[go: up one dir, main page]

WO2015067593A1 - Procédé et dispositif pour faire fonctionner une machine synchrone à excitation permanente - Google Patents

Procédé et dispositif pour faire fonctionner une machine synchrone à excitation permanente Download PDF

Info

Publication number
WO2015067593A1
WO2015067593A1 PCT/EP2014/073675 EP2014073675W WO2015067593A1 WO 2015067593 A1 WO2015067593 A1 WO 2015067593A1 EP 2014073675 W EP2014073675 W EP 2014073675W WO 2015067593 A1 WO2015067593 A1 WO 2015067593A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
current
magnetic field
torque
field weakening
Prior art date
Application number
PCT/EP2014/073675
Other languages
German (de)
English (en)
Inventor
Peter Stauder
Tom Kaufmann
Sighard SCHRÄBLER
Original Assignee
Continental Teves Ag & Co. Ohg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Teves Ag & Co. Ohg filed Critical Continental Teves Ag & Co. Ohg
Publication of WO2015067593A1 publication Critical patent/WO2015067593A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0085Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed
    • H02P21/0089Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed using field weakening
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop

Definitions

  • the invention relates to a method for operating a permanent-magnet synchronous machine in which a torque-forming current and a magnetic field weakening current are regulated in a rotor-fixed coordinate system. It also relates to a corresponding device.
  • Phasor diagram of the synchronous machine generates the induced voltage or the electromotive force (EMF)
  • the proportion of the magnetic field weakening current Id is determined via a regulator which uses as input the current amplitude of the terminal voltage, which results as the square root of the sum of the squares of the voltages Ud and Uq, ie as (Ud2 + Uq2) l / 2, and the available DC voltage or voltage is used.
  • a regulator operating in this manner is referred to as field weakening regulator and is known in the art.
  • the disadvantage of such a control of the synchronous machine is that with very fast, dynamic
  • the abovementioned object is achieved according to the invention in that, for a given torque request, an operating point of the synchronous machine is determined with an associated value of the torque-forming current in which the current weakening the magnetic field has the lowest possible value.
  • the invention is based on the consideration that a deposit of current quantities, in particular of Id and Iq, which are valid in a rotor-fixed coordinate system, in the form of characteristic curves or tables only insufficiently takes into account the current operating conditions. In order to cover as many operating conditions as possible, a large number of tables to be created in advance would be necessary, which is only rarely feasible in rare cases.
  • the value of the magnetic field weakening current is determined iteratively.
  • the value of the torque-forming current is determined iteratively. This allows in each case a gradual improvement of the determined solution. By choosing the maximum number of iterations, higher accuracy can be set at the expense of speed.
  • determined values for the torque-generating and the magnetic-field-weakening current are calculated as a resulting electrical power, with the aid of this power and the available battery voltage a required current is calculated, and wherein the value for the magnetic field weakening current is latched as a valid value when the required current is within predetermined limits.
  • internal mechanical power and copper losses are preferably taken into account.
  • the step size for the iterative determination of the magnet ⁇ field-weakening current depends advantageously from the difference between a minimum possible and a maximum possible value for the magnetic-field-weakening current.
  • the maximum number of iterations for the calculation of the magnetic field weakening current is preferably between 2 and 20, in particular at 10.
  • the above-mentioned object is achieved according to the invention with at least one software and / or hardware implemented module for performing a method according to one of the above claims.
  • the inventive apparatus is preferably used in a motor vehicle, where in particular in a brake ⁇ system, more preferably in a brake system of the 'brake-by-wire ". It can be used both in synchronous machines in linear actuators in an electro-mechanical Brake press a brake pad against a brake disc, as well as with linear actuators in integrated
  • Braking systems that move in a pressure supply device a plunger in a hydraulic pressure chamber, wherein active pressure can be built in at least one brake circuit.
  • the invention comprises a brake system for a motor vehicle with at least one electromechanical brake, which comprises a linear actuator, in particular comprising an electric motor and a downstream rotational-translation gear, preferably a ball screw, and a device described above. It also includes a braking system for a linear actuator, in particular comprising an electric motor and a downstream rotational-translation gear, preferably a ball screw, and a device described above. It also includes a braking system for a linear actuator, in particular comprising an electric motor and a downstream rotational-translation gear, preferably a ball screw, and a device described above. It also includes a braking system for a linear actuator, in particular comprising an electric motor and a downstream rotational-translation gear, preferably a ball screw, and a device described above. It also includes a braking system for a linear actuator, in particular comprising an electric motor and a downstream rotational-translation gear, preferably a ball screw, and a device described above. It also includes a braking system for a
  • the sole figure shows a structogram for a method for operating a permanent-magnet synchronous machine in a preferred embodiment.
  • a combination of the torque-forming current Iq and the magnetic-field-weakening current Id is iteratively searched to a predetermined desired torque or torque command Msoll corresponding to a lowest possible magnetic field ⁇ debilitating value of Id.
