WO2015107663A1 - Emergency stop system for work machine, work machine, and emergency stop method for work machine - Google Patents
Emergency stop system for work machine, work machine, and emergency stop method for work machine Download PDFInfo
- Publication number
- WO2015107663A1 WO2015107663A1 PCT/JP2014/050712 JP2014050712W WO2015107663A1 WO 2015107663 A1 WO2015107663 A1 WO 2015107663A1 JP 2014050712 W JP2014050712 W JP 2014050712W WO 2015107663 A1 WO2015107663 A1 WO 2015107663A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- relay
- hydraulic
- emergency stop
- work machine
- power supply
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 13
- 239000010720 hydraulic oil Substances 0.000 claims description 38
- 230000007246 mechanism Effects 0.000 claims description 4
- 230000005856 abnormality Effects 0.000 description 28
- 238000004891 communication Methods 0.000 description 16
- 230000007935 neutral effect Effects 0.000 description 12
- 230000002159 abnormal effect Effects 0.000 description 10
- 238000012545 processing Methods 0.000 description 9
- 230000008602 contraction Effects 0.000 description 7
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 7
- 238000012423 maintenance Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 210000004899 c-terminal region Anatomy 0.000 description 5
- 230000003028 elevating effect Effects 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 239000000446 fuel Substances 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000009412 basement excavation Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/24—Safety devices, e.g. for preventing overload
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/28—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
- E02F3/30—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
- E02F3/308—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working outwardly
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2278—Hydraulic circuits
- E02F9/2292—Systems with two or more pumps
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2278—Hydraulic circuits
- E02F9/2296—Systems with a variable displacement pump
Definitions
- the present invention relates to an emergency stop system for a work machine such as a hydraulic excavator, a work machine, and an emergency stop method for the work machine.
- an emergency stop system in which an emergency stop switch is operated to stop a work machine in an emergency (see, for example, Patent Document 1).
- the emergency stop system of Patent Document 1 includes two emergency stop switches, a first switch for stopping the engine other than the engine such as a work machine and a travel motor, and a second switch for stopping the engine including the engine.
- a stop controller, a work implement stop valve, and an engine controller are provided.
- the emergency stop controller and the engine controller are connected to the battery via the ignition switch. If the ignition switch is in the on state, the emergency stop controller and the engine controller are supplied with electric power from the battery, and the operation state can be maintained.
- the open / close state of the first switch and the second switch is detected by the emergency stop controller.
- the emergency stop controller determines the ON state of each switch, the emergency stop controller outputs a stop command for stopping the work implement and the engine to the work implement control valve and the engine controller, thereby stopping the work implement and the engine.
- the emergency stop controller detects the open / closed state of the first switch and the second switch, and the emergency stop controller generates and outputs a stop command for commanding the work machine and the engine to stop. For this reason, if an emergency occurs in the emergency stop controller and the open / closed state of each switch cannot be detected correctly, or a stop command cannot be generated and output, the work machine can be operated even if the operator inputs each switch. May not be able to stop. In such a case, it is necessary to stop the work machine and the engine by cutting off the ignition switch, and there is a problem that the stop operation is delayed.
- An object of the present invention is to provide an emergency stop system for a work machine, a work machine, and an emergency stop method for the work machine that can reliably stop a work machine or the like when an emergency stop switch is operated.
- the present invention is an emergency stop system for a work machine provided with a work machine, wherein an emergency stop switch, a work machine control device capable of controlling a stop operation of the work machine, and power is supplied to the work machine control device A power supply, a power supply line that connects the power supply and the work implement control device, a first relay and a second relay that are provided in the power supply line and control power supply to the work implement control device, And a second relay control device that controls the second relay by detecting an open / closed state of an emergency stop switch, wherein the first relay is controlled by the emergency stop switch, and the emergency stop switch is input to the emergency stop switch.
- the power supply line is disconnected, and when the second relay control device detects an emergency state in which the emergency stop switch is input, the second relay control device controls the second relay to supply the power.
- the power supply line is cut by the first relay or the second relay and the power supply from the power source to the work implement control device is stopped, the work implement is stopped.
- the first relay controlled by the emergency stop switch when an operator inputs an emergency stop switch, the first relay controlled by the emergency stop switch is disconnected. Moreover, when the input operation of the emergency stop switch is input to the second relay control device, the second relay control device disconnects the second relay. For this reason, the power supply line that supplies power from the power source to the work implement control apparatus is disconnected by the first relay and the second relay that are connected in series to the power supply line. Therefore, the power supply to the work machine control device is also stopped, and the work machine is stopped.
- the emergency stop switch when the emergency stop switch is input, two relays that stop power supply to the work implement control device that controls at least the stop operation of the work implement are arranged in series. Even if a failure occurs in the relay, the power supply can be reliably stopped by operating the other relay.
- the first relay since the first relay is controlled by an emergency stop switch, an abnormality occurs in the second relay control device that controls the second relay by outputting a control signal, and the second relay cannot be normally controlled.
- the first relay since the first relay is disconnected, the power supply to the actuator control device can be reliably stopped.
- the second relay control device can control the second relay to a disconnected state, so that the power supply to the actuator control device can be stopped reliably. That is, since the probability that both the first relay and the second relay fail simultaneously is very small, the power supply to the work implement control device can be reliably stopped when the emergency stop switch is operated. Since the operation of the work implement is automatically stopped by stopping the power supply to the work implement control device, the work implement can be reliably stopped when the emergency stop switch is operated.
- the second relay disconnects the power supply line when a control signal is not input from the second relay control device.
- a normally open electromagnetic relay that turns on the power supply line when current flows through the coil of the electromagnet and disconnects when current does not flow may be used.
- the power supply line can be disconnected by the second relay. For this reason, even if the emergency stop switch is not operated, when an abnormality occurs in the second relay control device, the power supply to the work implement control device can be stopped reliably, and the work implement can be reliably stopped.
- the work machine control device includes a first control device that controls driving of the work machine and devices other than the work machine, and a second control device that controls driving of the work machine.
- the power supply line is provided with a third relay that controls only the power supply to the second control device, and only the second control device when only the third relay is disconnected It is preferable that the working machine controlled by the second control device stops.
- the devices other than the work machine controlled by the first control device are, for example, service arms (services) used for raising and lowering ladders for getting on and off the work machine, and supplying fuel to the work machine. Center).
- service arms services
- the third relay since the third relay is provided, it is possible to stop only the power supply to the second control device and stop the work implement.
- power supply to the first control device can be continued, driving of devices other than the work machine can be continued. Accordingly, it is possible to drive a device other than the work machine while the work machine is stopped during maintenance work or the like, and the convenience can be improved.
- a work implement stop switch for controlling the third relay is provided, the third relay is controlled by the work implement stop switch, and the work implement stop switch is input. In the state, it is preferable to cut off the power supply line and cut off the power supply to the second control device.
- the third relay when the work implement stop switch is input, the third relay is disconnected, the power supply to the second control device can be cut off, and the work implement controlled by the second control device can be stopped. Therefore, if the work implement stop switch is input when the ladder is lowered or the service arm is lowered, the work implement operates when the ladder or the service arm is lowered or when the PPC lock lever is locked. It is possible to prevent the ladder and the service arm from being damaged, and the safety in the work machine can be further improved.
- the work machine is a hydraulic excavator that includes a traveling body and an upper swing body that is turnable on the travel body, and the upper swing body includes a ladder. Or it is preferable to provide a service arm.
- the work machine is a hydraulic excavator
- the ladder or service arm descends from the upper revolving structure
- the ladder or service arm interferes with the traveling structure.
- the work machine controlled by the second control device is stopped by disconnecting the third relay by the input of the work machine stop switch or the like. it can.
- the hydraulic excavator it is possible to prevent the upper swing body from turning and damaging the ladder and the service arm while the ladder and the service arm are lowered, and the safety in the working machine can be further improved.
- the power supply to the first control device can be continued. Since the first control device controls not only the work machine but also devices other than the work machine, the first control device can control the drive of the ladder and the service arm. Therefore, the ladder and the service arm can be driven in a state where the work machine controlled by the second control device is stopped, and safety and convenience can be improved.
- the work machine of the present invention is a work machine including an emergency stop system for the work machine and a drive mechanism that drives the work machine, and the drive mechanism is supplied from a hydraulic pump and the hydraulic pump.
- the hydraulic control valve includes a valve controller that outputs a signal, and the first relay or the second relay is disconnected, the work implement control device is stopped, and the control signal is input from the work implement control device. When it disappears, it becomes the stop state which stops supply of the said hydraulic oil, It is characterized by the above-mentioned.
- the above-described emergency stop system can provide the effect.
- the present invention relates to a work implement, an emergency stop switch, a work implement control device capable of controlling a stop operation of the work implement, a power supply for supplying power to the work implement control device, the power supply, and the work implement control device.
- a power supply line connecting the power supply line, a first relay and a second relay provided in the power supply line for controlling power supply to the work implement control device, and detecting an open / closed state of the emergency stop switch,
- An emergency stop method for a work machine comprising a second relay control device for controlling a second relay, wherein the first relay disconnects the power supply line in an emergency state where the emergency stop switch is input.
- the second relay control device that detects an emergency state in which the emergency stop switch is input controls the second relay to disconnect the power supply line, and the first relay or the first relay If the electric power supply is the power supply line is disconnected by the relay from the power source to the working machine control device is stopped, the working machine is characterized in that stop.
- the same effect as the emergency stop system can be obtained. That is, when the operator performs an input operation on the emergency stop switch, the first relay controlled by the emergency stop switch is disconnected. Further, when the input operation of the emergency stop switch is detected by the second relay control device, the second relay control device disconnects the second relay. For this reason, the power supply line that supplies power from the power source to the work implement control apparatus is disconnected by the first relay and the second relay that are connected in series to the power supply line. Therefore, the power supply to the work machine control device is also stopped, and the work machine is stopped.
- the present invention since two relays that stop power supply to the work implement control device that controls at least the stop operation of the work implement are arranged in series, even if one of the relays fails, the other relay By operating the relay, the power supply can be reliably stopped. That is, since the probability that both the first relay and the second relay fail simultaneously is very small, the power supply to the work implement control device can be reliably stopped when the emergency stop switch is operated. Since the operation of the work implement is automatically stopped by stopping the power supply to the work implement control device, the work implement can be reliably stopped when the emergency stop switch is operated.
- FIG. 1 is a side view showing a hydraulic excavator according to an embodiment of the present invention.
- the figure which shows the whole structure of the hydraulic circuit of a hydraulic shovel.
- the figure which shows the structure of the operation control system of a hydraulic excavator.
- the figure which shows the structure of the operation monitoring system of the operating tool of a hydraulic shovel.
- the graph which shows the relationship between the operation amount and voltage value in a 1st operation signal and a 2nd operation signal.
- the schematic perspective view which shows the raising / lowering ladder of a hydraulic shovel.
- the schematic side view which shows the service arm of a hydraulic excavator.
- the block diagram which shows the structure of a master controller and a slave controller.
- the flowchart which shows the hydraulic drive control method of a master controller and a slave controller.
- the flowchart which shows the emergency stop control process when an emergency stop switch is pushed.
- the flowchart which shows a working machine stop control process when a working machine stop switch is pushed.
- the side view which shows the hydraulic shovel concerning the modification of this invention.
- FIG. 1 shows a hydraulic excavator 1 as a work machine according to the present embodiment.
- the hydraulic excavator 1 is a large loading excavator used in a mine or the like, and includes a vehicle body 2 and a work implement 3.
- the vehicle main body 2 includes a traveling body 21 and a revolving body 22 as an upper revolving body provided on the traveling body 21 so as to be able to turn.
- the traveling body 21 includes a pair of left and right traveling devices 211.
- Each traveling device 211 includes a crawler belt 212 and drives the excavator 1 by driving the crawler belt 212 with a left traveling motor 213L and a right traveling motor 213R, which will be described later.
- the swing body 22 includes a cab 23, a counterweight 24, and an engine room 25.
- the counterweight 24 is provided for weight balance with the work machine 3 and is filled with heavy objects.
- the revolving structure 22 is revolved by a hydraulic revolving motor 26 described later. Further, the revolving structure 22 is also provided with a hydraulic lift ladder 27 for an operator to get on and off, and a service arm 28 (FIG. 7) provided with a fuel supply port. Details of the lifting ladder 27 and the service arm 28 will be described later.
- the work implement 3 is attached to the center of the front portion of the revolving structure 22 and includes a boom 31, an arm 32, a bucket 33, a boom cylinder 34, an arm cylinder 35, a bucket cylinder 36, and a crumb cylinder 37.
- a base end portion of the boom 31 is rotatably connected to the swing body 22. Further, the base end portion of the arm 32 is rotatably connected to the distal end portion of the boom 31.
- a bucket 33 is rotatably connected to the tip of the arm 32.
- the bucket 33 is a bucket that can be opened and closed by a crumb cylinder 37 provided therein.
- the boom cylinder 34, the arm cylinder 35, the bucket cylinder 36, and the crumb cylinder 37 are hydraulic cylinders that are driven by hydraulic oil discharged from a hydraulic pump 5 described later.
- the boom cylinder 34 operates the boom 31, and the arm cylinder 35 operates the arm 32.
- the bucket cylinder 36 operates the bucket 33, and the crumb cylinder 37 opens and closes the bucket 33.
- FIG. 2 shows the overall configuration of the hydraulic circuit of the excavator 1. Since the hydraulic excavator 1 is a large loading excavator for mines, two boom cylinders 34, arm cylinders 35, bucket cylinders 36, and crumb cylinders 37, which are hydraulically driven working machines, are provided. . Further, the turning motor 26, the left traveling motor 213L, and the right traveling motor 213R described above are driven by hydraulic pressure. Accordingly, the hydraulic drive apparatus of the present invention is constituted by the cylinders 34 to 37 and the motors 26, 213L, and 213R.
- the hydraulic excavator 1 includes four hydraulic pumps 5A, 5B, 5C, and 5D as hydraulic pumps 5 for driving the hydraulic drive device.
- Each of the hydraulic pumps 5A, 5B, 5C, 5D is composed of two variable displacement hydraulic pumps connected in series to the drive shafts 6A, 6B, 6C, 6D.
- Each drive shaft 6A, 6B, 6C, 6D is driven by the output of an engine or an electric motor transmitted via a PTO (Power take-off) (not shown).
- the electric motor is driven by electric power of a generator that generates electricity with the output of the engine or electric power supplied via a cable from a generator installed outside the hydraulic excavator 1.
- the number of hydraulic pumps 5 and the number of engines and electric motors that drive the drive shafts of the hydraulic pump 5 may be set according to the size of the hydraulic excavator 1 and the like.
- two or more engines and electric motors may be arranged.
- Three or more hydraulic pumps 5 may be connected in series to one drive shaft.
- the hydraulic excavator 1 includes a hydraulic control valve (control valve) 50 for supplying hydraulic oil pumped from each hydraulic pump 5A, 5B, 5C, 5D to each hydraulic drive device.
- a hydraulic control valve (control valve) 50 for supplying hydraulic oil pumped from each hydraulic pump 5A, 5B, 5C, 5D to each hydraulic drive device.
- 3 to 4 hydraulic control valves 50 are provided for each of the hydraulic pumps 5A, 5B, 5C, and 5D, and a total of 14 hydraulic control valves 50A to 50N are provided.
- the hydraulic control valves 50A to 50N are collectively referred to as the hydraulic control valve 50.
- the hydraulic control valve 50 ⁇ / b> A controls the expansion and contraction of the arm cylinder 35.
- the hydraulic control valve 50B performs control for extending the bucket cylinder 36 (bucket dump control) and control for extending the boom cylinder 34 (boom-up control).
- the hydraulic control valve 50 ⁇ / b> C controls the driving of the turning motor 26.
- the hydraulic control valve 50D controls driving of the left traveling motor 213L.
- the hydraulic control valve 50E performs control to extend the arm cylinder 35 (arm dump control) and control to extend the bucket cylinder 36 (bucket dump control).
- the hydraulic control valve 50 ⁇ / b> F controls the expansion / contraction of the crumb cylinder 37.
- the hydraulic control valve 50G controls expansion and contraction of the boom cylinder 34.
- the hydraulic control valve 50H performs control (boom down control) for contracting the boom cylinder 34.
- the hydraulic control valve 50I controls expansion and contraction of the bucket cylinder 36.
- the hydraulic control valve 50J controls driving of the turning motor 26.
- the hydraulic control valve 50K controls driving of the right traveling motor 213R.
- the hydraulic control valve 50L controls the expansion and contraction of the arm cylinder 35.
- the hydraulic control valve 50M controls expansion and contraction of the bucket cylinder 36.
- the hydraulic control valve 50N controls expansion and contraction of the boom cylinder 34.
