[go: up one dir, main page]

WO2015107751A1 - Surface shape measuring device and machine tool provided with same, and surface shape measuring method - Google Patents

Surface shape measuring device and machine tool provided with same, and surface shape measuring method Download PDF

Info

Publication number
WO2015107751A1
WO2015107751A1 PCT/JP2014/079053 JP2014079053W WO2015107751A1 WO 2015107751 A1 WO2015107751 A1 WO 2015107751A1 JP 2014079053 W JP2014079053 W JP 2014079053W WO 2015107751 A1 WO2015107751 A1 WO 2015107751A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface shape
measurement
data
section
light beam
Prior art date
Application number
PCT/JP2014/079053
Other languages
French (fr)
Japanese (ja)
Inventor
勝彦 大野
静雄 西川
Original Assignee
Dmg森精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dmg森精機株式会社 filed Critical Dmg森精機株式会社
Priority to DE112014006201.4T priority Critical patent/DE112014006201T5/en
Priority to GB1611354.0A priority patent/GB2536167B/en
Publication of WO2015107751A1 publication Critical patent/WO2015107751A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/24Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
    • B23Q17/2452Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves for measuring features or for detecting a condition of machine parts, tools or workpieces
    • B23Q17/2471Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves for measuring features or for detecting a condition of machine parts, tools or workpieces of workpieces

