be obtained.

 なお、本実施形態においては、延伸工程と、延伸前フィルム形成工程とを一貫した連続ライン(工程)とし、延伸フィルムを得ることも可能である。 In this embodiment, it is possible to obtain a stretched film by making the stretching step and the pre-stretching film forming step into a continuous line (step).

 また、本実施形態においては、加熱延伸後の延伸前フィルム100の中央部110の厚みは、好ましくは15~50μm、より好ましくは20~40μmである。加熱延伸後の延伸前フィルム100の中央部110の厚みを上記範囲に制御することにより、加熱延伸中における延伸前フィルム100の破断を防止し、延伸前フィルム100の加熱延伸を適切に行うことができる。 In the present embodiment, the thickness of the central portion 110 of the unstretched film 100 after heat stretching is preferably 15 to 50 μm, more preferably 20 to 40 μm. By controlling the thickness of the central portion 110 of the pre-stretching film 100 after heat stretching within the above range, it is possible to prevent the pre-stretching film 100 from being broken during the heat stretching and appropriately heat-stretch the pre-stretching film 100. it can.

 また、本実施形態においては、延伸前フィルム100を加熱延伸して得られた延伸フィルムについて、必要に応じて両端部120の部分を切断して除去してもよい。これにより、延伸フィルムを、中央部110のみからなるフィルムとすることができる。 In the present embodiment, the stretched film obtained by heating and stretching the pre-stretched film 100 may be removed by cutting both ends 120 as necessary. Thereby, a stretched film can be made into the film which consists only of the center part 110. FIG.

 以上のようにして、本実施形態においては、延伸前フィルム形成工程により、第1の熱可塑性樹脂PAからなる中央部110と、第2の熱可塑性樹脂PCからなる両端部120とを備える延伸前フィルム100を形成し、延伸工程により延伸前フィルム100の中央部110および両端部120を加熱延伸することにより、延伸フィルムを得ることができる。 As described above, in the present embodiment, before stretching, the pre-stretching film forming step includes the central portion 110 made of the first thermoplastic resin PA and the both end portions 120 made of the second thermoplastic resin PC. A stretched film can be obtained by forming the film 100 and heating and stretching the central portion 110 and both end portions 120 of the unstretched film 100 by a stretching step.

 ここで、本実施形態においては、延伸前フィルム形成工程により延伸前フィルム100を形成する際には、中央部110の平均厚みtと、境界部130の極小厚みtとの比「t/t」が0.75以上となるように延伸前フィルム100の厚みを調整する。これにより、延伸工程にて延伸前フィルム100を加熱延伸する際に、厚みが薄い境界部130における亀裂の発生を有効に防止することができ、延伸フィルムの生産性を向上させることができる。 Here, in the present embodiment, when the pre-stretch film 100 is formed by the pre-stretch film forming step, the ratio “t b ” between the average thickness t c of the central portion 110 and the minimum thickness t b of the boundary portion 130. The thickness of the unstretched film 100 is adjusted so that “/ t c ” is 0.75 or more. Thereby, when heat-stretching the film 100 before extending | stretching at an extending | stretching process, generation | occurrence | production of the crack in the boundary part 130 with thin thickness can be prevented effectively, and productivity of a stretched film can be improved.

 なお、延伸前フィルム100を加熱延伸する際においては、延伸前フィルム100のうち境界部130は、厚みが薄いことにより延伸に必要な延伸応力が低く、優先的に延伸されることとなる。そして、境界部130において延伸が進むことにより、境界部130の延伸応力が徐々に増加し、中央部110の延伸に必要な延伸応力に達すると、境界部130に続いて中央部110も延伸されるようになる。この際において、中央部110に対して境界部130の厚みが薄すぎると、境界部130が延伸されている間に、中央部110の延伸が開始される前に、境界部130が破断してしまう。また、中央部110に対して境界部130の厚みが薄すぎると、図11に示すように加熱延伸した後、延伸前フィルム100をクリップ310から解放する際の衝撃や、得られた延伸フィルムをロールに巻き取る際の応力によっても、境界部130に亀裂が発生してしまう。 In addition, when the film 100 before extending | stretching is heat-stretched, the boundary part 130 among the films 100 before extending | stretching has a low extending | stretching stress required for extending | stretching by thinness, and will be extended preferentially. As the stretching proceeds at the boundary portion 130, the stretching stress at the boundary portion 130 gradually increases, and when the stretching stress necessary for stretching at the central portion 110 is reached, the central portion 110 is also stretched following the boundary portion 130. Become so. At this time, if the thickness of the boundary portion 130 is too thin with respect to the central portion 110, the boundary portion 130 breaks before the central portion 110 starts to be stretched while the boundary portion 130 is being stretched. End up. Further, if the thickness of the boundary portion 130 is too thin with respect to the central portion 110, after the heat stretching as shown in FIG. 11, the impact when releasing the unstretched film 100 from the clip 310, and the obtained stretched film Cracks are also generated in the boundary portion 130 due to the stress at the time of winding on the roll.

 ここで、従来より、同時二軸延伸により加熱延伸する際におけるフィルムの破断を防止する方法として、加熱延伸前のフィルムの両端部を中央部に比べて厚く形成する方法が知られている。しかしながら、延伸するためのフィルムをTダイス220による溶融押出により作製する場合には、上述したようにフィルムの両端部を厚くしたとしても、フィルムの中央部と両端部との間に形成される境界部については、図9に示すように、厚みが薄くなってしまい、フィルムを加熱延伸する際において、このような境界部に亀裂が発生してしまうという問題がある。なお、上述した図9においては、中央部110と両端部120とでは、異なる熱可塑性樹脂を用いた例を示したが、中央部110および両端部120を同じ熱可塑性樹脂により形成した場合(すなわち、図9に示す延伸前フィルム100を、1種類の樹脂からなる単層フィルムとした場合)においても、同様にして、Tダイス220から溶融押出しする際に、中央部110(幅方向の内側領域)と両端部120(幅方向の外側領域)とにおける熱可塑性樹脂の収縮形態の差異により、境界部が薄くなってしまう。 Here, conventionally, as a method for preventing breakage of the film during heat stretching by simultaneous biaxial stretching, a method of forming both end portions of the film before heat stretching thicker than the central portion is known. However, when the film to be stretched is produced by melt extrusion using the T-die 220, the boundary formed between the center portion and both end portions of the film even if both end portions of the film are thickened as described above. As shown in FIG. 9, the thickness of the portion is reduced, and there is a problem that a crack occurs at such a boundary portion when the film is heated and stretched. In FIG. 9 described above, an example in which different thermoplastic resins are used in the central portion 110 and the both end portions 120 is shown. However, when the central portion 110 and the both end portions 120 are formed of the same thermoplastic resin (that is, In the same way, when the film 100 before stretching shown in FIG. 9 is a single-layer film made of one kind of resin, when being melt-extruded from the T-die 220, the central portion 110 (inner region in the width direction) ) And the end portion 120 (outer region in the width direction), the boundary portion becomes thin due to the difference in the contraction form of the thermoplastic resin.

 これに対し、本実施形態によれば、Tダイス220により溶融共押出した後、冷却ロール240によって引取ることにより形成する延伸前フィルム100について、中央部110の平均厚みtと境界部130の極小厚みtとの比「t/t」を上記範囲に調整することにより、延伸前フィルム100を加熱延伸する際に、境界部130における亀裂の発生を有効に防止することができ、延伸フィルムの生産性を向上させることができる。 On the other hand, according to this embodiment, after the film co-extrusion by the T-die 220 and the film 100 before stretching formed by being drawn by the cooling roll 240, the average thickness t c of the central portion 110 and the boundary portion 130 By adjusting the ratio “t b / t c ” to the minimum thickness t b within the above range, it is possible to effectively prevent the occurrence of cracks at the boundary 130 when the film 100 before stretching is heated and stretched, Productivity of the stretched film can be improved.

 また、従来においては、加熱延伸時における延伸前フィルム100の破断を防止するために、延伸前フィルム100の両端部120にゴム弾性粒子を添加し、両端部120を軟化させる(常温での破断伸び率を高くする)方法が知られている。しかしながら、この方法においては、両端部120中のゴム弾性粒子が熱により劣化し易いため、次のような問題がある。すなわち、延伸前フィルム100をTダイス220から溶融共押出する際において、熱により劣化したゴム弾性粒子が、Tダイス220のダイスリップ222上に析出して堆積物を形成してしまい、この堆積物によって延伸前フィルム100に押し跡がついてしまうおそれや、堆積物が延伸フィルムの製品巻に混入して延伸フィルムの品質を低下させてしまうおそれがある。さらに、このようなゴム弾性粒子の堆積物が形成されてしまうと、図11に示すようにクリップ310を用いて延伸前フィルム100を加熱延伸する際に、延伸前フィルム100とクリップ310との間に堆積物が入り込んでしまい、これにより延伸前フィルム100が破断し易くなってしまうというおそれもある。 Further, conventionally, in order to prevent breakage of the unstretched film 100 during heat stretching, rubber elastic particles are added to both end portions 120 of the unstretched film 100 to soften the both end portions 120 (breaking elongation at normal temperature). The method of increasing the rate is known. However, this method has the following problems because the rubber elastic particles in both end portions 120 are easily deteriorated by heat. That is, when the film 100 before stretching is melt-coextruded from the T die 220, rubber elastic particles deteriorated by heat are deposited on the die slip 222 of the T die 220 to form a deposit. Therefore, there is a possibility that the film 100 before being stretched may be imprinted, or that a deposit may be mixed in the product roll of the stretched film and deteriorate the quality of the stretched film. Further, when such a deposit of rubber elastic particles is formed, when the film 100 before stretching is heated and stretched using the clip 310 as shown in FIG. There is also a risk that the deposit will enter the film, and the pre-stretched film 100 may be easily broken.

 これに対し、本実施形態によれば、延伸前フィルム100の両端部120にこのようなゴム弾性粒子を添加する必要がない、あるいは、両端部120に添加するゴム弾性粒子の量を少量とすることができるため、延伸前フィルム100を溶融共押出する際におけるゴム弾性粒子の析出を抑制することができ、得られる延伸フィルムを品質に優れたものとすることができる。 On the other hand, according to this embodiment, it is not necessary to add such rubber elastic particles to both end portions 120 of the unstretched film 100, or the amount of rubber elastic particles added to both end portions 120 is small. Therefore, precipitation of rubber elastic particles during melt coextrusion of the unstretched film 100 can be suppressed, and the resulting stretched film can be excellent in quality.

