WO2015067593A1 - Procédé et dispositif pour faire fonctionner une machine synchrone à excitation permanente - Google Patents
Procédé et dispositif pour faire fonctionner une machine synchrone à excitation permanente Download PDFInfo
- Publication number
- WO2015067593A1 WO2015067593A1 PCT/EP2014/073675 EP2014073675W WO2015067593A1 WO 2015067593 A1 WO2015067593 A1 WO 2015067593A1 EP 2014073675 W EP2014073675 W EP 2014073675W WO 2015067593 A1 WO2015067593 A1 WO 2015067593A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- value
- current
- magnetic field
- torque
- field weakening
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 18
- 230000003313 weakening effect Effects 0.000 claims description 25
- 238000012360 testing method Methods 0.000 claims description 12
- 238000004364 calculation method Methods 0.000 claims description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- 230000008859 change Effects 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 239000010949 copper Substances 0.000 claims description 5
- 230000001771 impaired effect Effects 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 3
- 230000001105 regulatory effect Effects 0.000 abstract description 3
- 239000013598 vector Substances 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 3
- 101150066718 FMOD gene Proteins 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 101100129500 Caenorhabditis elegans max-2 gene Proteins 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- VZUGBLTVBZJZOE-KRWDZBQOSA-N n-[3-[(4s)-2-amino-1,4-dimethyl-6-oxo-5h-pyrimidin-4-yl]phenyl]-5-chloropyrimidine-2-carboxamide Chemical compound N1=C(N)N(C)C(=O)C[C@@]1(C)C1=CC=CC(NC(=O)C=2N=CC(Cl)=CN=2)=C1 VZUGBLTVBZJZOE-KRWDZBQOSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/0085—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed
- H02P21/0089—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed using field weakening
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/22—Current control, e.g. using a current control loop
Definitions
- the invention relates to a method for operating a permanent-magnet synchronous machine in which a torque-forming current and a magnetic field weakening current are regulated in a rotor-fixed coordinate system. It also relates to a corresponding device.
- Phasor diagram of the synchronous machine generates the induced voltage or the electromotive force (EMF)
- the proportion of the magnetic field weakening current Id is determined via a regulator which uses as input the current amplitude of the terminal voltage, which results as the square root of the sum of the squares of the voltages Ud and Uq, ie as (Ud2 + Uq2) l / 2, and the available DC voltage or voltage is used.
- a regulator operating in this manner is referred to as field weakening regulator and is known in the art.
- the disadvantage of such a control of the synchronous machine is that with very fast, dynamic
- the abovementioned object is achieved according to the invention in that, for a given torque request, an operating point of the synchronous machine is determined with an associated value of the torque-forming current in which the current weakening the magnetic field has the lowest possible value.
- the invention is based on the consideration that a deposit of current quantities, in particular of Id and Iq, which are valid in a rotor-fixed coordinate system, in the form of characteristic curves or tables only insufficiently takes into account the current operating conditions. In order to cover as many operating conditions as possible, a large number of tables to be created in advance would be necessary, which is only rarely feasible in rare cases.
- the value of the magnetic field weakening current is determined iteratively.
- the value of the torque-forming current is determined iteratively. This allows in each case a gradual improvement of the determined solution. By choosing the maximum number of iterations, higher accuracy can be set at the expense of speed.
- determined values for the torque-generating and the magnetic-field-weakening current are calculated as a resulting electrical power, with the aid of this power and the available battery voltage a required current is calculated, and wherein the value for the magnetic field weakening current is latched as a valid value when the required current is within predetermined limits.
- internal mechanical power and copper losses are preferably taken into account.
- the step size for the iterative determination of the magnet ⁇ field-weakening current depends advantageously from the difference between a minimum possible and a maximum possible value for the magnetic-field-weakening current.
- the maximum number of iterations for the calculation of the magnetic field weakening current is preferably between 2 and 20, in particular at 10.
- the above-mentioned object is achieved according to the invention with at least one software and / or hardware implemented module for performing a method according to one of the above claims.