Definitions

  • the present invention relates to a surface shape measuring device that measures a surface shape by a noncontact displacement sensor using a light beam, a machine tool equipped with the surface shape measuring device, and a surface shape measuring method.
  • on-machine measurement technology in machine tools is increasing more and more.
  • on-machine measurement applications have been limited to the positioning of workpieces (also referred to as "workpieces"), dimensional measurement of geometry, and the like.
  • on-machine measurement is being used also for correction for improving finishing accuracy by comparing on-machine measurement results with CAD data.
  • researches such as automatically performing space error correction of the machine tool itself using the on-machine measurement results are also advanced.
  • a touch probe is used for on-machine measurement.
  • the touch probe can be attached to the machine tool main body using ATC (Automatic Tool Changer).
  • ATC Automatic Tool Changer
  • the touch probe can also transfer data by wireless communication with a computer for data processing, and is becoming more fulfilling as a measurement tool.
  • touch probes there are structural limitations to touch probes. That is, since it is a contact type, the possibility of damaging the finished workpiece can not be excluded. Furthermore, since the relief stroke at the time of contact is also small, the shape to be measured must be known in advance. In the case of workpiece position detection before machining, it is necessary that the workpiece be positioned in advance with an accuracy within a small relief stroke range.
  • the distance between the displacement sensor and the workpiece can be relatively large, such as several tens mm, without damaging the workpiece. For this reason, it is suitable for applications such as measurement for obtaining a processing offset before processing a casting, a forged product or the like, and further, high-speed scanning of the shape of a workpiece after finish processing.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 10-332335 (Patent Document 1)).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 10-332335
  • the need for pretreatment such as applying a powder to the surface has arisen, and there has been a situation where the practical use of a laser displacement meter in on-machine measurement has not progressed.
  • the accuracy of triangulation-type laser displacement gauges is usually displayed with repetitive accuracy, and submicron accuracy is usually guaranteed.
  • a unique measurement error is observed.
  • This measurement error is characterized in that it contains spike noise that is much larger than the actual surface roughness and can not be removed by the time averaging process.
  • the measurement error described above is observed not only in the coherent laser beam but also in a triangulation displacement gauge using a noncoherent light beam.
  • the present invention has been made in consideration of the above problems, and its main object is to reduce an error observed when measuring a surface shape by triangulation using a light beam. It is providing a surface shape measuring device.
  • One aspect of the present invention is a surface shape measuring apparatus, which includes a displacement gauge, a moving mechanism, and a measurement control unit.
  • the displacement meter includes a light emitting unit that emits a light beam toward a measurement target, an optical system that collects scattered light of the light beam from the measurement target, and a light receiving unit that detects a collection position by the optical system.
  • the displacement gauge measures the displacement of the surface of the measurement object based on the light collecting position at the light receiving unit.
  • the moving mechanism scans the light beam by relatively moving the displacement meter and the measurement object.
  • the measurement control unit controls the moving mechanism and the displacement gauge.
  • the measurement control unit causes the moving mechanism to scan the light beam so that the light receiving unit is positioned forward or backward with respect to the light beam scanning direction with respect to the light emitting unit, and the measurement object is measured by the displacement meter during the light beam scanning It is configured to continuously measure changes in surface displacement of the surface as surface shape data.
  • the measurement control unit it is possible to extract the above-mentioned spike-like error as an error pattern of a characteristic shape. Therefore, by removing the extracted error pattern, it is possible to efficiently reduce the noise included in the surface shape data.
  • the surface shape measurement apparatus further includes a feature section extraction unit that extracts a feature section from a measurement range of surface shape data.
  • the feature section is a section having a size equal to or less than the spot size of the light beam, and the surface shape data shows a change that is maximal in the first half or the second half of the feature section, and indicates a change that is minimal in the other half of the feature section .
  • the feature section is a section having a size equal to or less than the spot size of the light beam, and satisfies a predetermined condition.
  • the predetermined condition is that the surface shape data changes in one direction beyond the predetermined range with respect to the average value of the surface shape data in a part of the first half of the feature section, and the first half of a part of the second half of the feature section And the condition that the surface shape data changes beyond the predetermined range with respect to the average value in the opposite direction.
  • the feature section is a section having a size equal to the spot size of the light beam and satisfies a predetermined condition.
  • the predetermined condition is obtained by rotating the waveform of the surface shape data in the first half of the feature section and the waveform of the surface shape data in the second half of the feature section by 180 degrees around the data point at the center of the feature section. It includes the condition that the correlation coefficient with the waveform exceeds a predetermined reference value.
  • the characteristic section extraction unit having any of the above-described configurations can extract an error of the characteristic pattern shape included in the measurement data of the laser displacement gauge. Therefore, by removing the extracted error pattern, it is possible to efficiently reduce the noise included in the surface shape data.
  • the surface shape measuring apparatus corrects the surface shape data so that the amount of change in the surface shape data relative to the average value of the surface shape data becomes small in each of the extracted one or more feature sections. It further comprises a data correction unit.
  • the data correction unit averages the measurement values at any first measurement point of each feature section with the measurement values at second measurement points located at symmetrical positions across the middle point of the section.
  • the surface shape data is corrected by replacing each measurement value at the first and second measurement points with an average value.
  • the data correction unit preferably corrects the surface shape data by replacing data in each feature section with the average value of the surface shape data.
  • the above-described characteristic error pattern can be removed by the data correction unit having any of the above-described configurations.
  • the surface shape measuring apparatus performs low-pass filter processing on the surface shape data corrected by the data correction unit, leaving only fluctuations of a period longer than the spot size of the light beam. It further comprises a filter processing unit. This can further reduce the noise included in the surface shape data.
  • the surface shape measuring apparatus further includes a moving average processing unit which performs moving average on surface shape data in a variable moving average section.
  • the size of the moving average section is larger than the spot size of the light beam.
  • the size of the moving average section when performing the moving average including the feature section is larger than the size of the moving average section when performing the moving average without including the feature section.
  • the surface shape measuring apparatus further includes a moving average processing unit that performs weighted moving average on the surface shape data.
  • the size of the moving average section of the weighted moving average is larger than the spot size of the light beam.
  • the weight for measurement points in the feature section is smaller than the weight for measurement points outside the feature section.
  • the present invention in still another aspect, is a surface profile measurement method using a noncontact displacement meter.
  • the above-described displacement meter includes a light emitting unit that emits a light beam toward an object to be measured, an optical system that condenses scattered light of the light beam from the object to be measured, and a light receiving unit that detects a condensing position by the optical system Including.
  • an object to be measured is measured along the scanning direction while maintaining the positional relationship between the light receiving unit and the light emitting unit so that the light receiving unit is positioned forward or backward in the scanning direction with respect to the light emitting unit. And moving the surface of the object to be measured based on a change in the measurement value of the displacement meter in accordance with the relative movement of the displacement meter.
  • the step of determining the surface shape includes the step of extracting a feature section from the measurement range of the surface shape of the measurement object.
  • the feature section is a section having a size equal to or less than the spot size of the light beam, and the measurement data of the surface shape of the measurement object shows a change which becomes maximum in the first half or the second half of the feature section. Show the change.
  • the measurement data is reduced so that the deviation of each measurement value from the average value of the measurement data of the surface shape of the measurement object is reduced.
  • the method further includes the step of correcting.
  • FIG. 1 is a block diagram schematically showing a configuration example of a surface shape measuring apparatus according to a first embodiment. It is a figure which shows an example of the measurement result of the metal surface by a laser displacement meter. It is a figure for demonstrating the change of the imaging spot on a linear image sensor in, when the reflectance of a measurement object is non-uniform
  • FIG. 7 is a view showing an example of a luminance distribution detected by a linear image sensor in the cases of FIG. 6 and FIG. 7; It is a figure for demonstrating the magnitude
  • FIG. 13 is a diagram showing the relationship between displacement in the height direction and the maximum light receiving amount in a region RC of FIG. 11 and FIG. 12. It is a figure which shows the result of having measured the surface shape of the square-like area
  • FIG. 21 is a diagram showing the result of low-pass filter processing shown in step S115 of FIG. 16 on the data of FIG. 20;
  • FIG. 18 is a diagram showing the result of low-pass filter processing shown in step S115 without performing data correction shown in step S110 of FIG. 16 on the measurement data of FIG.
  • FIG. 6 is a block diagram schematically showing a configuration of a surface shape measuring apparatus according to a second embodiment.
  • FIG. 10 is a flowchart showing an example of measurement of the surface shape and a processing procedure of the measured data in the surface shape measurement apparatus according to the second embodiment.
  • FIG. 16 is a flowchart showing another example of the process of measuring the surface shape and processing the measured data in the surface shape measuring apparatus according to the second embodiment.
  • FIG. 16 is a perspective view schematically showing a configuration of a machine tool according to a third embodiment.
  • FIG. 27 is a block diagram showing a functional configuration of a portion related to the surface shape measuring device in the machine tool of FIG. 26.
  • FIG. 1 is a view schematically showing the configuration of a laser displacement meter.
  • a laser displacement meter 100 includes a light emitting unit 110, a condensing lens 118 as an optical system, and a linear image sensor 120 as a light receiving unit.
  • the light emitting unit 110 includes a laser diode 112 and a lens 114.
  • the laser beam 116 emitted from the laser diode 112 is shaped into substantially parallel light by the lens 114 and irradiated to the measurement object 130.
  • the spot size w (also referred to as spot diameter) of the laser beam 116 on the measurement object is, for example, 50 ⁇ m in diameter.
  • the light diffusely reflected on the measurement object 130 is condensed by the condenser lens 118 on the linear image sensor 120 disposed in the angular direction of the laser beam 116 and ⁇ .
  • the direction of the laser beam 116 is taken as the Z-axis direction.
  • a surface including the central axis of the laser beam 116 and the optical axis of the condenser lens 118 is referred to as an optical path.
  • a direction parallel to the light road surface and perpendicular to the Z-axis direction is taken as an X-axis direction.
  • the direction perpendicular to both the X-axis direction and the Z-axis direction is taken as the Y-axis direction.
  • the Y-axis direction is a direction perpendicular to the paper surface
  • the XZ plane is parallel to the paper surface (optical road surface).
  • the beam size of the laser beam (spot size on the measurement object)
  • spot size on the measurement object There are various definitions of the beam size of laser light.
  • a laser beam having a symmetrical beam profile such as the TEM00 mode
  • one square of e to the peak value (where e is the base of the natural logarithm)
  • the beam size is defined by the width of the intensity distribution (13.5%).
  • the beam profile is broken, for example, a circle containing 86.5% of the total power of the beam with respect to the peak power is calculated, and the diameter of the circle is defined as the beam size.
  • the beam size (the object size to be measured) is substantially in the range not less than the diameter of the circle containing 50% of the total power and not more than the diameter of the circle containing 95% of the total power. It is assumed that it is equal to the spot size above).
  • FIG. 2 is a perspective view schematically showing the configuration of the linear image sensor of FIG.
  • linear image sensor 120 includes 1024 pixels (pixels) 122 linearly arranged. Each pixel 122 outputs a signal of a luminance level from 0 to a maximum of 255 according to the light reception amount.
  • FIG. 3 is a diagram showing an example of data detected by the linear image sensor of FIG.
  • the horizontal axis in FIG. 3 indicates the pixel position, and the vertical axis indicates the brightness level.
  • the light diffusely reflected on the measurement object 130 is condensed by the condensing lens 118 to a spot 124 on the linear image sensor 120, thereby generating a Gaussian as shown in FIG. 3.
  • Distribution data are obtained.
  • the distance to the object is calculated by triangulation from the barycentric position of the data in FIG.
  • the linear image sensor 120 is disposed at an angle based on the Scheimpflug Condition. That is, the detection surface of the linear image sensor 120 and the main surface of the condenser lens 118 intersect in one straight line, and the angle between these surfaces is ⁇ .
  • the plane including the laser beam 116 is the object plane.
  • the moving magnification M of the imaging spot 124 on the linear image sensor 120 with respect to the change in the distance between the measurement object 130 and the laser displacement meter 100 is given by the following equation (1).
  • the focal length of the condenser lens 118 is f 0, and the distance from the irradiation position (laser spot 132) of the laser beam 116 on the measurement object 130 to the condenser lens 118 is l.
  • FIG. 4 is a block diagram schematically showing a configuration example of the surface shape measuring apparatus according to the first embodiment.
  • the surface shape measuring apparatus 140 includes a table 144 on which the measurement object 130 is placed, a saddle 142, a laser displacement meter 100, an X-axis drive mechanism 146X, and a Y-axis drive mechanism 146Y. , Z-axis drive mechanism 146Z, and a computer 150.
  • the table 144 is disposed on the saddle 142 and is movable in the X-axis direction.
  • the saddle 142 is movable in the Y-axis direction.
  • the X-axis drive mechanism 146X moves the table 144 in the X-axis direction.
  • the Y-axis drive mechanism 146Y moves the saddle 142 in the Y-axis direction.
  • the Z-axis drive mechanism 146Z moves the laser displacement meter 100 in the Z-axis direction.
  • the X-axis drive mechanism 146X, the Y-axis drive mechanism 146Y, and the Z-axis drive mechanism 146Z function as a moving mechanism 146 for relatively moving the laser displacement meter 100 and the measurement object 130.
  • the moving mechanism 146 causes the laser beam 116 to scan over the surface of the measurement object 130.
  • the configuration of the moving mechanism 146 is not limited to the example shown in FIG.
  • the measurement object 130 may be fixed, and the laser displacement meter 100 may be movable in three directions of X, Y, and Z.
  • the computer 150 includes a processor 152, a memory 154, and display devices and input / output devices (not shown).
  • the processor 152 functions as a measurement control unit 156 and a data processing unit 158 by executing a program stored in the memory 154.
  • the measurement control unit 156 scans the laser beam 116 by controlling the laser displacement meter 100 and the moving mechanism 146. During the scanning of the laser beam 116, the measurement control unit 156 continuously measures the surface shape data 166 of the measurement object 130 using the laser displacement meter 100. The measured surface shape data 166 is stored in the memory 154. The surface shape data 166 is a data series in which the scanning position (the position where the laser beam is irradiated) on the measurement object 130 and the displacement of the surface of the measurement object 130 at the scanning position in the Z direction are associated. .
  • the data processing unit 158 performs data processing of measurement data in order to remove characteristic noise included in the measurement data (surface shape data 166) of the laser displacement meter 100. Details of the data processing content will be described later with reference to FIGS. 16 to 22.
  • the surface shape measuring apparatus 140 is characterized in the relationship between the scanning direction of the laser beam 116 and the direction of the laser displacement meter 100.
  • the light receiving unit linear image sensor 120
  • the scanning direction in the case of FIG. 1, + X direction or ⁇ X direction
  • the laser beam 116 is scanned to be located at In other words, the scanning direction of the laser beam 116 is aligned with the light path (parallel to the XZ plane in the case of FIG. 1) including the central axis of the laser beam 116 and the optical axis of the condenser lens 118.
  • the laser beam 116 may be scanned so that the laser spot follows a curved trajectory on the surface of the measurement object 130.
  • one of the measurement object 130 or the laser displacement meter 100 is rotated about the Z axis (C-axis direction) in order to position the light-receiving unit forward or backward in the scanning direction with respect to the light-emitting unit 110 A drive mechanism is required.
  • FIG. 5 is a view showing an example of the measurement result of the metal surface by the laser displacement meter. Specifically, FIG. 5 shows the result of measuring the displacement of the surface of the metal gauge block having a smooth surface using the laser displacement meter 100 at intervals of 0.1 mm. The scanning direction of the laser beam is parallel to the surface of the gauge block. As shown in FIG. 5, while the surface roughness of the gauge block is about 0.06 ⁇ m, noise as large as 36 ⁇ m was observed in the measurement data at 3 ⁇ ( ⁇ represents a standard deviation). As described in detail later, this noise is characterized in that it can not be removed by time averaging processing (processing of performing the same measurement repeatedly and averaging).
  • the electric circuit inside the laser displacement meter is the heat source, and the error caused by the thermal displacement of the measurement optical system is mainly.
  • the laser displacement meter used this time a shift of measured value of 10 ⁇ m is observed after the power is turned on.
  • the shift of the measured value due to the temperature change usually stabilizes in about 30 to 60 minutes after the power is turned on, so it can not cause the noise shown in FIG.
  • the movement error of the moving mechanism 146 includes an error due to thermal displacement and a mechanical error.
  • the error due to the thermal displacement is observed as a temporally slow fluctuation, similar to the influence of the temperature inside the laser displacement gauge described above.
  • the mechanical error is caused by an error in the positional accuracy of the moving mechanism 146 when the laser beam is scanned to measure the surface shape.
  • mechanical errors appear as large undulations as compared to the spiked noise, and thus are not considered as the cause of the noise shown in FIG.
  • an error due to the vibration of the servo shaft is also considered.
  • the noise due to the vibration of the servo axis can be removed by time averaging as well as the electrical noise, so it is not the cause of the noise shown in FIG.
  • Non-uniform microscopic reflectance of the surface of the measurement object 130 is the nonuniform microscopic reflectance of the surface of the measurement object 130.
  • Non-uniformity in reflectance is caused by non-uniformity in material, scratches on metal surfaces, and irregularities. Since the laser beam for measurement has a spot size, unevenness in microscopic reflectivity within the laser spot size causes uneven brightness, which may cause measurement error.
  • FIG. 6 is a diagram for describing a change in an imaging spot on the linear image sensor when the reflectance of the measurement object is nonuniform.
  • FIG. 7 is a plan view schematically showing the surface of the measurement object of FIG.
  • FIG. 8 is a diagram showing an example of the luminance distribution detected by the linear image sensor in the cases of FIG. 6 and FIG.
  • the luminance distribution in the imaging spot 124 on the linear image sensor 120 exhibits a Gaussian distribution, It is important that the center of the spot 124 be detectable. If the microscopic reflectance of the surface of the measurement object 130 is not uniform and uneven brightness occurs, a measurement error may occur because the brightness distribution deviates from the Gaussian distribution due to the uneven brightness.
  • the relative position of the high reflectance area to the laser beam 116 is determined as the laser beam 116 is scanned in the + X direction (scanning direction) (ie, as the object to be measured moves in the ⁇ X direction), P1, P2,. It changes in order of P3.
  • the measurement object 130 is measured to be located at a position (lower position) farther from the light emitting unit 110 than it actually is.
  • the measurement object 130 is measured to be at the same position as it is.
  • the center of gravity 136 of the data is at the center 134 of the imaging spot of the image sensor 120 (FIG. It shifts in the opposite direction to the case of A). For this reason, the measurement object 130 is measured so as to be closer (higher) to the light emitting portion 110 than it actually is.
  • FIG. 9 is a diagram for explaining the magnitude of the measurement error caused by the nonuniformity of the reflectance of the measurement object.
  • the size of the laser spot 132 is largely described to facilitate the illustration.
  • FIG. 9A as in the case of FIG. 8A, the case where the surface of the object to be measured is measured so as to be located by ⁇ more than the actual distance is shown.
  • FIG. 9B as in the case of FIG. 8C, the case where the surface of the measurement object is measured so as to be positioned closer by ⁇ + than in reality is shown.
  • the magnitude of the measurement error caused by the nonuniformity of the reflectance is determined by the spot size w of the laser spot 132 and the light receiving angle ⁇ . Specifically, the maximum value of the measurement error (error when misrecognized around the periphery of the laser spot 132) ⁇ max is given by the following equation (2).
  • ⁇ max w / (2 ⁇ tan ( ⁇ )) (2)
  • the maximum value ⁇ max of the measurement error is given by the following equation (2A), and becomes the same value as the measurement error in FIG.
  • speckle is an interference phenomenon of laser light
  • measurement noise caused by speckle is closely related to surface roughness. Specifically, when the optical path length deviates by ⁇ / 2 with the wavelength of the laser light being ⁇ , the light becomes dark on the image sensor 120 due to interference, and the light on the image sensor 120 becomes bright due to the deviation of ⁇ .
  • fluctuation of luminance occurs on the image sensor 120 at an integral multiple of ⁇ / 4.
  • the surface asperities are several tens of nm or less, which is about one tenth of the wavelength ⁇ of the laser light. In that case, speckle does not become a clear light and dark state and unevenness of low contrast occurs.
  • 1.22 ⁇ (1 + M) ⁇ ⁇ ⁇ f / d (3)
  • is the average speckle diameter on the imaging plane
  • M magnification of the imaging optical system
  • is the wavelength of the laser light
  • f is the focal length of the lens
  • d is the aperture diameter of the lens.
  • speckle noise can be a cause of the noise shown in FIG. 5 by the same mechanism as in the case of the non-uniform reflectance described with reference to FIGS. Speckle noise is usually treated as a statistic because it is unpredictable. However, in the microscopic range, speckle noise appears reproducibly and deterministically, and can not be removed by averaging with a time filter.
  • FIG. 10 is a diagram showing the result of repeatedly measuring the displacement in the height direction in a minute section on the gauge block using a laser displacement meter.
  • measurement data at each measurement point (range of average value and ⁇ 3 ⁇ , where ⁇ is the same) when the measurement range of 0.1 mm is measured 20 times at a sampling interval of 1 ⁇ m for the same gauge block as FIG. 5 Standard deviation) is shown. Since the spot size of the laser beam is 50 ⁇ m, the measurement interval (1 ⁇ m) is sufficiently smaller than the spot size.
  • FIG. 10 what appeared to be spike-like random noise in FIG. 5 has very good measurement reproducibility, and measurement results as if minute irregularities were present on the surface were obtained.
  • the surface roughness of the gauge block is several tens of nm, and asperities close to 100 times the actual roughness are detected.
  • the data variation at each measurement point is 2.3 ⁇ m at 3 ⁇ value.
  • the error at each measurement point is noise caused by electrical noise, air fluctuation, servomotor vibration, etc., and can be canceled by time averaging processing.
  • FIG. 11 is a diagram showing the result of measuring the displacement in the height direction on the gauge block in the range of 0.4 mm using a laser displacement meter.
  • measurement data surface shape data
  • FIG. 11 measurement data (surface shape data) when the measurement range of 0.4 mm is measured only once at a sampling interval of 1 ⁇ m are shown for the same gauge block as that of FIG.
  • the measurement in FIG. 11 is characterized in that the laser beam 116 is scanned such that the light receiving unit (linear image sensor 120) is located forward in the scanning direction with respect to the light emitting unit 110 in FIG. . That is, the scanning direction of the laser beam is aligned with the light path (XZ plane in FIG. 1) including the central axis of the laser beam and the optical axis of the condenser lens 118.
  • the state of the change of the measurement data seen in the regions RA, RB, and RC in FIG. 11 is the same as that described in FIGS. That is, as the area of high reflectance moves from right to left in the laser spot (note that it is in the opposite direction to the scanning direction of the laser beam), the displacement in the height direction measured by the laser displacement gauge is In the first half it is lower than the actual and in the second half it is higher than the actual.
  • the direction of the above error change is that the light receiving unit (linear image sensor 120) is located forward in the scanning direction with respect to the light emitting unit 110 in FIG.
  • the direction of the error change is reversed.
  • FIG. 12 is a diagram showing the maximum value of the light reception amount of the image sensor at each measurement point in FIG.
  • the vertical axis in FIG. 12 indicates the luminance level at the pixel at which the amount of received light is largest. It can be read that in the regions RA, RB, and RC where relatively large measurement errors of the characteristic shape are observed in FIG.
  • FIG. 13 is a diagram showing the relationship between the displacement in the height direction and the maximum light reception amount in the region RC of FIG. 11 and FIG.
  • the maximum light receiving amount detected by image sensor 120 gradually increases, and the barycentric position of the luminance distribution on image sensor 120 It slips.
  • the detected value (displacement in the height direction) of the laser displacement gauge largely fluctuates to the negative side (section of arrow A1).
  • the position of the center of gravity of the luminance distribution on the image sensor 120 moves with the movement of the measurement point (the scanning position of the laser beam).
  • the detection value (displacement in the height direction) of the laser displacement gauge changes from minus to plus (section of arrow A2).
  • the light reception amount of the image sensor 120 decreases, and the detected value (displacement in the height direction) of the laser displacement gauge returns to the correct value (average value) (section of arrow A3).
  • the above-mentioned characteristic phenomenon can be explained by uneven reflection on a minute area (area smaller than the laser spot size) of the surface of the measurement object, as already described.
  • this characteristic phenomenon can be described as the case where the speckle diameter can not be ignored with respect to the spot size of the laser beam.
  • the average speckle diameter is calculated to be 4.0 ⁇ m as described using equation (3), smaller than 12 ⁇ m which is the pixel width of the linear image sensor 120, and approximately 1/12 of 50 ⁇ m of the spot size. It is a size. Therefore, since the averaging is performed in the pixel, the variation of the measurement value due to the influence of the average speckle diameter is small and can be removed by the averaging process by the spatial filter.
  • FIG. 14 is a view showing the measurement results of the surface shape of a square area of 0.5 mm on a side with a laser beam of spot size of 50 ⁇ m in diameter.
  • FIG. 15 is a view showing the result of measuring the surface shape of the same area as FIG. 14 while changing the laser spot size to 400 ⁇ m in diameter.
  • represents a diameter.
  • the maximum value of the surface asperities measured by the laser displacement meter increased from 67 ⁇ m to 80 ⁇ m.
  • the measurement error of the laser displacement meter is considered to be due to the influence of the local reflectance nonuniformity of the measurement object and the occasionally appearing large diameter speckle.
  • the errors due to these factors have the following characteristics.
  • the section (characteristic section) in which such a characteristic error pattern can be seen is equal to or less than the laser spot size. Therefore, according to the sampling theorem, it is necessary to set the sampling interval of the laser displacement gauge to 1/2 or less of the laser spot size in order to capture this error pattern (vertical movement of the measurement value). In order to accurately capture the shape of the vertical movement of the measurement value, the sampling interval of the laser displacement gauge is desirably 1/10 or less of the spot size. More preferably, the sampling interval of the laser displacement meter is set to 1/20 or less of the spot size.
  • FIG. 16 is a flowchart showing the measurement of the surface shape and the processing procedure of the measured data.
  • operations of the measurement control unit 156 and the data processing unit 158 of FIG. 4 will be described mainly with reference to FIGS. 4 and 16.
  • the measurement control unit 156 is a laser so that the light receiving unit (linear image sensor 120) is positioned forward or backward of the scanning direction (+ X direction or ⁇ X direction) of the laser beam 116 with respect to the light emitting unit 110 of FIG. With the displacement gauge 100 oriented, the laser beam 116 is scanned by the moving mechanism 146. Furthermore, the measurement control unit 156 continuously measures the displacement of the surface of the measurement object 130 by the laser displacement meter 100 during the scanning of the laser beam 116 (step S100). The measurement data is stored in the memory 154 as surface shape data 166. The sampling interval of the surface shape data 166 needs to be 1/2 or less of the spot size of the laser beam, desirably 1/10 or less of the spot size, and more desirably 1/20 or less.
  • the data processing unit 158 performs data processing on the surface shape data 166 after the measurement by the measurement control unit 156. As shown in FIG. 4, the data processing unit 158 includes a feature section extraction unit 160, a data correction unit 162, and a filter processing unit 164.
  • the feature section extraction unit 160 extracts a feature section in which the above-mentioned characteristic error pattern is observed from the measurement range of the surface shape data (step S105).
  • the feature section is a section having a size equal to or smaller than the spot size of the light beam, and the surface shape data shows a change which becomes maximum in the first half or the second half of the feature section. Show the change.
  • FIGS. 17 and 18 a method of extracting a feature section will be described.
  • FIG. 17 is a diagram for explaining a method of extracting a feature section in step S105 of FIG.
  • the feature section extraction unit 160 in FIG. 4 sequentially cuts out measurement data MD of the section I1 equal to the spot size w of the laser beam from the measurement range of the surface shape data. Then, the feature section extraction unit 160 sets the waveform of the measurement data MD in the first half I2 of the cut out section I1 and the waveform of the measurement data MD in the second half I3 of the section I1 180 degrees around the data point MP at the center of the section I1.
  • the correlation coefficient with the waveform obtained by rotating is determined. When the calculated correlation coefficient exceeds a predetermined reference value, the feature section extraction unit 160 specifies the cut out section I1 as a feature section.
  • FIG. 18 is a diagram for explaining another method of extracting a feature section in step S105 of FIG.
  • the feature section extraction unit 160 in FIG. 4 detects that the measurement data MD exceeds the predetermined value TH with respect to the average value AV in the section I4 smaller than the spot size w of the laser beam. Extract the part that is changing in both directions. Then, in a part of the first half I5 of the section I4, the characteristic section extraction unit 160 changes the measurement data MD in one direction (plus direction or minus direction) beyond the predetermined range TH with respect to the average value AV of the measurement data MD. If the measurement data MD changes in a direction opposite to the first half I5 in a part of the second half I6 of the section I4 beyond the predetermined range TH with respect to the average value AV, the section I4 is specified as the feature section .
  • data correction unit 162 changes the amount of change with respect to the average value of surface shape data 166 (that is, the average value of each measured value) in each of the extracted one or more feature sections.
  • Surface shape data 166 is corrected so as to reduce the deviation from. For example, a method of correcting the surface shape data 166 using the symmetry of the error pattern in each feature section can be considered.
  • FIG. 19 is a diagram for explaining a method of correcting the surface shape data 166 in step S110 of FIG.
  • the solid line graph represents data MD (surface shape data 166) measured in the characteristic section I7.
  • the graph in the alternate long and short dash line is folded data RD obtained by folding measurement data MD of the second half to the first half side and folding data MD of the first half to the second half side at the boundary line BR between the first half I8 and the second half I9 Represents Since the measurement data MD and the aliasing data RD are substantially symmetrical with respect to the boundary line BR, the characteristic data is removed by averaging the measurement data MD and the aliasing data RD for each measurement point.
  • the dashed line in FIG. 19 can be obtained.
  • the data correction unit 162 compares the measured values at any first measurement point in each feature section with the measured values at second measurement points located at symmetrical positions across the middle point of the section. Then, the surface shape data is corrected by replacing the measured values at the first and second measurement points with the determined average value.
  • the data correction unit 162 may correct the surface shape data 166 by replacing the data in each feature section with the average value of the surface shape data 166.
  • filter processing unit 164 performs spatial low-pass filter processing on the surface shape data corrected by data correction unit 162 (step S115).
  • the cut-off wavelength of the spatial low pass filter for noise removal may be adjusted to the laser spot size at the time of measurement. This leaves only periodic fluctuations longer than the spot size of the laser beam.
  • spatial low-pass filter processing for example, moving average processing in which the size of the moving average section is set equal to the spot size can be used.
  • FIG. 20 is a diagram showing the result of performing data correction shown in step S110 of FIG. 16 on the measurement data of FIG.
  • the size of the moving average section is made larger than the spot size of the laser beam, the measurement noise can be further reduced, but the noise due to the characteristic error pattern should be completely eliminated. I can not do it. Furthermore, if the size of the moving average section is increased too much, there is a disadvantage that the detection of unevenness which can be originally detected can not be detected.
  • the error of the laser displacement gauge has very good repeatability. Therefore, noise removal can not be performed by averaging a plurality of measurements (time averaging processing).
  • a characteristic error pattern having a point-symmetrical shape appears by orienting the laser displacement gauge such that the light receiving unit (image sensor) is positioned forward or backward in the scanning direction with respect to the laser beam. .
  • the above-mentioned errors can be explained by speckle noise having a diameter that can not be ignored with respect to the spot size of the laser light, or non-uniformity of the local reflectance of the surface of the measurement object. Then, the measurement error of the laser displacement gauge can be efficiently reduced by extracting and removing the characteristic error pattern of the above-mentioned error. Furthermore, since the amount of light reception of the image sensor changes sharply in the part where the error is increasing, the fluctuation rate of the amount of light reception of the image sensor can be used as an index of measurement reliability, and the characteristic error pattern and the object to be measured It can also be used to distinguish between the above-mentioned inherent unevenness.
  • FIG. 23 is a block diagram schematically showing the configuration of the surface shape measuring apparatus according to the second embodiment.
  • Data processing unit 158A in FIG. 23 differs from data processing unit 158 in FIG. 4 in that data processing unit 158A in FIG. 23 includes moving average processing unit 163 instead of data correction unit 162 and filter processing unit 164. Since the surface shape measuring apparatus 140A of FIG. 23 is the same as the surface shape measuring apparatus 140 of FIG. 4 except for the data processing unit 158, the same or corresponding parts are denoted by the same reference numerals and the description is repeated. Absent.
  • FIG. 24 is a flowchart showing an example of measurement of surface shape and processing procedure of measurement data in the surface shape measurement apparatus according to the second embodiment.
  • step S120 is executed instead of steps S110 and S115 of FIG.
  • Steps S100 and S105 are the same as in the case of FIG.
  • the moving average processing unit 163 of FIG. 23 performs moving average on the surface shape data 166 in a variable moving average section (step S120).
  • the size of the moving average section is larger than the spot size of the light beam.
  • the size of the moving average section is set larger than in the case of performing the moving average without including. For example, the size of the moving average section when performing the moving average including the feature section is set to 5 times or more of the spot size.
  • FIG. 25 is a flowchart showing another example of measurement of surface shape and processing procedure of measurement data in the surface shape measurement apparatus according to the second embodiment.
  • step S125 is executed instead of steps S110 and S115 of FIG.
  • Steps S100 and S105 are the same as in the case of FIG.
  • the moving average processing unit 163 of FIG. 23 performs weighted moving average on the surface shape data 166 (step S125).
  • the size of the moving average section of the weighted moving average is set to be larger than the spot size of the light beam, for example, five or more times the spot size.
  • the moving average processing unit 163 sets weights for measurement points in the feature section where characteristic error patterns as seen in the regions RA, RB, and RC in FIG. 11 are observed more than weights for measurement points outside the feature section. Set small.
  • Embodiment 3 discloses a machine tool provided with the surface shape measuring apparatus of Embodiment 1 or 2. Although the case where the machine tool is a vertical machining center is described below, the machine tool may be another type such as a horizontal machining center or a lathe.
  • FIG. 26 is a perspective view schematically showing the configuration of the machine tool according to the third embodiment.
  • machine tool 200 includes a processing apparatus 10, an NC (Numeric Control) apparatus 24, an ATC (Automatic Tool Changer) 28, and a computer 150.
  • NC Numeric Control
  • ATC Automatic Tool Changer
  • the processing apparatus 10 comprises a bed 12, a column 14 mounted on the bed 12, a spindle head 20 with a spindle 22 and a saddle 16 with a table 18.
  • the spindle head 20 is supported on the front surface of the column 14 and is movable in the vertical direction (Z-axis direction).
  • a tool (not shown) or a measuring head 42 is removably attached to the tip of the spindle 22.
  • the main spindle 22 is supported by the main spindle head 20 so that its central axis (CL in FIG. 2) is parallel to the Z axis and can be rotated about its central axis.
  • the measurement head 42 incorporates the laser displacement meter 100 shown in FIGS. 4 and 23, a control circuit and a drive battery of the laser displacement meter, and a communication device for performing wireless communication.
  • the saddle 16 is disposed on the bed 12 and is movable in the back and forth horizontal direction (Y-axis direction).
  • a table 18 is disposed on the saddle 16.
  • the table 18 is movable in the left and right horizontal directions (X-axis direction).
  • the workpiece 2 is placed on the table 18.
  • the saddle 16 corresponds to the saddle 142 of FIGS. 4 and 23, and the table 18 corresponds to the table 144 of FIGS.
  • the workpiece 2 corresponds to the measurement object 130 of FIGS. 4 and 23.
  • the processing apparatus 10 is a machining center that performs three-axis control that relatively moves the measurement head 42 and the workpiece 2 in the directions of three orthogonal axes relative to the X axis, the Y axis, and the Z axis. Unlike the configuration of FIG. 1, the processing apparatus 10 may be configured to move the spindle head 20 supporting the measurement head 42 in the X-axis and Y-axis directions with respect to the workpiece 2.
  • the NC device 24 controls the overall operation of the processing device 10 including the above-described three-axis control.
  • ATC (Automatic Tool Changer) 28 automatically exchanges the tool and the measuring head 42 with respect to the spindle 22 respectively.
  • the ATC 28 is controlled by an NC unit 24.
  • FIG. 27 is a block diagram showing a functional configuration of a portion related to the surface shape measuring device in the machine tool of FIG. 27, the Z-axis feed mechanism 34, the Y-axis feed mechanism 32, and the X-axis feed mechanism 30 provided in the processing apparatus 10 are shown.
  • Z-axis feed mechanism 34 drives spindle head 20 supported by column 14 to move it in the Z-axis direction.
  • the Y-axis feed mechanism 32 drives the saddle 16 disposed on the bed 12 to move it in the Y-axis direction.
  • the X-axis feed mechanism 30 drives the table 18 mounted on the saddle 16 and supporting the workpiece 2 to move it in the X-axis direction.
  • the NC device 24 controls the Z-axis feed mechanism 34, the Y-axis feed mechanism 32 and the X-axis feed mechanism 30, respectively.
  • the X-axis feed mechanism 30, the Y-axis feed mechanism 32, and the Z-axis feed mechanism 34 correspond to the X-axis drive mechanism 146X, the Y-axis drive mechanism 146Y, and the Z-axis drive mechanism 146Z in FIGS. 4 and 23, respectively.
  • the computer 150 includes a processor 152, a memory 154, and a communication device 168 that wirelessly communicates with the measurement head 42.
  • the processor 152 functions as the measurement control unit 156 and the data processing units 158 and 158A described in FIGS. 4 and 23 by executing the program stored in the memory 154.
  • the measurement control unit 156 cooperates with the NC device 24 to continuously change the relative positional relationship between the measurement head 42 and the workpiece 2, whereby the laser beam 116 scans along the surface of the workpiece 2. Do.
  • the measurement control unit 156 detects displacement data in the height direction (Z-axis direction) at a plurality of measurement points in the scanning direction of the laser beam 116 from the measuring head 42 as surface shape data of the workpiece 2 during scanning of the laser beam 116. get.
  • the specific procedure is as follows.
  • the NC device 24 is either one of the X-axis feed mechanism 30 and the Y-axis feed mechanism 32, or the X-axis feed mechanism 30, the Y-axis feed mechanism 32, and the Z axis.
  • the laser displacement gauge is oriented such that the light receiving unit of the laser displacement gauge is positioned forward or backward with respect to the light emitting unit of the laser displacement meter in the scanning direction of the laser beam 116.
  • a PLC (Programmable Logic Controller) 26 incorporated in the NC device 24 outputs a trigger signal to the communication device 168 at a predetermined cycle in synchronization with the driving of the above-mentioned feed mechanism.
  • the communication device 168 receives the trigger signal, it sends a measurement command f to the measurement head 42, and the measurement head 42 follows the measurement command f to determine the distance D from the measurement head 42 to the workpiece 2 (that is, the displacement of the surface of the workpiece 2) Measure Data F of the measured distance D is transmitted from the measurement head 42 to the measurement control unit 156 via the communication device 168.
  • the PLC 26 further obtains positional information of the X-axis feed mechanism 30, the Y-axis feed mechanism 32, and the Z-axis feed mechanism 34 in synchronization with the timing of distance measurement by the measurement head 42 described above. Detect location data.
  • the PLC 26 transmits data of the detected position of the measurement head 42 to the measurement control unit 156.
  • the measurement control unit 156 Based on the position data of the measurement head 42 acquired from the PLC 26 and the data F of the distance D acquired from the measurement head 42, the measurement control unit 156 measures the height direction at each measurement point along the scanning direction of the laser beam 116.
  • the displacement data (in the Z-axis direction) is stored in the memory 154 as surface shape data 166.
  • the processor 152 further functions as data processing units 158 and 158A that perform data processing for removing noise included in the surface shape data 166 described above.
  • the operations of the data processing units 158 and 158A are as described in the first and second embodiments.
  • the errors contained in the surface shape data 166 can be efficiently reduced by the data processing units 158 and 158A.
  • Reference Signs List 2 workpiece 10 processing device, 16, 142 saddle, 18, 144 table, 24 NC device, 30 X axis feed mechanism, 32 Y axis feed mechanism, 34 Z axis feed mechanism, 42 measuring head, 100 laser displacement gauge, 110 Light emitting unit, 112 laser diode, 114 lens, 116 laser beam, 118 condensing lens (optical system), 120 linear image sensor (light receiving unit), 130 object to be measured, 132 laser spot, 140, 140 A surface shape measuring apparatus, 146 Movement mechanism, 146X X axis drive mechanism, 146Y Y axis drive mechanism, 146Z Z axis drive mechanism, 150 computer, 152 processor, 154 memory, 156 measurement control unit, 158, 158A data processing unit, 160 feature section extraction unit, 162 data Correction unit 163 the moving average processing unit, 164 filter unit, 166 surface shape data, 168 communication device, 200 a machine tool.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

Provided is a surface shape measuring device (140) wherein a displacement meter (100) comprises: a light emitting unit (110) that projects a light beam (116) toward a measurement subject (130); an optical system (118) that focuses the scattered light of the light beam from the measurement subject (130); and a light receiving unit (120) that detects the focus position of the optical system (118). A movement mechanism (146) scans the light beam (116) by causing the displacement meter (100) and the measurement subject (130) to move relatively. A measurement control unit (156) is configured as follows: in order that the light receiving unit (120) is positioned, with respect to the light emitting unit (110), ahead of or following the scanning direction of the light beam (116), the light beam (116) is scanned by the movement mechanism (146), and during scanning of the light beam (116), the surface displacement of the measurement subject (130) is continuously measured, as surface shape data, by the displacement meter (100).

