[go: up one dir, main page]

WO2015079756A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2015079756A1
WO2015079756A1 PCT/JP2014/072298 JP2014072298W WO2015079756A1 WO 2015079756 A1 WO2015079756 A1 WO 2015079756A1 JP 2014072298 W JP2014072298 W JP 2014072298W WO 2015079756 A1 WO2015079756 A1 WO 2015079756A1
Authority
WO
WIPO (PCT)
Prior art keywords
tft
gate electrode
oxide semiconductor
layer
insulating layer
Prior art date
Application number
PCT/JP2014/072298
Other languages
English (en)
French (fr)
Inventor
貴翁 斉藤
誠二 金子
庸輔 神崎
泰 高丸
啓介 井手
拓哉 松尾
森 重恭
広志 松木薗
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201480064634.1A priority Critical patent/CN105765729B/zh
Priority to US15/039,118 priority patent/US10269831B2/en
Publication of WO2015079756A1 publication Critical patent/WO2015079756A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/6729Thin-film transistors [TFT] characterised by the electrodes
    • H10D30/673Thin-film transistors [TFT] characterised by the electrodes characterised by the shapes, relative sizes or dispositions of the gate electrodes
    • H10D30/6733Multi-gate TFTs
    • H10D30/6734Multi-gate TFTs having gate electrodes arranged on both top and bottom sides of the channel, e.g. dual-gate TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/674Thin-film transistors [TFT] characterised by the active materials
    • H10D30/6755Oxide semiconductors, e.g. zinc oxide, copper aluminium oxide or cadmium stannate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/674Thin-film transistors [TFT] characterised by the active materials
    • H10D30/6755Oxide semiconductors, e.g. zinc oxide, copper aluminium oxide or cadmium stannate
    • H10D30/6756Amorphous oxide semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/6757Thin-film transistors [TFT] characterised by the structure of the channel, e.g. transverse or longitudinal shape or doping profile
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/40Crystalline structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/40Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
    • H10D86/421Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs having a particular composition, shape or crystalline structure of the active layer
    • H10D86/423Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs having a particular composition, shape or crystalline structure of the active layer comprising semiconductor materials not belonging to the Group IV, e.g. InGaZnO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/40Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
    • H10D86/441Interconnections, e.g. scanning lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/40Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
    • H10D86/451Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs characterised by the compositions or shapes of the interlayer dielectrics
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/40Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
    • H10D86/60Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs wherein the TFTs are in active matrices