  • the method is preferably implemented as a computer program and runs on a motor ⁇ control unit or a control unit (ECU).
  • the method uses the following input parameters which characterize the electrical machine, and the concrete implementation of the driving Ver ⁇ :
  • Kt, inv, fak reciprocal of the temperature-dependent torque constant for the setpoint current calculation
  • Ibat, min minimum battery current (eg for feeding back into the electrical system, for example -20 A)
  • Ibat, max maximum battery current (at power consumption, eg 60 A)
  • Imax Inverter current limit in Arms (RMS current)
  • Brake Flag for increased copper losses in braking mode, which reduces the return power to the battery
  • the torque command Msoll is important for determining the operating point.
  • Id, hold 0: after completion of the iterations, this value is assigned the iteratively determined value for Id;
  • Ub Ubat * 0.40824829 * Ubat, fak: equals the maximum available voltage (in [volts]) multiplied by a utilization factor.
  • Ub Ubat / 2/3 * fmod, where fmod a Exploitation ⁇ or modification factor. Division by 3 is used to convert phase-to-phase voltage to phase, and division by 2 is used to convert to an RMS value.
  • the modulation factor takes into account that the available DC link voltage of z. B. 12 V by means of a
  • Pulse width modulation with a duty cycle of z. B. 5% to 95% can be applied to a motor phase. This corresponds to a degree of modulation of 90%.
  • the causes lie in the power electronics.
  • nid nid, max: number of iteration steps to determine Id
  • Uemk ws * Psim * p: corresponds to the induced voltage in Vrms; Vrms here corresponds to the effective value of the induced voltage in a motor phase with respect to the neutral point
  • Iq Iq, shall * 0.5: The value of Iq is set to half of the maximum value of Iq
  • breakiq 0: Flag if the iteration should be aborted via Iq
  • a first iteration loop is started via the current Iq, which is carried out as long as the conditions nlq> 0 and breakiq are equal to zero.
  • the current iteration number nlq is counted down by one.
  • an efficiency optimal value Id, minimum for Id calculated according to - (Iq2) * Id, minimal, fak.
  • a variable idvalid is set to zero, indicating whether a valid Id value was found. Furthermore, a flag breakid is set to zero, which indicates whether it should continue to iterate over the value of Id.
  • the value of Iq, step is now reduced to its half, and nid is set to nid, max.
  • a loop now begins over the values of Id, this loop being performed as long as the conditions nid> 0 and breakid are equal to zero.
  • the iteration counter nid is now counted down by one.
  • Increment Id step is reduced to half of its current value.
  • a decision 28 it is checked whether the square of the total current, Iges, is greater than Imax2. If this is the case, the current values of Iq and Id do not correspond to a valid solution. The method then branches to a block 32 in which the current value of Id is reduced by the value Id, step.
  • Urd Id * Rs: Voltage drop at the resistor in d-axis
  • Urq Iq * Rs: Voltage drop at the resistor in q-axis
  • the gradient degree formed in this way indicates the change of the necessary phase voltage. If, for example, the gradient is positive, this means that an increase in the magnitude of the current Id (eg from 60 A to 65 A) produces a reduction of the necessary voltage.
  • the flags simvalid and idvalid are set to the value 1 there, and Id, min is assigned the current value of Id. This value corresponds to the currently best solution for the current Id.
  • the method is continued in a decision 58. There, the simultaneous existence of the conditions Brake is equal to 1, ws * Msoll ⁇ 0, and Ibat, test ⁇ Ibat, min, limit checked. If all three conditions are present, the method branches to a block 62 in which the current value of Id is increased by the value Id, Step. In a subsequent decision 66 it is checked whether the value of Id is smaller than the value of -Imax. If this is the case, in a block 70 the value of Id is set to the value of -Imax. If the three above-mentioned conditions are not present, the method branches to a block 74, in which Id is reduced by the value of Id, Step.
  • a decision 86 it is checked whether the flag idvalid has the value 1. If this is not the case, no valid value for Id was found in the current iteration. The method in this case branches to a block 90 in which the value of Iq is reduced by the value of Iq, step. In a subsequent decision 94 it is checked whether the sign of the product of Iq and Iq, step is negative. If this is the case, breakiq is set to the value one in a block 98.
  • the About ⁇ test in decision 102 can for example be performed such that the above three conditions are linked with a logical OR and any resulting expression is evaluated to determine whether he - in the boolean sense - "true” or "false". If the evaluation of the expression "true" results, the value of Iq is reduced by the value Iq, step in a block 106. Otherwise, in a block 110, the value of Iq is increased by the value Iq, step Decision 114 checks whether abs (Iq)> abs (Iq, soll), ie whether the value of Iq is greater than its setpoint If this is the case, breakiq is set to the value one in a block 120.
  • breakiq is set to the value one in a block 128.
  • the process steps performed in a final block 134 are performed after the two iterations over Iq and Id. The iterations were either terminated because the maximum number of iterations was reached, or because the breakiq or breakid flags were set to one, which is a non-zero value.
  • the currents Iq, Id can now be used in the motor drive to set the desired optimized operating point of the motor.
  • the described method is advantageously carried out whenever a new request for a desired torque occurs.
  • Id, minimum is not calculated to calculate Id, Step, and Id. Rather, Id, Step are assigned the value -Imax and Id the value Id, Step * 0.5.
  • the mechanical power Pmech in block 48 is now calculated according to