Description

表面形状測定装置およびそれを備えた工作機械ならびに表面形状測定方法Surface shape measuring device, machine tool provided with the same, and surface shape measuring method
 この発明は、光ビームを用いた非接触方式の変位センサによって表面形状を測定する表面形状測定装置、および表面形状測定装置を備えた工作機械、ならびに表面形状測定方法に関する。 The present invention relates to a surface shape measuring device that measures a surface shape by a noncontact displacement sensor using a light beam, a machine tool equipped with the surface shape measuring device, and a surface shape measuring method.
 工作機械での機上測定技術の需要は益々高まってきている。従来、機上測定の用途は、ワークピース(「加工物」とも称する)の位置決め及び幾何形状の寸法測定などに限定されてきた。近年では、機上測定結果をCADデータと比較することによって、仕上げ加工精度の向上のための補正にも機上測定が使われるようになりつつある。さらに、機上測定結果を利用して、工作機械自身の空間誤差補正を自動で行うなどの研究も進んでいる。 The demand for on-machine measurement technology in machine tools is increasing more and more. Traditionally, on-machine measurement applications have been limited to the positioning of workpieces (also referred to as "workpieces"), dimensional measurement of geometry, and the like. In recent years, on-machine measurement is being used also for correction for improving finishing accuracy by comparing on-machine measurement results with CAD data. In addition, researches such as automatically performing space error correction of the machine tool itself using the on-machine measurement results are also advanced.
 一般的には、タッチプローブが機上測定に使用されている。タッチプローブは、ATC(自動工具交換装置:Automatic Tool Changer)を利用して工作機械本体に取付け可能になっている。さらに、タッチプローブは、データ処理用のコンピュータとの間で無線通信によるデータ転送も可能であり、測定ツールとしての充実度も増してきている。 Generally, a touch probe is used for on-machine measurement. The touch probe can be attached to the machine tool main body using ATC (Automatic Tool Changer). Furthermore, the touch probe can also transfer data by wireless communication with a computer for data processing, and is becoming more fulfilling as a measurement tool.
 しかしながら、タッチプローブにはその構造上の制約が存在する。すなわち、接触式であるため、仕上げ加工後のワークピースに傷をつける可能性を排除できない。さらには、接触時の逃げストロークも少ないため、予め測定対象形状が既知でなくてはならない。加工前のワークピース位置検出の場合には、少ない逃げストローク範囲内の精度であらかじめワークピースが位置決めされていることが必要である。 However, there are structural limitations to touch probes. That is, since it is a contact type, the possibility of damaging the finished workpiece can not be excluded. Furthermore, since the relief stroke at the time of contact is also small, the shape to be measured must be known in advance. In the case of workpiece position detection before machining, it is necessary that the workpiece be positioned in advance with an accuracy within a small relief stroke range.
 一方、非接触測定は、ワークピースを傷つけることも無く、変位センサとワークピースとの距離も数十mmと比較的大きく取れる。このため、鋳物、鍛造品等を加工する前の加工オフセットを求めるための測定、さらには、仕上げ加工後のワークピースの形状を高速でスキャンするなどの用途に向いている。 On the other hand, in the non-contact measurement, the distance between the displacement sensor and the workpiece can be relatively large, such as several tens mm, without damaging the workpiece. For this reason, it is suitable for applications such as measurement for obtaining a processing offset before processing a casting, a forged product or the like, and further, high-speed scanning of the shape of a workpiece after finish processing.
 非接触測定の代表的な方式として、レーザ三角測量方式がある(たとえば、特開平10-332335号公報(特許文献1)参照)。従来、金属材料の表面形状の測定では、金属光沢面での拡散反射光の光量不足のせいでレーザ変位計を用いた測定が困難であった。そのため、表面にパウダーを塗布する等の前処理の必要が生じ、機上測定でのレーザ変位計の実用化が進まない状況があった。近年、受光素子であるイメージセンサの感度向上および半導体レーザ素子の発達によって金属光沢面の測定も可能となった。これにより、機上測定で拡散反射方式三角測量レーザ変位計の利用が可能となってきている。 As a typical method of non-contact measurement, there is a laser triangulation method (see, for example, Japanese Patent Application Laid-Open No. 10-332335 (Patent Document 1)). Heretofore, in the measurement of the surface shape of a metal material, it has been difficult to make a measurement using a laser displacement meter due to the lack of the amount of diffuse reflection light on the metallic glossy surface. Therefore, the need for pretreatment such as applying a powder to the surface has arisen, and there has been a situation where the practical use of a laser displacement meter in on-machine measurement has not progressed. In recent years, it has become possible to measure a metallic glossy surface by improving the sensitivity of an image sensor as a light receiving element and developing a semiconductor laser element. This makes it possible to use diffuse reflection triangulation laser displacement gauges on board the aircraft.
特開平10-332335号公報Japanese Patent Application Laid-Open No. 10-332335
 三角測量方式のレーザ変位計の精度は、通常、繰り返し精度で表示され、サブミクロンの精度が保証されているのが通常である。しかしながら、レーザ光を使用していること、スポットが理想的な点形状ではなく大きさを持つことから、特有の測定誤差が観測される。この測定誤差は、実際の表面粗さに比べてはるかに大きいスパイク状のノイズを含み、時間平均化処理では除去できない点に特徴がある。また、上記の測定誤差は、コヒーレントなレーザビームに限らず、非コヒーレントな光ビームを用いた三角測量方式の変位計においても観測される。 The accuracy of triangulation-type laser displacement gauges is usually displayed with repetitive accuracy, and submicron accuracy is usually guaranteed. However, due to the use of laser light and the fact that the spot has a size rather than an ideal point shape, a unique measurement error is observed. This measurement error is characterized in that it contains spike noise that is much larger than the actual surface roughness and can not be removed by the time averaging process. Further, the measurement error described above is observed not only in the coherent laser beam but also in a triangulation displacement gauge using a noncoherent light beam.
 この発明は、上記の問題点を考慮してなされたものであり、その主な目的は、光ビームを用いた三角測量によって表面形状を測定する際に観測される誤差を低減することが可能な表面形状測定装置を提供することである。 The present invention has been made in consideration of the above problems, and its main object is to reduce an error observed when measuring a surface shape by triangulation using a light beam. It is providing a surface shape measuring device.
 この発明は一局面において表面形状測定装置であって、変位計と、移動機構と、測定制御部とを備える。変位計は、測定対象物に向けて光ビームを出射する発光部、測定対象物からの光ビームの散乱光を集光する光学系、および光学系による集光位置を検出する受光部を含む。変位計は、受光部での集光位置に基づいて測定対象物の表面の変位を測定する。移動機構は、変位計と測定対象物とを相対的に移動させることによって、光ビームを走査する。測定制御部は、移動機構および変位計を制御する。測定制御部は、発光部に対して受光部が光ビームの走査方向の前方または後方に位置するように、移動機構に光ビームを走査させ、光ビームの走査中に、変位計によって測定対象物の表面の変位の変化を表面形状データとして連続的に測定するように構成される。 One aspect of the present invention is a surface shape measuring apparatus, which includes a displacement gauge, a moving mechanism, and a measurement control unit. The displacement meter includes a light emitting unit that emits a light beam toward a measurement target, an optical system that collects scattered light of the light beam from the measurement target, and a light receiving unit that detects a collection position by the optical system. The displacement gauge measures the displacement of the surface of the measurement object based on the light collecting position at the light receiving unit. The moving mechanism scans the light beam by relatively moving the displacement meter and the measurement object. The measurement control unit controls the moving mechanism and the displacement gauge. The measurement control unit causes the moving mechanism to scan the light beam so that the light receiving unit is positioned forward or backward with respect to the light beam scanning direction with respect to the light emitting unit, and the measurement object is measured by the displacement meter during the light beam scanning It is configured to continuously measure changes in surface displacement of the surface as surface shape data.
 上記の測定制御部の構成によれば、上述のスパイク状の誤差を特徴的な形状の誤差パターンとして抽出することが可能になる。したがって、抽出した誤差パターンを除去することによって、表面形状データに含まれるノイズを効率的に低減することが可能になる。 According to the configuration of the measurement control unit described above, it is possible to extract the above-mentioned spike-like error as an error pattern of a characteristic shape. Therefore, by removing the extracted error pattern, it is possible to efficiently reduce the noise included in the surface shape data.
 好ましくは、表面形状測定装置は、表面形状データの測定範囲から特徴区間を抽出する特徴区間抽出部をさらに備える。この特徴区間は、光ビームのスポットサイズ以下の大きさの区間であり、表面形状データは、特徴区間の前半または後半で極大となる変化を示し、特徴区間の残り半分で極小となる変化を示す。 Preferably, the surface shape measurement apparatus further includes a feature section extraction unit that extracts a feature section from a measurement range of surface shape data. The feature section is a section having a size equal to or less than the spot size of the light beam, and the surface shape data shows a change that is maximal in the first half or the second half of the feature section, and indicates a change that is minimal in the other half of the feature section .
 好ましくは、特徴区間は、光ビームのスポットサイズ以下の大きさの区間であって予め定める条件を満たす。この場合、予め定める条件は、特徴区間の前半の一部で表面形状データが表面形状データの平均値に対して予め定める範囲を超えて一方向に変化し、特徴区間の後半の一部で前半と反対方向に表面形状データが平均値に対して予め定める範囲を超えて変化するという条件を含む。 Preferably, the feature section is a section having a size equal to or less than the spot size of the light beam, and satisfies a predetermined condition. In this case, the predetermined condition is that the surface shape data changes in one direction beyond the predetermined range with respect to the average value of the surface shape data in a part of the first half of the feature section, and the first half of a part of the second half of the feature section And the condition that the surface shape data changes beyond the predetermined range with respect to the average value in the opposite direction.
 もしくは、特徴区間は、光ビームのスポットサイズに等しい大きさの区間であって予め定める条件を満たす。この場合、予め定める条件は、特徴区間の前半における表面形状データの波形と、特徴区間の後半における表面形状データの波形を特徴区間の中央でのデータ点を中心に180度回転することによって得られる波形との相関係数が、予め定める基準値を超えるという条件を含む。 Alternatively, the feature section is a section having a size equal to the spot size of the light beam and satisfies a predetermined condition. In this case, the predetermined condition is obtained by rotating the waveform of the surface shape data in the first half of the feature section and the waveform of the surface shape data in the second half of the feature section by 180 degrees around the data point at the center of the feature section. It includes the condition that the correlation coefficient with the waveform exceeds a predetermined reference value.
 上記のいずれの構成の特徴区間抽出部によっても、レーザ変位計の測定データに含まれる特徴的なパターン形状の誤差を抽出することができる。したがって、抽出した誤差パターンを除去することによって、表面形状データに含まれるノイズを効率的に低減することが可能になる。 The characteristic section extraction unit having any of the above-described configurations can extract an error of the characteristic pattern shape included in the measurement data of the laser displacement gauge. Therefore, by removing the extracted error pattern, it is possible to efficiently reduce the noise included in the surface shape data.
 好ましい一実施の形態において、表面形状測定装置は、抽出された1または複数の特徴区間の各々において、表面形状データの平均値に対する表面形状データの変化量が小さくなるように表面形状データを補正するデータ補正部をさらに備える。 In a preferred embodiment, the surface shape measuring apparatus corrects the surface shape data so that the amount of change in the surface shape data relative to the average value of the surface shape data becomes small in each of the extracted one or more feature sections. It further comprises a data correction unit.
 好ましくは、データ補正部は、各特徴区間の任意の第1の測定点における測定値を、区間の中点を挟んで対称な位置にある第2の測定点における測定値と平均し、求めた平均値で前記第1および第2の測定点における各測定値を置換することによって表面形状データを補正する。 Preferably, the data correction unit averages the measurement values at any first measurement point of each feature section with the measurement values at second measurement points located at symmetrical positions across the middle point of the section. The surface shape data is corrected by replacing each measurement value at the first and second measurement points with an average value.
 もしくは、データ補正部は、各特徴区間におけるデータを表面形状データの平均値で置き換えることによって、表面形状データを補正するのが好ましい。 Alternatively, the data correction unit preferably corrects the surface shape data by replacing data in each feature section with the average value of the surface shape data.
 上記のいずれの構成のデータ補正部によっても、上記の特徴的な誤差パターンを除去することができる。 The above-described characteristic error pattern can be removed by the data correction unit having any of the above-described configurations.
 上記の一実施の形態においてさらに好ましくは、表面形状測定装置は、データ補正部によって補正された表面形状データに対して、光ビームのスポットサイズよりも長い周期の変動のみを残すローパスフィルタ処理を行うフィルタ処理部をさらに備える。これによって、表面形状データに含まれるノイズをさらに低減させることができる。 More preferably, in the above-described embodiment, the surface shape measuring apparatus performs low-pass filter processing on the surface shape data corrected by the data correction unit, leaving only fluctuations of a period longer than the spot size of the light beam. It further comprises a filter processing unit. This can further reduce the noise included in the surface shape data.
 好ましい他の実施の形態において、表面形状測定装置は、表面形状データに対して、可変の移動平均区間で移動平均を行う移動平均処理部をさらに備える。ここで、移動平均区間の大きさは光ビームのスポットサイズよりも大きい。特徴区間を含んで移動平均を行う際の移動平均区間の大きさは、特徴区間を含まずに移動平均を行う際の移動平均区間の大きさよりも大きい。 In another preferable embodiment, the surface shape measuring apparatus further includes a moving average processing unit which performs moving average on surface shape data in a variable moving average section. Here, the size of the moving average section is larger than the spot size of the light beam. The size of the moving average section when performing the moving average including the feature section is larger than the size of the moving average section when performing the moving average without including the feature section.
 好ましいさらに他の実施の形態において、表面形状測定装置は表面形状データに対して、重み付き移動平均を行う移動平均処理部をさらに備える。ここで、重み付き移動平均の移動平均区間の大きさは光ビームのスポットサイズよりも大きい。特徴区間内の測定点に対する重みは、特徴区間外の測定点に対する重みよりも小さい。 In still another preferred embodiment, the surface shape measuring apparatus further includes a moving average processing unit that performs weighted moving average on the surface shape data. Here, the size of the moving average section of the weighted moving average is larger than the spot size of the light beam. The weight for measurement points in the feature section is smaller than the weight for measurement points outside the feature section.
 上記のいずれの構成の移動平均処理部によっても、レーザ変位計の測定データに含まれる特徴的なパターン形状の誤差を抑制することができる。 Even with the moving average processing unit having any of the above-described configurations, it is possible to suppress an error of the characteristic pattern shape included in the measurement data of the laser displacement gauge.
 この発明は他の局面において、上記の表面形状測定装置を備えた工作機械である。
 この発明は、さらに他の局面において、非接触方式の変位計を用いた表面形状測定方法である。上記の変位計は、測定対象物に向けて光ビームを出射する発光部、測定対象物からの光ビームの散乱光を集光する光学系、および光学系による集光位置を検出する受光部を含む。表面形状測定方法は、発光部に対して走査方向の前方または後方に受光部が位置するように、受光部と発光部との位置関係を保ちながら、走査方向に沿って変位計を測定対象物に対して相対的に移動させるステップと、変位計の相対移動に伴う変位計の測定値の変化に基づいて、測定対象物の表面形状を決定するステップとを備える。
According to another aspect of the present invention, there is provided a machine tool provided with the surface shape measuring apparatus described above.
The present invention, in still another aspect, is a surface profile measurement method using a noncontact displacement meter. The above-described displacement meter includes a light emitting unit that emits a light beam toward an object to be measured, an optical system that condenses scattered light of the light beam from the object to be measured, and a light receiving unit that detects a condensing position by the optical system Including. In the surface shape measuring method, an object to be measured is measured along the scanning direction while maintaining the positional relationship between the light receiving unit and the light emitting unit so that the light receiving unit is positioned forward or backward in the scanning direction with respect to the light emitting unit. And moving the surface of the object to be measured based on a change in the measurement value of the displacement meter in accordance with the relative movement of the displacement meter.
 好ましくは、表面形状を決定するステップは、測定対象物の表面形状の測定範囲から特徴区間を抽出するステップを含む。特徴区間は、光ビームのスポットサイズ以下の大きさの区間であり、測定対象物の表面形状の測定データは、特徴区間の前半または後半で極大となる変化を示し、特徴区間の残り半分で極小となる変化を示す。 Preferably, the step of determining the surface shape includes the step of extracting a feature section from the measurement range of the surface shape of the measurement object. The feature section is a section having a size equal to or less than the spot size of the light beam, and the measurement data of the surface shape of the measurement object shows a change which becomes maximum in the first half or the second half of the feature section. Show the change.
 好ましくは、表面形状を決定するステップは、抽出された1または複数の特徴区間の各々において、測定対象物の表面形状の測定データの平均値に対する各測定値の偏差が小さくなるように測定データを補正するステップをさらに含む。 Preferably, in the step of determining the surface shape, in each of the one or more extracted feature sections, the measurement data is reduced so that the deviation of each measurement value from the average value of the measurement data of the surface shape of the measurement object is reduced. The method further includes the step of correcting.
 したがって、この発明によれば、光ビームを用いた三角測量によって表面形状を測定する際に観測される誤差を低減することができる。 Therefore, according to the present invention, it is possible to reduce an error observed when measuring the surface shape by triangulation using a light beam.
レーザ変位計の構成を模式的に示す図である。It is a figure which shows the structure of a laser displacement meter typically. 図1のリニアイメージセンサの構成を模式的に示す斜視図である。It is a perspective view which shows typically the structure of the linear image sensor of FIG. 図1のリニアイメージセンサによって検出されるデータの一例を示す図である。It is a figure which shows an example of the data detected by the linear image sensor of FIG. 実施の形態1による表面形状測定装置の構成例を概略的に示すブロック図である。FIG. 1 is a block diagram schematically showing a configuration example of a surface shape measuring apparatus according to a first embodiment. レーザ変位計による金属表面の測定結果の一例を示す図である。It is a figure which shows an example of the measurement result of the metal surface by a laser displacement meter. 測定対象物の反射率が不均一な場合において、リニアイメージセンサ上の結像スポットの変化について説明するための図である。It is a figure for demonstrating the change of the imaging spot on a linear image sensor in, when the reflectance of a measurement object is non-uniform | heterogenous. 図6の測定対象物の表面を模式的に示す平面図である。It is a top view which shows typically the surface of the measurement object of FIG. 図6および図7の場合において、リニアイメージセンサによって検出される輝度分布の一例を示す図である。FIG. 7 is a view showing an example of a luminance distribution detected by a linear image sensor in the cases of FIG. 6 and FIG. 7; 測定対象物の反射率の不均一性に起因した測定誤差の大きさについて説明するための図である。It is a figure for demonstrating the magnitude | size of the measurement error resulting from the nonuniformity of the reflectance of a measurement object. レーザ変位計を用いてゲージブロック上の微小区間での高さ方向の変位を繰り返し測定した結果を示す図である。It is a figure which shows the result of having repeatedly measured the displacement of the height direction in the micro area on a gauge block using a laser displacement meter. レーザ変位計を用いてゲージブロック上の0.4mmの範囲での高さ方向の変位を測定した結果を示す図である。It is a figure which shows the result of having measured the displacement of the height direction in the range of 0.4 mm on a gauge block using a laser displacement meter. 図11の各測定点においてイメージセンサの受光量の最大値を示す図である。It is a figure which shows the maximum value of the light reception amount of an image sensor in each measurement point of FIG. 図11および図12の領域RCにおいて、高さ方向の変位と最大受光量との関係を示す図である。FIG. 13 is a diagram showing the relationship between displacement in the height direction and the maximum light receiving amount in a region RC of FIG. 11 and FIG. 12. 直径50μmのスポットサイズのレーザビームで、1辺0.5mmの正方形状の領域の表面形状の測定した結果を示す図である。It is a figure which shows the result of having measured the surface shape of the square-like area | region of 0.5 mm one side by the laser beam of 50 micrometers in diameter diameter of a spot. レーザスポットサイズを直径400μmに変更して図14と同じ領域の表面形状を測定した結果を示す図である。It is a figure which shows the result of having changed the laser spot size into 400 micrometers in diameter, and having measured the surface shape of the same area | region as FIG. 表面形状の測定および測定したデータの処理手順を示すフローチャートである。It is a flowchart which shows the processing procedure of measurement of surface shape, and the measured data. 図16のステップS105において特徴区間を抽出する方法を説明するための図である。It is a figure for demonstrating the method to extract a characteristic area in FIG.16 S105. 図16のステップS105において特徴区間を抽出する他の方法を説明するための図である。It is a figure for demonstrating the other method of extracting a characteristic area in FIG.16 S105. 図16のステップS110において表面形状データを補正する方法を説明するための図である。It is a figure for demonstrating the method to correct | amend surface shape data in FIG.16 S110. 図11の測定データに対して、図16のステップS110に示すデータ補正を行った結果を示す図である。It is a figure which shows the result of having performed data correction shown to FIG.16 S110 with respect to the measurement data of FIG. 図20のデータに対して、図16のステップS115に示すローパスフィルタ処理を行った結果を示す図である。FIG. 21 is a diagram showing the result of low-pass filter processing shown in step S115 of FIG. 16 on the data of FIG. 20; 図11の測定データに対して図16のステップS110に示すデータ補正を行わずに、ステップS115に示すローパスフィルタ処理を行った結果を示す図である。FIG. 18 is a diagram showing the result of low-pass filter processing shown in step S115 without performing data correction shown in step S110 of FIG. 16 on the measurement data of FIG. 実施の形態2による表面形状測定装置の構成を概略的に示すブロック図である。FIG. 6 is a block diagram schematically showing a configuration of a surface shape measuring apparatus according to a second embodiment. 実施の形態2による表面形状測定装置において、表面形状の測定および測定したデータの処理手順の一例を示すフローチャートである。10 is a flowchart showing an example of measurement of the surface shape and a processing procedure of the measured data in the surface shape measurement apparatus according to the second embodiment. 実施の形態2による表面形状測定装置において、表面形状の測定および測定したデータの処理手順の他の例を示すフローチャートである。FIG. 16 is a flowchart showing another example of the process of measuring the surface shape and processing the measured data in the surface shape measuring apparatus according to the second embodiment. 実施の形態3による工作機械の構成を模式的に示す斜視図である。FIG. 16 is a perspective view schematically showing a configuration of a machine tool according to a third embodiment. 図26の工作機械のうち表面形状測定装置に関する部分の機能的構成を示すブロック図である。FIG. 27 is a block diagram showing a functional configuration of a portion related to the surface shape measuring device in the machine tool of FIG. 26.
 以下、各実施の形態について図面を参照して詳しく説明する。以下の各実施の形態では、レーザ変位計を用いた表面形状測定装置を例に挙げて説明するが、レーザ光に代えて非コヒーレントな光ビームを用いた非接触式の変位計の場合にもこの発明を適用することができる。なお、以下の説明において、同一または相当する部分には同一の参照符号を付して、その説明を繰り返さない場合がある。 Hereinafter, each embodiment will be described in detail with reference to the drawings. In each of the following embodiments, a surface shape measurement apparatus using a laser displacement meter will be described as an example, but a noncontact displacement meter using a noncoherent light beam instead of a laser beam is also described. The present invention can be applied. In the following description, the same or corresponding parts may be denoted by the same reference numerals, and the description thereof may not be repeated.
 <実施の形態1>
 [レーザ変位計の概要]
 図1は、レーザ変位計の構成を模式的に示す図である。図1を参照して、レーザ変位計100は、発光部110と、光学系としての集光レンズ118と、受光部としてのリニアイメージセンサ(Linear Image Sensor)120とを含む。発光部110は、レーザダイオード112と、レンズ114とを含む。
Embodiment 1
[Overview of Laser Displacement Gauge]