Definitions

  • the present invention relates to a semiconductor device formed using an oxide semiconductor, for example, an active matrix substrate used for a liquid crystal display device or an organic EL display device.
  • An active matrix substrate used for a liquid crystal display device or the like includes a switching element such as a thin film transistor (hereinafter, “TFT”) for each pixel.
  • a switching element such as a thin film transistor (hereinafter, “TFT”) for each pixel.
  • TFT thin film transistor
  • amorphous silicon TFT a TFT having an amorphous silicon film as an active layer
  • polycrystalline silicon TFT a TFT having a polycrystalline silicon film as an active layer
  • Patent Document 1 describes a liquid crystal display device in which an active layer of a TFT is formed using an oxide semiconductor film such as InGaZnO (oxide composed of indium, gallium, and zinc). Such a TFT is referred to as an “oxide semiconductor TFT”.
  • oxide semiconductor TFT can be operated at a higher speed than an amorphous silicon TFT.
  • oxide semiconductor film is formed by a simpler process than the polycrystalline silicon film, the oxide semiconductor film can be applied to a device that requires a large area. For this reason, oxide semiconductor TFTs are being used for display devices and the like as high-performance active elements that can be manufactured while suppressing the number of manufacturing steps and manufacturing costs.
  • the mobility of the oxide semiconductor is high, even if the size is reduced as compared with the conventional amorphous silicon TFT, it is possible to obtain the same or higher performance. Therefore, when an active matrix substrate of a display device is manufactured using an oxide semiconductor TFT, the occupied area ratio of the TFT in the pixel can be reduced and the pixel aperture ratio can be improved. This makes it possible to perform bright display even when the amount of light from the backlight is suppressed, and to realize low power consumption.
  • the off-leakage characteristic of the oxide semiconductor TFT is excellent, an operation mode in which display is performed by reducing the frequency of image rewriting can be used. For example, when displaying a still image, the image data can be rewritten at a frequency of once per second. Such a driving method is called pause driving or low-frequency driving, and can greatly reduce the power consumption of the display device.
  • the threshold voltage Vth threshold voltage Vth of the gate voltage of the oxide semiconductor TFT. If the threshold voltage Vth is shifted from a desired value (for example, 0 V) to the negative side, the source and the drain are brought into conduction even during the off period of the TFT, resulting in a malfunction in which the transistor is normally on.
  • the shift of the threshold voltage Vth occurs, for example, when moisture or the like is mixed into the oxide semiconductor layer from the outside in an annealing process for improving the element characteristics of the oxide semiconductor layer.
  • the threshold shift occurs due to repeated switching operation and unintentional light irradiation to the oxide semiconductor layer.
  • the threshold voltage of a plurality of TFTs may vary due to a dimensional error that occurs in the manufacturing process, and the threshold voltage may be relatively shifted.
  • Patent Document 2 discloses an additional electrode provided in an oxide semiconductor TFT using an In—Ga—Zn—O-based semiconductor so as to face a gate electrode with a semiconductor layer interposed therebetween ( A technique using a back gate electrode or a second gate electrode) is disclosed. If the back gate electrode is used, the threshold shift of the oxide semiconductor TFT can be compensated. Therefore, more stable operation of the oxide semiconductor TFT can be expected.
  • a pixel TFT when a configuration in which a back gate electrode is provided in a TFT provided in a pixel (hereinafter sometimes referred to as a pixel TFT), the pixel aperture ratio may be reduced.
  • the back gate electrode is preferably connected to a lower gate electrode or another wiring, for example, and a predetermined voltage is preferably applied.
  • the size of the TFT can be increased. For this reason, it may not be preferable for the pixel TFT to control the threshold voltage by the back gate electrode.
  • drive circuits such as gate drivers and source drivers are monolithically (integrated) on a substrate in a non-display area (frame area) located outside a display area where pixels are arranged.
  • These drive circuits are usually configured using TFTs.
  • a technique for manufacturing a monolithic driver on a substrate using an oxide semiconductor TFT has been used, thereby realizing a reduction in cost by reducing the frame region and simplifying the mounting process.
  • peripheral circuit TFTs constituting the drive circuit
  • peripheral circuit TFTs are generally produced simultaneously in the process of producing pixel TFTs. For this reason, the peripheral circuit TFT and the pixel TFT often have the same or similar structure.
  • some of the peripheral circuit TFTs may include those whose threshold fluctuations should be controlled more severely than the pixel TFTs. In this case, the peripheral circuit TFTs have the same configuration as the pixel TFTs. If the threshold fluctuation is suppressed, a desired operation may not be obtained as the peripheral circuit TFT.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a semiconductor device including an oxide semiconductor TFT having improved element characteristics.
  • a semiconductor device includes a substrate and a plurality of oxide semiconductor TFTs formed on the substrate, each of which is in contact with the first gate electrode and the first gate electrode.
  • an organic insulating layer that covers only a part of the plurality of oxide semiconductor TFTs, and the plurality of oxide semiconductor TFTs are covered with the organic insulating layer.
  • a first TFT and a second TFT not covered with the organic insulating layer, and the second TFT is disposed to face the oxide semiconductor layer with the second insulating layer interposed therebetween.
  • a second gate electrode when viewed from the substrate normal direction, further comprising a second gate electrode arranged so as to overlap with at least a portion of the first gate electrode across the oxide semiconductor layer.
  • the first TFT does not have the second gate electrode.
  • the display device includes a display region in which a plurality of pixels are arranged, and a non-display region provided around the display region, wherein the first TFT is provided in the display region, and the non-display region is provided.
  • the second TFT is provided in the display area.
  • the organic insulating layer is provided so as to selectively cover only the display region, and the first TFT is included in one of the plurality of pixels in the display region, The second TFT is included in a gate driver integrally formed on the substrate in the non-display area.
  • a third TFT having no second gate electrode is provided separately from the second TFT in the non-display region.
  • the semiconductor device further includes a transparent electrode formed above the organic insulating layer, and the second gate electrode is formed of the same material as the transparent electrode.
  • the oxide semiconductor layer is disposed on a side closer to the first gate electrode and has a first mobility, and is in contact with the first semiconductor layer and far from the first gate electrode.
  • a second semiconductor layer disposed on the side and having a second mobility lower than the first mobility.
  • the second gate electrode is connected to either the source electrode, the first gate electrode, or a wiring for applying a separate voltage to the second gate electrode of the oxide semiconductor TFT. Are electrically connected.
  • the oxide semiconductor layer includes an In—Ga—Zn—O-based semiconductor.
  • the In—Ga—Zn—O-based semiconductor includes a crystalline portion.
  • a semiconductor device includes a substrate and a plurality of oxide semiconductor TFTs formed on the substrate, each of which is in contact with the first gate electrode and the first gate electrode.
  • the oxide semiconductor layer includes a first semiconductor layer disposed on a side close to the first gate electrode and having a first mobility; and the first semiconductor layer in contact with the first semiconductor layer.
  • a second semiconductor layer having a second mobility lower than the first mobility the plurality of oxide semiconductor TFTs including a first TFT, a second TFT, and a second semiconductor layer having a second mobility lower than the first mobility.
  • the FT includes a second gate electrode disposed so as to face the oxide semiconductor layer with a second insulating layer interposed therebetween, and the oxide semiconductor layer is sandwiched when viewed from the normal direction of the substrate.
  • the second gate electrode is provided so as to overlap at least a part of the first gate electrode, and the second TFT is not provided in the first TFT.
  • the display area includes a display area in which a plurality of pixels are arranged, and a non-display area provided around the display area.
  • the display area includes the first TFT, and The second TFT is provided in the non-display area.
  • the second TFT is included in a gate driver provided in the non-display area, and the first TFT is included in a pixel provided in the display area.
  • the thickness of the first semiconductor layer is 10 nm or more, and the thickness of the second semiconductor layer is 20 nm or more.
  • the Ga concentration in the second semiconductor layer is higher than the Ga concentration in the first semiconductor layer.
  • a TFT substrate including an oxide semiconductor TFT having good element characteristics can be obtained.
  • FIG. 1 It is a figure which shows the threshold value of an oxide semiconductor TFT, (a) shows the state in which the threshold value shift is suppressed, and (b) shows the state in which a negative threshold value shift occurs.
  • FIG. 1 It is a top view which shows the TFT substrate by Embodiment 1 of this invention.
  • A) and (b) respectively show the cross section of the pixel TFT and the cross section of the peripheral circuit TFT provided on the TFT substrate shown in FIG. 1, and (c) does not include a back gate and an organic insulating layer as a reference example. The structure of a TFT is shown.
  • FIG. 5A is a plan view of the TFT substrate
  • FIGS. 5B and 5C are cross-sectional views of a pixel TFT and a peripheral circuit TFT
  • FIG. 6 is a diagram illustrating threshold values of an oxide semiconductor TFT according to Embodiment 3.
  • TFT substrate active matrix substrate
  • the semiconductor device of the present invention includes an active matrix substrate, a display device including the active matrix substrate, and various other devices.
  • the TFT substrate is provided with a display region and a frame region located outside the display region.
  • pixel TFTs are arranged for each of the plurality of pixels, and in the frame area, a plurality of peripheral circuit TFTs constituting a monolithic driver circuit are arranged.
  • a pixel TFT The arrangement in the display area, a pixel TFT, a passivation layer (typically SiNx, and the like SiO 2, for example a thickness of several hundred nm of the inorganic insulating layer) and covered with an organic insulating layer, the upper organic insulating layer
  • the pixel electrode and the TFT are connected through a contact hole.
  • the organic insulating layer (also referred to as an organic interlayer insulating layer) is formed to be relatively thick, for example, about 2 to 3 ⁇ m, and is used to planarize the upper surface of the pixel TFT or between the pixel electrode and the source wiring. Used to reduce the capacitance formed.
  • a configuration in which a back gate electrode is provided without providing an organic insulating layer is conceivable.
  • a buffer transistor included in the gate driver (a transistor whose drain is connected to a gate line extending in the display region) is a TFT having a small margin against threshold fluctuation, and the threshold voltage is controlled severely. Is preferred.
  • the threshold shift of the buffer transistor often occurs on the negative side, and a normally-on state is likely to occur when the threshold voltage is less than 0V.
  • the pixel TFT it may be difficult to provide a back gate electrode as described above in order to prevent a decrease in the aperture ratio. Also, in the peripheral circuit TFT, there may be a TFT in which it is difficult to secure a space for providing the back gate electrode.
  • a TFT configuration that is not covered with an organic insulating layer but has a back gate electrode and covered with an organic insulating layer.
  • the present inventors have found that it is preferable to mix at least two types of TFT structures with the same active matrix substrate. According to such a method, the threshold value of each TFT can be appropriately controlled without significant change or addition from the conventional manufacturing process, which is advantageous from the viewpoint of cost.
  • all TFTs not provided with the back gate electrode are covered with the organic insulating layer. That is, for any TFT, at least one of the back gate electrode and the organic insulating layer is disposed, and in this configuration, only a part of the plurality of TFTs is covered with the organic insulating layer.
  • Table 1 shows the TFT characteristics for each combination of the presence / absence of the back gate electrode and the presence / absence of the organic insulating layer.
  • FIGS. 1A and 1B show the case of (A: with back gate, with organic insulating film), the case of (B: with back gate, without organic insulating film), and (C: The relationship between the applied voltage and the drain current amount in each of the cases of no back gate and organic insulating film) and (D: no back gate and no organic insulating film) is shown.
  • the threshold voltage Vth shifts to the negative side only when D does not have a back gate-free organic insulating film and is turned on when 0 V is applied.
  • Patent Document 3 discloses a configuration in which an opening region is provided in an organic insulating layer and only a part of the substrate (the outer peripheral portion of the display region) is not covered with the organic insulating layer.
  • the semiconductor device described in Patent Document 3 does not disclose that two types of TFTs covered with an organic insulating layer and TFTs not covered are mixed on the same substrate.
  • the threshold value of the whole TFT can also be controlled by another aspect.
  • a configuration may be employed in which a back gate electrode is provided for some of the TFTs and no organic insulating layer is provided for all of the pixel TFTs and the peripheral circuit TFTs.
  • the oxide semiconductor layer forming the TFT channel is formed of two or more semiconductor layers having different mobility. More specifically, in the oxide semiconductor layer, the mobility of the lower layer is preferably set higher than that of the upper layer in contact with the source electrode and the drain electrode. Thereby, the element characteristic of TFT can be stabilized.
  • a back gate electrode may be provided for a TFT having a severe threshold value such as the above-described buffer transistor, and a back gate electrode may not be provided for a pixel TFT.
  • Patent Document 4 describes a technique using two oxide semiconductor layers having different film qualities. However, this document does not disclose that the configuration in which the back gate electrode is provided and the configuration in which the back gate electrode is not provided are mixed and the threshold voltage is controlled by using two or more oxide semiconductor layers having different mobility. .
  • FIG. 2 is a plan view showing the TFT substrate (active matrix substrate) 100 according to the first embodiment.
  • the TFT substrate 100 includes a display area (active area) RA in which a plurality of pixels are arranged in a matrix, and a non-display area (frame area) RF provided around the display area (active area) RA.
  • a plurality of gate lines (scanning lines) extending in the horizontal direction and a plurality of source lines (data lines) extending in the vertical direction so as to intersect the gate lines are provided.
  • an oxide semiconductor TFT (pixel TFT) as a switching element is provided.
  • the non-display area RF is provided with a terminal portion and wiring.
  • the terminal wiring region RF2 is provided so as to surround the display region RA, for example, as shown in the figure.
  • gate drivers formed monolithically with the substrate are provided at positions corresponding to the left and right sides of the TFT substrate 100 in the non-display area RF.
  • the formation region of the monolithic gate driver is shown as a GDM region.
  • a source driver is provided at a position corresponding to the upper and lower sides by, for example, mounting a semiconductor chip on a connection terminal on a substrate.
  • the source driver may be formed monolithically on the substrate in the same manner as the gate driver.