 なお、本実施形態においては、中央部110の平均厚みtと境界部130の極小厚みtとの比「t/t」は、上述したように0.75以上であればよいが、好ましくは0.8以上、より好ましくは0.9以上である。 In the present embodiment, the ratio “t b / t c ” between the average thickness t c of the central portion 110 and the minimum thickness t b of the boundary portion 130 may be 0.75 or more as described above. , Preferably 0.8 or more, more preferably 0.9 or more.

 また、本実施形態においては、形成する延伸前フィルム100について、上述した中央部110の平均厚みtと境界部130の極小厚みtとの比「t/t」を上記範囲に調整する方法としては、特に限定されないが、たとえば、熱可塑性樹脂として伸長粘度がより低い樹脂を用いる方法、Tダイス220のダイスリップ222のスリット幅を調整する方法、Tダイス220と冷却ロール240との距離を小さくする方法、冷却ロール240による延伸前フィルム100の引取り速度を低下させる方法などを、単独または組合せて用いることができる。 In the present embodiment, the ratio “t b / t c ” between the average thickness t c of the central portion 110 and the minimum thickness t b of the boundary portion 130 is adjusted to the above range for the pre-stretch film 100 to be formed. There are no particular restrictions on the method used, for example, a method using a resin having a lower extensional viscosity as the thermoplastic resin, a method of adjusting the slit width of the die slip 222 of the T die 220, and the method of using the T die 220 and the cooling roll 240. A method of reducing the distance, a method of reducing the take-up speed of the pre-stretching film 100 by the cooling roll 240, or the like can be used alone or in combination.

 なお、本実施形態においては、これらの方法のうち、適用可能な熱可塑性樹脂の種類が限定されず、また延伸前フィルム100の作製効率を低下させないという観点より、ダイスリップ222のスリット幅を調整する方法を用いることが好ましい。この際には、ダイスリップ222のスリット幅をtとした場合に、ダイスリップ222のスリット幅tと中央部110の平均厚みtとの比「t/t」を、好ましくは8.0以下、より好ましくは6.0以下、さらに好ましくは5.0以下となるように調整する。これにより、Tダイス220により溶融押出して得られる延伸前フィルム100の厚みをより均一化することができ、中央部110の平均厚みtと境界部130の極小厚みtとの比「t/t」を適切に上記範囲に調整することができる。 In this embodiment, among these methods, the type of applicable thermoplastic resin is not limited, and the slit width of the die slip 222 is adjusted from the viewpoint of not reducing the production efficiency of the pre-stretching film 100. It is preferable to use the method to do. At this time, when the slit width of the die lip 222 was t s, the ratio "t s / t c" of the average thickness t c of the slit width t s and the central portion 110 of the die lip 222, preferably It adjusts so that it may be 8.0 or less, More preferably, it is 6.0 or less, More preferably, it is 5.0 or less. Thereby, the thickness of the unstretched film 100 obtained by melt extrusion with the T die 220 can be made more uniform, and the ratio “t b ” between the average thickness t c of the central portion 110 and the minimum thickness t b of the boundary portion 130. / T c ”can be appropriately adjusted to the above range.

 また、本実施形態においては、形成する延伸前フィルム100については、上述したように中央部110の平均厚みtと境界部130の極小厚みtとの比「t/t」を上記範囲に調整することに加えて、両端部120の最大厚みを適度なものとなるように調整することにより、加熱延伸時における延伸前フィルム100の破断をより有効に防止することができる。 In the present embodiment, the pre-stretched film 100 to be formed, the ratio "t b / t c" with minimum thickness t b of the average thickness t c and the boundary portion 130 of the central portion 110 as described above the In addition to adjusting to the range, by adjusting the maximum thickness of the both end portions 120 so as to be moderate, it is possible to more effectively prevent the pre-stretching film 100 from being broken during the heat stretching.

 具体的には、延伸前フィルム100を形成する際において、図10に示すように、両端部120の最大厚みをtとした場合に、両端部120の最大厚みtと中央部110の平均厚みtとの比「t/t」を、好ましくは1.0~3.0、より好ましくは1.0~2.0、さらに好ましくは1.0~1.5に調整する。ここで、両端部120の最大厚みtとしては、延伸前フィルム100の両端部120(幅方向における一方の端部および他方の端部)の厚みのうち、より厚い方の厚みとする。なお、中央部110の平均厚みtに対して、両端部120の最大厚みtが厚すぎる場合には、Tダイス220により溶融共押出して得た延伸前フィルム100を、タッチロール230および冷却ロール240によって挟圧する際に、両端部120が厚すぎることで、両端部120に圧力が集中して延伸前フィルム100全体に圧力が均一に伝わらず、これにより、延伸前フィルム100の厚みがばらつき、延伸前フィルム100を加熱延伸して得られる延伸フィルムの厚みもばらついてしまう傾向にある。一方、中央部110の平均厚みtに対して、両端部120の最大厚みtが薄すぎる場合には、Tダイス220により溶融共押出された延伸前フィルム100がネックインする際において、両端部120が境界部130の熱可塑性樹脂を引っ張る力が強くなる傾向にあり、これにより、境界部130の厚みがより薄くなり、加熱延伸時に延伸前フィルム100が破断し易くなってしまう。 Specifically, in the case of forming the pre-stretch film 100, as shown in FIG. 10, the maximum thickness of the end portions 120 when the t e, the average of the maximum thickness t e and the central portion 110 of the end portions 120 The ratio “t e / t c ” with respect to the thickness t c is preferably adjusted to 1.0 to 3.0, more preferably 1.0 to 2.0, and still more preferably 1.0 to 1.5. Here, the maximum thickness t e of the ends 120, of the thickness of the end portions 120 of the pre-stretched film 100 (the one end portion and another end portion in the width direction), and more thicker thickness. Incidentally, in the case with respect to the average thickness t c of the central portion 110, the maximum thickness t e of the end portions 120 is too thick, the unstretched film 100 obtained by melt co-extrusion by a T die 220, the touch roll 230 and the cooling When pinching with the roll 240, the both end portions 120 are too thick, so that the pressure is concentrated on the both end portions 120 and the pressure is not uniformly transmitted to the whole unstretched film 100, and thereby the thickness of the unstretched film 100 varies. The thickness of the stretched film obtained by heating and stretching the pre-stretching film 100 also tends to vary. On the other hand, with respect to the average thickness t c of the central portion 110, when the maximum thickness t e of the end portions 120 is too thin, the time of pre-stretched film 100 is melt coextruded by a T-die 220 is neck-both ends There is a tendency that the portion 120 pulls the thermoplastic resin at the boundary portion 130, thereby making the boundary portion 130 thinner, and the pre-stretching film 100 is liable to break during heating and stretching.

 なお、本実施形態においては、中央部110を形成するための第1の熱可塑性樹脂PAとしては、必要とする延伸フィルムの用途などに応じて選択すればよく、たとえば、アクリル樹脂、(PMMA)、環状オレフィンコポリマー(COC)などを用いることができる。 In the present embodiment, the first thermoplastic resin PA for forming the central portion 110 may be selected according to the intended use of a stretched film, such as an acrylic resin (PMMA). , Cyclic olefin copolymer (COC) and the like can be used.

 また、両端部120を形成するための第2の熱可塑性樹脂PCとしては、たとえば、第1の熱可塑性樹脂PAのガラス転移温度Tgと、第2の熱可塑性樹脂PCのガラス転移温度Tgとの差(|Tg-Tg|)が10℃以下である熱可塑性樹脂を用いることが好ましい。これにより、本実施形態においては、延伸工程により延伸前フィルム100の両端部120をクリップ310で把持して加熱延伸を行う際において、クリップ310により把持された両端部120が延伸炉320による加熱で適度に軟化し、加熱延伸時におけるクリップ外れや、延伸前フィルム100の破断などを防止することができ、延伸フィルムの生産性を向上させることができる。 As the second thermoplastic resin PC for forming the end portions 120, for example, the glass transition temperature Tg 1 of the first thermoplastic resin PA, glass transition temperature Tg 2 of the second thermoplastic resin PC It is preferable to use a thermoplastic resin having a difference (| Tg 1 −Tg 2 |) of 10 ° C. or less. Thereby, in this embodiment, when the both ends 120 of the film 100 before extending | stretching are hold | gripped by the clip 310 and heat extending | stretching by the extending | stretching process, the both ends 120 hold | gripped by the clip 310 are heated by the drawing furnace 320. Softening moderately prevents the clip from being removed during heating and stretching, breakage of the film 100 before stretching, and the like, and the productivity of the stretched film can be improved.

 なお、この際においては、第1の熱可塑性樹脂PAおよび第2の熱可塑性樹脂PCのガラス転移温度の差(|Tg-Tg|)は、好ましくは10℃以下、より好ましくは5℃以下、さらに好ましくは3℃以下である。 In this case, the difference in glass transition temperature between the first thermoplastic resin PA and the second thermoplastic resin PC (| Tg 1 −Tg 2 |) is preferably 10 ° C. or less, more preferably 5 ° C. Hereinafter, it is 3 degrees C or less more preferably.

 本実施形態においては、第2の熱可塑性樹脂PCとしては、上述した観点に基づいて、具体的には以下のような熱可塑性樹脂を用いることができる。たとえば、第2の熱可塑性樹脂PCとしては、第1の熱可塑性樹脂PAにアクリル樹脂を用いた場合には、ポリエチレンナフタレート(PEN)、環状オレフィンポリマー(COP)などのうち1種を単独で使用、または2種以上を混合した混合樹脂を用いることができる。 In the present embodiment, as the second thermoplastic resin PC, specifically, the following thermoplastic resin can be used based on the viewpoint described above. For example, as the second thermoplastic resin PC, when an acrylic resin is used for the first thermoplastic resin PA, one kind of polyethylene naphthalate (PEN), cyclic olefin polymer (COP), etc. is used alone. Use or a mixed resin in which two or more kinds are mixed can be used.

