[go: up one dir, main page]

WO2015083244A1 - 電力変換装置、およびそれを備えたモータ駆動装置、およびそれを備えた送風機、圧縮機、およびそれらを備えた空気調和機、冷蔵庫、ならびに冷凍機 - Google Patents

電力変換装置、およびそれを備えたモータ駆動装置、およびそれを備えた送風機、圧縮機、およびそれらを備えた空気調和機、冷蔵庫、ならびに冷凍機 Download PDF

Info

Publication number
WO2015083244A1
WO2015083244A1 PCT/JP2013/082509 JP2013082509W WO2015083244A1 WO 2015083244 A1 WO2015083244 A1 WO 2015083244A1 JP 2013082509 W JP2013082509 W JP 2013082509W WO 2015083244 A1 WO2015083244 A1 WO 2015083244A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
lower arm
inverter
arm switching
voltage
Prior art date
Application number
PCT/JP2013/082509
Other languages
English (en)
French (fr)
Inventor
啓介 植村
卓也 下麥
有澤 浩一
篠本 洋介
成雄 梅原
慎一郎 浦
誠 谷川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201380081301.5A priority Critical patent/CN105765851B/zh
Priority to US15/027,735 priority patent/US9780717B2/en
Priority to JP2015551322A priority patent/JP6138276B2/ja
Priority to PCT/JP2013/082509 priority patent/WO2015083244A1/ja
Publication of WO2015083244A1 publication Critical patent/WO2015083244A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters with pulse width modulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • H02M7/53876Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output based on synthesising a desired voltage vector via the selection of appropriate fundamental voltage vectors, and corresponding dwelling times
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/068Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the fans
    • F25D2317/0681Details thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power conversion device, a motor driving device including the power conversion device, a blower and a compressor including the power conversion device, an air conditioner including the same, a refrigerator, and a refrigerator.
  • a power conversion device that generates a three-phase AC voltage and supplies it to a load by combining ON / OFF states of switching elements constituting a PWM-modulated three-phase inverter, for example, each phase flowing through a three-phase load such as a motor The current is detected, and the load is controlled based on each phase current.
  • each phase current flowing through the three-phase load there are a current sensor connected in series with a switching element constituting the inverter, a shunt resistor, and the like.
  • a configuration for providing a shunt resistor a configuration for providing a power shunt resistor for detecting a current between the DC power supply and the inverter device, or detecting a phase current of the corresponding phase between the lower arm switching element and the negative side of the DC power supply.
  • the resistance value of the shunt resistor needs to be sufficiently small so as not to affect the operation of the inverter and not to consume extra power.
  • Patent Document 1 has a configuration having a lower arm shunt resistor and a power supply shunt resistor, and it is necessary to amplify the voltages at both ends and take them into the control means.
  • the technique described in Patent Document 1 has a configuration having a lower arm shunt resistor and a power supply shunt resistor, and it is necessary to amplify the voltages at both ends and take them into the control means.
  • the configuration in which the lower arm shunt resistor and the power supply shunt resistor for two phases are provided at least three amplifying means are required, and the lower arm shunt resistor and the power supply shunt resistor for three phases are provided.
  • the configuration requires at least four amplifying means.
  • Patent Document 1 there is a problem in that the apparatus may be increased in size and cost due to an increase in amplification means, suppression of variations in detected values, complicated control procedures, and the like. there were.
  • the present invention has been made in view of the above, and a power conversion device capable of extending the detection period of each phase current without causing an increase in size and cost of the device, and a motor including the same It is an object of the present invention to provide a drive device, a blower provided with the drive device, a compressor, and an air conditioner, a refrigerator, and a refrigerator provided with the drive device.
  • the present invention is a power conversion device that converts DC power supplied from a DC power source into AC power, and each phase upper arm switching element and each phase lower arm
  • An inverter configured by connecting arms having switching elements in parallel; a power shunt resistor provided between the negative voltage side of the DC power supply and the inverter; and the lower arm of each phase for at least two phases
  • a lower arm shunt resistor provided between a switching element and the power supply shunt resistor, and a connection point between each phase lower arm switching element and the lower arm shunt resistor and a negative voltage side of the DC power supply
  • a voltage detection unit for detecting a voltage
  • each phase upper arm switching element and each phase lower arm switch based on each detection value of the voltage detection unit
  • a control unit that generates a drive signal corresponding to the switching element, and a time during which all the upper arm switching elements are in an ON state and a time during which all the lower arm switching elements are in an ON state within one cycle of switching of the inverter
  • the switching loss can be suppressed while increasing the detection period of each phase current without increasing the size and cost of the device, and improving the accuracy of control based on each phase current. There is an effect.
  • FIG. 1 is a diagram of a configuration example of the power conversion apparatus according to the first embodiment.
  • FIG. 2 is a diagram of a configuration example of a control unit of the power conversion device according to the first embodiment.
  • FIG. 3 is a schematic diagram showing the relationship between the ON / OFF state of each phase upper arm switching element and the output voltage vector of the inverter in the space vector modulation method.
  • FIG. 4 is a diagram illustrating the definition of the output voltage vector of the inverter.
  • FIG. 5 is a diagram illustrating currents that flow through each part of the inverter when the output voltage vector of the inverter is the real vector V1 (100).
  • FIG. 6 is a diagram illustrating a current flowing through each part of the inverter when the output voltage vector of the inverter is a real vector V2 (010).
  • FIG. 7 is a diagram illustrating currents that flow through each part of the inverter when the output voltage vector of the inverter is the real vector V3 (001).
  • FIG. 8 is a diagram illustrating currents that flow through each part of the inverter when the output voltage vector of the inverter is the zero vector V0 (000).
  • FIG. 9 is a diagram illustrating currents that flow through each part of the inverter when the output voltage vector of the inverter is the real vector V4 (110).
  • FIG. 10 is a diagram illustrating currents that flow through each part of the inverter when the output voltage vector of the inverter is the real vector V5 (011).
  • FIG. 11 is a diagram illustrating currents that flow through each part of the inverter when the output voltage vector of the inverter is the real vector V6 (101).
  • FIG. 12 is a diagram of a configuration example of the power conversion apparatus according to the second embodiment.
  • FIG. 13 is a diagram of a configuration example of a control unit of the power conversion device according to the second embodiment.
  • FIG. 14 is a diagram illustrating currents that flow through each part of the inverter when the output voltage vector of the inverter is the real vector V1 (100).
  • FIG. 15 is a diagram illustrating a current flowing through each part of the inverter when the output voltage vector of the inverter is a real vector V2 (010).
  • FIG. 16 is a diagram illustrating a current flowing through each part of the inverter when the output voltage vector of the inverter is a real vector V3 (001).
  • FIG. 17 is a diagram illustrating a current flowing through each part of the inverter when the output voltage vector of the inverter is the zero vector V0 (000).
  • FIG. 18 is a diagram illustrating a current flowing through each part of the inverter when the output voltage vector of the inverter is a real vector V4 (110).
  • FIG. 19 is a diagram illustrating a current flowing through each part of the inverter when the output voltage vector of the inverter is a real vector V5 (011).
  • FIG. 20 is a diagram illustrating a current flowing through each part of the inverter when the output voltage vector of the inverter is a real vector V6 (101).
  • FIG. 1 is a diagram of a configuration example of the power conversion apparatus according to the first embodiment.
  • the power conversion device 100 converts DC power supplied from the DC power source 1 into three-phase AC power supplied to a load device (a motor in the example illustrated in FIG. 1) 9. It is configured to do.
  • the power conversion apparatus 100 includes upper arm switching elements 3a to 3c (here, 3a: U phase, 3b: V phase) as main components for supplying three-phase AC power to the motor 9.
  • lower arm switching elements 3d to 3f (here, 3d: U-phase, 3e: V-phase, 3f: W-phase)
  • inverter 2 composed of three arms, and each phase upper arm
  • Six drive signals corresponding to the switching elements 3a to 3c and the respective phase lower arm switching elements 3d to 3f are generated and outputted to the respective phase upper arm switching elements 3a to 3c and the respective phase lower arm switching elements 3d to 3f, respectively.
  • a control unit 7 a control unit 7.
  • Each phase upper arm switching element 3a to 3c and each phase lower arm switching element 3d to 3f are respectively connected to anti-reflective diodes 4a to 4f (here, 4a: U-phase upper arm, 4b: V-phase upper arm, 4c: W-phase upper arm, 4d: U-phase lower arm, 4e: V-phase lower arm, 4f: W-phase lower arm).
  • the control unit 7 is constituted by, for example, a microcomputer or a CPU, and is an arithmetic / control unit that converts an input analog voltage signal into a digital value and performs arithmetic / control in accordance with a control application of the motor 9.
  • the power conversion device 100 includes a power supply shunt resistor 5 provided between the negative voltage side of the DC power supply 1 (GND in the example shown in FIG. 1) and the inverter 2, and three arms.
  • Lower arm shunt resistors 6a and 6b (here 6a :) provided between two of the lower arm switching elements 3d and 3e for each phase (here, U phase and V phase) and the power supply shunt resistor 5 respectively.
  • lower arm voltage for each phase Vu and Vv for detecting lower phase voltage detectors 8a and 8b (here, 8a: U phase, 8b: V phase).
  • the resistance value of the power supply shunt resistor 5 is Rdc
  • the resistance values of the lower arm shunt resistors 6a and 6b are Rsh.
  • FIG. 2 is a diagram of a configuration example of the control unit of the power conversion apparatus according to the first embodiment.
  • the control unit 7 of the power conversion device 100 according to the first embodiment applies each phase winding of the motor 9 to each phase winding based on the phase lower arm voltages Vu and Vv detected by the phase lower arm voltage detection units 8a and 8b.
  • the voltage command value calculation unit 12 for calculating the command values VLu *, VLv *, VLw *, and the phase voltage command values VLu *, VLv *, VLw * output from the voltage command value calculation unit 12 Arm switching elements 3a-3c and And the drive signal generator 13 for generating the drive signals Sup, Sun, Svp, Svn, Swp, Swn output to the lower arm switching elements 3d to 3f and the current i ⁇ , i ⁇ after the coordinate conversion, the rotor of the motor 9
  • a rotor rotation position calculation unit 14 that calculates the rotation position ⁇ , and a carrier signal generation unit that generates a carrier signal fc * such as a triangular wave or a sawtooth wave that is a reference frequency
  • the current calculation unit 10 includes the phase voltage command values VLu *, VLv *, and VLw * output from the voltage command value calculation unit 12, the carrier signal fc * output from the carrier signal generation unit 15, and the rotor rotational position calculation unit 14. Is used to determine the ON / OFF state of each phase upper arm switching element 3a to 3c in the space vector modulation method to be described later, and the ON / OFF state of each phase upper arm switching element 3a to 3c is determined. Each phase current iu, iv, iw according to the state is calculated. The calculation method of each phase current iu, iv, iw according to the ON / OFF state of each phase upper arm switching element 3a-3c in this space vector modulation method will be described later.
  • the coordinate conversion unit 11 uses the rotor rotational position ⁇ calculated by the rotor rotational position calculation unit 14 to perform coordinate conversion of each phase current iu, iv, iw expressed in the three-phase fixed coordinate system into a two-phase rotational coordinate system. Then, currents i ⁇ and i ⁇ after coordinate conversion are calculated.
  • the voltage command value calculation unit 12 outputs the drive signals Sup, Sun, Svp, Svn, Swp, output from the drive signal generation unit 13 in accordance with the coordinate converted currents i ⁇ , i ⁇ output from the coordinate conversion unit 11.