FIG. 1 is a view schematically showing the configuration of a laser displacement meter. Referring to FIG. 1, a laser displacement meter 100 includes a light emitting unit 110, a condensing lens 118 as an optical system, and a linear image sensor 120 as a light receiving unit. The light emitting unit 110 includes a laser diode 112 and a lens 114.
 レーザダイオード112から発せられたレーザビーム116はレンズ114によって略平行光に整形され、測定対象物130へ照射される。測定対象物上でのレーザビーム116のスポットサイズw(スポット径とも称する)は、たとえば、直径50μmである。測定対象物130上で拡散反射された光は、レーザビーム116とγの角度方向に配置されたリニアイメージセンサ120上に、集光レンズ118によって集光される。 The laser beam 116 emitted from the laser diode 112 is shaped into substantially parallel light by the lens 114 and irradiated to the measurement object 130. The spot size w (also referred to as spot diameter) of the laser beam 116 on the measurement object is, for example, 50 μm in diameter. The light diffusely reflected on the measurement object 130 is condensed by the condenser lens 118 on the linear image sensor 120 disposed in the angular direction of the laser beam 116 and γ.
 図1において、レーザビーム116の方向をZ軸方向とする。レーザビーム116の中心軸と集光レンズ118の光軸とを含む面を光路面と称する。この光路面に平行でありかつZ軸方向に垂直な方向をX軸方向とする。X軸方向およびZ軸方向の両方に垂直な方向をY軸方向とする。図1の場合、Y軸方向は紙面に垂直な方向であり、XZ平面は紙面(光路面)と平行である。 In FIG. 1, the direction of the laser beam 116 is taken as the Z-axis direction. A surface including the central axis of the laser beam 116 and the optical axis of the condenser lens 118 is referred to as an optical path. A direction parallel to the light road surface and perpendicular to the Z-axis direction is taken as an X-axis direction. The direction perpendicular to both the X-axis direction and the Z-axis direction is taken as the Y-axis direction. In the case of FIG. 1, the Y-axis direction is a direction perpendicular to the paper surface, and the XZ plane is parallel to the paper surface (optical road surface).
 ここで、レーザ光のビームサイズ(測定対象物上でのスポットサイズ)について説明する。レーザ光のビームサイズには種々の定義がある。たとえば、TEM00モードのように対称なビームプロファイルのレーザ光の場合には、光軸に直交する面において、ピーク値に対してeの2乗分の1(ただし、eは自然対数の底)(13.5%)の強度分布の幅でビームサイズが定義される。ビームプロファイルが崩れている場合には、たとえば、ビームの全パワーのうち、ピークパワーを基準として86.5%が含まれる円を算出し、この円の直径がビームサイズとして定義される。この明細書では、種々の定義を含めるために、全パワーの50%が含まれる円の直径以上、全パワーの95%が含まれる円の直径以下の範囲を実質的にビームサイズ(測定対象物上でのスポットサイズ)に等しいとする。 Here, the beam size of the laser beam (spot size on the measurement object) will be described. There are various definitions of the beam size of laser light. For example, in the case of a laser beam having a symmetrical beam profile such as the TEM00 mode, in a plane orthogonal to the optical axis, one square of e to the peak value (where e is the base of the natural logarithm) ( The beam size is defined by the width of the intensity distribution (13.5%). When the beam profile is broken, for example, a circle containing 86.5% of the total power of the beam with respect to the peak power is calculated, and the diameter of the circle is defined as the beam size. In this specification, in order to include various definitions, the beam size (the object size to be measured) is substantially in the range not less than the diameter of the circle containing 50% of the total power and not more than the diameter of the circle containing 95% of the total power. It is assumed that it is equal to the spot size above).
 図2は、図1のリニアイメージセンサの構成を模式的に示す斜視図である。図2を参照して、リニアイメージセンサ120は、直線状に配列された1024個の画素(ピクセル)122を含む。各画素122は、受光量に応じて0から最大255までの輝度レベルの信号を出力する。 FIG. 2 is a perspective view schematically showing the configuration of the linear image sensor of FIG. Referring to FIG. 2, linear image sensor 120 includes 1024 pixels (pixels) 122 linearly arranged. Each pixel 122 outputs a signal of a luminance level from 0 to a maximum of 255 according to the light reception amount.
 図3は、図1のリニアイメージセンサによって検出されるデータの一例を示す図である。図3の横軸がピクセル位置を示し、縦軸が輝度レベルを示す。図2および図3を参照して、測定対象物130上で拡散反射された光が集光レンズ118によってリニアイメージセンサ120上のスポット124に集光されることによって、図3に示すようなガウス分布状のデータが得られる。図3のデータの重心位置から三角測量により対象物までの距離が計算される。 FIG. 3 is a diagram showing an example of data detected by the linear image sensor of FIG. The horizontal axis in FIG. 3 indicates the pixel position, and the vertical axis indicates the brightness level. Referring to FIGS. 2 and 3, the light diffusely reflected on the measurement object 130 is condensed by the condensing lens 118 to a spot 124 on the linear image sensor 120, thereby generating a Gaussian as shown in FIG. 3. Distribution data are obtained. The distance to the object is calculated by triangulation from the barycentric position of the data in FIG.
 再び図1を参照して、リニアイメージセンサ120はシャインプルーフ条件(Scheimpflug Condition)に基付いた角度で配置される。すなわち、リニアイメージセンサ120の検出面と集光レンズ118の主面とは1直線で交わり、これらの面のなす角度をβとする。レーザビーム116を含む面が被写体面となる。この場合、測定対象物130とレーザ変位計100との間の距離の変化に対する、リニアイメージセンサ120上での結像スポット124の移動倍率Mは、次式(1)で与えられる。ただし、集光レンズ118の焦点距離をf0とし、測定対象物130上でのレーザビーム116の照射位置(レーザスポット132)から集光レンズ118までの距離をlとしている。 Referring back to FIG. 1, the linear image sensor 120 is disposed at an angle based on the Scheimpflug Condition. That is, the detection surface of the linear image sensor 120 and the main surface of the condenser lens 118 intersect in one straight line, and the angle between these surfaces is β. The plane including the laser beam 116 is the object plane. In this case, the moving magnification M of the imaging spot 124 on the linear image sensor 120 with respect to the change in the distance between the measurement object 130 and the laser displacement meter 100 is given by the following equation (1). However, the focal length of the condenser lens 118 is f 0, and the distance from the irradiation position (laser spot 132) of the laser beam 116 on the measurement object 130 to the condenser lens 118 is l.
 M=(f0・sinγ)/(l・cosβ)   …(1)
 本実施の形態の場合には、上式(1)において、f0=55mm、l=80mm、γ=π/6、β=5π/18であるので、移動倍率Mは以下のように計算される。
M = (f 0 · sin γ) / (l · cos β) (1)
In the case of the present embodiment, since f 0 = 55 mm, l = 80 mm, γ = π / 6, and β = 5π / 18 in the above equation (1), the moving magnification M is calculated as follows: Ru.
 M={55×sin(π/6)}/{80×cos(5π/18)}=0.53   …(1A)
 [表面形状測定装置の構成]
 図4は、実施の形態1による表面形状測定装置の構成例を概略的に示すブロック図である。図4を参照して、表面形状測定装置140は、測定対象物130が載置されるテーブル144と、サドル142と、レーザ変位計100と、X軸駆動機構146Xと、Y軸駆動機構146Yと、Z軸駆動機構146Zと、コンピュータ150とを含む。
M = {55 × sin (π / 6)} / {80 × cos (5π / 18)} = 0.53 (1A)
[Configuration of surface shape measuring apparatus]
FIG. 4 is a block diagram schematically showing a configuration example of the surface shape measuring apparatus according to the first embodiment. Referring to FIG. 4, the surface shape measuring apparatus 140 includes a table 144 on which the measurement object 130 is placed, a saddle 142, a laser displacement meter 100, an X-axis drive mechanism 146X, and a Y-axis drive mechanism 146Y. , Z-axis drive mechanism 146Z, and a computer 150.
 テーブル144はサドル142上に配置され、X軸方向に移動可能である。サドル142はY軸方向に移動可能である。X軸駆動機構146Xは、テーブル144をX軸方向に移動させる。Y軸駆動機構146Yは、サドル142をY軸方向に移動させる。Z軸駆動機構146Zは、レーザ変位計100をZ軸方向に移動させる。X軸駆動機構146X、Y軸駆動機構146Y、およびZ軸駆動機構146Zは、レーザ変位計100と測定対象物130とを相対的に移動させるための移動機構146として機能する。したがって、移動機構146によってレーザビーム116は、測定対象物130の表面上を走査する。 The table 144 is disposed on the saddle 142 and is movable in the X-axis direction. The saddle 142 is movable in the Y-axis direction. The X-axis drive mechanism 146X moves the table 144 in the X-axis direction. The Y-axis drive mechanism 146Y moves the saddle 142 in the Y-axis direction. The Z-axis drive mechanism 146Z moves the laser displacement meter 100 in the Z-axis direction. The X-axis drive mechanism 146X, the Y-axis drive mechanism 146Y, and the Z-axis drive mechanism 146Z function as a moving mechanism 146 for relatively moving the laser displacement meter 100 and the measurement object 130. Thus, the moving mechanism 146 causes the laser beam 116 to scan over the surface of the measurement object 130.
 なお、移動機構146の構成は図4の例には限られない。たとえば、測定対象物130が固定され、レーザ変位計100がX、Y、Zの3方向に移動可能な構成であってもよい。 The configuration of the moving mechanism 146 is not limited to the example shown in FIG. For example, the measurement object 130 may be fixed, and the laser displacement meter 100 may be movable in three directions of X, Y, and Z.
 コンピュータ150は、プロセッサ152、メモリ154、ならびに図示しない表示装置および入出力装置等を含む。プロセッサ152は、メモリ154に格納されたプログラムを実行することによって、測定制御部156およびデータ処理部158として機能する。 The computer 150 includes a processor 152, a memory 154, and display devices and input / output devices (not shown). The processor 152 functions as a measurement control unit 156 and a data processing unit 158 by executing a program stored in the memory 154.
 測定制御部156は、レーザ変位計100および移動機構146を制御することによって、レーザビーム116を走査させる。このレーザビーム116の走査中に、測定制御部156は、レーザ変位計100を用いて測定対象物130の表面形状データ166を連続的に測定する。測定された表面形状データ166はメモリ154に格納される。表面形状データ166は、測定対象物130上の走査位置(レーザビームが照射される位置)と、当該走査位置における測定対象物130の表面のZ方向の変位とが対応付けられたデータ系列である。 The measurement control unit 156 scans the laser beam 116 by controlling the laser displacement meter 100 and the moving mechanism 146. During the scanning of the laser beam 116, the measurement control unit 156 continuously measures the surface shape data 166 of the measurement object 130 using the laser displacement meter 100. The measured surface shape data 166 is stored in the memory 154. The surface shape data 166 is a data series in which the scanning position (the position where the laser beam is irradiated) on the measurement object 130 and the displacement of the surface of the measurement object 130 at the scanning position in the Z direction are associated. .
 データ処理部158は、レーザ変位計100の測定データ(表面形状データ166)に含まれる特徴的なノイズを除去するために、測定データのデータ処理を行う。データ処理内容の詳細は、図16~図22を参照して後述する。 The data processing unit 158 performs data processing of measurement data in order to remove characteristic noise included in the measurement data (surface shape data 166) of the laser displacement meter 100. Details of the data processing content will be described later with reference to FIGS. 16 to 22.
 本実施の形態による表面形状測定装置140は、レーザビーム116の走査方向とレーザ変位計100の向きとの関係に特徴がある。具体的には、図1に示すように、発光部110に対して受光部(リニアイメージセンサ120)がレーザビーム116の走査方向(図1の場合、+X方向または-X方向)の前方または後方に位置するように、レーザビーム116が走査される。言い換えると、レーザビーム116の中心軸と集光レンズ118の光軸を含む光路面(図1の場合、XZ平面に平行)に、レーザビーム116の走査方向が合わせられる。 The surface shape measuring apparatus 140 according to the present embodiment is characterized in the relationship between the scanning direction of the laser beam 116 and the direction of the laser displacement meter 100. Specifically, as shown in FIG. 1, the light receiving unit (linear image sensor 120) is forward or backward of the light emitting unit 110 in the scanning direction (in the case of FIG. 1, + X direction or −X direction) of the laser beam 116. The laser beam 116 is scanned to be located at In other words, the scanning direction of the laser beam 116 is aligned with the light path (parallel to the XZ plane in the case of FIG. 1) including the central axis of the laser beam 116 and the optical axis of the condenser lens 118.
 上記のようにレーザビーム116の走査方向とレーザ変位計100の向きとを合わせることによって、図11の領域RA,RB,RCに示されるような特徴的な誤差パターンが測定データ中に出現するようになる。したがって、表面形状データ166からこの特徴的な誤差パターンを抽出して除去すれば、表面形状データ166に含まれる比較的大きなノイズを効率的に低減することが可能になる。 By matching the scanning direction of the laser beam 116 with the direction of the laser displacement meter 100 as described above, characteristic error patterns as shown in the areas RA, RB, and RC of FIG. 11 appear in the measurement data. become. Therefore, if this characteristic error pattern is extracted and removed from the surface shape data 166, it is possible to efficiently reduce relatively large noise included in the surface shape data 166.
 なお、測定対象物130の表面上でレーザスポットが曲線状の軌跡を辿るようにレーザビーム116を走査してもよい。この場合、発光部110に対して受光部が走査方向の前方または後方に位置するようにするために、測定対象物130またはレーザ変位計100の一方をZ軸回り(C軸方向)に回転させる駆動機構が必要になる。 The laser beam 116 may be scanned so that the laser spot follows a curved trajectory on the surface of the measurement object 130. In this case, one of the measurement object 130 or the laser displacement meter 100 is rotated about the Z axis (C-axis direction) in order to position the light-receiving unit forward or backward in the scanning direction with respect to the light-emitting unit 110 A drive mechanism is required.
 [レーザ変位計の測定誤差の原因について]
 図5は、レーザ変位計による金属表面の測定結果の一例を示す図である。具体的に、図5には、表面が滑らかな金属ゲージブロックの表面の変位を、レーザ変位計100を用いて0.1mm間隔で測定した結果が示されている。レーザビームの走査方向は、ゲージブロックの表面と平行な方向である。図5に示すように、ゲージブロックの面粗度が0.06μm程度であるのに対して、測定データには3σ値で(σは標準偏差を表す)36μmもの大きなノイズが観測された。詳しくは後述するように、このノイズは、時間平均化処理(同一測定を繰り返し行って平均化する処理)では除去できない点に特徴がある。
[About the cause of measurement error of laser displacement meter]
FIG. 5 is a view showing an example of the measurement result of the metal surface by the laser displacement meter. Specifically, FIG. 5 shows the result of measuring the displacement of the surface of the metal gauge block having a smooth surface using the laser displacement meter 100 at intervals of 0.1 mm. The scanning direction of the laser beam is parallel to the surface of the gauge block. As shown in FIG. 5, while the surface roughness of the gauge block is about 0.06 μm, noise as large as 36 μm was observed in the measurement data at 3σ (σ represents a standard deviation). As described in detail later, this noise is characterized in that it can not be removed by time averaging processing (processing of performing the same measurement repeatedly and averaging).
 レーザ変位計の誤差の原因として、電気的なノイズ、温度変化による影響、移動機構146(X軸駆動機構146X、Y軸駆動機構146Y、およびZ軸駆動機構146Z)の運動誤差、測定対象物130の表面の反射率の不均一に基づく誤差、およびレーザスペックル等が考えられる。 As a cause of error of the laser displacement meter, electrical noise, influence by temperature change, movement error of moving mechanism 146 (X-axis drive mechanism 146X, Y-axis drive mechanism 146Y, and Z-axis drive mechanism 146Z), measurement object 130 Inconsistencies in the reflectance of the surface of the surface of the substrate, laser speckle, etc. are considered.
 電気的なノイズは、測定値の時間平均化処理により改善することが可能である。市販されているレーザ変位計の繰り返し精度は、時間平均化処理がなされた後の数字で表記されることが多く、サブミクロンの精度となる。したがって、図5に示される比較的大きなノイズの原因ではない。 Electrical noise can be improved by time averaging of the measurements. The repeatability of commercially available laser displacement gauges is often expressed in numbers after time averaging, and is submicron accuracy. Therefore, it is not the cause of the relatively large noise shown in FIG.
 温度変化による誤差は、外気温によるものも存在するが、レーザ変位計内部の電気回路が熱源になり、測定光学系の熱変位により生じる誤差が主である。今回用いたレーザ変位計では、電源投入後に10μmの測定値のシフトが観察されている。ただし、温度変化による測定値のシフトは、通常電源を投入してから30~60分程度で安定化するので、図5に示されるノイズの原因にはなり得ない。 Although the error due to temperature change exists due to the outside air temperature, the electric circuit inside the laser displacement meter is the heat source, and the error caused by the thermal displacement of the measurement optical system is mainly. In the laser displacement meter used this time, a shift of measured value of 10 μm is observed after the power is turned on. However, the shift of the measured value due to the temperature change usually stabilizes in about 30 to 60 minutes after the power is turned on, so it can not cause the noise shown in FIG.
 移動機構146の運動誤差は、熱変位による誤差と機械的な誤差とが存在する。熱変位による誤差は上記のレーザ変位計内部の温度の影響と同じく、時間的にゆっくりした変動として観測される。機械的な誤差は、表面形状の測定のためにレーザビームを走査したときにおける移動機構146の位置精度の誤差が原因である。しかしながら、機械的な誤差は、上記スパイク状のノイズに比較して、大きなうねりとして現れるので、図5に示されるノイズの原因としては考え難い。 The movement error of the moving mechanism 146 includes an error due to thermal displacement and a mechanical error. The error due to the thermal displacement is observed as a temporally slow fluctuation, similar to the influence of the temperature inside the laser displacement gauge described above. The mechanical error is caused by an error in the positional accuracy of the moving mechanism 146 when the laser beam is scanned to measure the surface shape. However, mechanical errors appear as large undulations as compared to the spiked noise, and thus are not considered as the cause of the noise shown in FIG.
 移動機構146の運動誤差としてその他に、サーボ軸の振動による誤差も考えられる。しかしながら、サーボ軸の振動によるノイズは、電気的なノイズと同じように時間平均化処理によって除去できるので、図5に示されるノイズの原因ではない。 In addition to the motion error of the moving mechanism 146, an error due to the vibration of the servo shaft is also considered. However, the noise due to the vibration of the servo axis can be removed by time averaging as well as the electrical noise, so it is not the cause of the noise shown in FIG.
 以上の考察によって、図5に示されるノイズの原因の1つは、測定対象物130の表面の微視的な反射率の不均一であると考えられる。反射率の不均一は、材質の不均一、金属表面の傷、および凹凸などによって生じる。測定用のレーザビームがスポットサイズを有しているために、レーザスポットサイズ内の微視的な反射率の不均一によって輝度むらが生じ、これによって測定誤差が生じ得る。 From the above consideration, it is considered that one of the causes of the noise shown in FIG. 5 is the nonuniform microscopic reflectance of the surface of the measurement object 130. Non-uniformity in reflectance is caused by non-uniformity in material, scratches on metal surfaces, and irregularities. Since the laser beam for measurement has a spot size, unevenness in microscopic reflectivity within the laser spot size causes uneven brightness, which may cause measurement error.
 図6は、測定対象物の反射率が不均一な場合において、リニアイメージセンサ上の結像スポットの変化について説明するための図である。図7は、図6の測定対象物の表面を模式的に示す平面図である。図8は、図6および図7の場合において、リニアイメージセンサによって検出される輝度分布の一例を示す図である。 FIG. 6 is a diagram for describing a change in an imaging spot on the linear image sensor when the reflectance of the measurement object is nonuniform. FIG. 7 is a plan view schematically showing the surface of the measurement object of FIG. FIG. 8 is a diagram showing an example of the luminance distribution detected by the linear image sensor in the cases of FIG. 6 and FIG.
 図6~図8を参照して、三角測量方式で高さ方向の変位を正確に求めるためには、リニアイメージセンサ120上での結像スポット124内の輝度分布がガウス分布を示し、結像スポット124の中心が検出できることが重要である。測定対象物130の表面の微視的な反射率が一様でなく輝度むらが生じている場合には、この輝度むらによって輝度分布がガウス分布からずれるために測定誤差が生じることがある。 6 to 8, in order to accurately determine the displacement in the height direction by the triangulation method, the luminance distribution in the imaging spot 124 on the linear image sensor 120 exhibits a Gaussian distribution, It is important that the center of the spot 124 be detectable. If the microscopic reflectance of the surface of the measurement object 130 is not uniform and uneven brightness occurs, a measurement error may occur because the brightness distribution deviates from the Gaussian distribution due to the uneven brightness.
 図6および図7に示すように、測定対象物130の表面130Aには、レーザスポット132のスポットサイズよりも小さくかつ周囲よりも反射率が高い領域があるとする。この高反射率領域のレーザビーム116に対する相対位置は、レーザビーム116が+X方向(走査方向)に走査されるつれて(すなわち、測定対象物が-X方向に移動するにつれて)、P1、P2、P3の順に変化するものとする。 As shown in FIGS. 6 and 7, it is assumed that there is a region on the surface 130A of the measurement object 130 that is smaller than the spot size of the laser spot 132 and higher in reflectivity than the surroundings. The relative position of the high reflectance area to the laser beam 116 is determined as the laser beam 116 is scanned in the + X direction (scanning direction) (ie, as the object to be measured moves in the −X direction), P1, P2,. It changes in order of P3.
 高反射率領域がレーザビーム116に対してP1に位置する場合は、図8(A)に示すように、イメージセンサ120の結像スポットの中心134に対してデータの重心136がずれる。このため、測定対象物130は、実際よりも発光部110から離れた位置(低い位置)にあるように測定される。 When the high reflectance area is positioned at P1 with respect to the laser beam 116, as shown in FIG. 8A, the center of gravity 136 of the data deviates with respect to the center 134 of the imaging spot of the image sensor 120. For this reason, the measurement object 130 is measured to be located at a position (lower position) farther from the light emitting unit 110 than it actually is.
 高反射率領域がレーザビーム116に対してP2に位置する場合は、図8(B)に示すように、イメージセンサ120の結像スポットの中心134とデータの重心136が一致する。このため、測定対象物130は、実際と同じ位置にあるように測定される。 When the high reflectance area is positioned at P2 with respect to the laser beam 116, as shown in FIG. 8B, the center 134 of the imaging spot of the image sensor 120 and the barycenter 136 of the data coincide. For this reason, the measurement object 130 is measured to be at the same position as it is.
 高反射率領域がレーザビーム116に対してP3に位置する場合は、図8(C)に示すように、イメージセンサ120の結像スポットの中心134に対して、データの重心136が図8(A)の場合とは反対方向にずれる。このため、測定対象物130は、実際よりも発光部110の近い位置(高い位置)にあるように測定される。 When the high reflectance area is positioned at P3 with respect to the laser beam 116, as shown in FIG. 8C, the center of gravity 136 of the data is at the center 134 of the imaging spot of the image sensor 120 (FIG. It shifts in the opposite direction to the case of A). For this reason, the measurement object 130 is measured so as to be closer (higher) to the light emitting portion 110 than it actually is.
 図9は、測定対象物の反射率の不均一性に起因した測定誤差の大きさについて説明するための図である。図9(A)および(B)では、図解を容易にするためにレーザスポット132のサイズを大きく記載している。図9(A)では、図8(A)の場合と同様に、測定対象物の表面が実際よりもε-だけ遠方に位置するように測定される場合を示している。図9(B)では、図8(C)の場合と同様に、測定対象物の表面が実際よりもε+だけ近くに位置するように測定される場合を示している。 FIG. 9 is a diagram for explaining the magnitude of the measurement error caused by the nonuniformity of the reflectance of the measurement object. In FIGS. 9A and 9B, the size of the laser spot 132 is largely described to facilitate the illustration. In FIG. 9A, as in the case of FIG. 8A, the case where the surface of the object to be measured is measured so as to be located by ε− more than the actual distance is shown. In FIG. 9B, as in the case of FIG. 8C, the case where the surface of the measurement object is measured so as to be positioned closer by ε + than in reality is shown.
 反射率の不均一性に起因した測定誤差の大きさは、レーザスポット132のスポットサイズwと受光角度γとによって決まる。具体的に測定誤差の最大値(レーザスポット132の周辺部を中心として誤認識したときときの誤差)εmaxは、次式(2)で与えられる。 The magnitude of the measurement error caused by the nonuniformity of the reflectance is determined by the spot size w of the laser spot 132 and the light receiving angle γ. Specifically, the maximum value of the measurement error (error when misrecognized around the periphery of the laser spot 132) ε max is given by the following equation (2).
 εmax=w/(2・tan(γ))   …(2)
 図5の測定に用いたレーザ変位計では、スポットサイズw=50μm、受光角度γ=π/6である。この場合、測定誤差の最大値εmaxは次式(2A)で与えられ、図5の測定誤差と同程度の値になる。
ε max = w / (2 · tan (γ)) (2)
In the laser displacement meter used for the measurement of FIG. 5, the spot size w = 50 μm and the light receiving angle γ = π / 6. In this case, the maximum value ε max of the measurement error is given by the following equation (2A), and becomes the same value as the measurement error in FIG.
 εmax=25/tan(π/6)=43[μm]   …(2A)
 三角測量方式の光源としてレーザダイオードを使用した場合には、反射率の不均一の他に、反射光の干渉によって生じるスペックルも図5に示されるノイズの原因になっていると考えられる。
ε max = 25 / tan (π / 6) = 43 [μm] ... (2A)
When a laser diode is used as a triangulation-type light source, speckle caused by interference of reflected light is considered to be the cause of noise shown in FIG.
 スペックルはレーザ光の干渉現象であるため、スペックルが原因の測定ノイズは表面の粗さと密接な関係がある。具体的に、レーザ光の波長をλとして光路長がλ/2ずれると干渉によりイメージセンサ120上で光は暗くなり、λのずれでイメージセンサ120上での光は明るくなる。測定対象物の表面の凹凸で換算するとλ/4の整数倍でイメージセンサ120上において輝度の変動が生じることになる。 Since speckle is an interference phenomenon of laser light, measurement noise caused by speckle is closely related to surface roughness. Specifically, when the optical path length deviates by λ / 2 with the wavelength of the laser light being λ, the light becomes dark on the image sensor 120 due to interference, and the light on the image sensor 120 becomes bright due to the deviation of λ. When converted in terms of the unevenness of the surface of the object to be measured, fluctuation of luminance occurs on the image sensor 120 at an integral multiple of λ / 4.