- the inventive apparatus is preferably used in a motor vehicle, where in particular in a brake ⁇ system, more preferably in a brake system of the 'brake-by-wire ". It can be used both in synchronous machines in linear actuators in an electro-mechanical Brake press a brake pad against a brake disc, as well as with linear actuators in integrated
- Braking systems that move in a pressure supply device a plunger in a hydraulic pressure chamber, wherein active pressure can be built in at least one brake circuit.
- the invention comprises a brake system for a motor vehicle with at least one electromechanical brake, which comprises a linear actuator, in particular comprising an electric motor and a downstream rotational-translation gear, preferably a ball screw, and a device described above. It also includes a braking system for a linear actuator, in particular comprising an electric motor and a downstream rotational-translation gear, preferably a ball screw, and a device described above. It also includes a braking system for a linear actuator, in particular comprising an electric motor and a downstream rotational-translation gear, preferably a ball screw, and a device described above. It also includes a braking system for a linear actuator, in particular comprising an electric motor and a downstream rotational-translation gear, preferably a ball screw, and a device described above. It also includes a braking system for a linear actuator, in particular comprising an electric motor and a downstream rotational-translation gear, preferably a ball screw, and a device described above. It also includes a braking system for a
- the sole figure shows a structogram for a method for operating a permanent-magnet synchronous machine in a preferred embodiment.
- a combination of the torque-forming current Iq and the magnetic-field-weakening current Id is iteratively searched to a predetermined desired torque or torque command Msoll corresponding to a lowest possible magnetic field ⁇ debilitating value of Id.
- the method is preferably implemented as a computer program and runs on a motor ⁇ control unit or a control unit (ECU).
- the method uses the following input parameters which characterize the electrical machine, and the concrete implementation of the driving Ver ⁇ :
- Kt, inv, fak reciprocal of the temperature-dependent torque constant for the setpoint current calculation
- Ibat, min minimum battery current (eg for feeding back into the electrical system, for example -20 A)
- Ibat, max maximum battery current (at power consumption, eg 60 A)
- Imax Inverter current limit in Arms (RMS current)
- Brake Flag for increased copper losses in braking mode, which reduces the return power to the battery
- the torque command Msoll is important for determining the operating point.
- Id, hold 0: after completion of the iterations, this value is assigned the iteratively determined value for Id;
- Ub Ubat * 0.40824829 * Ubat, fak: equals the maximum available voltage (in [volts]) multiplied by a utilization factor.
- Ub Ubat / 2/3 * fmod, where fmod a Exploitation ⁇ or modification factor. Division by 3 is used to convert phase-to-phase voltage to phase, and division by 2 is used to convert to an RMS value.
- the modulation factor takes into account that the available DC link voltage of z. B. 12 V by means of a
- Pulse width modulation with a duty cycle of z. B. 5% to 95% can be applied to a motor phase. This corresponds to a degree of modulation of 90%.
- the causes lie in the power electronics.
- nid nid, max: number of iteration steps to determine Id
- Uemk ws * Psim * p: corresponds to the induced voltage in Vrms; Vrms here corresponds to the effective value of the induced voltage in a motor phase with respect to the neutral point
- Iq Iq, shall * 0.5: The value of Iq is set to half of the maximum value of Iq
- breakiq 0: Flag if the iteration should be aborted via Iq
- a first iteration loop is started via the current Iq, which is carried out as long as the conditions nlq> 0 and breakiq are equal to zero.
- the current iteration number nlq is counted down by one.
- an efficiency optimal value Id, minimum for Id calculated according to - (Iq2) * Id, minimal, fak.
- a variable idvalid is set to zero, indicating whether a valid Id value was found. Furthermore, a flag breakid is set to zero, which indicates whether it should continue to iterate over the value of Id.
- the value of Iq, step is now reduced to its half, and nid is set to nid, max.
- a loop now begins over the values of Id, this loop being performed as long as the conditions nid> 0 and breakid are equal to zero.
- the iteration counter nid is now counted down by one.
- Increment Id step is reduced to half of its current value.
