[go: up one dir, main page]

WO2015076375A1 - Oxygen reduction electrode catalyst, electrode catalyst for hydrogen generation reaction, and electrode - Google Patents

Oxygen reduction electrode catalyst, electrode catalyst for hydrogen generation reaction, and electrode Download PDF

Info

Publication number
WO2015076375A1
WO2015076375A1 PCT/JP2014/080923 JP2014080923W WO2015076375A1 WO 2015076375 A1 WO2015076375 A1 WO 2015076375A1 JP 2014080923 W JP2014080923 W JP 2014080923W WO 2015076375 A1 WO2015076375 A1 WO 2015076375A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
bnns
oxygen reduction
electrode catalyst
boron nitride
Prior art date
Application number
PCT/JP2014/080923
Other languages
French (fr)
Japanese (ja)
Inventor
浩平 魚崎
秀典 野口
Original Assignee
独立行政法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人物質・材料研究機構 filed Critical 独立行政法人物質・材料研究機構
Priority to JP2015549207A priority Critical patent/JP6052752B2/en
Publication of WO2015076375A1 publication Critical patent/WO2015076375A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an oxygen reduction electrocatalyst, for example, an oxygen reduction electrocatalyst that can be used for an oxygen electrode of a fuel cell, and in particular, an oxygen reduction electrocatalyst using boron nitride as a catalyst material and the catalyst. It relates to the oxygen electrode used.
  • the present invention also relates to an electrode catalyst for hydrogen generation reaction, for example, an electrode catalyst for hydrogen generation reaction (HER (hydrogen evolution reaction)) that can be used to decompose water to produce hydrogen and the catalyst. It relates to the HER electrode used.
  • HER hydrogen evolution reaction
  • Fuel cells are attracting attention because of their high energy conversion efficiency and low environmental impact.
  • One of the problems to be solved in the practical application of fuel cells is that the oxygen reduction reaction at the oxygen electrode is slow.
  • platinum is currently used as a catalyst for the oxygen electrode.
  • the use of a platinum catalyst is not only insufficient in efficiency, but also has a problem that the catalyst has a short life, is expensive and has a small amount of resources. Therefore, development of an oxygen reduction electrode catalyst that solves the above problem without using a noble metal such as platinum has been promoted all over the world, but a satisfactory catalyst has not yet been obtained. Accordingly, there is a need for a search for a completely new oxygen reduction electrocatalyst using materials that have not been studied.
  • Patent Document 1 a boron nitride (BN) nanostructure can be used as a catalyst for an oxygen reduction reaction without using platinum, which is a rare resource, and has filed a patent application related thereto.
  • Patent Document 1 a sample in which a BN thin film is deposited by sputtering on a conductive substrate having gold deposited on the surface, and a BN nanotube (BNNT) dispersed in a solvent on the same conductive substrate are used. The catalytic activity for the oxygen reduction reaction of the BN nanostructure was verified with the coated and dried sample.
  • ORR oxygen reduction reaction
  • Andrey Lyalin, Akira Nakayama, Kohei Uosaki, and Tetsuya Taketsugu "Functionalization of Monolayer h-BN by a Metal Support for the Oxygen Reduction Reaction" J. Phys. Chem. C 117, 21359-21370 (2013). Andrey Lyalin, Akira Nakayama, Kohei Uosaki, and Tetsuya Taketsugu "Theoretical predictions for hexagonal BN based nanomaterials as electrocatalysts for the oxygen reduction reaction” Phys. Chem. Chem. 2013-2.
  • An object of the present invention is to further improve the oxygen reduction reaction catalytic activity of the BN nanostructure first shown by Patent Document 1 described above, thereby contributing to the improvement of fuel cell efficiency.
  • oxygen reduction reaction at the electrode oxygen is reduced to water when all are carried out by a four-electron reaction, but in reality, a hydrogen peroxide generation reaction by a two-electron reaction also occurs. This is a factor that hinders the catalytic activity of the oxygen reduction reaction.
  • Hydrogen peroxide also has the effect of damaging the electrolyte membrane. Therefore, it is desired to suppress hydrogen peroxide generated by the oxygen reduction reaction at the electrode. Accordingly, an object of the present invention is to further suppress the hydrogen peroxide generated by the oxygen reduction reaction at the electrode to further improve the oxygen reduction reaction catalytic activity, and to contribute to the improvement of the fuel cell efficiency.
  • an object of the present invention is to solve the above-described problems of the prior art in the field of hydrogen generation and to provide an HER electrode having high catalytic activity.
  • an oxygen reduction electrocatalyst in which a boron nitride nanosheet is supported on the surface of at least one metal selected from the group consisting of Au, Ni, Pd, and Pt.
  • the boron nitride nanosheet may carry at least one fine metal particle selected from the group consisting of elements of groups 8 to 11 of the periodic table.
  • boron nitride nanosheets are supported on the surface of glassy carbon, and the boron nitride nanosheets are at least one selected from the group consisting of elements of groups 8 to 11 of the periodic table of elements.
  • An oxygen reduction electrocatalyst carrying metal particulates is provided.
  • the metal element of the at least one metal fine particle supported on the boron nitride nanosheet may be Au.
  • the size of the boron nitride nanosheet supported on any one of the oxygen reduction electrocatalysts is such that the selectivity for the production of hydrogen peroxide by the oxygen reduction reaction at the electrode is suppressed.
  • An oxygen reduction electrocatalyst is provided.
  • an oxygen electrode using any one of the above oxygen reduction electrode catalysts is provided.
  • a fuel cell comprising any one of the above oxygen electrodes is provided.
  • the generation of hydrogen peroxide due to the oxygen reduction reaction at the electrode is suppressed to reduce the oxygen reduction reaction.
  • a method for improving the catalytic activity is provided.
  • an electrode catalyst for a hydrogen generation reaction in which a boron nitride nanosheet is supported on a surface of at least one metal selected from the group consisting of Au, Ni, Pd and Pt. It is done.
  • the boron nitride nanosheet may carry at least one fine metal particle selected from the group consisting of elements of groups 8 to 11 of the periodic table.
  • the boron nitride nanosheet may cover a part of the surface of the metal (at least one metal selected from the group consisting of Au, Ni, Pd, and Pt).
  • the metal carrying the boron nitride nanosheet on the surface may be Au.
  • a hydrogen generating electrode using any one of the above HER electrode catalysts is provided.
  • a hydrogen generator comprising the HER electrode.
  • a BN nanosheet (BNNS) different from the BN nanostructure (boron nitride nanotube, boron nitride thin film, boron nitride nanoparticle, boron nitride nanoribbon) disclosed in the patent document is used as the BN.
  • the ORR activity can be improved. Further, by supporting Au fine particles on BNNS, higher ORR activity can be obtained.
  • BNNS to be supported on the surface of the substrate is made by supporting Au fine particles on BNNS, high ORR activity can be obtained even if glassy carbon is used as the substrate. The amount of noble metals used can be reduced.
  • ORR activity can be further improved by using BNNS whose size (size) is adjusted to be smaller.
  • the present invention further provides an oxygen electrode with improved ORR activity and an efficient fuel cell.
  • an electrode catalyst for HER having catalytic activity equivalent to that of platinum and, in some cases, higher than that of platinum can be obtained. Further, according to the present invention, if necessary, an HER electrode catalyst that does not exhibit catalytic activity for a hydrogen oxidation reaction (HOR (hydrogen-oxidation reaction)) that is a reverse reaction of HER can be obtained. According to the present invention, a HER electrode having high catalytic activity and an efficient hydrogen generator can be obtained.
  • HOR hydrogen-oxidation reaction
  • FIG. 1 The figure which shows notionally the preparation procedure of a BNNS / Au electrode.
  • A An HRTEM image of BNNS used to fabricate a BNNS / Au electrode, (a) clearly showing a honeycomb BN lattice, and (b) a BN hexagon. HRTEM image showing the zigzag edge structure of the composition. Here, the scale bar in the lower left corner of each image indicates 1 nm.
  • C BNNS EESL spectrum.
  • A SEM image of the surface of the Au electrode before supporting BNNS.
  • B (c): SEM images of the BNNS / Au electrode surface after supporting BNNS.
  • the inset of (b) shows the FFT pattern of a single layer BNNS.
  • Au / h-BNNS electrode prepared without using an Au electrode and a filter, and Au / h-BNNS manufactured using three types of filters (1.0 ⁇ m, 0.45 ⁇ m, 0.22 ⁇ m)
  • Current response curve with oxygen reduction reaction measured by the rotating ring disk electrode (RRDE) method of the Pt electrode and the rotating ring disk electrode (RRDE) method (where the electrode potential is measured in an oxygen-saturated 0.5 M sulfuric acid aqueous solution). Value).
  • Au / h-BNNS electrode produced without using a filter at 0.1 V and Au / h- produced using three types of filters (1.0 ⁇ m, 0.45 ⁇ m, 0.22 ⁇ m) diagram showing the relationship between the ratio of H 2 O 2 generated by BNNS electrode (%) and particle size of the h-BNNS ( ⁇ m).
  • Linear scanning voltammograms of these electrocatalysts showing the HER characteristics of the example electrocatalysts using Pt as the substrate.
  • Linear scanning voltammograms of these electrocatalysts showing the HER characteristics of the example electrocatalysts using Ni as the substrate.
  • the Tafel plot based on the measurement result of the HER characteristic at the time of using the BNNS / Au electrode, Au-BNNS / Au electrode, Ni-BNNS / Au electrode, BNNS / Pt electrode, and Au-BNNS / Pt electrode in an Example.
  • the inventor of the present application researched to further improve the ORR activity of an electrode using BN nanostructures (boron nitride nanotubes, boron nitride thin films, boron nitride nanoparticles, boron nitride nanoribbons) disclosed in Patent Document 1 instead of platinum.
  • BN nanostructures boron nitride nanotubes, boron nitride thin films, boron nitride nanoparticles, boron nitride nanoribbons
  • BNNS which is different from the BN nanostructure disclosed in the patent document, instead of the BN film or BNNT by sputtering verified in the patent document 1. It was.
  • This improvement in ORR activity is realized by using BNNS which is much thinner than the BN thin film verified in Patent Document 1 and has higher crystallinity than the BN nanostructure disclosed in the Patent Document. it is conceivable that.
  • ORR activity was further improved by supporting Au fine particles on this BNNS. Furthermore, it was found that an Au substrate is effective as a conductive substrate for supporting these BN films, not just a conductive substrate. Although not shown as an example, it has been confirmed that a further improvement in ORR activity can be achieved in the Ni substrate as well, and an improvement in ORR activity can also be achieved in the Pd or Pt substrate.
  • the reason why the ORR activity is further improved by supporting Au fine particles is that the electronic exchange between BN and the metal substrate affects the O—O bond of oxygen adsorbed on BN ( This is thought to be due to working in the direction of loosening the bond).
  • Pt, Ni, and fine particles of other elements belonging to groups 8 to 11 of the periodic table can obtain the same effect.
  • the oxygen reduction electrode catalyst when BNNS supporting Au fine particles is used as BNNS to be supported on the substrate, good ORR activity can be achieved even if an inexpensive glassy carbon substrate is used instead of an expensive Au substrate. I understood. In addition to Au fine particles, the same effect can be obtained with fine particles of Pt, Ni, and other elements in groups 8 to 11 of the periodic table. Further, when a heat treatment by heating is applied to the oxygen reduction electrode catalyst, the oxygen reduction current can be increased.
  • the size of BNNS may be smaller than that of the BNNS produced without adjusting the size, but is preferably as small as possible.
  • Au, Ni, Pd, Pt substrates, etc. can also be used as the substrate.
  • Au fine particles, Pt, Ni fine particles of other elements in groups 8 to 11 of the periodic table of elements are used. It can also be used by being carried.
  • the inventor of the present application developed an oxygen reduction electrocatalyst using boron nitride (BN) (Patent Document 1) and continued research to further improve its oxygen reduction reaction (ORR) activity. It was found that it was effective to use BN nanosheets (BNNS) in place of the BN film or BN nanotubes (BNNT) obtained by sputtering verified in 1 and the ORR activity was further improved by supporting Au fine particles on this BNNS. I found out. Furthermore, the present inventors have found that an Au substrate is particularly effective as a conductive substrate for supporting BNNS, not just a conductive substrate. As a result of further research by the present inventor, the present inventors have found that the oxygen reduction electrocatalyst thus obtained is useful as an electrode catalyst for HER, and has also completed the present invention relating to an electrode catalyst for HER.
  • BN boron nitride
  • ORR oxygen reduction reaction
  • BNNS fine particles supported on BNNS are not limited to Au, and fine particles of Ni or other elements belonging to groups 8 to 11 of the periodic table can also be used.
  • the existing catalyst used for HER has the property of activating the reverse reaction (here, HOR) found in many catalysts, hydrogen generated in HER is not immediately removed from the reaction system. Then, hydrogen returns to hydrogen ions. For this reason, if hydrogen generated in HER is not immediately taken out of the reaction system, there is a problem that the yield of hydrogen decreases.
  • the substrate using the Au substrate as the substrate for the HER electrode catalyst of the present invention has a very advantageous feature that it does not show activity against HOR, which is a reverse reaction.
  • the size of the metal fine particles supported on the BNNS is 5 to 30 nm.
  • the size is not limited as long as the object of the present invention can be achieved.
  • Example 1 Au electrode carrying BNNS
  • an electrode (BNNS / Au electrode) having BNNS supported on an Au substrate was prepared as follows.
  • an Au electrode was prepared according to the procedure shown in FIG. That is, it was prepared by supporting a Ti layer (15 nm thickness) as a binder on a Si substrate by sputtering and then supporting Au (150 nm thickness) by sputtering. Then, BNNS / Au electrodes modified with a thin film made of BN nanosheets were prepared by supporting BNNS on Au electrodes by spin coating as follows. For comparison experiments, an electrode having a glassy carbon (hereinafter abbreviated as GC) surface modified with a thin film made of BNNS was also produced.
  • GC glassy carbon
  • BNNS was prepared. Therefore, 3 mg of 1 ⁇ m BN powder was dispersed in 1 ml of isopropanol. The dispersion was sonicated for 96 hours, then centrifuged at 1500 rpm for 1 hour, and the upper 3/4 of the supernatant obtained by centrifugation was taken out for use as a spin coating solution. In the supernatant liquid thus taken out, BNNS peeled from the BN powder is dispersed.
  • the BNNS thus prepared was evaluated by a transmission electron microscope (TEM) and EELS (electron energy-loss spectroscopy). The result is shown in FIG. From this EELS spectrum, it was confirmed that BN had sp 2 hybrid orbitals, that is, had a hexagonal structure. It was also confirmed that there was no contamination such as carbon.
  • TEM transmission electron microscope
  • EELS electron energy-loss spectroscopy
  • the supernatant liquid in which BNNS is dispersed was coated on the Au electrode prepared as described above and a substrate having a GC surface by spin coating. In spin coating, it was first rotated at 500 rpm for about 90 seconds, and then rotated at 2000 rpm for 3 minutes. After completion of the spin coating, these electrodes were dried at 100 ° C. for 30 minutes in a hot air oven.
  • FIG. 3 (a) is an SEM image of the Au background before spin coating and with no BNNS supported.
  • FIG. 3B is an SEM image obtained by observing the electrode surface carrying BNNS at a low magnification.
  • FIG. 3C is an SEM obtained by observing the same electrode surface at a magnification approximately twice that of FIG. It is a statue.
  • the electrode after spin coating is an Au / BN electrode in which BNNS is placed on the Au background, and BNNS does not completely cover the Au background. I understood it.
  • FIG. 4 The redox characteristics of the BNNS / Au electrode thus prepared and the Au electrode before supporting BNNS as a comparison object are shown in FIG. 4 using a rotating electrode electrochemical cell whose structure is conceptually shown in FIG. It was measured by. By using the rotating electrode method, mass transfer to the electrode surface can be controlled, and the charge transfer reaction can be quantitatively analyzed with good reproducibility.
  • a BNNS / Au electrode to be measured or an Au electrode not carrying BNNS was attached as a working electrode (WE). Oxygen-saturated 0.5M sulfuric acid was used as the electrolyte.
  • a saturated NaCl silver / silver chloride electrode was used as the reference electrode (RE). Platinum wire was used as the counter electrode (CE). The measurement was performed at an electrode rotation speed of 1500 rpm and a potential sweep speed of 10 mV / sec.
  • FIG. 5A shows the measurement results of the BNNS / Au electrode supporting BNNS and the Au electrode not supporting BNNS.
  • FIG. 5B is a graph in which the X axis and the Y axis of the data in FIG. As can be seen from these graphs, the absolute value of the current when the BNNS / Au electrode has the same potential is increased as compared with the unsupported gold electrode. From this, it was confirmed that oxygen reduction activity was improved by supporting BNNS on the Au electrode.
  • BNNS / Au electrode an electrode in which BNNS was supported on the GC electrode by the same method as the production of the BNNS / Au electrode (hereinafter abbreviated as BNNS / GC electrode), and the Au electrode, BNNS / Comparison was made with the redox characteristics of the GC electrode, GC electrode, and BNNS / GC electrode.
  • FIG. 6 As can be seen from FIG. 6, there is no effect when GC is used as the base of the electrode for supporting BNNS. That is, it was found that even when BNNS was supported on GC, the oxygen reduction reaction activity was not improved.
  • Example 2 Au electrode carrying Au fine particle carrying BN nanosheet
  • the ORR activity in the case where an Au fine particle-supported BNNS was used was examined below.
  • BNNS was produced by the Hummer method as follows. 2 g of BN powder was dispersed in 9 ml of concentrated nitric acid (97%), maintained at 0 ° C. and sufficiently stirred. 18 ml of concentrated sulfuric acid was slowly mixed there and continuously stirred. Further, 10 g of KMnO 4 was slowly added over 1 hour, and stirring was continued for 5 days. The reaction mixture was diluted with 100 ml of diluted water, filtered, washed several times with water, and dried at 100 ° C. for 24 hours. Thereafter, thermal exfoliation was performed by heating to 1050 ° C. in an Ar atmosphere.
  • the BNNS obtained by the above procedure was modified with Au as follows (hereinafter, this product is abbreviated as Au fine particles / BNNS or Au-BNNS).