 図5の場合の測定対象であるゲージブロックでは、表面の凹凸は数十nm以下であり、レーザ光の波長λの10分の1程度である。その場合スペックルは、明確な明暗状態とはならずコントラストの低いむらが生じる。 In the gauge block to be measured in the case of FIG. 5, the surface asperities are several tens of nm or less, which is about one tenth of the wavelength λ of the laser light. In that case, speckle does not become a clear light and dark state and unevenness of low contrast occurs.
 レーザスペックルに関してこれまで種々の研究がされている。結像面における平均スペックル径は下式(3)で与えられることが知られている(たとえば、新井泰彦 他3名、「光学」第41巻2号、p96-104、2012年2月(非特許文献1)を参照)。 There have been various studies on laser speckle. The average speckle diameter on the image plane is known to be given by the following equation (3) (for example, Yasuhiko Arai and 3 others, "Optics", vol. 41, No. 2, p96-104, February 2012 ( See Non-Patent Document 1)).
 σ=1.22×(1+M)・λ・f/d   …(3)
 上式(3)において、σは結像面における平均スペックル径、Mは結像光学系の倍率、λはレーザ光の波長、fはレンズの焦点距離、dはレンズの開口径である。図5の測定で使用したレーザ変位計ではM=0.53、λ=655nm、d=10mm、f=33mmであるのでσ=4.0μmとなる。
σ = 1.22 × (1 + M) · λ · f / d (3)
In the above equation (3), σ is the average speckle diameter on the imaging plane, M is the magnification of the imaging optical system, λ is the wavelength of the laser light, f is the focal length of the lens, and d is the aperture diameter of the lens. In the laser displacement meter used in the measurement of FIG. 5, since M = 0.53, λ = 655 nm, d = 10 mm, and f = 33 mm, σ = 4.0 μm.
 リニアイメージセンサ120の各ピクセルの幅は12μmのため、上記で計算される平均的な大きさのスペックルの影響はリニアイメージセンサ120の各ピクセルで平均化されていると考えられる。しかしながら、特定の場所の不均一に起因して現れる平均値よりも大きな径のスペックルは、リニアイメージセンサ120の各ピクセル内では平均化されない。したがって、図6~図9で説明した反射率が不均一の場合と同様のメカニズムによって、スペックルノイズが図5に示すノイズの原因となり得る。通常、スペックルノイズは予測不可能なため統計量として扱われる。しかしながら、微視的な範囲では、スペックルノイズは再現性良く確定的に現れるので、時間フィルタによる平均化では除去することができない。 Since the width of each pixel of the linear image sensor 120 is 12 μm, it is considered that the influence of the average size speckle calculated above is averaged at each pixel of the linear image sensor 120. However, speckles with a diameter larger than the average value that appears due to non-uniformity in a specific location are not averaged in each pixel of the linear image sensor 120. Therefore, speckle noise can be a cause of the noise shown in FIG. 5 by the same mechanism as in the case of the non-uniform reflectance described with reference to FIGS. Speckle noise is usually treated as a statistic because it is unpredictable. However, in the microscopic range, speckle noise appears reproducibly and deterministically, and can not be removed by averaging with a time filter.
 [スパイク状のノイズについて]
 以下、図5に示されているスパイク状のノイズについてさらに詳しく観察した結果について説明する。
[About spike noise]
Hereinafter, the result of observing the spike noise shown in FIG. 5 in more detail will be described.
 図10は、レーザ変位計を用いてゲージブロック上の微小区間での高さ方向の変位を繰り返し測定した結果を示す図である。図10では、図5と同一のゲージブロックについて、0.1mmの測定範囲を1μmのサンプリング間隔で20回測定したときの、各測定点における測定データ(平均値と±3σの範囲、ただしσは標準偏差)が示されている。レーザビームのスポットサイズは50μmであるので、測定間隔(1μm)はスポットサイズよりも十分に小さい。 FIG. 10 is a diagram showing the result of repeatedly measuring the displacement in the height direction in a minute section on the gauge block using a laser displacement meter. In FIG. 10, measurement data at each measurement point (range of average value and ± 3σ, where σ is the same) when the measurement range of 0.1 mm is measured 20 times at a sampling interval of 1 μm for the same gauge block as FIG. 5 Standard deviation) is shown. Since the spot size of the laser beam is 50 μm, the measurement interval (1 μm) is sufficiently smaller than the spot size.
 図10に示すように、図5でスパイク状のランダムなノイズに見えたものは、測定再現性が非常に良く、あたかも表面に微小な凹凸が存在するかのような測定結果が得られた。ゲージブロックの表面粗さは数十nmであり、実際の粗さの100倍近い凹凸が検出されていることになる。各測定点でのデータばらつきは3σ値で2.3μmである。この各測定点での誤差は、電気的なノイズ、空気の揺らぎ、サーボモータの振動等を要因とするノイズであり、時間平均化処理でキャンセルできる。 As shown in FIG. 10, what appeared to be spike-like random noise in FIG. 5 has very good measurement reproducibility, and measurement results as if minute irregularities were present on the surface were obtained. The surface roughness of the gauge block is several tens of nm, and asperities close to 100 times the actual roughness are detected. The data variation at each measurement point is 2.3 μm at 3σ value. The error at each measurement point is noise caused by electrical noise, air fluctuation, servomotor vibration, etc., and can be canceled by time averaging processing.
 図11は、レーザ変位計を用いてゲージブロック上の0.4mmの範囲での高さ方向の変位を測定した結果を示す図である。図11の場合には、図5と同一のゲージブロックについて、0.4mmの測定範囲を1μmのサンプリング間隔で1回のみ測定したときの測定データ(表面形状データ)が示されている。 FIG. 11 is a diagram showing the result of measuring the displacement in the height direction on the gauge block in the range of 0.4 mm using a laser displacement meter. In the case of FIG. 11, measurement data (surface shape data) when the measurement range of 0.4 mm is measured only once at a sampling interval of 1 μm are shown for the same gauge block as that of FIG.
 ここで、図11の測定では、図1の発光部110に対して受光部(リニアイメージセンサ120)が走査方向の前方に位置するように、レーザビーム116が走査されている点に特徴がある。すなわち、レーザビームの中心軸と集光レンズ118の光軸とを含む光路面(図1のXZ平面)に、レーザビームの走査方向を合わせている。 Here, the measurement in FIG. 11 is characterized in that the laser beam 116 is scanned such that the light receiving unit (linear image sensor 120) is located forward in the scanning direction with respect to the light emitting unit 110 in FIG. . That is, the scanning direction of the laser beam is aligned with the light path (XZ plane in FIG. 1) including the central axis of the laser beam and the optical axis of the condenser lens 118.
 図11に示すように、細かな再現性の良いノイズとともに、領域RA,RB,RCに見られるような比較的大きな誤差が生じている。これらの領域RA,RB,RCに見られる誤差は特徴的な形状を有している。具体的に、測定点(レーザビームの走査位置)が左から右に移動するにつれて、レーザ変位計によって測定される高さ方向の変位は、最初のうちデータの平均レベルよりも低くなり、次に平均レベルよりも高くなって最後に元の平均レベルに戻るという変化を示す。 As shown in FIG. 11, relatively large errors as seen in the regions RA, RB, and RC occur together with the fine reproducible noise. The errors found in these areas RA, RB, RC have characteristic shapes. Specifically, as the measurement point (laser beam scanning position) moves from left to right, the displacement in the height direction measured by the laser displacement gauge becomes lower than the average level of the data at first and then It shows a change that is higher than the average level and finally returns to the original average level.
 図11の領域RA,RB,RCに見られる測定データの変化の様子は、図6~図8で説明したものと同じである。すなわち、レーザスポット内を高反射率の領域が右から左に移動するにつれて(レーザビームの走査方向とは逆方向になる点に注意)、レーザ変位計によって測定される高さ方向の変位は、前半では実際よりも低くなり、後半では実際よりも高くなる。 The state of the change of the measurement data seen in the regions RA, RB, and RC in FIG. 11 is the same as that described in FIGS. That is, as the area of high reflectance moves from right to left in the laser spot (note that it is in the opposite direction to the scanning direction of the laser beam), the displacement in the height direction measured by the laser displacement gauge is In the first half it is lower than the actual and in the second half it is higher than the actual.
 なお、上記の誤差変化の方向は、図1において発光部110に対して受光部(リニアイメージセンサ120)が走査方向の前方に位置する場合である点に注意する必要がある。発光部110に対して受光部(リニアイメージセンサ120)が走査方向の後方に位置する場合は、誤差変化の方向が逆になる。 It should be noted that the direction of the above error change is that the light receiving unit (linear image sensor 120) is located forward in the scanning direction with respect to the light emitting unit 110 in FIG. When the light receiving unit (linear image sensor 120) is positioned behind the light emitting unit 110 in the scanning direction, the direction of the error change is reversed.
 図12は、図11の各測定点においてイメージセンサの受光量の最大値を示す図である。図12の縦軸は、受光量が最大のピクセルにおける輝度レベルを示している。図11において特徴的な形状の比較的大きな測定誤差が観測される領域RA,RB,RCでは、受光量が激しく変動していることが読み取れる。 FIG. 12 is a diagram showing the maximum value of the light reception amount of the image sensor at each measurement point in FIG. The vertical axis in FIG. 12 indicates the luminance level at the pixel at which the amount of received light is largest. It can be read that in the regions RA, RB, and RC where relatively large measurement errors of the characteristic shape are observed in FIG.
 図13は、図11および図12の領域RCにおいて、高さ方向の変位と最大受光量との関係を示す図である。 FIG. 13 is a diagram showing the relationship between the displacement in the height direction and the maximum light reception amount in the region RC of FIG. 11 and FIG.
 図13を参照して、測定点(レーザビームの走査位置)が移動するにつれて、イメージセンサ120で検出される最大受光量が徐々に大きくなるとともに、イメージセンサ120上での輝度分布の重心位置がずれる。この結果、レーザ変位計の検出値(高さ方向の変位)が大きくマイナス側に変動する(矢印A1の区間)。 Referring to FIG. 13, as the measurement point (laser beam scanning position) moves, the maximum light receiving amount detected by image sensor 120 gradually increases, and the barycentric position of the luminance distribution on image sensor 120 It slips. As a result, the detected value (displacement in the height direction) of the laser displacement gauge largely fluctuates to the negative side (section of arrow A1).
 イメージセンサ120の受光量が最大レベルに達すると、測定点(レーザビームの走査位置)の移動に伴って、イメージセンサ120上での輝度分布の重心位置が移動する。この結果、レーザ変位計の検出値(高さ方向の変位)がマイナスからプラスに変化する(矢印A2の区間)。 When the light reception amount of the image sensor 120 reaches the maximum level, the position of the center of gravity of the luminance distribution on the image sensor 120 moves with the movement of the measurement point (the scanning position of the laser beam). As a result, the detection value (displacement in the height direction) of the laser displacement gauge changes from minus to plus (section of arrow A2).
 最終的に、イメージセンサ120の受光量が減少し、これに伴って、レーザ変位計の検出値(高さ方向の変位)が正しい値(平均値)に戻る(矢印A3の区間)。 Finally, the light reception amount of the image sensor 120 decreases, and the detected value (displacement in the height direction) of the laser displacement gauge returns to the correct value (average value) (section of arrow A3).
 上記の特徴的な現象は、既に説明したように、測定対象物の表面の微小領域(レーザスポットサイズよりも小さい領域)における反射むらで説明することができる。あるいは、この特徴的な現象は、スペックル径がレーザ光のスポットサイズに対して無視できないほど大きな場合として説明することができる。 The above-mentioned characteristic phenomenon can be explained by uneven reflection on a minute area (area smaller than the laser spot size) of the surface of the measurement object, as already described. Alternatively, this characteristic phenomenon can be described as the case where the speckle diameter can not be ignored with respect to the spot size of the laser beam.
 平均的なスペックル径は、式(3)を用いて説明したように4.0μmと計算され、リニアイメージセンサ120のピクセル幅である12μmよりも小さく、スポットサイズの50μmの1/12程度の大きさである。したがって、ピクセル内で平均化されるため、平均的なスペックル径の影響による測定値の変動は小さく、空間フィルタによる平均化処理で取り除くことが可能である。 The average speckle diameter is calculated to be 4.0 μm as described using equation (3), smaller than 12 μm which is the pixel width of the linear image sensor 120, and approximately 1/12 of 50 μm of the spot size. It is a size. Therefore, since the averaging is performed in the pixel, the variation of the measurement value due to the influence of the average speckle diameter is small and can be removed by the averaging process by the spatial filter.
 しかしながら、局所的に出現する大きな径のスペックルによって生じる誤差は非常に大きく、狭いエリアの平均化処理では容易に除去することができず、結果として、レーザ変位計の測定値に大きく影響する。ただし、そのような大きな径のスペックルが測定データに影響する範囲は図10からも分かるように、レーザスポットサイズの範囲以内に限定される。 However, the errors caused by locally appearing large diameter speckles are very large and can not be easily removed by the averaging process of narrow areas, and as a result, they greatly affect the measurement values of the laser displacement gauge. However, the range in which such large-diameter speckles affect the measurement data is limited within the range of the laser spot size, as can be seen from FIG.
 図14は、直径50μmのスポットサイズのレーザビームで、1辺0.5mmの正方形状の領域の表面形状の測定した結果を示す図である。図15は、レーザスポットサイズを直径400μmに変更して図14と同じ領域の表面形状を測定した結果を示す図である。図14および図15において、Φは直径を表す。 FIG. 14 is a view showing the measurement results of the surface shape of a square area of 0.5 mm on a side with a laser beam of spot size of 50 μm in diameter. FIG. 15 is a view showing the result of measuring the surface shape of the same area as FIG. 14 while changing the laser spot size to 400 μm in diameter. In FIGS. 14 and 15, Φ represents a diameter.
 図14および図15に示すように、レーザ光のスポットサイズを直径50μmから直径400μmに変更すると、レーザ変位計によって測定される表面の凹凸の最大値は、67μmから80μmに増加した。 As shown in FIGS. 14 and 15, when the spot size of the laser beam was changed from 50 μm in diameter to 400 μm in diameter, the maximum value of the surface asperities measured by the laser displacement meter increased from 67 μm to 80 μm.
 レーザスポットサイズが大きくなると、平均的なサイズのスペックルによる誤差は平均化されるために、その影響は小さくなる。しかしながら、局所的に現れる大きなスペックルが影響を及ぼす範囲は、前述の式(2)によって示されるように、レーザスポットサイズが増大するにつれて増大する。したがって、スポットサイズが大きいほどレーザ変位計の測定誤差が増大すると考えられる。 As the laser spot size increases, the effect is reduced because the errors due to average size speckle are averaged out. However, the range affected by large speckles that appear locally increases as the laser spot size increases, as shown by equation (2) above. Therefore, it is considered that the measurement error of the laser displacement meter increases as the spot size increases.
 [ノイズ除去方法について]
 上述のとおり、レーザ変位計の測定誤差は、測定対象物の局所的な反射率の不均一および時折現れる大きな径のスペックルの影響によるものと考えられる。これらの要因による誤差には、次の特徴がある。
[About noise removal method]
As described above, the measurement error of the laser displacement meter is considered to be due to the influence of the local reflectance nonuniformity of the measurement object and the occasionally appearing large diameter speckle. The errors due to these factors have the following characteristics.
 (a)レーザスポットサイズの大きさに応じて、反射率の不均一および大きな径のスペックルが影響する範囲が決まる。 (A) Depending on the size of the laser spot size, the range affected by uneven reflectance and large diameter speckles is determined.
 (b)レーザビームに対して受光部(イメージセンサ)が走査方向の前方または後方に位置するようにレーザ変位計の向きを合わせることによって、図11の領域RA,RB,RCに見られるような特徴的な誤差パターンが出現する。具体的には、この特徴的な誤差パターンが現れる区間(特徴区間と称する)の前半において誤差がプラスまたはマイナスの一方に変化し、後半において前半と誤差は反対方向に変化する。さらに、特徴区間の中央値から等距離にある点では誤差の絶対値はほぼ等しい(すなわち、誤差パターンは中央値に対してほぼ点対称である)。 (B) As shown in the areas RA, RB, and RC of FIG. 11, by orienting the laser displacement meter such that the light receiving unit (image sensor) is positioned forward or backward in the scanning direction with respect to the laser beam. Characteristic error patterns appear. Specifically, the error changes to either plus or minus in the first half of the section (referred to as a characteristic section) in which the characteristic error pattern appears, and the error in the second half changes in the opposite direction to the first half. Furthermore, at points equidistant from the median of the feature interval, the absolute values of the errors are approximately equal (ie, the error pattern is approximately point symmetric with respect to the median).
 このような特徴的な誤差パターンが見られる区間(特徴区間)はレーザスポットサイズ以下である。したがって、サンプリング定理によれば、この誤差パターン(測定値の上下動)を捉えるためには、レーザ変位計のサンプリング間隔を、レーザスポットサイズの1/2以下にする必要がある。測定値の上下動の形状を正確に捉えるためには、レーザ変位計のサンプリング間隔はスポットサイズの1/10以下が望ましい。さらに望ましくは、レーザ変位計のサンプリング間隔をスポットサイズの1/20以下とする。 The section (characteristic section) in which such a characteristic error pattern can be seen is equal to or less than the laser spot size. Therefore, according to the sampling theorem, it is necessary to set the sampling interval of the laser displacement gauge to 1/2 or less of the laser spot size in order to capture this error pattern (vertical movement of the measurement value). In order to accurately capture the shape of the vertical movement of the measurement value, the sampling interval of the laser displacement gauge is desirably 1/10 or less of the spot size. More preferably, the sampling interval of the laser displacement meter is set to 1/20 or less of the spot size.
 上記の特徴的な誤差パターンがレーザ変位計の測定誤差に対して支配的であるので、ソフトウェア処理によってこの誤差パターンを抽出して除去することができれば、レーザ変位計の測定誤差を効率的に低減することができる。以下、ノイズ除去の手順についてさらに具体的に説明する。 Since the above characteristic error pattern dominates the measurement error of the laser displacement meter, if this error pattern can be extracted and removed by software processing, the measurement error of the laser displacement meter is efficiently reduced. can do. Hereinafter, the procedure of the noise removal will be described more specifically.
 図16は、表面形状の測定および測定したデータの処理手順を示すフローチャートである。以下、図4および図16を主として参照して、図4の測定制御部156およびデータ処理部158の動作について説明する。 FIG. 16 is a flowchart showing the measurement of the surface shape and the processing procedure of the measured data. Hereinafter, operations of the measurement control unit 156 and the data processing unit 158 of FIG. 4 will be described mainly with reference to FIGS. 4 and 16.
 まず、測定制御部156は、図1の発光部110に対して受光部(リニアイメージセンサ120)がレーザビーム116の走査方向(+X方向または-X方向)の前方または後方に位置するようにレーザ変位計100の向きを合わせて、移動機構146によってレーザビーム116を走査する。さらに、測定制御部156は、レーザビーム116の走査中に、レーザ変位計100によって測定対象物130の表面の変位を連続的に測定する(ステップS100)。測定データは、メモリ154に表面形状データ166として格納される。表面形状データ166のサンプリング間隔は、レーザビームのスポットサイズの1/2以下にする必要があり、望ましくはスポットサイズの1/10以下、さらに望ましくは1/20以下にする。 First, the measurement control unit 156 is a laser so that the light receiving unit (linear image sensor 120) is positioned forward or backward of the scanning direction (+ X direction or −X direction) of the laser beam 116 with respect to the light emitting unit 110 of FIG. With the displacement gauge 100 oriented, the laser beam 116 is scanned by the moving mechanism 146. Furthermore, the measurement control unit 156 continuously measures the displacement of the surface of the measurement object 130 by the laser displacement meter 100 during the scanning of the laser beam 116 (step S100). The measurement data is stored in the memory 154 as surface shape data 166. The sampling interval of the surface shape data 166 needs to be 1/2 or less of the spot size of the laser beam, desirably 1/10 or less of the spot size, and more desirably 1/20 or less.
 データ処理部158は、測定制御部156による測定後に表面形状データ166に対してデータ処理を行う。図4に示すように、データ処理部158は、特徴区間抽出部160と、データ補正部162と、フィルタ処理部164とを含む。 The data processing unit 158 performs data processing on the surface shape data 166 after the measurement by the measurement control unit 156. As shown in FIG. 4, the data processing unit 158 includes a feature section extraction unit 160, a data correction unit 162, and a filter processing unit 164.
 まず、特徴区間抽出部160は、表面形状データの測定範囲から上記の特徴的な誤差パターンが観測される特徴区間を抽出する(ステップS105)。既に説明したように、特徴区間は、光ビームのスポットサイズ以下の大きさの区間であり、表面形状データは、特徴区間の前半または後半で極大となる変化を示し、特徴区間の残り半分で極小となる変化を示す。以下、図17、図18を参照して、特徴区間の抽出方法について説明する。 First, the feature section extraction unit 160 extracts a feature section in which the above-mentioned characteristic error pattern is observed from the measurement range of the surface shape data (step S105). As described above, the feature section is a section having a size equal to or smaller than the spot size of the light beam, and the surface shape data shows a change which becomes maximum in the first half or the second half of the feature section. Show the change. Hereinafter, with reference to FIGS. 17 and 18, a method of extracting a feature section will be described.
 図17は、図16のステップS105において特徴区間を抽出する方法を説明するための図である。図17を参照して、図4の特徴区間抽出部160は、表面形状データの測定範囲からレーザビームのスポットサイズwに等しい区間I1の測定データMDを順次切り出す。そして、特徴区間抽出部160は、切り出した区間I1の前半I2における測定データMDの波形と、区間I1の後半I3における測定データMDの波形を区間I1の中央でのデータ点MPを中心に180度回転することによって得られる波形との相関係数を求める。特徴区間抽出部160は、求めた相関係数が予め定める基準値を超えている場合に、切り出した区間I1を特徴区間として特定する。 FIG. 17 is a diagram for explaining a method of extracting a feature section in step S105 of FIG. Referring to FIG. 17, the feature section extraction unit 160 in FIG. 4 sequentially cuts out measurement data MD of the section I1 equal to the spot size w of the laser beam from the measurement range of the surface shape data. Then, the feature section extraction unit 160 sets the waveform of the measurement data MD in the first half I2 of the cut out section I1 and the waveform of the measurement data MD in the second half I3 of the section I1 180 degrees around the data point MP at the center of the section I1. The correlation coefficient with the waveform obtained by rotating is determined. When the calculated correlation coefficient exceeds a predetermined reference value, the feature section extraction unit 160 specifies the cut out section I1 as a feature section.
 図18は、図16のステップS105において特徴区間を抽出する他の方法を説明するための図である。図18を参照して、図4の特徴区間抽出部160は、レーザビームのスポットサイズw以下の区間I4内で、測定データMDが平均値AVに対して予め定める範囲THを超えてプラスおよびマイナスの両方向に変化している部分を抽出する。そして、特徴区間抽出部160は、区間I4の前半I5の一部で測定データMDが測定データMDの平均値AVに対して予め定める範囲THを超えて一方向(プラス方向またはマイナス方向)に変化し、区間I4の後半I6の一部で前半I5と反対方向に測定データMDが平均値AVに対して予め定める範囲THを超えて変化している場合に、当該区間I4を特徴区間として特定する。 FIG. 18 is a diagram for explaining another method of extracting a feature section in step S105 of FIG. Referring to FIG. 18, the feature section extraction unit 160 in FIG. 4 detects that the measurement data MD exceeds the predetermined value TH with respect to the average value AV in the section I4 smaller than the spot size w of the laser beam. Extract the part that is changing in both directions. Then, in a part of the first half I5 of the section I4, the characteristic section extraction unit 160 changes the measurement data MD in one direction (plus direction or minus direction) beyond the predetermined range TH with respect to the average value AV of the measurement data MD. If the measurement data MD changes in a direction opposite to the first half I5 in a part of the second half I6 of the section I4 beyond the predetermined range TH with respect to the average value AV, the section I4 is specified as the feature section .
 再び、図4および図16を参照して、データ補正部162は、抽出された1または複数の特徴区間の各々において、表面形状データ166の平均値に対する変化量(すなわち、各測定値の平均値からの偏差)が小さくなるように表面形状データ166を補正する(ステップS110)。たとえば、各特徴区間における誤差パターンの対称性を利用して表面形状データ166を補正する方法が考えられる。 Again, referring to FIGS. 4 and 16, data correction unit 162 changes the amount of change with respect to the average value of surface shape data 166 (that is, the average value of each measured value) in each of the extracted one or more feature sections. Surface shape data 166 is corrected so as to reduce the deviation from. For example, a method of correcting the surface shape data 166 using the symmetry of the error pattern in each feature section can be considered.
 図19は、図16のステップS110において表面形状データ166を補正する方法を説明するための図である。図19を参照して、実線のグラフは、特徴区間I7で測定されたデータMD(表面形状データ166)を表すものとする。一点鎖線のグラフは、特徴区間I7の前半I8と後半I9との境界線BRで後半の測定データMDを前半側に折り返し、前半のデータMDを後半側に折り返することによって得られた折り返しデータRDを表す。境界線BRに関して測定データMDと折り返しデータRDとは略対称であるので、各測定点ごとに測定データMDと折り返しデータRDとを平均することよって、特徴的なノイズが除去された補正データAD(図19の破線)を得ることができる。 FIG. 19 is a diagram for explaining a method of correcting the surface shape data 166 in step S110 of FIG. Referring to FIG. 19, the solid line graph represents data MD (surface shape data 166) measured in the characteristic section I7. The graph in the alternate long and short dash line is folded data RD obtained by folding measurement data MD of the second half to the first half side and folding data MD of the first half to the second half side at the boundary line BR between the first half I8 and the second half I9 Represents Since the measurement data MD and the aliasing data RD are substantially symmetrical with respect to the boundary line BR, the characteristic data is removed by averaging the measurement data MD and the aliasing data RD for each measurement point. The dashed line in FIG. 19 can be obtained.