  • FIG. 3A is a cross-sectional view showing the configuration of the pixel TFT 5A provided in the display area RA.
  • FIG. 3B is a cross-sectional view showing the configuration of the peripheral circuit TFT 5B provided in the non-display area RF.
  • FIG. 3B shows a part of the TFTs included in the gate driver provided in the non-display region RF as the peripheral circuit TFT 5B, and the peripheral circuit TFT having another configuration is the gate. Needless to say, it may be included in the driver.
  • the pixel TFT 5A includes a gate electrode 12, a gate insulating layer 20, an oxide semiconductor layer 16, a source electrode 14, and a drain electrode 15 on a transparent substrate 10.
  • the pixel TFT 5 ⁇ / b> A is covered with a passivation layer 22 as a protective layer, and an organic insulating layer 24 is provided on the passivation layer 22.
  • the peripheral circuit TFT 5B includes a gate electrode 12, a gate insulating layer 20, an oxide semiconductor layer 16, a source electrode 14, and a drain electrode 15 like the pixel TFT 5A, and includes a passivation layer. 22 is covered. However, a back gate electrode (second gate electrode) 17 is provided on the passivation layer 22 in some TFTs 5B of the peripheral circuit TFT such as a buffer transistor.
  • some of the peripheral circuit TFTs may not have the back gate electrode 17 and may be covered with the organic insulating layer 24.
  • the TFT that does not have enough space for the back gate electrode 17 may not be provided with the back gate electrode 17.
  • a plurality of types of TFTs 5A and 5B shown in FIGS. 3A and 3B are provided according to applications.
  • a suitable operation can be performed by appropriately controlling the threshold voltage using the back gate electrode 17 disposed at a position close to the oxide semiconductor layer 16. Further, since the back gate electrode 17 is not provided in the pixel TFT 5A, reduction of the effective display area is prevented. Further, the operation of the pixel TFT 5A is compensated by covering with the organic insulating layer 24. Note that a TFT which does not have the back gate electrode 17 and is not covered with the organic insulating layer 24 as shown in FIG.
  • FIGS. 4A to 4C more specific examples of pixel TFTs and peripheral circuit TFTs provided on a TFT substrate used in a transmissive liquid crystal panel and manufacturing processes thereof will be described.
  • FIG. 4 (a) and 4 (b) show regions in the vicinity of the pixel TFT 5A and the peripheral circuit TFT 5B provided on the TFT substrate for a liquid crystal panel.
  • FIG. 4C is a plan view of the peripheral circuit TFT 5B shown in FIG.
  • the pixel TFT 5A is covered with a passivation layer 22 and an organic insulating layer 24.
  • a transparent common electrode 18, a transparent insulating layer 26 covering the transparent common electrode 18, and a pixel electrode 19 formed on the transparent insulating layer 26 are provided on the organic insulating layer 24.
  • the drain electrode 15 of the pixel TFT 5A is electrically connected to the pixel electrode 19 in the contact hole CH.
  • the transparent common electrode 18 is insulated from the pixel electrode 19 by the transparent insulating layer 26.
  • an auxiliary capacitor is formed by the transparent common electrode 18, the pixel electrode 19, and the insulating layer 26, and the auxiliary capacitor is used to hold the pixel voltage during the TFT off period.
  • the transparent common electrode 18 is typically provided so as not to cover the pixel TFT 5A.
  • the peripheral circuit TFT 5B has a back gate electrode 17.
  • the back gate electrode 17 is disposed so as to overlap with the oxide semiconductor layer 16 when viewed from the substrate normal direction.
  • the oxide semiconductor layer 16 is disposed so as to overlap with the gate electrode 12. That is, the back gate electrode 17 is disposed so as to overlap the gate electrode 12 with the oxide semiconductor layer 16 interposed therebetween.
  • the back gate electrode 17 is used for threshold control of the peripheral circuit TFT 5B. As shown in FIG. 4B, the back gate electrode 17 is electrically connected to the source electrode 14 through a contact hole provided in the passivation layer 22, for example. In this case, the potential of the back gate electrode 17 is kept the same as the potential of the source electrode 14. As will be described later, when the drain electrode 15 of the peripheral circuit TFT 5B is connected to the gate bus line 2 for inputting a gate signal to the gate electrode 12 of the pixel TFT 5A, in many periods excluding the gate on period of the pixel TFT 5A. The potentials of the source electrode 14 and the back gate electrode 17 are maintained at approximately 0 V (off voltage).
  • the peripheral circuit TFT 5B may have other configurations, and the back gate electrode 17 may be connected to the gate electrode 12. Alternatively, an arbitrary voltage may be applied to the back gate electrode 17 using a separately provided back gate wiring.
  • the drain electrode 15 of the peripheral circuit TFT 5B provided with the back gate electrode 17 may be connected to the gate bus line 2 via the connecting portion 17 '.
  • the gate bus line 2 is connected to the gate electrode 12 of the pixel TFT 5A in the display area, and when the peripheral TFT 5B is in the ON state, a signal applied to the source electrode 14 of the peripheral TFT 5B is the gate electrode 12 of the pixel TFT 5A. It is comprised so that it may be given to.
  • the pixel TFT 5A and the peripheral circuit TFT 5B can be formed in the same process. Further, in the peripheral circuit TFT 5B, the back gate electrode 17 and the connection portion 17 ′ for connecting the drain electrode 15 of the peripheral circuit TFT 5B to the gate bus line 2 are connected to the pixel electrode 19 connected to the pixel TFT 5A in the display region, and the auxiliary capacitance. It can be formed simultaneously with the pixel electrode 19 or the transparent common electrode 18 by using a process of providing the transparent common electrode 18 or the like for formation.
  • the pixel TFT 5A in the display area RA and the peripheral circuit TFT 5B in the non-display area RF are formed by a known method.
  • the gate bus line 2 and the source bus line not shown in FIGS. 4A to 4C can also be formed by a known method.
  • Each of the TFTs 5A and 5B is covered with a passivation layer 22 which is an inorganic insulating layer having a thickness of 200 to 300 nm made of, for example, a SiO 2 film by a known method. Thereafter, an organic insulating layer 24 made of an organic photosensitive material and having a thickness of 2 to 3 ⁇ m is provided. The organic insulating layer 24 is patterned by a photolithography process. At this time, the organic insulating layer 24 is provided so as not to cover the peripheral circuit TFT 5B. Further, a contact hole CH is provided in the vicinity of the pixel TFT 5A, and the drain electrode 15 can be exposed by etching the passivation layer 22 using the organic insulating layer 24 as a mask.
  • a contact hole that exposes the gate wiring 2 may be formed in the vicinity of the peripheral circuit TFT 5B. Further, a contact hole for connecting the back gate electrode 17 of the peripheral circuit TFT 5 ⁇ / b> B to the source electrode 14 may be provided in the passivation layer 22.
  • a transparent common electrode 18 is provided, and a transparent insulating layer 26 is further provided. Further, the pixel electrode 19 is provided on the transparent insulating layer 26.
  • the back gate electrode 17 of the peripheral circuit TFT 5B can be formed.
  • the back gate electrode 17 can be formed of a transparent conductive material such as ITO (indium tin oxide) or IZO (indium zinc oxide).
  • the connection portion 17 ′ for connecting the drain electrode 15 in the peripheral circuit TFT 5 ⁇ / b> B to the gate wiring 2 can also be formed from a transparent conductive material in the same manner as the back gate electrode 17.
  • the TFTs 5A and 5B can be manufactured using a conventional process for manufacturing a TFT substrate for a display device without newly adding a step of providing the back gate electrode 17. This is advantageous from a cost standpoint.
  • the oxide semiconductor layer 16 includes, for example, an In—Ga—Zn—O-based semiconductor (hereinafter abbreviated as “In—Ga—Zn—O-based semiconductor”).
  • a TFT having an In—Ga—Zn—O-based semiconductor layer has high mobility (more than 20 times that of an a-Si TFT) and low leakage current (less than one hundredth of that of an a-Si TFT). It is suitably used as a drive TFT and a pixel TFT.
  • a TFT having an In—Ga—Zn—O-based semiconductor layer is used, power consumption of the display device can be significantly reduced.
  • the In—Ga—Zn—O based semiconductor may be amorphous or may contain a crystalline part.
  • a crystalline In—Ga—Zn—O-based semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface is preferable.
  • Such a crystal structure of an In—Ga—Zn—O-based semiconductor is disclosed in, for example, Japanese Patent Application Laid-Open No. 2012-134475 (Patent Document 1). For reference, the entire disclosure of Japanese Patent Application Laid-Open No. 2012-134475 is incorporated herein by reference.
  • the oxide semiconductor layer 16 may include another oxide semiconductor instead of the In—Ga—Zn—O-based semiconductor.
  • Zn—O based semiconductor ZnO
  • In—Zn—O based semiconductor IZO (registered trademark)
  • Zn—Ti—O based semiconductor ZTO
  • Cd—Ge—O based semiconductor Cd—Pb—O based
  • CdO cadmium oxide
  • Mg—Zn—O based semiconductors In—Sn—Zn—O based semiconductors (eg, In 2 O 3 —SnO 2 —ZnO), In—Ga—Sn—O based semiconductors, etc. You may go out.
  • the threshold voltage is set to 0 to 5 V, for example.
  • the TFT 5B provided with the back gate electrode 17 does not have an organic insulating film interposed therebetween, so that a minus shift of the threshold voltage is sufficiently suppressed and a normally-on state is obtained. Is prevented.
  • the threshold value is stabilized by the organic insulating layer 24. Note that the pixel TFT 5A can be set to have a low gate voltage when it is off, so that it is unlikely to be in a normally-on state without being strictly controlled by the back gate electrode 17, and is covered with the organic insulating layer 24. It can be operated without any trouble.
  • the structure with the back gate shown in FIG. 3B is applied to all the peripheral circuit TFTs 5B provided in the non-display area, and all the pixel TFTs provided in the display area are A structure without a back gate (however, covered with an organic insulating layer) shown in FIG.
  • the region covered with the organic insulating layer is only the display region RA, and the non-display region RF is not covered with the organic insulating layer.
  • the back gate is provided in all the TFTs included in the driver circuit, the operation can be stabilized.
  • FIG. 5A is a plan view showing the TFT substrate 300 according to the first embodiment.
  • 5B and 5C show cross sections of the pixel TFT 5A and the peripheral circuit TFT 5B.
  • the organic insulating layer is not provided in both the display area RA and the non-display area RF. That is, as shown in FIG. 5B, in the pixel TFT 5A, no organic insulating layer is provided above the passivation layer 22, and no organic insulating layer is provided in the peripheral circuit TFT 5B, but the peripheral circuit TFT 5B. Is provided with a back gate electrode 17 for controlling threshold fluctuation.
  • the oxide semiconductor layer 16 includes a first layer 161 and a first layer 161 having relatively high mobility. It is composed of two layers with the second layer 162 having a lower mobility.
  • the first layer 161 with high mobility is provided as a lower layer so as to be in contact with the gate insulating layer 20, and the second layer 162 with low mobility is exposed in the gap between the source electrode 14 and the drain electrode 15. It is provided as an upper layer.
  • the first layer (lower layer) 161 with high mobility and the second layer (upper layer) 162 with low mobility are formed, for example, by changing the composition ratio of elements constituting the oxide semiconductor layer 16. be able to.
  • the mobility can be increased by increasing the In concentration (or decreasing the Ga concentration).
  • Patent Document 4 describes a configuration in which two layers having different In concentrations are provided in a TFT using an In—Ga—Zn—O-based semiconductor.
  • TFTs with less strict threshold control such as pixel TFTs and some peripheral circuit TFTs, without providing an organic insulating layer.
  • TFTs that are severe in threshold fluctuation among the peripheral circuit TFTs by providing the back gate electrode 17, a minus shift can be prevented and an appropriate operation can be performed.
  • the reason why the threshold shift can be suppressed by forming the oxide semiconductor layer 16 in two layers is as follows.
  • in-film defects are generated during source dry etching (source / drain separation step), and carriers are trapped, whereby the threshold voltage Vth varies.
  • source / drain separation step source / drain separation step
  • the oxide semiconductor layer 16 with high mobility has a single layer structure, carriers flow through the entire layer, and defects in the film formed in the upper layer portion of the first layer affect carrier flow.
  • the oxide semiconductor layer has a two-layer structure
  • carriers can flow only in the first layer (lower layer) with high mobility. That is, it is possible to reduce the possibility that defects in the film formed in the upper layer portion of the second layer (upper layer) affect the carrier flow. In this way, threshold value fluctuations can be prevented by selectively using, as a channel, a lower layer having high mobility and not a defect, rather than an upper layer directly in contact with the source electrode and the drain electrode.
  • the Ga concentration (atomic ratio) of the first layer with high mobility is set to 40 at% or less, for example, as a composition ratio.
  • In concentration ⁇ Ga concentration is set in the first layer.
  • the Ga concentration of the second layer having low mobility is set to 30 to 50 at% in terms of the composition ratio.
  • In concentration ⁇ Ga concentration is set in the second layer.
  • the composition ratio of each layer is set so as to satisfy the relationship of Ga concentration of the first layer ⁇ Ga concentration of the second layer (or In concentration of the first layer> In concentration of the second layer).
  • the first layer is formed.
  • sputtering may be performed using a target with a higher Ga concentration to form the second layer.
  • the thickness of the first layer is set to, for example, 10 nm or more at the time of film formation
  • the thickness of the second layer is set to, for example, 20 nm or more at the time of film formation.
  • part of the second layer is also etched in the source / drain etching process. For this reason, it is preferable that the thickness of the second layer at the time of film formation is arbitrarily set so that the thickness of the second layer remaining after the etching is greater than 0 nm.
  • FIG. 6 shows the threshold characteristics of the TFT 5A and TFT 5B shown in FIGS. 5 (b) and 5 (c).
  • the threshold shift can be suppressed in the TFTs 5A and 5B having any configuration.
  • the variation in threshold is confirmed to be about 3 V, whereas when the oxide semiconductor layer is formed of two layers. It was found that the variation in threshold value was reduced to 1 V or less.
  • the configuration using two oxide semiconductor layers having different mobility as in the third embodiment may be applied to the first and second embodiments. Thereby, the element characteristics of each TFT can be further improved.
  • the TFT 5B in which the gate electrode 12 is disposed below the oxide semiconductor layer 16 and the back gate electrode 17 is disposed above the oxide semiconductor layer 16 has been described.
  • the back gate electrode 17 may be disposed below the oxide semiconductor layer 16 and disposed above the physical semiconductor layer 16.
  • top contact structure TFT in which the upper surface of the semiconductor layer is in contact with the source electrode and the drain electrode has been described above.
  • bottom contact structure TFT in which the lower surface of the semiconductor layer is in contact with the source electrode and the drain electrode is also described. Good.
  • the applied voltage to the back gate electrode is, for example, provided with a monitoring TFT, and the deviation of the threshold value is determined from the value of the drain current value of this TFT, and this deviation.
  • a voltage suitable to compensate for the minute may be applied to the back gate.
  • the active matrix substrate used for a liquid crystal display device was demonstrated above, the active matrix substrate for organic electroluminescent display devices can also be produced.
  • a light emitting element provided for each pixel includes an organic EL layer, a switching TFT, and a driving TFT, and the semiconductor device according to the embodiment of the present invention can be used for this TFT.
  • a memory element oxide semiconductor thin film memory
  • the semiconductor device according to the embodiment of the present invention is suitably used as an active matrix substrate for a display device.