  • BNNS was dispersed in 60 ml of isopropanol (IPA) and subjected to ultrasonic treatment for 3 hours.
  • 4 ml of 10 mM HAUCl 4 solution (IPA was used as a solvent) was added, and the mixture was sufficiently stirred at room temperature for about 30 minutes.
  • the product was washed several times with water and ethanol and dried overnight in a vacuum chamber.
  • FIG. 7 shows the result of the structural evaluation of the Au fine particles / BNNS thus produced by XRD. From the results of FIG. 7, it was confirmed that Au that was not present on the original BNNS was supported after the above-described treatment.
  • FIG. 8 (d) and 8 (e) are the TEM images and HRTEM images of the Au fine particles / BNNS after the Au modification, in which the fine particles not seen in the BNNS in FIGS. 8 (a), (b) and (c) are shown.
  • (f) it can be confirmed that fine particles having a size of about 10 nm are supported on the BNNS surface.
  • An electrode (Au fine particle / BNNS / Au electrode or Au-BNNS / Au electrode) in which the Au fine particles / BNNS were supported on the same Au electrode as in Example 1 was produced. Furthermore, an electrode (BNNT / Au electrode) in which BNNT was supported on an Au electrode was also prepared for comparison. A method for manufacturing these electrodes is described below.
  • Au fine particles / Au electrode In preparation of Au fine particles / Au electrode, first, 3 mg of BNNT was dispersed in 1 ml of IPA and subjected to ultrasonic treatment for 48 hours. This Au fine particle / BNNS dispersion was spin-coated on the Au electrode. Specifically, it was first rotated at 500 rpm for 90 seconds and then at 2000 rpm for 3 minutes. This was dried in a hot air oven at 100 ° C. for about 30 minutes to obtain Au fine particles / BNNS / Au electrodes.
  • BNNT / Au electrode In preparation of the BNNT / Au electrode, first, 3 mg of Au fine particles / BNNS were dispersed in 1 ml of IPA, subjected to ultrasonic treatment for 5 minutes, and then centrifuged at 1500 rpm for 1 hour. The upper 3/4 of the supernatant from the centrifugation was removed for use in the spin coat solution. This spin coating solution was spin coated on an Au substrate. Specifically, it was first rotated at 500 rpm for 90 seconds and then at 2000 rpm for 3 minutes. This was dried in a hot air oven at 100 ° C. for about 30 minutes to obtain Au fine particles / BNNS / Au electrodes.
  • the three types of electrodes were used as working electrodes under the same rotating electrode electrochemical cell and conditions as in Example 1, and the redox characteristics were measured.
  • the measurement results are shown in FIG. 9A together with the measurement results for the gold electrode, the BNNS / Au electrode, and the BNNS / GC electrode in Example 1.
  • the ORR potential at a current density of ⁇ 0.02 mAcm ⁇ 2 was applied to the gold electrode, the BNNS / Au electrode, the Au fine particle / BNNS / Au electrode, the BNNT / Au electrode, and the Au fine particle / BNNS / GC electrode.
  • Table 1 The results are shown in Table 1 below.
  • the Au fine particle / BNNS / Au electrode of Example 2 has better ORR activity than the BNNS / Au electrode of Example 1. Furthermore, it was confirmed that both the Au fine particle / BNNS / Au electrode and the BNNS / Au electrode were better than the BNNT / Au electrode verified in Patent Document 1. Further, as is clear from FIG. 9 (a) and Table 1, the Au fine particle / BNNS / GC electrode with the least amount of Au used exhibits the same ORR active potential as the Au fine particle / BNNS / Au electrode. It was confirmed that it functions as an active oxygen reduction catalyst.
  • the substrate functions as a highly active oxygen reduction catalyst, which is expensive. It has been found that it is possible to suppress the use of a noble metal as a substrate.
  • the Au fine particle / BNNS / GC electrode is 600 times.
  • the measurement result of the heat treatment by heating at ° C. is the measurement result of the GC electrode or the measurement result of the other electrode shown in FIG. 9A (however, the above-mentioned shown in FIG. 9A) Measurement results of BNNT / Au electrode are not included.)
  • the newly added electrode measurement method and measurement conditions are the same as in FIG. As apparent from FIG.
  • Example 3 Au electrode carrying BNNS with adjusted size (hereinafter also referred to as h-BNNS)] Using an electrode (Au / h-BNNS electrode) on which an unsized h-BNNS is supported on an Au substrate and three types of filters (1.0 ⁇ m, 0.45 ⁇ m, 0.22 ⁇ m) Further, three types of electrodes (Au / h-BNNS electrodes) in which h-BNNS (hexagonal BN nanosheets) whose size was adjusted were supported on an Au substrate were prepared. For comparison, an Au electrode not supporting h-BNNS and a Pt electrode not supporting h-BNNS were also produced. The Au electrode and the Pt electrode were prepared by the procedure shown in FIG.
  • a Ti layer (15 nm thickness) as a binder was supported on a Si substrate by sputtering, and then Au or Pt (150 nm thickness) was supported by sputtering.
  • BNNS was produced by the Hummer method as follows. 2 g of BN powder was dispersed in 9 ml of concentrated nitric acid (97%), maintained at 0 ° C. and sufficiently stirred. 18 ml of concentrated sulfuric acid was slowly mixed there and continuously stirred. Further, 10 g of KMnO 4 was slowly added over 1 hour, and stirring was continued for 5 days. The reaction mixture was diluted with 100 ml of diluted water, filtered, washed several times with water, and dried at 100 ° C. for 24 hours.
  • BNNS obtained by the above procedure was dispersed in isopropanol (IPA) and filtered using three types of filters (1.0 ⁇ m, 0.45 ⁇ m, 0.22 ⁇ m), and each filtrate was spin-coated.
  • the coating was performed on the Au electrode substrate produced as described above. In spin coating, it was first rotated at 500 rpm for about 90 seconds, and then rotated at 2000 rpm for 3 minutes. After completion of the spin coating, these electrodes were dried at 100 ° C. for 30 minutes in a hot air oven. With respect to the above six types of electrodes, the redox characteristics were measured using the same rotating electrode electrochemical cell and conditions as in Example 1 as the working electrode.
  • a BNNS / Au electrode to be measured or an Au electrode not supporting BNNS and a Pt electrode were attached as working electrodes (WE).
  • Oxygen-saturated 0.5M sulfuric acid was used as the electrolyte.
  • the measurement results are shown in FIG. From FIG. 10, the Au electrode carrying BNNS has higher ORR activity than the Au electrode not carrying BNNS, and three types of sizes (1.0 ⁇ m) than BNNS without adjusting the electrode size. , 0.45 ⁇ m, 0.22 ⁇ m), the three electrodes using BNNS that were further sized only with higher ORR activity and as the size of the filter decreased (ie, BNNS It was confirmed that the ORR activity was further improved and the performance approached the Pt electrode as the size of the Pt electrode decreased.
  • the electrode prepared by the above method and carrying an unsized h-BNNS on an Au substrate and three types of filters (1.0 ⁇ m, 0.45 ⁇ m, 0.22 ⁇ m). Further, by using three electrodes in which h-BNNS of which only the size was adjusted was supported on an Au substrate, the production rate of hydrogen peroxide generated by the oxygen reduction reaction at each electrode was determined by the rotating ring-disk electrode method. The measurement was performed under the same electrochemical cell and conditions as in Example 1, and the redox characteristics of each electrode were examined.
  • a removable Au electrode ( ⁇ 5 mm ⁇ thickness 5 mm), an electrode carrying BNNS by a spin coating method, and an Au electrode not carrying BNNS were used, and Pt was used as a ring electrode.
  • Oxygen-saturated 0.5M sulfuric acid was used as the electrolyte.
  • the potential of the ring electrode was always kept at +0.9 V during the measurement, and the generation rate of hydrogen peroxide was measured by detecting the oxidation current of hydrogen peroxide generated by the oxygen reduction reaction at the disk electrode. The result is shown in FIG.
  • FIG. 11 is an average value of the size (particle diameter) of h-BNNS used in various electrodes, calculated based on the result of FIG. is there. From FIG. 11, h-BNNS in which only the size was adjusted by using three types of filters (1.0 ⁇ m, 0.45 ⁇ m, 0.22 ⁇ m) rather than the electrode using h-BNNS whose size was not adjusted was used. It was confirmed that the generation rate of hydrogen peroxide was smaller in the three electrodes using the hydrogen peroxide, and the generation rate of hydrogen peroxide decreased as the size of h-BNNS decreased. The inventors of the present application have also confirmed that when the size of BNNS is reduced, all oxygen is reduced to water by a four-electron reaction on the electrode (not shown).
  • an electrode prepared by the above method and carrying an unsized h-BNNS on an Au substrate and a filter of three sizes (1.0 ⁇ m, 0.45 ⁇ m, 0.22 ⁇ m) are further used.
  • H-BNNS of which only the size was adjusted was dispersed in an isopropanol solvent, and the flow diameter distribution was measured using a flow rate distribution measuring device. The result is shown in FIG.
  • the average value of the size (particle diameter) of h-BNNS that did not use the filter and did not adjust the size was further adjusted only by using the three types of filters. It is larger than the average value of any size (particle diameter) of h-BNNS, and as the size of these filters is reduced, the average value of the size (particle diameter) also decreases (ie, the size of h-BNNS). Was reduced).
  • Example 4 Production of Au electrode supporting BNNS
  • an electrode (BNNS / Au electrode) having BNNS supported on an Au substrate was prepared.
  • the fabrication and confirmation were performed in the same manner as described in the previous section [Example 1: Au electrode supporting BNNS]. Specifically, it is as follows.
  • an Au electrode was prepared according to the procedure shown in FIG. That is, it was prepared by supporting a Ti layer (15 nm thickness) as a binder on a Si substrate by sputtering and then supporting Au (150 nm thickness) by sputtering.
  • BNNS 3 mg of 1 ⁇ m BN powder was first dispersed in 1 ml of isopropanol. The dispersion was sonicated for 96 hours, then centrifuged at 1500 rpm for 1 hour, and the upper 3/4 of the supernatant obtained by centrifugation was taken out for use as a spin coating solution. In the supernatant liquid thus taken out, BNNS peeled from the BN powder was dispersed.
  • the BNNS thus prepared was evaluated by a transmission electron microscope (TEM) and EELS (electron energy-loss spectroscopy). The result was confirmed to be the same as FIG. 2 (therefore, the result is substituted in FIG. 2). From this EELS spectrum, it was confirmed that BN had sp 2 hybrid orbitals, that is, had a hexagonal structure. It was also confirmed that there was no contamination such as carbon.
  • TEM transmission electron microscope
  • EELS electron energy-loss spectroscopy
  • the supernatant liquid in which BNNS is dispersed was coated on the Au electrode produced as described above by spin coating. In spin coating, it was first rotated at 500 rpm for about 90 seconds, and then rotated at 2000 rpm for 3 minutes. After completion of the spin coating, these electrodes were dried at 100 ° C. for 30 minutes in a hot air oven.
  • FIG. 3 (a) is an SEM image of the Au background before spin coating and with no BNNS supported.
  • FIG. 3B is an SEM image obtained by observing the electrode surface carrying BNNS at a low magnification.
  • FIG. 3C is an SEM obtained by observing the same electrode surface at a magnification approximately twice that of FIG. It is an image and it can be seen that a single BNNS is on Au.
  • the electrode after spin coating is an Au / BN electrode in which BNNS is placed on the Au background, and BNNS does not completely cover the Au background. I understood it.
  • Example 5 Production of Au electrode carrying Au fine particle-carrying BN nanosheet
  • Au fine particles were supported on BNNS, and Au electrodes further supporting BNNS were prepared.
  • the preparation and confirmation were performed in the same manner as described in the previous section [Example 2: Au electrode carrying Au fine particle-carrying BN nanosheet]. Specifically, it is as follows.
  • BNNS was produced by the Hummer method as follows. 2 g of BN powder was dispersed in 9 ml of concentrated nitric acid (97%), maintained at 0 ° C. and sufficiently stirred. 18 ml of concentrated sulfuric acid was slowly mixed there and continuously stirred. Further, 10 g of KMnO 4 was slowly added over 1 hour, and stirring was continued for 5 days. The reaction mixture was diluted with 100 ml of diluted water, filtered, washed several times with water, and dried at 100 ° C. for 24 hours. Thereafter, thermal exfoliation was performed by heating to 1050 ° C. in an Ar atmosphere.
  • the BNNS manufacturing method here is slightly different from the BNNS manufacturing method used in manufacturing the BNNS / Au electrode described in the section [Example 4: Preparation of Au electrode carrying BNNS]. It has been confirmed that there is no influence on the HER characteristics due to the difference.
  • the BNNS obtained by the above procedure was modified with Au as follows (hereinafter, this product is abbreviated as Au fine particles / BNNS or Au-BNNS).
  • IPA isopropanol
  • 4 ml of 10 mM HAUCl 4 solution IPA was used as a solvent
  • the product was washed several times with water and ethanol and dried overnight in a vacuum chamber.
  • An electrode (Au fine particle / BNNS / Au electrode or Au-BNNS / Au electrode) in which the Au fine particles / BNNS are supported on the same Au substrate as the BNNS / Au electrode described above was produced.
  • the manufacturing method is shown below.
  • Example 6 Production of other electrodes
  • an electrode in which the same Au fine particles / BNNS are supported on a Pt electrode Au fine particles / BNNS / Pt electrode or Au-BNNS / Pt electrode
  • Ni fine particles / BNNS / Au electrode using Ni fine particles instead of Au fine particles Ni-BNNS / Au electrode
  • Ni-BNNS / Pt electrode Ni fine particle / BNNS / Pt electrode
  • Au fine particle / BNNS / Ni electrode Au fine particle / BNNS / Ni electrode with the substrate changed to Ni
  • this Au Ni fine particles / BNNS / Ni electrodes Ni-BNNS / Ni electrodes
  • an electrode with an Au background (Au electrode), an electrode with an Pt background (Pt electrode), and an electrode with an Ni background (Ni electrode) were also prepared for comparison.
  • Ni fine particles / BNNS were prepared as follows.
  • BNNS was prepared using the same method as that described in [Example 5: Production of Au electrode carrying Au fine particle-carrying BN nanosheet].
  • 20 mg of BNNS was dispersed in 60 ml of IPA by sonication for 3 hours.
  • 4 ml of a 10 mM NiCl solution (IPA) was added, and the mixture was sufficiently stirred at room temperature for about 30 minutes.
  • the product was washed several times with water and ethanol and dried overnight in a vacuum chamber.
  • Ni fine particles / BNNS thus produced are supported on the Au electrode, the Pt electrode, and the Ni electrode in the same manner as in [Example 5: Preparation of Au electrode supporting Au fine particle-supported BN nanosheet].
  • a Ni fine particle / BNNS / Au electrode, a Ni fine particle / BNNS / Pt electrode, and a Ni fine particle / BNNS / Ni electrode were prepared, respectively.
  • the Au fine particles / BNNS / Ni electrode was also produced by supporting the Au fine particles / BNNS produced earlier on the Ni electrode by the same method as above.
  • the diagram conceptually showing the configuration of the used rotating electrode electrochemical cell is the same as FIG. 4 described above.
  • one of the electrodes to be measured was attached as a working electrode (WE).
  • WE working electrode
  • 0.5 M sulfuric acid saturated with hydrogen was used as the electrolyte.
  • a saturated NaCl silver / silver chloride electrode was used as the reference electrode (RE).
  • Platinum wire was used as the counter electrode (CE).
  • the potential sweep rate was 0.1 mV / sec, and the measurement was performed without rotating the electrode.
  • FIG. 13 shows the apparatus shown above for the electrode catalyst of the above example using Au as a substrate, that is, the BNNS / Au electrode, the Au—BNNS / Au electrode, and the Ni—BNNS / Au electrode.
  • a linear scanning voltammogram obtained using the measurement conditions is shown.
  • the result of having performed the same measurement about Au electrode and Pt electrode is also shown in FIG. 13 for comparison. From the results of FIG. 13, although the Pt substrate shows the highest HER activity, the example using the Au substrate shows considerably higher HER activity than the Au substrate as a comparative example, and among them, the Au-BNNS / Au electrode and the BNNS The / Au electrode was found to exhibit HER activity much closer to the Pt electrode.
  • FIG. 14 shows an apparatus using Pt as a substrate in the electrocatalyst of the above example, that is, the apparatus shown above for the BNNS / Pt electrode, the Au—BNNS / Pt electrode, and the Ni—BNNS / Pt electrode, and A linear scanning voltammogram obtained using the measurement conditions is shown. Furthermore, the result of having performed the same measurement about Au electrode, Pt electrode, and Ni electrode is also shown in FIG. 14 for comparison.
  • FIG. 14 shows that the Au—BNNS / Pt electrode and the Ni—BNNS / Pt electrode, which are examples of the present invention, exhibit higher HER activity than the Pt electrode that is a comparative example. This means that if the electrodes shown in these examples are used, the amount of Pt used can be reduced compared to conventional Pt electrodes.
  • FIG. 15 shows the apparatus shown above for the electrode catalyst of the above example using Ni as a substrate, that is, a BNNS / Ni electrode, an Au—BNNS / Ni electrode, and a Ni—BNNS / Ni electrode.
  • a linear scanning voltammogram obtained using the measurement conditions is shown.
  • the result of having performed the same measurement about Pt electrode and Ni electrode is also shown in FIG. 15 for comparison. From FIG. 15, even when Ni is used as the substrate, the HER activity is improved by supporting BNNS on the substrate, and the effect is further enhanced particularly when BNNS supporting Au fine particles is used. understood.
  • FIG. 16 is based on the measurement results of the HER characteristics when the BNNS / Au electrode, the Au—BNNS / Au electrode, the Ni—BNNS / Au electrode, the BNNS / Pt electrode, and the Au—BNNS / Pt electrode in the example are used.
  • a Tafel plot is shown.
  • FIG. 16 also shows a Tafel plot in the case of only an Au substrate (Au electrode), a Pt substrate (Pt electrode), and an Ni substrate (Ni electrode).
  • Au electrode Au substrate
  • Pt electrode Pt substrate
  • Ni electrode Ni substrate
  • FIG. 17 shows only the BNNS / Au electrode, the Au—BNNS / Au electrode, the BNNS / Pt electrode, the Au—BNNS / Pt electrode, and the Au substrate (Au electrode) and Pt substrate (Pt electrode) as comparison targets in the examples. Shows a linear scanning voltammogram.
  • the positive current density indicates HOR
  • the negative current indicates HER.
  • Many catalysts exhibit catalytic activity in the reverse reaction as well if they have catalytic activity for a certain reaction. However, as can be seen from FIG.
  • an oxygen reduction electrode catalyst and an oxygen electrode having good ORR activity can be obtained without using platinum, it is expected to greatly contribute to the further spread of fuel cells. Furthermore, it is possible to provide an HER electrode catalyst that can reduce the amount of platinum that is used or not used, and it is possible to prevent HOR activity by appropriately selecting a substrate material. The use in the field can be greatly expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