- the hydraulic drive devices other than the crumb cylinder 37 and the traveling motors 213L and 213R are controlled by a plurality of hydraulic pumps 5A, 5B, 5C, 5D and a hydraulic control valve 50 as described below.
- the driving for extending the boom cylinder 34 is controlled by three hydraulic circuits including the hydraulic pumps 5A, 5B, 5D and the hydraulic control valves 50B, 50G, 50N.
- the driving for contracting the boom cylinder 34 is controlled by three hydraulic circuits including hydraulic pumps 5B, 5C, 5D and hydraulic control valves 50G, 50H, 50N.
- the drive for extending the arm cylinder 35 is controlled by three hydraulic circuits including hydraulic pumps 5A, 5B, 5D and hydraulic control valves 50A, 50E, 50L.
- the driving for contracting the arm cylinder 35 is controlled by two hydraulic circuits including hydraulic pumps 5A and 5D and hydraulic control valves 50A and 50L.
- the drive for extending the bucket cylinder 36 is controlled by four hydraulic circuits including hydraulic pumps 5A, 5B, 5C, 5D and hydraulic control valves 50B, 50E, 50I, 50M.
- the driving for contracting the bucket cylinder 36 is controlled by two hydraulic circuits including hydraulic pumps 5C and 5D and hydraulic control valves 50I and 50M.
- the turning motor 26 is controlled by two hydraulic circuits including hydraulic pumps 5A and 5C and hydraulic control valves 50C and 50J. Since the swing motor 26 is controlled by two hydraulic circuits, the amount of hydraulic oil supplied can be increased to operate the swing motor 26 efficiently.
- the crumb cylinder 37 and the traveling motors 213L and 213R may also be driven by a plurality of hydraulic circuits. By controlling with these plural hydraulic circuits, the operation of the hydraulic excavator 1 can be continued even if one hydraulic pump 5 or hydraulic control valve 50 breaks down.
- the hydraulic control valve 50 (50A to 50N) includes a pilot-type direction switching valve 51 (51A to 51N), a proportional control valve 52 (52A to 52N) as a first control valve, and a direction switching valve as a second control valve. 53 (53A to 53N).
- a pilot-type direction switching valve 51 51A to 51N
- a proportional control valve 52 52A to 52N
- a direction switching valve as a second control valve.
- 53 53A to 53N.
- the pilot-type direction switching valve 51 is disposed between each hydraulic pump 5A, 5B, 5C, 5D and the hydraulic drive device.
- the pilot-type directional switching valve 51 is a three-position type switching valve that has a spool that is moved by a pilot pressure, and switches the flow of hydraulic oil by moving the spool to three positions of two switching positions and a neutral position. . Further, the spool of the pilot type direction switching valve 51 is returned to the neutral position by a spring or the like when a pilot pressure of a predetermined value or more is not applied. When the spool returns to the neutral position, the hydraulic oil is not supplied to the hydraulic drive device, and the hydraulic drive device stops.
- the pilot hydraulic line provided with the pilot-type directional switching valve 51, the proportional control valve 52, and the directional switching valve 53 includes a pilot hydraulic cutoff valve that shuts off the pilot hydraulic line and a PPC lock lever that operates the pilot hydraulic cutoff valve.
- the proportional control valve 52 and the direction switching valve 53 control the hydraulic oil supplied from the pilot pump (not shown) to the pilot-type direction switching valve 51 and supply the hydraulic oil from the hydraulic pumps 5A, 5B, 5C, 5D to the hydraulic drive device. Control oil flow and oil volume.
- the proportional control valve 52 is an electromagnetic proportional valve and is controlled by a master controller 81 described later. The proportional control valve 52 controls the pilot pressure applied to the pilot-type direction switching valve 51.
- the direction switching valve 53 is an electromagnetic direction switching valve and is controlled by slave controllers 82 and 83 to be described later.
- the direction switching valve 53 controls the moving direction of the spool of the pilot type direction switching valve 51.
- the hydraulic control valve 50 operates with hydraulic oil supplied from a pilot pump (not shown).
- the hydraulic pump 5 may be used as a pilot pump.
- the hydraulic oil supplied from the pilot pump is supplied to the proportional control valve 52.
- the master controller 81 controls the proportional control valve 52 to adjust the flow rate of the hydraulic oil.
- the hydraulic oil whose flow rate is adjusted by the proportional control valve 52 is supplied to the direction switching valve 53. Therefore, if the master controller 81 restricts the flow rate of the proportional control valve 52, the flow rate of the hydraulic oil supplied to the direction switching valve 53 can be suppressed.
- the slave controllers 82 and 83 control the direction switching valve 53 to switch the hydraulic oil supply destination.
- the hydraulic control valve 50 supplies hydraulic oil from the pilot pump to the pilot-type direction switching valve 51 via the proportional control valve 52 and the direction switching valve 53, and controls the movement of the spool of the pilot-type direction switching valve 51.
- the flow and amount of hydraulic oil supplied from the hydraulic pumps 5A, 5B, 5C, and 5D to the hydraulic drive device are controlled.
- Each of the cylinders 34 to 37 is configured by a general hydraulic cylinder. That is, the cylinders 34 to 37 include a cylinder tube and a piston rod. The inside of the cylinder tube is divided into two chambers on the cap side and the rod side by the piston portion of the piston rod.
- the hydraulic oil is supplied to the cap side, which is the base end side of the cylinder, in the two chambers, and the hydraulic oil is discharged from the rod side where the piston rod is provided.
- the cylinders 34 to 37 are contracted, the hydraulic oil is supplied to the rod side of the two chambers, and the hydraulic oil is discharged from the cap side.
- FIG. 3 illustrates the control of the hydraulic control valves 50A to 50C that control the hydraulic oil supplied from the hydraulic pump 5A.
- the operation control system includes a first operation signal output device 71 and a second operation signal output device 72 that detect an operation amount of the operation tool 60 and output an operation signal, a pump controller 80, and a master.
- a controller 81, slave controllers 82 and 83, an electric controller 84, and a monitor 85 are provided.
- the pump controller 80, master controller 81, slave controllers 82 and 83, electric controller 84, and monitor 85 are connected to each other via a CAN (Controller Area Network) 90.
- the master controller 81 and the slave controllers 82 and 83 are valve controllers that control the proportional control valve 52 and the direction switching valve 53.
- the operating tool 60 of the present embodiment includes a right lever 61, a left lever 62, a right pedal 63 that commands driving of the right traveling device, a left pedal 64 that commands driving of the left traveling device, and a crumb open.
- a pedal 65, a clam close pedal 66, and a turning brake pedal 67 are provided.
- the right lever 61, the left lever 62, the right pedal 63, and the left pedal 64 operate the driving of the boom cylinder 34, the arm cylinder 35, the bucket cylinder 36, the turning motor 26, the right traveling motor 213R, and the left traveling motor 213L.
- the clam open pedal 65 and the clam close pedal 66 operate the driving of the clam cylinder 37.
- the turning brake pedal 67 performs a brake operation of the turning motor 26.
- the number of hydraulic control valves 50 can be arbitrarily set. Further, the turning motor 26 may be driven and braked only by the turning lever (the left lever 62 in this embodiment) without providing the turning brake pedal 67. That is, the turning lever and the turning brake pedal may be shared by one lever.
- the operation pattern of the right lever 61 and the left lever 62 in the excavator 1 of the present embodiment is as follows.
- the front / rear operation of the right lever 61 is a boom lowering / raising operation
- the right / left operation of the right lever 61 is a bucket excavating / dumping operation.
- the front / rear operation of the left lever 62 is an arm dump / excavation operation
- the left / right operation of the left lever 62 is a left turn / right turn operation.
- the first operation signal output device 71 and the second operation signal output device 72 are sensors for detecting the operation amount of the operation tool 60, and are provided for each operation tool 60 as shown in FIG.
- the right lever 61 is provided with first operation signal output devices 71LRA and 71FRA and second operation signal output devices 72LRA and 72FRA, and outputs signals corresponding to the front and rear operations and the left and right operations of the right lever 61.
- the first operation signal output device 71LRA and the second operation signal output device 72LRA detect the left and right operations of the right lever 61 and output operation signals corresponding to the left and right operations.
- the first operation signal output device 71FRA and the second operation signal output device 72FRA detect the operation before and after the right lever 61 and output an operation signal corresponding to the operation before and after.
- the left lever 62 is provided with first operation signal output devices 71LRB and 71FRB and second operation signal output devices 72LRB and 72FRB, and outputs signals corresponding to the front and rear operations and the left and right operations of the left lever 62.
- the first operation signal output device 71LRB and the second operation signal output device 72LRB detect left and right operations of the left lever 62 and output operation signals corresponding to the left and right operations.
- the first operation signal output device 71FRB and the second operation signal output device 72FRB detect the operation before and after the left lever 62 and output an operation signal corresponding to the operation before and after.
- the right pedal 63 is provided with a first operation signal output device 71C and a second operation signal output device 72C
- the left pedal 64 is provided with a first operation signal output device 71D and a second operation signal output device 72D.
- the first operation signal output device 71C and the second operation signal output device 72C detect the operation of the right pedal 63 and output an operation signal corresponding to the pedal operation.
- the first operation signal output device 71D and the second operation signal output device 72D detect the operation of the left pedal 64 and output an operation signal corresponding to the pedal operation.
- the clam open pedal 65 is provided with a first operation signal output device 71E and a second operation signal output device 72E
- the clam close pedal 66 is provided with a first operation signal output device 71F and a second operation signal output device 72F
- the turning brake pedal 67 is provided with a first operation signal output device 71G and a second operation signal output device 72G.
- the first operation signal output device 71E and the second operation signal output device 72E detect the operation of the crumb open pedal 65 and output an operation signal corresponding to the pedal operation.
- the first operation signal output device 71F and the second operation signal output device 72F detect the operation of the clam close pedal 66 and output an operation signal corresponding to the pedal operation.
- the first operation signal output device 71G and the second operation signal output device 72G detect the operation of the turning brake pedal 67 and output an operation signal corresponding to the pedal operation.
- the first operation signal output device 71 and the second operation signal output device 72 include a sensor that detects an operation amount (a lever tilt angle or a pedal depression angle) of the operation tool 60, and an operation based on detection data of the sensor. Output a signal. If the operation tool 60 is an electric lever or pedal, a potentiometer or the like can be used as the sensor. Further, if the operation tool 60 is a pilot-type lever or the like, a pressure sensor or the like that detects a pilot pressure that is changed by the operation of the operation tool 60 and converts it into an electric signal can be used as the sensor.
- the operation signals output from the first operation signal output device 71 and the second operation signal output device 72 may be electrical signals whose voltage value is proportional to the operation amount, or digital data indicating the operation amount.
- the data may be input to the master controller 81 or the slave controller 82 via the CAN 90.
- the operation signals output from the first operation signal output device 71 and the second operation signal output device 72 are electrical signals having a voltage value proportional to the operation amount of the operation tool 60, as shown in FIG. Yes, and it is set so that voltage values inverted from each other are output.
- the first operation signal V1 output from the first operation signal output device 71 is 4V when the operation amount of the operation tool 60 is 100%, 1V when the operation amount is ⁇ 100%, and the neutral position (operation amount). 0%) is set to 2.5V.
- the second operation signal V2 output from the second operation signal output device 72 is 1V when the operation amount of the operation tool 60 is 100%, 4V when the operation amount is ⁇ 100%, and the neutral position (operation amount). 0%), the voltage is 2.5 V, and is set to have a reverse characteristic to the first operation signal V1.
- the first operation signal V1 and the second operation signal V2 have opposite characteristics, when the first operation signal V1 and the second operation signal V2 are added, a constant value (5V) is always obtained. Therefore, by detecting the voltage values of these two operation signals V1 and V2, it is possible to check the abnormality of each operation signal. In addition, even when noise affects the operation signals V1 and V2, since the influence of noise can be eliminated by adding the two operation signals V1 and V2, signal processing with high noise resistance becomes possible. The correct operation amount can be grasped from the operation signal.
- An operation signal may be input from the operation tool 60 to the master controller 81 or the slave controller 82 via the two CANs 90.
- the first operation signal V1 output from the first operation signal output device 71 (71LRA, 71FRA, 71LRB, 71FRB, 71C to 71G) is input to the master controller 81.
- the second operation signal V2 output from the second operation signal output device 72 (72LRA, 72FRA, 72LRB, 72FRB, 72C to 72G) is branched halfway and input to the master controller 81 and the slave controller 82. Since the first operation signal V1 is input to the master controller 81 without branching, the wire harness can be reduced in turn as compared with the case where the second operation signal V2 is branched, and disconnection, short circuit, etc. The risk of failure can be reduced.
- the master controller 81 can reduce the possibility that both the first operation signal V1 and the second operation signal V2 cannot be input simultaneously. Therefore, when only the first operation signal V1 is input, if the master controller 81 is configured so that the operation amount can be determined only by the input first operation signal V1, the operation amount of the operation tool 60 cannot be detected. The rate can be reduced.
- the elevating ladder 27 and the service arm 28 provided as hydraulic drive devices other than the work machine 3, the turning motor 26, and the traveling motors 213L and 213R will be described.
- the elevating ladder 27 As shown in FIG. 6, the elevating ladder 27 is disposed on the left side of the revolving structure 22.
- the elevator ladder 27 is raised and lowered by a ladder hydraulic cylinder (not shown in FIG. 6).
- the lifting ladder 27 is used for getting on and off by an operator, and is stored in the vehicle body 2 when the excavator 1 is in operation.
- the ladder hydraulic cylinder is provided in the revolving structure 22 and when the ladder hydraulic cylinder is extended, the elevator ladder 27 rotates upward about the rotation shaft on the upper end side thereof, and is stored as indicated by a two-dot chain line in FIG. Stored in position. On the other hand, when the rudder hydraulic cylinder is contracted, the elevating ladder 27 rotates downward about the rotation axis on the upper end side, and is disposed at the use position indicated by the solid line in FIG.
- the service arm 28 is provided with a drain / replenishment port for fuel, fat and oil, and cooling water, and is disposed on the lower surface of the revolving structure 22 as shown in FIG.
- the service arm 28 is moved up and down by a service arm hydraulic cylinder (not shown in FIG. 7). That is, when the service arm hydraulic cylinder is extended, the service arm 28 pivots upward about the pivot shaft on the base end side and is stored in the retracted position indicated by the two-dot chain line in FIG. On the other hand, when the service arm hydraulic cylinder 281 is contracted, the service arm 28 rotates downward and is disposed at a use position indicated by a solid line in FIG.
- the pump controller 80 controls the entire hydraulic system. For this reason, the pump controller 80 controls the hydraulic pump 5 (5A to 5D), and also performs power supply control of the master controller 81 and slave controllers 82 and 83. Further, information from each controller is output to the monitor 85 via the CAN 90.
- the electric controller 84 performs control related to the electric motor 100 that drives the hydraulic pump 5, specifically, detects a failure or the like, performs control for notifying the operator, and control of other electrical components.
- the electric controller 84 controls the electrical components.
- the electric motor 100 drives the drive shafts 6A, 6B, 6C, and 6D via the PTO.
- a master controller 81 a first slave controller 82, and a second slave controller 83 are provided as valve controllers for controlling the hydraulic control valve 50.
- the master controller 81 detects the operation amount of the operation tool 60 and generates a control signal for controlling the work implement, the turning motor 26, and the travel motors 213L and 213R, and proportional control of the hydraulic control valve 50 based on the control signal.
- the valve 52 is controlled.
- the abnormality of the operation input system such as the operation tool 60 or the abnormality of the slave controller 82 is determined.
- the master controller 81 includes devices other than the work machine 3 and the motors 26, 213L, and 213R, specifically, a ladder hydraulic cylinder 271 that drives the lifting ladder 27 and a service arm 28 as shown in FIG. The operation of the hydraulic cylinder 281 for the service arm that drives the motor is controlled.
- the master controller 81 is a controller having a CPU (Central Processing Unit), and as shown in FIG. 8, a first input unit 811, a first determination unit 812, a control signal generation unit 813, a first control signal output unit 814, A first communication unit 815, a ladder control unit 816, and a service arm control unit 817 are provided.
- the ladder control unit 816 controls the operation of the ladder hydraulic cylinder 271 and performs speed control when the elevator ladder 27 is lowered. Further, pressing control is performed so that the lifting ladder 27 does not fall during the shovel operation.
- the service arm control unit 817 controls the operation of the service arm hydraulic cylinder 281 and controls the arm 32 to move up and down.
- the first input unit 811 is an interface that receives operation signals output from the first operation signal output device 71 and the second operation signal output device 72 and outputs digital data corresponding to the input signals.
- the voltage value of the input operation signal is output to the first determination unit 812.
- the first determination unit 812 checks the operation signal based on the first operation signal and the second operation signal input from the first input unit 811, and the second output from the slave controller 82 via the first communication unit 815. A check is performed by comparison with the manipulated variable data.