  • Each phase voltage command value VLu *, VLv *, converted into the on duty of Swn that is, the ratio of the ON time of each phase upper arm switching element 3a to 3c and each phase lower arm switching element 3d to 3f in one switching cycle) VLw * is calculated.
  • the drive signal generator 13 compares each phase voltage command value VLu *, VLv *, VLw * output from the voltage command value calculator 12 with the carrier signal fc * output from the carrier signal generator 15, and
  • the drive signals Sup, Sun, Svp, Svn, Swp, and Swn output to the switching elements 3a to 3f are generated based on the magnitude relationship between the phase voltage command values VLu *, VLv *, and VLw * and the carrier signal fc *.
  • the rotor rotation position calculation unit 14 calculates the rotor rotation position ⁇ based on the currents i ⁇ and i ⁇ after coordinate conversion, and passes the rotor rotation position ⁇ to the coordinate conversion unit 11 and the voltage command value calculation unit 12.
  • control part 7 is one structural example for controlling the motor 9 which is a load apparatus, and this invention is not restrict
  • FIG. 1 is one structural example for controlling the motor 9 which is a load apparatus, and this invention is not restrict
  • FIG. 3 is a schematic diagram showing the relationship between the ON / OFF state of each phase upper arm switching element and the output voltage vector of the inverter in the space vector modulation method
  • FIG. 4 shows the definition of the output voltage vector of the inverter 2.
  • FIG. 1 the case where each phase upper arm switching element 3a-3c is in the ON state is defined as “1”, and the case where it is in the OFF state is defined as “0”.
  • the ON / OFF states of the upper arm switching elements 3a to 3c of the respective phases are two types, that is, an ON state (that is, “1”) and an OFF state (that is, “0”).
  • the output voltage vector of the inverter 2 is ((the state of the U phase upper arm switching element 3a) (the V phase upper
  • the state of the arm switching element 3b) (the state of the W-phase upper arm switching element 3c)) is defined as V0 (000), V1 (100), V2 (010), V3 (001), V4 (110),
  • V0 (000) and V7 (111) having no magnitude are called zero vectors, and other magnitudes are equal and V1 (100), having a phase difference of 60 degrees from each other.
  • V2 (010), V3 (001), V4 (110), V5 (011), and V6 (101) are called real vectors.
  • the control unit 7 combines these zero vectors V0 and V7 and the real vectors V1 to V6 in an arbitrary combination to correspond to the phase upper arm switching elements 3a to 3c and the phase lower arm switching elements 3d to 3f.
  • a drive signal of a three-phase PWM voltage is generated.
  • the drive signal of the three-phase PWM voltage is generated so that the time ratio at which the inverter 2 outputs the zero vectors V0 and V7 is 1: 1.
  • the zero vectors V0 and V7 have different switching patterns, Considering that both are voltage vectors having no magnitude, it is possible to change the time ratio for outputting the zero vectors V0 and V7.
  • FIG. 5 is a diagram showing currents that flow through each part of the inverter when the output voltage vector of the inverter is the real vector V1 (100).
  • the currents flowing from the high potential side to the low potential side of each phase winding of the motor 9 are iu, iv, and iw, respectively.
  • the description is the same as in FIG.
  • the U-phase is directed from the positive voltage side of the DC power supply 1 to the motor 9 via the U-phase upper arm switching element 3a.
  • the current iu flows
  • the V-phase current iv flows from the motor 9 to the negative voltage side of the DC power supply 1 via the V-phase lower arm switching element 3e, the V-phase lower arm shunt resistor 6b, and the power supply shunt resistor 5, and the W-phase lower A W-phase current iw flows toward the negative voltage side of the DC power supply 1 via the arm switching element 3 f and the power supply shunt resistor 5.
  • the U-phase lower arm voltage Vu and the V-phase lower arm voltage Vv can be expressed by the following equations (1) and (2).
  • Vu iu ⁇ Rdc (1)
  • Vv iu * Rdc + iv * Rsh (2)
  • each phase current iu, iv, iw can be calculated using the above equations (1), (2), (3).
  • FIG. 6 is a diagram showing currents that flow through each part of the inverter when the output voltage vector of the inverter is the real vector V2 (010).
  • the V-phase is directed from the positive voltage side of the DC power supply 1 to the motor 9 via the V-phase upper arm switching element 3b.
  • the current iv flows, the U-phase current iu flows from the motor 9 to the negative voltage side of the DC power supply 1 via the U-phase lower arm switching element 3d, the U-phase lower arm shunt resistor 6a, and the power supply shunt resistor 5, and the W-phase lower A W-phase current iw flows toward the negative voltage side of the DC power supply 1 via the arm switching element 3 f and the power supply shunt resistor 5.
  • the U-phase lower arm voltage Vu and the V-phase lower arm voltage Vv can be expressed by the following equations (4) and (5).
  • Vu iv ⁇ Rdc + iu ⁇ Rsh (4)
  • Vv iv ⁇ Rdc (5)
  • phase currents iu, iv, and iw can be calculated using the above equations (4), (5), and (6).
  • FIG. 7 is a diagram showing currents that flow through each part of the inverter when the output voltage vector of the inverter is the real vector V3 (001).
  • the W-phase is directed from the positive voltage side of the DC power supply 1 to the motor 9 via the W-phase upper arm switching element 3c.
  • the current iw flows, the U-phase current iu flows from the motor 9 to the negative voltage side of the DC power supply 1 via the U-phase lower arm switching element 3d, the U-phase lower arm shunt resistor 6a, and the power supply shunt resistor 5, and the V-phase lower A V-phase current iv flows toward the negative voltage side of the DC power supply 1 via the arm switching element 3e and the power supply shunt resistor 5.
  • the U-phase lower arm voltage Vu and the V-phase lower arm voltage Vv can be expressed by the following equations (7) and (8).
  • Vu iw ⁇ Rdc + iu ⁇ Rsh (7)
  • Vv iw ⁇ Rdc + iv ⁇ Rsh (8)
  • each phase current iu, iv, iw can be calculated using the above equations (7), (8), (9).
  • FIG. 8 is a diagram showing currents that flow through each part of the inverter when the output voltage vector of the inverter is the zero vector V0 (000).
  • the current that flows through the inverter 2 when the real vector V1 (100) shifts to the zero vector V0 (000) is illustrated.
  • Vu ( ⁇ iu) ⁇ Rsh (10)
  • Vv iv ⁇ Rsh (11)
  • phase currents iu, iv, and iw can be calculated using the above equations (10), (11), and (12).
  • the U-phase lower arm By detecting the voltage Vu and the V-phase lower arm voltage Vv, each phase current iu, iv, iw flowing in each phase winding of the motor 9 can be calculated.
  • FIG. 9 is a diagram showing currents that flow through each part of the inverter when the output voltage vector of the inverter is the real vector V4 (110).
  • the U-phase is directed from the positive voltage side of the DC power supply 1 to the motor 9 via the U-phase upper arm switching element 3a.
  • a current iu flows, a V-phase current iv flows toward the motor 9 via the V-phase upper arm switching element 3 b, and a negative voltage of the DC power source 1 from the motor 9 via the W-phase lower arm switching element 3 f and the power supply shunt resistor 5.
  • a W-phase current iw flows to the side.
  • the U-phase lower arm voltage Vu and the V-phase lower arm voltage Vv can be expressed by the following equations (13) and (14).
  • Vu iw ⁇ Rdc (13)
  • Vv iw ⁇ Rdc (14)
  • phase currents iu, iv, and Iw can be calculated using either one of the above formulas (13) and (14) and the formula (16). it can.
  • FIG. 10 is a diagram showing currents that flow through each part of the inverter when the output voltage vector of the inverter is the real vector V5 (011).
  • the V-phase is directed from the positive voltage side of the DC power supply 1 to the motor 9 via the V-phase upper arm switching element 3b.
  • a current iv flows, and a W-phase current iw flows toward the motor 9 via the W-phase upper arm switching element 3c.
  • the U-phase lower arm switching element 3d, the U-phase lower arm shunt resistor 6a, and the power supply shunt resistor 5 are transmitted from the motor 9 to the motor 9.
  • the U-phase current iu flows toward the negative voltage side of the DC power supply 1 via the via.
  • the U-phase lower arm voltage Vu and the V-phase lower arm voltage Vv can be expressed by the following equations (17) and (18).
  • Vu iu * Rdc + iu * Rsh (17)
  • Vv iu ⁇ Rdc (18)
  • phase currents iu, iv, and iw can be calculated using one of the above equations (17) and (18) and the equation (20). it can.
  • FIG. 11 is a diagram showing currents that flow through each part of the inverter when the output voltage vector of the inverter is the real vector V6 (101).
  • the U-phase is directed from the positive voltage side of the DC power supply 1 to the motor 9 via the U-phase upper arm switching element 3a.
  • a current iu flows and a W-phase current iw flows toward the motor 9 via the W-phase upper arm switching element 3c, and the V-phase lower arm switching element 3e, the V-phase lower arm shunt resistor 6b, and the power supply shunt resistor 5 are transmitted from the motor 9 to the motor 9.
  • the V-phase current iv flows toward the negative voltage side of the DC power supply 1 through the DC voltage.
  • the U-phase lower arm voltage Vu and the V-phase lower arm voltage Vv can be expressed by the following equations (21) and (22).
  • Vu iv ⁇ Rdc (21)
  • Vv iv ⁇ Rdc + iv ⁇ Rsh (22)
  • phase currents iu, iv, and iw can be calculated using one of the above equations (21) and (22) and the equation (24). it can.
  • the phase currents iu, iv, iw flowing in the phase windings of the motor 9 can be calculated.
  • each phase current can be calculated based on the lower arm voltage, and the control based on each phase current can be highly accurate.
  • the time ratio for outputting the zero vectors V0 and V7 is set to 1: 0 (that is, the time during which the upper arm switching elements are all in the ON state in one period of the inverter switching is zero), the number of times of switching is increased. Therefore, the loss in the inverter 2 can be suppressed. This is the same when the rotor rotational position ⁇ is outside the range of 0 rad or more and ⁇ / 3 or less.
  • switching elements using wide band gap semiconductors such as silicon carbide (SiC) and gallium nitride (GaN) are applied to the upper arm switching elements 3a to 3c and the lower arm switching elements 3d to 3f, and the carrier signal fc * is applied to the high frequency.
  • the switching cycle is shortened. Since the minimum delay time (for example, the sample hold time of the AD converter sample hold circuit) is necessary to detect the lower arm voltage of each phase, when the carrier signal fc * is increased in frequency, Detection may be difficult.
  • the carrier signal is changed by changing the time ratio for outputting the zero vectors V0 and V7 so that the time for outputting the zero vector V0 is longer than the minimum delay time required for detecting the lower arm voltage of each phase. Even when the frequency of fc * is increased, it is possible to realize highly accurate calculation based on the previously described calculation method of the phase currents iu, iv, and iw.
  • the power supply shunt resistor provided between the negative voltage side of the DC power supply and the inverter, and each of the two lower arms of the three arms
  • a lower arm shunt resistor provided between the switching element and the power supply shunt resistor, and a voltage between each phase lower arm switching element and each connection point of the lower arm shunt resistor and the negative voltage side of the DC power supply Since each phase lower arm voltage is detected and each phase current flowing through the load device is calculated based on each detected value, the number of voltage detection units constituted by the amplifying means is two.
  • the apparatus is smaller than the conventional configuration that requires three voltage detection units configured by amplification means. Reduction, it is possible to reduce the cost.
  • each phase current can be calculated without detecting the voltage of the power supply shunt resistor, so that the control procedure can be simplified.
  • the ratio of the time during which all the upper arm switching elements are in the ON state and the time during which all the lower arm switching elements are in the ON state within one inverter switching cycle is changed. Therefore, it is possible to flexibly cope with the increase in the frequency of the carrier signal fc *.
  • the carrier signal Even when the frequency of fc * is increased, it is possible to realize highly accurate calculation.
  • the ratio is changed so that the time during which all the upper arm switching elements are in the ON state within one switching period of the inverter becomes zero, the loss in the inverter can be suppressed through the reduction in the number of switching times. It becomes possible.
  • the apparatus can be operated flexibly. If a table associated with the modulation rate is prepared, it is possible to reduce the calculation time required for selecting a ratio corresponding to the modulation rate.