To further improve the activity of an oxygen reduction electrode catalyst which uses boron nitride (BN). Oxygen reduction reaction activity is improved, in comparison to an electrode wherein a BN thin film is supported, by having the surface of Au or the like support a BN nanosheet. The activity can be further enhanced by having the BN nanosheet support Au fine particles. Vitreous carbon can be used for a substrate by having the BN nanosheet support Au fine particles. The oxygen reduction reaction activity can be further improved by using a BNNS that is further reduced in size. Also provided are: an electrode catalyst having high hydrogen generation reaction activity; and an electrode catalyst having high hydrogen generation reaction activity but not having hydrogen oxidation reaction activity, said hydrogen oxidation reaction being the reverse reaction of hydrogen generation reaction. High hydrogen generation reaction activity can be achieved by having the surface of Au substrate or the like support a BN nanosheet. The activity can be further improved by having the BN nanosheet support fine particles of Au or the like. An electrode catalyst which uses Au as a substrate has high hydrogen reaction activity but does not have hydrogen oxidation reaction activity.

Description

酸素還元電極触媒及び水素発生反応用電極触媒、並びに電極Oxygen reduction electrode catalyst, electrode catalyst for hydrogen generation reaction, and electrode
 本発明は、酸素還元電極触媒に関するものであって、例えば燃料電池の酸素極に使用することができる酸素還元電極触媒に関し、特に触媒の材料として窒化ホウ素を使用した酸素還元電極触媒及び当該触媒を使用した酸素極に関する。 The present invention relates to an oxygen reduction electrocatalyst, for example, an oxygen reduction electrocatalyst that can be used for an oxygen electrode of a fuel cell, and in particular, an oxygen reduction electrocatalyst using boron nitride as a catalyst material and the catalyst. It relates to the oxygen electrode used.
 また、本発明は、水素発生反応用電極触媒に関するものであって、例えば水を分解して水素を生成するために使用できる水素発生反応(HER(hydrogen evolution reaction))用電極触媒及び当該触媒を使用したHER用電極に関する。 The present invention also relates to an electrode catalyst for hydrogen generation reaction, for example, an electrode catalyst for hydrogen generation reaction (HER (hydrogen evolution reaction)) that can be used to decompose water to produce hydrogen and the catalyst. It relates to the HER electrode used.
 エネルギー変換効率が高くまた環境負荷が小さいことから、燃料電池が注目を集めている。燃料電池の実用化に当たって解決すべき問題の一つとして酸素極における酸素還元反応が遅いことが挙げられる。この反応を促進するため、酸素極の触媒として現在は白金が使用されている。しかし、白金触媒を使用しても効率はまだ十分なものとは言えないだけではなく、触媒としての寿命が短い、高価で資源量が少ないという問題もある。そのため、白金などの貴金属を使用せずに上記問題を解決する酸素還元電極触媒の開発が全世界的に進められているが、満足できる触媒は未だに得られていない。従って、これまで検討されてこなかった材料を使用した全く新しい酸素還元電極触媒の探索が求められている。 Fuel cells are attracting attention because of their high energy conversion efficiency and low environmental impact. One of the problems to be solved in the practical application of fuel cells is that the oxygen reduction reaction at the oxygen electrode is slow. In order to promote this reaction, platinum is currently used as a catalyst for the oxygen electrode. However, the use of a platinum catalyst is not only insufficient in efficiency, but also has a problem that the catalyst has a short life, is expensive and has a small amount of resources. Therefore, development of an oxygen reduction electrode catalyst that solves the above problem without using a noble metal such as platinum has been promoted all over the world, but a satisfactory catalyst has not yet been obtained. Accordingly, there is a need for a search for a completely new oxygen reduction electrocatalyst using materials that have not been studied.
 この問題に対して、本願発明者らは以前に窒化ホウ素(BN)のナノ構造体が、希少資源である白金を使用しなくとも酸素還元反応の触媒として使用できることを見出し、これに関する特許出願を行った(特許文献1)。特許文献1の実施例においては、表面に金を蒸着させた導電性基板上にBN薄膜をスパッタリングにより堆積させた試料、及び同じ導電性基板上に溶媒中に分散させたBNナノチューブ(BNNT)を塗布して乾燥させた試料により、BNナノ構造体の酸素還元反応についての触媒活性を検証した。また、本願発明者らはBNの酸素還元反応活性(ORR(oxygen reduction reaction)活性)を予測する理論計算を行い、その結果を非特許文献1及び2として公表した。 In response to this problem, the present inventors have previously found that a boron nitride (BN) nanostructure can be used as a catalyst for an oxygen reduction reaction without using platinum, which is a rare resource, and has filed a patent application related thereto. (Patent Document 1). In the example of Patent Document 1, a sample in which a BN thin film is deposited by sputtering on a conductive substrate having gold deposited on the surface, and a BN nanotube (BNNT) dispersed in a solvent on the same conductive substrate are used. The catalytic activity for the oxygen reduction reaction of the BN nanostructure was verified with the coated and dried sample. In addition, the inventors of the present application made theoretical calculations for predicting the oxygen reduction reaction activity (ORR (oxygen reduction reaction) activity) of BN, and published the results as Non-Patent Documents 1 and 2.
 また、資源枯渇や環境汚染などの問題から、太陽光を利用してエネルギーを得るための多様な研究開発が盛んに行われている。その一つである太陽電池は一部実用化が進んでいる。太陽電池は電力を出力するが、電力は貯蔵が困難であるため、発生した電力を即座に使用しない場合には、二次電池に充電する、発生した電力で水素等の燃料を発生させるなどの対策が考えられている。しかしながら、このような対策では、二回の変換を行うことになるので、システムの複雑化や価格の上昇だけではなく、変換の度に起こるエネルギーの損失が累積してしまい、太陽光の利用効率が低下するという問題があった。 In addition, due to problems such as resource depletion and environmental pollution, various research and development for obtaining energy using sunlight have been actively conducted. One such solar cell is being put into practical use. Solar cells output power, but since it is difficult to store power, if the generated power is not used immediately, the secondary battery is charged, or fuel such as hydrogen is generated with the generated power. Countermeasures are being considered. However, with such measures, conversion is performed twice, which not only increases the complexity of the system and increases the price, but also accumulates energy loss that occurs every time conversion occurs, resulting in efficient use of sunlight. There was a problem that decreased.
 この問題を解決するため、太陽光から直接水素を発生させる方法や装置が研究されている。しかし、この際のHERに使用する触媒の材料として最高の性能を発揮するものは依然として白金であるため、このような高価かつ限られた資源を使用しない、あるいはその使用量をできるだけ低減した触媒が求められている。 In order to solve this problem, methods and devices for generating hydrogen directly from sunlight have been studied. However, platinum is still the best material for the catalyst used in HER at this time, so there is a catalyst that does not use such expensive and limited resources or reduces the amount of use as much as possible. It has been demanded.
特開2013-230415号公報JP 2013-230415 A
 酸素還元反応は一般に遅い反応であるため、酸素還元反応触媒活性を向上させることが燃料電池の系全体の効率改善に直結する。従って、酸素還元反応触媒の触媒活性を可能な限り向上させることが常に求められている。
 本発明の課題は、上述した特許文献1によって初めて示されたBNナノ構造体の酸素還元反応触媒活性をさらに向上させ、以て燃料電池の効率改善に資することにある。
 また、電極での酸素還元反応において、酸素は、全て4電子反応で行われると水まで還元されることになるが、実際には、2電子反応による過酸化水素の生成反応も生じてしまい、酸素還元反応触媒活性を妨げる要因となっている。また、過酸化水素には電解質膜を損傷させる作用もある。そのため、電極での酸素還元反応で生成する過酸化水素を抑えることが望まれている。
 そこで、本発明の課題は、電極での酸素還元反応で生成する過酸化水素を抑制して酸素還元反応触媒活性をさらに向上させ、更に燃料電池の効率改善に資することにもある。
Since the oxygen reduction reaction is generally a slow reaction, improving the catalytic activity of the oxygen reduction reaction directly leads to an improvement in the efficiency of the entire fuel cell system. Therefore, it is always required to improve the catalytic activity of the oxygen reduction reaction catalyst as much as possible.
An object of the present invention is to further improve the oxygen reduction reaction catalytic activity of the BN nanostructure first shown by Patent Document 1 described above, thereby contributing to the improvement of fuel cell efficiency.
In addition, in the oxygen reduction reaction at the electrode, oxygen is reduced to water when all are carried out by a four-electron reaction, but in reality, a hydrogen peroxide generation reaction by a two-electron reaction also occurs. This is a factor that hinders the catalytic activity of the oxygen reduction reaction. Hydrogen peroxide also has the effect of damaging the electrolyte membrane. Therefore, it is desired to suppress hydrogen peroxide generated by the oxygen reduction reaction at the electrode.
Accordingly, an object of the present invention is to further suppress the hydrogen peroxide generated by the oxygen reduction reaction at the electrode to further improve the oxygen reduction reaction catalytic activity, and to contribute to the improvement of the fuel cell efficiency.
 また、本発明の課題は、水素発生分野における上述した従来技術の問題を解決し、高い触媒活性を有するHER用電極を提供することにある。 Also, an object of the present invention is to solve the above-described problems of the prior art in the field of hydrogen generation and to provide an HER electrode having high catalytic activity.
 本発明の一側面によれば、Au、Ni、Pd及びPtよりなる群から選択された少なくとも一の金属の表面上に窒化ホウ素ナノシートを担持させた酸素還元電極触媒が与えられる。
 ここで、前記窒化ホウ素ナノシートは元素周期表の8~11族の元素からなる群から選択された少なくとも一の金属の微粒子を担持してよい。
 本発明の他の側面によれば、ガラス状炭素の表面上に窒化ホウ素ナノシートを担持させ、この窒化ホウ素ナノシートが、元素周期表の8~11族の元素からなる群から選択された少なくとも一の金属の微粒子を担持している、酸素還元電極触媒が与えられる。この場合、窒化ホウ素ナノシートに担持される前記少なくとも一の金属の微粒子の金属元素がAuであってよい。
 本発明の他の側面によれば、上記何れかの酸素還元電極触媒に担持する窒化ホウ素ナノシートの大きさが、電極での酸素還元反応による過酸化水素の生成に対する選択性を抑制する大きさである、酸素還元電極触媒が与えられる。
 本発明の他の側面によれば、上記何れかの酸素還元電極触媒を用いた酸素極が与えられる。
 本発明の他の側面によれば、上記何れかの酸素極を備える燃料電池が与えられる。
 本発明の他の側面によれば、前記酸素還元電極触媒に担持する前記窒化ホウ素ナノシートの大きさを調整することによって、電極での酸素還元反応による過酸化水素の生成を抑制して酸素還元反応触媒活性を向上させる方法が与えられる。
According to one aspect of the present invention, an oxygen reduction electrocatalyst is provided in which a boron nitride nanosheet is supported on the surface of at least one metal selected from the group consisting of Au, Ni, Pd, and Pt.
Here, the boron nitride nanosheet may carry at least one fine metal particle selected from the group consisting of elements of groups 8 to 11 of the periodic table.
According to another aspect of the present invention, boron nitride nanosheets are supported on the surface of glassy carbon, and the boron nitride nanosheets are at least one selected from the group consisting of elements of groups 8 to 11 of the periodic table of elements. An oxygen reduction electrocatalyst carrying metal particulates is provided. In this case, the metal element of the at least one metal fine particle supported on the boron nitride nanosheet may be Au.
According to another aspect of the present invention, the size of the boron nitride nanosheet supported on any one of the oxygen reduction electrocatalysts is such that the selectivity for the production of hydrogen peroxide by the oxygen reduction reaction at the electrode is suppressed. An oxygen reduction electrocatalyst is provided.
According to another aspect of the present invention, an oxygen electrode using any one of the above oxygen reduction electrode catalysts is provided.
According to another aspect of the present invention, a fuel cell comprising any one of the above oxygen electrodes is provided.
According to another aspect of the present invention, by adjusting the size of the boron nitride nanosheet supported on the oxygen reduction electrode catalyst, the generation of hydrogen peroxide due to the oxygen reduction reaction at the electrode is suppressed to reduce the oxygen reduction reaction. A method for improving the catalytic activity is provided.
 本発明の他の側面によれば、Au、Ni、Pd及びPtよりなる群から選択された少なくとも一の金属の表面上に窒化ホウ素ナノシートを担持させた水素発生反応(HER)用電極触媒が与えられる。
 ここで、前記窒化ホウ素ナノシートは元素周期表の8~11族の元素からなる群から選択された少なくとも一の金属の微粒子を担持してよい。
 また、前記窒化ホウ素ナノシートは前記金属(Au、Ni、Pd及びPtよりなる群から選択された少なくとも一の金属)の表面の一部を覆っていてよい。
 また、前記窒化ホウ素ナノシートを表面上に担持する前記金属はAuであってよい。
 本発明の他の側面によれば、上記何れかのHER用電極触媒を用いた水素発生電極が与えられる。
 本発明の他の側面によれば、前記HER用電極を備える水素発生装置が与えられる。
According to another aspect of the present invention, there is provided an electrode catalyst for a hydrogen generation reaction (HER) in which a boron nitride nanosheet is supported on a surface of at least one metal selected from the group consisting of Au, Ni, Pd and Pt. It is done.
Here, the boron nitride nanosheet may carry at least one fine metal particle selected from the group consisting of elements of groups 8 to 11 of the periodic table.
The boron nitride nanosheet may cover a part of the surface of the metal (at least one metal selected from the group consisting of Au, Ni, Pd, and Pt).
The metal carrying the boron nitride nanosheet on the surface may be Au.
According to another aspect of the present invention, a hydrogen generating electrode using any one of the above HER electrode catalysts is provided.
According to another aspect of the present invention, there is provided a hydrogen generator comprising the HER electrode.
 特許文献1で実現した電極において、BNとして該特許文献に開示されたBNナノ構造体(窒化ホウ素ナノチューブ、窒化ホウ素薄膜、窒化ホウ素ナノ微粒子、窒化ホウ素ナノリボン)とは異なるBNナノシート(BNNS)を使用する本発明の酸素還元電極触媒によれば、ORR活性を向上させることができる。また、BNNSにAu微粒子を担持させることにより、更に高いORR活性が得られる。また、基板の表面上に担持させるBNNSとして、該BNNSにAu微粒子を担持させたものを使用すれば、基板としてガラス状炭素を使用しても高いORR活性が得られるので、Auのような高価な貴金属の使用量を低減できる。また、大きさ(サイズ)をより小さく調整したBNNSを用いることによって、ORR活性を更に向上させることができる。本発明により、更には、ORR活性の向上した酸素極や効率の良い燃料電池が得られる。 In the electrode realized in Patent Document 1, a BN nanosheet (BNNS) different from the BN nanostructure (boron nitride nanotube, boron nitride thin film, boron nitride nanoparticle, boron nitride nanoribbon) disclosed in the patent document is used as the BN. According to the oxygen reduction electrode catalyst of the present invention, the ORR activity can be improved. Further, by supporting Au fine particles on BNNS, higher ORR activity can be obtained. In addition, if BNNS to be supported on the surface of the substrate is made by supporting Au fine particles on BNNS, high ORR activity can be obtained even if glassy carbon is used as the substrate. The amount of noble metals used can be reduced. Moreover, ORR activity can be further improved by using BNNS whose size (size) is adjusted to be smaller. The present invention further provides an oxygen electrode with improved ORR activity and an efficient fuel cell.
 また、本発明により、白金と同等、場合によっては白金よりも高い触媒活性を有するHER用電極触媒が得られる。また、本発明によれば、必要に応じて、HERの逆反応である水素酸化反応(HOR(hydrogen oxidation reaction))に対する触媒活性を示さないHER用電極触媒を得ることもできる。本発明により、更には、高い触媒活性を有するHER用電極や効率の良い水素発生装置を得ることができる。 In addition, according to the present invention, an electrode catalyst for HER having catalytic activity equivalent to that of platinum and, in some cases, higher than that of platinum can be obtained. Further, according to the present invention, if necessary, an HER electrode catalyst that does not exhibit catalytic activity for a hydrogen oxidation reaction (HOR (hydrogen-oxidation reaction)) that is a reverse reaction of HER can be obtained. According to the present invention, a HER electrode having high catalytic activity and an efficient hydrogen generator can be obtained.