 また、第2の熱可塑性樹脂PCとしては、上述した第1の熱可塑性樹脂PAに、延伸フィルムの生産性を阻害しない範囲で少量のゴム弾性粒子を添加した樹脂を用いてもよい。 Further, as the second thermoplastic resin PC, a resin obtained by adding a small amount of rubber elastic particles to the above-described first thermoplastic resin PA within a range not inhibiting the productivity of the stretched film may be used.

 あるいは、第2の熱可塑性樹脂PCとしては、第1の熱可塑性樹脂PAよりもガラス転移温度が高く、その差が10℃超である熱可塑性樹脂(耐熱性の熱可塑性樹脂)に対し、第1の熱可塑性樹脂PAよりもガラス転移温度が低い熱可塑性樹脂(低温溶融性の熱可塑性樹脂)を配合してなる混合樹脂を用いることができる。この際においては、上記の耐熱性の熱可塑性樹脂と、低温溶融性の熱可塑性樹脂との配合比率を調整することで、得られる混合樹脂のガラス転移温度を、第1の熱可塑性樹脂PAとのガラス転移温度の差(|Tg-Tg|)が上記範囲となるように調整することが好ましい。 Alternatively, the second thermoplastic resin PC has a glass transition temperature higher than that of the first thermoplastic resin PA, and the difference between the thermoplastic resin (heat-resistant thermoplastic resin) exceeding 10 ° C. A mixed resin formed by blending a thermoplastic resin (low temperature meltable thermoplastic resin) having a glass transition temperature lower than that of the first thermoplastic resin PA can be used. In this case, the glass transition temperature of the obtained mixed resin is adjusted with the first thermoplastic resin PA by adjusting the blending ratio of the heat-resistant thermoplastic resin and the low-melting thermoplastic resin. The glass transition temperature difference (| Tg 1 −Tg 2 |) is preferably adjusted to be in the above range.

 たとえば、第1の熱可塑性樹脂PAとして、ガラス転移温度Tgが120℃程度のアクリル樹脂を用いた場合には、第2の熱可塑性樹脂PCとしては、ガラス転移温度が150℃程度と高いポリカーボネート(PC)に、ガラス転移温度が70℃程度と低いポリエチレンテレフタレート(PET)を配合して、ガラス転移温度を上記ガラス転移温度Tgと同程度の120℃付近に調整した混合樹脂を用いることができる。 For example, when an acrylic resin having a glass transition temperature Tg 1 of about 120 ° C. is used as the first thermoplastic resin PA, a polycarbonate having a high glass transition temperature of about 150 ° C. is used as the second thermoplastic resin PC. (PC) blended with polyethylene terephthalate (PET) having a low glass transition temperature of about 70 ° C., and using a mixed resin in which the glass transition temperature is adjusted to around 120 ° C., which is about the same as the glass transition temperature Tg 1. it can.

 なお、第2の熱可塑性樹脂PCとしてこのような混合樹脂を用いる場合には、耐熱性の熱可塑性樹脂としては、ポリカーボネート(PC)、環状オレフィンポリマー(COP)などを用いることができる。また、低温溶融性の熱可塑性樹脂としては、ポリエチレンテレフタレート(PET)およびポリエチレンナフタレート(PEN)などのポリエステル、アクリロニトリル・ブタジエン・スチレン(ABS)、ポリエチレン(PE)、第1の熱可塑性樹脂よりガラス転移温度が低いアクリル樹脂、ポリエステル(PEs)、ポリブチレンテレフタレート(PBT)などを用いることができる。本実施形態においては、これらのうち、得られる混合樹脂のガラス転移温度を調整し易いという観点より、耐熱性の熱可塑性樹脂としてポリカーボネート(PC)を、低温溶融性の熱可塑性樹脂としてポリエチレンテレフタレート(PET)を用いることが好ましい。 When such a mixed resin is used as the second thermoplastic resin PC, polycarbonate (PC), cyclic olefin polymer (COP), or the like can be used as the heat-resistant thermoplastic resin. Further, as the low-melting thermoplastic resin, polyester such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), acrylonitrile / butadiene / styrene (ABS), polyethylene (PE), glass from the first thermoplastic resin. An acrylic resin, polyester (PEs), polybutylene terephthalate (PBT), or the like having a low transition temperature can be used. In the present embodiment, among these, polycarbonate (PC) is used as a heat-resistant thermoplastic resin, and polyethylene terephthalate (polyethylene terephthalate (low-melting thermoplastic resin) is used from the viewpoint that it is easy to adjust the glass transition temperature of the resulting mixed resin. It is preferable to use (PET).

 ここで、図12は、ポリカーボネート(PC)にポリエチレンテレフタレート(PET)を配合して得た混合樹脂のガラス転移温度を測定した結果を示すグラフである。なお、図12においては、ポリカーボネート(PC)に対するポリエチレンテレフタレート(PET)の含有割合を0%、25%、50%、75%、100%とした樹脂について、ガラス転移温度を、示差走査熱量測定(DSC)により測定した結果を示している。ここで、示差走査熱量測定(DSC)による測定においては、ポリエチレンテレフタレート(PET)の含有割合がいずれの値であっても、混合樹脂のガラス転移温度は、ブロードとならずにほぼ一点に定まっている。 Here, FIG. 12 is a graph showing the results of measuring the glass transition temperature of a mixed resin obtained by blending polyethylene terephthalate (PET) with polycarbonate (PC). In FIG. 12, the glass transition temperature of the resin having a polyethylene terephthalate (PET) content of 0%, 25%, 50%, 75%, 100% with respect to polycarbonate (PC) is measured by differential scanning calorimetry ( DSC) shows the measurement results. Here, in the measurement by differential scanning calorimetry (DSC), regardless of the content ratio of polyethylene terephthalate (PET), the glass transition temperature of the mixed resin is determined to be almost one point without becoming broad. Yes.

 図12に示すように、ポリエチレンテレフタレート(PET)にポリカーボネート(PC)を配合した混合樹脂は、ポリエチレンテレフタレート(PET)の含有割合に応じて、ガラス転移温度を変化させることができる。これにより、本実施形態においては、第2の熱可塑性樹脂としてこのような混合樹脂を用いた場合に、第2の熱可塑性樹脂PCのガラス転移温度Tgを容易に調整可能であり、第1の熱可塑性樹脂PAとのガラス転移温度Tgとの差(|Tg-Tg|)を上記範囲に制御することができる。 As shown in FIG. 12, the mixed resin in which polycarbonate (PC) is blended with polyethylene terephthalate (PET) can change the glass transition temperature according to the content ratio of polyethylene terephthalate (PET). Thereby, in this embodiment, when such a mixed resin is used as the second thermoplastic resin, the glass transition temperature Tg 2 of the second thermoplastic resin PC can be easily adjusted. The difference (| Tg 1 −Tg 2 |) between the glass transition temperature Tg 1 and the other thermoplastic resin PA can be controlled within the above range.

 なお、本実施形態においては、延伸前フィルム形成工程により形成した延伸前フィルム100について、加熱延伸する前に、両端部120の側面を平滑化することが好ましい。延伸前フィルム100の両端部120の側面を平滑化することによれば、延伸工程において延伸前フィルム100の両端部120を引っ張って延伸前フィルム100を加熱延伸する際に、両端部120の側面の粗さに起因する局所的な応力の集中を防止し、両端部120での裂け目の発生を防止することができ、延伸フィルムの生産性を向上させることができる。 In the present embodiment, it is preferable to smooth the side surfaces of both end portions 120 before heating and stretching the pre-stretch film 100 formed by the pre-stretch film forming step. By smoothing the side surfaces of both end portions 120 of the pre-stretching film 100, when the pre-stretching film 100 is heated and stretched by pulling the both end portions 120 of the pre-stretching film 100 in the stretching step, Concentration of local stress due to roughness can be prevented, generation of tears at both ends 120 can be prevented, and productivity of the stretched film can be improved.

 延伸前フィルム100の両端部120の側面を平滑化する方法としては、特に限定されないが、両端部120の両側面から所定幅をカッターによりトリミングする方法、両端部120の端部を研磨する方法、両端部120の端部を加熱押圧成形する方法などを用いることができる。なお、両端部120の側面の平滑化は、両端部120の側面の凹凸を低減させ、延伸前フィルム100を長さ方向に引っ張った際に、両端部120の一部に応力が集中しなくなる程度に行えばよい。 The method for smoothing the side surfaces of both end portions 120 of the unstretched film 100 is not particularly limited, but a method of trimming a predetermined width from both side surfaces of both end portions 120 with a cutter, a method for polishing the end portions of both end portions 120, For example, a method of heat-pressing the end portions of the both end portions 120 can be used. The smoothing of the side surfaces of both end portions 120 reduces the unevenness of the side surfaces of both end portions 120, and when the pre-stretch film 100 is pulled in the length direction, stress is not concentrated on a part of both end portions 120. Just go to

 延伸前フィルム100の両端部120をカッターによりトリミングする場合には、カッターとしては、トリミングによって両端部120の側面を良好に平滑化できるものであれば何でもよく、たとえば、レザー刃や、円形の上刃と下刃とを擦り合わせながら連続回転させて剪断により切断を行うロータリーシェアカッターや、固体レーザー、半導体レーザー、液体レーザーまたは気体レーザーなどを使用したレーザーカッターなどを用いることができるが、トリミング時に延伸前フィルム100に加わる応力を低減することができ、トリミング時における延伸前フィルム100への亀裂の発生を防止することができるという観点より、レーザーカッターが好ましい。 When trimming the both ends 120 of the unstretched film 100 with a cutter, any cutter can be used as long as it can smoothly smooth the side surfaces of both ends 120 by trimming. You can use a rotary shear cutter that continuously rotates while rubbing the blade and lower blade and cut by shearing, or a laser cutter that uses a solid laser, semiconductor laser, liquid laser, gas laser, etc. A laser cutter is preferable from the viewpoint that the stress applied to the unstretched film 100 can be reduced and the occurrence of cracks in the unstretched film 100 during trimming can be prevented.