  • Embodiment 2 a lower arm shunt resistor is connected to the lower arm switching element of two phases among the U phase, the V phase, and the W phase, and the lower arm voltage of these two phases is detected, so that the load device
  • lower arm shunt resistors are connected to the lower arm switching elements of the U-phase, V-phase, and W-phase. A method for detecting the three-phase lower arm voltages and calculating the respective phase currents iu, iv, iw flowing through the load device will be described.
  • FIG. 12 is a diagram of a configuration example of the power conversion apparatus according to the second embodiment.
  • symbol is attached
  • the power conversion device 100a includes a W-phase lower arm shunt resistor 6c provided between the W-phase lower arm switching element 3f and the power supply shunt resistor 5, and W W-phase lower arm that detects a voltage (W-phase lower arm voltage) Vw between the connection point of lower-phase arm switching element 3f and W-phase lower arm shunt resistor 6c and the negative voltage side (here, GND) of DC power supply 1 And a voltage detector 8c.
  • the resistance value of the W-phase lower arm shunt resistor 6c is set to Rsh, similarly to the resistance values of the lower arm shunt resistors 6a and 6b.
  • the W-phase lower arm voltage detector 8c converts the W-phase lower arm voltage Vw to a voltage value that can be easily handled by the controller 7a. It is comprised with the amplification means for doing.
  • FIG. 13 is a diagram of a configuration example of a control unit of the power conversion apparatus according to the second embodiment.
  • the control unit 7a of the power converter 100a according to the second embodiment replaces the current calculation unit 10 in the first embodiment with each lower arm voltage detected by each lower arm voltage detection unit 8a, 8b, 8c.
  • a current calculation unit 10a that calculates the phase currents iu, iv, and iw flowing through the phase windings of the motor 9 is provided.
  • FIG. 14 is a diagram showing currents that flow through each part of the inverter when the output voltage vector of the inverter is the real vector V1 (100).
  • the currents flowing from the high potential side to the low potential side of each phase winding of the motor 9 are iu, iv, and iw, respectively.
  • the same description as FIG. 14 is used.
  • the U-phase is directed from the positive voltage side of the DC power supply 1 to the motor 9 via the U-phase upper arm switching element 3a.
  • the current iu flows
  • the V-phase current iv flows from the motor 9 to the negative voltage side of the DC power supply 1 via the V-phase lower arm switching element 3e, the V-phase lower arm shunt resistor 6b, and the power supply shunt resistor 5, and the W-phase lower A W-phase current iw flows toward the negative voltage side of the DC power supply 1 via the arm switching element 3 f and the power supply shunt resistor 5.
  • the U-phase lower arm voltage Vu, the V-phase lower arm voltage Vv, and the W-phase lower arm voltage Vw can be expressed by the following equations (25), (26), and (27).
  • Vu iu ⁇ Rdc (25)
  • Vv iu * Rdc + iv * Rsh (26)
  • Vw iu ⁇ Rdc + iw ⁇ Rsh (27)
  • phase currents iu, iv, and Iw can be calculated using the above equations (25), (26), and (27).
  • FIG. 15 is a diagram showing currents that flow through each part of the inverter when the output voltage vector of the inverter is the real vector V2 (010).
  • the V-phase is directed from the positive voltage side of the DC power supply 1 to the motor 9 via the V-phase upper arm switching element 3b.
  • the current iv flows, the U-phase current iu flows from the motor 9 to the negative voltage side of the DC power supply 1 via the U-phase lower arm switching element 3d, the U-phase lower arm shunt resistor 6a, and the power supply shunt resistor 5, and the W-phase lower A W-phase current iw flows toward the negative voltage side of the DC power supply 1 via the arm switching element 3 f and the power supply shunt resistor 5.
  • the U-phase lower arm voltage Vu, the V-phase lower arm voltage Vv, and the W-phase lower arm voltage Vw can be expressed by the following equations (28), (29), and (30).
  • Vu iv ⁇ Rdc + iu ⁇ Rsh (28)
  • Vv iv ⁇ Rdc (29)
  • Vw iv ⁇ Rdc + iw ⁇ Rsh (30)
  • each phase current iu, iv, iw can be calculated using the above equations (28), (29), (30).
  • FIG. 16 is a diagram showing currents that flow through each part of the inverter when the output voltage vector of the inverter is the real vector V3 (001).
  • the W-phase is directed from the positive voltage side of the DC power supply 1 to the motor 9 via the W-phase upper arm switching element 3c.
  • the current iw flows, the U-phase current iu flows from the motor 9 to the negative voltage side of the DC power supply 1 via the U-phase lower arm switching element 3d, the U-phase lower arm shunt resistor 6a, and the power supply shunt resistor 5, and the V-phase lower A V-phase current iv flows toward the negative voltage side of the DC power supply 1 via the arm switching element 3e and the power supply shunt resistor 5.
  • the U-phase lower arm voltage Vu, the V-phase lower arm voltage Vv, and the W-phase lower arm voltage Vw can be expressed by the following equations (31), (32), and (33).
  • Vu iw ⁇ Rdc + iu ⁇ Rsh (31)
  • Vv iw ⁇ Rdc + iv ⁇ Rsh (32)
  • Vw iw ⁇ Rdc (33)
  • each phase current iu, iv, iw can be calculated using the above equations (31), (32), (33).
  • FIG. 17 is a diagram showing currents flowing through each part of the inverter when the output voltage vector of the inverter is the zero vector V0 (000).
  • the current that flows through the inverter 2 when the real vector V1 (100) shifts to the zero vector V0 (000) is illustrated.
  • Vu ( ⁇ iu) ⁇ Rsh (34)
  • Vv iv ⁇ Rsh (35)
  • Vw iw ⁇ Rsh (36)
  • each phase current iu, iv, iw can be calculated using the above equations (34), (35), (36).
  • the U-phase lower arm By detecting the voltage Vu, the V-phase lower arm voltage Vv, and the W-phase lower arm voltage Vw, the respective phase currents iu, iv, iw flowing in the respective phase windings of the motor 9 can be calculated.
  • phase currents iu, iv, and iw are obtained without using Kirchhoff's first law and the phase current equilibrium conditions, the present invention is applicable even when the motor 9 has an unbalanced load.
  • FIG. 18 is a diagram showing currents that flow through each part of the inverter when the output voltage vector of the inverter is the real vector V4 (110).
  • the U-phase is directed from the positive voltage side of the DC power supply 1 to the motor 9 via the U-phase upper arm switching element 3a.
  • a current iu flows, and a V-phase current iv flows to the motor 9 via the V-phase upper arm switching element 3b.
  • the W-phase lower arm switching element 3f, the W-phase lower arm shunt resistor 6c, and the power supply shunt resistor 5 are transmitted from the motor 9 to the motor 9.
  • a W-phase current iw flows toward the negative voltage side of the DC power supply 1 via the DC power supply 1.
  • the U-phase lower arm voltage Vu, the V-phase lower arm voltage Vv, and the W-phase lower arm voltage Vw can be expressed by the following equations (37), (38), and (39).
  • Vu iw ⁇ Rdc (37)
  • Vv iw ⁇ Rdc (38)
  • Vw iw ⁇ Rdc + iw ⁇ Rsh (39)
  • each phase current iu, iv is calculated using any one of the above formulas (37), (38), and (39) and formula (41). , Iw can be calculated.
  • FIG. 19 is a diagram showing currents that flow through each part of the inverter when the output voltage vector of the inverter is the real vector V5 (011).
  • the V-phase is moved from the positive voltage side of the DC power supply 1 to the motor 9 via the V-phase upper arm switching element 3b.
  • a current iv flows, and a W-phase current iw flows from the motor 9 to the motor 9 via the W-phase upper arm switching element 3c.
  • the U-phase lower arm switching element 3d, the U-phase lower arm shunt resistor 6a, and the power supply shunt resistor 5 The U-phase current iu flows toward the negative voltage side of the DC power supply 1 via the via.
  • the U-phase lower arm voltage Vu, the V-phase lower arm voltage Vv, and the W-phase lower arm voltage Vw can be expressed by the following equations (42), (43), and (44).
  • Vu iu * Rdc + iu * Rsh (42)
  • Vv iu ⁇ Rdc (43)
  • Vw iu ⁇ Rdc (44)
  • each phase current iu, iv is calculated using any one of the above equations (42), (43), and (44) and the equation (46). , Iw can be calculated.
  • FIG. 20 is a diagram showing currents that flow through each part of the inverter when the output voltage vector of the inverter is the real vector V6 (101).
  • the U-phase is directed from the positive voltage side of the DC power supply 1 to the motor 9 via the U-phase upper arm switching element 3a.
  • a current iu flows and a W-phase current iw flows toward the motor 9 via the W-phase upper arm switching element 3c, and the V-phase lower arm switching element 3e, the V-phase lower arm shunt resistor 6b, and the power supply shunt resistor 5 are transmitted from the motor 9 to the motor 9.
  • the V-phase current iv flows toward the negative voltage side of the DC power supply 1 through the DC voltage.
  • the U-phase lower arm voltage Vu, the V-phase lower arm voltage Vv, and the W-phase lower arm voltage Vw can be expressed by the following equations (47), (48), and (49).
  • Vu iv ⁇ Rdc (47)
  • Vv iv ⁇ Rdc + iv ⁇ Rsh (48)
  • Vw iv ⁇ Rdc (49)
  • each phase current iu, iv is calculated using any one of the above equations (47), (48), (49) and (51). , Iw can be calculated.
  • each phase current iu, iv, iw flowing in each phase winding of the motor 9 can be calculated.
  • the lower arm shunt resistor is provided for three phases with respect to the configuration of the first embodiment, and each of the lower arm switching element and the lower arm shunt resistor is provided for each phase. Since the three arm voltages under each phase, which are each voltage between the connection point and the negative voltage side of the DC power supply, are detected, and each phase current flowing through the load device is calculated based on each detected value.
  • the number of voltage detectors constituted by the amplifying means is three. Similarly, the voltage detector constituted by the amplifying means is provided even if the lower arm shunt resistor and the power supply shunt resistor for three phases are provided.
  • the apparatus can be reduced in size and cost as compared with the conventional configuration requiring four.
  • each phase current can be calculated not only when the output voltage vector of the inverter is the zero vector V0 but also when it is the real vectors V1 to V6. The accuracy of control based on current can be improved.
  • each phase current can be obtained without using Kirchhoff's first law or the phase current balance condition. This is applicable even when the load device is an unbalanced load.
  • the number of voltage vectors output from the inverter 2 is reduced within one cycle of the carrier signal fc *.
  • the loss in the inverter 2 can be suppressed.
  • the time ratio for outputting the zero vectors V0 and V7 is set to 1: 0, the number of times of switching is reduced, so that the loss in the inverter 2 can be suppressed. This is the same when the rotor rotational position ⁇ is outside the range of 0 rad or more and ⁇ / 3 or less.
  • switching elements using wide band gap semiconductors such as silicon carbide (SiC) and gallium nitride (GaN) are applied to the upper arm switching elements 3a to 3c and the lower arm switching elements 3d to 3f.
  • SiC silicon carbide
  • GaN gallium nitride
  • the carrier signal is changed by changing the time ratio for outputting the zero vectors V0 and V7 so that the time for outputting the zero vector V0 is longer than the minimum delay time required for detecting the lower arm voltage of each phase. Even when the frequency of fc * is increased, it is possible to realize highly accurate calculation based on the previously described calculation method of the phase currents iu, iv, and iw.
  • the power conversion device for the three-phase motor using the three-phase alternating current has been described as an example.
  • the present invention can also be applied to the power converter.
  • the power converter device demonstrated in embodiment mentioned above is applied to the motor drive device which uses a motor as a load
  • This motor drive device is applied to air blowers and compressors, such as an air conditioner, a refrigerator, and a refrigerator.
  • air blowers and compressors such as an air conditioner, a refrigerator, and a refrigerator.
  • the power conversion device As described above, the power conversion device according to the present invention, the motor driving device including the power conversion device, the blower and the compressor including the power conversion device, the air conditioner including the same, the refrigerator, and the refrigerator include PWM modulation. This is useful for a configuration equipped with a three-phase inverter, and in particular, increases the detection period of each phase current and increases the accuracy of control based on each phase current without increasing the size and cost of the device. It is suitable as a technology that can achieve this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inverter Devices (AREA)