BNNS/Au電極の作製手順を概念的に示す図。The figure which shows notionally the preparation procedure of a BNNS / Au electrode. (a)、(b):BNNS/Au電極の作製に使用したBNNSのHRTEM像であり、(a)はハニカム状のB-N格子を明瞭に示し、(b)はB-Nの六角形構成のジグザグ状の縁構造が示されているHRTEM像。ここで、各像の左下隅にあるスケールバーは1nmを示す。(c):BNNSのEESLスペクトル。(A), (b): An HRTEM image of BNNS used to fabricate a BNNS / Au electrode, (a) clearly showing a honeycomb BN lattice, and (b) a BN hexagon. HRTEM image showing the zigzag edge structure of the composition. Here, the scale bar in the lower left corner of each image indicates 1 nm. (C): BNNS EESL spectrum. (a):BNNSを担持させる前のAu電極表面のSEM像。(b)、(c):BNNSを担持させた後のBNNS/Au電極表面のSEM像。(A): SEM image of the surface of the Au electrode before supporting BNNS. (B), (c): SEM images of the BNNS / Au electrode surface after supporting BNNS. 回転電極法によって電気化学測定を行う際に使用した装置の概念図。The conceptual diagram of the apparatus used when performing an electrochemical measurement by the rotating electrode method. (a):酸素飽和HSO中でのAu電極(実線;図5及びそれ以降の図面並びに表1中では、この電極をBare Auと表記する)及びBNNS/Au電極(破線)の線形走引ボルタモグラムを示す図。(b):(a)に示す測定結果に基づくTafelプロットを示す図。差し込み図は反応速度パラメーター(kinetic parameter)(Tafel勾配及び交換電流密度)を比較する表である。(A): Alignment of an Au electrode in oxygen-saturated H 2 SO 4 (solid line; in FIG. 5 and subsequent drawings and in Table 1 this electrode is referred to as Bare Au) and the BNNS / Au electrode (dashed line) The figure which shows a running voltammogram. (B): A diagram showing a Tafel plot based on the measurement results shown in (a). The inset is a table comparing the kinetic parameters (Tafel slope and exchange current density). Au電極、BNNS/Au電極、GC電極及びBNNS/GC電極の線形走査ボルタモグラムを比較する図。The figure which compares the linear scanning voltammogram of Au electrode, BNNS / Au electrode, GC electrode, and BNNS / GC electrode. BNNS及びAu微粒子/BNNSのXRDパターンを示す図。The figure which shows the XRD pattern of BNNS and Au microparticles / BNNS. (a):BNNSのTEM像。(b)、(c):BNNSのHRTEM像。(d):Au微粒子/BNNSのTEM像。(e)、(f):Au微粒子/BNNSのHRTEM像。(b)の差し込み図は単層BNNSのFFTパターンを示す。(A): TEM image of BNNS. (B), (c): HRNS image of BNNS. (D): Au fine particle / BNNS TEM image. (E), (f): HRTEM image of Au fine particles / BNNS. The inset of (b) shows the FFT pattern of a single layer BNNS. (a):回転速度1500rpm、電位掃引速度10mV/秒としたときの、酸素飽和HSO中でのAu電極、BNNS/Au電極、BNNS/GC電極、Au微粒子/BNNS/Au電極、Au微粒子/BNNS/GC電極及びBNNT/Au電極の線形走引ボルタモグラムを示す図。(b):回転速度1500rpm、電位掃引速度10mV/秒としたときの、酸素飽和HSO中でのAu電極、GC電極、BNNS/Au電極、BNNS/GC電極、Au微粒子/BNNS/Au電極、Au微粒子/BNNS/GC電極、及び600℃での加熱後のAu微粒子/BNNS/GC電極の線形走引ボルタモグラムを示す図。(A): Au electrode, BNNS / Au electrode, BNNS / GC electrode, Au fine particle / BNNS / Au electrode, Au in oxygen-saturated H 2 SO 4 when the rotational speed is 1500 rpm and the potential sweep speed is 10 mV / sec. The figure which shows the linear running voltammogram of microparticles | fine-particles / BNNS / GC electrode and BNNT / Au electrode. (B): Au electrode, GC electrode, BNNS / Au electrode, BNNS / GC electrode, Au fine particle / BNNS / Au in oxygen-saturated H 2 SO 4 when the rotational speed is 1500 rpm and the potential sweep speed is 10 mV / sec. The figure which shows the linear running voltammogram of an electrode, Au microparticles / BNNS / GC electrode, and Au microparticles / BNNS / GC electrode after heating at 600 degreeC. Au電極、フィルターを使用せずに作製したAu/h-BNNS電極、三種類のサイズ(1.0μm、0.45μm、0.22μm)のフィルターを使用して作製したAu/h-BNNS(六方晶BNナノシート)電極、及びPt電極の回転リングディスク電極(RRDE)法により測定された酸素の還元反応にともなう電流応答曲線(ここで、電極電位は、酸素飽和の0.5M硫酸水溶液中での値)を示す図。Au / h-BNNS electrode prepared without using an Au electrode and a filter, and Au / h-BNNS manufactured using three types of filters (1.0 μm, 0.45 μm, 0.22 μm) Current response curve with oxygen reduction reaction measured by the rotating ring disk electrode (RRDE) method of the Pt electrode and the rotating ring disk electrode (RRDE) method (where the electrode potential is measured in an oxygen-saturated 0.5 M sulfuric acid aqueous solution). Value). 0.1Vでの、フィルターを使用せずに作製したAu/h-BNNS電極と三種類のサイズ(1.0μm、0.45μm、0.22μm)のフィルターを使用して作製したAu/h-BNNS電極で生成するHの割合(%)とh-BNNSの粒子径(μm)との関係を示す図。Au / h-BNNS electrode produced without using a filter at 0.1 V and Au / h- produced using three types of filters (1.0 μm, 0.45 μm, 0.22 μm) diagram showing the relationship between the ratio of H 2 O 2 generated by BNNS electrode (%) and particle size of the h-BNNS (μm). フィルターを使用せずに得られるh-BNNSと三種類のサイズ(1.0μm、0.45μm、0.22μm)のフィルターを使用して得られるh-BNNSの各種粒子径分布を示す図。The figure which shows various particle size distributions of h-BNNS obtained without using a filter and h-BNNS obtained by using three types of filters (1.0 μm, 0.45 μm, 0.22 μm). 基板としてAuを使用した実施例の電極触媒のHER特性を示す、これら電極触媒の線形走査ボルタモグラム。Linear scanning voltammograms of these electrocatalysts showing the HER characteristics of the example electrocatalysts using Au as the substrate. 基板としてPtを使用した実施例の電極触媒のHER特性を示す、これら電極触媒の線形走査ボルタモグラム。Linear scanning voltammograms of these electrocatalysts showing the HER characteristics of the example electrocatalysts using Pt as the substrate. 基板としてNiを使用した実施例の電極触媒のHER特性を示す、これら電極触媒の線形走査ボルタモグラム。Linear scanning voltammograms of these electrocatalysts showing the HER characteristics of the example electrocatalysts using Ni as the substrate. 実施例中のBNNS/Au電極、Au-BNNS/Au電極、Ni-BNNS/Au電極、BNNS/Pt電極及びAu-BNNS/Pt電極を使用した場合のHER特性の測定結果に基づくTafelプロット。The Tafel plot based on the measurement result of the HER characteristic at the time of using the BNNS / Au electrode, Au-BNNS / Au electrode, Ni-BNNS / Au electrode, BNNS / Pt electrode, and Au-BNNS / Pt electrode in an Example. 実施例中のBNNS/Au電極、Au-BNNS/Au電極、BNNS/Pt電極及びAu-BNNS/Pt電極の線形走査ボルタモグラムにより測定した、これらの電極のHOR特性を示す図。The figure which shows the HOR characteristic of these electrodes measured by the linear scanning voltammogram of the BNNS / Au electrode, Au-BNNS / Au electrode, BNNS / Pt electrode, and Au-BNNS / Pt electrode in an Example.
 本願発明者は特許文献1に開示された、白金ではなくBNナノ構造体(窒化ホウ素ナノチューブ、窒化ホウ素薄膜、窒化ホウ素ナノ微粒子、窒化ホウ素ナノリボン)を使用した電極のORR活性を更に向上させるべく研究を継続したところ、特許文献1において検証したスパッタリングによるBN膜あるいはBNNTの代わりに、該特許文献に開示された上記BNナノ構造体とは異なる、BNNSを使用することが有効であることを初めて見出した。このORR活性の向上は、特許文献1で検証したBN薄膜に比べてはるかに薄くまた特許文献に開示された上記BNナノ構造体に比べて結晶性の高いBNNSを使用することで実現されたものと考えられる。 The inventor of the present application researched to further improve the ORR activity of an electrode using BN nanostructures (boron nitride nanotubes, boron nitride thin films, boron nitride nanoparticles, boron nitride nanoribbons) disclosed in Patent Document 1 instead of platinum. As a result, it has been found for the first time that it is effective to use BNNS, which is different from the BN nanostructure disclosed in the patent document, instead of the BN film or BNNT by sputtering verified in the patent document 1. It was. This improvement in ORR activity is realized by using BNNS which is much thinner than the BN thin film verified in Patent Document 1 and has higher crystallinity than the BN nanostructure disclosed in the Patent Document. it is conceivable that.
 更に、このBNNSにAu微粒子を担持させることでORR活性が更に向上することを見出した。更に、これらのBN膜を担持させる導電性の基板としては、単に導電性基板というだけでなくAu基板が有効であることがわかった。なお、実施例としては示していないが、Ni基板でもORR活性の一層の向上が同様に達成できることが確認できており、またPdあるいはPt基板等でも同様にORR活性の向上が達成可能である。 Furthermore, it was found that the ORR activity was further improved by supporting Au fine particles on this BNNS. Furthermore, it was found that an Au substrate is effective as a conductive substrate for supporting these BN films, not just a conductive substrate. Although not shown as an example, it has been confirmed that a further improvement in ORR activity can be achieved in the Ni substrate as well, and an improvement in ORR activity can also be achieved in the Pd or Pt substrate.
 上述のように、Au微粒子を担持させることでORR活性がさらに向上する理由は、BNと金属基板との電子的なやりとりがBN上に吸着した酸素のO-O結合に影響を与えている(結合を緩める方向に働いている)ためであると考えられる。また、Au微粒子以外に、Pt、Ni、元素周期表の8~11族のその他の元素の微粒子でも同様の効果を得ることが可能である。 As described above, the reason why the ORR activity is further improved by supporting Au fine particles is that the electronic exchange between BN and the metal substrate affects the O—O bond of oxygen adsorbed on BN ( This is thought to be due to working in the direction of loosening the bond). In addition to Au fine particles, Pt, Ni, and fine particles of other elements belonging to groups 8 to 11 of the periodic table can obtain the same effect.
 また、酸素還元電極触媒において、基板に担持させるBNNSとしてAu微粒子を担持したBNNSを使用すると、高価なAu基板の代わりに安価なガラス状炭素の基板を使用しても良好なORR活性を達成できることがわかった。なお、Au微粒子以外に、Pt、Ni、元素周期表の8~11族のその他の元素の微粒子でも同様の効果を得ることが可能である。また、この酸素還元電極触媒に、加熱による熱処理を加えると、酸素還元電流を増大させることが可能である。 In addition, in the oxygen reduction electrode catalyst, when BNNS supporting Au fine particles is used as BNNS to be supported on the substrate, good ORR activity can be achieved even if an inexpensive glassy carbon substrate is used instead of an expensive Au substrate. I understood. In addition to Au fine particles, the same effect can be obtained with fine particles of Pt, Ni, and other elements in groups 8 to 11 of the periodic table. Further, when a heat treatment by heating is applied to the oxygen reduction electrode catalyst, the oxygen reduction current can be increased.
 また、サイズを小さく調整したBNNSを用いると、電極での酸素還元反応による過酸化水素の生成が抑制されることを見出した。具体的には、サイズを調整しなかったBNNSとそれよりも小さなサイズに調整しただけのBNNSを使用したAuを基板とした電極を使用して、それら電極での酸素還元反応によって生じる過酸化水素の生成割合を測定し、結果を比較することによって、BNNSのサイズを小さく調整するにつれて過酸化水素の生成割合が減少する(即ち、電極での酸素還元反応による過酸化水素の生成に対する選択性を抑制する)ことを見出した。また、サイズを小さく調整したBNNSを用いることによって、酸素を全て4電子反応で水まで還元できることも見出した。これにより、BNNSのサイズをより小さく調整していくにつれて、電極での酸素還元反応によるORR活性を一層向上させ、酸素還元に対する性能を白金に近づけていくことができることを見出した。その結果、性能等の面で、従来の白金触媒に代わる触媒が得ることが可能であることを見出した。
 BNNSのサイズは、サイズを調整することなく作製したBNNSよりも小さな大きさであればよいが、できる限り小さい大きさが好ましい。
 基板として、Au以外に、Ni、Pd、Pt基板等も使用することが可能であり、また、BNNSとして、Au微粒子、Pt、Ni、元素周期表の8~11族のその他の元素の微粒子を担持させて使用することも可能である。
Further, it has been found that when BNNS having a small size is used, the generation of hydrogen peroxide by the oxygen reduction reaction at the electrode is suppressed. Specifically, hydrogen peroxide generated by an oxygen reduction reaction at an electrode using BNNS whose size was not adjusted and an Au substrate using BNNS whose size was adjusted to a smaller size was used. By comparing the results and measuring the results, the hydrogen peroxide generation rate decreases as the size of the BNNS is reduced (ie, the selectivity for hydrogen peroxide generation by the oxygen reduction reaction at the electrode is reduced). It was found to be suppressed. It was also found that all oxygen can be reduced to water by a four-electron reaction by using BNNS with a small size. As a result, it has been found that as the size of BNNS is adjusted to be smaller, the ORR activity by the oxygen reduction reaction at the electrode can be further improved, and the performance for oxygen reduction can be made closer to that of platinum. As a result, it has been found that a catalyst that can replace the conventional platinum catalyst can be obtained in terms of performance and the like.
The size of the BNNS may be smaller than that of the BNNS produced without adjusting the size, but is preferably as small as possible.
In addition to Au, Ni, Pd, Pt substrates, etc. can also be used as the substrate. Also, as BNNS, Au fine particles, Pt, Ni, fine particles of other elements in groups 8 to 11 of the periodic table of elements are used. It can also be used by being carried.
 上述した通り、本願発明者は窒化ホウ素(BN)を使用した酸素還元電極触媒を開発し(特許文献1)、その酸素還元反応(ORR)活性を更に向上させるべく研究を継続したところ、特許文献1において検証したスパッタリングによるBN膜あるいはBNナノチューブ(BNNT)の代わりにBNナノシート(BNNS)を使用することが有効であることを見出し、またこのBNNSにAu微粒子を担持させることでORR活性が更に向上することを見出した。更に、このBNNSを担持させる導電性の基板としては、単に導電性基板というだけでなくAu基板が特に有効であることを見出した。本願発明者が更に研究を進めた結果、このようにして得られた酸素還元電極触媒はHER用電極触媒としても有用であることを見出し、HER用電極触媒に関する本発明も完成させるに至った。 As described above, the inventor of the present application developed an oxygen reduction electrocatalyst using boron nitride (BN) (Patent Document 1) and continued research to further improve its oxygen reduction reaction (ORR) activity. It was found that it was effective to use BN nanosheets (BNNS) in place of the BN film or BN nanotubes (BNNT) obtained by sputtering verified in 1 and the ORR activity was further improved by supporting Au fine particles on this BNNS. I found out. Furthermore, the present inventors have found that an Au substrate is particularly effective as a conductive substrate for supporting BNNS, not just a conductive substrate. As a result of further research by the present inventor, the present inventors have found that the oxygen reduction electrocatalyst thus obtained is useful as an electrode catalyst for HER, and has also completed the present invention relating to an electrode catalyst for HER.
 なお、実施例としては示していないが、Pd基板等でも同様にHER活性の向上が達成されると考えられる。また、BNNSに担持させる微粒子も、Auだけではなく、Niや元素周期表の8~11族のその他の元素の微粒子を使用することもできる。 In addition, although not shown as an Example, it is thought that the improvement of HER activity is achieved similarly also with a Pd board | substrate. The fine particles supported on BNNS are not limited to Au, and fine particles of Ni or other elements belonging to groups 8 to 11 of the periodic table can also be used.
 なお、HERに使用する既存の触媒は、多くの触媒に見られる、逆反応(ここではHOR)も活性化するという性質を有しているため、HERで発生した水素を直ちに反応系から取り出さないと、水素が水素イオンに戻ってしまう。そのため、HERで発生した水素を直ちに反応系から取り出さなければ、水素の収率が低下するという問題もあった。ところが、この点で、本発明のHER用電極触媒の基板としてAu基板を使用したものは、逆反応であるHORに対する活性を示さないという非常に有利な特徴を有している。 In addition, since the existing catalyst used for HER has the property of activating the reverse reaction (here, HOR) found in many catalysts, hydrogen generated in HER is not immediately removed from the reaction system. Then, hydrogen returns to hydrogen ions. For this reason, if hydrogen generated in HER is not immediately taken out of the reaction system, there is a problem that the yield of hydrogen decreases. However, in this regard, the substrate using the Au substrate as the substrate for the HER electrode catalyst of the present invention has a very advantageous feature that it does not show activity against HOR, which is a reverse reaction.
 なお、本願において特に定めがない限り、BNNSに担持させる金属微粒子の大きさは、5~30nmである。但し、本願発明の目的を達成することができる限り、その大きさに限定されるものではない。 Note that, unless otherwise specified in the present application, the size of the metal fine particles supported on the BNNS is 5 to 30 nm. However, the size is not limited as long as the object of the present invention can be achieved.
 以下、実施例を参照して本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではなく、特許請求の範囲のみによって規定されるものであることに注意しなければならない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, it should be noted that the present invention is not limited to the following examples, and is defined only by the claims. There must be.
[実施例1:BNNSを担持させたAu電極]
 酸素還元電極触媒を使用した電極に関して、Au基板上にBNNSを担持させた電極(BNNS/Au電極)を以下のように作成した。
[Example 1: Au electrode carrying BNNS]
Regarding the electrode using the oxygen reduction electrode catalyst, an electrode (BNNS / Au electrode) having BNNS supported on an Au substrate was prepared as follows.