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

 半導体装置(100)は、基板上に、第1ゲート電極(12)、第1ゲート電極と接する第1の絶縁層(20)、第1の絶縁層を介して第1ゲート電極に対向するように配置された酸化物半導体層(16)、および、酸化物半導体層に接続されたソース電極(14)およびドレイン電極(15)を有する複数の酸化物半導体TFTと、複数の酸化物半導体TFTのうちの一部の酸化物半導体TFTのみを覆う有機絶縁層(24)とを備え、複数の酸化物半導体TFTは、有機絶縁層によって覆われた第1のTFT(5A)と、有機絶縁層によって覆われていない第2のTFT(5B)とを含み、第2のTFTは、第2の絶縁層(22)を介して酸化物半導体層に対向するように配置された第2ゲート電極(17)であって、基板法線方向から見たときに、酸化物半導体層を挟んで第1ゲート電極の少なくとも一部と重なるように配置された第2ゲート電極(17)を備える。

Description

半導体装置
 本発明は、酸化物半導体を用いて形成された半導体装置に関し、例えば、液晶表示装置や有機EL表示装置に用いられるアクティブマトリクス基板に関する。
 液晶表示装置等に用いられるアクティブマトリクス基板は、画素毎に薄膜トランジスタ(Thin Film Transistor:以下、「TFT」)などのスイッチング素子を備えている。このようなスイッチング素子としては、従来、アモルファスシリコン膜を活性層とするTFT(以下、「アモルファスシリコンTFT」)や多結晶シリコン膜を活性層とするTFT(以下、「多結晶シリコンTFT」)が広く用いられていた。
 近年、TFTの活性層の材料として、アモルファスシリコンや多結晶シリコン以外の材料を用いる試みがなされている。例えば、特許文献1には、InGaZnO(インジウム、ガリウム、亜鉛から構成される酸化物)などの酸化物半導体膜を用いてTFTの活性層を形成する液晶表示装置が記載されている。このようなTFTを「酸化物半導体TFT」と称する。
 酸化物半導体TFTは、アモルファスシリコンTFTよりも高速で動作させることが可能である。また、酸化物半導体膜は、多結晶シリコン膜よりも簡便なプロセスで形成されるため、大面積が必要とされる装置にも適用できる。このため、酸化物半導体TFTは、製造工程数や製造コストを抑えつつ作製できる高性能なアクティブ素子として、表示装置などへの利用が進められている。
 また、酸化物半導体の移動度は高いため、従来のアモルファスシリコンTFTに比べてサイズを小型化しても、同等以上の性能を得ることが可能である。このため、酸化物半導体TFTを用いて表示装置のアクティブマトリクス基板を作製すれば、画素内におけるTFTの占有面積率を低下させ、画素開口率を向上させることができる。これによって、バックライトの光量を抑えても明るい表示を行うことが可能になり、低消費電力を実現できる。
 特に、スマートフォンなどに用いられる小型・高精細の表示装置では、配線の最小幅制限(プロセスルール)などに起因して、画素の開口率を高くすることが容易ではない。そこで、酸化物半導体TFTを用いて画素開口率を向上させれば、小型の表示装置においていも、消費電力を抑えながら高精細な画像の表示を行うことができる。
 また、酸化物半導体TFTのオフリーク特性は優れているので、画像の書き換え頻度を低下させて表示を行う動作モードを利用することもできる。例えば、静止画表示時などには、1秒に1回の頻度で画像データを書き換えるように動作させることができる。このような駆動方式は、休止駆動または低周波駆動などと呼ばれ、表示装置の消費電力を大幅に削減することが可能である。
特開2012-134475号公報 特開2010-251735号公報 特開2013-84619号公報 国際公開第2011/132769号
 動作を安定させるために、酸化物半導体TFTのゲート電圧の閾値(閾値電圧Vth)を制御する種々の方法が検討されている。閾値電圧Vthが所望の値(例えば0V)からマイナス側にシフトしていると、TFTのオフ期間にもソースとドレインとが導通しノーマリオン状態となる動作不良が生じる。閾値電圧Vthのシフトは、例えば、酸化物半導体層の素子特性を改善するアニール工程において、酸化物半導体層に外部から水分などが混入することによって生じる。また、スイッチング動作の繰り返しや、酸化物半導体層への意図しない光の照射によっても、閾値シフトが生じる。さらに、製造プロセスで生じる寸法誤差などによって複数のTFTの閾値電圧にばらつきが生じ、相対的に閾値電圧がずれる場合もある。
 この問題に対して、特許文献2には、In-Ga-Zn-O系半導体を用いた酸化物半導体TFTにおいて、半導体層を挟んでゲート電極と対向するように設けられた付加的な電極(バックゲート電極または第2ゲート電極と呼ぶことがある)を用いる技術が開示されている。バックゲート電極を用いれば、酸化物半導体TFTの閾値シフトを補償することができる。したがって、酸化物半導体TFTのより安定した動作が期待できる。
 しかし、表示装置において、画素に設けられたTFT(以下、画素TFTと呼ぶことがある)にバックゲート電極を設ける構成を採用すると、画素開口率が低下するおそれがある。バックゲート電極は、例えば、下層のゲート電極や別の配線に接続され、所定電圧が印加されることが望ましいが、このような構成を実現するためにはTFTのサイズが拡大し得る。このため、画素TFTについては、バックゲート電極によって閾値電圧を制御することが好ましくない場合がある。
 一方、画素が配置されている表示領域の外側に位置する非表示領域(額縁領域)において、ゲートドライバやソースドライバなどの駆動回路を、基板上にモノリシック(一体的)に設ける技術が知られている。これらの駆動回路(モノリシックドライバ)は、通常、TFTを用いて構成される。最近では、酸化物半導体TFTを用いて基板上にモノリシックドライバを作製する技術が利用されており、これによって、額縁領域の狭小化や、実装工程簡略化によるコストダウンが実現される。
 駆動回路を構成するTFT(以下、周辺回路TFTと呼ぶことがある)は、一般的には、画素TFTを作製する工程において同時に作製される。このため、周辺回路TFTと画素TFTとは、同一または類似の構造を有することが多い。しかし、周辺回路TFTの一部には、画素TFTに比べて、閾値の変動をよりシビアに制御すべきものが含まれている場合があり、この場合、画素TFTと同様の構成で周辺回路TFTの閾値変動を抑制しようとすると、周辺回路TFTとして所望の動作が得られないことがある。
 このように、酸化物半導体TFTを備える半導体装置において、種々の用途で用いられるTFTについて、閾値電圧を適切に制御するという課題があった。
 本発明は、上記課題を解決するために為されたものであり、素子特性が向上した酸化物半導体TFTを備えた半導体装置を提供することをその目的とする。
 本発明の実施形態による半導体装置は、基板と、前記基板上に形成された複数の酸化物半導体TFTであって、それぞれが、第1ゲート電極と、前記第1ゲート電極と接する第1の絶縁層と、前記第1の絶縁層を介して前記第1ゲート電極に対向するように配置された酸化物半導体層と、前記酸化物半導体層に接続されたソース電極およびドレイン電極とを有する、複数の酸化物半導体TFTと、前記複数の酸化物半導体TFTのうちの一部の酸化物半導体TFTのみを覆う有機絶縁層とを備え、前記複数の酸化物半導体TFTは、前記有機絶縁層によって覆われた第1のTFTと、前記有機絶縁層によって覆われていない第2のTFTとを含み、前記第2のTFTは、第2の絶縁層を介して前記酸化物半導体層に対向するように配置された第2ゲート電極であって、基板法線方向から見たときに、前記酸化物半導体層を挟んで前記第1ゲート電極の少なくとも一部と重なるように配置された第2ゲート電極をさらに備える。
 ある実施形態において、前記第1のTFTは、前記第2ゲート電極を有していない。
 ある実施形態において、複数の画素が配列された表示領域と、前記表示領域の周囲に設けられた非表示領域とを有し、前記表示領域において前記第1のTFTが設けられ、かつ、前記非表示領域において前記第2のTFTが設けられている。
 ある実施形態において、前記有機絶縁層は、前記表示領域のみを選択的に覆うように設けられており、前記第1のTFTは、前記表示領域において前記複数の画素の1つに含まれ、前記第2のTFTは、前記非表示領域において前記基板上に一体的に形成されたゲートドライバに含まれている。
 ある実施形態において、前記非表示領域において、前記第2のTFTとは別に、前記第2ゲート電極を有しない第3のTFTが設けられている。
 ある実施形態において、前記有機絶縁層の上方に形成される透明電極をさらに有し、前記第2ゲート電極は、前記透明電極と同じ材料から形成されている。
 ある実施形態において、前記酸化物半導体層は、前記第1ゲート電極の近い側に配置され第1の移動度を有する第1半導体層と、前記第1半導体層と接し前記第1ゲート電極の遠い側に配置された第2半導体層であって前記第1の移動度よりも低い第2の移動度を有する第2半導体層とを含む。
 ある実施形態において、前記第2ゲート電極は、前記酸化物半導体TFTの前記ソース電極、前記第1ゲート電極、または、前記第2ゲート電極に別個の電圧を印加するための配線のいずれかに対して電気的に接続されている。
 ある実施形態において、前記酸化物半導体層は、In-Ga-Zn-O系半導体を含む。
 ある実施形態において、前記In-Ga-Zn-O系半導体は結晶質部分を含む。
 本発明の実施形態による半導体装置は、基板と、前記基板上に形成された複数の酸化物半導体TFTであって、それぞれが、第1ゲート電極と、前記第1ゲート電極と接する第1の絶縁層と、前記第1の絶縁層を介して前記第1ゲート電極に対向するように配置された酸化物半導体層と、前記酸化物半導体層に接続されたソース電極およびドレイン電極とを有する、複数の酸化物半導体TFTとを備え、前記酸化物半導体層は、前記第1ゲート電極に近い側に配置され第1の移動度を有する第1半導体層と、前記第1半導体層と接して前記第1ゲート電極の遠い側に配置され前記第1の移動度よりも低い第2の移動度を有する第2半導体層とを含み、前記複数の酸化物半導体TFTは、第1のTFTと、第2のTFTとを含み、前記第2のTFTには、第2の絶縁層を介して前記酸化物半導体層に対向するように配置された第2ゲート電極であって、基板法線方向から見たときに、前記酸化物半導体層を挟んで前記第1ゲート電極の少なくとも一部と重なる第2ゲート電極が設けられており、前記第1のTFTには、前記第2ゲート電極が設けられていない。
 ある実施形態において、複数の画素が配列された表示領域と、前記表示領域の周囲に設けられた非表示領域とを有し、前記表示領域には、前記第1のTFTが設けられ、かつ、前記非表示領域には、前記第2のTFTが設けられている。
 ある実施形態において、前記第2のTFTは、前記非表示領域に設けられたゲートドライバに含まれており、前記第1のTFTは、前記表示領域に設けられた画素に含まれている。
 ある実施形態において、前記第1半導体層の厚さは10nm以上であり、前記第2半導体層の厚さは20nm以上である。
 ある実施形態において、前記第2半導体層におけるGa濃度は、前記第1半導体層におけるGa濃度よりも高い。
 本発明の実施形態によれば、良好な素子特性を有する酸化物半導体TFTを備えたTFT基板を得ることができる。
酸化物半導体TFTの閾値を示す図であり、(a)は閾値シフトが抑制されている状態、(b)はマイナスの閾値シフトが生じている状態を示す。 本発明の実施形態1によるTFT基板を示す平面図である。 (a)および(b)は、図1に示すTFT基板に設けられた画素TFTの断面および周辺回路TFTの断面をそれぞれ示し、(c)は参考例として、バックゲートおよび有機絶縁層を備えないTFTの構成を示す。 液晶パネルに適用されるTFT基板の一例を示す図であり、(a)は画素TFT近傍の領域を示す断面図であり、(b)は周辺回路TFT近傍の領域を示す断面図であり、(c)は(b)の平面図を示す。 実施形態3によるTFT基板を説明するための図であり、(a)はTFT基板の平面図、(b)および(c)は画素TFTおよび周辺回路TFTの断面図であり、(d)は酸化物半導体層を示す断面図である。 実施形態3における酸化物半導体TFTの閾値を示す図である。
 以下、図面を参照しながら、本発明の実施形態に係る半導体装置として、表示装置に用いられるTFT基板(アクティブマトリクス基板)を説明する。なお、本発明の半導体装置は、アクティブマトリクス基板やそれを備える表示装置、あるいは、その他種々のデバイスを含むものとする。
 まず、本発明の一態様によるTFT基板の概要を説明する。
 上述したように、TFT基板には、表示領域と、その外側に位置する額縁領域とが設けられている。表示領域において、複数の画素のそれぞれに画素TFTが配置されており、額縁領域において、モノリシックドライバ回路を構成する複数の周辺回路TFTが配置されている。
 また、表示領域において、画素TFTを、パッシベーション層(典型的にはSiNx、SiOなどからなる、例えば厚さ数百nmの無機絶縁層)および有機絶縁層で覆い、有機絶縁層の上方に配置された画素電極とTFTとをコンタクトホールを通して接続する構成を採用することがある。有機絶縁層(有機層間絶縁層とも呼ばれる)は、例えば2~3μm程度と比較的厚く形成されており、画素TFTの上層の表面を平坦化するためや、画素電極とソース配線などとの間で形成される静電容量を低減するために用いられる。