- the first determination unit 812 detects whether the voltage value of the first operation signal and the voltage value of the second operation signal are equal to each other, and whether the two input operation signals are abnormal. Check. As described above, the first operation signal and the second operation signal have opposite characteristics, and when the voltage values of the two signals are added, they should always be a constant value (5 V). Therefore, the abnormality of each operation signal can be checked based on the voltage values of these two operation signals.
- the comparison check with the second manipulated variable data in the first determination unit 812 will be described later.
- the control signal generation unit 813 obtains the operation amount (first operation amount data) of the operation tool 60 from the relationship of FIG. 5 based on the voltage value V1 of the first operation signal input from the first input unit 811. Further, the control signal generation unit 813 calculates a control amount of each hydraulic control valve 50 according to the first operation amount data, and generates a control signal based on the control amount. Specifically, the control signal generator 813 generates a first control signal that is an operation signal for controlling the proportional control valve 52 and a second control signal that is an operation signal for controlling the direction switching valve 53.
- the first control signal output unit 814 outputs the first control signal generated by the control signal generation unit 813 to the proportional control valve 52 of the hydraulic control valve 50 to be driven. For example, when a control signal for driving the swing motor 26 is generated, the first control signal is output to the proportional control valves 52C and 52J of the hydraulic control valves 50C and 50J that drive the swing motor 26.
- the first communication unit 815 outputs the first operation amount data and the second control signal generated by the control signal generation unit 813 to the slave controller 82 via the CAN 90.
- the first communication unit 815 outputs the second control signal to the slave controller 83 via the CAN 90. Further, the first communication unit 815 receives second operation amount data (described later) output from the slave controller 82, and outputs the second operation amount data to the first determination unit 812.
- the first determination unit 812 compares the input second operation amount data with the first operation amount data, and determines whether there is a match or not. For example, when an abnormality occurs in the slave controller 82, the second manipulated variable data output from the slave controller 82 is not correctly updated. For this reason, if the first operation amount data is changed by operating the operation tool 60, the first operation amount data does not match with the second operation amount data that is not updated. Therefore, the first determination unit 812 indicates that an abnormality has occurred in the slave controller 82. It can be detected.
- the slave controller 82 controls the direction switching valve 53 of the hydraulic control valve 50 based on the second control signal generated by the master controller 81.
- two slave controllers 82 and 83 are provided, and the first slave controller 82 controls the direction switching valves 53A to 53G of the hydraulic control valves 50A to 50G. Also, abnormality of the master controller 81 is determined.
- the slave controller 82 is a controller having a CPU (Central Processing Unit). However, the slave controller 82 does not have the configuration corresponding to the control signal generation unit 813 because the first operation signal V1 is not input. Therefore, the slave controller 82 includes a second input unit 821, a second determination unit 822, a second control signal output unit 823, and a second communication unit 824, as shown in FIG.
- the second input unit 821 is an interface that receives the second operation signal output from the second operation signal output device 72 and outputs digital data corresponding to the input signal.
- the voltage value of the input second operation signal is output to the second determination unit 822.
- the second determination unit 822 obtains second operation amount data from the relationship of FIG. 5 based on the voltage value V2 of the second operation signal input from the second input unit 821, and the second operation amount data and the master The first operation amount data input from the controller 81 via the CAN 90 and the second communication unit 824 is compared. Then, the second determination unit 822 determines that the first operation amount data and the second operation amount data match, and determines that it is normal, and if they do not match, determines that the master controller 81 or the like is abnormal.
- the second control signal output unit 823 outputs the second control signal input from the master controller 81 via the CAN 90 and the second communication unit 824 to the direction switching valve 53 of the hydraulic control valve 50 to be controlled.
- the hydraulic control valve 50C, 50J for driving the swing motor 26 is the second one with respect to the direction switching valve 53C of the hydraulic control valve 50C. 2 Outputs a control signal.
- the slave controller 83 controls the hydraulic control valve 50J.
- the second communication unit 824 outputs the second manipulated variable data to the master controller 81 via the CAN 90. Further, the first operation amount data and the second control signal output from the master controller 81 are input.
- the second slave controller 83 controls the direction switching valve 53 of the hydraulic control valve 50 based on the second control signal generated by the master controller 81.
- the second slave controller 83 controls the direction switching valves 53H to 53N of the hydraulic control valves 50H to 50N.
- the slave controller 83 is also a controller having a CPU (Central Processing Unit), and includes a second control signal output unit 831 and a third communication unit 832 as shown in FIG.
- CPU Central Processing Unit
- the second control signal output unit 831 outputs the second control signal input from the master controller 81 via the CAN 90 and the third communication unit 832 to the direction switching valve 53 of the hydraulic control valve 50 to be controlled.
- the hydraulic control valve 50C, 50J for driving the swing motor 26 is the second of the direction switching valve 53J of the hydraulic control valve 50J. 2 Outputs a control signal.
- the third communication unit 832 receives the second control signal output from the master controller 81.
- the excavator 1 includes a battery 40 and an ACC power source (accessory power source) 44 as power sources.
- a power supply line 401 that supplies power from the battery 40 is connected to the pump controller 80, the electric controller 84, and the monitor 85. Accordingly, the pump controller 80, the electric controller 84, and the monitor 85 are operated with the power of the battery 40.
- the ACC power supply 44 is a power supply that supplies power when the ignition switch of the excavator 1 is turned on and does not supply power in the off state.
- the ACC power supply 44 starts power supply to the pump controller 80 when the ignition switch is turned on.
- An emergency stop switch 45 and a work implement stop switch 46 are connected to the ACC power supply 44.
- the power supply line 401 is connected to a contact of the first relay 41 described later and a contact of the second control relay 102.
- the contact of the first relay 41 is connected to one contact of the second relay 42, and the other contact of the second relay 42 is connected to the master controller 81 and the contact of the third relay 43.
- the contact of the third relay 43 is connected to the slave controllers 82 and 83.
- the contact of the second control relay 102 is connected to an electromagnetic coil of the third control relay 103 described later.
- the electric motor input power source 104 and the electric motor 100 are connected to the contacts of the third control relay 103.
- the ACC power supply 44 is connected to the electromagnetic coil of the first relay 41 and one contact of the first control relay 101 via a plurality of emergency stop switches 45. The other contact of the first control relay 101 is connected to the electromagnetic coil of the second control relay 102.
- the ACC power supply 44 is connected to the electromagnetic coil of the third relay 43 via a plurality of work implement stop switches 46.
- the ACC power supply 44 is connected to the pump controller 80 to supply power.
- the pump controller 80 is connected to the electromagnetic coil of the first control relay 101 and the electromagnetic coil of the second relay 42.
- the first relay 41 and the second relay 42 are arranged downstream.
- the power supply to the master controller 81 and slave controllers 82 and 83 to be connected is cut off.
- the 1st relay 41, the 2nd relay 42, and the 3rd relay 43 are comprised by the general electromagnetic relay. That is, each of the relays 41 to 43 includes contacts of a C terminal (Common terminal), a NO terminal (Normally Open terminal), and an NC terminal (Normally Closed terminal), a contact piece connecting the C terminal and the NO terminal or NC terminal, An electromagnetic coil (electromagnet) for moving the contact piece is provided.
- the contact piece when a current flows through the electromagnetic coil, the contact piece conducts the C terminal and the NO terminal, and when no current flows through the electromagnetic coil, the contact piece separates from the NO terminal. Therefore, by connecting the C terminal and the NO terminal to the power supply line 401, the power supply line 401 is conducted when a current flows through each electromagnetic coil, and the power supply line when a current does not flow through the electromagnetic coil. Block 401.
- a plurality of emergency stop switches 45 are provided, and are arranged in a place where an operator who is performing maintenance work can operate, such as the cab 23 of the excavator 1, the lifting ladder 27, and the service arm 28.
- the plurality of emergency stop switches 45 are connected in series to the ACC power supply 44.
- the emergency stop switch 45 maintains a conductive state in which power from the ACC power supply 44 can be supplied.
- the emergency stop switch 45 cuts off power from the ACC power supply 44 to the electromagnetic coil of the first relay 41.
- the work machine stop switch 46 is a switch that is pressed when the work machine 3 needs to be stopped. Specifically, the work implement stop switch 46 is input when the switch provided near the elevator ladder 27, the switch provided near the service arm 28, and the PPC lock lever provided on the cab 23 are locked. And a switch. Further, a switch for stopping only the work machine may be provided at an appropriate place.
- the plurality of work implement stop switches 46 are connected in series to the ACC power supply 44. When all the work machine stop switches 46 are in the non-input state, the work machine stop switch 46 maintains a conduction state in which power from the ACC power supply 44 can be supplied. On the other hand, when at least one work implement stop switch 46 is pressed and inputted, the work implement stop switch 46 cuts off the power from the ACC power supply 44 to the electromagnetic coil of the third relay 43.
- the first control relay 101 In order to operate the electric motor 100, the first control relay 101, the second control relay 102, and the third control relay 103 described above are provided.
- the contact of the first control relay 101 is connected to the most downstream terminal of the plurality of emergency stop switches 45 connected in series and the electromagnetic coil of the relay 41, and the electromagnetic coil is connected to the pump controller 80. For this reason, the contact of the first control relay 101 is opened and closed by outputting a control signal from the pump controller 80 to the electromagnetic coil.
- the contact of the second control relay 102 is connected to the battery 40, and the electromagnetic coil is connected to the contact of the first control relay 101. For this reason, the contact of the second control relay 102 is opened and closed by connecting and disconnecting the contact of the first control relay 101.
- the contact point of the third control relay 103 is connected to the electric motor input power source 104, and the electromagnetic coil is connected to the contact point of the second control relay 102. Therefore, the contact of the third control relay 103 is opened and closed by connecting and disconnecting the contact of the second control relay 102.
- control processing when the operator operates the operation tool 60 will be described with reference to the flowchart of FIG.
- the master controller 81 and the slave controller 82 are shown in the flowchart of FIG.
- the operation control process shown is executed.
- the master controller 81 which is the first control device, inputs a first operation signal (step S1).
- the slave controller 82 as the second control device inputs the second operation signal (step S11).
- the master controller 81 After the input of the first operation signal, the master controller 81 outputs the first operation amount data based on the first operation signal to the slave controller 82 as the second control device via the CAN 90 (step S2). Similarly, after inputting the second operation signal, the slave controller 82 outputs second operation amount data based on the second operation signal to the master controller 81 as the first control device via the CAN 90 (step S12).
- the master controller 81 inputs the second operation amount data output from the slave controller 82 (step S3), and the first determination unit 812 compares the first operation amount data and the second operation amount data (step S4). It is determined whether it is abnormal (step S5).
- the slave controller 82 inputs the first operation amount data output from the master controller 81 (step S13), and the second determination unit 822 compares the first operation amount data and the second operation amount data (step S13). S14), it is determined whether it is abnormal (step S15).
- the master controller 81 determines that the determination result in step S5 is normal (No)
- the master controller 81 generates a control signal (a first control signal and a second control signal) from the two input operation signals. That is, the master controller 81 receives a first operation signal from the first operation signal output device 71 and a second operation signal from the second operation signal output device 72. Therefore, the master controller 81 generates a first control signal for operating the proportional control valve 52 and a second control signal for operating the direction switching valve 53 from these two operation signals. Then, the master controller 81 outputs a first control signal from the first control signal output unit 814 (step S6), and controls the proportional control valve 52 of the hydraulic control valve 50 (step S7).
- a control signal a first control signal and a second control signal
- the master controller 81 outputs a second control signal to the slave controllers 82 and 83 via the CAN 90.
- the slave controller 82 may generate a second control signal for operating the direction switching valve 53 and output the second control signal to the slave controller 83 via the CAN 90.
- the second control signal output units 823 and 831 of the slave controllers 82 and 83 output the second control signal input from the master controller 81 when determined to be normal (No) in step S15 (step S16), and the hydraulic pressure
- the direction switching valve 53 of the control valve 50 is controlled (step S17).
- the pilot type directional control valve 51 operates when both the proportional control valve 52 and the directional control valve 53 are normally controlled.
- hydraulic oil is supplied to the hydraulic drive device to be driven, and the excavator 1 operates according to the operation of the operation tool 60.
- the master controller 81 and the slave controller 82 end the operation control process shown in FIG. 10 after outputting the first control signal and the second control signal. Therefore, when the signal from the operation tool 60 is continuously input, the operation control process of FIG. 10 is also continuously executed.
- the direction switching valve 53 managed by the other normal slave controllers 82 and 83 can operate normally.
- the boom cylinder 34, the arm cylinder 35, the bucket cylinder 36, and the turning motor 26 are either one of the hydraulic control valves 50 A to 50 G controlled by the slave controller 82 and the hydraulic control controlled by the slave controller 83. It is controlled by any two or more of valves 50H to 50N.
- the cylinders 34 to 36, the turning motor 26, the traveling motors 213L, 213R It is also possible to continue driving. For example, when an abnormality occurs in the first slave controller 82, the driving of the turning motor 26 and the left traveling motor 213L may be continued. Similarly, when an abnormality occurs in the second slave controller 83, the driving of the turning motor 26 and the right traveling motor 213R may be continued.
- the first determination unit 812 of the master controller 81 determines that there is an abnormality. (1) When it is determined that there is an abnormality by checking the first operation signal and the second operation signal input to the first input unit 811; (2) If the first operation amount data detected by the first determination unit 812 and the second operation amount data input from the slave controller 82 do not match, the first determination unit 812 of the master controller 81 is abnormal ( In step S5, Yes) is determined. (3) The first determination unit 812 is also abnormal when the signal line input to the master controller 81 or the signal line output from the master controller 81 to the proportional control valve 52 is short-circuited or disconnected (Yes in step S5). Is determined.
- the master controller 81 determines that an abnormality has occurred in any of the above cases (Yes in step S5), and the first control signal (stop signal) controls the proportional control valve 52 to the stop state by the first control signal output unit 814. Is output (step S8). Then, the proportional control valve 52 is controlled to be stopped (step S9). At this time, since each proportional control valve 52 suppresses the flow rate of the hydraulic oil, the pilot pressure applied to the pilot-type direction switching valve 51 is reduced regardless of the operation state of the direction switching valve 53. For this reason, the spool of the pilot direction switching valve 51 moves to the neutral position, and hydraulic fluid is not supplied via the pilot type direction switching valve 51.
- the second determination unit 822 of the slave controller 82 determines that the second operation amount data detected by the second determination unit 822 and the first operation amount data input from the master controller 81 are abnormal. This is the case when they do not match. Similarly, the second determination unit 822 determines that the signal line input to the slave controller 82 or the signal line output from the slave controllers 82 and 83 to the direction switching valve 53 is abnormal.
- the second control signal output unit 823 outputs a second control signal (stop signal) for controlling the direction switching valve 53 to be stopped (step S15). S18). Furthermore, the slave controller 82 instructs the slave controller 83 to control the direction switching valve 53 to the stop state via the CAN 90 and the second communication unit 824. Therefore, the slave controller 83 outputs a second control signal (stop signal) for controlling the direction switching valve 53 to the stop state by the second control signal output unit 831 (step S18). Then, the direction switching valve 53 is controlled to be stopped (step S19).
- each directional control valve 53 is controlled so that the spool moves to the neutral position and the hydraulic oil does not flow to the pilot directional control valve 51. Therefore, regardless of the operating state of the proportional control valve 52, the pilot type The pilot pressure applied to the direction switching valve 51 decreases. For this reason, the spool of the pilot type directional switching valve 51 moves to the neutral position, and hydraulic oil is not supplied via the pilot type directional switching valve 51. Therefore, the boom cylinder 34, the arm cylinder 35, the bucket cylinder 36, the crumb cylinder 37, The operations of the work machine 3 and the traveling body 21 that are operated by the turning motor 26 and the traveling motors 213L and 213R are interrupted. However, when there is hydraulic oil supply from another control valve, the operation of the work machine 3 and the traveling body 21 can be continued.
- the proportional control valve 52 and the direction switching valve 53 which are two valves for operating the pilot-type direction switching valve 51 are controlled by separate controllers of the master controller 81 and the slave controllers 82 and 83. Therefore, not only when an abnormality occurs in the sensor that detects the operation amount of the operation tool 60, or when an abnormality such as disconnection occurs in the input line of the operation signal, one CPU of the master controller 81 or the slave controller 82 Even if an abnormality occurs, the pilot-type directional control valve 51 can be controlled to be stopped by stopping at least one of the proportional control valve 52 and the directional switching valve 53, and a hydraulic drive device such as a work machine or a travel motor can be controlled. Can be safely stopped. Therefore, the safety of the hydraulic excavator 1 can be further improved.
- the power supplied from the ACC power supply 44 flows to the electromagnetic coil of the second control relay 102, and the contact of the second control relay 102 is connected.