Abstract

 各相上アームスイッチング素子3a~3cおよび各相下アームスイッチング素子3d~3fを具備するアームを並列に接続して構成されるインバータ2、直流電源1の負電圧側とインバータとの間に設けられた電源シャント抵抗5、少なくとも2相分の各相下アームスイッチング素子と電源シャント抵抗との間にそれぞれ設けられた下アームシャント抵抗6a,6b、各相下アームスイッチング素子および下アームシャント抵抗の各接続点と直流電源の負電圧側との間の電圧を検出する電圧検出部8a,8bならびに電圧検出部の各検出値より各相上アームスイッチング素子および各相下アームスイッチング素子に対応する駆動信号を生成する制御部7を備え、インバータのスイッチングの1周期内における上アームスイッチング素子が全てON状態である時間と、下アームスイッチング素子が全てON状態である時間の比率を変更する。

Description

電力変換装置、およびそれを備えたモータ駆動装置、およびそれを備えた送風機、圧縮機、およびそれらを備えた空気調和機、冷蔵庫、ならびに冷凍機
 本発明は、電力変換装置、およびそれを備えたモータ駆動装置、およびそれを備えた送風機、圧縮機、およびそれらを備えた空気調和機、冷蔵庫、ならびに冷凍機に関する。
 PWM変調方式の3相インバータを構成するスイッチング素子のON/OFF状態を組み合わせることにより、3相交流電圧を生成して負荷に供給する電力変換装置では、例えばモータ等の3相負荷に流れる各相電流を検出し、その各相電流に基づいて負荷を制御している。
 3相負荷に流れる各相電流を検出する手段としては、インバータを構成するスイッチング素子に直列に接続された電流センサやシャント抵抗などがある。
 シャント抵抗を設ける構成としては、直流電源とインバータ装置との間の電流を検出する電源シャント抵抗を設ける構成や、下アームスイッチング素子と直流電源のマイナス側との間に当該相の相電流を検出する下アームシャント抵抗を設ける構成がある。
 電源シャント抵抗や下アームシャント抵抗を設ける構成では、位相毎に検出する相電流を特定する必要があり、制御ソフトが複雑化する。また、電源シャント抵抗を設ける構成では、1相分の電流しか検出できない場合に、2相分の電流を検出するために通電調節を行う必要がある。つまり、1スイッチング周期において各相電流を検出する期間が狭い範囲に限定される。このため、例えば、「電源シャント抵抗と、少なくとも2相分の下アームシャント抵抗を設けて、下アームシャント抵抗により検出できない相電流を、電源シャント抵抗により検出する」ことにより、簡単な制御ソフトで相電流の検出ができるインバータ装置が開示されている(例えば、特許文献1)。
特開2006-67747号公報
 シャント抵抗を設ける構成では、インバータの動作に影響することなく、また、余分な電力を消費することのないように、シャント抵抗の抵抗値は十分に小さいものとする必要がある。このシャント抵抗に流れる電流を検出するためには、シャント抵抗の両端電圧を増幅して制御手段に取り込む必要がある。つまり、制御手段の前段に増幅手段を設ける必要がある。
 ここで、上記特許文献1に記載された技術は、下アームシャント抵抗と電源シャント抵抗とを有する構成であり、両者の両端電圧を増幅して制御手段に取り込む必要があった。増幅手段の数について補足すると、2相分の下アームシャント抵抗と電源シャント抵抗とを設ける構成では、少なくとも3つの増幅手段が必要となり、3相分の下アームシャント抵抗と電源シャント抵抗とを設ける構成では、少なくとも4つの増幅手段が必要となる。
 したがって、上記特許文献1に記載された技術では、増幅手段の増加、検出値のばらつきの抑制、制御手順の複雑化等に伴い、装置の大型化や高コスト化を招く場合があるという問題があった。
 本発明は、上記に鑑みてなされたものであって、装置の大型化や高コスト化を招くことなく、各相電流の検出期間を拡大することができる電力変換装置、およびそれを備えたモータ駆動装置、およびそれを備えた送風機、圧縮機、およびそれらを備えた空気調和機、冷蔵庫、ならびに冷凍機を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、直流電源から供給される直流電力を交流電力に変換する電力変換装置であって、各相上アームスイッチング素子および各相下アームスイッチング素子を具備するアームを並列に接続して構成されるインバータと、前記直流電源の負電圧側と前記インバータとの間に設けられた電源シャント抵抗と、少なくとも2相分の前記各相下アームスイッチング素子と前記電源シャント抵抗との間にそれぞれ設けられた下アームシャント抵抗と、前記各相下アームスイッチング素子および前記下アームシャント抵抗の各接続点と前記直流電源の負電圧側との間の電圧を検出する電圧検出部と、前記電圧検出部の各検出値より前記各相上アームスイッチング素子および前記各相下アームスイッチング素子に対応する駆動信号を生成する制御部と、を備え、前記インバータのスイッチングの1周期内における上アームスイッチング素子が全てON状態である時間と、下アームスイッチング素子が全てON状態である時間の比率を変更することを特徴とする。
 本発明によれば、装置の大型化や高コスト化を招くことなく、各相電流の検出期間を拡大して、各相電流に基づく制御の高精度化を図りつつ、スイッチング損失を抑制できる、という効果を奏する。
図1は、実施の形態1にかかる電力変換装置の一構成例を示す図である。 図2は、実施の形態1にかかる電力変換装置の制御部の一構成例を示す図である。 図3は、空間ベクトル変調方式における各相上アームスイッチング素子のON/OFF状態とインバータの出力電圧ベクトルとの関係を示す模式図である。 図4は、インバータの出力電圧ベクトルの定義を示す図である。 図5は、インバータの出力電圧ベクトルが実ベクトルV1(100)である場合に、インバータの各部に流れる電流を示す図である。 図6は、インバータの出力電圧ベクトルが実ベクトルV2(010)である場合に、インバータの各部に流れる電流を示す図である。 図7は、インバータの出力電圧ベクトルが実ベクトルV3(001)である場合に、インバータの各部に流れる電流を示す図である。 図8は、インバータの出力電圧ベクトルがゼロベクトルV0(000)である場合に、インバータの各部に流れる電流を示す図である。 図9は、インバータの出力電圧ベクトルが実ベクトルV4(110)である場合に、インバータの各部に流れる電流を示す図である。 図10は、インバータの出力電圧ベクトルが実ベクトルV5(011)である場合に、インバータの各部に流れる電流を示す図である。 図11は、インバータの出力電圧ベクトルが実ベクトルV6(101)である場合に、インバータの各部に流れる電流を示す図である。 図12は、実施の形態2にかかる電力変換装置の一構成例を示す図である。 図13は、実施の形態2にかかる電力変換装置の制御部の一構成例を示す図である。 図14は、インバータの出力電圧ベクトルが実ベクトルV1(100)である場合に、インバータの各部に流れる電流を示す図である。 図15は、インバータの出力電圧ベクトルが実ベクトルV2(010)である場合に、インバータの各部に流れる電流を示す図である。 図16は、インバータの出力電圧ベクトルが実ベクトルV3(001)である場合に、インバータの各部に流れる電流を示す図である。 図17は、インバータの出力電圧ベクトルがゼロベクトルV0(000)である場合に、インバータの各部に流れる電流を示す図である。 図18は、インバータの出力電圧ベクトルが実ベクトルV4(110)である場合に、インバータの各部に流れる電流を示す図である。 図19は、インバータの出力電圧ベクトルが実ベクトルV5(011)である場合に、インバータの各部に流れる電流を示す図である。 図20は、インバータの出力電圧ベクトルが実ベクトルV6(101)である場合に、インバータの各部に流れる電流を示す図である。
 以下に添付図面を参照し、本発明の実施の形態にかかる電力変換装置について説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。
実施の形態1.
 図1は、実施の形態1にかかる電力変換装置の一構成例を示す図である。図1に示す例では、実施の形態1にかかる電力変換装置100は、直流電源1から供給される直流電力を負荷装置(図1に示す例ではモータ)9に供給する3相交流電力に変換する構成としている。
 図1に示すように、電力変換装置100は、モータ9に3相交流電力を供給するための主たる構成要素として、上アームスイッチング素子3a~3c(ここでは、3a:U相、3b:V相、3c:W相)および下アームスイッチング素子3d~3f(ここでは、3d:U相、3e:V相、3f:W相)からなる3つのアームで構成されるインバータ2と、各相上アームスイッチング素子3a~3cおよび各相下アームスイッチング素子3d~3fに対応する6つの駆動信号を生成して、それぞれ各相上アームスイッチング素子3a~3cおよび各相下アームスイッチング素子3d~3fに出力する制御部7とを備えている。各相上アームスイッチング素子3a~3cおよび各相下アームスイッチング素子3d~3fは、それぞれ逆並列接続された還流ダイオード4a~4f(ここでは、4a:U相上アーム、4b:V相上アーム、4c:W相上アーム、4d:U相下アーム、4e:V相下アーム、4f:W相下アーム)を含み構成されている。
 制御部7は、例えばマイコンやCPU等で構成され、入力されたアナログの電圧信号をデジタル値に変換して、モータ9の制御アプリケーションに応じた演算・制御を行う演算・制御手段である。
 また、実施の形態1にかかる電力変換装置100は、直流電源1の負電圧側(図1に示す例ではGND)とインバータ2との間に設けられた電源シャント抵抗5と、3つのアームのうちの2つ(ここでは、U相およびV相)の各相下アームスイッチング素子3d,3eと電源シャント抵抗5との間にそれぞれ設けられた下アームシャント抵抗6a,6b(ここでは、6a:U相、6b:V相)と、各相下アームスイッチング素子3d,3eおよび下アームシャント抵抗6a,6bの各接続点と直流電源1の負電圧側(ここではGND)との間の各電圧(以下、「各相下アーム電圧」という)Vu,Vvを検出する各相下アーム電圧検出部8a,8b(ここでは、8a:U相、8b:V相)とを備えている。なお、図1に示す例では、電源シャント抵抗5の抵抗値をRdc、下アームシャント抵抗6a,6bの抵抗値をRshとしている。
 図2は、実施の形態1にかかる電力変換装置の制御部の一構成例を示す図である。実施の形態1にかかる電力変換装置100の制御部7は、各相下アーム電圧検出部8a,8bにより検出された各相下アーム電圧Vu,Vvに基づいて、モータ9の各相巻線に流れる各相電流iu,iv,iwを演算する電流演算部10、電流演算部10の出力である各相電流iu,iv,iwを三相固定座標系から二相回転座標系へ変換する座標変換部11、各相電流iu,iv,iwを座標変換部11で座標変換した、座標変換後の電流iγ,iδに基づいて、インバータ2からモータ9の各相巻線に出力される各相電圧指令値VLu*,VLv*,VLw*を算出する電圧指令値算出部12、電圧指令値算出部12から出力される各相電圧指令値VLu*,VLv*,VLw*に基づいて、各相上アームスイッチング素子3a~3cおよび各相下アームスイッチング素子3d~3fに出力する各駆動信号Sup,Sun,Svp,Svn,Swp,Swnを生成する駆動信号生成部13、座標変換後の電流iγ,iδより、モータ9のロータ回転位置θを演算するロータ回転位置演算部14と、各駆動信号Sup,Sun,Svp,Svn,Swp,Swnの基準周波数となる三角波や鋸歯波等のキャリア信号fc*を生成するキャリア信号生成部15を備えている。