- a decision 28 it is checked whether the square of the total current, Iges, is greater than Imax2. If this is the case, the current values of Iq and Id do not correspond to a valid solution. The method then branches to a block 32 in which the current value of Id is reduced by the value Id, step.
- Urd Id * Rs: Voltage drop at the resistor in d-axis
- Urq Iq * Rs: Voltage drop at the resistor in q-axis
- the gradient degree formed in this way indicates the change of the necessary phase voltage. If, for example, the gradient is positive, this means that an increase in the magnitude of the current Id (eg from 60 A to 65 A) produces a reduction of the necessary voltage.
- the flags simvalid and idvalid are set to the value 1 there, and Id, min is assigned the current value of Id. This value corresponds to the currently best solution for the current Id.
- the method is continued in a decision 58. There, the simultaneous existence of the conditions Brake is equal to 1, ws * Msoll ⁇ 0, and Ibat, test ⁇ Ibat, min, limit checked. If all three conditions are present, the method branches to a block 62 in which the current value of Id is increased by the value Id, Step. In a subsequent decision 66 it is checked whether the value of Id is smaller than the value of -Imax. If this is the case, in a block 70 the value of Id is set to the value of -Imax. If the three above-mentioned conditions are not present, the method branches to a block 74, in which Id is reduced by the value of Id, Step.
- a decision 86 it is checked whether the flag idvalid has the value 1. If this is not the case, no valid value for Id was found in the current iteration. The method in this case branches to a block 90 in which the value of Iq is reduced by the value of Iq, step. In a subsequent decision 94 it is checked whether the sign of the product of Iq and Iq, step is negative. If this is the case, breakiq is set to the value one in a block 98.
- the About ⁇ test in decision 102 can for example be performed such that the above three conditions are linked with a logical OR and any resulting expression is evaluated to determine whether he - in the boolean sense - "true” or "false". If the evaluation of the expression "true" results, the value of Iq is reduced by the value Iq, step in a block 106. Otherwise, in a block 110, the value of Iq is increased by the value Iq, step Decision 114 checks whether abs (Iq)> abs (Iq, soll), ie whether the value of Iq is greater than its setpoint If this is the case, breakiq is set to the value one in a block 120.
- breakiq is set to the value one in a block 128.
- the process steps performed in a final block 134 are performed after the two iterations over Iq and Id. The iterations were either terminated because the maximum number of iterations was reached, or because the breakiq or breakid flags were set to one, which is a non-zero value.
- the currents Iq, Id can now be used in the motor drive to set the desired optimized operating point of the motor.
- the described method is advantageously carried out whenever a new request for a desired torque occurs.
- Id, minimum is not calculated to calculate Id, Step, and Id. Rather, Id, Step are assigned the value -Imax and Id the value Id, Step * 0.5.
- the mechanical power Pmech in block 48 is now calculated according to
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