- the power supplied from the battery 40 flows to the electromagnetic coil of the third control relay 103.
- the third control relay 103 is connected in conjunction with the connection of the contact of the second control relay 102 because the contact is connected when a current flows through the electromagnetic coil.
- step S32 By stopping the power supply from the ACC power supply 44 in step S32, emergency stop control of the electric motor (steps S33 to S35), emergency stop control of the valve controller by mechanical relay disconnection (steps S36 to S38), pump controller
- step S39 ⁇ S37 ⁇ S38 By stopping the power supply from the ACC power supply 44 in step S32, emergency stop control of the electric motor (steps S33 to S35), emergency stop control of the valve controller by mechanical relay disconnection (steps S36 to S38), pump controller
- step S39 ⁇ S37 ⁇ S38 of the valve controller by the control 80 is executed in parallel.
- Step S32 When the power supply from the ACC power supply 44 is stopped in step S32, the current supply flowing to the electromagnetic coil of the second control relay 102 via the first control relay 101 is also stopped, so that the second control relay 102 is disconnected.
- Step S33 The operation of the emergency stop switch 45 can be detected by the pump controller 80 that the power supply from the ACC power supply 44 is stopped, and the first control relay 101 can be disconnected by a control signal output from the pump controller 80. Also in this case, the second control relay 102 is disconnected.
- step S34 the electric power supplied from the electric motor input power source 104 to the electric motor 100 is also stopped, and the electric motor 100 is stopped (step S35).
- step S35 the hydraulic pumps 5A, 5B, 5C, 5D are also stopped (step S35).
- step S36 the current supply to the electromagnetic coil of the first relay 41 is also stopped and the first relay 41 is disconnected. That is, the first relay 41 is mechanically disconnected in conjunction with the operation of the emergency stop switch 45. For this reason, the power supply from the battery 40 to the master controller 81 and the slave controllers 82 and 83 is also stopped, and the master controller 81 and the slave controllers 82 and 83 are no longer supplied with power and stop operating (step S37). That is, the first relay 41 is disconnected in conjunction with the pressing of the emergency stop switch 45 and is not affected by the control from the controller.
- the first relay 41 is controlled to be disconnected, and the master controller 81 or the slave controller
- the power supply to 82 and 83 can be stopped.
- the output of control signals to the proportional control valve 52 and the direction switching valve 53 is also stopped, and as described above, the spool of each hydraulic control valve 50 moves to the neutral position. Since the supply of hydraulic oil stops, the work machine 3, the turning motor 26, and the travel motors 213L and 213R can be stopped (step S38).
- the second relay 42 is controlled to be disconnected, and the master controller 81 and the slave controllers 82 and 83 are controlled. Power supply to can be stopped.
- the output of control signals to the proportional control valve 52 and the direction switching valve 53 is also stopped, and as described above, the spool of each hydraulic control valve 50 moves to the neutral position. Since the supply of hydraulic oil is stopped, the work machine 3 and the like can be stopped (step S38).
- the relay that cuts off the power supply to the master controller 81 and the slave controllers 82 and 83 is duplicated by the first relay 41 and the second relay 42 connected in series. Even if one of them fails and cannot be disconnected, the other can be shut off, so that each of the controllers 81 to 83 can be reliably stopped during an emergency stop. Therefore, as described above, since the spool of each hydraulic control valve 50 moves to the neutral position and the supply of hydraulic oil stops, the work implement 3 and the like can be stopped (step S38). Further, since the control signal to the ladder hydraulic cylinder 271 and the service arm hydraulic cylinder 281 is also stopped, the raising / lowering of the lifting ladder 27 and the service arm 28 can also be stopped (step S38).
- the hydraulic drive device driven by hydraulic pressure such as the work machine 3 can be stopped. In this way, by pressing the emergency stop switch 45, the hydraulic excavator 1 can be stopped, collision with other construction machines and the like can be prevented, and safety can be improved.
- the second relay 42 is controlled to be connected when a control signal is output from the pump controller 80. For this reason, when an abnormality occurs in the CPU of the pump controller 80, the control signal from the pump controller 80 stops, so the second relay 42 can be disconnected and the power supply to each of the controllers 81 to 83 is stopped. it can. Therefore, even if an abnormality occurs in the pump controller 80, the excavator 1 can be stopped reliably and safety can be improved. Further, since the second relay 42 is controlled by the pump controller 80, the sensor data for detecting the operation state of the engine, the electric motor 100, the work machine 3, etc., as well as the case where the emergency stop switch 45 is pushed. From the above, it is possible to incorporate a program (logic) for determining whether an emergency stop operation is necessary in the pump controller 80 and stop the second relay 42 based on the determination result.
- the work machine stop switch 46 operates when (1) when the lifting ladder 27 is lowered, (2) when the service arm 28 is lowered, (3) when the PPC lock lever is locked, or (4) when only other work machines are stopped. It is input by the user's operation. Accordingly, the work implement stop switch 46 may be disposed, for example, in the vicinity of the lifting ladder 27 that can confirm the lowered state of the lifting ladder 27 or in the vicinity of the service arm 28 that can confirm the lowered state of the service arm 28.
- Step S42 the power supplied from the battery 40 via the first relay 41 and the second relay 42 does not flow to the slave controllers 82 and 83. That is, when the emergency stop switch 45 is pressed, the power supply to the controllers 81 to 83 is stopped, but when only the work implement stop switch 46 is pressed, the power supply to the master controller 81 is continued. (Step S43), only the power supply to the slave controllers 82 and 83 is stopped (Step S44).
- step S45 the ladder hydraulic cylinder 271 and the service arm hydraulic cylinder 281 can operate (step S45). Accordingly, when the work implement stop switch 46 is pressed to stop because the elevator ladder 27 and the service arm 28 are forgotten to be stored, the elevator ladder 27 and the service arm 28 can be stored using the master controller 81.
- the slave controllers 82 and 83 When the input of the work implement stop switch 46 is released and the third relay 43 returns to the connected state, the slave controllers 82 and 83 also return to the operating state, so that the work implement 3 and the motors 26, 213L, and 213R are also operated. become able to.
- the master controller 81 and the slave controllers 82 and 83 constitute the work machine control device of the present invention in order to control the operation of the work machine 3.
- the pump controller 80 detects the operation of the emergency stop switch 45 and controls the second relay 42, it constitutes the second relay control device of the present invention.
- the master controller 81 which is a work machine control device also controls driving of the lifting ladder 27 and the service arm 28 other than the work machine 3, and thus constitutes the first control device of the present invention.
- the slave controllers 82 and 83 which are work implement control devices constitute the second control device of the present invention in order to control the drive of the work implement 3.
- the hydraulic excavator 1 may be provided with a switch for stopping the work implement 3 and the like during maintenance work of the hydraulic excavator 1.
- This maintenance switch is provided in a place where maintenance workers can easily operate. When the maintenance switch is pressed, the electric motor 100 stops and the first relay 41 and the second relay 42 are disconnected and the controllers 81 to 83 are turned on as in the case where the emergency stop switch 45 is pressed. The power supply of is stopped.
- connection and disconnection of the third relay 43 are controlled by the input of the work implement stop switch 46, but may be controlled by a control signal from the pump controller 80 or the like, similar to the second relay 42. In this case, a logic for stopping only the work machine 3 can be set.
- the two slave controllers 82 and 83 are provided. However, only one slave controller may be provided, or three or more slave controllers may be provided. The number of slave controllers may be set according to the number of hydraulic control valves 50 and the like, and at least one slave controller that serves as the second control device may be provided. Further, when the number of input / output signals to the master controller 81 increases, a plurality of master controllers 81 can be provided.
- the work implement control device may be any device that can control at least the stop operation of the work implement 3, and if the work implement 3 can be stopped by one controller, the work implement control device may be configured only by that controller.
- the proportional control valve 52 and the direction switching valve 53 are provided as the valves for operating the pilot type direction switching valve 51.
- two proportional control valves 52 are provided and the pilot type direction switching valve 51 is provided.
- the pilot pressure may be controlled.
- the master controller 81 controls the proportional control valve 52 and the slave controllers 82 and 83 control the direction switching valve 53, but this may be reversed. That is, the master controller 81 may control the direction switching valve 53 and the slave controllers 82 and 83 may control the proportional control valve 52.
- the driving of the cylinders 34 to 36 is controlled by a plurality of hydraulic circuits, but the driving of each hydraulic driving device may be controlled by one hydraulic circuit.
- the driving of each hydraulic driving device may be controlled by one hydraulic circuit.
- the output of the first operation signal output device 71 is input to the master controller 81 without branching, but the output of the first operation signal output device 71 is also branched in the same manner as the second operation signal output device 72.
- the first operation signal may be input to both the master controller 81 and the slave controller 82.
- the two operation signals of the first operation signal and the second operation signal are input to the master controller 81.
- the control signal generation unit 813 uses the first operation signal as the first operation signal.
- a control signal may be generated based on this.
- a plurality of master controllers can be provided. At this time, input from the operation tool is input to a plurality of master controllers, and each master controller controls a proportional control valve to be controlled.
- the present invention is applicable not only to the hydraulic excavator (loading excavator) 1 shown in FIG. 1 but also to the backhoe excavator 1A shown in FIG.
- the backhoe excavator 1A includes a vehicle body 2 and a work implement 3A.
- the vehicle main body 2 has the same configuration as the loading excavator 1.
- the work machine 3A includes a boom 31A for backhoe excavators, an arm 32A, and a bucket 33A, and a boom cylinder 34A, an arm cylinder 35A, and a bucket cylinder 36A that drive these.
- the bucket 33A does not open and close, and therefore a crumb cylinder is not provided.
- the present invention can be applied not only to a hydraulic excavator but also to various work machines having a hydraulic drive device driven by a hydraulic pump.
- SYMBOLS 1 Hydraulic excavator, 2 ... Vehicle main body, 3 ... Working machine 5, 5A, 5B, 5C, 5D ... Hydraulic pump, 21 ... Traveling body, 22 ... Revolving body, 26 ... Revolving motor, 27 ... Elevating ladder, 28 ... Service arm 34 ... Boom cylinder, 35 ... Arm cylinder, 36 ... Bucket cylinder, 37 ... Clam cylinder, 40 ... Battery, 41 ... First relay, 42 ... Second relay, 43 ... Third relay, 44 ... ACC power source, 45 ... Emergency stop switch, 46 ... Work machine stop switch, 50 ... Hydraulic control valve, 51 ... Pilot-type direction switching valve, 52 ...
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Operation Control Of Excavators (AREA)
- Component Parts Of Construction Machinery (AREA)
Abstract
Description
特許文献1の非常停止システムは、ショベルの外部に、作業機や走行モータなどのエンジン以外を停止させる第1スイッチ、および、エンジンも含めて停止させる第2スイッチの2つの非常停止スイッチと、非常停止コントローラと、作業機停止弁と、エンジンコントローラとを備える。
非常停止コントローラやエンジンコントローラは、イグニッションスイッチを介してバッテリに接続され、イグニッションスイッチがオン状態であれば、非常停止コントローラやエンジンコントローラにはバッテリから電力が供給され、作動状態を維持できる。
そして、第1スイッチ、第2スイッチの開閉状態は、非常停止コントローラで検出している。非常停止コントローラは、各スイッチのオン状態を判定すると、作業機やエンジンを停止させる停止指令を、作業機制御弁やエンジンコントローラに出力し、作業機やエンジンを停止させていた。 In a working machine such as a hydraulic excavator, an emergency stop system is known in which an emergency stop switch is operated to stop a work machine in an emergency (see, for example, Patent Document 1).
The emergency stop system of Patent Document 1 includes two emergency stop switches, a first switch for stopping the engine other than the engine such as a work machine and a travel motor, and a second switch for stopping the engine including the engine. A stop controller, a work implement stop valve, and an engine controller are provided.
The emergency stop controller and the engine controller are connected to the battery via the ignition switch. If the ignition switch is in the on state, the emergency stop controller and the engine controller are supplied with electric power from the battery, and the operation state can be maintained.
The open / close state of the first switch and the second switch is detected by the emergency stop controller. When the emergency stop controller determines the ON state of each switch, the emergency stop controller outputs a stop command for stopping the work implement and the engine to the work implement control valve and the engine controller, thereby stopping the work implement and the engine.
本発明では、非常停止スイッチが入力された場合に、作業機の少なくとも停止動作を制御する作業機制御装置への電力供給を停止する2つのリレーを直列に配置しているので、いずれか一方のリレーに故障が生じても、他方のリレーが作動することで、電力供給を確実に停止できる。
特に、第1リレーは、非常停止スイッチで制御されるため、第2リレーに対して制御信号を出力して制御する第2リレー制御装置に異常が発生して第2リレーを正常に制御できない場合でも、第1リレーが切断状態となるため、作動機制御装置への電力供給を確実に停止できる。
また、第1リレーが故障していた場合は、第2リレー制御装置で第2リレーを切断状態に制御できるので、作動機制御装置への電力供給を確実に停止できる。
すわなち、第1リレーおよび第2リレーが両方とも同時に故障する確率は非常に小さいため、非常停止スイッチが操作された際に、作業機制御装置への電力供給を確実に停止できる。そして、作業機制御装置への電力供給が停止することで、作業機の動作も自動的に停止するため、非常停止スイッチが操作された際に作業機を確実に停止できる。 In the present invention, when an operator inputs an emergency stop switch, the first relay controlled by the emergency stop switch is disconnected. Moreover, when the input operation of the emergency stop switch is input to the second relay control device, the second relay control device disconnects the second relay. For this reason, the power supply line that supplies power from the power source to the work implement control apparatus is disconnected by the first relay and the second relay that are connected in series to the power supply line. Therefore, the power supply to the work machine control device is also stopped, and the work machine is stopped.
In the present invention, when the emergency stop switch is input, two relays that stop power supply to the work implement control device that controls at least the stop operation of the work implement are arranged in series. Even if a failure occurs in the relay, the power supply can be reliably stopped by operating the other relay.
In particular, since the first relay is controlled by an emergency stop switch, an abnormality occurs in the second relay control device that controls the second relay by outputting a control signal, and the second relay cannot be normally controlled. However, since the first relay is disconnected, the power supply to the actuator control device can be reliably stopped.
Further, when the first relay is out of order, the second relay control device can control the second relay to a disconnected state, so that the power supply to the actuator control device can be stopped reliably.
That is, since the probability that both the first relay and the second relay fail simultaneously is very small, the power supply to the work implement control device can be reliably stopped when the emergency stop switch is operated. Since the operation of the work implement is automatically stopped by stopping the power supply to the work implement control device, the work implement can be reliably stopped when the emergency stop switch is operated.
例えば、第2リレーとして、電磁石のコイルに電流が流れている場合に、電源供給ラインを導通状態とし、電流が流れていない場合に切断状態するNormally Openの電磁リレーを用いればよい。 In the emergency stop system for a work machine according to the present invention, it is preferable that the second relay disconnects the power supply line when a control signal is not input from the second relay control device.
For example, as the second relay, a normally open electromagnetic relay that turns on the power supply line when current flows through the coil of the electromagnet and disconnects when current does not flow may be used.
本発明によれば、第3リレーを設けているので、第2制御装置への電力供給のみを停止して作業機を停止できる。一方で、第1制御装置への電力供給は継続できるので、作業機以外の装置の駆動を継続して行うことができる。従って、メンテナンス作業時等に作業機を停止した状態で作業機以外の装置を駆動することもでき、利便性を向上できる。 Here, the devices other than the work machine controlled by the first control device are, for example, service arms (services) used for raising and lowering ladders for getting on and off the work machine, and supplying fuel to the work machine. Center).
According to the present invention, since the third relay is provided, it is possible to stop only the power supply to the second control device and stop the work implement. On the other hand, since power supply to the first control device can be continued, driving of devices other than the work machine can be continued. Accordingly, it is possible to drive a device other than the work machine while the work machine is stopped during maintenance work or the like, and the convenience can be improved.
そこで、本発明によれば、ラダーやサービスアームが降下している場合には、作業機停止スイッチの入力などで第3リレーを切断することで、第2制御装置で制御される作業機を停止できる。このため、油圧ショベルにおいて、ラダーやサービスアームが降下している状態で上部旋回体が旋回してラダーやサービスアームが破損することを防止でき、作業機械での安全性をより向上できる。さらに、第3リレーを切断しても第1制御装置への電力供給は継続できる。第1制御装置は、作業機だけでなく、作業機以外の装置の駆動を制御するため、ラダーやサービスアームの駆動を制御できる。従って、第2制御装置で制御される作業機を停止させた状態で、ラダーやサービスアームを駆動させることができ、安全性および利便性を向上できる。 In the present invention, since the work machine is a hydraulic excavator, if the upper revolving structure or the service arm descends from the upper revolving structure, if the upper revolving structure revolves, the ladder or service arm interferes with the traveling structure. There is a possibility of damage.