 先ず、図1に示す手順により、Au電極を作成した。すなわち、Si基板上にバインダーとしてTi層(15nm厚)をスパッタリングにより担持させ、次に、Au(150nm厚)をスパッタリングにより担持させることにより作成した。その後、以下のようにしてBNNSをAu電極上にスピンコートにより担持させることで、BNナノシートからなる薄膜で修飾されたBNNS/Au電極を作成した。また、比較対照実験のため、BNNSからなる薄膜で修飾されたガラス状炭素(glassy carbon、以下、GCと略記する)表面を有する電極も作製した。 First, an Au electrode was prepared according to the procedure shown in FIG. That is, it was prepared by supporting a Ti layer (15 nm thickness) as a binder on a Si substrate by sputtering and then supporting Au (150 nm thickness) by sputtering. Then, BNNS / Au electrodes modified with a thin film made of BN nanosheets were prepared by supporting BNNS on Au electrodes by spin coating as follows. For comparison experiments, an electrode having a glassy carbon (hereinafter abbreviated as GC) surface modified with a thin film made of BNNS was also produced.
 先ずBNNSを作製した。そのため、1μmサイズのBN粉末3mgをイソプロパノール1mlに分散させた。この分散液を96時間超音波処理した後、1500rpmで1時間遠心分離し、遠心分離結果の上澄みのうちの上側3/4をスピンコート液に使用するために取り出した。このようにして取り出した上澄み液中にはBN粉末から剥離したBNNSが分散している。 First, BNNS was prepared. Therefore, 3 mg of 1 μm BN powder was dispersed in 1 ml of isopropanol. The dispersion was sonicated for 96 hours, then centrifuged at 1500 rpm for 1 hour, and the upper 3/4 of the supernatant obtained by centrifugation was taken out for use as a spin coating solution. In the supernatant liquid thus taken out, BNNS peeled from the BN powder is dispersed.
 このようにして作製されたBNNSを透過電子顕微鏡(TEM)及びEELS(electron energy-loss spectroscopy、電子エネルギー損失分光法)により評価した。その結果を図2に示す。このEELSスペクトルから、BNがsp混成軌道を有していること、すなわちヘキサゴナル構造を有していることが確認できた。また、カーボンなどのコンタミネーションがないことも確認できた。 The BNNS thus prepared was evaluated by a transmission electron microscope (TEM) and EELS (electron energy-loss spectroscopy). The result is shown in FIG. From this EELS spectrum, it was confirmed that BN had sp 2 hybrid orbitals, that is, had a hexagonal structure. It was also confirmed that there was no contamination such as carbon.
 スピンコート法により、BNNSが分散しているこの上澄み液を上述のようにして作製されたAu電極、更にGC表面を有する基板上にコーティングした。スピンコートにあたっては、先ず約90秒間、500rpmで回転させ、次いで3分間、2000rpmで回転させた。スピンコートの終了後、これらの電極を熱風炉(hot air oven)中で100℃、30分間乾燥させた。 The supernatant liquid in which BNNS is dispersed was coated on the Au electrode prepared as described above and a substrate having a GC surface by spin coating. In spin coating, it was first rotated at 500 rpm for about 90 seconds, and then rotated at 2000 rpm for 3 minutes. After completion of the spin coating, these electrodes were dried at 100 ° C. for 30 minutes in a hot air oven.
 スピンコート前後のAu電極表面のSEM像を図3に示す。図3(a)はスピンコート前であって、BNNSが担持されていないAuの地肌のSEM像である。図3(b)はBNNSを担持させた状態の電極表面を低倍率で観察したSEM像、図3(c)は同じ電極表面を図3(a)よりもほぼ2倍の倍率で観察したSEM像である。これらのSEM像を比較することにより、スピンコート後の電極は、Auの地肌の上にBNNSが載っているAu/BN電極となっており、またBNNSはAuの地肌を完全には覆っていないことがわかった。 SEM images of the Au electrode surface before and after spin coating are shown in FIG. FIG. 3 (a) is an SEM image of the Au background before spin coating and with no BNNS supported. FIG. 3B is an SEM image obtained by observing the electrode surface carrying BNNS at a low magnification. FIG. 3C is an SEM obtained by observing the same electrode surface at a magnification approximately twice that of FIG. It is a statue. By comparing these SEM images, the electrode after spin coating is an Au / BN electrode in which BNNS is placed on the Au background, and BNNS does not completely cover the Au background. I understood it.
 このようにして作製したBNNS/Au電極及び比較対象としてBNNSを担持させる前のAu電極の酸化還元特性を、図4にその構成を概念的に示す回転電極電気化学セルを使用して回転電極法により測定した。回転電極法を用いることで、電極表面への物質移動を制御し、電荷移動反応を再現性よく定量的に解析することが可能となる。図4において、測定対象のBNNS/Au電極あるいはBNNSを担持していないAu電極を作用極(WE)として取り付けた。電解液として酸素飽和0.5Mの硫酸を使用した。なお、ここで特定の電解液を挙げたが、これは単なる例示であり、電気伝導性があれば、電解質の種類も濃度も特に問わない。また、参照極(RE)としては飽和NaCl銀/塩化銀電極を使用した。対極(CE)として白金ワイヤを使用した。電極回転速度を1500rpm、電位掃引速度を10mV/秒として、測定を行った。 The redox characteristics of the BNNS / Au electrode thus prepared and the Au electrode before supporting BNNS as a comparison object are shown in FIG. 4 using a rotating electrode electrochemical cell whose structure is conceptually shown in FIG. It was measured by. By using the rotating electrode method, mass transfer to the electrode surface can be controlled, and the charge transfer reaction can be quantitatively analyzed with good reproducibility. In FIG. 4, a BNNS / Au electrode to be measured or an Au electrode not carrying BNNS was attached as a working electrode (WE). Oxygen-saturated 0.5M sulfuric acid was used as the electrolyte. In addition, although the specific electrolyte solution was mentioned here, this is only an illustration, and if it has electrical conductivity, the kind and concentration of the electrolyte are not particularly limited. A saturated NaCl silver / silver chloride electrode was used as the reference electrode (RE). Platinum wire was used as the counter electrode (CE). The measurement was performed at an electrode rotation speed of 1500 rpm and a potential sweep speed of 10 mV / sec.
 BNNSを担持させたBNNS/Au電極及びBNNSを担持していないAu電極についてこのようにして行った測定結果を図5(a)に示す。また、図5(b)は図5(a)のデータのX軸とY軸を入れ替えた上、X軸を対数化したグラフである。これらのグラフを見ると、無担持の金電極と比較してBNNS/Au電極の方が同じ電位のときの電流の絶対値が増大している。これから、BNNSをAu電極上に担持させることによって、酸素還元活性が向上することが確認できた。 FIG. 5A shows the measurement results of the BNNS / Au electrode supporting BNNS and the Au electrode not supporting BNNS. FIG. 5B is a graph in which the X axis and the Y axis of the data in FIG. As can be seen from these graphs, the absolute value of the current when the BNNS / Au electrode has the same potential is increased as compared with the unsupported gold electrode. From this, it was confirmed that oxygen reduction activity was improved by supporting BNNS on the Au electrode.
 更に、GC電極及びGC電極上にBNNS/Au電極の作製と同じ方法によってBNNSを担持させた電極(以下、BNNS/GC電極と略記する)についても上と同じ測定を行い、Au電極、BNNS/GC電極、GC電極及びBNNS/GC電極の酸化還元特性と比較した。その結果を図6に示す。図6からわかるように、BNNSを担持させる電極の下地にGCを使用した場合には、全く効果がない。すなわち、GC上にBNNSを担持させても酸素還元反応活性は向上しないことがわかった。 Further, the same measurement as above was performed for the GC electrode and an electrode in which BNNS was supported on the GC electrode by the same method as the production of the BNNS / Au electrode (hereinafter abbreviated as BNNS / GC electrode), and the Au electrode, BNNS / Comparison was made with the redox characteristics of the GC electrode, GC electrode, and BNNS / GC electrode. The result is shown in FIG. As can be seen from FIG. 6, there is no effect when GC is used as the base of the electrode for supporting BNNS. That is, it was found that even when BNNS was supported on GC, the oxygen reduction reaction activity was not improved.
[実施例2:Au微粒子担持BNナノシートを担持させたAu電極]
 酸素還元電極触媒を使用した電極に関して、以下では担持させるBNNSとしてAu微粒子を担持させたものを使用した場合のORR活性を調べた。
[Example 2: Au electrode carrying Au fine particle carrying BN nanosheet]
Regarding the electrode using the oxygen reduction electrocatalyst, the ORR activity in the case where an Au fine particle-supported BNNS was used was examined below.
 先ずHummer法により、以下のようにしてBNNSを作製した。2gのBN粉末を9mlの濃硝酸(97%)に分散し、0℃に維持して充分に攪拌した。そこに18mlの濃硫酸をゆっくりと混合して連続攪拌した。更に、10gのKMnOを1時間かけてゆっくりと投入し、5日間攪拌を継続した。この反応混合物を100mlの希釈水で希釈してろ過し、水で数回洗浄し、100℃で24時間乾燥した。その後、Ar雰囲気中で1050℃に加熱することによって、熱剥離(thermal exfoliation)を行った。 First, BNNS was produced by the Hummer method as follows. 2 g of BN powder was dispersed in 9 ml of concentrated nitric acid (97%), maintained at 0 ° C. and sufficiently stirred. 18 ml of concentrated sulfuric acid was slowly mixed there and continuously stirred. Further, 10 g of KMnO 4 was slowly added over 1 hour, and stirring was continued for 5 days. The reaction mixture was diluted with 100 ml of diluted water, filtered, washed several times with water, and dried at 100 ° C. for 24 hours. Thereafter, thermal exfoliation was performed by heating to 1050 ° C. in an Ar atmosphere.
 上の手順によって得られたBNNSに対して、以下のようにしてAu修飾を行った(以下、この生成物をAu微粒子/BNNS、またはAu-BNNSと略記する)。先ず、BNNSを60mlのイソプロパノール(IPA)に分散して3時間の超音波処理を行った。次に、4mlの10mM濃度のHAuCl溶液(IPAを溶媒として使用)を投入して室温で約30分間充分に攪拌した。次に2mlの50mM濃度のNaBH溶液(IPA:HO=4:1の溶液を溶媒として使用)をゆっくりと投入して、室温で3時間十分に攪拌した。生成物を水とエタノールで数回洗浄して、真空チャンバー中で一晩乾燥した。 The BNNS obtained by the above procedure was modified with Au as follows (hereinafter, this product is abbreviated as Au fine particles / BNNS or Au-BNNS). First, BNNS was dispersed in 60 ml of isopropanol (IPA) and subjected to ultrasonic treatment for 3 hours. Next, 4 ml of 10 mM HAUCl 4 solution (IPA was used as a solvent) was added, and the mixture was sufficiently stirred at room temperature for about 30 minutes. Next, 2 ml of 50 mM NaBH 4 solution (IPA: H 2 O = 4: 1 solution was used as a solvent) was slowly added, and the mixture was sufficiently stirred at room temperature for 3 hours. The product was washed several times with water and ethanol and dried overnight in a vacuum chamber.
 このようにして作製したAu微粒子/BNNSの構造評価をXRDで行った結果を図7に示す。図7の結果から、当初のBNNS上には存在していなかったAuが、上述の処理後には担持されていることが確認できた。 FIG. 7 shows the result of the structural evaluation of the Au fine particles / BNNS thus produced by XRD. From the results of FIG. 7, it was confirmed that Au that was not present on the original BNNS was supported after the above-described treatment.
 更に、BNNS及びAu微粒子/BNNSをTEM及びHRTEMで観察した結果を図8に示す。図8(a)、(b)及び(c)のBNNSには見られない微粒子が、上記Au修飾後のAu微粒子/BNNSについてのTEM像、HRTEM像である図8(d)、(e)、(f)では10nm前後のサイズの微粒子がBNNS表面に担持されていることが確認できる。 Furthermore, the result of having observed BNNS and Au microparticles / BNNS with TEM and HRTEM is shown in FIG. 8 (d) and 8 (e) are the TEM images and HRTEM images of the Au fine particles / BNNS after the Au modification, in which the fine particles not seen in the BNNS in FIGS. 8 (a), (b) and (c) are shown. In (f), it can be confirmed that fine particles having a size of about 10 nm are supported on the BNNS surface.
 このAu微粒子/BNNSを実施例1と同じAu電極上に担持させた電極(Au微粒子/BNNS/Au電極、またはAu-BNNS/Au電極)を作製した。更に、比較用にBNNTをAu電極上に担持させた電極(BNNT/Au電極)も作製した。これらの電極の作製方法を以下に示す。 An electrode (Au fine particle / BNNS / Au electrode or Au-BNNS / Au electrode) in which the Au fine particles / BNNS were supported on the same Au electrode as in Example 1 was produced. Furthermore, an electrode (BNNT / Au electrode) in which BNNT was supported on an Au electrode was also prepared for comparison. A method for manufacturing these electrodes is described below.
 Au微粒子/Au電極の作製に当たっては、先ず1mlのIPA中に3mgのBNNTを分散させて、48時間超音波処理した。このAu微粒子/BNNS分散液をAu電極上にスピンコートした。具体的には、最初500rpmで90秒間、次に2000rpmで3分間回転させた。これを熱風炉中において100℃で約30分間乾燥させて、Au微粒子/BNNS/Au電極を得た。 In preparation of Au fine particles / Au electrode, first, 3 mg of BNNT was dispersed in 1 ml of IPA and subjected to ultrasonic treatment for 48 hours. This Au fine particle / BNNS dispersion was spin-coated on the Au electrode. Specifically, it was first rotated at 500 rpm for 90 seconds and then at 2000 rpm for 3 minutes. This was dried in a hot air oven at 100 ° C. for about 30 minutes to obtain Au fine particles / BNNS / Au electrodes.
 BNNT/Au電極の作製に当たっては、先ず1mlのIPA中に3mgのAu微粒子/BNNSを分散させて、5分間超音波処理し、その後1500rpmで1時間遠心分離を行った。遠心分離結果の上澄みのうちの上側3/4をスピンコート液に使用するために取り出した。このスピンコート液をAu基板上にスピンコートした。具体的には、最初500rpmで90秒間、次に2000rpmで3分間回転させた。これを熱風炉中において100℃で約30分間乾燥させて、Au微粒子/BNNS/Au電極を得た。 In preparation of the BNNT / Au electrode, first, 3 mg of Au fine particles / BNNS were dispersed in 1 ml of IPA, subjected to ultrasonic treatment for 5 minutes, and then centrifuged at 1500 rpm for 1 hour. The upper 3/4 of the supernatant from the centrifugation was removed for use in the spin coat solution. This spin coating solution was spin coated on an Au substrate. Specifically, it was first rotated at 500 rpm for 90 seconds and then at 2000 rpm for 3 minutes. This was dried in a hot air oven at 100 ° C. for about 30 minutes to obtain Au fine particles / BNNS / Au electrodes.
 更に、同じAu微粒子/BNNSをGC電極上に担持させた電極(Au微粒子/BNNS/Au電極またはAu-BNNS/Au電極)も作製した。 Furthermore, an electrode (Au fine particle / BNNS / Au electrode or Au-BNNS / Au electrode) in which the same Au fine particles / BNNS were supported on the GC electrode was also produced.
 上記3種類の電極を、実施例1と同一の回転電極電気化学セル及び条件で作用電極として使用して酸化還元特性を測定した。その測定結果を、実施例1における金電極、BNNS/Au電極及びBNNS/GC電極についての測定結果ととともに図9(a)に示す。また、この測定結果のうちの電流密度-0.02mAcm-2におけるORR電位を金電極、BNNS/Au電極、Au微粒子/BNNS/Au電極、BNNT/Au電極、及びAu微粒子/BNNS/GC電極について求めて以下の表1に示す。 The three types of electrodes were used as working electrodes under the same rotating electrode electrochemical cell and conditions as in Example 1, and the redox characteristics were measured. The measurement results are shown in FIG. 9A together with the measurement results for the gold electrode, the BNNS / Au electrode, and the BNNS / GC electrode in Example 1. Of the measurement results, the ORR potential at a current density of −0.02 mAcm −2 was applied to the gold electrode, the BNNS / Au electrode, the Au fine particle / BNNS / Au electrode, the BNNT / Au electrode, and the Au fine particle / BNNS / GC electrode. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図9(a)及び表1から明らかなように、実施例2のAu微粒子/BNNS/Au電極は実施例1のBNNS/Au電極よりも更に良好なORR活性を有する。更に、Au微粒子/BNNS/Au電極及びBNNS/Au電極は何れも、特許文献1で検証したBNNT/Au電極よりも良好であることが確認できた。
 また、図9(a)及び表1から明らかなように、Auの使用量の最も少ないAu微粒子/BNNS/GC電極は、Au微粒子/BNNS/Au電極と同等のORR活性電位を示すため、高活性な酸素還元触媒として機能することが確認できた。つまり、基板としてAuではなくGCを使用した場合でも、その表面上にAu微粒子/BNNS(Au微粒子を担持させたBNNS)を担持させれば、高活性な酸素還元触媒として機能するため、高価な貴金属を基板として使用することを抑制することが可能であることがわかった。
As is clear from FIG. 9A and Table 1, the Au fine particle / BNNS / Au electrode of Example 2 has better ORR activity than the BNNS / Au electrode of Example 1. Furthermore, it was confirmed that both the Au fine particle / BNNS / Au electrode and the BNNS / Au electrode were better than the BNNT / Au electrode verified in Patent Document 1.
Further, as is clear from FIG. 9 (a) and Table 1, the Au fine particle / BNNS / GC electrode with the least amount of Au used exhibits the same ORR active potential as the Au fine particle / BNNS / Au electrode. It was confirmed that it functions as an active oxygen reduction catalyst. In other words, even when GC is used instead of Au as the substrate, if Au fine particles / BNNS (BNNS carrying Au fine particles) are supported on the surface, the substrate functions as a highly active oxygen reduction catalyst, which is expensive. It has been found that it is possible to suppress the use of a noble metal as a substrate.
 また、図9(b)には、図9(a)に示されているAu微粒子/BNNS/GC電極(加熱による熱処理無し)の測定結果に加えて、このAu微粒子/BNNS/GC電極を600℃での加熱による熱処理に付したものの測定結果が、GC電極の測定結果や図9(a)に示されている他の電極の測定結果(但し、図9(a)に示されている上記BNNT/Au電極の測定結果は含まれていない。)とともに示されている。なお、新たに追加された電極の測定方法や測定条件は、図9(a)と同じである。
 図9(b)から明らかなように、上記熱処理を加えると、図9(a)に示されているAu微粒子/BNNS/GC電極(加熱による熱処理無し)のORR電位とほとんど変化を与えずに(即ち、良好なORR活性を維持したままで)、Au基板上にAu微粒子/BNNSを担持した結果には及んでいないものの、酸素還元電流を著しく増大させることができることを確認した。