L'invention concerne un procédé pour faire fonctionner une machine synchrone à excitation permanente, dans lequel un courant générateur de couple (Iq) et un courant atténuateur de champ magnétique (Id) sont régulés dans un système de coordonnées solidaire du rotor. Le problème à résoudre était de permettre une régulation exacte et précise même en présence de phénomènes rapides et dynamiques. Pour cela, selon l'invention, on détermine pour un besoin de couple prédéfini un point de fonctionnement de la machine synchrone associé à une valeur du courant générateur de couple (Iq), point auquel le courant atténuateur de champ magnétique (Id) à une valeur la plus faible possible.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE201310222539 DE102013222539A1 (de) | 2013-11-06 | 2013-11-06 | Verfahren und Vorrichtung zum Betreiben einer permanent-angeregten Synchronmaschine |
DE102013222539.3 | 2013-11-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015067593A1 true WO2015067593A1 (fr) | 2015-05-14 |
Family
ID=51846674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2014/073675 WO2015067593A1 (fr) | 2013-11-06 | 2014-11-04 | Procédé et dispositif pour faire fonctionner une machine synchrone à excitation permanente |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102013222539A1 (fr) |
WO (1) | WO2015067593A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111183582A (zh) * | 2017-10-06 | 2020-05-19 | 大陆-特韦斯贸易合伙股份公司及两合公司 | 用于运行永磁同步电机的方法和电机总成 |
CN112532135A (zh) * | 2019-09-04 | 2021-03-19 | 大众汽车股份公司 | 用于确定电流理论值的方法和装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0638457A2 (fr) * | 1993-08-10 | 1995-02-15 | Toyota Jidosha Kabushiki Kaisha | Méthode et appareil pour l'entraînement et contrôle d'un moteur synchrone utilisant des aimants permanents comme système d'excitation |
EP0840441A1 (fr) * | 1996-11-04 | 1998-05-06 | Siemens Aktiengesellschaft | Régulation à orientation de champ en limite de tension pour une machine à champ tournant |
DE10206191A1 (de) * | 2001-11-27 | 2003-06-12 | Siemens Ag | Verfahren zur feldorientierten Regelung einer permanenterregten Synchronmaschine mit Reluktanzmoment |
US20110264330A1 (en) * | 2010-04-26 | 2011-10-27 | Mitsubishi Electric Corporation | Electric power steering apparatus |
US20120081060A1 (en) * | 2010-09-30 | 2012-04-05 | Aisin Aw Co., Ltd. | Control apparatus for driving apparatus |
DE102012205371A1 (de) * | 2012-04-02 | 2013-10-02 | Zf Friedrichshafen Ag | Reglerstruktur und Verfahren zur feldorientierten Regelung einer Drehfeldmaschine bei Feldschwächung |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008059708B8 (de) * | 2008-11-29 | 2010-09-30 | Lenze Automation Gmbh | Regelung einer permanentmagneterregten synchronen Drehfeldmaschine |
DE102010021865B4 (de) * | 2010-05-28 | 2024-03-21 | Sew-Eurodrive Gmbh & Co Kg | Verfahren zum Regeln oder Abbremsen einer Synchronmaschine und eine umrichtergespeiste Synchronmaschine |
DE102010043492A1 (de) * | 2010-11-05 | 2012-05-10 | Continental Automotive Gmbh | Verfahren und Vorrichtung zur Regelung fremderregter Synchronmaschinen |
DE102012205369A1 (de) * | 2012-04-02 | 2013-10-02 | Zf Friedrichshafen Ag | Verfahren zum Betrieb einer Permanentmagnet-Synchronmaschine bei feldorientierter Regelung im Feldschwächebetrieb |
-
2013
- 2013-11-06 DE DE201310222539 patent/DE102013222539A1/de not_active Ceased
-
2014
- 2014-11-04 WO PCT/EP2014/073675 patent/WO2015067593A1/fr active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0638457A2 (fr) * | 1993-08-10 | 1995-02-15 | Toyota Jidosha Kabushiki Kaisha | Méthode et appareil pour l'entraînement et contrôle d'un moteur synchrone utilisant des aimants permanents comme système d'excitation |
EP0840441A1 (fr) * | 1996-11-04 | 1998-05-06 | Siemens Aktiengesellschaft | Régulation à orientation de champ en limite de tension pour une machine à champ tournant |
DE10206191A1 (de) * | 2001-11-27 | 2003-06-12 | Siemens Ag | Verfahren zur feldorientierten Regelung einer permanenterregten Synchronmaschine mit Reluktanzmoment |
US20110264330A1 (en) * | 2010-04-26 | 2011-10-27 | Mitsubishi Electric Corporation | Electric power steering apparatus |