 なお、延伸前フィルム100の両端部120をトリミングする際には、両端部120を加熱しながらトリミングすることが好ましい。これにより、両端部120の側面をより平滑なものとすることができ、延伸前フィルム100を加熱延伸する際における延伸前フィルム100の破断をより適切に防止することができる。 In addition, when trimming both end portions 120 of the pre-stretched film 100, it is preferable to trim the both end portions 120 while heating. Thereby, the side surfaces of both end portions 120 can be made smoother, and breakage of the pre-stretching film 100 when the pre-stretching film 100 is heated and stretched can be more appropriately prevented.

 また、上述した例においては、延伸前フィルム100を加熱延伸する方法として、図11に示すように、延伸前フィルム100を、長さ方向および幅方向の両方向に加熱延伸する同時二軸延伸法を用いる例を示したが、本実施形態においては、延伸前フィルム100を、長さ方向のみに一軸延伸する方法を用いてもよい。 Moreover, in the example mentioned above, as shown in FIG. 11, as a method of heating and stretching the film 100 before stretching, a simultaneous biaxial stretching method in which the film 100 before stretching is heated and stretched in both the length direction and the width direction is used. Although the example used is shown, in this embodiment, you may use the method of uniaxially stretching the film 100 before extending | stretching only to a length direction.

 この際においては、延伸前フィルム100の長さ方向への加熱延伸は、図11に示す同時二軸延伸法と同様にして行うことができる。すなわち、延伸前フィルム100の両端部120をクリップ310で把持しながら延伸炉320内に搬送し、その後、延伸炉320内にて、延伸前フィルム100の両端部120を把持している各クリップ310を、幅方向に移動させることなく、クリップ310同士の間隔を広げることで、長さ方向のみに加熱延伸を行う方法を用いることができる。 In this case, the heat stretching in the length direction of the pre-stretching film 100 can be performed in the same manner as the simultaneous biaxial stretching method shown in FIG. In other words, the clips 310 are conveyed into the stretching furnace 320 while holding the both ends 120 of the unstretched film 100 with the clips 310, and then each clip 310 holding the both ends 120 of the unstretched film 100 in the stretching furnace 320. A method of performing heat stretching only in the length direction can be used by widening the interval between the clips 310 without moving the clip in the width direction.

 本実施形態においては、長さ方向および幅方向に同時二軸延伸を行う場合や、長さ方向のみに一軸延伸を行う場合のいずれにおいても、図11に示すように延伸前フィルム100の両端部120をクリップ310で把持しながら延伸を行うことにより、従来より用いられている逐次二軸延伸法と比較して、延伸フィルムの生産性を向上させることができ、さらに得られる延伸フィルムを品質に優れたものとすることができる。 In the present embodiment, both end portions of the unstretched film 100 as shown in FIG. 11 in both the case where simultaneous biaxial stretching is performed in the length direction and the width direction, and the case where uniaxial stretching is performed only in the length direction. By stretching 120 while holding it with the clip 310, the productivity of the stretched film can be improved as compared with the conventionally used sequential biaxial stretching method, and the resulting stretched film can be improved in quality. It can be excellent.

 なお、従来の逐次二軸延伸法は、図7に示す方法により作製された延伸前フィルム100を、まず長さ方向に加熱延伸し、その後、幅方向に加熱延伸を行う方法である。逐次二軸延伸法においては、延伸前フィルム100を複数のロールによって搬送することで長さ方向に加熱延伸した後、図11に示すようにして、延伸前フィルム100の両端部120をクリップ310で把持しながら幅方向に加熱延伸する。 The conventional sequential biaxial stretching method is a method in which the pre-stretched film 100 produced by the method shown in FIG. 7 is first stretched by heating in the length direction and then stretched in the width direction. In the sequential biaxial stretching method, the film 100 before stretching is heated and stretched in the length direction by being conveyed by a plurality of rolls, and thereafter, both ends 120 of the film 100 before stretching are clipped by clips 310 as shown in FIG. Heat and stretch in the width direction while gripping.

 ここで、逐次二軸延伸法における延伸前フィルム100の長さ方向への延伸は、具体的には次のようにして行われる。すなわち、逐次二軸延伸法によれば、延伸前フィルム100を予め加熱された複数の予熱ロールにより搬送しながら、両端部120のガラス転移温度程度まで予備加熱し、予備加熱した延伸前フィルム100を、赤外線ヒータなどにより両端部120のガラス転移温度よりも10~30℃程度高い温度までさらに加熱しながら、連続的に冷却ロールにより搬送する。この際において、冷却ロールによる搬送速度を、予熱帯ロールによる搬送速度よりも速くすることで、予熱帯ロールと冷却ロールとの間で張力が発生し、この張力を利用して、延伸前フィルム100を長さ方向に必要な延伸倍率まで延伸させる。 Here, the stretching in the length direction of the pre-stretching film 100 in the sequential biaxial stretching method is specifically performed as follows. That is, according to the sequential biaxial stretching method, the pre-stretched film 100 is preheated to about the glass transition temperature of both end portions 120 while being transported by a plurality of preheated rolls that have been preheated. While being further heated to a temperature about 10 to 30 ° C. higher than the glass transition temperature of the both ends 120 by an infrared heater or the like, it is continuously conveyed by a cooling roll. At this time, by making the conveyance speed by the cooling roll faster than the conveyance speed by the pre-tropical roll, a tension is generated between the pre-tropical roll and the cooling roll. Is stretched in the length direction to a necessary stretching ratio.

 ここで、逐次二軸延伸法においては、延伸前フィルム100を長さ方向に延伸する際に、延伸前フィルム100の表面が、予熱ロールおよび冷却ロールに触れることとなるため、延伸前フィルム100の表面に擦り傷が発生してしまい、得られる延伸フィルムの外観品質が低下してしまうおそれがある。また、逐次二軸延伸法においては、延伸前フィルム100を長さ方向に加熱延伸する際に、延伸前フィルム100の両端部120がクリップなどで固定されていないため、延伸前フィルム100が熱により幅方向に収縮してしまい、延伸フィルムの生産性が低下してしまうおそれがある。 Here, in the sequential biaxial stretching method, when the pre-stretching film 100 is stretched in the length direction, the surface of the pre-stretching film 100 comes into contact with the preheating roll and the cooling roll. Scratches may occur on the surface, and the appearance quality of the obtained stretched film may be deteriorated. Further, in the sequential biaxial stretching method, when the film 100 before stretching is heated and stretched in the length direction, since the both ends 120 of the film 100 before stretching are not fixed with clips or the like, the film 100 before stretching is heated. There exists a possibility that it may shrink | contract in the width direction and productivity of a stretched film may fall.

 これに対し、本実施形態によれば、延伸前フィルム100について、長さ方向への延伸を、上述した同時二軸延伸法、または上述した長さ方向のみに一軸延伸する方法を用いて行うことにより(すなわち、図11に示すように、延伸前フィルム100の両端部120をクリップ310で把持しながら、長さ方向に延伸を行う方法を用いて行うことにより)、ロールとの接触を回避することができるため、加熱延伸後の延伸前フィルム100の表面の擦り傷を低減させることができる。これにより、加熱延伸された延伸前フィルム100の両端部120を切断して得られる延伸フィルムについて、外観品質を向上させることができ、特に、外観品質の要求が厳しい光学フィルムなどに好適に用いることができる。さらに、本実施形態によれば、延伸前フィルム100を長さ方向に延伸する際に、延伸前フィルム100の両端部120をクリップ310で把持しているため、延伸前フィルム100について、熱による幅方向の収縮を防止することができ、延伸フィルムの生産性を向上させることができる。 On the other hand, according to this embodiment, the film 100 before stretching is stretched in the length direction by using the simultaneous biaxial stretching method described above or the method of uniaxial stretching only in the length direction described above. (That is, by using a method of stretching in the length direction while holding both ends 120 of the unstretched film 100 with the clip 310 as shown in FIG. 11) to avoid contact with the roll. Therefore, scratches on the surface of the pre-stretching film 100 after heat stretching can be reduced. Thereby, about the stretched film obtained by cutting the both ends 120 of the pre-stretched film 100 that has been heat-stretched, the appearance quality can be improved, and in particular, it is preferably used for an optical film or the like that has a severe requirement for the appearance quality. Can do. Furthermore, according to the present embodiment, when the film 100 before stretching is stretched in the length direction, the both ends 120 of the film 100 before stretching are gripped by the clips 310. Shrinkage in the direction can be prevented, and the productivity of the stretched film can be improved.

 また、上述した例においては、延伸前フィルム100は、図9に示すように、第1の熱可塑性樹脂PAからなる中央部110と、第2の熱可塑性樹脂PCからなる両端部120とが、境界部130付近を境にして分かれている例を示したが、本実施形態においては、第1の熱可塑性樹脂PAと第2の熱可塑性樹脂PCとが、延伸フィルムの製造を阻害しない範囲で混ざり合っていてもよい。 Moreover, in the example mentioned above, as shown in FIG. 9, the unstretched film 100 includes a central portion 110 made of the first thermoplastic resin PA and both end portions 120 made of the second thermoplastic resin PC. In the embodiment, the first thermoplastic resin PA and the second thermoplastic resin PC are within a range that does not hinder the production of the stretched film. It may be mixed.

 たとえば、延伸前フィルム100としては、延伸前フィルム100の外側領域を形成する第2の熱可塑性樹脂PCの粘度が、延伸前フィルム100の内側領域を形成する第1の熱可塑性樹脂PAの粘度に対して低い場合には、図13に示すように、中央部110が、両端部120の一部を覆う形状となってもよい。この際においては、延伸前フィルム100の境界部130は、中央部110と両端部120との境界からずれた位置に形成されることとなる。 For example, as the unstretched film 100, the viscosity of the second thermoplastic resin PC that forms the outer region of the unstretched film 100 is equal to the viscosity of the first thermoplastic resin PA that forms the inner region of the unstretched film 100. In contrast, as shown in FIG. 13, the center portion 110 may have a shape that covers a part of both end portions 120 as shown in FIG. 13. In this case, the boundary portion 130 of the unstretched film 100 is formed at a position shifted from the boundary between the central portion 110 and both end portions 120.