 そのため、Au微粒子/BNNS/GC電極は、貴金属の使用を減らすという点で効果があり、また、この酸素還元電流も、加熱処理によって改善可能であることがわかった。
Further, in FIG. 9B, in addition to the measurement result of the Au fine particle / BNNS / GC electrode (no heat treatment by heating) shown in FIG. 9A, the Au fine particle / BNNS / GC electrode is 600 times. The measurement result of the heat treatment by heating at ° C. is the measurement result of the GC electrode or the measurement result of the other electrode shown in FIG. 9A (however, the above-mentioned shown in FIG. 9A) Measurement results of BNNT / Au electrode are not included.) The newly added electrode measurement method and measurement conditions are the same as in FIG.
As apparent from FIG. 9 (b), when the above heat treatment is applied, the ORR potential of the Au fine particles / BNNS / GC electrodes (no heat treatment by heating) shown in FIG. 9 (a) is hardly changed. It was confirmed that the oxygen reduction current can be remarkably increased although the results of supporting Au fine particles / BNNS on the Au substrate were not achieved (while maintaining good ORR activity).
Therefore, it was found that the Au fine particle / BNNS / GC electrode is effective in reducing the use of noble metal, and this oxygen reduction current can be improved by heat treatment.
[実施例3:サイズを調整したBNNS(以下、h-BNNSとも称する。)を担持させたAu電極]
 サイズを調整していないh-BNNSをAu基板上に担持させた電極(Au/h-BNNS電極)と、三種類のサイズ(1.0μm、0.45μm、0.22μm)のフィルターを用いて更にサイズだけを調整したh-BNNS(六方晶BNナノシート)をAu基板上に担持させた三種類の電極(Au/h-BNNS電極)を作製した。比較対象のため、h-BNNSを担持していないAu電極と、h-BNNSを担持していないPt電極も作製した。
 Au電極およびPt電極は、図1に示す手順によって作成した。すなわち、Si基板上にバインダーとしてTi層(15nm厚)をスパッタリングにより担持させ、次に、AuまたはPt(150nm厚)をスパッタリングにより担持させることにより作製した。
 次に、Hummer法により、以下のようにしてBNNSを作製した。
 2gのBN粉末を9mlの濃硝酸(97%)に分散し、0℃に維持して充分に攪拌した。そこに18mlの濃硫酸をゆっくりと混合して連続攪拌した。更に、10gのKMnOを1時間かけてゆっくりと投入し、5日間攪拌を継続した。この反応混合物を100mlの希釈水で希釈してろ過し、水で数回洗浄し、100℃で24時間乾燥した。その後、Ar雰囲気中で1050℃に加熱することによって、熱剥離(thermal exfoliation)を行った。上述の手順によって得られたBNNSをイソプロパノール(IPA)に分散して三種類のサイズ(1.0μm、0.45μm、0.22μm)のフィルターを用いてろ過し、各ろ液をスピンコート法により、上述のようにして作製されたAu電極基板上にコーティングした。スピンコートにあたっては、先ず約90秒間、500rpmで回転させ、次いで3分間、2000rpmで回転させた。スピンコートの終了後、これらの電極を熱風炉(hot air oven)中で100℃、30分間乾燥させた。
 上記6種類の電極に関して、実施例1と同一の回転電極電気化学セル及び条件で作用電極として使用して酸化還元特性を測定した。測定対象のBNNS/Au電極あるいはBNNSを担持していないAu電極およびPt電極を作用極(WE)として取り付けた。電解液として酸素飽和0.5Mの硫酸を使用した。その測定結果を図10に示す。
 図10より、BNNSを担持させたAu電極の方が、BNNSを担持していないAu電極よりもORR活性が高く、また、電極サイズを調整しなかったBNNSよりも三種類のサイズ(1.0μm、0.45μm、0.22μm)のフィルターを用いて更にサイズだけを調整したBNNSを使用した三つの電極の方が、ORR活性が高く、また、そのフィルターのサイズが小さくなるにつれて(即ち、BNNSのサイズが小さくなるにつれて)、ORR活性は更に向上し、その性能はPt電極に近づくことが確認できた。
[Example 3: Au electrode carrying BNNS with adjusted size (hereinafter also referred to as h-BNNS)]
Using an electrode (Au / h-BNNS electrode) on which an unsized h-BNNS is supported on an Au substrate and three types of filters (1.0 μm, 0.45 μm, 0.22 μm) Further, three types of electrodes (Au / h-BNNS electrodes) in which h-BNNS (hexagonal BN nanosheets) whose size was adjusted were supported on an Au substrate were prepared. For comparison, an Au electrode not supporting h-BNNS and a Pt electrode not supporting h-BNNS were also produced.
The Au electrode and the Pt electrode were prepared by the procedure shown in FIG. Specifically, a Ti layer (15 nm thickness) as a binder was supported on a Si substrate by sputtering, and then Au or Pt (150 nm thickness) was supported by sputtering.
Next, BNNS was produced by the Hummer method as follows.
2 g of BN powder was dispersed in 9 ml of concentrated nitric acid (97%), maintained at 0 ° C. and sufficiently stirred. 18 ml of concentrated sulfuric acid was slowly mixed there and continuously stirred. Further, 10 g of KMnO 4 was slowly added over 1 hour, and stirring was continued for 5 days. The reaction mixture was diluted with 100 ml of diluted water, filtered, washed several times with water, and dried at 100 ° C. for 24 hours. Thereafter, thermal exfoliation was performed by heating to 1050 ° C. in an Ar atmosphere. BNNS obtained by the above procedure was dispersed in isopropanol (IPA) and filtered using three types of filters (1.0 μm, 0.45 μm, 0.22 μm), and each filtrate was spin-coated. The coating was performed on the Au electrode substrate produced as described above. In spin coating, it was first rotated at 500 rpm for about 90 seconds, and then rotated at 2000 rpm for 3 minutes. After completion of the spin coating, these electrodes were dried at 100 ° C. for 30 minutes in a hot air oven.
With respect to the above six types of electrodes, the redox characteristics were measured using the same rotating electrode electrochemical cell and conditions as in Example 1 as the working electrode. A BNNS / Au electrode to be measured or an Au electrode not supporting BNNS and a Pt electrode were attached as working electrodes (WE). Oxygen-saturated 0.5M sulfuric acid was used as the electrolyte. The measurement results are shown in FIG.
From FIG. 10, the Au electrode carrying BNNS has higher ORR activity than the Au electrode not carrying BNNS, and three types of sizes (1.0 μm) than BNNS without adjusting the electrode size. , 0.45 μm, 0.22 μm), the three electrodes using BNNS that were further sized only with higher ORR activity and as the size of the filter decreased (ie, BNNS It was confirmed that the ORR activity was further improved and the performance approached the Pt electrode as the size of the Pt electrode decreased.
 更に、上記方法によって作製した、サイズを調整していないh-BNNSをAu基板上に担持させた電極と、三種類のサイズ(1.0μm、0.45μm、0.22μm)のフィルターを用いて更にサイズだけを調整したh-BNNSをAu基板上に担持させた三つの電極を用いて、各電極での酸素還元反応によって生じる過酸化水素の生成割合を回転リング-ディスク電極法によって、実施例1と同一の電気化学セル及び条件下で測定し、各電極の酸化還元特性を調べた。ディスク電極には、脱着可能なAu電極(φ5mm×厚み5mm)、BNNSをスピンコート法により担持した電極、そしてBNNSを担持していないAu電極の各電極を用い、リング電極にはPtを用いた。電解液として酸素飽和0.5Mの硫酸を使用した。リング電極の電位は、測定中、常に+0.9Vに保持し、ディスク電極で酸素還元反応によって生成した過酸化水素の酸化電流を検出することで、過酸化水素の生成割合を測定した。その結果を図11に示す。ここで、図11に示された各種電極の粒子径/μmは、後述の図12の結果に基づいて算出した、各種電極で用いられているh-BNNSのサイズ(粒子径)の平均値である。
 図11より、サイズを調整しなかったh-BNNSを使用した電極よりも三種類のサイズ(1.0μm、0.45μm、0.22μm)のフィルターを用いて更にサイズだけを調整したh-BNNSを使用した三つの電極の方が、過酸化水素の生成割合が小さく、また、h-BNNSのサイズが小さくなるにつれて、過酸化水素の生成割合が減少することが確認できた。
 また、本願発明者は、BNNSのサイズを小さくしていくと、電極上で酸素が全て4電子反応によって水まで還元されることも確認した(図示せず)。
Furthermore, using the electrode prepared by the above method and carrying an unsized h-BNNS on an Au substrate, and three types of filters (1.0 μm, 0.45 μm, 0.22 μm). Further, by using three electrodes in which h-BNNS of which only the size was adjusted was supported on an Au substrate, the production rate of hydrogen peroxide generated by the oxygen reduction reaction at each electrode was determined by the rotating ring-disk electrode method. The measurement was performed under the same electrochemical cell and conditions as in Example 1, and the redox characteristics of each electrode were examined. As the disk electrode, a removable Au electrode (φ5 mm × thickness 5 mm), an electrode carrying BNNS by a spin coating method, and an Au electrode not carrying BNNS were used, and Pt was used as a ring electrode. . Oxygen-saturated 0.5M sulfuric acid was used as the electrolyte. The potential of the ring electrode was always kept at +0.9 V during the measurement, and the generation rate of hydrogen peroxide was measured by detecting the oxidation current of hydrogen peroxide generated by the oxygen reduction reaction at the disk electrode. The result is shown in FIG. Here, the particle diameter / μm of various electrodes shown in FIG. 11 is an average value of the size (particle diameter) of h-BNNS used in various electrodes, calculated based on the result of FIG. is there.
From FIG. 11, h-BNNS in which only the size was adjusted by using three types of filters (1.0 μm, 0.45 μm, 0.22 μm) rather than the electrode using h-BNNS whose size was not adjusted was used. It was confirmed that the generation rate of hydrogen peroxide was smaller in the three electrodes using the hydrogen peroxide, and the generation rate of hydrogen peroxide decreased as the size of h-BNNS decreased.
The inventors of the present application have also confirmed that when the size of BNNS is reduced, all oxygen is reduced to water by a four-electron reaction on the electrode (not shown).
 また、上記方法によって作製した、サイズを調整していないh-BNNSをAu基板上に担持させた電極と三種類のサイズ(1.0μm、0.45μm、0.22μm)のフィルターを用いて更にサイズだけを調整したh-BNNSをイソプロパノール溶媒に分散させ、流度分布測定装置を用いて流径分布を測定した。その結果を図12に示す。
 図12から明らかなように、フィルターを使用せず、サイズを調整しなかったh-BNNSのサイズ(粒子径)の平均値は、上記三種類のサイズのフィルターを用いて更にサイズだけを調整したh-BNNSのいずれのサイズ(粒子径)の平均値よりも大きく、また、これらのフィルターのサイズを小さくするにつれて、そのサイズ(粒子径)の平均値も小さくなる(即ち、h-BNNSのサイズが小さくなる)ことを確認した。
In addition, an electrode prepared by the above method and carrying an unsized h-BNNS on an Au substrate and a filter of three sizes (1.0 μm, 0.45 μm, 0.22 μm) are further used. H-BNNS of which only the size was adjusted was dispersed in an isopropanol solvent, and the flow diameter distribution was measured using a flow rate distribution measuring device. The result is shown in FIG.
As is clear from FIG. 12, the average value of the size (particle diameter) of h-BNNS that did not use the filter and did not adjust the size was further adjusted only by using the three types of filters. It is larger than the average value of any size (particle diameter) of h-BNNS, and as the size of these filters is reduced, the average value of the size (particle diameter) also decreases (ie, the size of h-BNNS). Was reduced).
[実施例4:BNNSを担持させたAu電極の作製]
 HER用電極触媒を使用した電極に関して、Au基板上にBNNSを担持させた電極(BNNS/Au電極)を作製した。その作製と確認は、先の[実施例1:BNNSを担持させたAu電極]の項に記載されている方法と同じように行った。具体的には、以下の通りである。
[Example 4: Production of Au electrode supporting BNNS]
Regarding the electrode using the HER electrode catalyst, an electrode (BNNS / Au electrode) having BNNS supported on an Au substrate was prepared. The fabrication and confirmation were performed in the same manner as described in the previous section [Example 1: Au electrode supporting BNNS]. Specifically, it is as follows.
 先ず、図1に示す手順により、Au電極を作成した。すなわち、Si基板上にバインダーとしてTi層(15nm厚)をスパッタリングにより担持させ、次に、Au(150nm厚)をスパッタリングにより担持させることにより作成した。 First, an Au electrode was prepared according to the procedure shown in FIG. That is, it was prepared by supporting a Ti layer (15 nm thickness) as a binder on a Si substrate by sputtering and then supporting Au (150 nm thickness) by sputtering.
 次にBNNSを作製するため、先ず1μmサイズのBN粉末3mgをイソプロパノール1mlに分散させた。この分散液を96時間超音波処理した後、1500rpmで1時間遠心分離し、遠心分離結果の上澄みのうちの上側3/4をスピンコート液に使用するために取り出した。このようにして取り出した上澄み液中にはBN粉末から剥離したBNNSが分散していた。 Next, in order to prepare BNNS, 3 mg of 1 μm BN powder was first dispersed in 1 ml of isopropanol. The dispersion was sonicated for 96 hours, then centrifuged at 1500 rpm for 1 hour, and the upper 3/4 of the supernatant obtained by centrifugation was taken out for use as a spin coating solution. In the supernatant liquid thus taken out, BNNS peeled from the BN powder was dispersed.
 このようにして作製されたBNNSを透過電子顕微鏡(TEM)及びEELS(electron energy-loss spectroscopy、電子エネルギー損失分光法)により評価した。その結果は図2と同じであることを確認した(そのため、その結果を図2で代用する。)。このEELSスペクトルから、BNがsp混成軌道を有していること、すなわちヘキサゴナル構造を有していることが確認できた。また、カーボンなどのコンタミネーションがないことも確認できた。 The BNNS thus prepared was evaluated by a transmission electron microscope (TEM) and EELS (electron energy-loss spectroscopy). The result was confirmed to be the same as FIG. 2 (therefore, the result is substituted in FIG. 2). From this EELS spectrum, it was confirmed that BN had sp 2 hybrid orbitals, that is, had a hexagonal structure. It was also confirmed that there was no contamination such as carbon.
 スピンコート法により、BNNSが分散しているこの上澄み液を上述のようにして作製されたAu電極上にコーティングした。スピンコートにあたっては、先ず約90秒間、500rpmで回転させ、次いで3分間、2000rpmで回転させた。スピンコートの終了後、これらの電極を熱風炉(hot air oven)中で100℃、30分間乾燥させた。 The supernatant liquid in which BNNS is dispersed was coated on the Au electrode produced as described above by spin coating. In spin coating, it was first rotated at 500 rpm for about 90 seconds, and then rotated at 2000 rpm for 3 minutes. After completion of the spin coating, these electrodes were dried at 100 ° C. for 30 minutes in a hot air oven.
 スピンコート前後のAu電極表面のSEM像は図3と同じであることを確認した(そのため、その結果を図3で代用する。)。図3(a)はスピンコート前であって、BNNSが担持されていないAuの地肌のSEM像である。図3(b)はBNNSを担持させた状態の電極表面を低倍率で観察したSEM像、図3(c)は同じ電極表面を図3(a)よりもほぼ2倍の倍率で観察したSEM像であり、単一のBNNSがAu上に載っていることが判る。これらのSEM像を比較することにより、スピンコート後の電極は、Auの地肌の上にBNNSが載っているAu/BN電極となっており、またBNNSはAuの地肌を完全には覆っていないことがわかった。 It was confirmed that the SEM images of the Au electrode surface before and after spin coating were the same as in FIG. 3 (therefore, the result is substituted in FIG. 3). FIG. 3 (a) is an SEM image of the Au background before spin coating and with no BNNS supported. FIG. 3B is an SEM image obtained by observing the electrode surface carrying BNNS at a low magnification. FIG. 3C is an SEM obtained by observing the same electrode surface at a magnification approximately twice that of FIG. It is an image and it can be seen that a single BNNS is on Au. By comparing these SEM images, the electrode after spin coating is an Au / BN electrode in which BNNS is placed on the Au background, and BNNS does not completely cover the Au background. I understood it.
[実施例5:Au微粒子担持BNナノシートを担持させたAu電極の作製]
 また、水素発生反応用電極触媒を使用した電極に関して、BNNSにAu微粒子を担持させ、更にこのBNNSを担持させたAu電極を作製した。その作製と確認は、先の[実施例2:Au微粒子担持BNナノシートを担持させたAu電極]の項に記載されている方法と同様な方法で行った。具体的には、以下の通りである。
[Example 5: Production of Au electrode carrying Au fine particle-carrying BN nanosheet]
Further, with respect to the electrode using the electrode catalyst for hydrogen generation reaction, Au fine particles were supported on BNNS, and Au electrodes further supporting BNNS were prepared. The preparation and confirmation were performed in the same manner as described in the previous section [Example 2: Au electrode carrying Au fine particle-carrying BN nanosheet]. Specifically, it is as follows.
 先ずHummer法により、以下のようにしてBNNSを作製した。2gのBN粉末を9mlの濃硝酸(97%)に分散し、0℃に維持して充分に攪拌した。そこに18mlの濃硫酸をゆっくりと混合して連続攪拌した。更に、10gのKMnOを1時間かけてゆっくりと投入し、5日間攪拌を継続した。この反応混合物を100mlの希釈水で希釈してろ過し、水で数回洗浄し、100℃で24時間乾燥した。その後、Ar雰囲気中で1050℃に加熱することによって、熱剥離(thermal exfoliation)を行った。なお、ここでのBNNS作製方法と先に[実施例4:BNNSを担持させたAu電極の作製]の項で説明したBNNS/Au電極を作製する際のBNNS作製方法とは多少異なるが、この相違によるHER特性等への影響はないことを確認済みである。 First, BNNS was produced by the Hummer method as follows. 2 g of BN powder was dispersed in 9 ml of concentrated nitric acid (97%), maintained at 0 ° C. and sufficiently stirred. 18 ml of concentrated sulfuric acid was slowly mixed there and continuously stirred. Further, 10 g of KMnO 4 was slowly added over 1 hour, and stirring was continued for 5 days. The reaction mixture was diluted with 100 ml of diluted water, filtered, washed several times with water, and dried at 100 ° C. for 24 hours. Thereafter, thermal exfoliation was performed by heating to 1050 ° C. in an Ar atmosphere. The BNNS manufacturing method here is slightly different from the BNNS manufacturing method used in manufacturing the BNNS / Au electrode described in the section [Example 4: Preparation of Au electrode carrying BNNS]. It has been confirmed that there is no influence on the HER characteristics due to the difference.