Therefore, according to the present invention, when the ladder or the service arm is lowered, the work machine controlled by the second control device is stopped by disconnecting the third relay by the input of the work machine stop switch or the like. it can. For this reason, in the hydraulic excavator, it is possible to prevent the upper swing body from turning and damaging the ladder and the service arm while the ladder and the service arm are lowered, and the safety in the working machine can be further improved. Furthermore, even if the third relay is disconnected, the power supply to the first control device can be continued. Since the first control device controls not only the work machine but also devices other than the work machine, the first control device can control the drive of the ladder and the service arm. Therefore, the ladder and the service arm can be driven in a state where the work machine controlled by the second control device is stopped, and safety and convenience can be improved.
[油圧ショベル全体の説明]
図1には、本実施形態に係る作業機械としての油圧ショベル1が示されている。この油圧ショベル1は、鉱山などで用いられる大型のローディングショベルであり、車両本体2と作業機3とを備えている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Description of the entire hydraulic excavator]
FIG. 1 shows a hydraulic excavator 1 as a work machine according to the present embodiment. The hydraulic excavator 1 is a large loading excavator used in a mine or the like, and includes a
車両本体2は、走行体21と、走行体21上に旋回可能に設けられた上部旋回体としての旋回体22とを備えている。走行体21は、左右一対の走行装置211を備えている。各走行装置211は、履帯212を備え、後述する左走行モータ213Lおよび右走行モータ213Rで履帯212を駆動することによって油圧ショベル1を走行させる。 [Vehicle body]
The vehicle
旋回体22は、キャブ23、カウンタウェイト24、およびエンジンルーム25を備えている。カウンタウェイト24は、作業機3との重量バランス用に設けられ、内部に重量物が充填されている。
旋回体22は、後述する油圧式の旋回モータ26により旋回される。また、旋回体22には、オペレータなどが乗り降りするための、油圧式の昇降ラダー27と、燃料の補給ポートなどが設けられたサービスアーム28(図7)も設けられている。昇降ラダー27およびサービスアーム28の詳細は後述する。 [Swivel body]
The
The revolving
作業機3は、旋回体22の前部中央位置に取り付けられており、ブーム31、アーム32、バケット33、ブームシリンダ34、アームシリンダ35、バケットシリンダ36、クラムシリンダ37を備えている。ブーム31の基端部は、旋回体22に回転可能に連結されている。
また、ブーム31の先端部には、アーム32の基端部が回転可能に連結されている。アーム32の先端部には、バケット33が回転可能に連結されている。バケット33は、内部に設けられたクラムシリンダ37により開閉可能なバケットである。 [Work machine]
The work implement 3 is attached to the center of the front portion of the revolving
Further, the base end portion of the
図2には、油圧ショベル1の油圧回路の全体構成が示されている。
油圧ショベル1は、鉱山用の大型のローディングショベルであるため、油圧で駆動される作業機である、ブームシリンダ34、アームシリンダ35、バケットシリンダ36、クラムシリンダ37はそれぞれ2本ずつ設けられている。
また、前述した旋回モータ26と、左走行モータ213Lおよび右走行モータ213Rは油圧で駆動される。従って、本発明の油圧駆動装置は、各シリンダ34~37および各モータ26,213L,213Rによって構成される。 [Configuration of hydraulic circuit of hydraulic excavator]
FIG. 2 shows the overall configuration of the hydraulic circuit of the excavator 1.
Since the hydraulic excavator 1 is a large loading excavator for mines, two
Further, the turning
油圧ショベル1は、前記油圧駆動装置を駆動するための油圧ポンプ5として、4組の油圧ポンプ5A,5B,5C,5Dを備えている。
各油圧ポンプ5A,5B,5C,5Dは、駆動軸6A,6B,6C,6Dに直列に接続された可変容量型の2つの油圧ポンプで構成されている。各駆動軸6A,6B,6C,6Dは、図示略のPTO(Power take-off)を介して伝達されるエンジンや電気モータの出力によって駆動される。なお、電気モータは、エンジンの出力で発電する発電機の電力や、油圧ショベル1の外部に設置された発電機からケーブルを介して供給される電力で駆動される。
また、油圧ポンプ5の数や、油圧ポンプ5の駆動軸を駆動するエンジンや電気モータの数は、油圧ショベル1のサイズなどに応じて設定すればよい。例えば、バケット33の容量がより大きな油圧ショベルの場合には、エンジンや電気モータを2台以上配置してもよい。また、3つ以上の油圧ポンプ5を1つの駆動軸に直列に接続してもよい。 [Hydraulic pump]
The hydraulic excavator 1 includes four
Each of the
Further, the number of
油圧ポンプ5Aには3つの油圧制御弁50A~50Cが接続されている。油圧制御弁50Aは、アームシリンダ35の伸縮を制御する。油圧制御弁50Bは、バケットシリンダ36を伸ばす制御(バケットダンプ制御)と、ブームシリンダ34を伸ばす制御(ブームアップ制御)とを行う。油圧制御弁50Cは、旋回モータ26の駆動を制御する。 [Combination of hydraulic control valve and hydraulic drive device for
Three
油圧ポンプ5Bには4つの油圧制御弁50D~50Gが接続されている。油圧制御弁50Dは、左走行モータ213Lの駆動を制御する。油圧制御弁50Eは、アームシリンダ35を伸ばす制御(アームダンプ制御)と、バケットシリンダ36を伸ばす制御(バケットダンプ制御)とを行う。油圧制御弁50Fは、クラムシリンダ37の伸縮を制御する。油圧制御弁50Gは、ブームシリンダ34の伸縮を制御する。 [Combination of hydraulic control valve and hydraulic drive for
Four
油圧ポンプ5Cには3つの油圧制御弁50H~50Jが接続されている。油圧制御弁50Hは、ブームシリンダ34を縮める制御(ブームダウン制御)を行う。油圧制御弁50Iは、バケットシリンダ36の伸縮を制御する。油圧制御弁50Jは、旋回モータ26の駆動を制御する。 [Combination of hydraulic control valve and hydraulic drive for
Three
油圧ポンプ5Dには4つの油圧制御弁50K~50Nが接続されている。油圧制御弁50Kは、右走行モータ213Rの駆動を制御する。油圧制御弁50Lは、アームシリンダ35の伸縮を制御する。油圧制御弁50Mは、バケットシリンダ36の伸縮を制御する。油圧制御弁50Nは、ブームシリンダ34の伸縮を制御する。 [Combination of hydraulic control valve and hydraulic drive for
Four
クラムシリンダ37および走行モータ213L、213R以外の油圧駆動装置は、以下に説明するように、複数の油圧ポンプ5A,5B,5C,5Dおよび油圧制御弁50で制御されている。
ブームシリンダ34を伸ばす駆動は、油圧ポンプ5A,5B,5Dおよび油圧制御弁50B,50G,50Nの3系統の油圧回路で制御している。
ブームシリンダ34を縮める駆動は、油圧ポンプ5B,5C,5Dおよび油圧制御弁50G,50H,50Nの3系統の油圧回路で制御している。
アームシリンダ35を伸ばす駆動は、油圧ポンプ5A,5B,5Dおよび油圧制御弁50A,50E,50Lの3系統の油圧回路で制御している。
アームシリンダ35を縮める駆動は、油圧ポンプ5A,5Dおよび油圧制御弁50A,50Lの2系統の油圧回路で制御している。
バケットシリンダ36を伸ばす駆動は、油圧ポンプ5A,5B,5C,5Dおよび油圧制御弁50B,50E,50I,50Mの4系統の油圧回路で制御している。
バケットシリンダ36を縮める駆動は、油圧ポンプ5C,5Dおよび油圧制御弁50I,50Mの2系統の油圧回路で制御している。 [Description of a plurality of hydraulic circuits corresponding to a hydraulic drive unit]
The hydraulic drive devices other than the
The driving for extending the
The driving for contracting the
The drive for extending the
The driving for contracting the
The drive for extending the
The driving for contracting the
なお、クラムシリンダ37や走行モータ213L、213R等も複数系統の油圧回路で駆動してもよい。これらの複数系統の油圧回路で制御すれば、1つの油圧ポンプ5や油圧制御弁50が故障しても油圧ショベル1の運転を継続できる。 The turning
The
油圧制御弁50(50A~50N)は、パイロット式方向切換弁51(51A~51N)と、第1制御弁である比例制御弁52(52A~52N)と、第2制御弁である方向切換弁53(53A~53N)とで構成されている。なお、以下の説明において、パイロット式方向切換弁51A~51N、比例制御弁52A~52N、方向切換弁53A~53Nに共通する特徴を説明する場合には、これらを総称してパイロット式方向切換弁51、比例制御弁52、方向切換弁53と表記する。 [Configuration of hydraulic control valve]
The hydraulic control valve 50 (50A to 50N) includes a pilot-type direction switching valve 51 (51A to 51N), a proportional control valve 52 (52A to 52N) as a first control valve, and a direction switching valve as a second control valve. 53 (53A to 53N). In the following description, when the features common to the pilot type
パイロット式方向切換弁51は、各油圧ポンプ5A,5B,5C,5Dと、油圧駆動装置との間に配置されている。パイロット式方向切換弁51は、パイロット圧で移動されるスプールを有し、スプールを2つの切換位置および中立位置の3つの位置に移動して作動油の流れを切り換える3ポジションタイプの切換弁である。また、パイロット式方向切換弁51のスプールは、所定値以上のパイロット圧が加わっていない場合には、スプリングなどによって中立位置に復帰する。そして、スプールが中立位置に復帰すると、作動油は油圧駆動装置に供給されず、油圧駆動装置は停止する。
また、パイロット式方向切換弁51、比例制御弁52、方向切換弁53が設けられたパイロット油圧ラインは、このパイロット油圧ラインを遮断するパイロット油圧遮断弁と、パイロット油圧遮断弁を操作するPPCロックレバーを有する。 [Pilot type directional switching valve]
The pilot-type
The pilot hydraulic line provided with the pilot-type
比例制御弁52および方向切換弁53は、図示略のパイロットポンプからパイロット式方向切換弁51に供給する作動油を制御して、油圧ポンプ5A,5B,5C,5Dから油圧駆動装置に供給する作動油の流れや油量を制御する。
[比例制御弁]
比例制御弁52は電磁比例弁であり、後述するマスターコントローラ81で制御される。そして、比例制御弁52は、パイロット式方向切換弁51に加えるパイロット圧を制御する。 [Proportional control valve and direction switching valve]
The
[Proportional control valve]
The
方向切換弁53は、電磁式の方向切換弁であり、後述するスレーブコントローラ82、83で制御される。そして、方向切換弁53は、パイロット式方向切換弁51のスプールの移動方向を制御する。 [Direction switching valve]
The
油圧制御弁50は、図示略のパイロットポンプから供給される作動油で動作する。なお、油圧ポンプ5をパイロットポンプとして利用してもよい。
パイロットポンプから供給される作動油は、比例制御弁52に供給される。そして、マスターコントローラ81は、比例制御弁52を制御して作動油の流量を調整する。比例制御弁52で流量が調整された作動油は、方向切換弁53に供給される。従って、マスターコントローラ81が比例制御弁52の流量を絞れば、方向切換弁53に供給される作動油の流量を抑制できる。
スレーブコントローラ82、83は、方向切換弁53を制御して作動油の供給先を切り換える。すなわち、比例制御弁52から供給される作動油を、方向切換弁53によってパイロット式方向切換弁51の左側の操作部511(図3参照)に供給すると、パイロット式方向切換弁51の右側の操作部512から作動油が排出され、パイロット式方向切換弁51のスプールが右側に移動する。
一方、比例制御弁52から供給される作動油を、方向切換弁53によってパイロット式方向切換弁51の右側の操作部512に供給すると、パイロット式方向切換弁51の左側の操作部511から作動油が排出され、パイロット式方向切換弁51のスプールが左側に移動する。
以上のとおり、油圧制御弁50は、パイロットポンプから比例制御弁52および方向切換弁53を介してパイロット式方向切換弁51に作動油を供給し、パイロット式方向切換弁51のスプールの移動を制御することで、油圧ポンプ5A,5B,5C,5Dから油圧駆動装置に供給する作動油の流れや油量を制御する。 [Hydraulic control valve operation]
The
The hydraulic oil supplied from the pilot pump is supplied to the
The
On the other hand, when the hydraulic oil supplied from the
As described above, the
各シリンダ34~37は一般的な油圧シリンダで構成される。すなわち、シリンダ34~37は、シリンダチューブと、ピストンロッドとを備える。シリンダチューブ内部は、ピストンロッドのピストン部分によって、キャップ側およびロッド側の2室に区画されている。
シリンダ34~37を伸長する場合は、前記2室のうち、シリンダの基端側であるキャップ側に作動油を供給し、ピストンロッドが設けられたロッド側より作動油を排出する。
シリンダ34~37を収縮する場合は、前記2室のうち、ロッド側に作動油を供給し、キャップ側より作動油を排出する。 [Hydraulic cylinder]
Each of the
When the
When the
次に、油圧駆動装置の操作を制御する操作制御システムについて、図3、4を参照して説明する。なお、図3では、前記油圧ポンプ5Aから供給される作動油を制御する油圧制御弁50A~50Cの制御を例示している。
図3に示すように、操作制御システムは、操作具60の操作量を検出して操作信号を出力する第1操作信号出力装置71および第2操作信号出力装置72と、ポンプコントローラ80と、マスターコントローラ81と、スレーブコントローラ82,83と、エレクトリックコントローラ84と、モニタ85とを備える。ポンプコントローラ80、マスターコントローラ81、スレーブコントローラ82,83、エレクトリックコントローラ84、モニタ85は、CAN(Controller Area Network)90で互いに通信可能に接続されている。なお、前述したように、マスターコントローラ81およびスレーブコントローラ82,83は、比例制御弁52および方向切換弁53を制御するバルブコントローラである。 [Operation control system]
Next, an operation control system for controlling the operation of the hydraulic drive device will be described with reference to FIGS. FIG. 3 illustrates the control of the
As illustrated in FIG. 3, the operation control system includes a first operation
本実施形態の操作具60は、図4に示すように、右レバー61、左レバー62、右走行装置の駆動を指令する右ペダル63、左走行装置の駆動を指令する左ペダル64、クラムオープンペダル65、クラムクローズペダル66、旋回ブレーキペダル67を備える。右レバー61、左レバー62、右ペダル63、左ペダル64は、ブームシリンダ34、アームシリンダ35、バケットシリンダ36、旋回モータ26、右走行モータ213Rおよび左走行モータ213Lの駆動を操作する。クラムオープンペダル65およびクラムクローズペダル66は、クラムシリンダ37の駆動を操作する。旋回ブレーキペダル67は、旋回モータ26のブレーキ操作を行う。なお、油圧制御弁50の数は任意に設定できる。また、旋回ブレーキペダル67を設けずに旋回レバー(本実施形態では左レバー62)のみで旋回モータ26の駆動および制動を行えばよい。すなわち、旋回レバーと旋回ブレーキペダルを1つのレバーで共通化してもよい。 [Operation tool]
As shown in FIG. 4, the operating
本実施形態の油圧ショベル1における右レバー61、左レバー62の操作パターンは以下のとおりである。右レバー61の前後操作はブーム下げ・上げの操作であり、右レバー61の左右操作はバケット掘削・ダンプの操作である。左レバー62の前後操作はアームダンプ・掘削の操作であり、左レバー62の左右操作は左旋回・右旋回の操作である。 [Lever operation pattern]
The operation pattern of the
第1操作信号出力装置71および第2操作信号出力装置72は、操作具60の操作量を検出するセンサであり、図4に示すように、操作具60毎に設けられている。
右レバー61には、第1操作信号出力装置71LRA、71FRA、第2操作信号出力装置72LRA、72FRAが設けられ、右レバー61の前後操作と左右操作に対応した信号を出力する。
第1操作信号出力装置71LRA、第2操作信号出力装置72LRAは、右レバー61の左右の操作を検出し、左右の操作に対応した操作信号を出力する。
第1操作信号出力装置71FRA、第2操作信号出力装置72FRAは、右レバー61の前後の操作を検出し、前後の操作に対応した操作信号を出力する。
左レバー62には、第1操作信号出力装置71LRB、71FRB、第2操作信号出力装置72LRB、72FRBが設けられ、左レバー62の前後操作と左右操作に対応した信号を出力する。
第1操作信号出力装置71LRB、第2操作信号出力装置72LRBは、左レバー62の左右の操作を検出し、左右の操作に対応した操作信号を出力する。
第1操作信号出力装置71FRB、第2操作信号出力装置72FRBは、左レバー62の前後の操作を検出し、前後の操作に対応した操作信号を出力する。
右ペダル63に、は第1操作信号出力装置71C、第2操作信号出力装置72Cが設けられ、左ペダル64には、第1操作信号出力装置71D、第2操作信号出力装置72Dが設けられる。第1操作信号出力装置71C、第2操作信号出力装置72Cは、右ペダル63の操作を検出し、ペダル操作に対応した操作信号を出力する。第1操作信号出力装置71D、第2操作信号出力装置72Dは、左ペダル64の操作を検出し、ペダル操作に対応した操作信号を出力する。
クラムオープンペダル65には、第1操作信号出力装置71E、第2操作信号出力装置72Eが設けられ、クラムクローズペダル66には、第1操作信号出力装置71F、第2操作信号出力装置72Fが設けられ、旋回ブレーキペダル67には第1操作信号出力装置71G、第2操作信号出力装置72Gが設けられる。第1操作信号出力装置71E、第2操作信号出力装置72Eは、クラムオープンペダル65の操作を検出し、ペダル操作に対応した操作信号を出力する。第1操作信号出力装置71F、第2操作信号出力装置72Fは、クラムクローズペダル66の操作を検出し、ペダル操作に対応した操作信号を出力する。第1操作信号出力装置71G、第2操作信号出力装置72Gは、旋回ブレーキペダル67の操作を検出し、ペダル操作に対応した操作信号を出力する。 [First operation signal output device and second operation signal output device]
The first operation
The
The first operation signal output device 71LRA and the second operation signal output device 72LRA detect the left and right operations of the
The first operation signal output device 71FRA and the second operation signal output device 72FRA detect the operation before and after the
The
The first operation signal output device 71LRB and the second operation signal output device 72LRB detect left and right operations of the
The first operation signal output device 71FRB and the second operation signal output device 72FRB detect the operation before and after the
The
The clam
第1操作信号出力装置71および第2操作信号出力装置72は、操作具60の操作量(レバーの倒し角度や、ペダルの踏み込み角度)を検出するセンサを備え、このセンサの検出データに基づく操作信号を出力する。操作具60が電気式のレバーやペダルであれば、ポテンショメータ等を前記センサとして利用できる。また、操作具60がパイロット方式のレバー等であれば、操作具60の操作で変化するパイロット圧を検出して電気信号に変換する圧力センサ等を前記センサとして利用できる。 [Sensor for operation amount detection]
The first operation
また、第1操作信号出力装置71および第2操作信号出力装置72から出力される操作信号としては、電圧値が操作量に比例する電気信号でもよいし、操作量を示すデジタルデータでもよい。操作信号出力装置がデジタルデータを出力する場合には、そのデータを、CAN90を介してマスターコントローラ81やスレーブコントローラ82に入力してもよい。
本実施形態では、第1操作信号出力装置71および第2操作信号出力装置72から出力される操作信号は、図5に示すように、操作具60の操作量に比例する電圧値の電気信号であり、かつ、互いに反転した電圧値が出力されるように設定されている。
すなわち、第1操作信号出力装置71から出力される第1操作信号V1は、操作具60の操作量が100%の場合に4V、操作量が-100%の場合に1V、中立位置(操作量0%)の場合に2.5Vとなるように設定されている。
一方、第2操作信号出力装置72から出力される第2操作信号V2は、操作具60の操作量が100%の場合に1V、操作量が-100%の場合に4V、中立位置(操作量0%)の場合に2.5Vとなり、前記第1操作信号V1とは逆特性となるように設定されている。 [Operation signal]
Further, the operation signals output from the first operation
In the present embodiment, the operation signals output from the first operation
That is, the first operation signal V1 output from the first operation
On the other hand, the second operation signal V2 output from the second operation
なお、操作具60から2系統のCAN90を経由して、マスターコントローラ81やスレーブコントローラ82に操作信号を入力してもよい。 Since the first operation signal V1 and the second operation signal V2 have opposite characteristics, when the first operation signal V1 and the second operation signal V2 are added, a constant value (5V) is always obtained. Therefore, by detecting the voltage values of these two operation signals V1 and V2, it is possible to check the abnormality of each operation signal. In addition, even when noise affects the operation signals V1 and V2, since the influence of noise can be eliminated by adding the two operation signals V1 and V2, signal processing with high noise resistance becomes possible. The correct operation amount can be grasped from the operation signal.