 電流演算部10は、電圧指令値算出部12から出力される各相電圧指令値VLu*,VLv*,VLw*、キャリア信号生成部15から出力されるキャリア信号fc*、ロータ回転位置演算部14で演算したロータ回転位置θを用いて、後述する空間ベクトル変調方式における各相上アームスイッチング素子3a~3cのON/OFF状態を判別し、この各相上アームスイッチング素子3a~3cのON/OFF状態に応じた各相電流iu,iv,iwを演算する。この空間ベクトル変調方式における各相上アームスイッチング素子3a~3cのON/OFF状態に応じた各相電流iu,iv,iwの演算手法については後述する。
 座標変換部11は、ロータ回転位置演算部14で演算したロータ回転位置θを用いて、三相固定座標系で表された各相電流iu,iv,iwを二相回転座標系へ座標変換し、座標変換後の電流iγ,iδを算出する。
 電圧指令値算出部12は、座標変換部11から出力される座標変換後の電流iγ,iδに応じて、駆動信号生成部13から出力される各駆動信号Sup,Sun,Svp,Svn,Swp,Swnのオンデューティー(つまり、1スイッチング周期における各相上アームスイッチング素子3a~3cおよび各相下アームスイッチング素子3d~3fのON時間の割合)に換算した各相電圧指令値VLu*,VLv*,VLw*を算出する。
 駆動信号生成部13は、電圧指令値算出部12から出力された各相電圧指令値VLu*,VLv*,VLw*とキャリア信号生成部15から出力されたキャリア信号fc*とを比較し、各相電圧指令値VLu*,VLv*,VLw*とキャリア信号fc*との大小関係により、各スイッチング素子3a~3fに出力する各駆動信号Sup,Sun,Svp,Svn,Swp,Swnを生成する。
 ロータ回転位置演算部14では座標変換後の電流iγ,iδに基づきロータ回転位置θを演算し、座標変換部11と電圧指令値算出部12へロータ回転位置θを渡す。
 なお、上述した制御部7の構成は、負荷装置であるモータ9を制御するための一構成例であり、この制御部7の構成や制御手法により、本発明が制限されるものではない。
 つぎに、PWM変調による各相上アームスイッチング素子3a~3cおよび各相下アームスイッチング素子3d~3fへの駆動信号を生成する、空間ベクトル変調方式について説明する。図3は、空間ベクトル変調方式における各相上アームスイッチング素子のON/OFF状態とインバータの出力電圧ベクトルとの関係を示す模式図であり、図4は、インバータ2の出力電圧ベクトルの定義を示す図である。なお、図3および図4に示す例では、各相上アームスイッチング素子3a~3cがON状態である場合を「1」、OFF状態である場合を「0」と定義する。
 図3および図4に示すように、各相上アームスイッチング素子3a~3cのON/OFF状態としては、ON状態(つまり、「1」)とOFF状態(つまり、「0」)との2通り存在し、また、各相上アームスイッチング素子3a~3cのON/OFF状態の組み合わせに対応して、インバータ2の出力電圧ベクトルは、((U相上アームスイッチング素子3aの状態)(V相上アームスイッチング素子3bの状態)(W相上アームスイッチング素子3cの状態))の形式で定義すると、V0(000),V1(100),V2(010),V3(001),V4(110),V5(011),V6(101),V7(111)の8通り存在する。これらインバータ2の出力電圧ベクトルのうち、大きさを持たないV0(000)およびV7(111)をゼロベクトルと呼び、これら以外の大きさが等しく互いに60度の位相差を持つV1(100),V2(010),V3(001),V4(110),V5(011),V6(101)を実ベクトルと呼ぶ。
 制御部7は、これら各ゼロベクトルV0,V7、および各実ベクトルV1~V6を任意の組み合わせで合成して各相上アームスイッチング素子3a~3cおよび各相下アームスイッチング素子3d~3fに対応する3相PWM電圧の駆動信号を生成する。
 また一般的に、インバータ2がゼロベクトルV0,V7を出力する時間比率が1:1となるように3相PWM電圧の駆動信号を生成するが、ゼロベクトルV0,V7はスイッチングパターンが異なるものの、共に大きさを持たない電圧ベクトルであることを考慮して、ゼロベクトルV0,V7を出力する時間比率を変更することが可能である。
 つぎに、実施の形態1にかかる電力変換装置100における各相電流iu,iv,iwの演算手法について、図5~図11を参照して説明する。
 図5は、インバータの出力電圧ベクトルが実ベクトルV1(100)である場合に、インバータの各部に流れる電流を示す図である。図5に示す例では、モータ9の各相巻線の高電位側から低電位側に流れる電流を、それぞれiu,iv,iwとしている。なお、以下の各図に示す例においても、図5と同様の記載とする。
 図5に示すように、インバータ2の出力電圧ベクトルが実ベクトルV1(100)である場合には、直流電源1の正電圧側からU相上アームスイッチング素子3aを介してモータ9に向かいU相電流iuが流れ、モータ9からV相下アームスイッチング素子3e、V相下アームシャント抵抗6b、電源シャント抵抗5を介して直流電源1の負電圧側に向かいV相電流ivが流れ、W相下アームスイッチング素子3f、電源シャント抵抗5を介して直流電源1の負電圧側に向かいW相電流iwが流れる。このとき、U相下アーム電圧Vu、およびV相下アーム電圧Vvは、以下の(1),(2)式で表すことができる。
 Vu=iu×Rdc …(1)
 Vv=iu×Rdc+iv×Rsh …(2)
 また、図5に示すX点においてキルヒホッフの第一法則を適用すると、次式が成立する。
 iu=iv+iw …(3)
 つまり、上記(1),(2),(3)式を用いて各相電流iu,iv,iwを算出することができる。
 図6は、インバータの出力電圧ベクトルが実ベクトルV2(010)である場合に、インバータの各部に流れる電流を示す図である。
 図6に示すように、インバータ2の出力電圧ベクトルが実ベクトルV2(010)である場合には、直流電源1の正電圧側からV相上アームスイッチング素子3bを介してモータ9に向かいV相電流ivが流れ、モータ9からU相下アームスイッチング素子3d、U相下アームシャント抵抗6a、電源シャント抵抗5を介して直流電源1の負電圧側に向かいU相電流iuが流れ、W相下アームスイッチング素子3f、電源シャント抵抗5を介して直流電源1の負電圧側に向かいW相電流iwが流れる。このとき、U相下アーム電圧Vu、およびV相下アーム電圧Vvは、以下の(4),(5)式で表すことができる。
 Vu=iv×Rdc+iu×Rsh …(4)
 Vv=iv×Rdc …(5)
 また、図6に示すX点においてキルヒホッフの第一法則を適用すると、次式が成立する。
 iv=iu+iw …(6)
 つまり、上記(4),(5),(6)式を用いて各相電流iu,iv,iwを算出することができる。
 図7は、インバータの出力電圧ベクトルが実ベクトルV3(001)である場合に、インバータの各部に流れる電流を示す図である。
 図7に示すように、インバータ2の出力電圧ベクトルが実ベクトルV3(001)である場合には、直流電源1の正電圧側からW相上アームスイッチング素子3cを介してモータ9に向かいW相電流iwが流れ、モータ9からU相下アームスイッチング素子3d、U相下アームシャント抵抗6a、電源シャント抵抗5を介して直流電源1の負電圧側に向かいU相電流iuが流れ、V相下アームスイッチング素子3e、電源シャント抵抗5を介して直流電源1の負電圧側に向かいV相電流ivが流れる。このとき、U相下アーム電圧Vu、およびV相下アーム電圧Vvは、以下の(7),(8)式で表すことができる。
 Vu=iw×Rdc+iu×Rsh …(7)
 Vv=iw×Rdc+iv×Rsh …(8)
 また、図7に示すX点においてキルヒホッフの第一法則を適用すると、
 iw=iu+iv …(9)
 となる。つまり、上記(7),(8),(9)式を用いて各相電流iu,iv,iwを算出することができる。
 図8は、インバータの出力電圧ベクトルがゼロベクトルV0(000)である場合に、インバータの各部に流れる電流を示す図である。図8に示す例では、一例として、実ベクトルV1(100)からゼロベクトルV0(000)に移行した場合に、インバータ2に流れる電流を示している。
 図8に示すように、インバータ2の出力電圧ベクトルが実ベクトルV1(100)からゼロベクトルV0(000)に移行した場合には、電源シャント抵抗5には電流はほとんど流れず、X点の電位はほぼゼロとなる。このとき、X点から還流ダイオード4dを介してモータ9に向かいU相電流iuが流れ、モータ9からV相下アームスイッチング素子3e、V相下アームシャント抵抗6bを介してX点に向かいV相電流ivが流れ、W相下アームスイッチング素子3fを介してX点に向かいW相電流iwが流れる。このとき、U相下アーム電圧Vu、およびV相下アーム電圧Vvは、以下の2式で表すことができる。
 Vu=(-iu)×Rsh …(10)
 Vv=iv×Rsh …(11)
 また、X点においてキルヒホッフの第一法則を適用すると、次式が成立する。
 iu=iv+iw …(12)
 つまり、上記(10),(11),(12)式を用いて各相電流iu,iv,iwを算出することができる。
 このように、本実施の形態にかかる電力変換装置100では、実ベクトルV1(100),V2(010),V3(001)、およびゼロベクトルV0(000)である場合には、U相下アーム電圧Vu、およびV相下アーム電圧Vvを検出することにより、モータ9の各相巻線に流れる各相電流iu,iv,iwを算出することができる。
 図9は、インバータの出力電圧ベクトルが実ベクトルV4(110)である場合に、インバータの各部に流れる電流を示す図である。
 図9に示すように、インバータ2の出力電圧ベクトルが実ベクトルV4(110)である場合には、直流電源1の正電圧側からU相上アームスイッチング素子3aを介してモータ9に向かいU相電流iuが流れ、V相上アームスイッチング素子3bを介してモータ9に向かいV相電流ivが流れ、モータ9からW相下アームスイッチング素子3f、電源シャント抵抗5を介して直流電源1の負電圧側に向かいW相電流iwが流れる。このとき、U相下アーム電圧Vu、およびV相下アーム電圧Vvは、以下の(13),(14)式で表すことができる。
 Vu=iw×Rdc …(13)
 Vv=iw×Rdc …(14)
 ここで、モータ9が3相平衡負荷である場合には、相電流の平衡条件より、次式が成立する。
 iu+iv=iw …(15)
 iu=iv=(1/2)iw …(16)
 つまり、モータ9が3相平衡負荷である場合には、上記(13),(14)式のいずれか一方、および(16)式を用いて各相電流iu,iv,Iwを算出することができる。
 図10は、インバータの出力電圧ベクトルが実ベクトルV5(011)である場合に、インバータの各部に流れる電流を示す図である。
 図10に示すように、インバータ2の出力電圧ベクトルが実ベクトルV5(011)である場合には、直流電源1の正電圧側からV相上アームスイッチング素子3bを介してモータ9に向かいV相電流ivが流れ、W相上アームスイッチング素子3cを介してモータ9に向かいW相電流iwが流れ、モータ9からU相下アームスイッチング素子3d、U相下アームシャント抵抗6a、電源シャント抵抗5を介して直流電源1の負電圧側に向かいU相電流iuが流れる。このとき、U相下アーム電圧Vu、およびV相下アーム電圧Vvは、以下の(17),(18)式で表すことができる。
 Vu=iu×Rdc+iu×Rsh …(17)
 Vv=iu×Rdc …(18)
 ここで、モータ9が3相平衡負荷である場合には、相電流の平衡条件より、次式が成立する。
 iv+iw=iu …(19)
 iv=iw=(1/2)iu …(20)
 つまり、モータ9が3相平衡負荷である場合には、上記(17),(18)式のいずれか一方、および(20)式を用いて各相電流iu,iv,iwを算出することができる。