 すなわち、延伸前フィルム100の境界部130は、上述したように、Tダイス220から溶融押出された熱可塑性樹脂の幅方向の内側領域と外側領域とにおける収縮形態の差異により、厚み方向に凹んでしまうことで形成されるものである。そのため、図13に示すように、第1の熱可塑性樹脂と、第2の熱可塑性樹脂とが混ざりあった延伸前フィルム100においては、延伸前フィルム100の幅方向位置による収縮形態の差異により形成される境界部130は、第1の熱可塑性樹脂PAと第2の熱可塑性樹脂PCとの境界)からずれた位置に形成されることとなる。 That is, as described above, the boundary portion 130 of the unstretched film 100 is recessed in the thickness direction due to the difference in shrinkage between the inner region and the outer region in the width direction of the thermoplastic resin melt-extruded from the T die 220. It is formed by the end. Therefore, as shown in FIG. 13, the pre-stretch film 100 in which the first thermoplastic resin and the second thermoplastic resin are mixed is formed by the difference in contraction form depending on the position in the width direction of the pre-stretch film 100. The boundary portion 130 to be formed is formed at a position deviated from the boundary between the first thermoplastic resin PA and the second thermoplastic resin PC.

 なお、Tダイス220により溶融共押出しを行う際において、第2の熱可塑性樹脂PCの粘度が、第1の熱可塑性樹脂PAの粘度に対して高い場合には、得られる延伸前フィルム100においては、図13に示す延伸前フィルム100とは逆に、より粘度が高い第2の熱可塑性樹脂PCが、中央部110の表面に流れて、第1の熱可塑性樹脂PAの一部を覆うこととなる。 In addition, when performing melt coextrusion with the T-die 220, when the viscosity of the second thermoplastic resin PC is higher than the viscosity of the first thermoplastic resin PA, in the obtained pre-stretch film 100, Contrary to the unstretched film 100 shown in FIG. 13, the second thermoplastic resin PC having a higher viscosity flows on the surface of the central portion 110 and covers a part of the first thermoplastic resin PA. Become.

 以下に、実施例を挙げて、本発明についてより具体的に説明するが、本発明は、これら実施例に限定されない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

<実施例1>
 延伸前フィルム100を形成するための熱可塑性樹脂として、アクリル樹脂(ガラス転移温度Tg:123℃、常温における破断伸び率:5%)を準備した。
<Example 1>
An acrylic resin (glass transition temperature Tg 1 : 123 ° C., elongation at break at room temperature: 5%) was prepared as a thermoplastic resin for forming the pre-stretch film 100.

 ここで、準備した熱可塑性樹脂については、ガラス転移温度は示差走査熱量測定(DSC)により測定し、破断伸び率は引張試験機(株式会社オリエンテック製、型番:RTC-1210A)により測定した。以下の実施例2および比較例1についても同様とした。 Here, for the prepared thermoplastic resin, the glass transition temperature was measured by differential scanning calorimetry (DSC), and the elongation at break was measured by a tensile tester (manufactured by Orientec Co., Ltd., model number: RTC-1210A). The same applies to Example 2 and Comparative Example 1 below.

 次いで、準備した熱可塑性樹脂を用いて、図1に示すようにして、以下の条件にて延伸前フィルム100を作製した。ここで、作製した延伸前フィルム100は、全体幅が約310mmであった。そして、作製した延伸前フィルム100について厚みの測定を行ったところ、中央部110の平均厚みtが160μm、境界部130の極小厚みtが128μm、両端部120の最大厚みtが290μmであり、これらの厚みの比「t/t」が0.8、「t/t」が1.81、「t/t」が5.0であった。結果を図6(A)に示す。ここで、図6(A)および後述する図6(B)、図6(C)においては、延伸前フィルム100の幅方向の位置に対応した厚みを示している。なお、図6(A)に示すように、延伸前フィルム100の境界部130は、延伸前フィルム100の幅方向の端部から各約40mmの位置に形成されていた。
 Tダイス220出口の幅方向寸法:380mm
 ダイスリップ222のスリット幅t:0.8mm
 Tダイス220と冷却ロール240との距離:60mm
 冷却ロール240の引取速度:5mpm
Next, using the prepared thermoplastic resin, as shown in FIG. 1, a pre-stretch film 100 was produced under the following conditions. Here, the produced unstretched film 100 had an overall width of about 310 mm. Then, when the pre-stretched film 100 manufactured was measured thickness, the average thickness t c of the central portion 110 is 160 .mu.m, the minimum thickness t b of the boundary portion 130 is 128 .mu.m, the maximum thickness t e of the both end portions 120 in 290μm The thickness ratio “t b / t c ” was 0.8, “t e / t c ” was 1.81, and “t s / t c ” was 5.0. The results are shown in FIG. Here, in FIG. 6A and FIGS. 6B and 6C described later, the thickness corresponding to the position in the width direction of the unstretched film 100 is shown. In addition, as shown to FIG. 6 (A), the boundary part 130 of the film 100 before extending | stretching was formed in the position of each about 40 mm from the edge part of the width direction of the film 100 before extending | stretching.
T-die 220 outlet width direction dimension: 380mm
Slit width t s of die slip 222: 0.8 mm
Distance between T dice 220 and cooling roll 240: 60 mm
Take-up speed of cooling roll 240: 5 mpm

 次いで、得られた延伸前フィルム100を、クリップ310により把持し、図5に示すように、同時二軸延伸法により、以下の条件にて長さ方向および幅方向に加熱延伸し、その後ロールによって巻き取ることにより、延伸フィルムを得た。なお、本実施例では、延伸前フィルム100を加熱延伸している間において、延伸前フィルム100の破断は発生しなかった。さらに、得られた延伸フィルムについて厚みを測定したところ、境界部130に相当する部分の厚みは30μm以上と比較的厚く、また、製品有効幅(中央部110における厚み40μm以上の領域)が390mmと比較的広く確保された延伸フィルムを得ることができた。結果を図6(A)に示す。
 延伸機の入側速度:1mpm
 延伸機の出側速度:2mpm
 延伸倍率:長さ方向100%×幅方向100%(長さ方向2倍×幅方向2倍)
 クリップ310把持位置:延伸前フィルム100の端部から15mmの位置
 予熱帯温度、距離:140℃、350mm
 延伸帯温度、距離:140℃、500mm
 冷却熱固定温度、距離:90℃、700mm
Next, the obtained unstretched film 100 is gripped by a clip 310 and, as shown in FIG. 5, is stretched by heating in the length direction and the width direction under the following conditions by a simultaneous biaxial stretching method, and then by a roll. A stretched film was obtained by winding. In this example, the film 100 before stretching did not break while the film 100 before stretching was heated and stretched. Further, when the thickness of the stretched film obtained was measured, the thickness of the portion corresponding to the boundary portion 130 was comparatively thick at 30 μm or more, and the product effective width (region having a thickness of 40 μm or more at the central portion 110) was 390 mm. A stretched film secured relatively widely could be obtained. The results are shown in FIG.
Stretcher entrance speed: 1 mpm
Outlet speed of stretching machine: 2 mpm
Stretch ratio: 100% in length direction x 100% in width direction (twice in length direction x double in width direction)
Clip 310 gripping position: position 15 mm from the end of the film 100 before stretching Pretropical temperature, distance: 140 ° C., 350 mm
Stretch zone temperature, distance: 140 ° C., 500 mm
Cooling heat fixing temperature, distance: 90 ° C, 700mm

<実施例2>
 延伸前フィルム100を作製する際において、ダイスリップ222のスリット幅tを1.2mmに拡大させた以外は、実施例1と同様にして延伸前フィルム100および延伸フィルムを得て、厚みを測定した。延伸前フィルム100および延伸フィルムについて厚みを測定した結果を図6(B)に示す。
<Example 2>
In making the pre-stretch film 100, except that was enlarged slit width t s of die lip 222 to 1.2mm, with the pre-stretch film 100 and a stretched film in the same manner as in Example 1, measuring the thickness did. The result of having measured thickness about the film 100 before extending | stretching and a stretched film is shown to FIG. 6 (B).

 実施例2においては、作製した延伸前フィルム100は、中央部110の平均厚みtが160μm、境界部130の極小厚みtが120μmであり、これらの厚みの比「t/t」が0.75、「t/t」が7.5であった。また、実施例2では、上述した実施例1と比較して、加熱延伸前の延伸前フィルム100の境界部130が薄くなり、これにより、加熱延伸後の延伸フィルムは、図6(B)に示すように、製品有効幅(中央部110における厚み40μm以上の領域)が減少していた。 In Example 2, the produced unstretched film 100 has an average thickness t c of the central portion 110 of 160 μm and a minimum thickness t b of the boundary portion 130 of 120 μm, and the ratio of these thicknesses “t b / t c ”. but 0.75, "t s / t c" was 7.5. Moreover, in Example 2, compared with Example 1 mentioned above, the boundary part 130 of the film 100 before extending | stretching before heat drawing becomes thin, and, as a result, the stretched film after heat drawing is shown in FIG. As shown, the product effective width (region having a thickness of 40 μm or more in the central portion 110) was reduced.

 しかしながら、実施例2においても、実施例1と同様に、延伸前フィルム100を加熱延伸している間において、延伸前フィルム100の破断が発生せず、品質に優れた延伸フィルムを連続的に製造することができた。 However, also in Example 2, as in Example 1, while the film 100 before stretching was heated and stretched, the film 100 before stretching did not break, and a stretched film excellent in quality was continuously produced. We were able to.

<比較例1>
 Tダイス220による熱可塑性樹脂の押出量を増加させるとともに、冷却ロール240の引取速度を15mpmに増加させた以外は、実施例1と同様にして延伸前フィルム100および延伸フィルムを得て、厚みを測定した。延伸前フィルム100および延伸フィルムについて厚みを測定した結果を図6(C)に示す。
<Comparative Example 1>
While increasing the extrusion amount of the thermoplastic resin by the T dice 220 and increasing the take-up speed of the cooling roll 240 to 15 mpm, the film 100 before stretching and the stretched film were obtained in the same manner as in Example 1, and the thickness was increased. It was measured. The result of having measured thickness about the film 100 before extending | stretching and a stretched film is shown in FIG.6 (C).