An operation signal may be input from the
第1操作信号出力装置71(71LRA、71FRA、71LRB、71FRB、71C~~71G)から出力される第1操作信号V1は、マスターコントローラ81に入力される。
第2操作信号出力装置72(72LRA、72FRA、72LRB、72FRB、72C~72G)から出力される第2操作信号V2は、途中で分岐され、マスターコントローラ81およびスレーブコントローラ82に入力される。
なお、第1操作信号V1は、分岐せずにマスターコントローラ81に入力されるため、第2操作信号V2のように分岐した場合に比べてワイヤーハーネスの引きまわしを少なくでき、断線や短絡などの故障のリスクを低減できる。このため、マスターコントローラ81は、第1操作信号V1および第2操作信号V2の両方を同時に入力できない可能性を低減できる。従って、第1操作信号V1のみを入力した場合に、入力した第1操作信号V1のみで操作量を判定できるようにマスターコントローラ81を構成しておけば、操作具60の操作量を検出できない故障率を低減できる。 [Output signal output destination]
The first operation signal V1 output from the first operation signal output device 71 (71LRA, 71FRA, 71LRB, 71FRB, 71C to 71G) is input to the
The second operation signal V2 output from the second operation signal output device 72 (72LRA, 72FRA, 72LRB, 72FRB, 72C to 72G) is branched halfway and input to the
Since the first operation signal V1 is input to the
[昇降ラダー]
昇降ラダー27は、図6にも示すように、旋回体22の左側部に配置されている。昇降ラダー27は、図6では図示を略すラダー用油圧シリンダによって昇降する。昇降ラダー27は、オペレータの乗降用に用いられ、油圧ショベル1の稼働時は車両本体2に収納される。ラダー用油圧シリンダは旋回体22に設けられ、ラダー用油圧シリンダを伸長作動すると、昇降ラダー27はその上端側の回動軸を中心に上方に回動し、図6の二点鎖線で示す格納位置に収納される。
一方、ラダー用油圧シリンダを収縮作動させると、昇降ラダー27はその上端側の回動軸を中心に下方に回動し、図6の実線で示す使用位置に配置される。 Next, in the hydraulic excavator 1, the elevating
[Elevator ladder]
As shown in FIG. 6, the elevating
On the other hand, when the rudder hydraulic cylinder is contracted, the elevating
サービスアーム28は、燃料、油脂、冷却水のドレン・補給ポートが設けられたものであり、図7に示すように、旋回体22の下面に配置されている。サービスアーム28は、図7では図示を略すサービスアーム用油圧シリンダによって昇降する。すなわち、サービスアーム用油圧シリンダを伸長作動すると、サービスアーム28はその基端側の回動軸を中心に上方に回動し、図7の二点鎖線で示す格納位置に収納される。
一方、サービスアーム用油圧シリンダ281を収縮作動させると、サービスアーム28は下方に回動し、図7の実線で示す使用位置に配置される。 [Service Arm]
The
On the other hand, when the service arm hydraulic cylinder 281 is contracted, the
次に、油圧ショベル1に設けられた各コントローラに関して図8,9をも参照して説明する。
[ポンプコントローラ]
ポンプコントローラ80は、油圧システム全体を制御するものである。このため、ポンプコントローラ80は、油圧ポンプ5(5A~5D)を制御し、さらに、マスターコントローラ81、スレーブコントローラ82、83の電源制御も行う。さらに、各コントローラからの情報はCAN90を経由してモニタ85に出力される。 [Controller configuration]
Next, each controller provided in the excavator 1 will be described with reference to FIGS.
[Pump controller]
The
エレクトリックコントローラ84は、油圧ポンプ5を駆動する電気モータ100に関する制御を行い、具体的には故障等を検知し、オペレータに通知する制御や、その他の電装品の制御を行う。
なお、油圧ポンプ5がエンジン駆動の場合、エンジンはエンジンコントローラが制御し、電装品の制御はエレクトリックコントローラ84が行う。
電気モータ100は、図9に示すように、PTOを介して各駆動軸6A,6B,6C,6Dを駆動するものである。 [Electric controller]
The
When the
As shown in FIG. 9, the
油圧制御弁50を制御するバルブコントローラとして、本実施形態では、マスターコントローラ81、第1のスレーブコントローラ82、第2のスレーブコントローラ83を備えている。 [Hydraulic control valve controller]
In this embodiment, a
マスターコントローラ81は、操作具60の操作量を検出して作業機や旋回モータ26、走行モータ213L、213Rを制御する制御信号を生成するとともに、その制御信号に基づいて油圧制御弁50の比例制御弁52を制御する。さらに、操作具60等の操作入力系の異常や、スレーブコントローラ82の異常を判定する。
また、マスターコントローラ81は、作業機3や各モータ26,213L,213R以外の装置、具体的には、図9に示すように、昇降ラダー27を駆動するラダー用油圧シリンダ271と、サービスアーム28を駆動するサービスアーム用油圧シリンダ281の作動を制御する。 [Master controller]
The
The
ラダー制御部816はラダー用油圧シリンダ271の作動を制御し、昇降ラダー27を下げる時の速度制御を行う。また、ショベル動作時に昇降ラダー27が落ちないように押し付け制御を行う。
サービスアーム制御部817はサービスアーム用油圧シリンダ281の作動を制御し、アーム32の昇降制御を行う。 The
The
The service
第1入力部811は、第1操作信号出力装置71および第2操作信号出力装置72から出力される操作信号が入力され、その入力信号に応じたデジタルデータを出力するインターフェースである。本実施形態では、入力された操作信号の電圧値を第1判定部812に出力する。 [First input section]
The
第1判定部812は、第1入力部811から入力される第1操作信号および第2操作信号に基づく操作信号のチェックと、第1通信部815を介してスレーブコントローラ82から出力される第2操作量データとの比較によるチェックとを行う。
第1判定部812は、第1操作信号の電圧値と、第2操作信号の電圧値とを加算して一定値となるかを検出して、入力された2つの操作信号に異常があるかをチェックする。前述のとおり、第1操作信号と第2操作信号とは逆特性であり、2つの信号の電圧値を加算すると常に一定値(5V)になるはずである。従って、これらの2つの操作信号の電圧値に基づいて、各操作信号の異常をチェックできる。第1判定部812における第2操作量データとの比較チェックは後述する。 [First determination unit]
The
The
制御信号生成部813は、第1入力部811から入力された第1操作信号の電圧値V1を基に図5の関係から、操作具60の操作量(第1操作量データ)を求める。
また、制御信号生成部813は、前記第1操作量データに応じて各油圧制御弁50の制御量を算出し、この制御量に基づいて制御信号を生成する。具体的には、制御信号生成部813は、比例制御弁52を制御する作動信号である第1制御信号と、方向切換弁53を制御する作動信号である第2制御信号とを生成する。 [Control signal generator]
The control
Further, the control
第1制御信号出力部814は、制御信号生成部813で生成された第1制御信号を、駆動対象となる油圧制御弁50の比例制御弁52に出力する。例えば、旋回モータ26を駆動する制御信号が生成された場合、旋回モータ26を駆動する油圧制御弁50C、50Jの比例制御弁52C,52Jに第1制御信号を出力する。 [First control signal output unit]
The first control
第1通信部815は、前記制御信号生成部813で生成された第1操作量データおよび第2制御信号を、CAN90を介してスレーブコントローラ82に出力する。また、第1通信部815は、前記第2制御信号を、CAN90を介してスレーブコントローラ83に出力する。
さらに、第1通信部815は、スレーブコントローラ82から出力される後述する第2操作量データを入力し、前記第1判定部812に出力する。 [First communication unit]
The
Further, the
第1判定部812は、入力した第2操作量データと、前記第1操作量データとを比較して一致するか否かで異常を判定する。例えば、スレーブコントローラ82に異常が発生すると、スレーブコントローラ82から出力される第2操作量データが正しく更新されない。このため、操作具60を操作して第1操作量データが変更されると、更新されない第2操作量データと不一致となるため、第1判定部812はスレーブコントローラ82に異常が発生したことを検出できる。 [Operation amount data judgment]
The
スレーブコントローラ82は、マスターコントローラ81で生成された第2制御信号に基づいて油圧制御弁50の方向切換弁53を制御する。なお、本実施形態では、2台のスレーブコントローラ82、83が設けられており、第1のスレーブコントローラ82は、油圧制御弁50A~50Gの方向切換弁53A~53Gを制御する。また、マスターコントローラ81の異常なども判定する。 [First slave controller]
The
第2入力部821は、第2操作信号出力装置72から出力される第2操作信号が入力され、その入力信号に応じたデジタルデータを出力するインターフェースである。本実施形態では、入力された第2操作信号の電圧値を第2判定部822に出力する。 [Second input section]
The
第2判定部822は、第2入力部821から入力された第2操作信号の電圧値V2を基に図5の関係から、第2操作量データを求め、この第2操作量データと前記マスターコントローラ81からCAN90および第2通信部824を介して入力される第1操作量データとを比較する。そして、第2判定部822は、第1操作量データおよび第2操作量データが一致すれば正常であると判定し、不一致であればマスターコントローラ81等の異常であると判定する。 [Second determination unit]
The
第2制御信号出力部823は、マスターコントローラ81からCAN90および第2通信部824を介して入力した第2制御信号を、制御対象の油圧制御弁50の方向切換弁53に出力する。例えば、制御信号生成部813で旋回モータ26を駆動する制御信号が生成された場合、旋回モータ26を駆動する油圧制御弁50C、50Jのうち、油圧制御弁50Cの方向切換弁53Cに対して第2制御信号を出力する。なお、油圧制御弁50Jはスレーブコントローラ83が制御する。 [Second control signal output unit]
The second control
第2通信部824は、前記第2操作量データを、CAN90を介してマスターコントローラ81に出力する。また、マスターコントローラ81から出力される第1操作量データおよび第2制御信号を入力する。 [Second communication section]
The
第2のスレーブコントローラ83は、マスターコントローラ81で生成された第2制御信号に基づいて油圧制御弁50の方向切換弁53を制御する。第2のスレーブコントローラ83は、油圧制御弁50H~50Nの方向切換弁53H~53Nを制御する。 [Second slave controller]
The
第2制御信号出力部831は、マスターコントローラ81からCAN90および第3通信部832を介して入力した第2制御信号を、制御対象の油圧制御弁50の方向切換弁53に出力する。例えば、制御信号生成部813で旋回モータ26を駆動する制御信号が生成された場合、旋回モータ26を駆動する油圧制御弁50C、50Jのうち、油圧制御弁50Jの方向切換弁53Jに対して第2制御信号を出力する。
[第3通信部]
第3通信部832は、マスターコントローラ81から出力される第2制御信号を入力する。 [Second control signal output unit]
The second control
[Third communication section]
The
次に、油圧ショベル1における非常停止システムについて、図9を参照して説明する。
油圧ショベル1は、電源としてバッテリー40と、ACC電源(アクセサリ電源)44を備えている。バッテリー40から電力を供給する電力供給ライン401は、ポンプコントローラ80、エレクトリックコントローラ84、モニタ85に接続されている。従って、ポンプコントローラ80、エレクトリックコントローラ84、モニタ85は、バッテリー40の電力で作動される。
ACC電源44は、油圧ショベル1のイグニッションスイッチをオンさせた際に電力供給し、オフ状態で電力を供給しない電源である。ACC電源44は、イグニッションスイッチのオンに伴いポンプコントローラ80への電力供給を開始する。
このACC電源44には、非常停止スイッチ45と、作業機停止スイッチ46とが接続されている。 [Emergency stop system]
Next, an emergency stop system in the hydraulic excavator 1 will be described with reference to FIG.