 図11は、インバータの出力電圧ベクトルが実ベクトルV6(101)である場合に、インバータの各部に流れる電流を示す図である。
 図11に示すように、インバータ2の出力電圧ベクトルが実ベクトルV6(101)である場合には、直流電源1の正電圧側からU相上アームスイッチング素子3aを介してモータ9に向かいU相電流iuが流れ、W相上アームスイッチング素子3cを介してモータ9に向かいW相電流iwが流れ、モータ9からV相下アームスイッチング素子3e、V相下アームシャント抵抗6b、電源シャント抵抗5を介して直流電源1の負電圧側に向かいV相電流ivが流れる。このとき、U相下アーム電圧Vu、およびV相下アーム電圧Vvは、以下の(21),(22)式で表すことができる。
 Vu=iv×Rdc …(21)
 Vv=iv×Rdc+iv×Rsh …(22)
 ここで、モータ9が3相平衡負荷である場合には、相電流の平衡条件より、次式が成立する。
 iu+iw=iv …(23)
 iu=iw=(1/2)iv …(24)
 つまり、モータ9が3相平衡負荷である場合には、上記(21),(22)式のいずれか一方、および(24)式を用いて各相電流iu,iv,iwを算出することができる。
 このように、本実施の形態にかかる電力変換装置100では、実ベクトルV4(110),V5(011),V6(101)である場合でも、モータ9が3相平衡負荷である場合には、U相下アーム電圧Vu、およびV相下アーム電圧Vvのいずれか一方を検出することにより、モータ9の各相巻線に流れる各相電流iu,iv,iwを算出することができる。
 また、各相上アームスイッチング素子3a~3cのON/OFF状態、つまり、インバータ2の出力電圧ベクトルがゼロベクトルV0である場合だけでなく、実ベクトルV1~V6である場合においても、2つの各相下アーム電圧に基づいて各相電流を算出することができ、各相電流に基づく制御の高精度化を図ることができる。
 さらに、ゼロベクトルV0,V7を出力する時間比率を変更した場合、キャリア信号fc*の1周期内で、インバータ2が出力する電圧ベクトルの種類が減るためにスイッチング回数も減り、インバータ2における損失を抑制することができる。
 例としてロータ回転位置θが0rad以上、π/3以下の範囲を取り上げて説明する。ゼロベクトルV0,V7を出力する時間比率を1:1とした場合は、V0(000)→V1(100)→V4(110)→V7(111)→V4(110)→V1(100)→V0(000)の順番にインバータ2はスイッチングする。一方、ゼロベクトルV0,V7を出力する時間比率を1:0とした場合は、V0(000)→V1(100)→V4(110)→V4(110)→V1(100)→V0(000)の順番にインバータ2はスイッチングする。そのため、ゼロベクトルV0,V7を出力する時間比率を1:0(すなわち、インバータのスイッチングの1周期内における上アームスイッチング素子が全てON状態である時間が零)とした場合の方が、スイッチング回数は減るため、インバータ2での損失を抑制することができる。これはロータ回転位置θが0rad以上、π/3以下の範囲以外においても同様である。
 また、炭化ケイ素(SiC)や窒化ガリウム(GaN)などのワイドバンドギャップ半導体を用いたスイッチング素子を上アームスイッチング素子3a~3cおよび下アームスイッチング素子3d~3fへ適用し、キャリア信号fc*を高周波化した場合、スイッチング周期が短くなる。各相下アーム電圧を検出するには必要最小限の遅れ時間(例えばAD変換器サンプルホールド回路のサンプルホールド時間)が必要なため、キャリア信号fc*を高周波化した場合、各相下アーム電圧の検出が困難となる場合がある。
 そこで、ゼロベクトルV0,V7を出力する時間比率を、ゼロベクトルV0を出力する時間が各相下アーム電圧を検出するための必要最小限の遅れ時間より長くなるように変更することで、キャリア信号fc*を高周波化した場合においても、以前に述べた各相電流iu,iv,iwの演算手法に基づいた高精度な演算を実現することが可能となる。
 以上説明したように、実施の形態1の電力変換装置によれば、直流電源の負電圧側とインバータとの間に設けられた電源シャント抵抗と、3つのアームのうちの2つの各相下アームスイッチング素子と電源シャント抵抗との間にそれぞれ設けられた下アームシャント抵抗とを設け、各相下アームスイッチング素子および下アームシャント抵抗の各接続点と直流電源の負電圧側との間の各電圧である2つの各相下アーム電圧を検出し、その各検出値に基づいて、負荷装置に流れる各相電流を算出するようにしたので、増幅手段により構成される電圧検出部の数は2つでよく、同様に2相分の下アームシャント抵抗と電源シャント抵抗とを設ける構成であっても、増幅手段により構成される電圧検出部を3つ必要とする従来構成よりも装置の小型化、低コスト化を図ることができる。
 なお、上記特許文献1に記載された技術では、下アームシャント抵抗の両端電圧と電源シャント抵抗の両端電圧とを制御手段に取り込む必要があるが、下アームシャント抵抗と電源シャント抵抗とで抵抗値が異なる場合には、下アームシャント抵抗の両端電圧を増幅する増幅手段と電源シャント抵抗の両端電圧を増幅する増幅手段とではゲインも異なる場合には、ハードウェアに起因する検出値のばらつきが大きくなるという課題が生じていたが、実施の形態1の電力変換装置によれば、2つの各相下アーム電圧に基づいて各相電流を算出することができるので、ハードウェアに起因する検出値のばらつきの影響を小さくすることが可能となる。
 また、上記特許文献1に記載された技術では、下アームシャント抵抗により検出できなかった相電流を電源シャント抵抗により検出するようにしているため制御手順が複雑化していたが、実施の形態1の電力変換装置によれば、電源シャント抵抗の電圧を検出せずに各相電流を算出することができるので、制御手順を簡易化することが可能となる。
 また、実施の形態1の電力変換装置によれば、インバータのスイッチングの1周期内における上アームスイッチング素子が全てON状態である時間と、下アームスイッチング素子が全てON状態である時間の比率を変更することとしたので、キャリア信号fc*の高周波化に対しても、柔軟な対応が可能となる。
 なお、上記比率は、インバータのスイッチングの1周期内における上アームスイッチング素子が全てON状態である時間に対して下アームスイッチング素子が全てON状態である時間が長くなるように変更すれば、キャリア信号fc*を高周波化した場合においても、高精度な演算を実現することが可能となる。
 また、上記比率は、インバータのスイッチングの1周期内における上アームスイッチング素子が全てON状態である時間が零となるように変更すれば、スイッチング回数の削減を通じて、インバータでの損失を抑制することが可能となる。
 また、上記比率は、インバータの運転状況(例えば変調率)に応じて変更するようにすれば、装置の柔軟な運用が可能となる。なお、変調率と関連付けたテーブルを用意しておけば、変調率に対応した比率の選択に要する演算時間を短縮することが可能となる。
実施の形態2.
 実施の形態1では、U相、V相、およびW相のうち、2相の下アームスイッチング素子に下アームシャント抵抗を接続し、これら2相の下アーム電圧を検出することにより、負荷装置に流れる各相電流iu,iv,iwを算出する手法について説明したが、本実施の形態では、U相、V相、およびW相の各相下アームスイッチング素子に下アームシャント抵抗を接続し、これら3相の下アーム電圧を検出して、負荷装置に流れる各相電流iu,iv,iwを算出する手法について説明する。
 図12は、実施の形態2にかかる電力変換装置の一構成例を示す図である。なお、実施の形態1と同一または同等の構成部には同一符号を付して、その詳細な説明は省略する。
 実施の形態2にかかる電力変換装置100aは、実施の形態1の構成に加え、W相下アームスイッチング素子3fと電源シャント抵抗5との間に設けられたW相下アームシャント抵抗6cと、W相下アームスイッチング素子3fおよびW相下アームシャント抵抗6cの接続点と直流電源1の負電圧側(ここではGND)との間の電圧(W相下アーム電圧)Vwを検出するW相下アーム電圧検出部8cとを備えている。なお、図12に示す例では、下アームシャント抵抗6a,6bの抵抗値と同様に、W相下アームシャント抵抗6cの抵抗値をRshとしている。
 W相下アーム電圧検出部8cは、U相下アーム電圧検出部8aおよびV相下アーム電圧検出部8bと同様に、例えば、W相下アーム電圧Vwを、制御部7aで扱い易い電圧値とするための増幅手段で構成される。
 図13は、実施の形態2にかかる電力変換装置の制御部の一構成例を示す図である。実施の形態2にかかる電力変換装置100aの制御部7aは、実施の形態1における電流演算部10に代えて、各相下アーム電圧検出部8a,8b,8cにより検出された各相下アーム電圧Vu,Vv,Vwに基づいて、モータ9の各相巻線に流れる各相電流iu,iv,iwを演算する電流演算部10aを備えている。
 つぎに、実施の形態2にかかる電力変換装置100aにおける各相電流の演算手法について、図14~図20を参照して説明する。
 図14は、インバータの出力電圧ベクトルが実ベクトルV1(100)である場合に、インバータの各部に流れる電流を示す図である。図14に示す例では、モータ9の各相巻線の高電位側から低電位側に流れる電流を、それぞれiu,iv,iwとしている。なお、以下の各図に示す例においても、図14と同様の記載とする。
 図14に示すように、インバータ2の出力電圧ベクトルが実ベクトルV1(100)である場合には、直流電源1の正電圧側からU相上アームスイッチング素子3aを介してモータ9に向かいU相電流iuが流れ、モータ9からV相下アームスイッチング素子3e、V相下アームシャント抵抗6b、電源シャント抵抗5を介して直流電源1の負電圧側に向かいV相電流ivが流れ、W相下アームスイッチング素子3f、電源シャント抵抗5を介して直流電源1の負電圧側に向かいW相電流iwが流れる。このとき、U相下アーム電圧Vu、V相下アーム電圧Vv、およびW相下アーム電圧Vwは、以下の(25),(26),(27)式で表すことができる。
 Vu=iu×Rdc …(25)
 Vv=iu×Rdc+iv×Rsh …(26)
 Vw=iu×Rdc+iw×Rsh …(27)
 つまり、上記(25),(26),(27)式を用いて各相電流iu,iv,Iwを算出することができる。
 図15は、インバータの出力電圧ベクトルが実ベクトルV2(010)である場合に、インバータの各部に流れる電流を示す図である。
 図15に示すように、インバータ2の出力電圧ベクトルが実ベクトルV2(010)である場合には、直流電源1の正電圧側からV相上アームスイッチング素子3bを介してモータ9に向かいV相電流ivが流れ、モータ9からU相下アームスイッチング素子3d、U相下アームシャント抵抗6a、電源シャント抵抗5を介して直流電源1の負電圧側に向かいU相電流iuが流れ、W相下アームスイッチング素子3f、電源シャント抵抗5を介して直流電源1の負電圧側に向かいW相電流iwが流れる。このとき、U相下アーム電圧Vu、V相下アーム電圧Vv、およびW相下アーム電圧Vwは、以下の(28),(29),(30)式で表すことができる。
 Vu=iv×Rdc+iu×Rsh …(28)
 Vv=iv×Rdc …(29)
 Vw=iv×Rdc+iw×Rsh …(30)
 つまり、上記(28),(29),(30)式を用いて各相電流iu,iv,iwを算出することができる。
 図16は、インバータの出力電圧ベクトルが実ベクトルV3(001)である場合に、インバータの各部に流れる電流を示す図である。