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

L'invention concerne un procédé pour faire fonctionner une machine synchrone à excitation permanente, dans lequel un courant générateur de couple (Iq) et un courant atténuateur de champ magnétique (Id) sont régulés dans un système de coordonnées solidaire du rotor. Le problème à résoudre était de permettre une régulation exacte et précise même en présence de phénomènes rapides et dynamiques. Pour cela, selon l'invention, on détermine pour un besoin de couple prédéfini un point de fonctionnement de la machine synchrone associé à une valeur du courant générateur de couple (Iq), point auquel le courant atténuateur de champ magnétique (Id) à une valeur la plus faible possible.
PCT/EP2014/073675 2013-11-06 2014-11-04 Procédé et dispositif pour faire fonctionner une machine synchrone à excitation permanente WO2015067593A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201310222539 DE102013222539A1 (de) 2013-11-06 2013-11-06 Verfahren und Vorrichtung zum Betreiben einer permanent-angeregten Synchronmaschine
DE102013222539.3 2013-11-06

Publications (1)

Publication Number Publication Date
WO2015067593A1 true WO2015067593A1 (fr) 2015-05-14

Family

ID=51846674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/073675 WO2015067593A1 (fr) 2013-11-06 2014-11-04 Procédé et dispositif pour faire fonctionner une machine synchrone à excitation permanente

Country Status (2)

Country Link
DE (1) DE102013222539A1 (fr)
WO (1) WO2015067593A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111183582A (zh) * 2017-10-06 2020-05-19 大陆-特韦斯贸易合伙股份公司及两合公司 用于运行永磁同步电机的方法和电机总成
CN112532135A (zh) * 2019-09-04 2021-03-19 大众汽车股份公司 用于确定电流理论值的方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0638457A2 (fr) * 1993-08-10 1995-02-15 Toyota Jidosha Kabushiki Kaisha Méthode et appareil pour l'entraînement et contrôle d'un moteur synchrone utilisant des aimants permanents comme système d'excitation
EP0840441A1 (fr) * 1996-11-04 1998-05-06 Siemens Aktiengesellschaft Régulation à orientation de champ en limite de tension pour une machine à champ tournant
DE10206191A1 (de) * 2001-11-27 2003-06-12 Siemens Ag Verfahren zur feldorientierten Regelung einer permanenterregten Synchronmaschine mit Reluktanzmoment
US20110264330A1 (en) * 2010-04-26 2011-10-27 Mitsubishi Electric Corporation Electric power steering apparatus
US20120081060A1 (en) * 2010-09-30 2012-04-05 Aisin Aw Co., Ltd. Control apparatus for driving apparatus
DE102012205371A1 (de) * 2012-04-02 2013-10-02 Zf Friedrichshafen Ag Reglerstruktur und Verfahren zur feldorientierten Regelung einer Drehfeldmaschine bei Feldschwächung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008059708B8 (de) * 2008-11-29 2010-09-30 Lenze Automation Gmbh Regelung einer permanentmagneterregten synchronen Drehfeldmaschine
DE102010021865B4 (de) * 2010-05-28 2024-03-21 Sew-Eurodrive Gmbh & Co Kg Verfahren zum Regeln oder Abbremsen einer Synchronmaschine und eine umrichtergespeiste Synchronmaschine
DE102010043492A1 (de) * 2010-11-05 2012-05-10 Continental Automotive Gmbh Verfahren und Vorrichtung zur Regelung fremderregter Synchronmaschinen
DE102012205369A1 (de) * 2012-04-02 2013-10-02 Zf Friedrichshafen Ag Verfahren zum Betrieb einer Permanentmagnet-Synchronmaschine bei feldorientierter Regelung im Feldschwächebetrieb

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0638457A2 (fr) * 1993-08-10 1995-02-15 Toyota Jidosha Kabushiki Kaisha Méthode et appareil pour l'entraînement et contrôle d'un moteur synchrone utilisant des aimants permanents comme système d'excitation
EP0840441A1 (fr) * 1996-11-04 1998-05-06 Siemens Aktiengesellschaft Régulation à orientation de champ en limite de tension pour une machine à champ tournant
DE10206191A1 (de) * 2001-11-27 2003-06-12 Siemens Ag Verfahren zur feldorientierten Regelung einer permanenterregten Synchronmaschine mit Reluktanzmoment
US20110264330A1 (en) * 2010-04-26 2011-10-27 Mitsubishi Electric Corporation Electric power steering apparatus
US20120081060A1 (en) * 2010-09-30 2012-04-05 Aisin Aw Co., Ltd. Control apparatus for driving apparatus
DE102012205371A1 (de) * 2012-04-02 2013-10-02 Zf Friedrichshafen Ag Reglerstruktur und Verfahren zur feldorientierten Regelung einer Drehfeldmaschine bei Feldschwächung

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111183582A (zh) * 2017-10-06 2020-05-19 大陆-特韦斯贸易合伙股份公司及两合公司 用于运行永磁同步电机的方法和电机总成
CN111183582B (zh) * 2017-10-06 2023-08-18 大陆汽车科技有限公司 用于运行永磁同步电机的方法和电机总成
CN112532135A (zh) * 2019-09-04 2021-03-19 大众汽车股份公司 用于确定电流理论值的方法和装置

Also Published As

Publication number Publication date
DE102013222539A1 (de) 2015-05-07

Similar Documents

Publication Publication Date Title
DE102020205292A1 (de) Eine Elektromotorvorrichtung
DE112011100096T5 (de) Steuerungsvorrichtung einer Motorantriebsvorrichtung
DE102013004589A1 (de) Regelvorrichtung für einen Synchronmotor
DE102016203262A1 (de) Verfahren zur iterativen Ermittlung eines d- und q-Stromes zum Betreiben einer Synchronmaschine, Verfahren zum Betreiben einer Synchronmaschine und Steuergerät
DE102013222075A1 (de) Vorrichtung und Verfahren zum Initialisieren eines Regelkreises für einen Strom zum Betrieb einer Synchronmaschine
DE102013212103A1 (de) Verfahren, systeme und geräte für das einstellen von strom- und/oder drehmomentbefehlen, welche benutzt werden, um den betrieb einer asynchronmaschine zu steuern
WO2015067593A1 (fr) Procédé et dispositif pour faire fonctionner une machine synchrone à excitation permanente
DE102011118480A1 (de) System zum Betreiben einer wechselrichtergespeisten elektrischen Drehfeldmaschine
DE10153332B4 (de) Verfahren zur Steuerung einer Klauenpol-Synchronmaschine
DE102008007100A1 (de) Verfahren und Vorrichtung zur Stromregelung oder Momentenregelung
DE102015002196B4 (de) Motorsteuerung für einen Synchronmotor
DE19928481B4 (de) Verfahren zur vereinfachten feldorientierten Regelung von Asynchronmaschinen
EP1746717A2 (fr) Procédé d'estimation de la vitesse d'une machine asynchrone sans capteur
DE102012018819A1 (de) Verfahren zum Betreiben eines Umrichters zur Speisung einer Elektromaschine und Elektromaschine
AT522279B1 (de) Verfahren zum Betreiben einer Antriebsvorrichtung, Computerprogrammprodukt, Antriebsvorrichtung sowie Kraftfahrzeug
EP3676952B1 (fr) Procédé de réglage orienté dans le champ d'une machine synchrone à excitation permanente à moment de réluctance et régulateur comprenant celui-ci procédé
DE102013207727A1 (de) Verfahren zur Ansteuerung eines bürstenlosen Motors
EP3292628B1 (fr) Procédé de mise en marche d'une machine électrique polyphasée dans un véhicule automobile
DE102013221939A1 (de) Verfahren und Vorrichtung zum Betreiben eines elektronisch kommutierten Stellantriebs
DE102012223227A1 (de) Verfahren, Systeme und Geräte für das Erzeugen von Spannungsbefehlen, welche benutzt werden, um den Betrieb einer Permanentmagnet-Maschine zu steuern
EP3685503B1 (fr) Procédé de détermination d'un couple maximal réglable d'une machine électrique
DE102021213676A1 (de) Verfahren zum Steuern eines Elektromotors und Steuerungsvorrichtung
DE102021201901A1 (de) Verfahren zum Betreiben einer elektrischen Maschine, Vorrichtung zum Betreiben einer elektrischen Maschine, elektrische Maschine
DE102016200665A1 (de) Vorrichtung und Verfahren zum Steuern einer elektrischen Maschine
DE102014220516A1 (de) Verfahren und Vorrichtung zum Betreiben einer elektrischen Maschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14793136

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14793136

Country of ref document: EP

Kind code of ref document: A1