The excavator 1 includes a
The
An
電力供給ライン401は、後述する第1リレー41の接点と、第2制御リレー102の接点に接続する。第1リレー41の接点は、第2リレー42の一方の接点に接続し、第2リレー42の他方の接点は、マスターコントローラ81と、第3リレー43の接点に接続する。
第3リレー43の接点は、スレーブコントローラ82、83に接続する。 [Relay connection]
The
The contact of the
ACC電源44は、複数の作業機停止スイッチ46を介して第3リレー43の電磁コイルに接続する。ACC電源44は、ポンプコントローラ80に接続して電力を供給する。
ポンプコントローラ80は、第1制御リレー101の電磁コイルと、第2リレー42の電磁コイルとに接続する。 The
The
The
電力供給ライン401には、図9に示すように、第1リレー41、第2リレー42、第3リレー43の各接点が直列に接続されている。すなわち、電源であるバッテリー40に対して、上流側から第1リレー41、第2リレー42、第3リレー43の各接点が順に接続されている。
各リレー41,42,43の電磁コイルは、非常停止スイッチ45、ポンプコントローラ80、作業機停止スイッチ46に接続されている。
従って、作業機停止スイッチ46の操作によって第3リレー43のみが切断された場合は、第3リレー43の下流側に接続するスレーブコントローラ82、83への電力供給が切断される。
また、非常停止スイッチ45の操作によって第1リレー41が切断された場合又は、ポンプコントローラ80の制御によって第2リレー42が切断された場合は、第1リレー41、第2リレー42の下流側に接続するマスターコントローラ81とスレーブコントローラ82、83への電力供給が切断される。 [Relay arrangement in the power supply line]
As shown in FIG. 9, contacts of the
The electromagnetic coils of the
Therefore, when only the
Further, when the
第1リレー41、第2リレー42、第3リレー43は、一般的な電磁リレーで構成されている。すなわち、各リレー41~43は、C端子(Common端子)、NO端子(Normally Open端子)、NC端子(Normally Closed端子)の各接点と、C端子とNO端子またはNC端子を接続する接触片、接触片を動かす電磁コイル(電磁石)を備える。そして、各リレー41~43は、電磁コイルに電流が流れると、接触片がC端子、NO端子を導通し、電磁コイルに電流が流れていない場合は、接触片がNO端子から離れる。従って、C端子およびNO端子を電力供給ライン401に接続しておくことで、各電磁コイルに電流が流れた場合に電力供給ライン401を導通し、電磁コイルに電流が流れない場合に電力供給ライン401を遮断する。 [Relay structure]
The
非常停止スイッチ45は、複数設けられており、油圧ショベル1のキャブ23内や、昇降ラダー27、サービスアーム28部分など、メンテナンス作業中の作業者が操作可能な場所に配置されている。
複数の非常停止スイッチ45は、ACC電源44に対して直列に接続されている。そして、すべての非常停止スイッチ45が未入力状態(通常状態)の場合には、非常停止スイッチ45はACC電源44からの電力を供給可能な導通状態を維持する。一方、非常停止スイッチ45を1つでも押して入力操作した非常状態では、非常停止スイッチ45はACC電源44から第1リレー41の電磁コイルへの電力を遮断する。 [Emergency stop switch]
A plurality of emergency stop switches 45 are provided, and are arranged in a place where an operator who is performing maintenance work can operate, such as the
The plurality of emergency stop switches 45 are connected in series to the
作業機停止スイッチ46は、作業機3を停止させる必要がある場合に押されるスイッチである。具体的には、作業機停止スイッチ46は、前記昇降ラダー27の付近に設けられるスイッチと、サービスアーム28の付近に設けられるスイッチと、キャブ23に設けられたPPCロックレバーのロック時に入力されるスイッチとを備える。さらに、作業機のみを停止させるためのスイッチを適宜な場所に設けてもよい。
複数の作業機停止スイッチ46は、ACC電源44に対して直列に接続されている。そして、すべての作業機停止スイッチ46が未入力状態の場合には、作業機停止スイッチ46はACC電源44からの電力を供給可能な導通状態を維持する。一方、作業機停止スイッチ46が1つでも押されて入力された場合は、作業機停止スイッチ46はACC電源44から第3リレー43の電磁コイルへの電力を遮断する。 [Work machine stop switch]
The work
The plurality of work implement stop switches 46 are connected in series to the
電気モータ100を作動するために、前述した第1制御リレー101、第2制御リレー102、第3制御リレー103が設けられている。
第1制御リレー101の接点は、直列接続される複数の非常停止スイッチ45の最も下流側の端子とリレー41の電磁コイルに接続され、電磁コイルはポンプコントローラ80に接続している。このため、第1制御リレー101の接点は、ポンプコントローラ80から電磁コイルに制御信号を出力することで、開閉する。
第2制御リレー102の接点は、バッテリー40に接続され、電磁コイルは第1制御リレー101の接点に接続している。このため、第2制御リレー102の接点は、第1制御リレー101の接点の接続、切断によって開閉する。
第3制御リレー103の接点は、電気モータ用入力電源104に接続され、電磁コイルは第2制御リレー102の接点に接続している。このため、第3制御リレー103の接点は、第2制御リレー102の接点の接続、切断によって開閉される。 [Electric motor operation circuit]
In order to operate the
The contact of the
The contact of the
The contact point of the
次に、図10のフローチャートを参照して、オペレータが操作具60を操作したときの制御処理を説明する。
操作具60の状態に応じた第1操作信号および第2操作信号が第1操作信号出力装置71、第2操作信号出力装置72から出力すると、マスターコントローラ81およびスレーブコントローラ82は図10のフローチャートに示す操作制御処理を実行する。
第1制御装置であるマスターコントローラ81は、第1操作信号を入力する(ステップS1)。第2制御装置であるスレーブコントローラ82は、第2操作信号を入力する(ステップS11)。 [Operation control processing]
Next, control processing when the operator operates the
When the first operation signal and the second operation signal corresponding to the state of the
The
同様に、スレーブコントローラ82は、第2操作信号の入力後、第2操作信号に基づく第2操作量データを、CAN90を介して第1制御装置であるマスターコントローラ81に出力する(ステップS12)。 After the input of the first operation signal, the
Similarly, after inputting the second operation signal, the
同様に、スレーブコントローラ82は、マスターコントローラ81から出力された第1操作量データを入力し(ステップS13)、第2判定部822で第1操作量データおよび第2操作量データを比較し(ステップS14)、異常であるかを判定する(ステップS15)。 The
Similarly, the
マスターコントローラ81は、ステップS5の判定結果として正常(No)と判定した場合は、入力された2つの操作信号から制御信号(第1制御信号および第2制御信号)を生成する。すなわち、マスターコントローラ81には、第1操作信号出力装置71から第1操作信号が入力され、第2操作信号出力装置72から第2操作信号が入力される。このため、マスターコントローラ81は、これらの2つの操作信号から比例制御弁52を作動する第1制御信号と、方向切換弁53を作動する第2制御信号を生成する。
そして、マスターコントローラ81は、第1制御信号出力部814から第1制御信号を出力し(ステップS6)、油圧制御弁50の比例制御弁52を制御する(ステップS7)。また、マスターコントローラ81は、CAN90を介して第2制御信号をスレーブコントローラ82、83に出力する。なお、スレーブコントローラ82が方向切換弁53を作動する第2制御信号を生成し、スレーブコントローラ83にCAN90を介して出力してもよい。 [Processing during normal judgment]
When the
Then, the
パイロット式方向切換弁51は、比例制御弁52および方向切換弁53の両方が正常に制御されることで作動する。そして、駆動対象の油圧駆動装置に作動油が供給され、油圧ショベル1は操作具60の操作に応じて作動する。
マスターコントローラ81およびスレーブコントローラ82は、第1制御信号、第2制御信号の出力後は、図10に示す操作制御処理を終了する。
従って、操作具60からの信号が入力され続けることで、図10の操作制御処理も実行され続ける。 The second control
The pilot type
The
Therefore, when the signal from the
次に、マスターコントローラ81の第1判定部812および第1のスレーブコントローラ82の第2判定部822で異常を判定した場合(ステップS5,S15でYesの場合)の制御について説明する。
[マスターコントローラ81が異常判定をした場合]
マスターコントローラ81の第1判定部812が異常と判定するのは、前述したように、
(1)第1入力部811に入力される第1操作信号および第2操作信号のチェックにより異常があると判定した場合と、
(2)第1判定部812で検出した第1操作量データと、スレーブコントローラ82から入力した第2操作量データとが一致しなかった場合は、マスターコントローラ81の第1判定部812は異常(ステップS5でYes)と判定する。
(3)マスターコントローラ81に入力される信号線や、マスターコントローラ81から比例制御弁52に出力される信号線に短絡や断線がある場合も、第1判定部812は異常(ステップS5でYes)と判定する。 [Processing when an error is detected]
Next, the control when the
[When
As described above, the
(1) When it is determined that there is an abnormality by checking the first operation signal and the second operation signal input to the
(2) If the first operation amount data detected by the
(3) The
マスターコントローラ81は、上記いずれの場合も異常が発生した(ステップS5でYes)と判定し、第1制御信号出力部814によって比例制御弁52を停止状態に制御する第1制御信号(停止信号)を出力する(ステップS8)。すると、比例制御弁52が停止状態に制御される(ステップS9)。この際、各比例制御弁52は、作動油の流量を抑制するため、方向切換弁53の動作状態にかかわらず、パイロット式方向切換弁51に加わるパイロット圧が低下する。このため、パイロット式方向切換弁51のスプールは中立位置に移動し、パイロット式方向切換弁51を介して作動油が供給されない。このため、ブームシリンダ34、アームシリンダ35、バケットシリンダ36、クラムシリンダ37、旋回モータ26、走行モータ213L、213Rによって作動される作業機3や走行体21の動作が中断する。 [Abnormal stop control by master controller 81]
The
スレーブコントローラ82の第2判定部822が異常と判定するのは、前述したように、第2判定部822で検出した第2操作量データと、マスターコントローラ81から入力した第1操作量データとが一致しなかった場合である。同様にスレーブコントローラ82に入力される信号線や、スレーブコントローラ82,83から方向切換弁53に出力される信号線に短絡や断線がある場合も、第2判定部822は異常と判定する。 [When
As described above, the
スレーブコントローラ82は、異常が発生した(ステップS15でYes)と判定すると、第2制御信号出力部823によって方向切換弁53を停止状態に制御する第2制御信号(停止信号)を出力する(ステップS18)。さらに、スレーブコントローラ82は、CAN90および第2通信部824を介して、スレーブコントローラ83に対して方向切換弁53を停止状態に制御するように指示する。このため、スレーブコントローラ83は、第2制御信号出力部831によって方向切換弁53を停止状態に制御する第2制御信号(停止信号)を出力する(ステップS18)。
すると、方向切換弁53が停止状態に制御される(ステップS19)。この際、各方向切換弁53は、スプールが中立位置に移動して作動油がパイロット式方向切換弁51に流れないように制御されるので、比例制御弁52の動作状態にかかわらず、パイロット式方向切換弁51に加わるパイロット圧が低下する。このため、パイロット式方向切換弁51のスプールは中立位置に移動し、パイロット式方向切換弁51を介して作動油が供給されないため、ブームシリンダ34、アームシリンダ35、バケットシリンダ36、クラムシリンダ37、旋回モータ26、走行モータ213L、213Rによって作動される作業機3や走行体21の動作が中断する。ただし、他の制御弁からの作動油供給がある場合には、作業機3や走行体21の動作を継続できる。 [Abnormal stop control by slave controller 82]
If the
Then, the
次に、油圧ショベル1における電気モータ100の起動制御について図9を参照して説明する。
油圧ショベル1のイグニッションキーをオンすると、ACC44からリレー41(43、101)までのラインの電圧が変化する。
そして、ACC電源44から非常停止スイッチ45を介して電力が供給される。ポンプコントローラ80は、イグニッションキーのオンに伴いスタータ110のC端子から出力される信号が入力されたり、ACC電源44から電力供給が開始されたことを電圧レベルの変化等で検出すると、第1制御リレー101の電磁コイルに第1制御リレー101の接点接続を指示する制御信号(電流)を出力する。第1制御リレー101は、電磁コイルに電流が流れていない場合に接点が開放され、電流が流れると接続されるため、ポンプコントローラ80からの制御信号で接続される。 [Electric motor start control]
Next, start control of the
When the ignition key of the hydraulic excavator 1 is turned on, the voltage of the line from the
Then, electric power is supplied from the
第2制御リレー102の接点が接続されると、バッテリー40から供給される電力は、第3制御リレー103の電磁コイルに流れる。第3制御リレー103も第1制御リレー101等と同じく、電磁コイルに電流が流れると接点が接続されるため、第2制御リレー102の接点の接続に連動して接続される。 When the contact of the
When the contact of the
次に、図11のフローチャートを参照して、作業者が非常停止スイッチ45を押して非常停止操作を行った場合の制御処理を説明する。
電気モータ100が作動している時に、非常停止スイッチ45が押されるまでは、ステップS31でNoと判定されるため、非常停止制御は実行されない。一方、非常停止スイッチ45が押されると、ステップS31でYesと判定され、直列に接続されている非常停止スイッチ45の一部のスイッチが切断され、ACC電源44からの電力供給が停止する(ステップS32)。
ステップS32でACC電源44からの電力供給が停止することで、電気モータの非常停止制御(ステップS33~S35)、機械的なリレー切断によるバルブコントローラの非常停止制御(ステップS36~S38)、ポンプコントローラ80の制御によるバルブコントローラの非常停止制御(ステップS39→S37→S38)が並行して実行される。 [Control processing of emergency stop operation]
Next, with reference to the flowchart of FIG. 11, a control process when the operator performs an emergency stop operation by pressing the
Until the
By stopping the power supply from the
ステップS32でACC電源44からの電力供給が停止すると、第1制御リレー101を介して第2制御リレー102の電磁コイルに流れていた電流供給も停止するため、第2制御リレー102が切断される(ステップS33)。
なお、非常停止スイッチ45の操作でACC電源44からの電力供給が停止したことをポンプコントローラ80で検出し、ポンプコントローラ80から出力される制御信号で第1制御リレー101を切断することもでき、この場合も第2制御リレー102が切断される。 [Electric motor emergency stop control]
When the power supply from the
The operation of the
非常停止スイッチ45が押され、ステップS32でACC電源44からの電力供給が停止すると、第1リレー41の電磁コイルへの電流供給も停止し、第1リレー41が切断される(ステップS36)。すなわち、第1リレー41は、非常停止スイッチ45の操作に連動して機械的に切断される。
このため、バッテリー40からマスターコントローラ81、スレーブコントローラ82、83への電力供給も停止し、マスターコントローラ81およびスレーブコントローラ82、83は電源供給が無くなり、作動を停止する(ステップS37)。
すなわち、第1リレー41は、非常停止スイッチ45が押されたことに連動して切断され、コントローラからの制御に影響されない。このため、仮にポンプコントローラ80等に異常が発生していても、いずれか1つの非常停止スイッチ45が押された場合には、第1リレー41は切断状態に制御され、マスターコントローラ81やスレーブコントローラ82、83への電力供給を停止できる。
各コントローラ81~83への電力供給が停止すると、比例制御弁52、方向切換弁53への制御信号の出力も停止し、前述したように、各油圧制御弁50のスプールが中立位置に移動して作動油の供給が停止するため、作業機3、旋回モータ26、走行モータ213L、213Rを停止できる(ステップS38)。 [Emergency stop control of valve controller by mechanical relay disconnection]
When the
For this reason, the power supply from the
That is, the
When the power supply to each of the
非常停止スイッチ45が押され、ステップS32でACC電源44からの電力供給が停止したことをポンプコントローラ80が検出すると、ポンプコントローラ80は、第2リレー42に制御信号を出力し、第2リレー42の接続を切断する(ステップS39)。
このため、バッテリー40からマスターコントローラ81、スレーブコントローラ82、83への電力供給も停止し、マスターコントローラ81およびスレーブコントローラ82、83は電源供給が無くなり、作動を停止する(ステップS37)。
すなわち、第2リレー42は、非常停止スイッチ45が押されたことを検出したポンプコントローラ80で制御される。このため、仮に第1リレー41が故障した場合でも、いずれか1つの非常停止スイッチ45が押された場合には、第2リレー42は切断状態に制御され、マスターコントローラ81やスレーブコントローラ82、83への電力供給を停止できる。
各コントローラ81~83への電力供給が停止すると、比例制御弁52、方向切換弁53への制御信号の出力も停止し、前述したように、各油圧制御弁50のスプールが中立位置に移動して作動油の供給が停止するため、作業機3等を停止できる(ステップS38)。 [Emergency stop control of valve controller by control of pump controller 80]
When the
For this reason, the power supply from the
That is, the
When the power supply to each of the
また、ラダー用油圧シリンダ271やサービスアーム用油圧シリンダ281への制御信号も停止するため、昇降ラダー27やサービスアーム28の昇降も停止できる(ステップS38)。
その上、前述したように、電気モータ100も停止して、油圧ポンプ5も停止するため、作業機3などの油圧で駆動される油圧駆動装置を停止できる。
このように、非常停止スイッチ45を押すことで、油圧ショベル1を停止でき、他の建設機械との衝突等を防止できて安全性を向上できる。 Therefore, when the
Further, since the control signal to the ladder
In addition, as described above, since the
In this way, by pressing the
さらに、第2リレー42は、ポンプコントローラ80で制御されるため、非常停止スイッチ45が押された場合だけでなく、エンジン、電気モータ100、作業機3等の動作状態等を検出するセンサのデータなどから、非常停止動作が必要な状況であるかを判定するプログラム(ロジック)をポンプコントローラ80に組み込んでおき、その判定結果に基づいて第2リレー42を停止することもできる。 The
Further, since the
次に、図12のフローチャートを参照して、作業機停止スイッチ46が押されて入力されている場合の制御について説明する。
作業機停止スイッチ46は、(1)昇降ラダー27の降下時、(2)サービスアーム28の降下時、(3)PPCロックレバーのロック時、(4)その他作業機のみを停止する場合に作業者の操作などによって入力される。従って、作業機停止スイッチ46は、例えば、昇降ラダー27の降下状態を確認できる昇降ラダー27の付近や、サービスアーム28の降下状態を確認できるサービスアーム28の付近に配置すればよい。 [Control by work implement stop switch input]
Next, control when the work implement
The work
一方、マスターコントローラ81は作動しているので、ラダー用油圧シリンダ271やサービスアーム用油圧シリンダ281は作動できる(ステップS45)。従って、昇降ラダー27やサービスアーム28を収納し忘れていたために、作業機停止スイッチ46を押して停止した場合には、マスターコントローラ81を用いて昇降ラダー27やサービスアーム28を収納できる。そして、作業機停止スイッチ46の入力が解除されて第3リレー43が接続状態に戻ると、スレーブコントローラ82、83も作動状態に復帰するため、作業機3や各モータ26,213L,213Rも作動できるようになる。 For this reason, when the
On the other hand, since the
また、作業機制御装置であるマスターコントローラ81は、作業機3以外の昇降ラダー27やサービスアーム28の駆動も制御するため、本発明の第1制御装置を構成する。
さらに、作業機制御装置であるスレーブコントローラ82、83は、作業機3の駆動を制御するため、本発明の第2制御装置を構成する。 As described above, the
In addition, the
Furthermore, the
そして、メンテナンス用スイッチが押された場合は、前記非常停止スイッチ45が押された場合と同じく、電気モータ100が停止し、第1リレー41、第2リレー42が切断されてコントローラ81~83への電力供給が停止する。 In addition to the
When the maintenance switch is pressed, the
例えば、第3リレー43は、作業機停止スイッチ46の入力で接続、切断が制御されていたが、第2リレー42と同様に、ポンプコントローラ80等の制御信号で制御してもよい。この場合、作業機3のみを停止させるロジックを設定できる。 It should be noted that the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
For example, the connection and disconnection of the
また、マスターコントローラ81への入出力の信号数が多くなった場合は、複数のマスターコントローラ81を設けることもできる。
さらに、作業機制御装置としては、作業機3の少なくとも停止動作を制御できるものであればよく、作業機3を1台のコントローラで停止できる場合には、そのコントローラのみで構成すればよい。 In the embodiment, the two
Further, when the number of input / output signals to the
Furthermore, the work implement control device may be any device that can control at least the stop operation of the work implement 3, and if the work implement 3 can be stopped by one controller, the work implement control device may be configured only by that controller.