US20120081060A1 (en) * | 2010-09-30 | 2012-04-05 | Aisin Aw Co., Ltd. | Control apparatus for driving apparatus |
DE102012205371A1 (de) * | 2012-04-02 | 2013-10-02 | Zf Friedrichshafen Ag | Reglerstruktur und Verfahren zur feldorientierten Regelung einer Drehfeldmaschine bei Feldschwächung |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111183582A (zh) * | 2017-10-06 | 2020-05-19 | 大陆-特韦斯贸易合伙股份公司及两合公司 | 用于运行永磁同步电机的方法和电机总成 |
CN111183582B (zh) * | 2017-10-06 | 2023-08-18 | 大陆汽车科技有限公司 | 用于运行永磁同步电机的方法和电机总成 |
CN112532135A (zh) * | 2019-09-04 | 2021-03-19 | 大众汽车股份公司 | 用于确定电流理论值的方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
DE102013222539A1 (de) | 2015-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102020205292A1 (de) | Eine Elektromotorvorrichtung | |
DE112011100096T5 (de) | Steuerungsvorrichtung einer Motorantriebsvorrichtung | |
DE102013004589A1 (de) | Regelvorrichtung für einen Synchronmotor | |
DE102016203262A1 (de) | Verfahren zur iterativen Ermittlung eines d- und q-Stromes zum Betreiben einer Synchronmaschine, Verfahren zum Betreiben einer Synchronmaschine und Steuergerät | |
DE102013222075A1 (de) | Vorrichtung und Verfahren zum Initialisieren eines Regelkreises für einen Strom zum Betrieb einer Synchronmaschine | |
DE102013212103A1 (de) | Verfahren, systeme und geräte für das einstellen von strom- und/oder drehmomentbefehlen, welche benutzt werden, um den betrieb einer asynchronmaschine zu steuern | |
WO2015067593A1 (fr) | Procédé et dispositif pour faire fonctionner une machine synchrone à excitation permanente | |
DE102011118480A1 (de) | System zum Betreiben einer wechselrichtergespeisten elektrischen Drehfeldmaschine | |
DE10153332B4 (de) | Verfahren zur Steuerung einer Klauenpol-Synchronmaschine | |
DE102008007100A1 (de) | Verfahren und Vorrichtung zur Stromregelung oder Momentenregelung | |
DE102015002196B4 (de) | Motorsteuerung für einen Synchronmotor | |
DE19928481B4 (de) | Verfahren zur vereinfachten feldorientierten Regelung von Asynchronmaschinen | |
EP1746717A2 (fr) | Procédé d'estimation de la vitesse d'une machine asynchrone sans capteur | |
DE102012018819A1 (de) | Verfahren zum Betreiben eines Umrichters zur Speisung einer Elektromaschine und Elektromaschine | |
AT522279B1 (de) | Verfahren zum Betreiben einer Antriebsvorrichtung, Computerprogrammprodukt, Antriebsvorrichtung sowie Kraftfahrzeug | |
EP3676952B1 (fr) | Procédé de réglage orienté dans le champ d'une machine synchrone à excitation permanente à moment de réluctance et régulateur comprenant celui-ci procédé | |
DE102013207727A1 (de) | Verfahren zur Ansteuerung eines bürstenlosen Motors | |
EP3292628B1 (fr) | Procédé de mise en marche d'une machine électrique polyphasée dans un véhicule automobile | |
DE102013221939A1 (de) | Verfahren und Vorrichtung zum Betreiben eines elektronisch kommutierten Stellantriebs | |
DE102012223227A1 (de) | Verfahren, Systeme und Geräte für das Erzeugen von Spannungsbefehlen, welche benutzt werden, um den Betrieb einer Permanentmagnet-Maschine zu steuern | |
EP3685503B1 (fr) | Procédé de détermination d'un couple maximal réglable d'une machine électrique | |
DE102021213676A1 (de) | Verfahren zum Steuern eines Elektromotors und Steuerungsvorrichtung | |
DE102021201901A1 (de) | Verfahren zum Betreiben einer elektrischen Maschine, Vorrichtung zum Betreiben einer elektrischen Maschine, elektrische Maschine | |
DE102016200665A1 (de) | Vorrichtung und Verfahren zum Steuern einer elektrischen Maschine | |
DE102014220516A1 (de) | Verfahren und Vorrichtung zum Betreiben einer elektrischen Maschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14793136 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14793136 Country of ref document: EP Kind code of ref document: A1 |