 比較例1においては、作製した延伸前フィルム100は、中央部110の平均厚みtが158μm、境界部130の極小厚みtが110μmであり、これらの厚みの比「t/t」が0.70であった。 In Comparative Example 1, the produced unstretched film 100 has an average thickness t c of the central portion 110 of 158 μm and a minimum thickness t b of the boundary portion 110 of 110 μm, and the ratio of these thicknesses “t b / t c ”. Was 0.70.

 比較例1では、作製した延伸前フィルム100において、境界部130の極小厚みtが、中央部110の平均厚みtに対して薄すぎたため、延伸前フィルム100を加熱延伸する際に、延伸前フィルム100の境界部130に亀裂が発生して、延伸前フィルム100の破断が多発してしまい、延伸フィルムの生産性が低下してしまった。ここで、比較例1においては、加熱延伸を行う際の予熱帯および延伸帯の温度を、140℃から150℃に変更することで、加熱延伸時における延伸前フィルム100の破断の発生頻度を低下させることができたが、得られた延伸フィルムは、境界部130に相当する部分の極小厚みが8μm程度と非常に薄くなってしまい、加熱延伸後の延伸フィルムからクリップ310を開放する際の応力や、得られた延伸フィルムをロールに巻き取る際の応力により、境界部130に相当する部分に亀裂が発生し、延伸フィルムが破断してしまった。 In Comparative Example 1, in the prepared film 100 before stretching, the minimum thickness t b of the boundary portion 130 was too thin with respect to the average thickness t c of the central portion 110. Cracks occurred in the boundary portion 130 of the front film 100, the breakage of the pre-stretch film 100 occurred frequently, and the productivity of the stretched film was reduced. Here, in Comparative Example 1, the frequency of pre-stretching film 100 at the time of heat stretching is reduced by changing the temperature of the pre-tropical zone and the stretch zone during heat stretching from 140 ° C. to 150 ° C. Although the obtained stretched film had a very small minimum thickness of about 8 μm in the portion corresponding to the boundary portion 130, the stress at the time of releasing the clip 310 from the stretched film after heat stretching. In addition, due to the stress when winding the obtained stretched film on a roll, a crack was generated in a portion corresponding to the boundary portion 130, and the stretched film was broken.

 上述したように、加熱延伸を行う前の延伸前フィルム100について、中央部110の平均厚みtに対する、境界部130の極小厚みtの比「t/t」を0.75以上とした実施例1,2は、延伸前フィルム100を加熱延伸した際において、延伸前フィルム100の破断を抑制することができたため、品質に優れた延伸フィルムを得ることができ、また延伸フィルムの生産性を向上させることができた。特に、実施例1,2は、中央部110の平均厚みtに対する、ダイスリップ222のスリット幅tの比「t/t」を8.0以下としたため、図6(A)に示すように、得られた延伸フィルムは厚みが均一であり、品質に優れたものであった。 As described above, the ratio “t b / t c ” of the minimum thickness t b of the boundary portion 130 to the average thickness t c of the central portion 110 is 0.75 or more for the pre-stretch film 100 before performing the heat stretching. In Examples 1 and 2, when the pre-stretched film 100 was heated and stretched, it was possible to suppress breakage of the pre-stretched film 100, so that it was possible to obtain a stretched film excellent in quality, and production of a stretched film It was possible to improve the performance. In particular, Examples 1 and 2, with respect to the average thickness t c of the central portion 110, since the ratio of the slit width t s of die lip 222 "t s / t c" was 8.0 or less, in FIG. 6 (A) As shown, the obtained stretched film had a uniform thickness and excellent quality.

 一方、上述したように、加熱延伸を行う前の延伸前フィルム100について、中央部110の平均厚みtに対する、境界部130の極小厚みtの比「t/t」が0.75未満であった比較例1は、延伸前フィルム100の加熱延伸時に、延伸前フィルム100の破断が多発してしまい、延伸フィルムの生産性に劣るものであった。 On the other hand, as described above, the ratio “t b / t c ” of the minimum thickness t b of the boundary portion 130 to the average thickness t c of the central portion 110 is 0.75 for the unstretched film 100 before heat stretching. In Comparative Example 1, which was less than the above, during the heat stretching of the pre-stretched film 100, the pre-stretched film 100 was frequently broken, resulting in poor stretched film productivity.

<実施例3>
 延伸前フィルム100の中央部110を形成するための第1の熱可塑性樹脂PAとして、アクリル樹脂(ガラス転移温度Tg:123℃、常温における破断伸び率:5%)を準備し、延伸前フィルム100の両端部120を形成するための第2の熱可塑性樹脂PCとして、少量のゴム弾性粒子を添加したアクリル樹脂(ガラス転移温度Tg:125℃、常温における破断伸び率:7%)を準備した。
<Example 3>
An acrylic resin (glass transition temperature Tg 1 : 123 ° C., elongation at break at room temperature: 5%) is prepared as the first thermoplastic resin PA for forming the central portion 110 of the film 100 before stretching, and the film before stretching As a second thermoplastic resin PC for forming both end portions 120 of 100, an acrylic resin (glass transition temperature Tg 2 : 125 ° C., elongation at break at room temperature: 7%) added with a small amount of rubber elastic particles is prepared. did.

 ここで、第1の熱可塑性樹脂PAおよび第2の熱可塑性樹脂PCについては、ガラス転移温度は示差走査熱量測定(DSC)により測定し、常温における破断伸び率は引張試験機(株式会社オリエンテック製、型番:RTC-1210A)により測定した。以下の実施例4および比較例2についても同様とした。 Here, for the first thermoplastic resin PA and the second thermoplastic resin PC, the glass transition temperature is measured by differential scanning calorimetry (DSC), and the elongation at break at room temperature is measured by a tensile tester (Orientec Co., Ltd.). Manufactured, model number: RTC-1210A). The same applies to Example 4 and Comparative Example 2 below.

 次いで、準備した第1の熱可塑性樹脂PAおよび第2の熱可塑性樹脂PCを、それぞれ二軸押出機によりフィードブロック210に供給し、図7に示す方法により、以下の条件にて延伸前フィルム100を作製した。ここで、作製した延伸前フィルム100は、全体幅が約315mmであった。そして、作製した延伸前フィルム100について厚みの測定を行ったところ、中央部110の平均厚みtが160μm、境界部130の極小厚みtが133μm、両端部120の最大厚みtが270μmであり、これらの厚みの比「t/t」が0.83、「t/t」が1.69、「t/t」が5.0であった。結果を図14(A)に示す。ここで、図14(A)および後述する図14(B)、図14(C)においては、延伸前フィルム100の幅方向の位置に対応した厚みを示している。なお、図14(A)に示すように、延伸前フィルム100の境界部130は、複合フィルム100の幅方向の端部から各約50mmの位置に形成されていた。また、本実施例においては、第2の熱可塑性樹脂PCとしてゴム弾性粒子を添加したアクリル樹脂を用いたが、添加したゴム弾性粒子の量は少量であったため、延伸前フィルム100を溶融共押出する際におけるゴム弾性粒子の析出を抑制することができた。
 Tダイス220出口の幅方向寸法:380mm
 ダイスリップ222のスリット幅t:0.8mm
 Tダイス220と冷却ロール240との距離:60mm
 冷却ロール240の引取速度:6mpm
 フィードブロック210への第1の熱可塑性樹脂PAの供給量:15kg/hr
 フィードブロック210への第2の熱可塑性樹脂PCの供給量:5kg/hr
Next, the prepared first thermoplastic resin PA and second thermoplastic resin PC are respectively supplied to the feed block 210 by a twin-screw extruder, and by the method shown in FIG. Was made. Here, the produced unstretched film 100 had an overall width of about 315 mm. Then, when the pre-stretched film 100 manufactured was measured thickness, the average thickness t c of the central portion 110 is 160 .mu.m, the minimum thickness t b of the boundary portion 130 133Myuemu, maximum thickness t e of the both end portions 120 in 270μm The thickness ratio “t b / t c ” was 0.83, “t e / t c ” was 1.69, and “t s / t c ” was 5.0. The results are shown in FIG. Here, in FIG. 14A, FIG. 14B and FIG. 14C described later, the thickness corresponding to the position in the width direction of the unstretched film 100 is shown. As shown in FIG. 14A, the boundary portion 130 of the unstretched film 100 was formed at a position of about 50 mm from the end portion in the width direction of the composite film 100. In this example, an acrylic resin to which rubber elastic particles were added was used as the second thermoplastic resin PC. However, since the amount of the rubber elastic particles added was small, the film 100 before stretching was melt-coextruded. It was possible to suppress the precipitation of rubber elastic particles during the process.
T-die 220 outlet width direction dimension: 380mm
Slit width t s of die slip 222: 0.8 mm
Distance between T dice 220 and cooling roll 240: 60 mm
Take-up speed of cooling roll 240: 6 mpm
Supply amount of first thermoplastic resin PA to feed block 210: 15 kg / hr
Supply amount of second thermoplastic resin PC to feed block 210: 5 kg / hr

 次いで、得られた延伸前フィルム100を、両端部120をクリップ310により把持し、図11に示すように、同時二軸延伸法により、以下の条件にて長さ方向および幅方向に加熱延伸し、その後ロールによって巻き取ることにより、延伸フィルムを連続的に得た。なお、本実施例では、延伸前フィルム100を加熱延伸している間において、延伸前フィルム100の破断は発生しなかった。さらに、得られた延伸フィルムの厚みを測定したところ、境界部130に相当する部分の厚みは30μm以上と比較的厚く、また、製品有効幅(中央部110における厚み40μm以上の領域)が450mmと比較的広く確保された延伸フィルムを得ることができた。結果を図8(A)に示す。
 加熱延伸する前の入側速度:1mpm
 加熱延伸した後の出側速度:2mpm
 延伸倍率:長さ方向100%×幅方向100%(長さ方向2倍×幅方向2倍)
 クリップ310把持位置:複合フィルム100の端部から15mmの位置
 予熱帯温度、距離:140℃、350mm
 延伸帯温度、距離:140℃、500mm
 冷却熱固定温度、距離:90℃、700mm
Next, the obtained unstretched film 100 is gripped at both ends 120 by clips 310 and heated and stretched in the length direction and the width direction under the following conditions by the simultaneous biaxial stretching method as shown in FIG. Then, a stretched film was continuously obtained by winding with a roll. In this example, the film 100 before stretching did not break while the film 100 before stretching was heated and stretched. Furthermore, when the thickness of the obtained stretched film was measured, the thickness of the portion corresponding to the boundary portion 130 was relatively thick as 30 μm or more, and the product effective width (region having a thickness of 40 μm or more in the central portion 110) was 450 mm. A stretched film secured relatively widely could be obtained. The results are shown in FIG.
Entry speed before heat drawing: 1 mpm
Outlet speed after heating and stretching: 2 mpm
Stretch ratio: 100% in length direction x 100% in width direction (twice in length direction x double in width direction)
Clip 310 gripping position: 15 mm from the end of the composite film 100 Pre-tropical temperature, distance: 140 ° C., 350 mm
Stretch zone temperature, distance: 140 ° C., 500 mm
Cooling heat fixing temperature, distance: 90 ° C, 700mm