 図16に示すように、インバータ2の出力電圧ベクトルが実ベクトルV3(001)である場合には、直流電源1の正電圧側からW相上アームスイッチング素子3cを介してモータ9に向かいW相電流iwが流れ、モータ9からU相下アームスイッチング素子3d、U相下アームシャント抵抗6a、電源シャント抵抗5を介して直流電源1の負電圧側に向かいU相電流iuが流れ、V相下アームスイッチング素子3e、電源シャント抵抗5を介して直流電源1の負電圧側に向かいV相電流ivが流れる。このとき、U相下アーム電圧Vu、V相下アーム電圧Vv、およびW相下アーム電圧Vwは、以下の(31),(32),(33)式で表すことができる。
 Vu=iw×Rdc+iu×Rsh …(31)
 Vv=iw×Rdc+iv×Rsh …(32)
 Vw=iw×Rdc …(33)
 つまり、上記(31),(32),(33)式を用いて各相電流iu,iv,iwを算出することができる。
 図17は、インバータの出力電圧ベクトルがゼロベクトルV0(000)である場合に、インバータの各部に流れる電流を示す図である。図17に示す例では、一例として、実ベクトルV1(100)からゼロベクトルV0(000)に移行した場合に、インバータ2に流れる電流を示している。
 図17に示すように、インバータ2の出力電圧ベクトルが実ベクトルV1(100)からゼロベクトルV0(000)に移行した場合には、電源シャント抵抗5には電流はほとんど流れず、X点の電位はほぼゼロとなる。このとき、X点から還流ダイオード4dを介してモータ9に向かいU相電流iuが流れ、モータ9からV相下アームスイッチング素子3e、V相下アームシャント抵抗6bを介してX点に向かいV相電流ivが流れ、W相下アームスイッチング素子3fを介してX点に向かいW相電流iwが流れる。このとき、U相下アーム電圧Vu、V相下アーム電圧Vv、およびW相下アーム電圧Vwは、以下の(34),(35),(36)式で表すことができる。
 Vu=(-iu)×Rsh …(34)
 Vv=iv×Rsh …(35)
 Vw=iw×Rsh …(36)
 つまり、上記(34),(35),(36)式を用いて各相電流iu,iv,iwを算出することができる。
 このように、本実施の形態にかかる電力変換装置100aでは、実ベクトルV1(100),V2(010),V3(001)、およびゼロベクトルV0(000)である場合には、U相下アーム電圧Vu、V相下アーム電圧Vv、およびW相下アーム電圧Vwを検出することにより、モータ9の各相巻線に流れる各相電流iu,iv,iwを算出することができる。
 また、キルヒホッフの第一法則や、相電流の平衡条件を用いることなく、各相電流iu,iv,iwを得ることから、モータ9が不平衡負荷である場合でも適用可能である。
 図18は、インバータの出力電圧ベクトルが実ベクトルV4(110)である場合に、インバータの各部に流れる電流を示す図である。
 図18に示すように、インバータ2の出力電圧ベクトルが実ベクトルV4(110)である場合には、直流電源1の正電圧側からU相上アームスイッチング素子3aを介してモータ9に向かいU相電流iuが流れ、V相上アームスイッチング素子3bを介してモータ9に向かいV相電流ivが流れ、モータ9からW相下アームスイッチング素子3f、W相下アームシャント抵抗6c、電源シャント抵抗5を介して直流電源1の負電圧側に向かいW相電流iwが流れる。このとき、U相下アーム電圧Vu、V相下アーム電圧Vv、およびW相下アーム電圧Vwは、以下の(37),(38),(39)式で表すことができる。
 Vu=iw×Rdc …(37)
 Vv=iw×Rdc …(38)
 Vw=iw×Rdc+iw×Rsh …(39)
 ここで、モータ9が3相平衡負荷である場合には、相電流の平衡条件より、次式が成立する。
 iu+iv=iw …(40)
 iu=iv=(1/2)iw …(41)
 つまり、モータ9が3相平衡負荷である場合には、上記(37),(38),(39)式のうちのいずれか1式、および(41)式を用いて各相電流iu,iv,Iwを算出することができる。
 図19は、インバータの出力電圧ベクトルが実ベクトルV5(011)である場合に、インバータの各部に流れる電流を示す図である。
 図19に示すように、インバータ2の出力電圧ベクトルが実ベクトルV5(011)である場合には、直流電源1の正電圧側からV相上アームスイッチング素子3bを介してモータ9に向かいV相電流ivが流れ、W相上アームスイッチング素子3cを介してモータ9に向かいW相電流iwが流れ、モータ9からU相下アームスイッチング素子3d、U相下アームシャント抵抗6a、電源シャント抵抗5を介して直流電源1の負電圧側に向かいU相電流iuが流れる。このとき、U相下アーム電圧Vu、V相下アーム電圧Vv、およびW相下アーム電圧Vwは、以下の(42),(43),(44)式で表すことができる。
 Vu=iu×Rdc+iu×Rsh …(42)
 Vv=iu×Rdc …(43)
 Vw=iu×Rdc …(44)
 ここで、モータ9が3相平衡負荷である場合には、相電流の平衡条件より、次式が成立する。
 iv+iw=iu …(45)
 iv=iw=(1/2)iu …(46)
 つまり、モータ9が3相平衡負荷である場合には、上記(42),(43),(44)式のうちのいずれか1式、および(46)式を用いて各相電流iu,iv,iwを算出することができる。
 図20は、インバータの出力電圧ベクトルが実ベクトルV6(101)である場合に、インバータの各部に流れる電流を示す図である。
 図20に示すように、インバータ2の出力電圧ベクトルが実ベクトルV6(101)である場合には、直流電源1の正電圧側からU相上アームスイッチング素子3aを介してモータ9に向かいU相電流iuが流れ、W相上アームスイッチング素子3cを介してモータ9に向かいW相電流iwが流れ、モータ9からV相下アームスイッチング素子3e、V相下アームシャント抵抗6b、電源シャント抵抗5を介して直流電源1の負電圧側に向かいV相電流ivが流れる。このとき、U相下アーム電圧Vu、V相下アーム電圧Vv、およびW相下アーム電圧Vwは、以下の(47),(48),(49)式で表すことができる。
 Vu=iv×Rdc …(47)
 Vv=iv×Rdc+iv×Rsh …(48)
 Vw=iv×Rdc …(49)
 ここで、モータ9が3相平衡負荷である場合には、相電流の平衡条件より、次式が成立する。
 iu+iw=iv …(50)
 iu=iw=(1/2)iv …(51)
 つまり、モータ9が3相平衡負荷である場合には、上記(47),(48),(49)式のうちのいずれか1式、および(51)式を用いて各相電流iu,iv,iwを算出することができる。
 このように、実ベクトルV4(110),V5(011),V6(101)である場合でも、モータ9が3相平衡負荷である場合には、U相下アーム電圧Vu、V相下アーム電圧Vv、およびW相下アーム電圧Vwのうちのいずれか1つを検出することにより、モータ9の各相巻線に流れる各相電流iu,iv,iwを算出することができる。
 以上説明したように、実施の形態2の電力変換装置によれば、実施の形態1の構成に対し、下アームシャント抵抗を3相分設け、各相下アームスイッチング素子および下アームシャント抵抗の各接続点と直流電源の負電圧側との間の各電圧である3つの各相下アーム電圧を検出し、その各検出値に基づいて、負荷装置に流れる各相電流を算出するようにしたので、増幅手段により構成される電圧検出部の数は3つとなるが、同様に3相分の下アームシャント抵抗と電源シャント抵抗とを設ける構成であっても、増幅手段により構成される電圧検出部を4つ必要とする従来構成よりも装置の小型化、低コスト化を図ることができる。
 また、実施の形態1と同様に、インバータの出力電圧ベクトルがゼロベクトルV0である場合だけでなく、実ベクトルV1~V6である場合においても、各相電流を算出することができるので、各相電流に基づく制御の高精度化を図ることができる。
 さらに、インバータの出力電圧ベクトルがゼロベクトルV0、実ベクトルV1~V3である場合には、キルヒホッフの第一法則や、相電流の平衡条件を用いることなく、各相電流を得ることができるので、負荷装置が不平衡負荷である場合でも適用可能である。
 また、実施の形態1と同様に、ゼロベクトルV0,V7を出力する時間比率を変更した場合、キャリア信号fc*の1周期内で、インバータ2が出力する電圧ベクトルの種類が減るためにスイッチング回数も減り、インバータ2における損失を抑制することができる。
 例としてロータ回転位置θが0rad以上、π/3以下の範囲を取り上げて説明する。ゼロベクトルV0,V7を出力する時間比率を1:1とした場合は、V0(000)→V1(100)→V4(110)→V7(111)→V4(110)→V1(100)→V0(000)の順番にインバータ2はスイッチングする。一方、ゼロベクトルV0,V7を出力する時間比率を1:0とした場合は、V0(000)→V1(100)→V4(110)→V4(110)→V1(100)→V0(000)の順番にインバータ2はスイッチングする。そのため、ゼロベクトルV0,V7を出力する時間比率を1:0とした場合のほうが、スイッチング回数は減るため、インバータ2での損失を抑制することができる。これはロータ回転位置θが0rad以上、π/3以下の範囲以外においても同様である。
 また実施の形態1と同様に、炭化ケイ素(SiC)や窒化ガリウム(GaN)などのワイドバンドギャップ半導体を用いたスイッチング素子を上アームスイッチング素子3a~3cおよび下アームスイッチング素子3d~3fへ適用し、キャリア信号fc*を高周波化した場合、スイッチング周期が短くなる。各相下アーム電圧を検出するには必要最小限の遅れ時間(例えばAD変換器サンプルホールド回路のサンプルホールド時間)が必要なため、キャリア信号fc*を高周波化した場合、各相下アーム電圧の検出が困難となる場合がある。
 そこで、ゼロベクトルV0,V7を出力する時間比率を、ゼロベクトルV0を出力する時間が各相下アーム電圧を検出するための必要最小限の遅れ時間より長くなるように変更することで、キャリア信号fc*を高周波化した場合においても、以前に述べた各相電流iu,iv,iwの演算手法に基づいた高精度な演算を実現することが可能となる。
 上述した実施の形態において、3相交流を用いた3相モータを対象の電力変換装置を例として述べたが、本発明は3相に限定されず、単相および多相交流およびモータを対象とした電力変換装置にも適用可能である。
 なお、上述した実施の形態において説明した電力変換装置を、モータを負荷とするモータ駆動装置に適用し、このモータ駆動装置を、空気調和機や冷蔵庫、冷凍機等の送風機や圧縮機に適用することにより、これらモータ駆動装置、送風機、圧縮機、空気調和機、冷蔵庫、および冷凍機の小型化、低コスト化や制御の高精度化を図ることができる。
 また、以上の実施の形態に示した構成は、本発明の構成の一例であり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは言うまでもない。
 以上のように、本発明にかかる電力変換装置、およびそれを備えたモータ駆動装置、およびそれを備えた送風機、圧縮機、およびそれらを備えた空気調和機、冷蔵庫、ならびに冷凍機は、PWM変調方式の3相インバータを具備した構成に有用であり、特に、装置の大型化や高コスト化を招くことなく、各相電流の検出期間を拡大して、各相電流に基づく制御の高精度化を図ることができる技術として適している。
 1 直流電源、2 インバータ、3a~3c 各相上アームスイッチング素子、3d~3f 各相下アームスイッチング素子、4a~4f 還流ダイオード、5 電源シャント抵抗、6a~6c 下アームシャント抵抗、7,7a 制御部、8a~8c 各相下アーム電圧検出部、9 負荷装置(モータ)、10,10a 電流演算部、11 座標変換部、12 電圧指令値算出部、13 駆動信号生成部、14 ロータ回転位置演算部、15 キャリア信号生成部、100,100a 電力変換装置。