また、入力に必要となる端子数が多くなり、マスターコントローラが備える入力端子数より多くなった時はマスターコントローラを複数とすることを可能とする。この時、操作具からの入力は複数のマスターコントローラに入力され、それぞれのマスターコントローラが制御対象とする比例制御弁を制御する。 In the embodiment, the two operation signals of the first operation signal and the second operation signal are input to the
Also, when the number of terminals required for input increases and the number of input terminals included in the master controller increases, a plurality of master controllers can be provided. At this time, input from the operation tool is input to a plurality of master controllers, and each master controller controls a proportional control valve to be controlled.
作業機3Aは、バックホーショベル用のブーム31A、アーム32A、バケット33Aと、これらを駆動するブームシリンダ34A、アームシリンダ35A、バケットシリンダ36Aを備える。バックホーショベル1Aでは、バケット33Aは開閉しないため、クラムシリンダは設けられていない。
さらに、本発明は油圧ショベルに限らず、油圧ポンプで駆動される油圧駆動装置を有する各種の作業機械に適用できる。 The present invention is applicable not only to the hydraulic excavator (loading excavator) 1 shown in FIG. 1 but also to the
The
Furthermore, the present invention can be applied not only to a hydraulic excavator but also to various work machines having a hydraulic drive device driven by a hydraulic pump.
DESCRIPTION OF SYMBOLS 1 ... Hydraulic excavator, 2 ... Vehicle main body, 3 ... Working
Claims (7)
- 作業機を備えた作業機械の非常停止システムであって、
非常停止スイッチと、
前記作業機の停止動作を制御可能な作業機制御装置と、
前記作業機制御装置に電力を供給する電源と、
前記電源および前記作業機制御装置間を接続する電力供給ラインと、
前記電力供給ラインに設けられて前記作業機制御装置への電力供給を制御する第1リレーおよび第2リレーと、
前記非常停止スイッチの開閉状態を検出して前記第2リレーを制御する第2リレー制御装置と、を備え、
前記第1リレーは、前記非常停止スイッチで制御され、前記非常停止スイッチが入力された非常状態では前記電力供給ラインを切断し、
前記第2リレー制御装置は、前記非常停止スイッチが入力された非常状態を検出すると、前記第2リレーを制御して前記電力供給ラインを切断し、
前記第1リレーまたは前記第2リレーによって前記電力供給ラインが切断されて前記電源から前記作業機制御装置への電力供給が停止した場合は、前記作業機は停止する
ことを特徴とする作業機械の非常停止システム。 An emergency stop system for a work machine equipped with a work machine,
An emergency stop switch,
A work machine control device capable of controlling a stop operation of the work machine;
A power source for supplying power to the work machine control device;
A power supply line connecting the power source and the work implement control device;
A first relay and a second relay provided in the power supply line to control power supply to the work implement control device;
A second relay control device that detects an open / closed state of the emergency stop switch and controls the second relay;
The first relay is controlled by the emergency stop switch, and in an emergency state where the emergency stop switch is input, the power supply line is disconnected.
When the second relay control device detects an emergency state in which the emergency stop switch is input, the second relay control device controls the second relay to disconnect the power supply line,
When the power supply line is cut by the first relay or the second relay and the power supply from the power source to the work implement control device is stopped, the work implement is stopped. Emergency stop system. - 請求項1に記載の作業機械の非常停止システムにおいて、
前記第2リレーは、前記第2リレー制御装置から制御信号が入力されない場合には、前記電力供給ラインを切断する
ことを特徴とする作業機械の非常停止システム。 The emergency stop system for a work machine according to claim 1,
The emergency stop system for a work machine, wherein the second relay disconnects the power supply line when a control signal is not input from the second relay control device. - 請求項1または請求項2に記載の作業機械の非常停止システムにおいて、
前記作業機制御装置は、
前記作業機および作業機以外の装置の駆動を制御する第1制御装置と、
前記作業機の駆動を制御する第2制御装置とを備え、
前記電力供給ラインには、前記第2制御装置への電力供給のみを制御する第3リレーが設けられ、
前記第3リレーのみが切断された場合には、前記第2制御装置のみが停止して第2制御装置で制御される作業機が停止する
ことを特徴とする作業機械の非常停止システム。 In the emergency stop system of the working machine according to claim 1 or 2,
The work machine control device includes:
A first control device that controls driving of the work machine and a device other than the work machine;
A second control device for controlling the drive of the working machine,
The power supply line is provided with a third relay that controls only power supply to the second control device,
When only the third relay is disconnected, only the second control device is stopped, and the work machine controlled by the second control device is stopped. An emergency stop system for a work machine. - 請求項3に記載の作業機械の非常停止システムにおいて、
前記第3リレーを制御する作業機停止スイッチが設けられ、
前記第3リレーは、前記作業機停止スイッチで制御され、前記作業機停止スイッチが入力された状態では前記電力供給ラインを切断し、前記第2制御装置への電力供給を遮断する
ことを特徴とする作業機械の非常停止システム。 The work machine emergency stop system according to claim 3,
A work machine stop switch for controlling the third relay is provided;
The third relay is controlled by the work implement stop switch, and when the work implement stop switch is input, the power supply line is cut off and the power supply to the second control device is cut off. Emergency stop system for working machines. - 請求項3または請求項4に記載の作業機械の非常停止システムにおいて、
前記作業機械は、走行体と、前記走行体上に旋回可能に設けられた上部旋回体とを備えた油圧ショベルであり、
前記上部旋回体は、ラダーまたはサービスアームを備える
ことを特徴とする作業機械の非常停止システム。 In the emergency stop system of the working machine according to claim 3 or claim 4,
The work machine is a hydraulic excavator provided with a traveling body and an upper swinging body that is turnable on the traveling body,
The upper turning body includes a ladder or a service arm. An emergency stop system for a work machine. - 請求項1から請求項5のいずれかに記載の作業機械の非常停止システムと、
前記作業機を駆動する駆動機構と、を備える作業機械であって、
前記駆動機構は、油圧ポンプと、前記油圧ポンプから供給される作動油により駆動される油圧駆動装置と、前記油圧ポンプから前記油圧駆動装置への作動油の供給を制御する油圧制御弁とを備え、
前記作業機制御装置は、前記油圧制御弁を制御する制御信号を出力するバルブコントローラで構成され、
前記油圧制御弁は、前記第1リレーまたは前記第2リレーが切断されて前記作業機制御装置が停止して前記作業機制御装置から前記制御信号の入力が無くなった場合には、前記作動油の供給を停止する停止状態となる
ことを特徴とする作業機械。 An emergency stop system for a work machine according to any one of claims 1 to 5,
A drive mechanism that drives the work machine,
The drive mechanism includes a hydraulic pump, a hydraulic drive device driven by hydraulic oil supplied from the hydraulic pump, and a hydraulic control valve that controls supply of hydraulic oil from the hydraulic pump to the hydraulic drive device. ,
The work implement control device includes a valve controller that outputs a control signal for controlling the hydraulic control valve,
When the first relay or the second relay is disconnected and the work implement control device stops and the control signal is not input from the work implement control device, the hydraulic control valve A work machine characterized by being in a stopped state in which supply is stopped. - 作業機と、
非常停止スイッチと、
前記作業機の停止動作を制御可能な作業機制御装置と、
前記作業機制御装置に電力を供給する電源と、
前記電源および前記作業機制御装置間を接続する電力供給ラインと、
前記電力供給ラインに設けられて前記作業機制御装置への電力供給を制御する第1リレーおよび第2リレーと、
前記非常停止スイッチの開閉状態を検出して前記第2リレーを制御する第2リレー制御装置と、を備えた作業機械の非常停止方法であって、
前記非常停止スイッチが入力された非常状態では、前記第1リレーは前記電力供給ラインを切断し、
前記非常停止スイッチが入力された非常状態を検出した前記第2リレー制御装置は、前記第2リレーを制御して前記電力供給ラインを切断し、
前記第1リレーまたは前記第2リレーによって前記電力供給ラインが切断されて前記電源から前記作業機制御装置への電力供給が停止した場合は、前記作業機は停止する
ことを特徴とする作業機械の非常停止方法。
A working machine,
An emergency stop switch,
A work machine control device capable of controlling a stop operation of the work machine;
A power source for supplying power to the work machine control device;
A power supply line connecting the power source and the work implement control device;
A first relay and a second relay provided in the power supply line to control power supply to the work implement control device;
An emergency stop method for a work machine, comprising: a second relay control device that detects an open / close state of the emergency stop switch and controls the second relay;
In an emergency state where the emergency stop switch is input, the first relay disconnects the power supply line,
The second relay control device that has detected an emergency state in which the emergency stop switch is input controls the second relay to disconnect the power supply line,
When the power supply line is cut by the first relay or the second relay and the power supply from the power source to the work implement control device is stopped, the work implement is stopped. Emergency stop method.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014543660A JP6244305B2 (en) | 2014-01-16 | 2014-01-16 | Work machine emergency stop system, work machine and work machine emergency stop method |
PCT/JP2014/050712 WO2015107663A1 (en) | 2014-01-16 | 2014-01-16 | Emergency stop system for work machine, work machine, and emergency stop method for work machine |
DE112014000072.8T DE112014000072B4 (en) | 2014-01-16 | 2014-01-16 | Emergency stop system for work machine, work machine and emergency stop procedure for work machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/050712 WO2015107663A1 (en) | 2014-01-16 | 2014-01-16 | Emergency stop system for work machine, work machine, and emergency stop method for work machine |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015107663A1 true WO2015107663A1 (en) | 2015-07-23 |
Family
ID=53542582
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/050712 WO2015107663A1 (en) | 2014-01-16 | 2014-01-16 | Emergency stop system for work machine, work machine, and emergency stop method for work machine |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6244305B2 (en) |
DE (1) | DE112014000072B4 (en) |
WO (1) | WO2015107663A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022027087A1 (en) * | 2020-08-05 | 2022-02-10 | Hexex Pty Ltd | An access control system for an excavator |
CN116194638A (en) * | 2021-03-09 | 2023-05-30 | 日立建机株式会社 | Work machine |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017102937B4 (en) * | 2017-02-14 | 2022-05-19 | Lisa Dräxlmaier GmbH | Method and device for controlling two relays arranged in series |
DE102018205963A1 (en) * | 2018-04-19 | 2019-10-24 | Zf Friedrichshafen Ag | Method and control device for switching off a main drive source of an autonomously driving vehicle |
CN112112216A (en) * | 2020-10-15 | 2020-12-22 | 柳州柳工挖掘机有限公司 | Excavator hydraulic system, excavator and control method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008248627A (en) * | 2007-03-30 | 2008-10-16 | Komatsu Ltd | Emergency stop system for construction machine and construction machine |
JP2013536333A (en) * | 2010-07-21 | 2013-09-19 | ボルボ コンストラクション イクイップメント アーベー | Hybrid excavator emergency stop system |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE29923980U1 (en) * | 1998-03-13 | 2001-10-11 | Keba Gesellschaft M.B.H. & Co., Linz | Safety switching device for electrically controlled machines |
DE19954460C2 (en) | 1999-11-12 | 2002-02-28 | Pilz Gmbh & Co | Safety switching device for switching an electrical consumer, in particular an electrically driven machine, on and off |
-
2014
- 2014-01-16 DE DE112014000072.8T patent/DE112014000072B4/en active Active
- 2014-01-16 JP JP2014543660A patent/JP6244305B2/en active Active
- 2014-01-16 WO PCT/JP2014/050712 patent/WO2015107663A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008248627A (en) * | 2007-03-30 | 2008-10-16 | Komatsu Ltd | Emergency stop system for construction machine and construction machine |
JP2013536333A (en) * | 2010-07-21 | 2013-09-19 | ボルボ コンストラクション イクイップメント アーベー | Hybrid excavator emergency stop system |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022027087A1 (en) * | 2020-08-05 | 2022-02-10 | Hexex Pty Ltd | An access control system for an excavator |
CN116194638A (en) * | 2021-03-09 | 2023-05-30 | 日立建机株式会社 | Work machine |
US12065805B2 (en) * | 2021-03-09 | 2024-08-20 | Hitachi Construction Machinery Co., Ltd. | Work machine |
Also Published As
Publication number | Publication date |
---|---|
DE112014000072T5 (en) | 2015-09-24 |
JP6244305B2 (en) | 2017-12-06 |
JPWO2015107663A1 (en) | 2017-03-23 |
DE112014000072B4 (en) | 2019-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110050130B (en) | Construction machine | |
US9422689B2 (en) | Shovel and method for controlling shovel | |
KR102091504B1 (en) | Construction machinery | |
JP6244305B2 (en) | Work machine emergency stop system, work machine and work machine emergency stop method | |
EP1577447B1 (en) | Hydraulic control device for hydraulic excavator | |
KR102107579B1 (en) | Hydraulic drive device for construction machinery | |
US11236490B2 (en) | Shovel | |
US10253479B2 (en) | Hydraulic system for work machine | |
US9903393B2 (en) | Construction machine | |
JP6484021B2 (en) | Work machine | |
JP7324654B2 (en) | Hydraulic system for construction machinery | |
CN112020586A (en) | Electric working machine | |
JP6214327B2 (en) | Hybrid construction machine | |
US12065805B2 (en) | Work machine | |
CN109563853B (en) | Working machine | |
CN114207297A (en) | Hydraulic system of construction machinery | |
CN107882789B (en) | Electro-hydraulic system with negative flow control | |
JP7285736B2 (en) | Hydraulic system for construction machinery | |
CN107217694B (en) | Excavator | |
JP6151265B2 (en) | Work machine and hydraulic drive control method for work machine | |
WO2020174768A1 (en) | Working machine | |
JP6036344B2 (en) | Hybrid construction machinery | |
JP2003097505A (en) | Hydraulic circuit for working machine | |
KR102487257B1 (en) | Construction machinery | |
KR20090069687A (en) | Excavator Boom Lower Safety System |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2014543660 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112014000072 Country of ref document: DE Ref document number: 1120140000728 Country of ref document: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14878807 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14878807 Country of ref document: EP Kind code of ref document: A1 |