<実施例4>
 延伸前フィルム100を作製する際において、ダイスリップ222のスリット幅tを1.2mmに拡大させた以外は、実施例3と同様にして延伸前フィルム100および延伸フィルムを得て、厚みを測定した。延伸前フィルム100および延伸フィルムについて厚みを測定した結果を図14(B)に示す。
<Example 4>
In making the pre-stretch film 100, except that was enlarged slit width t s of die lip 222 to 1.2mm, with the pre-stretch film 100 and a stretched film in the same manner as in Example 3, measuring the thickness did. The result of having measured thickness about the film 100 before extending | stretching and a stretched film is shown to FIG. 14 (B).

 実施例4においては、作製した延伸前フィルム100は、中央部110の平均厚みtが147μm、境界部130の極小厚みtが110μmであり、これらの厚みの比「t/t」が0.75であった。また、実施例4では、上述した実施例3と比較して、図14(B)に示すように、加熱延伸前の延伸前フィルム100の境界部130がやや薄くなったものの、実施例1と同様に、延伸前フィルム100を溶融共押出する際におけるゴム弾性粒子の析出を抑制することができ、さらに延伸前フィルム100を加熱延伸している間において、延伸前フィルム100の破断が発生せず、品質に優れた延伸フィルムを連続的に製造することができた。 In Example 4, the produced unstretched film 100 has an average thickness t c of the central portion 110 of 147 μm and a minimum thickness t b of the boundary portion 110 of 110 μm, and the ratio of these thicknesses “t b / t c ”. Was 0.75. Moreover, in Example 4, although compared with Example 3 mentioned above, as shown in FIG.14 (B), although the boundary part 130 of the film 100 before extending | stretching before heating extending | stretching was a little thin, Example 1 and Similarly, precipitation of rubber elastic particles during melt coextrusion of the pre-stretching film 100 can be suppressed, and further, the pre-stretching film 100 does not break while the pre-stretching film 100 is heated and stretched. A stretched film excellent in quality could be continuously produced.

<比較例2>
 延伸前フィルム100の両端部120を形成するための第2の熱可塑性樹脂PCとして、ゴム弾性粒子の添加量を増加させたアクリル樹脂(ガラス転移温度Tg:125℃、常温における破断伸び率:28%)を用いた以外は、実施例3と同様にして延伸前フィルム100および延伸フィルムを得て、厚みを測定した。延伸前フィルム100および延伸フィルムについて厚みを測定した結果を図14(C)に示す。
<Comparative example 2>
As the second thermoplastic resin PC for forming both end portions 120 of the unstretched film 100, an acrylic resin (glass transition temperature Tg 2 : 125 ° C., elongation at break at room temperature: increased amount of rubber elastic particles added: Except for using 28%), a film 100 before stretching and a stretched film were obtained in the same manner as in Example 3, and the thickness was measured. The result of having measured thickness about the film 100 before extending | stretching and a stretched film is shown in FIG.14 (C).

 比較例2においては、作製した延伸前フィルム100は、中央部110の平均厚みtが155μm、境界部130の極小厚みtが102μmであり、これらの厚みの比「t/t」が0.66であった。 In Comparative Example 2, the produced unstretched film 100 has an average thickness t c of the central portion 110 of 155 μm and a minimum thickness t b of the boundary portion of 102 μm, and the ratio of these thicknesses “t b / t c ”. Was 0.66.

 また、比較例2では、作製した延伸前フィルム100において、境界部130の極小厚みtが、中央部110の平均厚みtに対して薄すぎたため、延伸前フィルム100を加熱延伸する際に、延伸前フィルム100の境界部130に亀裂が発生して、延伸前フィルム100の破断が多発してしまい、延伸フィルムの生産性が低下してしまった。 In Comparative Example 2, since the minimum thickness t b of the boundary portion 130 was too thin with respect to the average thickness t c of the central portion 110 in the produced pre-stretch film 100, the pre-stretch film 100 was heated and stretched. Cracks occurred in the boundary portion 130 of the pre-stretched film 100, and the pre-stretched film 100 was frequently broken, resulting in reduced stretched film productivity.

 上述したように、加熱延伸前の延伸前フィルム100について、中央部110の平均厚みtに対する、境界部130の極小厚みtの比「t/t」を0.75以上とした実施例3,4は、延伸前フィルム100を加熱延伸した際において、延伸前フィルム100の破断を抑制することができたため、品質に優れた延伸フィルムを得ることができ、また延伸フィルムの生産性を向上させることができた。特に、実施例3は、中央部110の平均厚みtに対する、ダイスリップ222のスリット幅tの比「t/t」を8.0以下としたため、図14(A)に示すように、得られた延伸フィルムは厚みが均一であり、品質に優れたものであった。 As described above, with respect to the unstretched film 100 before heat stretching, the ratio “t b / t c ” of the minimum thickness t b of the boundary portion 130 to the average thickness t c of the central portion 110 was set to 0.75 or more. In Examples 3 and 4, when the pre-stretched film 100 was heated and stretched, the pre-stretched film 100 could be prevented from being broken, so that a stretched film excellent in quality could be obtained. I was able to improve. In particular, Example 3, with respect to the average thickness t c of the central portion 110, since the ratio "t s / t c" of the slit width t s of die lip 222 and 8.0 or less, as shown in FIG. 14 (A) Furthermore, the obtained stretched film had a uniform thickness and an excellent quality.

 一方、上述したように、加熱延伸前の延伸前フィルム100について、中央部110の平均厚みtに対する、境界部130の極小厚みtの比「t/t」が0.75未満であった比較例2は、延伸前フィルム100の加熱延伸時に、延伸前フィルム100の破断が多発してしまい、延伸フィルムの生産性に劣るものであった。 On the other hand, as described above, the ratio “t b / t c ” of the minimum thickness t b of the boundary portion 130 to the average thickness t c of the central portion 110 is less than 0.75 for the unstretched film 100 before heat stretching. In Comparative Example 2, the film 100 before stretching was frequently broken during the heat stretching of the film 100 before stretching, and the productivity of the stretched film was inferior.

100…延伸前フィルム
 110…中央部
 120…両端部
 130…境界部
 PA…第1の熱可塑性樹脂
 PC…第2の熱可塑性樹脂
210…フィードブロック
220…Tダイス
230…タッチロール
240…冷却ロール
310…クリップ
320…延伸炉
DESCRIPTION OF SYMBOLS 100 ... Film before extending | stretching 110 ... Center part 120 ... Both ends 130 ... Boundary part PA ... 1st thermoplastic resin PC ... 2nd thermoplastic resin 210 ... Feed block 220 ... T dice 230 ... Touch roll 240 ... Cooling roll 310 ... Clip 320 ... Drawing furnace

Claims (13)