 上の手順によって得られたBNNSに対して、以下のようにしてAu修飾を行った(以下、この生成物をAu微粒子/BNNS、またはAu-BNNSと略記する)。先ず、3時間の超音波処理により、20mgのBNNSを60mlのイソプロパノール(IPA)に分散した。次に、4mlの10mM濃度のHAuCl溶液(IPAを溶媒として使用)を投入して室温で約30分間充分に攪拌した。次に2mlの50mM濃度のNaBH溶液(IPA:HO=4:1の溶液を溶媒として使用)をゆっくりと投入して、室温で約4時間十分に攪拌した。生成物を水とエタノールで数回洗浄して、真空チャンバー中で一晩乾燥した。 The BNNS obtained by the above procedure was modified with Au as follows (hereinafter, this product is abbreviated as Au fine particles / BNNS or Au-BNNS). First, 20 mg of BNNS was dispersed in 60 ml of isopropanol (IPA) by sonication for 3 hours. Next, 4 ml of 10 mM HAUCl 4 solution (IPA was used as a solvent) was added, and the mixture was sufficiently stirred at room temperature for about 30 minutes. Next, 2 ml of 50 mM NaBH 4 solution (IPA: H 2 O = 4: 1 solution was used as a solvent) was slowly added, and the mixture was sufficiently stirred at room temperature for about 4 hours. The product was washed several times with water and ethanol and dried overnight in a vacuum chamber.
 このようにして作製したAu微粒子/BNNSの構造評価をXRDで行った結果は図7と同じであることを確認した(そのため、その結果を図7で代用する。)。図7の結果から、当初のBNNS上には存在していなかったAuが、上述の処理後には担持されていることが確認できた。 The result of the structural evaluation of the Au fine particles / BNNS thus produced by XRD was confirmed to be the same as in FIG. 7 (therefore, the result is substituted in FIG. 7). From the results of FIG. 7, it was confirmed that Au that was not present on the original BNNS was supported after the above-described treatment.
 更に、BNNS及びAu微粒子/BNNSをTEM及びHRTEMで観察した結果は図8と同じであることを確認した(そのため、その結果を図8で代用する。)。図8(a)、(b)及び(c)のBNNSには見られない微粒子が、上記Au修飾後のAu微粒子/BNNSについてのTEM像、HRTEM像である図8(d)、(e)、(f)では10nm前後のサイズの微粒子がBNNS表面に担持されていることが確認できる。 Furthermore, it was confirmed that the results of observing BNNS and Au fine particles / BNNS with TEM and HRTEM were the same as those in FIG. 8 (therefore, the results are substituted in FIG. 8). 8 (d) and 8 (e) are the TEM images and HRTEM images of the Au fine particles / BNNS after the Au modification, in which the fine particles not seen in the BNNS in FIGS. 8 (a), (b) and (c) are shown. In (f), it can be confirmed that fine particles having a size of about 10 nm are supported on the BNNS surface.
 このAu微粒子/BNNSを上述のBNNS/Au電極と同じAu基板上に担持させた電極(Au微粒子/BNNS/Au電極、またはAu-BNNS/Au電極)を作製した。その作製方法を以下に示す。 An electrode (Au fine particle / BNNS / Au electrode or Au-BNNS / Au electrode) in which the Au fine particles / BNNS are supported on the same Au substrate as the BNNS / Au electrode described above was produced. The manufacturing method is shown below.
 Au微粒子/BNNS/Au電極の作製に当たっては、先ず1mlのIPA中に3mgのAu微粒子/BNNSを分散させて、5分間超音波処理し、その後1500rpmで1時間遠心分離を行った。遠心分離結果の上澄みのうちの上側3/4をスピンコート液に使用するために取り出した。このスピンコート液をAu基板上にスピンコートした。具体的には、最初500rpmで90秒間、次に2000rpmで3分間回転させた。これを熱風炉中において100℃で約30分間乾燥させて、Au微粒子/BNNS/Au電極を得た。 In preparing the Au fine particles / BNNS / Au electrode, first, 3 mg of Au fine particles / BNNS was dispersed in 1 ml of IPA, subjected to ultrasonic treatment for 5 minutes, and then centrifuged at 1500 rpm for 1 hour. The upper 3/4 of the supernatant from the centrifugation was removed for use in the spin coat solution. This spin coating solution was spin coated on an Au substrate. Specifically, it was first rotated at 500 rpm for 90 seconds and then at 2000 rpm for 3 minutes. This was dried in a hot air oven at 100 ° C. for about 30 minutes to obtain Au fine particles / BNNS / Au electrodes.
 [実施例6:他の電極の作製]
 更に、同じAu微粒子/BNNSをPt電極上に担持させた電極(Au微粒子/BNNS/Pt電極またはAu-BNNS/Pt電極)、Au微粒子の代わりにNi微粒子を使用したNi微粒子/BNNS/Au電極(Ni-BNNS/Au電極)及びNi微粒子/BNNS/Pt電極(Ni-BNNS/Pt電極)、更に基板をNiに変えたAu微粒子/BNNS/Ni電極(Au-BNNS/Ni電極)、このAu微粒子もNi微粒子に変えたNi微粒子/BNNS/Ni電極(Ni-BNNS/Ni電極)も作製した。これに加えて、比較用としてAuの地肌のままの電極(Au電極)、Ptの地肌のままの電極(Pt電極)及びNiの地肌のままの電極(Ni電極)も作成した。
[Example 6: Production of other electrodes]
Furthermore, an electrode in which the same Au fine particles / BNNS are supported on a Pt electrode (Au fine particles / BNNS / Pt electrode or Au-BNNS / Pt electrode), Ni fine particles / BNNS / Au electrode using Ni fine particles instead of Au fine particles (Ni-BNNS / Au electrode) and Ni fine particle / BNNS / Pt electrode (Ni-BNNS / Pt electrode), Au fine particle / BNNS / Ni electrode (Au-BNNS / Ni electrode) with the substrate changed to Ni, this Au Ni fine particles / BNNS / Ni electrodes (Ni-BNNS / Ni electrodes) in which the fine particles were changed to Ni fine particles were also produced. In addition, an electrode with an Au background (Au electrode), an electrode with an Pt background (Pt electrode), and an electrode with an Ni background (Ni electrode) were also prepared for comparison.
 ここで、Ni微粒子/BNNSは以下のようにして作製した。 Here, the Ni fine particles / BNNS were prepared as follows.
 先ず、[実施例5:Au微粒子担持BNナノシートを担持させたAu電極の作製]の項と同じ方法を用いてBNNSを作製した。次に、3時間の超音波処理により、20mgのBNNSを60mlのIPAに分散した。次に、4mlの10mM濃度のNiCl溶液(IPA)を投入して室温で約30分間充分に攪拌した。次に2mlの50mM濃度のNaBH溶液(IPA:HO=4:1の溶液を溶媒として使用)をゆっくりと投入して、室温で約4時間十分に攪拌した。生成物を水とエタノールで数回洗浄して、真空チャンバー中で一晩乾燥した。 First, BNNS was prepared using the same method as that described in [Example 5: Production of Au electrode carrying Au fine particle-carrying BN nanosheet]. Next, 20 mg of BNNS was dispersed in 60 ml of IPA by sonication for 3 hours. Next, 4 ml of a 10 mM NiCl solution (IPA) was added, and the mixture was sufficiently stirred at room temperature for about 30 minutes. Next, 2 ml of 50 mM NaBH 4 solution (IPA: H 2 O = 4: 1 solution was used as a solvent) was slowly added, and the mixture was sufficiently stirred at room temperature for about 4 hours. The product was washed several times with water and ethanol and dried overnight in a vacuum chamber.
 このようにして作製したNi微粒子/BNNSを[実施例5:Au微粒子担持BNナノシートを担持させたAu電極の作製]の項と同様な方法でAu電極、Pt電極及びNi電極上に担持させることにより、それぞれNi微粒子/BNNS/Au電極、Ni微粒子/BNNS/Pt電極及びNi微粒子/BNNS/Ni電極を作製した。また、Au微粒子/BNNS/Ni電極も、先に作製したAu微粒子/BNNSを上と同様な方法でNi電極上に担持させることで作製した。 The Ni fine particles / BNNS thus produced are supported on the Au electrode, the Pt electrode, and the Ni electrode in the same manner as in [Example 5: Preparation of Au electrode supporting Au fine particle-supported BN nanosheet]. Thus, a Ni fine particle / BNNS / Au electrode, a Ni fine particle / BNNS / Pt electrode, and a Ni fine particle / BNNS / Ni electrode were prepared, respectively. The Au fine particles / BNNS / Ni electrode was also produced by supporting the Au fine particles / BNNS produced earlier on the Ni electrode by the same method as above.
[HER特性の測定]
 このようにして作製したBNNS/Au電極、Au微粒子/BNNS/Au電極、Ni微粒子/BNNS/Au電極、BNNS/Pt電極、Au微粒子/BNNS/Pt電極、Ni微粒子/BNNS/Pt電極、BNNS/Ni電極、Au微粒子/BNNS/Ni電極及びNi微粒子/BNNS/Ni電極並びに比較対象としてのAu電極、Pt電極及びNi電極のHER特性を、回転電極電気化学セルを使用して回転電極法により測定した。使用した回転電極電気化学セルの構成を概念的に示す図は、先述の図4と同じである。回転電極法を用いることで、電極表面への物質移動を制御し、電荷移動反応を再現性よく定量的に解析することが可能となる。図4において、測定対象の上記電極の一つを作用極(WE)として取り付けた。電解液として水素を飽和させた0.5Mの硫酸を使用した。なお、ここで特定の電解液を挙げたが、これは単なる例示であり、電気伝導性があれば、電解質の種類も濃度も特に問わない。また、参照極(RE)としては飽和NaCl銀/塩化銀電極を使用した。対極(CE)として白金ワイヤを使用した。電位掃引速度を0.1mV/秒とし、電極は回転させずに測定を行った。
[Measurement of HER characteristics]
BNNS / Au electrode, Au fine particle / BNNS / Au electrode, Ni fine particle / BNNS / Au electrode, BNNS / Pt electrode, Au fine particle / BNNS / Pt electrode, Ni fine particle / BNNS / Pt electrode, BNNS / Measure the HER characteristics of Ni electrode, Au fine particle / BNNS / Ni electrode, Ni fine particle / BNNS / Ni electrode and Au electrode, Pt electrode and Ni electrode for comparison by rotating electrode method using rotating electrode electrochemical cell did. The diagram conceptually showing the configuration of the used rotating electrode electrochemical cell is the same as FIG. 4 described above. By using the rotating electrode method, mass transfer to the electrode surface can be controlled, and the charge transfer reaction can be quantitatively analyzed with good reproducibility. In FIG. 4, one of the electrodes to be measured was attached as a working electrode (WE). 0.5 M sulfuric acid saturated with hydrogen was used as the electrolyte. In addition, although the specific electrolyte solution was mentioned here, this is only an illustration, and if it has electrical conductivity, the kind and concentration of the electrolyte are not particularly limited. A saturated NaCl silver / silver chloride electrode was used as the reference electrode (RE). Platinum wire was used as the counter electrode (CE). The potential sweep rate was 0.1 mV / sec, and the measurement was performed without rotating the electrode.
 図13には、上記実施例の電極触媒中で基板としてAuを使用しているもの、すなわちBNNS/Au電極、Au-BNNS/Au電極及びNi-BNNS/Au電極について、上で示した装置及び測定条件を用いて得られた線形走査ボルタモグラムを示した。更に、比較のため、Au電極及びPt電極について同じ測定を行った結果も図13に示す。図13の結果から、Pt基板が最も高いHER活性を示すものの、Au基板を使用した実施例は比較例であるAu基板よりもかなり高いHER活性を示し、そのうちでもAu-BNNS/Au電極及びBNNS/Au電極はPt電極にかなり近いHER活性を示すことが判った。 FIG. 13 shows the apparatus shown above for the electrode catalyst of the above example using Au as a substrate, that is, the BNNS / Au electrode, the Au—BNNS / Au electrode, and the Ni—BNNS / Au electrode. A linear scanning voltammogram obtained using the measurement conditions is shown. Furthermore, the result of having performed the same measurement about Au electrode and Pt electrode is also shown in FIG. 13 for comparison. From the results of FIG. 13, although the Pt substrate shows the highest HER activity, the example using the Au substrate shows considerably higher HER activity than the Au substrate as a comparative example, and among them, the Au-BNNS / Au electrode and the BNNS The / Au electrode was found to exhibit HER activity much closer to the Pt electrode.
 図14には、上記実施例の電極触媒中で基板としてPtを使用しているもの、すなわちBNNS/Pt電極、Au-BNNS/Pt電極及びNi-BNNS/Pt電極について、上で示した装置及び測定条件を用いて得られた線形走査ボルタモグラムを示した。更に、比較のため、Au電極、Pt電極及びNi電極について同じ測定を行った結果も図14に示す。図14から、本発明の実施例であるAu-BNNS/Pt電極及びNi-BNNS/Pt電極は、比較例であるPt電極よりも更に高いHER活性を示すことが判った。これは、これらの実施例に示される電極を使用すれば、従来のPt電極に比べてPtの使用量を低減できることを意味する。 FIG. 14 shows an apparatus using Pt as a substrate in the electrocatalyst of the above example, that is, the apparatus shown above for the BNNS / Pt electrode, the Au—BNNS / Pt electrode, and the Ni—BNNS / Pt electrode, and A linear scanning voltammogram obtained using the measurement conditions is shown. Furthermore, the result of having performed the same measurement about Au electrode, Pt electrode, and Ni electrode is also shown in FIG. 14 for comparison. FIG. 14 shows that the Au—BNNS / Pt electrode and the Ni—BNNS / Pt electrode, which are examples of the present invention, exhibit higher HER activity than the Pt electrode that is a comparative example. This means that if the electrodes shown in these examples are used, the amount of Pt used can be reduced compared to conventional Pt electrodes.
 図15には、上記実施例の電極触媒中で基板としてNiを使用しているもの、すなわちBNNS/Ni電極、Au-BNNS/Ni電極及びNi-BNNS/Ni電極について、上で示した装置及び測定条件を用いて得られた線形走査ボルタモグラムを示した。更に、比較のため、Pt電極及びNi電極について同じ測定を行った結果も図15に示す。図15から、基板としてNiを使用した場合でも、BNNSを基板上に担持させることによってHER活性が向上し、特にAu微粒子を担持させたBNNSを使用した場合にはその効果が更に大きくなることが判った。 FIG. 15 shows the apparatus shown above for the electrode catalyst of the above example using Ni as a substrate, that is, a BNNS / Ni electrode, an Au—BNNS / Ni electrode, and a Ni—BNNS / Ni electrode. A linear scanning voltammogram obtained using the measurement conditions is shown. Furthermore, the result of having performed the same measurement about Pt electrode and Ni electrode is also shown in FIG. 15 for comparison. From FIG. 15, even when Ni is used as the substrate, the HER activity is improved by supporting BNNS on the substrate, and the effect is further enhanced particularly when BNNS supporting Au fine particles is used. understood.
 図16に、実施例中のBNNS/Au電極、Au-BNNS/Au電極、Ni-BNNS/Au電極、BNNS/Pt電極及びAu-BNNS/Pt電極を使用した場合のHER特性の測定結果に基づくTafelプロットを示す。図16には更に比較のためにAu基板(Au電極)、Pt基板(Pt電極)及びNi基板(Ni電極)だけの場合のTafelプロットも示す。ここでプロットが右上にあるほどHER特定が良いことを示している。図16から、BNNSを担持させることによりHER活性が向上すること、特にBNNSとしてAu微粒子を担持させたものを使用した場合にその効果が特に大きくなることが判った。 FIG. 16 is based on the measurement results of the HER characteristics when the BNNS / Au electrode, the Au—BNNS / Au electrode, the Ni—BNNS / Au electrode, the BNNS / Pt electrode, and the Au—BNNS / Pt electrode in the example are used. A Tafel plot is shown. For further comparison, FIG. 16 also shows a Tafel plot in the case of only an Au substrate (Au electrode), a Pt substrate (Pt electrode), and an Ni substrate (Ni electrode). Here, the higher the plot is in the upper right, the better the HER specification is. From FIG. 16, it was found that HER activity is improved by supporting BNNS, and that the effect is particularly great when Au nano particles are supported as BNNS.
 このようにして作製されたHER用電極のHOR活性を調べた。図17は実施例中のBNNS/Au電極、Au-BNNS/Au電極、BNNS/Pt電極及びAu-BNNS/Pt電極、並びに比較対象としてのAu基板(Au電極)及びPt基板(Pt電極)だけの線形走査ボルタモグラムを示す。図17で電流密度が正の側がHORを、また負の側がHERを示す。多くの触媒はある反応に対して触媒活性があればその逆反応にも同様に触媒活性を示す。しかしながら、図17からわかるように、Au基板を使用した電極触媒であるBNNS/Au電極及びAu-BNNS/Au電極は、高いHER活性を示すにもかかわらず、HOR活性を示さないことが判った。これに対してPt電極、BNNS/Pt電極及びAu-BNNS/Pt電極ではHER活性とHOR活性の両方が高かった。そのため、HER活性のみを示す電極触媒を使用することによって、HERにより発生した水素が逆反応であるHORで消費されることで水素の収率が低下するという問題を回避することもできる。 The HOR activity of the HER electrode produced in this manner was examined. FIG. 17 shows only the BNNS / Au electrode, the Au—BNNS / Au electrode, the BNNS / Pt electrode, the Au—BNNS / Pt electrode, and the Au substrate (Au electrode) and Pt substrate (Pt electrode) as comparison targets in the examples. Shows a linear scanning voltammogram. In FIG. 17, the positive current density indicates HOR, and the negative current indicates HER. Many catalysts exhibit catalytic activity in the reverse reaction as well if they have catalytic activity for a certain reaction. However, as can be seen from FIG. 17, it was found that the BNNS / Au electrode and Au-BNNS / Au electrode, which are electrocatalysts using an Au substrate, did not show HOR activity despite showing high HER activity. . In contrast, the Pt electrode, the BNNS / Pt electrode, and the Au-BNNS / Pt electrode had both high HER activity and HOR activity. Therefore, by using an electrode catalyst that exhibits only HER activity, it is possible to avoid the problem that the yield of hydrogen decreases due to consumption of hydrogen generated by HER in HOR, which is a reverse reaction.
 本発明によれば、白金を使用することなく、ORR活性が良好な酸素還元電極触媒及び酸素極が得られるため、燃料電池の一層の普及に大いに貢献するものと期待される。
 さらに、白金を使用しないかあるいは使用してもその使用量を低減できるHER用電極触媒を提供でき、また基板材料を適宜選択することでHOR活性を示さないようにすることができるため、水素発生分野への利用が大いに期待できる。
 