 このように有機絶縁層を設ける場合において、閾値電圧の変動を抑制するためのバックゲート電極を、有機絶縁層上に設ける構成が知られている(例えば、特許文献2)。しかし、有機絶縁層の上にバックゲート電極を設けると、半導体層とバックゲート電極との間に比較的厚い有機絶縁層が介在することによって、閾値電圧の変動を抑制する効果が薄れ、バックゲート電極による閾値制御が適切に行えないおそれがある。
 そこで、閾値電圧の制御をより確実にするために、有機絶縁層を設けずにバックゲート電極を設ける構成が考えられる。例えば、ゲートドライバに含まれているバッファトランジスタ(そのドレインが、表示領域内を延びるゲート線に接続されるトランジスタ)は、閾値変動に対するマージンが少ないTFTであり、閾値電圧の制御をシビアに行うことが好ましい。また、バッファトランジスタの閾値シフトはマイナス側に発生することが多く、閾値電圧が0V未満になることでノーマリオン状態となりやすい。このようなトランジスタについては、TFTを有機絶縁層で覆わずに、パッシベーション層の上に設けたバックゲート電極を用いて閾値電圧を制御することが好適である。
 一方で、画素TFTについては、開口率の低下を防ぐために、上述したようにバックゲート電極を設けることが困難な場合がある。また、周辺回路TFTにおいても、バックゲート電極を設けるスペースを確保することが困難なTFTが存在し得る。
 そこで、画素TFTなどの特定のTFTについては、バックゲート電極を設けない構成を適用することが考えられる。しかし、本発明者の実験の結果、バックゲート電極を設けず、かつ、上記の周辺TFTと同様に有機絶縁層を設けない構造を採用すると、一部のTFTで正常な素子特性が得られないことがあることがわかった。これは、有機絶縁層で覆われていない場合には、TFTを覆うパッシベーション層の上層からTFTのチャネル部に及ぼす影響が増大し、閾値がマイナス側にシフトするからであると推測される。
 このような知見に基づき、画素TFTおよび周辺回路TFTの全ての閾値電圧を適切に制御するためには、有機絶縁層で覆われていないがバックゲート電極を備えるTFT構成と、有機絶縁層で覆われているTFT構成との少なくとも2種類を同じアクティブマトリクス基板上に混在させることが好ましいことを、本発明者らは見出した。このような方法によれば、従来の製造プロセスから大幅な変更や追加を行うことなく、各TFTの閾値を適切に制御することができるので、コスト面からも有利である。
 また、本発明の実施形態では、典型的には、バックゲート電極を備えていないTFTの全てが有機絶縁層で覆われる。つまり、任意のTFTについて、バックゲート電極および有機絶縁層のうちの少なくともいずれか一方が配置され、この構成において、複数のTFTのうちの一部のみが有機絶縁層で覆われる。
 下記の表1は、バックゲート電極の有無と有機絶縁層の有無との組み合わせごとに、TFT特性がどのようであったかを示す表である。
Figure JPOXMLDOC01-appb-T000001
 表1からわかるように、バックゲート構造を有しておらず、かつ、有機絶縁層で覆われていないTFTについては、表で「NG」として示すように、TFT特性がノーマリオン(Vth<0)となる場合があり、正常な動作が困難な場合があった。一方で、バックゲート構造を有するか、あるいは、有機絶縁層で覆われるかの少なくともいずれかの構成が適用されたTFTについては、表で「OK」として示すように、Vth≧0となり、正常な動作が行えた。また、バックゲート構造を有し、かつ、有機絶縁層で覆われたTFTの特性も「OK」であった。
 この結果から、基板上に配置された複数のTFTについて、複数の種類の素子構造をそれぞれ適用することで、バックゲート電極を設けることが困難なTFTが含まれる場合であっても、全てのTFTで所望の特性を得ることができることがわかる。
 参考までに、図1(a)および(b)に、(A:バックゲート有り、有機絶縁膜有り)の場合と、(B:バックゲート有り、有機絶縁膜無し)の場合と、(C:バックゲート無し、有機絶縁膜有り)の場合と、(D:バックゲート無し、有機絶縁膜無し)の場合とのそれぞれにおける印加電圧とドレイン電流量との関係を示す。図1(a)および(b)に示されるように、Dのバックゲート無し有機絶縁膜無しの場合にのみ、閾値電圧Vthがマイナス側にシフトし、0V印加時にオン状態になることがわかる。
 なお、特許文献3には、有機絶縁層に開口領域を設け、基板の一部(表示領域の外周部分)のみを有機絶縁層で覆わない構成が開示されている。ただし、特許文献3に記載の半導体装置は、同一基板上に、有機絶縁層で覆われたTFTと、覆われていないTFTとの2種類を混在させることを開示するものではない。
 以上、本発明の一態様について、その概要を説明したが、これに限られず、他の態様によってTFT全体の閾値を制御することもできる。例えば、本発明の別の態様において、一部のTFTにバックゲート電極を設けるとともに、画素TFTおよび周辺回路TFTの全てのTFTについて有機絶縁層を設けない構成が採用されてもよい。ただし、この場合には、TFTのチャネルを構成する酸化物半導体層を、移動度の異なる2層以上の半導体層から構成する。より具体的には、酸化物半導体層において、ソース電極およびドレイン電極に接する上層と比較して、下層の移動度を高く設定することが好ましい。これにより、TFTの素子特性を安定させることができる。また、上記のバッファトランジスタなどの閾値にシビアなTFTにはバックゲート電極を設け、画素TFTにはバックゲート電極を設けないようにすればよい。
 なお、特許文献4には、膜質の異なる2層の酸化物半導体層を用いる技術が記載されている。しかし、この文献は、バックゲート電極を設ける構成と、設けない構成とを混在させるとともに、移動度の異なる2層以上の酸化物半導体層を用いて閾値電圧を制御することを開示するものではない。
 以下、より具体的な実施形態を説明する。
(実施形態1)
 図2は、実施形態1に係るTFT基板(アクティブマトリクス基板)100を示す平面図である。TFT基板100は、複数の画素がマトリクス状に配列された表示領域(アクティブエリア)RAと、その周囲に設けられた非表示領域(額縁領域)RFとを含んでいる。
 表示領域RAにおいて、水平方向に延びる複数のゲート配線(走査線)と、ゲート配線に交差するように垂直方向に延びる複数のソース配線(データ線)が設けられ、ゲート配線とソース配線との交差部近傍には、スイッチング素子としての酸化物半導体TFT(画素TFT)が設けられている。また、非表示領域RFには、端子部や配線が設けられている。なお、端子配線領域RF2は、図示するように、例えば、表示領域RAを囲むように設けられる。
 本実施形態のTFT基板100において、非表示領域RFのうちの、TFT基板100の左右の辺に対応する位置に、基板とモノリシックに形成されたゲートドライバが設けられている。図2において、モノリシックゲートドライバの形成領域をGDM領域として示している。なお、上下の辺に対応する位置には、ソースドライバが、例えば、半導体チップを基板上の接続端子に実装することで設けられている。ソースドライバは、ゲートドライバと同様に、基板上にモノリシックに形成されていてもよい。
 図3(a)は、表示領域RAに設けられた画素TFT5Aの構成を示す断面図である。また、図3(b)は、非表示領域RFに設けられた周辺回路TFT5Bの構成を示す断面図である。なお、図3(b)は、非表示領域RFに設けられたゲートドライバに含まれるTFTのうちの一部のTFTを周辺回路TFT5Bとして示すものであり、他の構成を有する周辺回路TFTがゲートドライバに含まれていても良いことは言うまでもない。
 図3(a)に示すように、画素TFT5Aは、透明基板10上に、ゲート電極12と、ゲート絶縁層20と、酸化物半導体層16と、ソース電極14およびドレイン電極15とを備える。また、画素TFT5Aは、保護層としてのパッシベーション層22によって覆われており、パッシベーション層22の上には、有機絶縁層24が設けられている。
 一方、図3(b)に示すように、周辺回路TFT5Bは、画素TFT5Aと同様に、ゲート電極12、ゲート絶縁層20、酸化物半導体層16、ソース電極14およびドレイン電極15を備え、パッシベーション層22によって覆われている。ただし、バッファトランジスタなど、周辺回路TFTのうちの一部のTFT5Bにおいて、パッシベーション層22の上に、バックゲート電極(第2ゲート電極)17が設けられている。
 また、周辺回路TFTのうちの一部は、図3(a)に示すように、バックゲート電極17を有さず、有機絶縁層24によって覆われる構成を有していても良い。例えば、ゲートドライバに含まれるTFTのうち、バックゲート電極17を設けるスペースが足りないTFTに関しては、バックゲート電極17が設けられていなくても良い。
 本実施形態では、TFT基板100上において、図3(a)および(b)に示す複数のタイプのTFT5A、5Bが、用途に応じて設けられている。周辺回路TFT5Bでは、酸化物半導体層16に近い位置に配置されたバックゲート電極17を用いて、閾値電圧を適切に制御して好適な動作を行うことができる。また、画素TFT5Aでは、バックゲート電極17が設けられていないので、有効表示領域の低減は防止されている。また、有機絶縁層24で覆うことで画素TFT5Aの動作が補償されている。なお、図3(c)に示すような、バックゲート電極17を有さず、かつ、有機絶縁層24で覆われないTFTは、動作不良のもととなるので設けられないことが好ましい。
 以下、図4(a)~(c)を参照しながら、透過型の液晶パネルに用いられるTFT基板に設けられた画素TFTおよび周辺回路TFTのより詳細な具体例およびその製造工程を説明する。
 図4(a)および(b)は、液晶パネル用のTFT基板に設けられた画素TFT5Aおよび周辺回路TFT5Bの近傍の領域をそれぞれ示す。また、図4(c)は、図4(b)に示す周辺回路TFT5Bの平面図である。
 図4(a)に示すように、画素TFT5Aは、パッシベーション層22および有機絶縁層24によって覆われている。また、有機絶縁層24上には、透明共通電極18と、透明共通電極18を覆う透明絶縁層26と、透明絶縁層26上に形成された画素電極19とが設けられている。画素TFT5Aのドレイン電極15は、コンタクトホールCH内で、画素電極19に対して電気的に接続されている。
 透明共通電極18は、透明絶縁層26によって画素電極19と絶縁されている。この構成において、透明共通電極18と画素電極19と絶縁層26とによって補助容量が形成され、補助容量はTFTオフ期間における画素電圧の保持に利用される。なお、透明共通電極18は、典型的には、画素TFT5Aを覆わないように設けられる。
 一方、図4(b)に示すように、周辺回路TFT5Bは、バックゲート電極17を有している。また、図4(c)に示すように、バックゲート電極17は、基板法線方向から見たときに、酸化物半導体層16と重なるように配置されている。また、酸化物半導体層16は、ゲート電極12と重なるように配置されている。つまり、バックゲート電極17は、間に酸化物半導体層16を挟んで、ゲート電極12と重なるように配置されている。
 バックゲート電極17は、周辺回路TFT5Bの閾値制御のために利用される。バックゲート電極17は、図4(b)に示すように、例えば、パッシベーション層22に設けられたコンタクトホールを介してソース電極14と電気的に接続される。この場合、バックゲート電極17の電位は、ソース電極14の電位と同じに保持される。後述するように、周辺回路TFT5Bのドレイン電極15が、画素TFT5Aのゲート電極12にゲート信号を入力するためのゲートバスライン2と接続されている場合、画素TFT5Aのゲートオン期間を除く多くの期間において、ソース電極14およびバックゲート電極17の電位は略0V(オフ電圧)に維持される。
 ただし、周辺回路TFT5Bは、他の構成を有していても良く、バックゲート電極17が、ゲート電極12と接続されていても良い。あるいは、別個に設けたバックゲート配線を用いて、バックゲート電極17に任意の電圧を印加できるようにしても良い。
 図4(b)および(c)に示すように、バックゲート電極17が設けられた周辺回路TFT5Bのドレイン電極15は、接続部17’を介して、ゲートバスライン2に接続されていてよい。ゲートバスライン2は、表示領域内の画素TFT5Aのゲート電極12と接続されており、周辺TFT5Bがオン状態のときに、周辺TFT5Bのソース電極14に印加される信号が、画素TFT5Aのゲート電極12に付与されるように構成されている。
 図4(a)および(b)に示す構成において、画素TFT5A、周辺回路TFT5Bは、同時の工程で作成することができる。また、周辺回路TFT5Bにおいて、バックゲート電極17や、周辺回路TFT5Bのドレイン電極15をゲートバスライン2に接続する接続部17’は、表示領域において画素TFT5Aに接続される画素電極19や、補助容量形成のための透明共通電極18等を設ける工程を利用して、画素電極19または透明共通電極18と同時に形成することができる。
 以下、具体的な製造工程を説明する。