 具体的には、データ補正部162は、各特徴区間内の任意の第1の測定点おける測定値を、区間の中点を挟んで対称な位置にある第2の測定点における測定値と平均し、求めた平均値で第1および第2の測定点における測定値を置換することによって表面形状データを補正する。 Specifically, the data correction unit 162 compares the measured values at any first measurement point in each feature section with the measured values at second measurement points located at symmetrical positions across the middle point of the section. Then, the surface shape data is corrected by replacing the measured values at the first and second measurement points with the determined average value.
 その他の方法として、データ補正部162は、各特徴区間におけるデータを表面形状データ166の平均値で置き換えることによって、表面形状データ166を補正してもよい。 As another method, the data correction unit 162 may correct the surface shape data 166 by replacing the data in each feature section with the average value of the surface shape data 166.
 再び、図4および図16を参照して、フィルタ処理部164は、データ補正部162による補正後の表面形状データに対して、空間的なローパスフィルタ処理を行う(ステップS115)。この場合、特徴的な誤差パターンが現れる範囲はレーザスポットサイズ以下であるので、ノイズ除去のための空間ローパスフィルタのカットオフ波長は、測定時のレーザスポットサイズに合わせればよい。これによって、レーザビームのスポットサイズよりも長い周期の変動のみが残る。空間的なローパスフィルタ処理として、たとえば、移動平均区間の大きさをスポットサイズに等しく設定した移動平均処理を用いることができる。 Again referring to FIGS. 4 and 16, filter processing unit 164 performs spatial low-pass filter processing on the surface shape data corrected by data correction unit 162 (step S115). In this case, since the range in which the characteristic error pattern appears is equal to or less than the laser spot size, the cut-off wavelength of the spatial low pass filter for noise removal may be adjusted to the laser spot size at the time of measurement. This leaves only periodic fluctuations longer than the spot size of the laser beam. As spatial low-pass filter processing, for example, moving average processing in which the size of the moving average section is set equal to the spot size can be used.
 以下、図11の測定データに対して図16のステップS105,S110,S115のデータ処理を施した結果について説明する。 Hereinafter, the result of performing the data processing of steps S105, S110, and S115 of FIG. 16 on the measurement data of FIG. 11 will be described.
 図20は、図11の測定データに対して、図16のステップS110に示すデータ補正を行った結果を示す図である。ステップS110に示すデータ補正を行うことによって、データの変動幅(ノイズ成分)が3σ=0.026mmから3σ=0.012mmまで低減した。 FIG. 20 is a diagram showing the result of performing data correction shown in step S110 of FIG. 16 on the measurement data of FIG. By performing the data correction shown in step S110, the fluctuation range (noise component) of the data is reduced from 3σ = 0.026 mm to 3σ = 0.012 mm.
 図21は、図20のデータに対して、図16のステップS115に示すローパスフィルタ処理を行った結果を示す図である。具体的には、移動平均区間の大きさをスポットサイズに等しい50μmに設定して移動平均処理を行っている。移動平均処理を行うことによって、データの変動幅が3σ=0.012mmから3σ=0.004mmまで低減した。 FIG. 21 is a diagram showing the result of performing the low-pass filter process shown in step S115 of FIG. 16 on the data of FIG. Specifically, moving average processing is performed by setting the size of the moving average section to 50 μm, which is equal to the spot size. By performing the moving average process, the fluctuation range of the data was reduced from 3σ = 0.012 mm to 3σ = 0.004 mm.
 図22は、図11の測定データに対して図16のステップS110に示すデータ補正を行わずに、ステップS115に示すローパスフィルタ処理を行った結果を示す図である。具体的には、移動平均区間の大きさをスポットサイズに等しい50μmに設定して移動平均処理を行っている。この場合は、データの変動幅は3σ=0.026mmから3σ=0.009mmまでしか低減しない。 FIG. 22 is a diagram showing the result of performing the low-pass filter process shown in step S115 without performing the data correction shown in step S110 of FIG. 16 on the measurement data of FIG. Specifically, moving average processing is performed by setting the size of the moving average section to 50 μm, which is equal to the spot size. In this case, the fluctuation range of the data is reduced only from 3σ = 0.026 mm to 3σ = 0.009 mm.
 図22の場合において、移動平均区間の大きさをレーザビームのスポットサイズよりも大きくすれば、さらに測定ノイズを低減することができるが、特徴的な誤差パターンに起因するノイズを完全に除去することはできない。さらには、移動平均区間の大きさを大きくし過ぎると、本来検出可能なレベルの凹凸の検出ができなくなるというディメリットも生じる。 In the case of FIG. 22, if the size of the moving average section is made larger than the spot size of the laser beam, the measurement noise can be further reduced, but the noise due to the characteristic error pattern should be completely eliminated. I can not do it. Furthermore, if the size of the moving average section is increased too much, there is a disadvantage that the detection of unevenness which can be originally detected can not be detected.
 [実施の形態1のまとめ]
 上記のとおり、レーザビームを走査しながらレーザ変位計によって測定対象物の表面形状を測定する際には、スパイク状の大きな誤差が出現する。その誤差の特徴は下記のとおりである。
[Summary of Embodiment 1]
As described above, when measuring the surface shape of the measurement object by the laser displacement meter while scanning the laser beam, a large spike-like error appears. The features of the error are as follows.
 (a)レーザ変位計の誤差は、その繰り返し再現性が非常に良い。そのため、複数回の測定の平均(時間平均化処理)ではノイズ除去ができない。 (A) The error of the laser displacement gauge has very good repeatability. Therefore, noise removal can not be performed by averaging a plurality of measurements (time averaging processing).
 (b)レーザビームに対して受光部(イメージセンサ)が走査方向の前方または後方に位置するようにレーザ変位計の向きを合わせることによって、点対称の形状を有する特徴的な誤差パターンが出現する。 (B) A characteristic error pattern having a point-symmetrical shape appears by orienting the laser displacement gauge such that the light receiving unit (image sensor) is positioned forward or backward in the scanning direction with respect to the laser beam. .
 (c)上記の特徴的な誤差パターンが現れる範囲は、レーザスポットサイズに応じて決まる。 (C) The range in which the above-mentioned characteristic error pattern appears depends on the laser spot size.
 上記の誤差は、レーザ光のスポットサイズに対して無視できないほど大きな径を有するスペックルノイズ、もしくは、測定対象物の表面の局所的な反射率の不均一で説明することができる。そして、上記の誤差の特徴的な誤差パターンを抽出して除去することによって、レーザ変位計の測定誤差を効率的に低減することができる。さらに、誤差が増大している部分ではイメージセンサの受光量変化が激しいので、イメージセンサの受光量の変動率を、測定信頼性の指標として用いることができ、特徴的な誤差パターンと測定対象物上の本来の凹凸との識別に利用することもできる。 The above-mentioned errors can be explained by speckle noise having a diameter that can not be ignored with respect to the spot size of the laser light, or non-uniformity of the local reflectance of the surface of the measurement object. Then, the measurement error of the laser displacement gauge can be efficiently reduced by extracting and removing the characteristic error pattern of the above-mentioned error. Furthermore, since the amount of light reception of the image sensor changes sharply in the part where the error is increasing, the fluctuation rate of the amount of light reception of the image sensor can be used as an index of measurement reliability, and the characteristic error pattern and the object to be measured It can also be used to distinguish between the above-mentioned inherent unevenness.
 <実施の形態2>
 図23は、実施の形態2による表面形状測定装置の構成を概略的に示すブロック図である。図23のデータ処理部158Aは、データ補正部162およびフィルタ処理部164に代えて移動平均処理部163を含む点で図4のデータ処理部158と異なる。データ処理部158以外の点は、図23の表面形状測定装置140Aは図4の表面形状測定装置140と同じであるので、同一または相当する部分には同一の参照符号を付して説明を繰り返さない。
Second Embodiment
FIG. 23 is a block diagram schematically showing the configuration of the surface shape measuring apparatus according to the second embodiment. Data processing unit 158A in FIG. 23 differs from data processing unit 158 in FIG. 4 in that data processing unit 158A in FIG. 23 includes moving average processing unit 163 instead of data correction unit 162 and filter processing unit 164. Since the surface shape measuring apparatus 140A of FIG. 23 is the same as the surface shape measuring apparatus 140 of FIG. 4 except for the data processing unit 158, the same or corresponding parts are denoted by the same reference numerals and the description is repeated. Absent.
 図24は、実施の形態2による表面形状測定装置において、表面形状の測定および測定データの処理手順の一例を示すフローチャートである。図24のデータ処理手順では、図16のステップS110およびS115に代えてステップS120が実行される。ステップS100およびS105については図16の場合と同じであるので説明を繰り返さない。 FIG. 24 is a flowchart showing an example of measurement of surface shape and processing procedure of measurement data in the surface shape measurement apparatus according to the second embodiment. In the data processing procedure of FIG. 24, step S120 is executed instead of steps S110 and S115 of FIG. Steps S100 and S105 are the same as in the case of FIG.
 図24の例では、図23の移動平均処理部163は、表面形状データ166に対して、可変の移動平均区間で移動平均を行う(ステップS120)。移動平均区間の大きさは、光ビームのスポットサイズよりも大きい。移動平均処理部163は、図11の領域RA,RB,RCに見られるような特徴的な誤差パターンが観測される区間(特徴区間と称する)を含んで移動平均を行う際には、特徴区間を含まずに移動平均を行う場合よりも移動平均区間の大きさを大きく設定する。たとえば、特徴区間を含んで移動平均を行う際の移動平均区間の大きさは、スポットサイズの5倍以上に設定される。 In the example of FIG. 24, the moving average processing unit 163 of FIG. 23 performs moving average on the surface shape data 166 in a variable moving average section (step S120). The size of the moving average section is larger than the spot size of the light beam. When the moving average processing unit 163 performs moving average including a section (referred to as a feature section) in which a characteristic error pattern as seen in the regions RA, RB, and RC in FIG. The size of the moving average section is set larger than in the case of performing the moving average without including. For example, the size of the moving average section when performing the moving average including the feature section is set to 5 times or more of the spot size.
 図25は、実施の形態2による表面形状測定装置において、表面形状の測定および測定データの処理手順の他の例を示すフローチャートである。図24のデータ処理手順では、図16のステップS110およびS115に代えてステップS125が実行される。ステップS100およびS105については図16の場合と同じであるので説明を繰り返さない。 FIG. 25 is a flowchart showing another example of measurement of surface shape and processing procedure of measurement data in the surface shape measurement apparatus according to the second embodiment. In the data processing procedure of FIG. 24, step S125 is executed instead of steps S110 and S115 of FIG. Steps S100 and S105 are the same as in the case of FIG.
 図25の例では、図23の移動平均処理部163は、表面形状データ166に対して重み付き移動平均を行う(ステップS125)。重み付移動平均の移動平均区間の大きさは、光ビームのスポットサイズよりも大きく、たとえば、スポットサイズの5倍以上に設定される。移動平均処理部163は、図11の領域RA,RB,RCに見られるような特徴的な誤差パターンが観測される特徴区間内の測定点に対する重みを、特徴区間外の測定点に対する重みよりも小さく設定する。 In the example of FIG. 25, the moving average processing unit 163 of FIG. 23 performs weighted moving average on the surface shape data 166 (step S125). The size of the moving average section of the weighted moving average is set to be larger than the spot size of the light beam, for example, five or more times the spot size. The moving average processing unit 163 sets weights for measurement points in the feature section where characteristic error patterns as seen in the regions RA, RB, and RC in FIG. 11 are observed more than weights for measurement points outside the feature section. Set small.
 以上のように、特徴区間内のデータの変動を特徴区間外のデータの変動よりも抑制することによって、レーザ変位計に含まれる誤差を効率的に除去することができる。 As described above, it is possible to efficiently remove the error included in the laser displacement gauge by suppressing the variation of the data in the feature section more than the variation of the data outside the feature section.
 <実施の形態3>
 実施の形態3は、実施の形態1または2の表面形状測定装置を備えた工作機械を開示する。以下では、工作機械が立形マシンニングセンタである場合について説明しているが、工作機械は、横形マシニングセンタまたは旋盤など、他の種類のものであっても構わない。
Embodiment 3
Embodiment 3 discloses a machine tool provided with the surface shape measuring apparatus of Embodiment 1 or 2. Although the case where the machine tool is a vertical machining center is described below, the machine tool may be another type such as a horizontal machining center or a lathe.
 図26は、実施の形態3による工作機械の構成を模式的に示す斜視図である。図26を参照して、工作機械200は、加工装置10と、NC(Numerical Control)装置24と、ATC(自動工具交換装置:Automatic Tool Changer)28と、コンピュータ150とを含む。 FIG. 26 is a perspective view schematically showing the configuration of the machine tool according to the third embodiment. Referring to FIG. 26, machine tool 200 includes a processing apparatus 10, an NC (Numeric Control) apparatus 24, an ATC (Automatic Tool Changer) 28, and a computer 150.
 加工装置10は、ベッド12と、ベッド12上に設置されたコラム14と、主軸22を有する主軸頭20と、テーブル18を有するサドル16とを含む。 The processing apparatus 10 comprises a bed 12, a column 14 mounted on the bed 12, a spindle head 20 with a spindle 22 and a saddle 16 with a table 18.
 主軸頭20は、コラム14の前面に支持されて、上下方向(Z軸方向)に移動可能である。主軸22の先端には、工具(図示せず)または測定ヘッド42が着脱可能に装着される。主軸22は、その中心軸線(図2のCL)がZ軸と平行で且つその中心軸線まわりに回転可能に、主軸頭20に支持されている。測定ヘッド42には、図4および図23に示すレーザ変位計100と、このレーザ変位計の制御回路および駆動用バッテリと、無線通信を行うための通信装置とが内蔵される。 The spindle head 20 is supported on the front surface of the column 14 and is movable in the vertical direction (Z-axis direction). A tool (not shown) or a measuring head 42 is removably attached to the tip of the spindle 22. The main spindle 22 is supported by the main spindle head 20 so that its central axis (CL in FIG. 2) is parallel to the Z axis and can be rotated about its central axis. The measurement head 42 incorporates the laser displacement meter 100 shown in FIGS. 4 and 23, a control circuit and a drive battery of the laser displacement meter, and a communication device for performing wireless communication.
 サドル16は、ベッド12上に配置されて前後の水平方向(Y軸方向)に移動可能である。サドル16上にはテーブル18が配置されている。テーブル18は、左右の水平方向(X軸方向)に移動可能である。テーブル18上には工作物2が載置されている。サドル16は図4および図23のサドル142に対応し、テーブル18は図4および図23のテーブル144に対応する。工作物2は図4および図23の測定対象物130に対応する。 The saddle 16 is disposed on the bed 12 and is movable in the back and forth horizontal direction (Y-axis direction). A table 18 is disposed on the saddle 16. The table 18 is movable in the left and right horizontal directions (X-axis direction). The workpiece 2 is placed on the table 18. The saddle 16 corresponds to the saddle 142 of FIGS. 4 and 23, and the table 18 corresponds to the table 144 of FIGS. The workpiece 2 corresponds to the measurement object 130 of FIGS. 4 and 23.
 加工装置10は、測定ヘッド42と工作物2とを相対的にX軸、Y軸、Z軸の直交3軸方向に直線移動させる3軸制御を行うマシニングセンタである。なお、図1の構成と異なり、加工装置10は、測定ヘッド42を支持する主軸頭20を、工作物2に対してX軸、Y軸方向にそれぞれ移動させる構成であってもよい。 The processing apparatus 10 is a machining center that performs three-axis control that relatively moves the measurement head 42 and the workpiece 2 in the directions of three orthogonal axes relative to the X axis, the Y axis, and the Z axis. Unlike the configuration of FIG. 1, the processing apparatus 10 may be configured to move the spindle head 20 supporting the measurement head 42 in the X-axis and Y-axis directions with respect to the workpiece 2.
 NC装置24は、上記の3軸制御を含めて加工装置10全体の動作を制御する。ATC(自動工具交換装置)28は、主軸22に対して工具と測定ヘッド42をそれぞれ自動的に交換する。ATC28は、NC装置24によって制御される。 The NC device 24 controls the overall operation of the processing device 10 including the above-described three-axis control. ATC (Automatic Tool Changer) 28 automatically exchanges the tool and the measuring head 42 with respect to the spindle 22 respectively. The ATC 28 is controlled by an NC unit 24.
 図27は、図26の工作機械のうち表面形状測定装置に関する部分の機能的構成を示すブロック図である。図27には、加工装置10に備えられているZ軸送り機構34、Y軸送り機構32およびX軸送り機構30が示されている。 FIG. 27 is a block diagram showing a functional configuration of a portion related to the surface shape measuring device in the machine tool of FIG. 27, the Z-axis feed mechanism 34, the Y-axis feed mechanism 32, and the X-axis feed mechanism 30 provided in the processing apparatus 10 are shown.
 図26、図27を参照して、Z軸送り機構34は、コラム14に支持されている主軸頭20を駆動してZ軸方向に移動させる。Y軸送り機構32は、ベッド12上に配置されているサドル16を駆動してY軸方向に移動させる。X軸送り機構30は、サドル16上に載置されて工作物2を支持するテーブル18を駆動してX軸方向に移動させる。NC装置24は、Z軸送り機構34、Y軸送り機構32およびX軸送り機構30をそれぞれ制御する。X軸送り機構30、Y軸送り機構32、および、Z軸送り機構34は、図4および図23のX軸駆動機構146X、Y軸駆動機構146Y、およびZ軸駆動機構146Zにそれぞれ対応する。 Referring to FIGS. 26 and 27, Z-axis feed mechanism 34 drives spindle head 20 supported by column 14 to move it in the Z-axis direction. The Y-axis feed mechanism 32 drives the saddle 16 disposed on the bed 12 to move it in the Y-axis direction. The X-axis feed mechanism 30 drives the table 18 mounted on the saddle 16 and supporting the workpiece 2 to move it in the X-axis direction. The NC device 24 controls the Z-axis feed mechanism 34, the Y-axis feed mechanism 32 and the X-axis feed mechanism 30, respectively. The X-axis feed mechanism 30, the Y-axis feed mechanism 32, and the Z-axis feed mechanism 34 correspond to the X-axis drive mechanism 146X, the Y-axis drive mechanism 146Y, and the Z-axis drive mechanism 146Z in FIGS. 4 and 23, respectively.
 コンピュータ150は、プロセッサ152、メモリ154、および測定ヘッド42との間で無線通信を行う通信装置168等を含む。プロセッサ152は、メモリ154に格納されたプログラムを実行することによって、図4および図23で説明した測定制御部156およびデータ処理部158,158Aとして機能する。 The computer 150 includes a processor 152, a memory 154, and a communication device 168 that wirelessly communicates with the measurement head 42. The processor 152 functions as the measurement control unit 156 and the data processing units 158 and 158A described in FIGS. 4 and 23 by executing the program stored in the memory 154.
 測定制御部156は、NC装置24と連携することによって、測定ヘッド42と工作物2との相対的位置関係を連続的に変化させ、これによってレーザビーム116が工作物2の表面に沿って走査する。測定制御部156は、レーザビーム116の走査中に、レーザビーム116の走査方向の複数の測定点における高さ方向(Z軸方向)の変位データを工作物2の表面形状データとして測定ヘッド42から取得する。具体的な手順は以下のとおりである。 The measurement control unit 156 cooperates with the NC device 24 to continuously change the relative positional relationship between the measurement head 42 and the workpiece 2, whereby the laser beam 116 scans along the surface of the workpiece 2. Do. The measurement control unit 156 detects displacement data in the height direction (Z-axis direction) at a plurality of measurement points in the scanning direction of the laser beam 116 from the measuring head 42 as surface shape data of the workpiece 2 during scanning of the laser beam 116. get. The specific procedure is as follows.
 まず、測定制御部156からの制御に基づいて、NC装置24は、X軸送り機構30およびY軸送り機構32のいずれか一方、もしくはX軸送り機構30、Y軸送り機構32、およびZ軸送り機構34のうちの少なくとも2軸を駆動することによって、測定ヘッド42と工作物2との相対的位置関係を連続的に変化させる。ここで、レーザ変位計の発光部に対して、レーザビーム116の走査方向の前方または後方にレーザ変位計の受光部が位置するように、レーザ変位計の向きが合わせられている。 First, based on the control from the measurement control unit 156, the NC device 24 is either one of the X-axis feed mechanism 30 and the Y-axis feed mechanism 32, or the X-axis feed mechanism 30, the Y-axis feed mechanism 32, and the Z axis. By driving at least two axes of the feed mechanism 34, the relative positional relationship between the measuring head 42 and the workpiece 2 is continuously changed. Here, the laser displacement gauge is oriented such that the light receiving unit of the laser displacement gauge is positioned forward or backward with respect to the light emitting unit of the laser displacement meter in the scanning direction of the laser beam 116.
 NC装置24に内蔵されたPLC(プログラマブル・ロジック・コントローラ:Programmable Logic Controller)26は、上記の送り機構の駆動に同期して、所定周期でトリガ信号を通信装置168に出力する。通信装置168はトリガ信号を受信すると測定指令fを測定ヘッド42に送信し、測定ヘッド42は測定指令fに従って測定ヘッド42から工作物2までの距離D(すなわち、工作物2の表面の変位)を測定する。測定された距離DのデータFは、測定ヘッド42から通信装置168を介して測定制御部156に送信される。 A PLC (Programmable Logic Controller) 26 incorporated in the NC device 24 outputs a trigger signal to the communication device 168 at a predetermined cycle in synchronization with the driving of the above-mentioned feed mechanism. When the communication device 168 receives the trigger signal, it sends a measurement command f to the measurement head 42, and the measurement head 42 follows the measurement command f to determine the distance D from the measurement head 42 to the workpiece 2 (that is, the displacement of the surface of the workpiece 2) Measure Data F of the measured distance D is transmitted from the measurement head 42 to the measurement control unit 156 via the communication device 168.
 PLC26は、さらに、上記の測定ヘッド42による距離測定のタイミングに合わせて、X軸送り機構30、Y軸送り機構32、およびZ軸送り機構34の位置情報を取得することによって、測定ヘッド42の位置のデータを検出する。PLC26は、検出した測定ヘッド42の位置のデータを測定制御部156に送信する。 The PLC 26 further obtains positional information of the X-axis feed mechanism 30, the Y-axis feed mechanism 32, and the Z-axis feed mechanism 34 in synchronization with the timing of distance measurement by the measurement head 42 described above. Detect location data. The PLC 26 transmits data of the detected position of the measurement head 42 to the measurement control unit 156.
 測定制御部156は、PLC26から取得した測定ヘッド42の位置データと、測定ヘッド42から取得した距離DのデータFとに基づいて、レーザビーム116の走査方向に沿った各測定点における高さ方向(Z軸方向)の変位データを表面形状データ166として、メモリ154に格納する。 Based on the position data of the measurement head 42 acquired from the PLC 26 and the data F of the distance D acquired from the measurement head 42, the measurement control unit 156 measures the height direction at each measurement point along the scanning direction of the laser beam 116. The displacement data (in the Z-axis direction) is stored in the memory 154 as surface shape data 166.
 プロセッサ152は、さらに、上記の表面形状データ166に含まれるノイズを除去するためのデータ処理を行うデータ処理部158,158Aとして機能する。データ処理部158,158Aの動作は、実施の形態1および2で説明したとおりである。データ処理部158,158Aによって表面形状データ166に含まれる誤差を効率的に低減することができる。 The processor 152 further functions as data processing units 158 and 158A that perform data processing for removing noise included in the surface shape data 166 described above. The operations of the data processing units 158 and 158A are as described in the first and second embodiments. The errors contained in the surface shape data 166 can be efficiently reduced by the data processing units 158 and 158A.
 今回開示された実施の形態はすべての点で例示であって制限的なものでないと考えられるべきである。この発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiment disclosed herein is illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above description but by the scope of claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of claims.
 2 工作物、10 加工装置、16,142 サドル、18,144 テーブル、24 NC装置、30 X軸送り機構、32 Y軸送り機構、34 Z軸送り機構、42 測定ヘッド、100 レーザ変位計、110 発光部、112 レーザダイオード、114 レンズ、116 レーザビーム、118 集光レンズ(光学系)、120 リニアイメージセンサ(受光部)、130 測定対象物、132 レーザスポット、140,140A 表面形状測定装置、146 移動機構、146X X軸駆動機構、146Y Y軸駆動機構、146Z Z軸駆動機構、150 コンピュータ、152 プロセッサ、154 メモリ、156 測定制御部、158,158A データ処理部、160 特徴区間抽出部、162 データ補正部、163 移動平均処理部、164 フィルタ処理部、166 表面形状データ、168 通信装置、200 工作機械。 Reference Signs List 2 workpiece, 10 processing device, 16, 142 saddle, 18, 144 table, 24 NC device, 30 X axis feed mechanism, 32 Y axis feed mechanism, 34 Z axis feed mechanism, 42 measuring head, 100 laser displacement gauge, 110 Light emitting unit, 112 laser diode, 114 lens, 116 laser beam, 118 condensing lens (optical system), 120 linear image sensor (light receiving unit), 130 object to be measured, 132 laser spot, 140, 140 A surface shape measuring apparatus, 146 Movement mechanism, 146X X axis drive mechanism, 146Y Y axis drive mechanism, 146Z Z axis drive mechanism, 150 computer, 152 processor, 154 memory, 156 measurement control unit, 158, 158A data processing unit, 160 feature section extraction unit, 162 data Correction unit 163 the moving average processing unit, 164 filter unit, 166 surface shape data, 168 communication device, 200 a machine tool.