 熱可塑性樹脂を、成形用ダイスから溶融押出しした後に、ロールによって引取ることで冷却して固化させ、延伸前フィルムを形成する延伸前フィルム形成工程と、
 前記延伸前フィルムを、少なくとも一方向に加熱延伸することにより、延伸フィルムを形成する延伸工程と、を有する延伸フィルムの製造方法であって、
 前記延伸前フィルム形成工程において、前記延伸前フィルムの中央部が、前記延伸前フィルムの厚み方向の中央位置または中央位置近傍に位置する特定の面に沿って伸長する平面伸長により、前記特定の面に向かって収縮し、かつ、前記延伸前フィルムの両端部が、前記両端部の中心または中心位置近傍を通る特定の軸を中心として伸長する一軸伸長により、前記特定の軸を中心として収縮することで、前記中央部と前記両端部との間に形成される境界部の極小厚みをtとし、前記中央部の平均厚みをtとした場合に、
 前記境界部の極小厚みtと前記中央部の平均厚みtとの比「t/t」が、0.75以上となるように、前記延伸前フィルムの形成を行うことを特徴とする延伸フィルムの製造方法。
After the thermoplastic resin is melt-extruded from the molding die, it is cooled and solidified by being taken up by a roll, and a pre-stretch film forming step for forming a pre-stretch film,
A stretching process for forming a stretched film by heating and stretching the pre-stretched film in at least one direction, and a method for producing a stretched film,
In the pre-stretching film forming step, the specific surface is obtained by planar extension in which a central portion of the pre-stretched film extends along a specific surface located near or in the middle of the thickness direction of the pre-stretched film. And the both ends of the pre-stretched film are contracted about the specific axis by uniaxial extension that is centered on the specific axis passing through the center of the both ends or near the center position. In the case where the minimum thickness of the boundary portion formed between the center portion and the both end portions is t b and the average thickness of the center portion is t c ,
The film before stretching is formed such that a ratio “t b / t c ” between the minimum thickness t b of the boundary portion and the average thickness t c of the central portion is 0.75 or more. A method for producing a stretched film.
 前記熱可塑性樹脂として、アクリル樹脂を用いることを特徴とする請求項1に記載の延伸フィルムの製造方法。 The method for producing a stretched film according to claim 1, wherein an acrylic resin is used as the thermoplastic resin.  前記熱可塑性樹脂として、
 前記延伸前フィルムの幅方向内側に位置する内側領域を形成する第1の熱可塑性樹脂と、
 前記延伸前フィルムの幅方向外側に位置する外側領域を形成し、前記第1の熱可塑性樹脂とは異なる第2の熱可塑性樹脂と、を用いることを特徴とする請求項1に記載の延伸フィルムの製造方法。
As the thermoplastic resin,
A first thermoplastic resin forming an inner region located on the inner side in the width direction of the pre-stretch film;
The stretched film according to claim 1, wherein an outer region located outside in the width direction of the pre-stretched film is formed and a second thermoplastic resin different from the first thermoplastic resin is used. Manufacturing method.
 前記第1の熱可塑性樹脂として、アクリル樹脂を用いることを特徴とする請求項3に記載の延伸フィルムの製造方法。 The method for producing a stretched film according to claim 3, wherein an acrylic resin is used as the first thermoplastic resin.  前記第2の熱可塑性樹脂として、ポリカーボネート(PC)に、前記アクリル樹脂よりも低いガラス転移温度を有する熱可塑性樹脂を配合してなる混合樹脂を用いることを特徴とする請求項4に記載の延伸フィルムの製造方法。 The stretched resin according to claim 4, wherein a mixed resin obtained by blending a thermoplastic resin having a glass transition temperature lower than that of the acrylic resin into polycarbonate (PC) is used as the second thermoplastic resin. A method for producing a film.  前記第1の熱可塑性樹脂および前記第2の熱可塑性樹脂として、ガラス転移温度の差が10℃以下である熱可塑性樹脂を用いることを特徴とする請求項3~5のいずれかに記載の延伸フィルムの製造方法。 The stretching according to any one of claims 3 to 5, wherein a thermoplastic resin having a glass transition temperature difference of 10 ° C or less is used as the first thermoplastic resin and the second thermoplastic resin. A method for producing a film.  前記両端部の最大厚みをtとした場合に、前記両端部の最大厚みtと前記中央部の平均厚みtとの比「t/t」が、1.0~2.0の範囲となるように、前記延伸前フィルム形成工程における前記延伸前フィルムの形成を行うことを特徴とする請求項1~6のいずれかに記載の延伸フィルムの製造方法。 The maximum thickness of the end portions in the case of a t e, the ratio between the average thickness t c of the maximum thickness t e of the end portions the central portion "t e / t c" is 1.0-2.0 The method for producing a stretched film according to any one of claims 1 to 6, wherein the pre-stretch film is formed in the pre-stretch film forming step so as to satisfy the following range.  前記成形用ダイスの出口のスリット幅をtとした場合に、前記成形用ダイスの出口のスリット幅tと前記中央部の平均厚みtとの比「t/t」が、8.0以下となるように、前記延伸前フィルム形成工程における前記延伸前フィルムの形成を行うことを特徴とする請求項1~7のいずれかに記載の延伸フィルムの製造方法。 Wherein when the slit width of the outlet of the molding die was t s, the ratio "t s / t c" of the average thickness t c of the slit width t s and the central portion of the outlet of the molding die, 8 The method for producing a stretched film according to any one of claims 1 to 7, wherein the pre-stretch film is formed in the pre-stretch film forming step so as to be 0.0 or less.  前記延伸工程における前記延伸前フィルムの加熱延伸を、前記延伸前フィルムの長さ方向および幅方向に同時に延伸する同時二軸延伸により行うことを特徴とする請求項1~8のいずれかに記載の延伸フィルムの製造方法。 The heat stretching of the pre-stretching film in the stretching step is performed by simultaneous biaxial stretching that simultaneously stretches in the length direction and the width direction of the pre-stretching film. A method for producing a stretched film.  前記延伸工程における前記延伸前フィルムの加熱延伸の延伸方向に対する延伸倍率を、3倍以内とすることを特徴とする請求項1~9のいずれかに記載の延伸フィルムの製造方法。 The method for producing a stretched film according to any one of claims 1 to 9, wherein a stretching ratio in a stretching direction of the heat stretching of the film before stretching in the stretching step is 3 times or less.  前記延伸工程における前記延伸前フィルムの加熱延伸を、加熱延伸後の前記延伸フィルムの中央部の厚みが15~50μmの範囲となるように行うことを特徴とする請求項1~10のいずれかに記載の延伸フィルムの製造方法。 11. The heat stretching of the pre-stretched film in the stretching step is performed so that the thickness of the central portion of the stretched film after the heat stretching is in the range of 15 to 50 μm. The manufacturing method of the stretched film of description.  前記延伸工程の前に、前記延伸前フィルムの厚みを規定している両側面を平滑化する平滑化工程を有することを特徴とする請求項1~11のいずれかに記載の延伸フィルムの製造方法。 The method for producing a stretched film according to any one of claims 1 to 11, further comprising a smoothing step of smoothing both side surfaces defining the thickness of the pre-stretched film before the stretching step. .  前記平滑化工程における平滑化を、前記延伸前フィルムの幅方向の両端に位置する領域を除去することにより行うことを特徴とする請求項12に記載の延伸フィルムの製造方法。 The method for producing a stretched film according to claim 12, wherein the smoothing in the smoothing step is performed by removing regions located at both ends in the width direction of the unstretched film.
PCT/JP2015/050670 2014-01-17 2015-01-13 Method for producing stretched film WO2015108036A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167021806A KR102181046B1 (en) 2014-01-17 2015-01-13 Method for producing stretched film
CN201580004804.1A CN105916654B (en) 2014-01-17 2015-01-13 The manufacture method of oriented film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014006469A JP6377355B2 (en) 2014-01-17 2014-01-17 Method for producing stretched film
JP2014006470A JP6338865B2 (en) 2014-01-17 2014-01-17 Method for producing stretched film
JP2014-006470 2014-01-17
JP2014-006469 2014-01-17

Publications (1)

Publication Number Publication Date
WO2015108036A1 true WO2015108036A1 (en) 2015-07-23

Family

ID=53542925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050670 WO2015108036A1 (en) 2014-01-17 2015-01-13 Method for producing stretched film

Country Status (3)

Country Link
KR (1) KR102181046B1 (en)
CN (1) CN105916654B (en)
WO (1) WO2015108036A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106632749A (en) * 2017-02-18 2017-05-10 江西虹润化工有限公司 Novel method and special device for removing solvents from chlorosulfonated polyethylene adhesive liquid
KR102712231B1 (en) * 2021-11-24 2024-10-02 한국생산기술연구원 Method for forming a mask having a fine pattern, a substrate patterned by the mask formed thereby, and an apparatus for implementing the same
CN119348120A (en) * 2024-12-24 2025-01-24 浙江南洋华诚科技股份有限公司 Preparation method of polypropylene film for film capacitor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002052493A (en) * 2000-08-09 2002-02-19 Kuraray Co Ltd Method for producing ethylene-vinyl alcohol copolymer resin film
JP2007044924A (en) * 2005-08-08 2007-02-22 Toyobo Co Ltd Manufacturing method of thermoplastic resin sheet
JP2008149511A (en) * 2006-12-15 2008-07-03 Toyo Kohan Co Ltd Method for producing stretched film
JP2009160900A (en) * 2008-01-10 2009-07-23 Nitto Denko Corp Method for producing stretched film
JP2013006311A (en) * 2011-06-23 2013-01-10 Teijin Dupont Films Japan Ltd Feed block and method for manufacturing multilayered stretched film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424025A (en) * 1993-05-03 1995-06-13 Minnesota Mining And Manufacturing Company Process of making zone orientated continuous web
JPH08207119A (en) * 1994-10-19 1996-08-13 Diafoil Co Ltd Production of thermoplastic resin sheet or film
JPH11105131A (en) 1997-10-07 1999-04-20 Toray Ind Inc Manufacture of simultaneously biaxially oriented film
JP5434002B2 (en) * 2007-08-07 2014-03-05 東レ株式会社 Laminate sheet manufacturing apparatus and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002052493A (en) * 2000-08-09 2002-02-19 Kuraray Co Ltd Method for producing ethylene-vinyl alcohol copolymer resin film
JP2007044924A (en) * 2005-08-08 2007-02-22 Toyobo Co Ltd Manufacturing method of thermoplastic resin sheet
JP2008149511A (en) * 2006-12-15 2008-07-03 Toyo Kohan Co Ltd Method for producing stretched film
JP2009160900A (en) * 2008-01-10 2009-07-23 Nitto Denko Corp Method for producing stretched film
JP2013006311A (en) * 2011-06-23 2013-01-10 Teijin Dupont Films Japan Ltd Feed block and method for manufacturing multilayered stretched film

Also Published As

Publication number Publication date
KR20160108446A (en) 2016-09-19
KR102181046B1 (en) 2020-11-19
CN105916654A (en) 2016-08-31
CN105916654B (en) 2018-04-24

Similar Documents

Publication Publication Date Title
TWI423877B (en) Production method of stretched film and stretch film
CN102029709B (en) Method for manufacturing polymer film
CN104527189B (en) A kind of online double-layer composite plastic blowing diaphragm and manufacture method thereof
JP6338866B2 (en) Method for producing stretched film
JPS6257489B2 (en)
WO2012102178A1 (en) Method and apparatus for producing resin film
WO2015108036A1 (en) Method for producing stretched film
CN104494177B (en) A kind of back of the body strip of paper used for sealing production system
JP6338865B2 (en) Method for producing stretched film
JP6377354B2 (en) Method for producing stretched film
JP6377355B2 (en) Method for producing stretched film
US20100213632A1 (en) Method and apparatus for manufacturing molded plate
KR20050086817A (en) Method for producing polybutylene terephthalate film
JP6338864B2 (en) Method for producing stretched film
JPH01228825A (en) Manufacturing method of uniaxially stretched film
JP2002240126A (en) Method for forming resin film
NL1011404C2 (en) High speed preparation of polymer film for coating a metal band, by drawing and cooling on casting roll at a speed greater than the extrusion speed
JP2011005777A (en) Manufacturing method of thermoplastic resin molded body, and manufacturing device of the thermoplastic resin molded body
JP2002067141A (en) Method for manufacturing sequentially biaxially stretched film
JP2001293769A (en) Method for producing thermoplastic resin film
JPH03158221A (en) Manufacture of polychlorotrifluoroethylene film or sheet
JP2016016600A (en) Film manufacturing method and film manufacturing installation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15737674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167021806

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15737674

Country of ref document: EP

Kind code of ref document: A1