 まず、公知の方法により、表示領域RA内における画素TFT5Aと、非表示領域RFにおける周辺回路TFT5Bとを形成する。なお、ゲートバスライン2や、図4(a)~(c)には示していないソースバスラインなども、公知の方法によって形成することができる。
 各TFT5A、5Bは、公知の方法によって、例えばSiO膜からなる厚さ200~300nmの無機絶縁層であるパッシベーション層22によって覆われる。その後、例えば有機感光性材料からなる厚さ2~3μmの有機絶縁層24を設ける。有機絶縁層24は、フォトリソ工程によってパターニングされ、このとき、有機絶縁層24は、周辺回路TFT5B上を覆わないように設けられる。また、画素TFT5Aの近傍では、コンタクトホールCHが設けられ、さらに、有機絶縁層24をマスクとしてパッシベーション層22をエッチングすることによってドレイン電極15を露出させることができる。この時、周辺回路TFT5Bの近傍では、ゲート配線2を露出させるコンタクトホールが形成されてもよい。また、周辺回路TFT5Bのバックゲート電極17をソース電極14に接続するためのコンタクトホールがパッシベーション層22に設けられても良い。
 その後、透明共通電極18が設けられ、さらに、透明絶縁層26が設けられる。また、透明絶縁層26上には、画素電極19が設けられる。
 このとき、透明共通電極18または画素電極19を形成する工程において、周辺回路TFT5Bのバックゲート電極17を形成することができる。この場合、透明共通電極18または画素電極19と同様に、ITO(インジウム錫酸化物)やIZO(インジウム亜鉛酸化物)などの透明導電材料によってバックゲート電極17を形成することができる。また、周辺回路TFT5Bにおけるドレイン電極15をゲート配線2と接続するための接続部17’も、バックゲート電極17と同様に透明導電材料から形成することができる。
 以上のような方法によれば、バックゲート電極17を設ける工程を新たに追加することなく、従来の表示装置用TFT基板の作製プロセスを利用して各TFT5A、5Bを作製することができるので、コスト面から有利である。
 なお、上記の酸化物半導体層16は、例えばIn-Ga-Zn-O系の半導体(以下、「In-Ga-Zn-O系半導体」と略する。)を含む。ここで、In-Ga-Zn-O系半導体は、In(インジウム)、Ga(ガリウム)、Zn(亜鉛)の三元系酸化物であって、In、GaおよびZnの割合(組成比)は特に限定されず、例えばIn:Ga:Zn=2:2:1、In:Ga:Zn=1:1:1、In:Ga:Zn=1:1:2等を含む。本実施形態では、酸化物半導体層16は、In、Ga、Znを、例えばIn:Ga:Zn=1:1:1の割合で含むIn-Ga-Zn-O系半導体層であってもよい。
 In-Ga-Zn-O系半導体層を有するTFTは、高い移動度(a-SiTFTに比べ20倍超)および低いリーク電流(a-SiTFTに比べ100分の1未満)を有しているので、駆動TFTおよび画素TFTとして好適に用いられる。In-Ga-Zn-O系半導体層を有するTFTを用いれば、表示装置の消費電力を大幅に削減することが可能になる。
 In-Ga-Zn-O系半導体は、アモルファスでもよいし、結晶質部分を含んでもよい。結晶質In-Ga-Zn-O系半導体としては、c軸が層面に概ね垂直に配向した結晶質In-Ga-Zn-O系半導体が好ましい。このようなIn-Ga-Zn-O系半導体の結晶構造は、例えば、特開2012-134475号公報(特許文献1)に開示されている。参考のために、特開2012-134475号公報の開示内容の全てを本明細書に援用する。
 酸化物半導体層16は、In-Ga-Zn-O系半導体の代わりに、他の酸化物半導体を含んでいてもよい。例えばZn-O系半導体(ZnO)、In-Zn-O系半導体(IZO(登録商標))、Zn-Ti-O系半導体(ZTO)、Cd-Ge-O系半導体、Cd-Pb-O系半導体、CdO(酸化カドミウム)、Mg-Zn-O系半導体、In-Sn-Zn-O系半導体(例えばIn23-SnO2-ZnO)、In-Ga-Sn-O系半導体などを含んでいてもよい。
 以上に説明したTFT基板100において、閾値電圧は、例えば0~5Vに設定される。モノリシックゲートドライバに含まれているTFTのうち、バックゲート電極17が設けられているTFT5Bは、有機絶縁膜を間に介在させていないので、閾値電圧のマイナスシフトが十分に抑えられノーマリオン状態となることが防止される。一方、画素TFT5Aでは、有機絶縁層24によって閾値が安定化される。なお、画素TFT5Aは、オフ時のゲート電圧を低く設定することができるので、バックゲート電極17によって厳密に制御しなくてもノーマリオン状態となる可能性は低く、有機絶縁層24で覆っておくだけで支障なく動作させることができる。
(実施形態2)
 上記の実施形態1では、周辺回路TFTのうちの、バッファトランジスタなどの閾値のマージンに厳しい一部のTFTについて、図3(b)に示すバックゲート有りの構造を適用し、その他のTFTは、図3(a)に示すようなバックゲート無しの構造を適用した。
 これに対して、本実施形態では、非表示領域に設けられる周辺回路TFT5Bの全てについて、図3(b)に示すバックゲート有りの構造を適用し、表示領域に設けられる画素TFTの全てについて、図3(a)に示すバックゲート無しの(ただし、有機絶縁層で覆う)構造を適用する。
 この構造において、有機絶縁層で覆われる領域は、表示領域RAのみとなり、非表示領域RFは有機絶縁層で覆われない。また、ドライバ回路に含まれるTFTの全てにバックゲートを設けているので動作を安定化させることができる。
 なお、周辺回路TFTの全てにバックゲート電極を設けることが、配置面積の点で困難な場合には、実施形態1として説明したように、特に閾値変動のマージンが小さいTFTのみに対してバックゲート電極を設ければ良い。
(実施形態3)
 図5(a)は、実施形態1に係るTFT基板300を示す平面図である。また、図5(b)および(c)には、画素TFT5Aと、周辺回路TFT5Bの断面を示す。
 本実施形態では、表示領域RAおよび非表示領域RFの双方で、有機絶縁層が設けられていない。すなわち、図5(b)に示すように、画素TFT5Aでは、パッシベーション層22の上層に有機絶縁層が設けられておらず、周辺回路TFT5Bにおいても有機絶縁層が設けられていないが、周辺回路TFT5Bには閾値変動を制御するためのバックゲート電極17が設けられている。
 ただし、閾値電圧を安定化させるために、本実施形態では図5(d)に示すように、酸化物半導体層16を、比較的移動度の高い第1の層161と、第1の層161よりも移動度が低い第2の層162との2層で構成している。移動度の高い第1の層161は、ゲート絶縁層20と接するように下層として設けられ、移動度の低い第2の層162は、ソース電極14とドレイン電極15との間隙で露出するように上層として設けられている。
 移動度の高い第1の層(下層)161と、移動度の低い第2の層(上層)162とは、例えば、酸化物半導体層16を構成する元素の組成比率を変化させることによって形成することができる。例えば、酸化物半導体層16として、In-Ga-Zn-O系半導体を用いる場合、Inの濃度を増加させる(あるいは、Ga濃度を低下させる)ことで、移動度を上昇させることができる。なお、特許文献4には、In-Ga-Zn-O系半導体を用いたTFTにおいて、In濃度の異なる2層を設ける構成が記載されている。
 このようにすれば、有機絶縁層を設けずとも、画素TFTや、一部の周辺回路TFTなど、閾値制御の厳しくないTFTを好適に動作させることができる。また、周辺回路TFTのうちの閾値変動に厳しいTFTについては、バックゲート電極17を設けることによって、マイナスシフトを防止し、適切な動作を行わせることができる。
 このように酸化物半導体層16を2層で形成することによって閾値シフトを抑制することができる理由は、以下の通りである。
 酸化物半導体層16の上層部分は、ソースドライエッチング時(ソース・ドレイン分離工程)に膜中欠陥が生じ、キャリアがトラップされることによって、閾値電圧Vthが変動する。移動度の高い酸化物半導体層16が1層構成の場合、その1層全体にキャリアが流れ、1層目の上層部分にできる膜中欠陥は、キャリア流動に影響を与えることになる。
 これに対して、酸化物半導体層を2層構造にすると、移動度の高い第1の層(下層)だけにキャリアを流すことができる。すなわち、第2の層(上層)の上層部分にできる膜中欠陥が、キャリア流動に影響を与える可能性を低減することができる。このようにして、ソース電極およびドレイン電極に直接接する上層ではなく、移動度が高く欠陥が生じていない下層を選択的にチャネルとして利用することで、閾値の変動を防止することができる。
 移動度の高い第1の層のGa濃度(原子比率)は、例えば、組成比で40at%以下に設定される。あるいは、第1の層においてIn濃度≧Ga濃度に設定される。一方、移動度の低い第2の層のGa濃度は、組成比で30~50at%に設定される。あるいは、第2の層において、In濃度<Ga濃度に設定される。ただし、第1の層のGa濃度<第2の層のGa濃度(または、第1の層のIn濃度>第2の層のIn濃度)の関係を満たすように、各層の組成比が設定される。
 なお、In濃度またはGa濃度を第1の層と第2の層とで異ならせるためには、例えば、スパッタ法によってIn-Ga-Zn-O系半導体層を形成する場合、第1の層を形成した後に、Ga濃度がより高いターゲットを用いてスパッタリングを行って第2の層を形成すればよい。
 第1の層の厚さは、成膜時において例えば10nm以上に設定され、第2の層の厚さは、成膜時において例えば20nm以上に設定される。ただし、ソース・ドレインエッチング工程において、第2の層の一部もエッチングされる。このため、成膜時の第2の層の厚さは、エッチング後に残る第2の層の厚さが0nm超となるように任意に設定されることが好ましい。
 このようにして、2層161、162で構成される酸化物半導体層16を設けることで、閾値のばらつきを抑制することができる。図6は、図5(b)および(c)に示すTFT5AおよびTFT5Bのそれぞれの閾値特性を示す。図6に示すように、酸化物半導体層16を2層で設けることによって、いずれの構成のTFT5A、5Bにおいても閾値シフトを抑制することができた。なお、本発明者の実験によれば、酸化物半導体層を1層で形成した場合には、閾値のばらつきが3V程度確認されたのに対し、酸化物半導体層を2層で形成した場合には、閾値のばらつきが1V以下に低減されることがわかった。
 以上には、移動度の異なる2層の酸化物半導体層を設ける形態を説明したが、3層以上で形成されていても良い。移動度が高く欠損が生じていない層が選択的にチャネルとして用いられるように複数の移動度の層を設けることで、適切な動作を実現できる。
 なお、従来、ソース電極14とドレイン電極15とをエッチングによって分離するプロセスの前に、酸化物半導体層へのエッチングダメージを低減するためのエッチングストッパを設ける技術が知られている。これに対し、本実施形態では、エッチングストッパを設けなくても良好な素子特性を得ることができるので、製造プロセスを簡略化できるという利点が得られる。
 本実施形態3のように、移動度の異なる2層の酸化物半導体層を用いる構成は、上記の実施形態1および2に対して適用してもよい。これにより、各TFTの素子特性をより向上させ得る。
 以上、本発明の実施形態を説明したが、種々の改変が可能であることは言うまでもない。例えば、上記にはゲート電極12が酸化物半導体層16の下方に配置され、バックゲート電極17が酸化物半導体層16の上方に配置されたTFT5Bを説明したが、逆に、ゲート電極12が酸化物半導体層16の上方に配置され、バックゲート電極17が酸化物半導体層16の下方に配置されていてもよい。
 また、上記には半導体層の上面がソース電極およびドレイン電極と接する、トップコンタクト構造のTFTを説明したが、半導体層の下面がソース電極およびドレイン電極と接する、ボトムコンタクト構造のTFTであってもよい。
 また、ゲートドライバに含まれる酸化物半導体TFTにおいて、バックゲート電極への印加電圧は、例えば、モニタ用のTFTを設け、このTFTのドレイン電流値の値から、閾値のずれを判断し、このずれ分を補償するのに適切な電圧を、バックゲートに印加するようにしてもよい。このような構成は、本出願人による国際公開第2014/042116号に記載されている。
 なお、上記には液晶表示装置に用いるアクティブマトリクス基板を説明したが、有機EL表示装置のためのアクティブマトリクス基板を作製することも可能である。有機EL表示装置では、画素毎に設けられた発光素子が、有機EL層、スイッチング用TFTおよび駆動用TFTを備えており、このTFTに本発明の実施形態による半導体装置を利用できる。さらに、TFTをアレイ状に並べて選択トランジスタとして用いることで、記憶素子(酸化物半導体薄膜メモリ)を構成することもできる。また、イメージセンサにも適用できる。
 本発明の実施形態による半導体装置は、表示装置用のアクティブマトリクス基板などとして好適に利用される。
 2 ゲート配線
 5A、5B TFT(酸化物半導体TFT)
 10 基板
 12 ゲート電極
 14 ソース電極
 15 ドレイン電極
 16 酸化物半導体層
 17 バックゲート電極
 20 ゲート絶縁層
 22 パッシベーション層
 24 有機絶縁層
 18 透明共通電極
 19 画素電極
 100 TFT基板
 RA 表示領域
 RF 非表示領域