Claims (14)

  1.  測定対象物に向けて光ビームを出射する発光部、前記測定対象物からの前記光ビームの散乱光を集光する光学系、および前記光学系による集光位置を検出する受光部を含み、前記受光部での集光位置に基づいて前記測定対象物の表面の変位を測定する変位計と、
     前記変位計と前記測定対象物とを相対的に移動させることによって、前記光ビームを走査する移動機構と、
     前記移動機構および前記変位計を制御する測定制御部とを備え、
     前記測定制御部は、
     前記発光部に対して前記受光部が前記光ビームの走査方向の前方または後方に位置するように、前記移動機構に前記光ビームを走査させ、
     前記光ビームの走査中に、前記変位計によって前記測定対象物の表面の変位の変化を表面形状データとして連続的に測定するように構成される、表面形状測定装置。
    A light emitting unit that emits a light beam toward a measurement target, an optical system that collects scattered light of the light beam from the measurement target, and a light reception unit that detects a collection position by the optical system; A displacement gauge that measures the displacement of the surface of the measurement object based on the light collection position at the light receiving unit;
    A moving mechanism for scanning the light beam by relatively moving the displacement meter and the measurement object;
    And a measurement control unit that controls the movement mechanism and the displacement gauge.
    The measurement control unit
    Causing the moving mechanism to scan the light beam such that the light receiving unit is positioned forward or backward in the scanning direction of the light beam with respect to the light emitting unit;
    A surface shape measuring apparatus configured to continuously measure, as surface shape data, a change in displacement of the surface of the measurement object by the displacement gauge during scanning of the light beam.
  2.  前記表面形状データの測定範囲から特徴区間を抽出する特徴区間抽出部をさらに備え、
     前記特徴区間は、前記光ビームのスポットサイズ以下の大きさの区間であり、
     前記表面形状データは、前記特徴区間の前半または後半で極大となる変化を示し、前記特徴区間の残り半分で極小となる変化を示す、請求項1に記載の表面形状測定装置。
    It further comprises a feature section extraction unit that extracts a feature section from the measurement range of the surface shape data,
    The feature section is a section having a size equal to or less than the spot size of the light beam,
    The surface shape measurement apparatus according to claim 1, wherein the surface shape data indicates a change that is a maximum in the first half or the second half of the feature section, and indicates a change that is a minimum in the other half of the feature section.
  3.  前記特徴区間は、前記光ビームのスポットサイズ以下の大きさの区間であって予め定める条件を満たし、
     前記予め定める条件は、前記特徴区間の前半の一部で前記表面形状データが前記表面形状データの平均値に対して予め定める範囲を超えて一方向に変化し、前記特徴区間の後半の一部で前記前半と反対方向に前記表面形状データが前記平均値に対して前記予め定める範囲を超えて変化するという条件を含む、請求項2に記載の表面形状測定装置。
    The feature section is a section having a size equal to or smaller than the spot size of the light beam and satisfies a predetermined condition.
    The predetermined condition is that, in a part of the first half of the feature section, the surface shape data changes in one direction beyond a predetermined range with respect to the average value of the surface shape data, and a part of the second half of the feature section The surface shape measuring apparatus according to claim 2, comprising a condition that the surface shape data changes with respect to the average value beyond the predetermined range in a direction opposite to the first half.
  4.  前記特徴区間は、前記光ビームのスポットサイズに等しい大きさの区間であって予め定める条件を満たし、
     前記予め定める条件は、前記特徴区間の前半における前記表面形状データの波形と、前記特徴区間の後半における前記表面形状データの波形を前記特徴区間の中央でのデータ点を中心に180度回転することによって得られる波形との相関係数が、予め定める基準値を超えるという条件を含む、請求項2に記載の表面形状測定装置。
    The feature section is a section having a size equal to the spot size of the light beam and satisfies a predetermined condition.
    The predetermined conditions include rotating the waveform of the surface shape data in the first half of the feature section and the waveform of the surface shape data in the second half of the feature section by 180 degrees around a data point at the center of the feature section. The surface shape measuring apparatus according to claim 2, comprising the condition that the correlation coefficient with the waveform obtained by the value exceeds a predetermined reference value.
  5.  抽出された1または複数の前記特徴区間の各々において、前記表面形状データの平均値に対する前記表面形状データの変化量が小さくなるように前記表面形状データを補正するデータ補正部をさらに備える、請求項2~4のいずれか1項に記載の表面形状測定装置。 The image processing apparatus further comprises a data correction unit that corrects the surface shape data so that the amount of change in the surface shape data with respect to the average value of the surface shape data becomes small in each of the one or more extracted feature sections. The surface shape measuring device according to any one of 2 to 4.
  6.  前記データ補正部は、各前記特徴区間の任意の第1の測定点における測定値を、区間の中点を挟んで対称な位置にある第2の測定点における測定値と平均し、求めた平均値で前記第1および第2の測定点における各測定値を置換することによって前記表面形状データを補正する、請求項5に記載の表面形状測定装置。 The data correction unit averages a measurement value at an arbitrary first measurement point of each of the feature sections with a measurement value at a second measurement point located at a symmetrical position across the middle point of the section The surface shape measurement apparatus according to claim 5, wherein the surface shape data is corrected by replacing each measurement value at the first and second measurement points with a value.
  7.  前記データ補正部は、各前記特徴区間におけるデータを前記表面形状データの平均値で置き換えることによって、前記表面形状データを補正する、請求項5に記載の表面形状測定装置。 The surface shape measuring apparatus according to claim 5, wherein the data correction unit corrects the surface shape data by replacing data in each of the feature sections with an average value of the surface shape data.
  8.  前記データ補正部によって補正された前記表面形状データに対して、前記光ビームのスポットサイズよりも長い周期の変動のみを残すローパスフィルタ処理を行うフィルタ処理部をさらに備える、請求項5~7のいずれか1項に記載の表面形状測定装置。 The filter processing unit according to any one of claims 5 to 7, further comprising: a low pass filter processing for leaving only fluctuations of a period longer than a spot size of the light beam on the surface shape data corrected by the data correction unit. The surface shape measuring device according to any one of the preceding claims.
  9.  前記表面形状データに対して、可変の移動平均区間で移動平均を行う移動平均処理部をさらに備え、
     前記移動平均区間の大きさは前記光ビームのスポットサイズよりも大きく、
     前記特徴区間を含んで移動平均を行う際の移動平均区間の大きさは、前記特徴区間を含まずに移動平均を行う際の移動平均区間の大きさよりも大きい、請求項2~4のいずれか1項に記載の表面形状測定装置。
    The surface shape data further includes a moving average processing unit that performs moving average in a variable moving average section,
    The size of the moving average section is larger than the spot size of the light beam,
    5. The size of the moving average section when performing moving average including the feature section is larger than the size of the moving average section when performing moving average without including the feature section. The surface shape measuring device according to item 1.
  10.  前記表面形状データに対して、重み付き移動平均を行う移動平均処理部をさらに備え、
     前記重み付き移動平均の移動平均区間の大きさは前記光ビームのスポットサイズよりも大きく、
     前記特徴区間内の測定点に対する重みは、前記特徴区間外の測定点に対する重みよりも小さい、請求項2~4のいずれか1項に記載の表面形状測定装置。
    It further comprises a moving average processing unit that performs weighted moving average on the surface shape data,
    The size of the moving average section of the weighted moving average is larger than the spot size of the light beam,
    The surface shape measuring apparatus according to any one of claims 2 to 4, wherein a weight for the measurement point in the feature section is smaller than a weight for the measurement point outside the feature section.
  11.  請求項1~10のいずれか1項に記載の表面形状測定装置を備える、工作機械。 A machine tool comprising the surface shape measuring device according to any one of claims 1 to 10.
  12.  非接触方式の変位計を用いた表面形状測定方法であって、
     前記変位計は、測定対象物に向けて光ビームを出射する発光部、前記測定対象物からの前記光ビームの散乱光を集光する光学系、および前記光学系による集光位置を検出する受光部を含み、
     前記表面形状測定方法は、
     前記発光部に対して走査方向の前方または後方に前記受光部が位置するように、前記受光部と前記発光部との位置関係を保ちながら、前記走査方向に沿って前記変位計を前記測定対象物に対して相対的に移動させるステップと、
     前記変位計の相対移動に伴う前記変位計の測定値の変化に基づいて、前記測定対象物の表面形状を決定するステップとを備える、表面形状測定方法。
    It is a surface shape measuring method using a noncontact displacement meter,
    The displacement meter includes a light emitting unit that emits a light beam toward a measurement target, an optical system that collects scattered light of the light beam from the measurement target, and light reception that detects a collection position by the optical system. Including
    The surface shape measuring method is
    The displacement meter may be the object to be measured along the scanning direction while maintaining the positional relationship between the light receiving unit and the light emitting unit such that the light receiving unit is positioned forward or backward in the scanning direction with respect to the light emitting unit. Moving relative to the object,
    Determining the surface shape of the measurement object based on the change in the measurement value of the displacement gauge in accordance with the relative movement of the displacement gauge.
  13.  前記表面形状を決定するステップは、前記測定対象物の表面形状の測定範囲から特徴区間を抽出するステップを含み、
     前記特徴区間は、前記光ビームのスポットサイズ以下の大きさの区間であり、
     前記測定対象物の表面形状の測定データは、前記特徴区間の前半または後半で極大となる変化を示し、前記特徴区間の残り半分で極小となる変化を示す、請求項12に記載の表面形状測定方法。
    The step of determining the surface shape includes the step of extracting a feature section from a measurement range of the surface shape of the measurement object,
    The feature section is a section having a size equal to or less than the spot size of the light beam,
    13. The surface shape measurement according to claim 12, wherein the measurement data of the surface shape of the measurement object indicates a change that is maximum in the first half or the second half of the feature section, and indicates a change that is minimum in the other half of the feature section. Method.
  14.  前記表面形状を決定するステップは、抽出された1または複数の前記特徴区間の各々において、前記測定対象物の表面形状の測定データの平均値に対する各測定値の偏差が小さくなるように前記測定データを補正するステップをさらに含む、請求項13に記載の表面形状測定方法。 In the step of determining the surface shape, in each of the one or more extracted feature sections, the measurement data is reduced so that a deviation of each measurement value from an average value of measurement data of the surface shape of the measurement object is reduced. The surface shape measuring method according to claim 13, further comprising the step of correcting.
PCT/JP2014/079053 2014-01-17 2014-10-31 Surface shape measuring device and machine tool provided with same, and surface shape measuring method WO2015107751A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112014006201.4T DE112014006201T5 (en) 2014-01-17 2014-10-31 Surface shape measuring device and machine tool provided therewith and surface shape measuring method
GB1611354.0A GB2536167B (en) 2014-01-17 2014-10-31 Surface shape measurement apparatus and machine tool including the same, and surface shape measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-006899 2014-01-17
JP2014006899A JP5813143B2 (en) 2014-01-17 2014-01-17 Surface shape measuring device and machine tool provided with the same