According to the present invention, since an oxygen reduction electrode catalyst and an oxygen electrode having good ORR activity can be obtained without using platinum, it is expected to greatly contribute to the further spread of fuel cells.
Furthermore, it is possible to provide an HER electrode catalyst that can reduce the amount of platinum that is used or not used, and it is possible to prevent HOR activity by appropriately selecting a substrate material. The use in the field can be greatly expected.

Claims (15)

  1. Au、Ni、Pd及びPtよりなる群から選択された少なくとも一の金属の表面上に窒化ホウ素ナノシートを担持させた、酸素還元電極触媒。 An oxygen reduction electrocatalyst in which a boron nitride nanosheet is supported on the surface of at least one metal selected from the group consisting of Au, Ni, Pd and Pt.
  2. 前記窒化ホウ素ナノシートは元素周期表の8~11族の元素からなる群から選択された少なくとも一の金属の微粒子を担持している、請求項1に記載の酸素還元電極触媒。 The oxygen reduction electrocatalyst according to claim 1, wherein the boron nitride nanosheet carries fine particles of at least one metal selected from the group consisting of elements of groups 8 to 11 of the periodic table.
  3. 前記窒化ホウ素ナノシートは前記Au、Ni、Pd及びPtよりなる群から選択された少なくとも一の金属の表面の一部を覆っている、請求項1または2に記載の酸素還元電極触媒。 The oxygen reduction electrocatalyst according to claim 1 or 2, wherein the boron nitride nanosheet covers a part of the surface of at least one metal selected from the group consisting of Au, Ni, Pd, and Pt.
  4. 請求項1~3の何れかに記載の酸素還元電極触媒に担持する窒化ホウ素ナノシートの大きさが、電極での酸素還元反応による過酸化水素の生成に対する選択性を抑制する大きさである、酸素還元電極触媒。 The oxygen-reducing electrode catalyst according to any one of claims 1 to 3, wherein the boron nitride nanosheet supported on the oxygen-reducing electrode catalyst has a size that suppresses selectivity for the production of hydrogen peroxide by an oxygen reduction reaction at the electrode. Reduction electrode catalyst.
  5. ガラス状炭素の表面上に、元素周期表の8~11族の元素からなる群から選択された少なくとも一の金属の微粒子を担持している窒化ホウ素ナノシートを担持させた、酸素還元電極触媒。 An oxygen reduction electrocatalyst in which a boron nitride nanosheet carrying fine particles of at least one metal selected from the group consisting of elements of groups 8 to 11 of the periodic table is supported on the surface of glassy carbon.
  6. 前記窒化ホウ素ナノシートに担持されている金属の微粒子がAuである、請求項5に記載の酸素還元電極触媒。 The oxygen reduction electrode catalyst according to claim 5, wherein the metal fine particles supported on the boron nitride nanosheet are Au.
  7. 請求項1~6の何れかに記載の酸素還元電極触媒を用いた酸素極。 An oxygen electrode using the oxygen reduction electrode catalyst according to any one of claims 1 to 6.
  8. 請求項7に記載の酸素極を備える燃料電池。 A fuel cell comprising the oxygen electrode according to claim 7.
  9. 請求項1~3の何れかに記載の酸素還元電極触媒に担持する窒化ホウ素ナノシートの大きさを調整することによって、電極での酸素還元反応による過酸化水素の生成を抑制して酸素還元反応触媒活性を向上させる方法。 An oxygen reduction reaction catalyst that suppresses the production of hydrogen peroxide by an oxygen reduction reaction at an electrode by adjusting the size of the boron nitride nanosheet supported on the oxygen reduction electrode catalyst according to any one of claims 1 to 3. A method to improve activity.
  10. Au、Ni、Pd及びPtよりなる群から選択された少なくとも一の金属の表面上に窒化ホウ素ナノシートを担持させた、水素発生反応用電極触媒。 An electrode catalyst for hydrogen generation reaction in which boron nitride nanosheets are supported on the surface of at least one metal selected from the group consisting of Au, Ni, Pd and Pt.
  11. 前記窒化ホウ素ナノシートは元素周期表の8~11族の元素からなる群から選択された少なくとも一の金属の微粒子を担持している、請求項10に記載の水素発生反応用電極触媒。 The electrode catalyst for hydrogen generation reaction according to claim 10, wherein the boron nitride nanosheet carries at least one fine metal particle selected from the group consisting of elements of groups 8 to 11 of the periodic table.
  12. 前記窒化ホウ素ナノシートは前記Au、Ni、Pd及びPtよりなる群から選択された少なくとも一の金属の表面の一部を覆っている、請求項10または11に記載の水素発生反応用電極触媒。 The electrode catalyst for hydrogen generation reaction according to claim 10 or 11, wherein the boron nitride nanosheet covers a part of the surface of at least one metal selected from the group consisting of Au, Ni, Pd and Pt.
  13. 前記窒化ホウ素ナノシートを表面上に担持する前記金属はAuである、請求項10~12の何れかに記載の水素発生反応用電極触媒。 The electrode catalyst for hydrogen generation reaction according to any one of claims 10 to 12, wherein the metal supporting the boron nitride nanosheet on the surface is Au.
  14. 請求項10~13の何れかの水素発生反応用電極触媒を用いた水素発生電極。 A hydrogen generating electrode using the electrode catalyst for hydrogen generating reaction according to any one of claims 10 to 13.
  15. 請求項14に記載の水素発生電極を備える水素発生装置。 A hydrogen generator comprising the hydrogen generating electrode according to claim 14.
PCT/JP2014/080923 2013-11-25 2014-11-21 Oxygen reduction electrode catalyst, electrode catalyst for hydrogen generation reaction, and electrode WO2015076375A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015549207A JP6052752B2 (en) 2013-11-25 2014-11-21 Oxygen reduction electrode catalyst, electrode catalyst for hydrogen generation reaction, and electrode

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013242682 2013-11-25
JP2013-242682 2013-11-25
JP2014-078297 2014-04-07
JP2014078297 2014-04-07

Publications (1)

Publication Number Publication Date
WO2015076375A1 true WO2015076375A1 (en) 2015-05-28

Family

ID=53179634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080923 WO2015076375A1 (en) 2013-11-25 2014-11-21 Oxygen reduction electrode catalyst, electrode catalyst for hydrogen generation reaction, and electrode

Country Status (2)

Country Link
JP (1) JP6052752B2 (en)
WO (1) WO2015076375A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006087928A1 (en) * 2005-02-15 2006-08-24 University Of Miyazaki Platinum-carbon composite having spongy platinum nanosheet carried on carbon and process for producing the same
JP2008311223A (en) * 2007-05-17 2008-12-25 Tokyo Univ Of Science Oxygen reduction electrode catalyst, oxygen reduction electrode using the same, and battery
JP2011079715A (en) * 2009-10-08 2011-04-21 National Institute For Materials Science Ultrathin boron nitride nanosheet, method for production thereof, and optical material containing the nanosheet
JP2011134477A (en) * 2009-12-22 2011-07-07 Shinshu Univ Method of manufacturing electrode catalyst for fuel cell
CN102976295A (en) * 2012-12-27 2013-03-20 山东大学 Method for preparing two-dimensional hexagonal boron nitride nanosheet through molten caustic soda
JP2013058429A (en) * 2011-09-09 2013-03-28 Shinshu Univ Electrode catalyst having oxygen-reducing property
CN103130236A (en) * 2013-03-11 2013-06-05 哈尔滨工业大学 Method for preparing BN (boron nitride) alkene dispersion solution by combination of ball milling and liquid-phase peeling
CN103203462A (en) * 2013-03-21 2013-07-17 上海大学 Preparation method of boron nitride nanosheet-silver nanoparticle composite material
JP2013230415A (en) * 2012-04-27 2013-11-14 National Institute For Materials Science Oxygen reduction electrode catalyst and oxygen electrode

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006087928A1 (en) * 2005-02-15 2006-08-24 University Of Miyazaki Platinum-carbon composite having spongy platinum nanosheet carried on carbon and process for producing the same
JP2008311223A (en) * 2007-05-17 2008-12-25 Tokyo Univ Of Science Oxygen reduction electrode catalyst, oxygen reduction electrode using the same, and battery
JP2011079715A (en) * 2009-10-08 2011-04-21 National Institute For Materials Science Ultrathin boron nitride nanosheet, method for production thereof, and optical material containing the nanosheet
JP2011134477A (en) * 2009-12-22 2011-07-07 Shinshu Univ Method of manufacturing electrode catalyst for fuel cell
JP2013058429A (en) * 2011-09-09 2013-03-28 Shinshu Univ Electrode catalyst having oxygen-reducing property
JP2013230415A (en) * 2012-04-27 2013-11-14 National Institute For Materials Science Oxygen reduction electrode catalyst and oxygen electrode
CN102976295A (en) * 2012-12-27 2013-03-20 山东大学 Method for preparing two-dimensional hexagonal boron nitride nanosheet through molten caustic soda
CN103130236A (en) * 2013-03-11 2013-06-05 哈尔滨工业大学 Method for preparing BN (boron nitride) alkene dispersion solution by combination of ball milling and liquid-phase peeling
CN103203462A (en) * 2013-03-21 2013-07-17 上海大学 Preparation method of boron nitride nanosheet-silver nanoparticle composite material

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANDREY LYALIN ET AL.: "Functionalization of Monolayer h-BN by a Metal Support for the Oxygen Reduction Reaction", J. PHYS. CHEM.C, vol. 117, 17 September 2013 (2013-09-17), pages 21359 - 21370 *
ANDREY LYALIN: "Theoretical predictions for hexagonal BN based nanomaterials as electrocatalysts for the oxygen reduction reaction", PHYS. CHEM. CHEM. PHYS, vol. 15, 17 December 2012 (2012-12-17), pages 2809 - 2820 *
CHUNYI ZHI ET AL.: "Large- Scale Fabrication of Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Mechanical Properties", ADV. MATER., vol. 21, 2009, pages 2889 - 2893 *
YOSHIO BANDO ET AL.: "Synthesis and Property of BN Nanotubes and Nanosheetes", JOURNAL OF THE SURFACE SCIENCE SOCIETY OF JAPAN, vol. 33, no. 10, 2012, pages 569 - 574 *

Also Published As

Publication number Publication date
JP6052752B2 (en) 2016-12-27
JPWO2015076375A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
Ou et al. Defective molybdenum sulfide quantum dots as highly active hydrogen evolution electrocatalysts
Wei et al. Highly catalytic and stabilized titanium nitride nanowire array-decorated graphite felt electrodes for all vanadium redox flow batteries
Gao et al. Mixed-solution synthesis of sea urchin-like NiSe nanofiber assemblies as economical Pt-free catalysts for electrochemical H 2 production
Shahid et al. Enhanced electrocatalytic performance of cobalt oxide nanocubes incorporating reduced graphene oxide as a modified platinum electrode for methanol oxidation
Tajabadi et al. Electrodeposition of flower-like platinum on electrophoretically grown nitrogen-doped graphene as a highly sensitive electrochemical non-enzymatic biosensor for hydrogen peroxide detection
Zhang et al. In situ synthesis of MoS 2/graphene nanosheets as free-standing and flexible electrode paper for high-efficiency hydrogen evolution reaction
Hsieh et al. Electrochemical capacitors fabricated with tin oxide/graphene oxide nanocomposites
Jukk et al. Electrochemical reduction of oxygen on heat-treated Pd nanoparticle/multi-walled carbon nanotube composites in alkaline solution
Zuo et al. A facile sonochemical route for the synthesis of MoS2/Pd composites for highly efficient oxygen reduction reaction
JP2017127799A (en) Core-shell structured nanosheet
Chou et al. Effects of reduction temperature and pH value of polyol process on reduced graphene oxide supported Pt electrocatalysts for oxygen reduction reaction
CN112090422A (en) Carbon-based anchoring non-noble metal monoatomic catalyst, and preparation method and application thereof
Jiang et al. High catalytic performance of Pt nanoparticles on plasma treated carbon nanotubes for electrooxidation of ethanol in a basic solution
CN113471453A (en) Preparation method of polyelectrolyte modified titanium carbide supported multi-grain-boundary platinum electrode catalyst
Huang et al. Facile synthesis of laminated porous WS2/C composite and its electrocatalysis for oxygen reduction reaction
Jalili et al. Preparation and evaluation of a new hybrid support based on exfoliation of graphite by ball milling for Ni nanoparticles in hydrogen evolution reaction
Wu et al. Effects of annealing temperature of PtCu/MWCNT catalysts on their electrocatalytic performance of electrooxidation of methanol
Lee et al. Graphite-nanofiber-supported porous Pt–Ag nanosponges: Synthesis and oxygen reduction electrocatalysis
Chekin et al. Preparation and electrochemical performance of graphene–Pt black nanocomposite for electrochemical methanol oxidation
Ghasemi et al. Preparation of nanohybrid electrocatalyst based on reduced graphene oxide sheets decorated with Pt nanoparticles for hydrogen evolution reaction
Duan et al. Evaluation of Co–Au bimetallic nanoparticles as anode electrocatalyst for direct borohydride-hydrogen peroxide fuel cell
Sun et al. Synthesis of Nitrogen-doped Niobium Dioxide and its co-catalytic effect towards the electrocatalysis of oxygen reduction on platinum
Zhang et al. FePt nanoalloys on N-doped graphene paper as integrated electrode towards efficient formic acid electrooxidation
Pandey et al. Thin film of palladium nanodendrites supported on graphite electrode for catalyzing the oxidation of small organic molecules
Ghartavol et al. Electrochemical investigation of electrodeposited platinum nanoparticles on multi walled carbon nanotubes for methanol electro-oxidation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864032

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015549207

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14864032

Country of ref document: EP

Kind code of ref document: A1