Claims (15)

  1.  基板と、
     前記基板上に形成された複数の酸化物半導体TFTであって、それぞれが、第1ゲート電極と、前記第1ゲート電極と接する第1の絶縁層と、前記第1の絶縁層を介して前記第1ゲート電極に対向するように配置された酸化物半導体層と、前記酸化物半導体層に接続されたソース電極およびドレイン電極とを有する、複数の酸化物半導体TFTと、
     前記複数の酸化物半導体TFTのうちの一部の酸化物半導体TFTのみを覆う有機絶縁層とを備え、
     前記複数の酸化物半導体TFTは、前記有機絶縁層によって覆われた第1のTFTと、前記有機絶縁層によって覆われていない第2のTFTとを含み、
     前記第2のTFTは、第2の絶縁層を介して前記酸化物半導体層に対向するように配置された第2ゲート電極であって、基板法線方向から見たときに、前記酸化物半導体層を挟んで前記第1ゲート電極の少なくとも一部と重なるように配置された第2ゲート電極をさらに備える、半導体装置。
  2.  前記第1のTFTは、前記第2ゲート電極を有していない、請求項1に記載の半導体装置。
  3.  複数の画素が配列された表示領域と、前記表示領域の周囲に設けられた非表示領域とを有し、
     前記表示領域において前記第1のTFTが設けられ、かつ、前記非表示領域において前記第2のTFTが設けられている、請求項1または2に記載の半導体装置。
  4.  前記有機絶縁層は、前記表示領域のみを選択的に覆うように設けられており、
     前記第1のTFTは、前記表示領域において前記複数の画素の1つに含まれ、
     前記第2のTFTは、前記非表示領域において前記基板上に一体的に形成されたゲートドライバに含まれている、請求項3に記載の半導体装置。
  5.  前記非表示領域において、前記第2のTFTとは別に、前記第2ゲート電極を有しない第3のTFTが設けられている、請求項3または4に記載の半導体装置。
  6.  前記有機絶縁層の上方に形成された透明電極をさらに有し、前記第2ゲート電極は、前記透明電極と同じ材料から形成されている、請求項1から5のいずれかに記載の半導体装置。
  7.  前記酸化物半導体層は、前記第1ゲート電極の近い側に配置され第1の移動度を有する第1半導体層と、前記第1半導体層と接し前記第1ゲート電極の遠い側に配置された第2半導体層であって前記第1の移動度よりも低い第2の移動度を有する第2半導体層とを含む、請求項1から6のいずれかに記載の半導体装置。
  8.  前記第2ゲート電極は、前記酸化物半導体TFTの前記ソース電極、前記第1ゲート電極、または、前記第2ゲート電極に別個の電圧を印加するための配線のいずれかに対して電気的に接続されている、請求項1から7のいずれかに記載の半導体装置。
  9.  前記酸化物半導体層は、In-Ga-Zn-O系半導体を含む、請求項1から8のいずれかに記載の半導体装置。
  10.  前記In-Ga-Zn-O系半導体は結晶質部分を含む、請求項9に記載の半導体装置。
  11.  基板と、
     前記基板上に形成された複数の酸化物半導体TFTであって、それぞれが、第1ゲート電極と、前記第1ゲート電極と接する第1の絶縁層と、前記第1の絶縁層を介して前記第1ゲート電極に対向するように配置された酸化物半導体層と、前記酸化物半導体層に接続されたソース電極およびドレイン電極とを有する、複数の酸化物半導体TFTとを備え、
     前記酸化物半導体層は、前記第1ゲート電極に近い側に配置され第1の移動度を有する第1半導体層と、前記第1半導体層と接して前記第1ゲート電極の遠い側に配置され前記第1の移動度よりも低い第2の移動度を有する第2半導体層とを含み、
     前記複数の酸化物半導体TFTは、第1のTFTと、第2のTFTとを含み、
     前記第2のTFTには、第2の絶縁層を介して前記酸化物半導体層に対向するように配置された第2ゲート電極であって、基板法線方向から見たときに、前記酸化物半導体層を挟んで前記第1ゲート電極の少なくとも一部と重なる第2ゲート電極が設けられており、
     前記第1のTFTには、前記第2ゲート電極が設けられていない、半導体装置。
  12.  複数の画素が配列された表示領域と、前記表示領域の周囲に設けられた非表示領域とを有し、
     前記表示領域には、前記第1のTFTが設けられ、かつ、前記非表示領域には、前記第2のTFTが設けられている、請求項11に記載の半導体装置。
  13.  前記第2のTFTは、前記非表示領域に設けられたゲートドライバに含まれており、前記第1のTFTは、前記表示領域に設けられた画素に含まれている、請求項12に記載の半導体装置。
  14.  前記第1半導体層の厚さは10nm以上であり、前記第2半導体層の厚さは20nm以上である、請求項11から13のいずれかに記載の半導体装置。
  15.  前記第2半導体層におけるGa濃度は、前記第1半導体層におけるGa濃度よりも高い、請求項11から14のいずれかに記載の半導体装置。
PCT/JP2014/072298 2013-11-26 2014-08-26 半導体装置 WO2015079756A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480064634.1A CN105765729B (zh) 2013-11-26 2014-08-26 半导体装置
US15/039,118 US10269831B2 (en) 2013-11-26 2014-08-26 Semiconductor device including a plurality of thin-film transistors with one thin-film transistor including two gate electrodes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013244228 2013-11-26
JP2013-244228 2013-11-26