Claims (15)

  1.  直流電源から供給される直流電力を交流電力に変換する電力変換装置であって、
     各相上アームスイッチング素子および各相下アームスイッチング素子を具備するアームを並列に接続して構成されるインバータと、
     前記直流電源の負電圧側と前記インバータとの間に設けられた電源シャント抵抗と、
     少なくとも2相分の前記各相下アームスイッチング素子と前記電源シャント抵抗との間にそれぞれ設けられた下アームシャント抵抗と、
     前記各相下アームスイッチング素子および前記下アームシャント抵抗の各接続点と前記直流電源の負電圧側との間の電圧を検出する電圧検出部と、
     前記電圧検出部の各検出値より前記各相上アームスイッチング素子および前記各相下アームスイッチング素子に対応する駆動信号を生成する制御部と、
     を備え、
     前記インバータのスイッチングの1周期内における上アームスイッチング素子が全てON状態である時間と、下アームスイッチング素子が全てON状態である時間の比率を変更することを特徴とする電力変換装置。
  2.  前記比率は、前記インバータのスイッチングの1周期内における上アームスイッチング素子が全てON状態である時間に対して下アームスイッチング素子が全てON状態である時間が長くなるように変更することを特徴とする請求項1に記載の電力変換装置。
  3.  前記比率は、前記インバータのスイッチングの1周期内における上アームスイッチング素子が全てON状態である時間が零となるように変更することを特徴とする請求項1または2に記載の電力変換装置。
  4.  前記比率は前記インバータの運転状況に応じて変更することを特徴とする請求項1から3の何れか1項に記載の電力変換装置。
  5.  前記運転状況は、前記インバータの変調率であることを特徴とする請求項1から4の何れか1項に記載の電力変換装置。
  6.  前記比率は前記変調率と関連付けたテーブルに基づいて、前記変調率に対応して選択することを特徴とする請求項1から5の何れか1項に記載の電力変換装置。
  7.  前記制御部は、前記電圧検出部の各検出値より負荷装置に流れる各相電流を算出し、当該各相電流に基づいて、前記各駆動信号を生成することを特徴とする請求項1から6の何れか1項に記載の電力変換装置。
  8.  前記各相下アームスイッチング素子の少なくとも1つがON状態となる期間を前記電圧検出部の各検出値の検出期間とすることを特徴とする請求項1から7の何れか1項に記載の電力変換装置。
  9.  前記上アームスイッチング素子および下アームスイッチング素子の少なくとも1つにワイドバンドギャップ半導体素子を用いることを特徴とする請求項1から8の何れか1項に記載の電力変換装置。
  10.  請求項1から9の何れか1項に記載の電力変換装置を備えたことを特徴とするモータ駆動装置。
  11.  請求項10に記載のモータ駆動装置を備えたことを特徴とする送風機。
  12.  請求項10に記載のモータ駆動装置を備えたことを特徴とする圧縮機。
  13.  請求項11に記載の送風機あるいは請求項12に記載の圧縮機のうちの少なくとも一方を備えたことを特徴とする空気調和機。
  14.  請求項11に記載の送風機あるいは請求項12に記載の圧縮機のうちの少なくとも一方を備えたことを特徴とする冷蔵庫。
  15.  請求項11に記載の送風機あるいは請求項12に記載の圧縮機のうちの少なくとも一方を備えたことを特徴とする冷凍機。
PCT/JP2013/082509 2013-12-03 2013-12-03 電力変換装置、およびそれを備えたモータ駆動装置、およびそれを備えた送風機、圧縮機、およびそれらを備えた空気調和機、冷蔵庫、ならびに冷凍機 WO2015083244A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380081301.5A CN105765851B (zh) 2013-12-03 2013-12-03 电力转换装置、电动机驱动装置、鼓风机、压缩机、空调机、和冰箱
US15/027,735 US9780717B2 (en) 2013-12-03 2013-12-03 Power conversion device, motor driving device including power conversion device, blower and compressor including motor driving device, and air conditioner, refrigerator, and freezer including blower and compressor
JP2015551322A JP6138276B2 (ja) 2013-12-03 2013-12-03 電力変換装置、およびそれを備えたモータ駆動装置、およびそれを備えた送風機、圧縮機、およびそれらを備えた空気調和機、冷蔵庫、ならびに冷凍機
PCT/JP2013/082509 WO2015083244A1 (ja) 2013-12-03 2013-12-03 電力変換装置、およびそれを備えたモータ駆動装置、およびそれを備えた送風機、圧縮機、およびそれらを備えた空気調和機、冷蔵庫、ならびに冷凍機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/082509 WO2015083244A1 (ja) 2013-12-03 2013-12-03 電力変換装置、およびそれを備えたモータ駆動装置、およびそれを備えた送風機、圧縮機、およびそれらを備えた空気調和機、冷蔵庫、ならびに冷凍機

Publications (1)

Publication Number Publication Date
WO2015083244A1 true WO2015083244A1 (ja) 2015-06-11

Family

ID=53273040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082509 WO2015083244A1 (ja) 2013-12-03 2013-12-03 電力変換装置、およびそれを備えたモータ駆動装置、およびそれを備えた送風機、圧縮機、およびそれらを備えた空気調和機、冷蔵庫、ならびに冷凍機

Country Status (4)

Country Link
US (1) US9780717B2 (ja)
JP (1) JP6138276B2 (ja)
CN (1) CN105765851B (ja)
WO (1) WO2015083244A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9812943B2 (en) * 2014-06-17 2017-11-07 Meidensha Corporation Resonant load power conversion device and time division operation method for resonant load power conversion device
EP3217535B1 (en) * 2014-11-04 2021-04-28 Mitsubishi Electric Corporation Motor drive device and air conditioner
WO2016071964A1 (ja) * 2014-11-04 2016-05-12 三菱電機株式会社 電動機駆動装置および空気調和機
CN105024614A (zh) * 2015-06-30 2015-11-04 深圳市富晶科技有限公司 一种电机定子电流的采样方法
KR101629397B1 (ko) * 2015-12-03 2016-06-13 연세대학교 산학협력단 비대칭 모듈러 멀티레벨 컨버터 제어 장치 및 방법
WO2019049459A1 (ja) * 2017-09-07 2019-03-14 日本電産株式会社 インバータの制御方法、モータ駆動ユニット、モータモジュールおよび電動パワーステアリング装置
WO2020095390A1 (ja) * 2018-11-07 2020-05-14 三菱電機株式会社 モータ駆動装置およびそれを用いた空気調和機
JP7424172B2 (ja) * 2020-04-01 2024-01-30 富士電機株式会社 モータ駆動装置、モータ駆動方法、およびモータ駆動プログラム
CN112212460B (zh) * 2020-08-28 2022-03-08 海信(山东)空调有限公司 一种空调器和停机控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993948A (ja) * 1995-09-26 1997-04-04 Mitsubishi Electric Corp モータの制御装置
JP2006101685A (ja) * 2004-08-31 2006-04-13 Matsushita Electric Ind Co Ltd インバータ装置
JP2010029048A (ja) * 2008-07-24 2010-02-04 Mitsubishi Electric Corp 直流電源装置、それを備えたインバータ装置、及びそのインバータ装置を備えた空気調和機、洗濯機並びに洗濯乾燥機
JP2011087456A (ja) * 2009-09-16 2011-04-28 Toshiba Corp モータ制御素子および電気機器
JP2011234428A (ja) * 2010-04-23 2011-11-17 Mitsubishi Electric Corp 3相電圧型pwmインバータ制御装置
JP2012157103A (ja) * 2011-01-24 2012-08-16 Mitsubishi Electric Corp インバータ装置、ファン駆動装置、圧縮機駆動装置および空気調和機

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746918B2 (ja) * 1987-06-03 1995-05-17 株式会社日立製作所 電力変換装置
JP2003209976A (ja) 2002-01-11 2003-07-25 Matsushita Electric Ind Co Ltd Pwmインバータ装置及びその電流検出方法
JP3750691B1 (ja) 2004-07-20 2006-03-01 松下電器産業株式会社 インバータ装置
WO2006009145A1 (ja) 2004-07-20 2006-01-26 Matsushita Electric Industrial Co., Ltd. インバータ装置
JP4539237B2 (ja) 2004-08-30 2010-09-08 パナソニック株式会社 インバータ装置
JP2007236188A (ja) 2006-02-06 2007-09-13 Matsushita Electric Ind Co Ltd インバータ装置
JP5446324B2 (ja) * 2008-03-12 2014-03-19 三洋電機株式会社 インバータ装置
DE102008018885A1 (de) * 2008-04-14 2009-10-22 Sew-Eurodrive Gmbh & Co. Kg Leiterplatte, Verfahren zur Bestimmung eines Stromraumzeigers, Umrichter, Leiterplatte und Baureihe von Umrichtern
JP2010063239A (ja) 2008-09-02 2010-03-18 Denso Corp 多相回転機の制御装置及び多相回転機の制御システム
CN201383763Y (zh) * 2009-04-08 2010-01-13 宁波德斯科电子科技有限公司 一种用于变频器的电流采样电路
US8248829B2 (en) * 2009-05-01 2012-08-21 Board Of Regents, The University Of Texas System Methods and systems for phase current reconstruction of AC drive systems
JP5018850B2 (ja) * 2009-09-28 2012-09-05 三菱電機株式会社 電動機制御装置
WO2011036896A1 (ja) 2009-09-28 2011-03-31 ダイキン工業株式会社 相電流検出装置、及びそれを用いた電力変換装置
CN101997475B (zh) * 2010-09-21 2012-11-21 高强 采样电动机相电流的方法及用于采样电动机相电流的设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993948A (ja) * 1995-09-26 1997-04-04 Mitsubishi Electric Corp モータの制御装置
JP2006101685A (ja) * 2004-08-31 2006-04-13 Matsushita Electric Ind Co Ltd インバータ装置
JP2010029048A (ja) * 2008-07-24 2010-02-04 Mitsubishi Electric Corp 直流電源装置、それを備えたインバータ装置、及びそのインバータ装置を備えた空気調和機、洗濯機並びに洗濯乾燥機
JP2011087456A (ja) * 2009-09-16 2011-04-28 Toshiba Corp モータ制御素子および電気機器
JP2011234428A (ja) * 2010-04-23 2011-11-17 Mitsubishi Electric Corp 3相電圧型pwmインバータ制御装置
JP2012157103A (ja) * 2011-01-24 2012-08-16 Mitsubishi Electric Corp インバータ装置、ファン駆動装置、圧縮機駆動装置および空気調和機

Also Published As

Publication number Publication date
CN105765851B (zh) 2018-09-04
JPWO2015083244A1 (ja) 2017-03-16
US9780717B2 (en) 2017-10-03
US20160241181A1 (en) 2016-08-18
JP6138276B2 (ja) 2017-05-31
CN105765851A (zh) 2016-07-13

Similar Documents

Publication Publication Date Title
JP6138276B2 (ja) 電力変換装置、およびそれを備えたモータ駆動装置、およびそれを備えた送風機、圧縮機、およびそれらを備えた空気調和機、冷蔵庫、ならびに冷凍機
JP5505042B2 (ja) 中性点昇圧方式の直流−三相変換装置
JP6410829B2 (ja) 電力変換装置、それを備えたモータ駆動装置、送風機および圧縮機、ならびに、それらの少なくとも一方を備えた空気調和機、冷蔵庫および冷凍機
WO2017221339A1 (ja) 電力変換装置
JP6134813B2 (ja) 電力変換装置および電力変換装置の制御方法
JP2015201996A (ja) 電力変換装置、電力変換装置の制御装置および電力変換装置の制御方法
JP2015186431A (ja) 電力変換装置、電力変換装置の制御装置および電力変換装置の制御方法
JP6129972B2 (ja) 交流電動機の制御装置、交流電動機駆動システム、流体圧制御システム、位置決めシステム
JP6038291B2 (ja) 電力変換装置、およびそれを備えたモータ駆動装置、およびそれを備えた送風機、圧縮機、およびそれらを備えた空気調和機、冷蔵庫、ならびに冷凍機
JP2019080465A (ja) 電流検出装置
JP2010098820A (ja) 電力変換装置
JP2011217467A (ja) 中性点昇圧方式の直流−三相変換装置
JP4783174B2 (ja) 電力変換装置
JP5511700B2 (ja) インバータ装置、ファン駆動装置、圧縮機駆動装置および空気調和機
JP6157599B2 (ja) 電力変換装置、およびそれを備えたモータ駆動装置、およびそれを備えた送風機、圧縮機、およびそれらを備えた空気調和機、冷蔵庫、ならびに冷凍機
JP2006246649A (ja) インバータ装置
JP2006238637A (ja) インバータ装置
JP6707298B2 (ja) 電力変換装置
JP6582393B2 (ja) 電動機駆動装置の制御装置
JP6766550B2 (ja) 電力変換装置
JP4393420B2 (ja) 三相整流装置
JP2018050425A (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898816

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015551322

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15027735

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13898816

Country of ref document: EP

Kind code of ref document: A1