Publications (1)

Publication Number Publication Date
WO2015107751A1 true WO2015107751A1 (en) 2015-07-23

Family

ID=53542655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079053 WO2015107751A1 (en) 2014-01-17 2014-10-31 Surface shape measuring device and machine tool provided with same, and surface shape measuring method

Country Status (4)

Country Link
JP (1) JP5813143B2 (en)
DE (1) DE112014006201T5 (en)
GB (1) GB2536167B (en)
WO (1) WO2015107751A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111451838A (en) * 2019-01-21 2020-07-28 发那科株式会社 Machine tool, management system, and tool deterioration detection method
CN114061468A (en) * 2021-12-16 2022-02-18 大合智能包装科技(广州)有限公司 Automatic measuring station for package size
EP3679335B1 (en) 2017-09-05 2022-11-16 Renishaw PLC A method for assessing the beam profile of a non-contact tool setting apparatus
CN118129055A (en) * 2024-04-30 2024-06-04 成都飞机工业(集团)有限责任公司 Line laser scanning device and scanning method for aviation part contour

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183181A1 (en) * 2016-04-22 2017-10-26 オリンパス株式会社 Three-dimensional shape measurement device
JP6937125B2 (en) * 2017-01-26 2021-09-22 株式会社ニューフレアテクノロジー Stage mechanism position correction method and charged particle beam drawing device
JP6973203B2 (en) * 2018-03-14 2021-11-24 Jfeエンジニアリング株式会社 Anomaly detection device, anomaly detection system, and anomaly detection method
JP6708917B1 (en) 2020-02-05 2020-06-10 リンクウィズ株式会社 Shape detection method, shape detection system, program
JP6923097B1 (en) * 2021-03-03 2021-08-18 オムロン株式会社 Work shape measuring device, work shape measuring system, work shape measuring method and work shape measuring program
JP7411132B1 (en) 2023-05-01 2024-01-10 Dmg森精機株式会社 Workpiece shape measuring method and workpiece shape measuring device.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658723A (en) * 1992-04-22 1994-03-04 Nec Corp Scanning type laser displacement meter
US20080137071A1 (en) * 2006-12-12 2008-06-12 Hong Kong Applied Science And Technology Research Institute Co. Ltd. Optical displacement sensor and distance measuring apparatus
US20090195790A1 (en) * 2005-09-02 2009-08-06 Neptec Imaging system and method
JP2011020233A (en) * 2009-07-17 2011-02-03 Kyoto Univ On-machine measuring method and measuring device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2622722B2 (en) * 1988-06-27 1997-06-18 新電元工業株式会社 Pressure detector
JPH0213807A (en) * 1988-06-30 1990-01-18 Juki Corp Height detection with position detector
JPH08105719A (en) * 1994-10-04 1996-04-23 Hitachi Denshi Ltd Bump shape inspection device using displacement gauges at multiple points

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658723A (en) * 1992-04-22 1994-03-04 Nec Corp Scanning type laser displacement meter
US20090195790A1 (en) * 2005-09-02 2009-08-06 Neptec Imaging system and method
US20080137071A1 (en) * 2006-12-12 2008-06-12 Hong Kong Applied Science And Technology Research Institute Co. Ltd. Optical displacement sensor and distance measuring apparatus
JP2011020233A (en) * 2009-07-17 2011-02-03 Kyoto Univ On-machine measuring method and measuring device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3679335B1 (en) 2017-09-05 2022-11-16 Renishaw PLC A method for assessing the beam profile of a non-contact tool setting apparatus
EP3679335B2 (en) 2017-09-05 2025-07-09 Renishaw PLC A method for assessing the beam profile of a non-contact tool setting apparatus
CN111451838A (en) * 2019-01-21 2020-07-28 发那科株式会社 Machine tool, management system, and tool deterioration detection method
CN111451838B (en) * 2019-01-21 2022-10-28 发那科株式会社 Machine tool, management system, and tool deterioration detection method
CN114061468A (en) * 2021-12-16 2022-02-18 大合智能包装科技(广州)有限公司 Automatic measuring station for package size
CN118129055A (en) * 2024-04-30 2024-06-04 成都飞机工业(集团)有限责任公司 Line laser scanning device and scanning method for aviation part contour

Also Published As

Publication number Publication date
GB201611354D0 (en) 2016-08-17
GB2536167B (en) 2018-08-15
GB2536167A (en) 2016-09-07
JP2015135276A (en) 2015-07-27
JP5813143B2 (en) 2015-11-17
DE112014006201T5 (en) 2016-11-10

Similar Documents

Publication Publication Date Title
WO2015107751A1 (en) Surface shape measuring device and machine tool provided with same, and surface shape measuring method
Feng et al. Analysis of digitizing errors of a laser scanning system
KR101838329B1 (en) Method and device for non-contact measuring surfaces
EP3186588B1 (en) In-line inspection of ophthalmic device with auto-alignment system and interferometer
EP2312263B1 (en) Offset Amount Calibrating Method and Surface Profile Measuring Machine
EP2203273A1 (en) Rotating part position and change finding method and apparatus
JP6423662B2 (en) Thread groove shape measuring device and machine tool using it
JP2018523831A (en) Optical profiler and method of using the same
Schmitt et al. Process monitoring in laser micro machining
JP5789010B2 (en) Surface shape measuring device and machine tool provided with the same
WO2017009615A1 (en) Method for measuring an artefact
JP6158730B2 (en) Surface shape measuring device and machine tool provided with the same
Tai et al. Noncontact profilometric measurement of large-form parts
JP2009178818A (en) Tool position measuring method and device
JP6170385B2 (en) Measuring device, measuring method, and article manufacturing method
JP2016095243A (en) Measuring device, measuring method, and article manufacturing method
JP2013124889A (en) Contour shape measuring method and contour shape measuring device
Ferrucci et al. Dimensional metrology
Chen et al. Examining the profile accuracy of grinding wheels used for microdrill fluting by an image-based contour matching method
JP4922905B2 (en) Method and apparatus for measuring position variation of rotation center line
JP2016090478A (en) Measurement value correction method, measurement value correction program, and measurement apparatus
JP6405195B2 (en) Measurement value correction method, measurement value correction program, and measurement apparatus
Hiersemenzel Development towards a focus variation based micro-co-ordinate measuring machine
Rak et al. The influence of the scanning path of a laser scanner integrated with measuring arm on the surface digitalization
JP3939983B2 (en) Measuring method of movement / attitude control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14879062

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201611354

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20141031

WWE Wipo information: entry into national phase

Ref document number: 1611354

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 112014006201

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14879062

Country of ref document: EP

Kind code of ref document: A1