Publications (1)

Publication Number Publication Date
WO2015079756A1 true WO2015079756A1 (ja) 2015-06-04

Family

ID=53198713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072298 WO2015079756A1 (ja) 2013-11-26 2014-08-26 半導体装置

Country Status (3)

Country Link
US (1) US10269831B2 (ja)
CN (1) CN105765729B (ja)
WO (1) WO2015079756A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105655408A (zh) * 2016-03-14 2016-06-08 京东方科技集团股份有限公司 薄膜晶体管、阵列基板及其制作和驱动方法、显示装置
US10629630B2 (en) 2016-03-02 2020-04-21 Sharp Kabushiki Kaisha Active matrix substrate, and liquid crystal display device provided with active matrix substrate

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10475869B2 (en) * 2016-08-23 2019-11-12 Semiconductor Energy Laboratory Co., Ltd. Display device including display element and transistor
CN107195650B (zh) * 2017-06-13 2024-05-03 江苏城讯成联网络科技有限公司 多光谱摄像装置
CN109585682B (zh) * 2018-12-06 2020-09-29 合肥鑫晟光电科技有限公司 一种发光器件的封装方法、封装结构及显示装置
JP7250558B2 (ja) * 2019-02-19 2023-04-03 株式会社ジャパンディスプレイ 表示装置及び半導体装置
JP2021141196A (ja) * 2020-03-05 2021-09-16 株式会社ジャパンディスプレイ 半導体装置、および表示装置
JP2021192406A (ja) * 2020-06-05 2021-12-16 シャープ株式会社 アクティブマトリクス基板およびその製造方法
JP2022078757A (ja) * 2020-11-13 2022-05-25 株式会社ジャパンディスプレイ 表示装置及び表示装置の駆動方法
KR20220081435A (ko) * 2020-12-08 2022-06-16 삼성디스플레이 주식회사 표시 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277478A (ja) * 2008-05-14 2009-11-26 Toshiba Mobile Display Co Ltd 表示装置
JP2010021555A (ja) * 2008-07-14 2010-01-28 Samsung Electronics Co Ltd トランジスタ
WO2012032749A1 (ja) * 2010-09-09 2012-03-15 シャープ株式会社 薄膜トランジスタ基板及びその製造方法、表示装置
JP2012084572A (ja) * 2010-10-07 2012-04-26 Canon Inc アクティブマトリクス基板及びその駆動方法
JP2013041945A (ja) * 2011-08-12 2013-02-28 Fujifilm Corp 薄膜トランジスタ及びその製造方法、表示装置、イメージセンサー、x線センサー並びにx線デジタル撮影装置
JP2013149995A (ja) * 2010-12-03 2013-08-01 Semiconductor Energy Lab Co Ltd 酸化物半導体膜

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101603775B1 (ko) * 2008-07-14 2016-03-18 삼성전자주식회사 채널층 및 그를 포함하는 트랜지스터
KR101671660B1 (ko) * 2008-11-21 2016-11-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 표시 장치 및 전자 기기
TWI617029B (zh) 2009-03-27 2018-03-01 半導體能源研究所股份有限公司 半導體裝置
WO2011027664A1 (en) * 2009-09-04 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for manufacturing the same
WO2011132769A1 (ja) 2010-04-23 2011-10-27 株式会社日立製作所 半導体装置およびそれを用いたrfidタグならびに表示装置
WO2014042116A1 (ja) 2012-09-11 2014-03-20 シャープ株式会社 半導体装置および表示装置
JP2013084619A (ja) 2013-01-07 2013-05-09 Sony Corp 表示装置
TWI560882B (en) * 2014-01-17 2016-12-01 E Ink Holdings Inc Semiconductor structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277478A (ja) * 2008-05-14 2009-11-26 Toshiba Mobile Display Co Ltd 表示装置
JP2010021555A (ja) * 2008-07-14 2010-01-28 Samsung Electronics Co Ltd トランジスタ
WO2012032749A1 (ja) * 2010-09-09 2012-03-15 シャープ株式会社 薄膜トランジスタ基板及びその製造方法、表示装置
JP2012084572A (ja) * 2010-10-07 2012-04-26 Canon Inc アクティブマトリクス基板及びその駆動方法
JP2013149995A (ja) * 2010-12-03 2013-08-01 Semiconductor Energy Lab Co Ltd 酸化物半導体膜
JP2013041945A (ja) * 2011-08-12 2013-02-28 Fujifilm Corp 薄膜トランジスタ及びその製造方法、表示装置、イメージセンサー、x線センサー並びにx線デジタル撮影装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10629630B2 (en) 2016-03-02 2020-04-21 Sharp Kabushiki Kaisha Active matrix substrate, and liquid crystal display device provided with active matrix substrate
CN105655408A (zh) * 2016-03-14 2016-06-08 京东方科技集团股份有限公司 薄膜晶体管、阵列基板及其制作和驱动方法、显示装置
WO2017156885A1 (zh) * 2016-03-14 2017-09-21 京东方科技集团股份有限公司 薄膜晶体管、阵列基板及其制作和驱动方法、显示装置

Also Published As

Publication number Publication date
US20170162602A1 (en) 2017-06-08
US10269831B2 (en) 2019-04-23
CN105765729B (zh) 2019-07-23
CN105765729A (zh) 2016-07-13

Similar Documents

Publication Publication Date Title
WO2015079756A1 (ja) 半導体装置
US11790867B2 (en) Active matrix substrate, liquid crystal display device, and organic EL display device
JP6692645B2 (ja) 半導体装置
CN110521003B (zh) 有源矩阵基板及其制造方法
US20120199891A1 (en) Semiconductor device and method for manufacturing same
JP6227016B2 (ja) アクティブマトリクス基板
CN108140675A (zh) 半导体装置及其制造方法
KR102454384B1 (ko) 산화물 박막 트랜지스터와 그를 포함하는 표시 장치 및 그 제조방법
US20170184893A1 (en) Semiconductor apparatus, method of manufacturing same, and liquid crystal display apparatus
JP2019078788A (ja) 有機el表示装置およびアクティブマトリクス基板
JP2021192406A (ja) アクティブマトリクス基板およびその製造方法
CN106415801A (zh) 半导体装置及其制造方法
JP7648246B2 (ja) 薄膜トランジスタ
US11688743B2 (en) Active matrix substrate and method for manufacturing same
JP2022014108A (ja) アクティブマトリクス基板およびその製造方法
US10263016B2 (en) Active matrix substrate and method for producing the same
CN109690661B (zh) 有源矩阵基板和具备有源矩阵基板的显示装置
WO2017159625A1 (ja) アクティブマトリクス基板
US10866475B2 (en) Active matrix substrate and display device
WO2016104253A1 (ja) 半導体装置
WO2020059027A1 (ja) 表示装置
JP7437359B2 (ja) アクティブマトリクス基板およびその製造方法
JPWO2018181142A1 (ja) アクティブマトリクス基板、液晶表示装置
US20210280614A1 (en) Semiconductor device and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865773

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15039118

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14865773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP