[go: up one dir, main page]

WO2015060402A1 - Production method for trifluoromethanesulfonanilide compound - Google Patents

Production method for trifluoromethanesulfonanilide compound Download PDF

Info

Publication number
WO2015060402A1
WO2015060402A1 PCT/JP2014/078254 JP2014078254W WO2015060402A1 WO 2015060402 A1 WO2015060402 A1 WO 2015060402A1 JP 2014078254 W JP2014078254 W JP 2014078254W WO 2015060402 A1 WO2015060402 A1 WO 2015060402A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
alkylcarbonyl
formula
alkoxy
hydrogen atom
Prior art date
Application number
PCT/JP2014/078254
Other languages
French (fr)
Japanese (ja)
Inventor
義之 楠岡
明星 知宏
知明 井尾
中村 大輔
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2015543914A priority Critical patent/JP6512104B2/en
Publication of WO2015060402A1 publication Critical patent/WO2015060402A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/36Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of amides of sulfonic acids
    • C07C303/40Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of amides of sulfonic acids by reactions not involving the formation of sulfonamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C313/00Sulfinic acids; Sulfenic acids; Halides, esters or anhydrides thereof; Amides of sulfinic or sulfenic acids, i.e. compounds having singly-bound oxygen atoms of sulfinic or sulfenic groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C313/02Sulfinic acids; Derivatives thereof
    • C07C313/06Sulfinamides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D205/00Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom
    • C07D205/02Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings
    • C07D205/06Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D205/08Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with one oxygen atom directly attached in position 2, e.g. beta-lactams
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/18Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D207/22Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/24Oxygen or sulfur atoms
    • C07D207/262-Pyrrolidones
    • C07D207/2632-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms
    • C07D207/272-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms with substituted hydrocarbon radicals directly attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/68Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D211/72Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D211/74Oxygen atoms
    • C07D211/76Oxygen atoms attached in position 2 or 6

Definitions

  • the present invention relates to a method for producing a trifluoromethanesulfonanilide compound useful as an intermediate for producing pharmaceuticals and agricultural chemicals, a trifluoromethanesulfine anilide compound useful as an intermediate thereof, and a method for producing the same.
  • trifluoromethanesulfonanilide compounds are known to have herbicidal activity (see, for example, Patent Documents 1 and 2), and some methods for producing trifluoromethanesulfonanilide are also known (for example, patents). Reference 1-7). On the other hand, some methods for producing a trifluoromethanesulfinanilide compound are also known (see, for example, Patent Document 3, Non-Patent Documents 1 and 2).
  • Patent Documents 1, 2, 5, 6 and 7 disclose production methods using a trifluoromethanesulfonylating agent.
  • an expensive trifluoromethanesulfonic acid anhydride, trifluoromethane is disclosed.
  • Only a production method using sulfonyl chloride, trifluoromethanesulfonyl fluoride or the like as a trifluoromethanesulfonylating agent is disclosed.
  • Patent Document 3 describes that magnesium monoperoxyphthalate or m-chloroperbenzoic acid is used as an oxidizing agent to produce a corresponding trifluoromethanesulfonanilide compound from a certain trifluoromethanesulfinanilide compound.
  • the trifluoromethanesulfinanilide compound according to the present invention is not limited.
  • the inventor of the present invention industrially relates to a trifluoromethanesulfonilide compound which is advantageous as an industrial production intermediate of a trifluoromethanesulfonanilide compound, a method for producing the compound, and a trifluoromethanesulfonanilide compound. I found a useful production method.
  • the inventors have found a method for synthesizing an N-benzyl lactam compound by reacting a benzyl halide compound and a lactam compound, which are available as industrial raw materials, in the presence of a base that is easy to handle.
  • the inventors have found a method of synthesizing an N-benzyl lactam compound by subjecting a benzyl halide compound and an amide compound to a condensation reaction under the same conditions, followed by an intramolecular cyclization reaction, thereby completing the present invention.
  • the gist of the present invention is the following [1] to [30].
  • A represents —CH ⁇ CH—
  • R 1 represents a hydrogen atom or C 1 -C 6 alkoxycarbonyl
  • Q 1 and Q 2 are each independently a hydrogen atom, C 1 -C 12 alkyl, halo (C 1 -C 12 ) alkyl, C 1 -C 12 alkylcarbonyl, halo (C 1 -C 12 ) alkylcarbonyl
  • A represents —CH ⁇ CH— or a sulfur atom
  • R 1 represents a hydrogen atom or C 1 -C 12 alkoxycarbonyl
  • Q represents CH 2 OR 2 , C ( ⁇ O) OR 2 , cyano, or CH 2 N (Q 1 ) Q 2
  • R 2 represents a hydrogen atom or C 1 -C 6 alkyl
  • Q 1 and Q 2 are each independently a hydrogen atom, C 1 -C 12 alkyl, C 1 -C 12 alkoxy, halo (C 1 -C 12 ) alkyl, halo (C 1 -C 12 ) alkoxy, C 3 -C 8 cycloalkyl, C 1 -C 12 alkylcarbonyl, C 1 -C 12 alkoxycarbonyl, halo (C 1 -C 12 ) alkylcarbonyl, halo (C 1 -C 12 ) alkoxycarbonyl, C 3 -C 8 cyclo Alky
  • A represents —CH ⁇ CH—
  • R 1 represents a hydrogen atom or C 1 -C 6 alkoxycarbonyl
  • Q 1 and Q 2 are each independently a hydrogen atom, C 1 -C 12 alkyl, halo (C 1 -C 12 ) alkyl, C 1 -C 12 alkylcarbonyl, halo (C 1 -C 12 ) alkylcarbonyl
  • A represents —CH ⁇ CH— or a sulfur atom
  • R 1 represents a hydrogen atom or C 1 -C 12 alkoxycarbonyl
  • Q represents CH 2 OR 2 , C ( ⁇ O) OR 2 , cyano, or CH 2 N (Q 1 ) Q 2
  • R 2 represents a hydrogen atom or C 1 -C 6 alkyl
  • Q 1 and Q 2 are each independently a hydrogen atom, C 1 -C 12 alkyl, C 1 -C 12 alkoxy, halo (C 1 -C 12 ) alkyl, halo (C 1 -C 12 ) alkoxy, C 3 -C 8 cycloalkyl, C 1 -C 12 alkylcarbonyl, C 1 -C 12 alkoxycarbonyl, halo (C 1 -C 12 ) alkylcarbonyl, halo (C 1 -C 12 ) alkoxycarbonyl, C 3 -C 8 cyclo Alky
  • A represents —CH ⁇ CH—
  • R 1 represents a hydrogen atom or C 1 -C 6 alkoxycarbonyl
  • Q 1 and Q 2 are each a hydrogen atom, C 1 -C 12 alkyl, halo (C 1 -C 12 ) alkyl, C 1 -C 12 alkylcarbonyl, halo (C 1 -C 12 ) alkylcarbonyl, phenyl,
  • Y The trifluoromethanesulfinanilide compound or a salt thereof according to the above [13], which represents phenyl substituted by n , phenylcarbonyl, or phenylcarbonyl substituted by (Y) m .
  • R 1 represents a hydrogen atom or C 1 -C 6 alkoxycarbonyl
  • Q 1 and Q 2 are each independently halo (C 1 -C 12 ) alkylcarbonyl, halo (C 1 -C 12 ) alkoxycarbonyl, C 1 -C 6 alkoxy (C 1 -C 6 ) alkylcarbonyl, C It represents a 1 ⁇ C 6 alkylthio (C 1 ⁇ C 6) alkylcarbonyl, C 1 ⁇ C 6 alkylsulfinyl (C 1 ⁇ C 6) alkylcarbonyl or C 1 ⁇ C 6 alkylsulfonyl (C 1 ⁇ C 6) alkylcarbonyl ]
  • the trifluoromethanesulfonamide compound represented by these, or its salt.
  • Formula (8) [In the formula, A represents —CH ⁇ CH— or a sulfur atom, X 1 represents a halogen atom, methanesulfonyloxy, trifluoromethanesulfonyloxy or p-toluenesulfonyloxy, Y represents —NO 2 , —NH 2 , —NHCO 2 R 1 , —NHSOR 1 or —NHSO 2 R 1 ; R 1 represents C 1 -C 6 haloalkyl or C 1 -C 6 alkyl.
  • lactam compound represented by the formula (10) is reacted in the presence of a base: [Wherein, A, Y, R 1 , R 2 , R 3 , R 4 , R 5 and n represent the same meaning as described above. ] The manufacturing method of the N-benzyl lactam compound represented by this.
  • Formula (8) [In the formula, A represents —CH ⁇ CH— or a sulfur atom, X 1 represents a halogen atom, methanesulfonyloxy, trifluoromethanesulfonyloxy or p-toluenesulfonyloxy, Y represents —NO 2 , —NH 2 , —NHCO 2 R 1 , —NHSOR 1 or —NHSO 2 R 1 ; R 1 represents C 1 -C 6 haloalkyl or C 1 -C 6 alkyl.
  • A represents —CH ⁇ CH— or a sulfur atom
  • Y represents —NO 2 , —NH 2 , —NHCO 2 R 1 , —NHSOR 1 or —NHSO 2 R 1
  • R 1 represents C 1 -C 6 haloalkyl or C 1 -C 6 alkyl
  • R 2 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl
  • R 3 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl
  • R 4 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloal
  • N-benzylamide compound represented by the formula (10) is reacted in the presence of a base: [Wherein, A, Y, R 1 , R 2 , R 3 , R 4 , R 5 and n represent the same meaning as described above. ] The manufacturing method of the N-benzyl lactam compound represented by this.
  • the base is lithium hydroxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, sodium carbonate, potassium carbonate, cesium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium phosphate,
  • Phase transfer catalyst is tetramethylammonium chloride, tetramethylammonium bromide, tetra-n-butylammonium fluoride, tetra-n-butylammonium chloride, tetra-n-butylammonium bromide, tetra-n-butylammonium iodide Tetra-n-butylammonium hydrogen sulfate, tetra-n-butylammonium hydroxide, benzyltrimethylammonium chloride, benzyltrimethylammonium bromide, benzyltri-n-butylammonium chloride, benzyltri-n-butylammonium bromide, tetraethylphosphonium bromide Tetra-n-butylphosphonium bromide, tetra-n-butylphosphonium chloride or tetraphenylphosphonium bromide Method for producing N
  • phase transfer catalyst is tetra-n-butylammonium bromide.
  • A represents —CH ⁇ CH—.
  • A represents a sulfur atom.
  • N-benzyl lactam compounds and trifluoromethanesulfonamide compounds that are industrially useful as intermediates for the production of medical and agricultural chemicals and various chemicals, and trifluoromethanesulfinyl compounds that are useful as intermediates thereof, and the production thereof A method is provided.
  • the present invention includes all optically active substances, racemates or diastereomers.
  • n- means normal
  • i- means iso
  • s- means secondary and t- means tertiary
  • m- means meta and p- means para.
  • halogen atom in this invention, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are mentioned. In the present specification, the notation “halo” also represents these halogen atoms.
  • those that can be converted into a salt according to a conventional method include, for example, salts of hydrogen halides such as hydrogen fluoride, hydrogen chloride, hydrogen bromide, hydrogen iodide, nitric acid, sulfuric acid , Inorganic acid salts such as phosphoric acid, chloric acid, perchloric acid, sulfonic acid salts such as methanesulfonic acid, ethanesulfonic acid, trifluoromethanesulfonic acid, formic acid, acetic acid, propionic acid, trifluoroacetic acid, fumaric acid, tartaric acid , Succinic acid, maleic acid, malic acid, succinic acid, benzoic acid, mandelic acid, ascorbic acid, carboxylic acid salts such as lactic acid, gluconic acid, citric acid, amino acid salts such as glutamic acid, aspartic acid, lithium, sodium, potassium Alkali metal salts such as alkaline
  • C a -C b alkyl represents a linear or branched hydrocarbon group having from a to b carbon atoms, for example, a methyl group, an ethyl group, or an n-propyl group.
  • C a -C b alkoxy represents the C a -C b alkyl-O— group having the above-mentioned meaning, for example, methyl-O-group, ethyl-O-group, n-propyl- O-group, i-propyl-O-group, n-butyl-O-group, i-butyl-O-group, t-butyl-O-group, s-butyl-O-group, pentyl-O-group, 1-methylbutyl-O-group, 2-methylbutyl-O-group, 3-methylbutyl-O-group, 1-ethylpropyl-O-group, 1,1-dimethylpropyl-O-group, 1,2-dimethylpropyl -O- group, neopentyl-O- group, n-hexyl-O- group, 1-methylpentyl-O- group, 2-methylpentyl-O-O-
  • C a -C b alkoxy (C a -C b ) alkyl in the present specification means the above-mentioned meaning that a hydrogen atom bonded to a carbon atom is optionally substituted by C a -C b alkoxy as defined above.
  • C a -C b alkyl such as methyl-O-methyl group, ethyl-O-methyl group, n-propyl-O-methyl group, i-propyl-O-methyl group, n-butyl-O -Methyl group, i-butyl-O-methyl group, t-butyl-O-methyl group, s-butyl-O-methyl group, pentyl-O-methyl group, 1-methylbutyl-O-methyl group, 2-methylbutyl -O-methyl group, 3-methylbutyl-O-methyl group, 1-ethylpropyl-O-methyl group, 1,1-dimethylpropyl-O-methyl group, 1,2-dimethylpropyl-O-methyl group, neopentyl -O-methyl group, n-hexyl-O-methyl group, 1-methylpentyl-O-methyl Group, 2-methylpentyl-O-methyl group, 3-methylpentyl-O
  • C a -C b alkoxycarbonyl represents a C a -C b alkyl-O—C (O) — group as defined above, for example, a methyl-O—C (O) — group.
  • Ethyl-O-C (O)-group Ethyl-O-C (O)-group, n-propyl-O-C (O)-group, i-propyl-O-C (O)-group, n-butyl-O-C (O)-group , I-butyl-O-C (O)-group, t-butyl-O-C (O)-group, s-butyl-O-C (O)-group, n-pentyl-O-C (O) -Group, 1-methylbutyl-O-C (O)-group, 2-methylbutyl-O-C (O)-group, 3-methylbutyl-O-C (O)-group, 1-ethylpropyl-O-C (O)-group, 1,1-dimethylpropyl-O-C (O)-group, 1,2-dimethylpropyl-O-C (O)-group, neopentyl-O-C (O
  • Halo notation (C a ⁇ C b) alkyl in the present specification is meant the meaning of the in which a hydrogen atom bonded to a carbon atom which is optionally substituted
  • fluoromethyl group chloromethyl group, bromomethyl group, iodomethyl group, 2-fluoroethyl group, 2-chloroethyl group, 2-bromoethyl group, 3-fluoropropyl group, 3-chloropropyl group, difluoromethyl group, Trifluoromethyl group, dichloromethyl group, trichloromethyl group, 2,2-difluoroethyl group, 2,2,2-trifluoroethyl group, 2,2,2-trichloroethyl group, chlorodifluoromethyl group, bromodifluoromethyl Group, pentafluoroethyl group, heptafluoropropyl group, h
  • C a -C b alkylcarbonyl in the present specification represents an alkyl-C (O) — group having the above-mentioned meaning consisting of a to b carbon atoms, for example, acetyl group, propionyl group, butyryl group. Specific examples thereof include isobutyryl group, valeryl group, isovaleryl group, 2-methylbutanoyl group, pivaloyl group, and the like, and each is selected within the range of each designated carbon number.
  • halo (C a -C b ) alkylcarbonyl represents a haloalkyl-C (O) -group having the above-mentioned meaning consisting of a to b carbon atoms, such as fluoroacetyl group, chloro Acetyl group, difluoroacetyl group, dichloroacetyl group, trifluoroacetyl group, chlorodifluoroacetyl group, bromodifluoroacetyl group, trichloroacetyl group, pentafluoropropionyl group, heptafluorobutanoyl group, 3-chloro-2,2-dimethyl
  • Specific examples include a propanoyl group and the like, and each is selected within a range of each designated carbon number.
  • C a -C b cycloalkyl represents a cyclic hydrocarbon group having a to b carbon atoms, for example, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl.
  • Groups and the like are listed as specific examples, and each group is selected within the range of each designated carbon number.
  • Formula (13) [In the Formula, A and Q represent the same meaning as the above.
  • R 1 represents C 1 -C 12 alkoxycarbonyl
  • T represents a halogen atom.
  • the compound represented by the formula (14) can be used in an amount of 1 to 5 equivalents relative to 1 equivalent of the compound represented by the formula (13).
  • Examples of the base include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate, calcium carbonate and potassium carbonate, alkali metal bicarbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate,
  • An organic base such as triethylamine, tributylamine, pyridine, 4- (dimethylamino) pyridine, imidazole, 1,8-diazabicyclo [5,4,0] -7-undecene, etc. is converted into the compound represented by the formula (13). 1 to 5 equivalents can be used.
  • the solvent used is not particularly limited as long as it does not inhibit the progress of the reaction.
  • hydrocarbons such as hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, heptane, benzene, xylene, toluene, etc.
  • Halogenated hydrocarbons such as dichloromethane, carbon tetrachloride, chloroform, 1,2-dichloroethane, chlorobenzene, trifluoromethylbenzene, alcohols such as methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.
  • Ketones such as acetonitrile and propionitrile, carboxylic acid esters such as ethyl acetate and ethyl propionate, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone
  • nitrogen-containing aprotic polar solvents such as 1,3-dimethyl-2-imidazolidinone, water and the like, preferably hydrocarbons such as xylene and toluene, halogenated hydrocarbons such as dichloromethane and dichloroethane, water Can be used. These solvents can be used by mixing two or more kinds.
  • the reaction temperature is usually -90 to 200 ° C, preferably 0 to 150 ° C.
  • the reaction time varies depending on the concentration of the reaction substrate and the reaction temperature, but is usually 10 minutes to 100 hours, preferably 10 minutes to 24 hours.
  • the trifluoromethanesulfine anilide compound represented by the formula (1) and the trifluoromethanesulfonanilide compound represented by the formula (2) obtained by oxidizing it are each substituted.
  • trifluoromethanesulfine anilide and trifluoromethanesulfonanilide compounds in which the substituents are as follows are preferable.
  • A represents —CH ⁇ CH—
  • R 1 represents a hydrogen atom or C 1 -C 6 alkoxycarbonyl
  • Q represents CH 2 OR 2 , C ( ⁇ O) OR 2 , cyano, or CH 2 N (Q 1 ) Q 2
  • R 2 represents a hydrogen atom or C 1 -C 6 alkyl
  • Q 1 and Q 2 are each independently a hydrogen atom, C 1 -C 12 alkyl, halo (C 1 -C 12 ) alkyl, C 1 -C 12 alkylcarbonyl, halo (C 1 -C 12 ) alkylcarbonyl, It represents phenyl, phenylcarbonyl substituted by the (Y) phenyl substituted by n, phenylcarbonyl or (Y) m
  • Y represents a halogen atom
  • n represents an integer of 1, 2, 3, 4 or 5
  • m represents an integer of 1, 2, 3, 4 or 5.
  • a solvent can be used as necessary.
  • the solvent used is not particularly limited as long as it does not inhibit the progress of the reaction.
  • hydrocarbons such as hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, heptane, benzene, xylene, toluene, dichloromethane, tetrachloride
  • Halogenated hydrocarbons such as carbon, chloroform, 1,2-dichloroethane, chlorobenzene and trifluoromethylbenzene
  • nitriles such as acetonitrile and propionitrile
  • alcohols such as methanol, ethanol and 2-propanol, formic acid and acetic acid Acid, water, etc.
  • hydrocarbons such as xylene, toluene, halogenated hydrocarbons such as dichloromethane, chloroform
  • the method for producing the trifluoromethanesulfonanilide compound can be carried out by adding an acid as necessary.
  • the acid used is not particularly limited, but for example, fatty acids such as formic acid, acetic acid and trifluoroacetic acid, sulfonic acids such as methanesulfonic acid, trifluoromethanesulfonic acid and 4-methylbenzenesulfonic acid, and carboxylic acids such as benzoic acid Phosphonic acids such as aminomethylphosphonic acid and phenylphosphonic acid, and inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid.
  • fatty acids such as formic acid, acetic acid and trifluoroacetic acid
  • sulfonic acids such as methanesulfonic acid, trifluoromethanesulfonic acid and 4-methylbenzenesulfonic acid
  • carboxylic acids such as benzoic acid Phosphonic acids such as aminomethylphosphonic acid and phenylphospho
  • acetic acid Preferably, acetic acid, hydrochloric acid, sulfuric acid, phosphoric acid, phenylphosphonic acid and the like are used.
  • the acid is usually used in an amount of 100 equivalents or less, preferably 2 equivalents or less, more preferably 0.01 to 2 equivalents, relative to 1 equivalent of the compound represented by formula (1) or formula (3).
  • oxidizing agent in the above method for producing a trifluoromethanesulfonanilide compound include m-chloroperbenzoic acid, magnesium monoperoxyphthalate, peracid such as peracetic acid, iodine peroxidation such as sodium periodate and iodosobenzene.
  • the oxidizing agent is preferably one selected from the group consisting of peracids, iodine peroxides, persulfates and hydroperoxides. Specific examples thereof are preferably one selected from the group consisting of m-chloroperbenzoic acid, magnesium monoperoxyphthalate, sodium periodate, and aqueous hydrogen peroxide.
  • oxidizing agent When hydrogen peroxide is used as the oxidizing agent, preferably 1 to 50% by mass hydrogen peroxide solution, urea hydrogen peroxide, etc. can be used, more preferably 30 to 36% by mass hydrogen peroxide solution. Can be used.
  • the oxidizing agent is generally used in an amount of 0.5 to 100 equivalents, preferably 1 to 5 equivalents, relative to 1 equivalent of the compound represented by the formula (1).
  • sodium periodate As the oxidizing agent, it is desirable to carry out the reaction in the presence of ruthenium trichloride. Ruthenium trichloride is usually used in an amount of 0.001 to 100 equivalents, preferably 0.01 to 2 equivalents, per 1 equivalent of the compound represented by the formula (1).
  • sodium tungstate When using hydrogen peroxide as an oxidizing agent, it is desirable to carry out the reaction in the presence of sodium tungstate and / or a phase transfer catalyst.
  • sodium tungstate When the reaction is carried out in the presence of sodium tungstate, sodium tungstate is usually used in an amount of 0.001 to 100 equivalents, preferably 0.01 to 2 equivalents, relative to 1 equivalent of the compound represented by formula (1). .
  • phase transfer catalyst examples include tetrabutylammonium chloride, tetrabutylammonium bromide, tetramethylammonium hydrogensulfate, tetraethylammonium hydrogensulfate, tetrapropylammonium hydrogensulfate.
  • Quaternary ammonium salts such as tetrabutylammonium hydrogensulfate, tetrahexylammonium hydrogensulfate, methyltrioctylammonium hydrogensulfate, methyltrioctylammonium chloride, pyridinium salts such as cetylpyridinium chloride, tetrabutylphosphonium bromide, tributylhexa Examples thereof include phosphonium salts such as decylphosphonium chloride and tetraphenylphosphonium chloride.
  • phase transfer catalyst is generally used in an amount of 100 equivalents or less, preferably 2 equivalents or less, more preferably 0.01 to 1 equivalent, per 1 equivalent of the compound represented by the formula (1).
  • the reaction in the above method for producing a trifluoromethanesulfonanilide compound can be carried out in a pressure range of 0.001 to 100 MPa, preferably 0.1 to 10 MPa.
  • the reaction temperature is usually ⁇ 20 to 100 ° C., preferably 0 to 80 ° C.
  • the reaction time is usually 10 minutes to 100 hours, preferably 10 minutes to 24 hours. If necessary, it can be carried out in an inert gas atmosphere such as nitrogen or argon.
  • the treatment method after the reaction is not particularly limited, but the reaction mixture after completion of the reaction is directly concentrated or dissolved in an organic solvent, and then poured into water, separated, concentrated as necessary, or poured into water.
  • the post-treatment such as extraction and concentration as necessary can be carried out to obtain the produced compound.
  • the reaction mixture and the solution obtained by the reaction treatment can be treated with a reducing agent, an acid, a base and the like.
  • finish of reaction can be used for the following process as it is.
  • the manufactured compound can also be used for the following process with the solution obtained by the post-process.
  • it can be separated and purified by any purification method such as distillation, recrystallization, column chromatograph, thin layer chromatograph, liquid chromatographic fractionation and the like.
  • each substituent is as described above, and among these, the following amine compounds are preferable.
  • This production method can be applied not only to the amino group on the benzene ring where A is —CH ⁇ CH— but also to the amino group on the heterocycle where A is a sulfur atom.
  • A represents —CH ⁇ CH—
  • R 1 represents a hydrogen atom or C 1 -C 6 alkoxycarbonyl
  • Q represents CH 2 OR 2 , C ( ⁇ O) OR 2 , cyano or CH 2 NHQ 1
  • R 2 represents a hydrogen atom or C 1 -C 6 alkyl
  • Q 1 is a hydrogen atom, C 1 -C 12 alkyl, halo (C 1 -C 12 ) alkyl, C 1 -C 12 alkylcarbonyl, halo (C 1 -C 12 ) alkylcarbonyl, phenyl,
  • (Y) n Represents substituted phenyl, phenylcarbonyl or phenylcarbonyl substituted by (Y) m ;
  • Y represents a halogen atom
  • n represents an integer of 1, 2, 3, 4 or 5
  • m represents an integer of 1, 2, 3, 4 or 5.
  • Examples of the compound represented by the formula (4) used in the method for producing the trifluoromethanesulfinylide compound include trifluoromethanesulfinyl fluoride, trifluoromethanesulfinyl chloride, trifluoromethanesulfinyl bromide, and trifluoromethanesulfinyl iodide.
  • Trifluoromethanesulfinyl chloride can be synthesized according to a general synthesis method described in the literature. For example, it can be produced by the method described in JP-A-10-218857, Chemiche Beirichte 1974, 107, 508, Tetrahedron 1999, Vol. 55, Vol. 7243, or Tetrahedron, 1976, Vol. 32, 1627. is there.
  • the compound represented by the formula (4) is usually used in an amount of 0.5 to 2 equivalents with respect to 1 equivalent of the compound represented by the formula (3).
  • Examples of the salt of trifluoromethanesulfinic acid represented by the formula (5) in the method for producing the trifluoromethanesulfinanilide compound include alkali metal salts such as lithium, sodium, and potassium.
  • alkali metal salts such as lithium, sodium, and potassium.
  • sodium trifluoromethanesulfinate which is a sodium salt of trifluoromethanesulfinic acid
  • potassium trifluoromethanesulfinate which is a potassium salt of trifluoromethanesulfinic acid
  • the salt of trifluoromethanesulfinic acid represented by the formula (5) is usually used in an amount of 0.5 to 2 equivalents per 1 equivalent of the compound represented by the formula (3).
  • a solvent can be used as necessary.
  • the solvent used is not particularly limited as long as it does not inhibit the progress of the reaction.
  • hydrocarbons such as n-hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, n-heptane, benzene, xylene, and toluene
  • Halogenated hydrocarbons such as dichloromethane, carbon tetrachloride, chloroform, 1,2-dichloroethane, chlorobenzene, trifluoromethylbenzene
  • ethers such as diethyl ether, diisopropyl ether, 1,4-dioxane, tetrahydrofuran, acetone, methyl ethyl ketone, Ketones such as methyl isobutyl ketone, nitriles such as aceton
  • the reaction between the amine compound represented by the formula (3) and the compound represented by the formula (4) can be performed in the presence of a base.
  • the base to be used is not particularly limited, but examples thereof include inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium hydride, potassium phosphate, pyridine, 4 -Dimethylaminopyridine, triethylamine, tributylamine, 5-ethyl-2-methylpyridine, 2-methylpyridine, 4-methylpyridine, 2,6-dimethylpyridine, N, N-dimethylaniline, N, N-diethylaniline, Organic bases such as 1,8-diazabicyclo [5.4.0] -7-undecene, organic lithium compounds such as n-butyllithium and s-butyllithium, lithium diisopropylamide, lithium bis (trimethylsilyl) amide, etc.
  • inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium hydride, potassium
  • Lithium amides sodium methoxide, sodium And metal alkoxides such as muethoxide, sodium i-propoxide and potassium t-butoxide.
  • triethylamine, tributylamine, 5-ethyl-2-methylpyridine, 2-methylpyridine, 4-methylpyridine, 2,6-dimethylpyridine and pyridine are used.
  • the base is generally used in an amount of 10 equivalents or less, preferably 4 equivalents or less, more preferably 0.01 to 2 equivalents, relative to 1 equivalent of the compound represented by Formula (1) or Formula (3).
  • the compound represented by the above formula (4) can be produced by reacting the compound represented by the above formula (5) with a halogenating agent.
  • a halogenating agent examples include thionyl chloride, oxalyl chloride, phosphorus trichloride, phosphorus pentachloride, and phosphorus oxychloride.
  • thionyl chloride is used.
  • the halogenating agent is generally used in an amount of 0.5 to 100 equivalents, preferably 1 to 10 equivalents, relative to the compound represented by the formula (3).
  • N, N-dimethylformamide, N, N— Amide compounds such as dimethylacetamide and amine compounds such as triethylamine can be added.
  • the additive is generally used in an amount of 100 equivalents or less, preferably 10 equivalents or less, particularly preferably 0.001 to 1 equivalent, based on the compound represented by the formula (3).
  • the reaction in the above method for producing a trifluoromethanesulfinanilide compound can be carried out in a pressure range of 0.001 to 100 MPa, preferably 0.1 to 10 MPa.
  • the reaction temperature is usually ⁇ 90 to 200 ° C., preferably ⁇ 50 to 50 ° C.
  • the reaction time is usually 10 minutes to 100 hours, preferably 10 minutes to 24 hours. If necessary, it can be carried out in an inert gas atmosphere such as nitrogen or argon.
  • the treatment method after the reaction is not particularly limited, but the reaction mixture after completion of the reaction is directly concentrated or dissolved in an organic solvent, and then poured into water, separated, concentrated as necessary, or poured into water.
  • the post-treatment such as extraction and concentration as necessary can be carried out to obtain the produced compound.
  • the reaction mixture and the solution obtained by the reaction treatment can be treated with a reducing agent, an acid, a base and the like.
  • finish of reaction can be used for the following process as it is.
  • the manufactured compound can also be used for the following process with the solution obtained by the post-process.
  • it can be separated and purified by any purification method such as distillation, recrystallization, column chromatograph, thin layer chromatograph, liquid chromatographic fractionation and the like.
  • the acid, base, additive, oxidizing agent, halogenating agent, sodium tungstate, ruthenium trichloride, and phase transfer catalyst related to the production method of the present invention are diluted in solvates such as hydrates and solvents.
  • solvates such as hydrates and solvents.
  • a compound represented by the formula (3) (where Q is C ( ⁇ O) OR 2 or cyano, and R 1 represents the same meaning as described above) is a known compound, and a part thereof Also available as a commercial product. Others can also be synthesized according to general synthesis methods described in literatures relating to known compounds.
  • the present invention is also a trifluoromethanesulfinanilide compound represented by the above formula (1) or a salt thereof.
  • the preferable substituents in the trifluoromethanesulfinanilide compound represented by the formula (1) are also as described above.
  • Examples of the salt of the trifluoromethanesulfinanilide compound represented by the formula (1) include sodium salts and potassium salts.
  • the aminobenzylamine compound represented by the above formula (7) is produced, for example, by the method represented by the following reaction formula 2. Reaction formula 2
  • Examples of the reduction method used in Step 2 include a method using a metal hydride such as sodium borohydride, lithium borohydride, and lithium aluminum hydride, a method using hydrogenation in the presence of a palladium catalyst, iron, zinc chloride, tin chloride, and the like.
  • the metal reduction method can be used.
  • the amount of the reducing agent used can be 0.01 to 5 equivalents per 1 equivalent of the compound represented by the formula (15).
  • the solvent used is not particularly limited as long as it does not inhibit the progress of the reaction.
  • hydrocarbons such as hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, heptane, benzene, xylene, toluene, etc.
  • Halogenated hydrocarbons such as dichloromethane, carbon tetrachloride, chloroform, 1,2-dichloroethane, chlorobenzene, trifluoromethylbenzene, alcohols such as methanol, ethanol, 2-propanol, diethyl ether, tetrahydrofuran, cyclopentyl methyl ether, Examples include ethers such as tertiary butyl methyl ether, water, and the like. Preferably, alcohols such as methanol and ethanol, ethers such as tetrahydrofuran and cyclopentyl methyl ether, and water can be used. These solvents can be used in a mixture of two or more.
  • the reaction temperature is usually -90 to 200 ° C, preferably 0 to 150 ° C.
  • the reaction time varies depending on the concentration of the reaction substrate and the reaction temperature, but is usually 10 minutes to 100 hours, preferably 10 minutes to 24 hours.
  • the reaction in the above method for producing an aminobenzylamine compound can be carried out in a pressure range of 0.001 to 100 MPa, preferably 0.1 to 10 MPa.
  • the reaction temperature is usually ⁇ 20 to 100 ° C., preferably 0 to 80 ° C.
  • the reaction time is usually 10 minutes to 100 hours, preferably 10 minutes to 24 hours. If necessary, it can be carried out in an inert gas atmosphere such as nitrogen or argon.
  • the treatment method after the reaction is not particularly limited, but the reaction mixture after completion of the reaction is directly concentrated or dissolved in an organic solvent, and then poured into water, separated, concentrated as necessary, or poured into water.
  • the post-treatment such as extraction and concentration as necessary can be carried out to obtain the produced compound.
  • the reaction mixture and the solution obtained by the reaction treatment can be treated with a reducing agent, an acid, a base and the like.
  • finish of reaction can be used for the following process as it is.
  • the manufactured compound can also be used for the following process with the solution obtained by the post-process.
  • it can be separated and purified by any purification method such as distillation, recrystallization, column chromatograph, thin layer chromatograph, liquid chromatographic fractionation and the like.
  • the aminobenzylamine compound represented by the above formula (7) is also produced, for example, by the method represented by the following reaction formula 3. Reaction formula 3
  • formula (16) [wherein R 1 represents a hydrogen atom or C 1 -C 6 alkoxycarbonyl. And an aminobenzylamine compound represented by the formula (17): wherein L represents a leaving group such as a halogen atom, and Q 1 represents the same meaning as described above.
  • L represents a leaving group such as a halogen atom
  • Q 1 represents the same meaning as described above.
  • the reaction between the aminobenzylamine compound represented by the formula (16) and the compound represented by the formula (17) is preferably performed in the presence of a base.
  • the base to be used is not particularly limited, but examples thereof include inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium hydride, potassium phosphate, pyridine, 4 -Dimethylaminopyridine, triethylamine, tributylamine, 5-ethyl-2-methylpyridine, 2-methylpyridine, 4-methylpyridine, 2,6-dimethylpyridine, N, N-dimethylaniline, N, N-diethylaniline, Organic bases such as 1,8-diazabicyclo [5.4.0] -7-undecene, organic lithium compounds such as n-butyllithium and s-butyllithium, lithium diisopropylamide, lithium bis (trimethylsilyl) amide, etc.
  • inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium hydride, potassium
  • Lithium amides sodium methoxide, sodium And metal alkoxides such as muethoxide, sodium i-propoxide and potassium t-butoxide.
  • triethylamine, tributylamine, 5-ethyl-2-methylpyridine, 2-methylpyridine, 4-methylpyridine, 2,6-dimethylpyridine and pyridine are used.
  • the base is generally used in an amount of 10 equivalents or less, preferably 4 equivalents or less, more preferably 0.01 to 2 equivalents, relative to 1 equivalent of the compound represented by Formula (16).
  • a solvent can be used as necessary.
  • the solvent used is not particularly limited as long as it does not inhibit the progress of the reaction.
  • hydrocarbons such as hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, heptane, benzene, xylene, toluene, and halogen-based carbonization such as dichloromethane, carbon tetrachloride, chloroform, 1,2-dichloroethane, chlorobenzene, trifluoromethylbenzene, etc.
  • Examples thereof include hydrogens, alcohols such as methanol, ethanol and 2-propanol, ethers such as diethyl ether, tetrahydrofuran, cyclopentyl methyl ether and tertiary butyl methyl ether, and water.
  • alcohols such as methanol and ethanol
  • ethers such as tetrahydrofuran and cyclopentyl methyl ether
  • water can be used.
  • These solvents can be used in a mixture of two or more.
  • the reaction temperature is usually -90 to 200 ° C, preferably 0 to 150 ° C.
  • the reaction time varies depending on the concentration of the reaction substrate and the reaction temperature, but is usually 10 minutes to 100 hours, preferably 10 minutes to 24 hours.
  • the reaction in the method for producing an aminobenzylamine compound can be carried out in a pressure range of 0.001 to 100 MPa, preferably 0.1 to 10 MPa.
  • the reaction temperature is usually ⁇ 20 to 100 ° C., preferably 0 to 80 ° C.
  • the reaction time is usually 10 minutes to 100 hours, preferably 10 minutes to 24 hours. If necessary, it can be carried out in an inert gas atmosphere such as nitrogen or argon.
  • the treatment method after the reaction is not particularly limited, but the reaction mixture after completion of the reaction is directly concentrated or dissolved in an organic solvent, and then poured into water, separated, concentrated as necessary, or poured into water.
  • the post-treatment such as extraction and concentration as necessary can be carried out to obtain the produced compound.
  • the reaction mixture and the solution obtained by the reaction treatment can be treated with a reducing agent, an acid, a base and the like.
  • finish of reaction can be used for the following process as it is.
  • the manufactured compound can also be used for the following process with the solution obtained by the post-process.
  • it can be separated and purified by any purification method such as distillation, recrystallization, column chromatograph, thin layer chromatograph, liquid chromatographic fractionation and the like.
  • A represents —CH ⁇ CH— or a sulfur atom
  • X 1 represents a halogen atom, methanesulfonyloxy, trifluoromethanesulfonyloxy or p-toluenesulfonyloxy
  • Y represents —NO 2 , —NH 2 , —NHCO 2 R 1 , —NHSOR 1 or —NHSO 2 R 1
  • R 1 represents C 1 -C 6 haloalkyl or C 1 -C 6 alkyl.
  • R 2 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl
  • R 3 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl
  • R 2 and R 3 together with the carbon atom to which each is attached together with C 3 -C 6 cycloalkyl may be formed
  • R 4 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl
  • R 5 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl
  • R 4 and R 5 together with the carbon atom to which each is
  • Solvents that can be used in the present invention include aromatic solvents such as toluene, benzene, chlorobenzene, orthodichlorobenzene, nitrobenzene, and trifluoromethylbenzene, hydrocarbon solvents such as hexane, heptane, octane, and nonane, acetonitrile, N, Polar solvents such as N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, dimethyl sulfoxide, water, alcohols such as methanol, ethanol, n-propanol, i-propanol, n-butanol, ethylene glycol, propylene glycol Solvents, halogen solvents such as dichloromethane, chloroform, 1,2-dichloroethane, tetrahydrofuran, diethyl ether, 1,2-dimethoxyethane, cyclopentyl methyl ether,
  • the amount of the solvent to be used is used in the range of 0.1 to 100 parts by weight, preferably in the range of 1 to 30 parts by weight with respect to 1 part by weight of the compound represented by the formula (8) as the raw material. To do.
  • Bases that can be used in this production method include calcium hydride, sodium hydride, potassium-t-butoxide, sodium-t-butoxide, sodium methoxide, lithium hydroxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide, Calcium hydroxide, barium hydroxide, sodium carbonate, potassium carbonate, cesium carbonate, sodium bicarbonate, potassium bicarbonate, sodium phosphate, potassium phosphate, potassium phosphate monobasic, potassium monohydrogen phosphate, triethylamine, tributylamine, And organic bases such as pyridine, 4- (dimethylamino) pyridine, imidazole, and 1,8-diazabicyclo [5,4,0] -7-undecene.
  • organic bases such as pyridine, 4- (dimethylamino) pyridine, imidazole, and 1,8-diazabicyclo [5,4,0] -7-undecene.
  • sodium hydroxide, potassium carbonate, or potassium phosphate is preferable.
  • the amount of the base that can be used in this production method is in the range of 1 to 100 mol, preferably in the range of 1 to 10 mol, relative to 1 mol of the compound represented by the formula (8) as the raw material.
  • phase transfer catalyst can be added.
  • phase transfer catalysts that can be used include tetramethylammonium chloride, tetramethylammonium bromide, tetra-n-butylammonium fluoride, tetra-n-butylammonium chloride, tetra-n-butylammonium bromide, and tetra-n-butylammonium iodide.
  • Quaternary such as tetra-n-butylammonium hydrogen sulfate, tetra-n-butylammonium hydroxide, benzyltrimethylammonium chloride, benzyltrimethylammonium bromide, benzyltri-n-butylammonium chloride, benzyltri-n-butylammonium bromide Ammonium salts and tetraethylphosphonium bromide, tetra-n-butylphosphonium bromide, tetra-n-butylphosphonium chloride, tetra Quaternary phosphonium salts such as E sulfonyl bromide and the like.
  • the amount of the phase transfer catalyst that can be used in the present production method is in the range of 0.01 to 1 mol, preferably 0.01 to 0.1 mol, relative to 1 mol of the compound represented by the formula (8) as the raw material. Used in the range of 5 moles.
  • the reaction is preferably performed at ⁇ 50 ° C. or more and 200 ° C. or less, more preferably 0 ° C. or more and 150 ° C. or less.
  • the reaction is preferably carried out in an atmosphere of an inert gas such as nitrogen, argon or xenon.
  • R 2 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl
  • R 3 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl
  • R 2 and R 3 together with the carbon atom to which each is attached together with C 3 -C 6 cycloalkyl may be formed
  • R 4 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl
  • R 5 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl
  • the solvent, base, phase transfer catalyst, and the like that can be used in this production method are the same as the production method of the N-benzyllactam compound represented by formula (10) from the compound represented by formula (8).
  • A, Y, R 1 , R 2 , R 3 , R 4 , R 5 , n and X 2 are the same as in the above compound (12).
  • the solvent, base, phase transfer catalyst and the like that can be used in this production method are the same as those in the production method of the N-benzyllactam compound represented by the formula (10) from the compound represented by the formula (8).
  • the present invention will be described more specifically with reference to examples of the present invention. However, the present invention is not limited to these examples.
  • the proton nuclear magnetic resonance chemical shift values of the examples were measured at 300 MHz in deuterated chloroform solvent using Me 4 Si (tetramethylsilane) as a reference substance.
  • Example 1 Synthesis of 2- (N-trifluoromethanesulfinyl) aminobenzyl alcohol To a slurry of 7 g of sodium trifluoromethanesulfinate 7 g of dichloromethane, 580 mg of thionyl chloride and 50 mg of N, N-dimethylformamide were added dropwise under ice cooling. After completion of dropping, the temperature was raised to room temperature and stirred for 1 hour. This slurry was added dropwise to a solution of 5 g of 2-aminobenzyl alcohol in 50 g of dichloromethane under ice cooling, and the mixture was stirred for 2 hours under ice cooling.
  • Example 3 Synthesis of 2- (N-trifluoromethanesulfinyl) aminobenzonitrile Part 1 To 4.2 g of sodium trifluoromethanesulfinate, 30 g of toluene, 15 g of dichloromethane and 0.3 g of N, N-dimethylformamide were added and cooled to 0 ° C., and 3.6 g of thionyl chloride was added dropwise. After stirring at 0 ° C. for 2 hours, the mixture was cooled to ⁇ 15 ° C.
  • the resulting oil was dissolved in toluene and extracted with aqueous sodium hydroxide.
  • the aqueous layer was washed twice with toluene, acidified with 1 mol / L hydrochloric acid aqueous solution, and extracted twice with toluene.
  • the organic layers were combined and washed twice with saturated brine, and the solvent was distilled off under reduced pressure to obtain 2.0 g of the desired product as a white solid. Melting point: 98-101 ° C
  • the reaction mixture was cooled to room temperature and washed with 5 g of 1M hydrochloric acid.
  • the relative area value of the target product was 81% (quantitative yield: 63%).
  • the reaction mixture was cooled to room temperature and washed with 20 g of 1M hydrochloric acid.
  • the relative area value of the target product was 84% (quantitative yield: 87%).
  • Example 9 Synthesis of 1- (2-nitrobenzyl) pyrrolidin-2-one 1 To a solution of 0.200 g (0.930 mmol) of 1- (bromomethyl) -2-nitrobenzene in 2.00 g of acetonitrile was added 0.236 g (2.78 mmol) of pyrrolidin-2-one and 0.295 g (1.39 mmol) of potassium phosphate. Mmol) was added. After completion of the addition, the reaction mixture was stirred for 4 hours under heating and refluxing under a nitrogen atmosphere. After completion of the reaction, the reaction mixture was cooled to room temperature, and the precipitated solid was separated by filtration. As a result of analyzing the obtained filtrate by high performance liquid chromatography, the relative area value of the target product was 65%.
  • Example 10 Synthesis of 1- (2-nitrobenzyl) pyrrolidin-2-one 2 To a solution of 0.500 g (2.31 mmol) of 1- (bromomethyl) -2-nitrobenzene in 5.00 g of toluene, 0.591 g (6.94 mmol) of pyrrolidin-2-one, 0.4% of tetra-n-butylammonium bromide. 0746 g (0.231 mmol) and 30 wt% aqueous sodium hydroxide solution 0.463 g (3.47 mmol) were added. After completion of the addition, the reaction mixture was stirred at 70 ° C. for 1 hour under a nitrogen atmosphere. After completion of the reaction, the reaction mixture was cooled to room temperature and washed with 5 g of 1M hydrochloric acid. As a result of analyzing the obtained solution by high performance liquid chromatography, the relative area value of the target product was 76%.
  • Example 11 Synthesis of 1- (2-nitrobenzyl) pyrrolidin-2-one 3 To a solution of 0.500 g (2.31 mmol) of 1- (bromomethyl) -2-nitrobenzene in 5.00 g of toluene, 0.394 g (4.63 mmol) of pyrrolidin-2-one, 0.4% of tetra-n-butylammonium bromide. 0746 g (0.230 mmol) and 0.960 g (6.94 mmol) potassium carbonate were added. After completion of the addition, the reaction mixture was stirred at 80 ° C. for 7 hours under a nitrogen atmosphere. After completion of the reaction, the reaction mixture was cooled to room temperature and washed with 5 g of 1M hydrochloric acid. As a result of analyzing the obtained solution by high performance liquid chromatography, the relative area value of the target product was 67%.
  • Example 12 Synthesis of 4,4-dimethyl-1- (2-nitrobenzyl) pyrrolidin-2-one To a solution of 0.216 g (1.00 mmol) of 1- (bromomethyl) -2-nitrobenzene in a 3.00 g acetonitrile solution, WO2006 / 072953 0.678 g (3.00 mmol) of synthesized 4,4-dimethylpyrrolidin-2-one and 0.318 g (1.50 mmol) of potassium phosphate synthesized according to the method described in 1) were added. After completion of the addition, the reaction mixture was stirred at 50 ° C. for 2 hours under a nitrogen atmosphere.
  • the obtained organic layer was washed with 10 g of water, 10 g of dilute hydrochloric acid and 10 g of saturated saline in this order, and then dried over anhydrous sodium sulfate, and acetonitrile was distilled off under reduced pressure.
  • the reaction mixture was cooled to room temperature, 3 g of diluted hydrochloric acid was added, and the mixture was extracted with 10 g of ethyl acetate.
  • the relative area value of the target product was 97% (quantitative yield 97%).
  • the reaction mixture was cooled to room temperature and extracted twice with 5 g of a 5 mass% aqueous sodium hydroxide solution.
  • the obtained aqueous sodium hydroxide solution was acidified with 2 g of 35% by mass hydrochloric acid and then extracted twice with 5 g of toluene.
  • the obtained organic layer was dried over anhydrous sodium sulfate, and toluene was distilled off under reduced pressure to obtain 662 mg of the desired product as white crystals (yield 94%). Melting point: 92-93 ° C
  • the trifluoromethanesulfinanilide compound according to the present invention is extremely useful as a novel production intermediate of a trifluoromethanesulfonanilide compound having high selectivity for rice, corn, wheat, beet and soybean and having an excellent herbicidal effect.
  • Japanese Patent Application No. 2013-221858 filed on October 25, 2013, Japanese Patent Application No. 2014-012677 filed on January 27, 2014, Japanese Patent Application filed on February 26, 2014 Application No. 2014-034902, Japanese Patent Application No. 2014-111609 filed on May 29, 2014, and Japanese Patent Application No. 2014-180886 filed on September 5, 2014
  • the entire contents of the scope, drawings and abstract are hereby incorporated by reference as disclosure of the specification of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Pyrrole Compounds (AREA)

Abstract

 Provided are a novel production method for trifluoromethanesulfonanilides, which are useful as herbicides, etc., and intermediates therefor. Specifically provided are: an industrially-useful production method for producing a trifluoromethanesulfonanilide compound represented by formula (2) (therein, A represents -CH=CH- or a sulfur atom, R1 represents a hydrogen atom or a C1-12 alkoxycarbonyl, and Q represents an alkoxyalkyl, an alkoxycarbonyl, a cyano, an aminomethylene, etc.) using an oxidizing agent; a trifluoromethanesulfinyl compound useful as an intermediate therefor; and a production method for the trifluoromethanesulfinyl compound.

Description

トリフルオロメタンスルホンアニリド化合物の製造方法Process for producing trifluoromethanesulfonanilide compound
 本発明は、医農薬製造中間体として有用なトリフルオロメタンスルホンアニリド化合物の製造方法、及びその中間体として有用であるトリフルオロメタンスルフィンアニリド化合物及びその製造方法に関する。 The present invention relates to a method for producing a trifluoromethanesulfonanilide compound useful as an intermediate for producing pharmaceuticals and agricultural chemicals, a trifluoromethanesulfine anilide compound useful as an intermediate thereof, and a method for producing the same.
 ある種のトリフルオロメタンスルホンアニリド化合物は、除草活性を有することが知られており(例えば、特許文献1、2参照)、トリフルオロメタンスルホンアニリドの製造法に関してもいくつか知られている(例えば、特許文献1~7参照)。一方、トリフルオロメタンスルフィンアニリド化合物の製造法に関してもいくつか知られている(例えば、特許文献3、非特許文献1、2参照)。
 また、トリフルオロメタンスルホンアニリド化合物の中間体となりえるN-ベンジルラクタム化合物の合成方法としては、例えば特許文献8~10のようにベンジルハライド化合物とラクタム化合物を縮合させる方法が知られている。
Certain trifluoromethanesulfonanilide compounds are known to have herbicidal activity (see, for example, Patent Documents 1 and 2), and some methods for producing trifluoromethanesulfonanilide are also known (for example, patents). Reference 1-7). On the other hand, some methods for producing a trifluoromethanesulfinanilide compound are also known (see, for example, Patent Document 3, Non-Patent Documents 1 and 2).
As a method for synthesizing an N-benzyl lactam compound that can be an intermediate of a trifluoromethanesulfonanilide compound, for example, a method of condensing a benzyl halide compound and a lactam compound as in Patent Documents 8 to 10 is known.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
国際公開第2010/026989号International Publication No. 2010/026989 国際公開第2010/119906号International Publication No. 2010/119906 日本特開平10-218857号公報Japanese Unexamined Patent Publication No. 10-218857 日本特開平9-286771号公報Japanese Patent Laid-Open No. 9-286771 米国特許第4380464号明細書U.S. Pat. No. 4,380,464 米国特許第4321663号明細書U.S. Pat. No. 4,321,663 米国特許第3639474号明細書US Pat. No. 3,639,474 国際公開第2004/094375号International Publication No. 2004/094375 国際公開第2003/078394号International Publication No. 2003/078394 日本特開2011-037746号公報Japanese Unexamined Patent Publication No. 2011-037746
 トリフルオロメタンスルホンアニリド化合物の製造法に関しては、特許文献1、2、5、6及び7では、トリフルオロメタンスルホニル化剤による製造法が開示されているが、高価なトリフルオロメタンスルホン酸無水物、トリフルオロメタンスルホニルクロリド、トリフルオロメタンスルホニルフルオリド等をトリフルオロメタンスルホニル化剤とする製造法しか開示されていない。また、特許文献3には、モノペルオキシフタル酸マグネシウムやm-クロロ過安息香酸を酸化剤として使用し、ある種のトリフルオロメタンスルフィンアニリド化合物から対応するトリフルオロメタンスルホンアニリド化合物を製造することが記載されているが、本発明に係るトリフルオロメタンスルフィンアニリド化合物に関しては、何ら開示が無い。 Regarding the method for producing a trifluoromethanesulfonanilide compound, Patent Documents 1, 2, 5, 6 and 7 disclose production methods using a trifluoromethanesulfonylating agent. However, an expensive trifluoromethanesulfonic acid anhydride, trifluoromethane is disclosed. Only a production method using sulfonyl chloride, trifluoromethanesulfonyl fluoride or the like as a trifluoromethanesulfonylating agent is disclosed. Patent Document 3 describes that magnesium monoperoxyphthalate or m-chloroperbenzoic acid is used as an oxidizing agent to produce a corresponding trifluoromethanesulfonanilide compound from a certain trifluoromethanesulfinanilide compound. However, there is no disclosure regarding the trifluoromethanesulfinanilide compound according to the present invention.
 また、トリフルオロメタンスルフィンアニリド化合物の製造法に関しては、非特許文献1、2に記載されているが、出発原料であるアニリン化合物1当量に対してトリフルオロメタンスルフィン酸ナトリウムを2当量使用しており、出発原料であるアニリン化合物に対してトリフルオロメタンスルフィン酸ナトリウムを大過剰使用している例しか知られておらず、本発明に係るトリフルオロメタンスルフィンアニリド化合物に関しては、何ら開示が無い。 In addition, the method for producing the trifluoromethanesulfinanilide compound is described in Non-Patent Documents 1 and 2, but 2 equivalents of sodium trifluoromethanesulfinate are used for 1 equivalent of the starting aniline compound, Only examples in which sodium trifluoromethanesulfinate is used in an excessive amount relative to the starting aniline compound are known, and there is no disclosure regarding the trifluoromethanesulfinanilide compound according to the present invention.
 また、N-ベンジルラクタム化合物の製造法に関しては、特許文献8、9に記載の方法に準じてN-ベンジルラクタム化合物を製造する場合、禁水試薬である水素化ナトリウム、ヘキサメチルジシラザンリチウムを用いる必要があるため、工業的製法としては取り扱い方法及び安全面で課題がある。特許文献10に準じてN-ベンジルラクタム化合物を製造する場合は酸存在下で加熱するため、酸に弱い原料、生成物には応用できない。 As for the method for producing the N-benzyl lactam compound, when producing the N-benzyl lactam compound according to the methods described in Patent Documents 8 and 9, sodium hydride and hexamethyldisilazane lithium, which are water-absorbing reagents, are used. Since it needs to be used, there are problems in terms of handling method and safety as an industrial production method. In the case of producing an N-benzyl lactam compound according to Patent Document 10, since heating is performed in the presence of an acid, it cannot be applied to a raw material or product that is weak against an acid.
 本発明者は上記の課題を解決すべく鋭意検討した結果、トリフルオロメタンスルホンアニリド化合物の工業的な製造中間体として有利なトリフルオロメタンスルフィニル化合物及びその製造法、さらにトリフルオロメタンスルホンアニリド化合物に関する工業的に有用な製造法を見いだした。 As a result of intensive studies to solve the above problems, the inventor of the present invention industrially relates to a trifluoromethanesulfonilide compound which is advantageous as an industrial production intermediate of a trifluoromethanesulfonanilide compound, a method for producing the compound, and a trifluoromethanesulfonanilide compound. I found a useful production method.
 また、工業原料として入手できるベンジルハライド化合物及びラクタム化合物を、取り扱い容易な塩基存在下で反応させることによりN-ベンジルラクタム化合物を合成する方法を見出した。また、ベンジルハライド化合物とアミド化合物を、同様の条件で縮合反応させた後、分子内環化反応させることによってN-ベンジルラクタム化合物を合成する方法も見いだし、本発明を完成させた。 Further, the inventors have found a method for synthesizing an N-benzyl lactam compound by reacting a benzyl halide compound and a lactam compound, which are available as industrial raw materials, in the presence of a base that is easy to handle. In addition, the inventors have found a method of synthesizing an N-benzyl lactam compound by subjecting a benzyl halide compound and an amide compound to a condensation reaction under the same conditions, followed by an intramolecular cyclization reaction, thereby completing the present invention.
 本発明の要旨は下記〔1〕~〔30〕にある。
〔1〕式(1):
Figure JPOXMLDOC01-appb-C000019
[式中、Aは、-CH=CH-又は硫黄原子を表し、
 Rは、水素原子又はC~C12アルコキシカルボニルを表し、
 Qは、CHOR、C(=O)OR、シアノ又はCHN(Q)Qの何れかを表し、
 Rは、水素原子又はC~Cアルキルを表し、
 Q、Qはそれぞれ独立して、水素原子、C~C12アルキル、C~C12アルコキシ、ハロ(C~C12)アルキル、ハロ(C~C12)アルコキシ、C~Cシクロアルキル、C~C12アルキルカルボニル、C~C12アルコキシカルボニル、ハロ(C~C12)アルキルカルボニル、ハロ(C~C12)アルコキシカルボニル、C~Cシクロアルキルカルボニル、フェニル、(Y)によって置換されたフェニル、フェニルカルボニル、(Y)によって置換されたフェニルカルボニル、C~Cアルコキシ(C~C)アルキル、C~Cアルキルチオ(C~C)アルキル、C~Cアルキルスルフィニル(C~C)アルキル、C~Cアルキルスルホニル(C~C)アルキル、C~Cアルコキシ(C~C)アルキルカルボニル、C~Cアルキルチオ(C~C)アルキルカルボニル、C~Cアルキルスルフィニル(C~C)アルキルカルボニル又はC~Cアルキルスルホニル(C~C)アルキルカルボニルを表し、
 Yは、ハロゲン原子を表し、
 nは、1、2、3、4又は5の整数を表し、
 mは、1、2、3、4又は5の整数を表す。]で表されるトリフルオロメタンスルフィンアニリド化合物を、酸化剤と反応させることを特徴とする、式(2):
Figure JPOXMLDOC01-appb-C000020
[式中、A、R及びQは前記と同じ意味を表す]で表されるトリフルオロメタンスルホンアニリド化合物の製造方法。
The gist of the present invention is the following [1] to [30].
[1] Formula (1):
Figure JPOXMLDOC01-appb-C000019
[In the formula, A represents —CH═CH— or a sulfur atom,
R 1 represents a hydrogen atom or C 1 -C 12 alkoxycarbonyl,
Q represents CH 2 OR 2 , C (═O) OR 2 , cyano, or CH 2 N (Q 1 ) Q 2 ,
R 2 represents a hydrogen atom or C 1 -C 6 alkyl,
Q 1 and Q 2 are each independently a hydrogen atom, C 1 -C 12 alkyl, C 1 -C 12 alkoxy, halo (C 1 -C 12 ) alkyl, halo (C 1 -C 12 ) alkoxy, C 3 -C 8 cycloalkyl, C 1 -C 12 alkylcarbonyl, C 1 -C 12 alkoxycarbonyl, halo (C 1 -C 12 ) alkylcarbonyl, halo (C 1 -C 12 ) alkoxycarbonyl, C 3 -C 8 cyclo Alkylcarbonyl, phenyl, phenyl substituted by (Y) n , phenylcarbonyl, phenylcarbonyl substituted by (Y) m , C 1 -C 6 alkoxy (C 1 -C 6 ) alkyl, C 1 -C 6 alkylthio (C 1 ~ C 6) alkyl, C 1 ~ C 6 alkylsulfinyl (C 1 ~ C 6) alkyl, C 1 ~ C 6 Alkylsulfonyl (C 1 ~ C 6) alkyl, C 1 ~ C 6 alkoxy (C 1 ~ C 6) alkylcarbonyl, C 1 ~ C 6 alkylthio (C 1 ~ C 6) alkylcarbonyl, C 1 ~ C 6 alkylsulfinyl Represents (C 1 -C 6 ) alkylcarbonyl or C 1 -C 6 alkylsulfonyl (C 1 -C 6 ) alkylcarbonyl,
Y represents a halogen atom,
n represents an integer of 1, 2, 3, 4 or 5;
m represents an integer of 1, 2, 3, 4 or 5. Wherein the trifluoromethanesulfinanilide compound represented by the formula (2) is reacted with an oxidizing agent:
Figure JPOXMLDOC01-appb-C000020
[Wherein, A, R 1 and Q represent the same meaning as described above] A method for producing a trifluoromethanesulfonanilide compound represented by the formula:
〔2〕Aは、-CH=CH-を表し、
 Rは、水素原子又はC~Cアルコキシカルボニルを表し、
 Q、Qはそれぞれ独立して、水素原子、C~C12アルキル、ハロ(C~C12)アルキル、C~C12アルキルカルボニル、ハロ(C~C12)アルキルカルボニル、フェニル、(Y)によって置換されたフェニル、フェニルカルボニル又は(Y)によって置換されたフェニルカルボニルを表す、上記〔1〕に記載のトリフルオロメタンスルホンアニリド化合物の製造方法。
[2] A represents —CH═CH—,
R 1 represents a hydrogen atom or C 1 -C 6 alkoxycarbonyl,
Q 1 and Q 2 are each independently a hydrogen atom, C 1 -C 12 alkyl, halo (C 1 -C 12 ) alkyl, C 1 -C 12 alkylcarbonyl, halo (C 1 -C 12 ) alkylcarbonyl, The method for producing a trifluoromethanesulfonanilide compound according to the above [1], which represents phenyl, phenyl substituted by (Y) n , phenylcarbonyl or phenylcarbonyl substituted by (Y) m .
〔3〕酸化剤が、過酸、ヨウ素過酸化物、過硫酸塩及びヒドロペルオキシドからなる群から選ばれる1種である、上記〔1〕又は〔2〕に記載のトリフルオロメタンスルホンアニリド化合物の製造方法。
〔4〕酸化剤が、m-クロロ過安息香酸、モノペルオキシフタル酸マグネシウム、過ヨウ素酸ナトリウム及び過酸化水素水からなる群から選ばれる1種である、上記〔3〕に記載のトリフルオロメタンスルホンアニリド化合物の製造方法。
〔5〕酸化剤が過ヨウ素酸ナトリウムであり、3塩化ルテニウムの存在下で反応を行う、上記〔4〕に記載のトリフルオロメタンスルホンアニリド化合物の製造方法。
〔6〕酸化剤が過酸化水素水であり、タングステン酸ナトリウム及び/又は相間移動触媒の存在下で行う、上記〔4〕に記載のトリフルオロメタンスルホンアニリド化合物の製造方法。
〔7〕相間移動触媒が4級アンモニウム塩である、上記〔6〕に記載のトリフルオロメタンスルホンアニリド化合物の製造方法。
〔8〕式(3):
Figure JPOXMLDOC01-appb-C000021
[式中、Aは、-CH=CH-又は硫黄原子を表し、
 Rは、水素原子又はC~C12アルコキシカルボニルを表し、
 Qは、CHOR、C(=O)OR、シアノ又はCHN(Q)Qの何れかを表し、
 Rは、水素原子又はC~Cアルキルを表し、
 Q、Qはそれぞれ独立して、水素原子、C~C12アルキル、C~C12アルコキシ、ハロ(C~C12)アルキル、ハロ(C~C12)アルコキシ、C~Cシクロアルキル、C~C12アルキルカルボニル、C~C12アルコキシカルボニル、ハロ(C~C12)アルキルカルボニル、ハロ(C~C12)アルコキシカルボニル、C~Cシクロアルキルカルボニル、フェニル、(Y)によって置換されたフェニル、フェニルカルボニル、(Y)によって置換されたフェニルカルボニル、C~Cアルコキシ(C~C)アルキル、C~Cアルキルチオ(C~C)アルキル、C~Cアルキルスルフィニル(C~C)アルキル、C~Cアルキルスルホニル(C~C)アルキル、C~Cアルコキシ(C~C)アルキルカルボニル、C~Cアルキルチオ(C~C)アルキルカルボニル、C~Cアルキルスルフィニル(C~C)アルキルカルボニル又はC~Cアルキルスルホニル(C~C)アルキルカルボニルを表し、
 Yは、ハロゲン原子を表し、
 nは、1、2、3、4又は5の整数を表し、
 mは、1、2、3、4又は5の整数を表す]で表されるアミン化合物を、式(4):
Figure JPOXMLDOC01-appb-C000022
[式中、Xは、ハロゲン原子を表す。]で表される化合物と反応させることを特徴とする、式(1):
Figure JPOXMLDOC01-appb-C000023
[式中、A、R及びQは、前記と同じ意味を表す]で表されるトリフルオロメタンスルフィンアニリド化合物の製造方法。
[3] Production of the trifluoromethanesulfonanilide compound according to [1] or [2] above, wherein the oxidizing agent is one selected from the group consisting of peracids, iodine peroxides, persulfates, and hydroperoxides. Method.
[4] The trifluoromethanesulfone according to the above [3], wherein the oxidizing agent is one selected from the group consisting of m-chloroperbenzoic acid, magnesium monoperoxyphthalate, sodium periodate and hydrogen peroxide. A method for producing an anilide compound.
[5] The method for producing a trifluoromethanesulfonanilide compound according to the above [4], wherein the oxidizing agent is sodium periodate and the reaction is performed in the presence of ruthenium trichloride.
[6] The method for producing a trifluoromethanesulfonanilide compound according to the above [4], wherein the oxidizing agent is hydrogen peroxide solution and is performed in the presence of sodium tungstate and / or a phase transfer catalyst.
[7] The method for producing a trifluoromethanesulfonanilide compound according to [6] above, wherein the phase transfer catalyst is a quaternary ammonium salt.
[8] Formula (3):
Figure JPOXMLDOC01-appb-C000021
[In the formula, A represents —CH═CH— or a sulfur atom,
R 1 represents a hydrogen atom or C 1 -C 12 alkoxycarbonyl,
Q represents CH 2 OR 2 , C (═O) OR 2 , cyano, or CH 2 N (Q 1 ) Q 2 ,
R 2 represents a hydrogen atom or C 1 -C 6 alkyl,
Q 1 and Q 2 are each independently a hydrogen atom, C 1 -C 12 alkyl, C 1 -C 12 alkoxy, halo (C 1 -C 12 ) alkyl, halo (C 1 -C 12 ) alkoxy, C 3 -C 8 cycloalkyl, C 1 -C 12 alkylcarbonyl, C 1 -C 12 alkoxycarbonyl, halo (C 1 -C 12 ) alkylcarbonyl, halo (C 1 -C 12 ) alkoxycarbonyl, C 3 -C 8 cyclo Alkylcarbonyl, phenyl, phenyl substituted by (Y) n , phenylcarbonyl, phenylcarbonyl substituted by (Y) m , C 1 -C 6 alkoxy (C 1 -C 6 ) alkyl, C 1 -C 6 alkylthio (C 1 ~ C 6) alkyl, C 1 ~ C 6 alkylsulfinyl (C 1 ~ C 6) alkyl, C 1 ~ C 6 Alkylsulfonyl (C 1 ~ C 6) alkyl, C 1 ~ C 6 alkoxy (C 1 ~ C 6) alkylcarbonyl, C 1 ~ C 6 alkylthio (C 1 ~ C 6) alkylcarbonyl, C 1 ~ C 6 alkylsulfinyl Represents (C 1 -C 6 ) alkylcarbonyl or C 1 -C 6 alkylsulfonyl (C 1 -C 6 ) alkylcarbonyl,
Y represents a halogen atom,
n represents an integer of 1, 2, 3, 4 or 5;
m represents an integer of 1, 2, 3, 4 or 5, and an amine compound represented by the formula (4):
Figure JPOXMLDOC01-appb-C000022
[Wherein X represents a halogen atom. A compound represented by formula (1):
Figure JPOXMLDOC01-appb-C000023
[Wherein, A, R 1 and Q represent the same meaning as described above] A method for producing a trifluoromethanesulfine anilide compound represented by the formula:
〔9〕Aは、-CH=CH-を表し、
 Rは、水素原子又はC~Cアルコキシカルボニルを表し、
 Q、Qはそれぞれ独立して、水素原子、C~C12アルキル、ハロ(C~C12)アルキル、C~C12アルキルカルボニル、ハロ(C~C12)アルキルカルボニル、フェニル、(Y)によって置換されたフェニル、フェニルカルボニル又は(Y)によって置換されたフェニルカルボニルを表す、上記〔8〕に記載のトリフルオロメタンスルフィンアニリド化合物の製造方法。
[9] A represents —CH═CH—,
R 1 represents a hydrogen atom or C 1 -C 6 alkoxycarbonyl,
Q 1 and Q 2 are each independently a hydrogen atom, C 1 -C 12 alkyl, halo (C 1 -C 12 ) alkyl, C 1 -C 12 alkylcarbonyl, halo (C 1 -C 12 ) alkylcarbonyl, The method for producing a trifluoromethanesulfinanilide compound according to [8] above, which represents phenyl, phenyl substituted by (Y) n , phenylcarbonyl or phenylcarbonyl substituted by (Y) m .
〔10〕塩基の存在下で反応を行う、上記〔8〕又は〔9〕に記載のトリフルオロメタンスルフィンアニリド化合物の製造方法。 [10] The method for producing a trifluoromethanesulfinanilide compound according to [8] or [9], wherein the reaction is performed in the presence of a base.
 〔11〕式(5):
Figure JPOXMLDOC01-appb-C000024
[式中、Mは、ナトリウム又はカリウムを表す。]で表される化合物を、ハロゲン化剤と反応させて式(4)で表される化合物を製造し、製造した式(4)で表される化合物を用いる、上記〔8〕、〔9〕又は〔10〕に記載のトリフルオロメタンスルフィンアニリド化合物の製造方法。
[11] Formula (5):
Figure JPOXMLDOC01-appb-C000024
[Wherein M represents sodium or potassium. The compound represented by formula (4) is produced by reacting the compound represented by formula (4) with the halogenating agent, and the produced compound represented by formula (4) is used. Or the manufacturing method of the trifluoromethanesulfine anilide compound as described in [10].
〔12〕ハロゲン化剤が塩化チオニルである、上記〔11〕に記載のトリフルオロメタンスルフィンアニリド化合物の製造方法。 [12] The process for producing a trifluoromethanesulfinanilide compound according to [11] above, wherein the halogenating agent is thionyl chloride.
〔13〕式(1):
Figure JPOXMLDOC01-appb-C000025
[式中、Aは、-CH=CH-又は硫黄原子を表し、
 Rは、水素原子又はC~C12アルコキシカルボニルを表し、
 Qは、CHOR、C(=O)OR、シアノ又はCHN(Q)Qの何れかを表し、
 Rは、水素原子又はC~Cアルキルを表し、
 Q、Qはそれぞれ独立して、水素原子、C~C12アルキル、C~C12アルコキシ、ハロ(C~C12)アルキル、ハロ(C~C12)アルコキシ、C~Cシクロアルキル、C~C12アルキルカルボニル、C~C12アルコキシカルボニル、ハロ(C~C12)アルキルカルボニル、ハロ(C~C12)アルコキシカルボニル、C~Cシクロアルキルカルボニル、フェニル、(Y)によって置換されたフェニル、フェニルカルボニル、(Y)によって置換されたフェニルカルボニル、C~Cアルコキシ(C~C)アルキル、C~Cアルキルチオ(C~C)アルキル、C~Cアルキルスルフィニル(C~C)アルキル、C~Cアルキルスルホニル(C~C)アルキル、C~Cアルコキシ(C~C)アルキルカルボニル、C~Cアルキルチオ(C~C)アルキルカルボニル、C~Cアルキルスルフィニル(C~C)アルキルカルボニル又はC~Cアルキルスルホニル(C~C)アルキルカルボニルを表し、
 Yは、ハロゲン原子を表し、
 nは、1、2、3、4又は5の整数を表し、
 mは、1、2、3、4又は5の整数を表す]で表されるトリフルオロメタンスルフィンアニリド化合物又はその塩。
[13] Formula (1):
Figure JPOXMLDOC01-appb-C000025
[In the formula, A represents —CH═CH— or a sulfur atom,
R 1 represents a hydrogen atom or C 1 -C 12 alkoxycarbonyl,
Q represents CH 2 OR 2 , C (═O) OR 2 , cyano, or CH 2 N (Q 1 ) Q 2 ,
R 2 represents a hydrogen atom or C 1 -C 6 alkyl,
Q 1 and Q 2 are each independently a hydrogen atom, C 1 -C 12 alkyl, C 1 -C 12 alkoxy, halo (C 1 -C 12 ) alkyl, halo (C 1 -C 12 ) alkoxy, C 3 -C 8 cycloalkyl, C 1 -C 12 alkylcarbonyl, C 1 -C 12 alkoxycarbonyl, halo (C 1 -C 12 ) alkylcarbonyl, halo (C 1 -C 12 ) alkoxycarbonyl, C 3 -C 8 cyclo Alkylcarbonyl, phenyl, phenyl substituted by (Y) n , phenylcarbonyl, phenylcarbonyl substituted by (Y) m , C 1 -C 6 alkoxy (C 1 -C 6 ) alkyl, C 1 -C 6 alkylthio (C 1 ~ C 6) alkyl, C 1 ~ C 6 alkylsulfinyl (C 1 ~ C 6) alkyl, C 1 ~ C 6 Alkylsulfonyl (C 1 ~ C 6) alkyl, C 1 ~ C 6 alkoxy (C 1 ~ C 6) alkylcarbonyl, C 1 ~ C 6 alkylthio (C 1 ~ C 6) alkylcarbonyl, C 1 ~ C 6 alkylsulfinyl Represents (C 1 -C 6 ) alkylcarbonyl or C 1 -C 6 alkylsulfonyl (C 1 -C 6 ) alkylcarbonyl,
Y represents a halogen atom,
n represents an integer of 1, 2, 3, 4 or 5;
m represents an integer of 1, 2, 3, 4 or 5.] A trifluoromethanesulfinanilide compound or a salt thereof.
〔14〕Aは、-CH=CH-を表し、
 Rは、水素原子又はC~Cアルコキシカルボニルを表し、
 Q、Qは、水素原子、C~C12アルキル、ハロ(C~C12)アルキル、C~C12アルキルカルボニル、ハロ(C~C12)アルキルカルボニル、フェニル、(Y)によって置換されたフェニル、フェニルカルボニル又は(Y)によって置換されたフェニルカルボニルを表す、上記〔13〕に記載のトリフルオロメタンスルフィンアニリド化合物又はその塩。
[14] A represents —CH═CH—,
R 1 represents a hydrogen atom or C 1 -C 6 alkoxycarbonyl,
Q 1 and Q 2 are each a hydrogen atom, C 1 -C 12 alkyl, halo (C 1 -C 12 ) alkyl, C 1 -C 12 alkylcarbonyl, halo (C 1 -C 12 ) alkylcarbonyl, phenyl, (Y The trifluoromethanesulfinanilide compound or a salt thereof according to the above [13], which represents phenyl substituted by n , phenylcarbonyl, or phenylcarbonyl substituted by (Y) m .
〔15〕式(6):
Figure JPOXMLDOC01-appb-C000026
 [Rは、水素原子又はC~Cアルコキシカルボニルを表し、
 Q、Qはそれぞれ独立して、ハロ(C~C12)アルキルカルボニル、ハロ(C~C12)アルコキシカルボニル、C~Cアルコキシ(C~C)アルキルカルボニル、C~Cアルキルチオ(C~C)アルキルカルボニル、C~Cアルキルスルフィニル(C~C)アルキルカルボニル又はC~Cアルキルスルホニル(C~C)アルキルカルボニルを表す]で表されるトリフルオロメタンスルホンアミド化合物又はその塩。
[15] Formula (6):
Figure JPOXMLDOC01-appb-C000026
[R 1 represents a hydrogen atom or C 1 -C 6 alkoxycarbonyl;
Q 1 and Q 2 are each independently halo (C 1 -C 12 ) alkylcarbonyl, halo (C 1 -C 12 ) alkoxycarbonyl, C 1 -C 6 alkoxy (C 1 -C 6 ) alkylcarbonyl, C It represents a 1 ~ C 6 alkylthio (C 1 ~ C 6) alkylcarbonyl, C 1 ~ C 6 alkylsulfinyl (C 1 ~ C 6) alkylcarbonyl or C 1 ~ C 6 alkylsulfonyl (C 1 ~ C 6) alkylcarbonyl ] The trifluoromethanesulfonamide compound represented by these, or its salt.
〔16〕式(7):
Figure JPOXMLDOC01-appb-C000027
[Rは、水素原子又はC~Cアルコキシカルボニルを表し、
 Qは、ハロ(C~C12)アルキルカルボニル、ハロ(C~C12)アルコキシカルボニル、C~Cアルコキシ(C~C)アルキルカルボニル、C~Cアルキルチオ(C~C)アルキルカルボニル、C~Cアルキルスルフィニル(C~C)アルキルカルボニル又はC~Cアルキルスルホニル(C~C)アルキルカルボニルを表す]で表されるアミノベンジルアミン化合物。
[16] Formula (7):
Figure JPOXMLDOC01-appb-C000027
[R 1 represents a hydrogen atom or C 1 -C 6 alkoxycarbonyl;
Q 1 is halo (C 1 -C 12 ) alkylcarbonyl, halo (C 1 -C 12 ) alkoxycarbonyl, C 1 -C 6 alkoxy (C 1 -C 6 ) alkylcarbonyl, C 1 -C 6 alkylthio (C 1 -C 6 ) alkylcarbonyl, C 1 -C 6 alkylsulfinyl (C 1 -C 6 ) alkylcarbonyl or C 1 -C 6 alkylsulfonyl (C 1 -C 6 ) represents alkylcarbonyl] Amine compounds.
〔17〕式(8):
Figure JPOXMLDOC01-appb-C000028
[式中、Aは、-CH=CH-又は硫黄原子を表し、
 Xは、ハロゲン原子、メタンスルホニルオキシ、トリフルオロメタンスルホニルオキシ又はp-トルエンスルホニルオキシを表し、
 Yは、-NO、-NH、-NHCO、-NHSOR又は-NHSOを表し、
 Rは、C~Cハロアルキル又はC~Cアルキルを表す。]で表されるベンジル化合物と、式(9):
Figure JPOXMLDOC01-appb-C000029
[式中、Rは、水素原子、ハロゲン原子、C~Cハロアルキル、C~Cアルコキシ又はC~Cアルキルを表し、
 Rは、水素原子、ハロゲン原子、C~Cハロアルキル、C~Cアルコキシ又はC~Cアルキルを表し、RとRはそれぞれが結合する炭素原子と共にC~Cシクロアルキルを形成しても良く、
 Rは、水素原子、ハロゲン原子、C~Cハロアルキル、C~Cアルコキシ又はC~Cアルキルを表し、
 Rは、水素原子、ハロゲン原子、C~Cハロアルキル、C~Cアルコキシ又はC~Cアルキルを表し、RとRはそれぞれが結合する炭素原子と共にC~Cシクロアルキルを形成しても良く、
 nは、0、1、2又は3の整数を表す。]で表されるラクタム化合物を、塩基の存在下で反応させることを特徴とする、式(10):
Figure JPOXMLDOC01-appb-C000030
[式中、A、Y、R、R、R、R、R及びnは上記と同じ意味を表す。]で表されるN-ベンジルラクタム化合物の製造方法。
[17] Formula (8):
Figure JPOXMLDOC01-appb-C000028
[In the formula, A represents —CH═CH— or a sulfur atom,
X 1 represents a halogen atom, methanesulfonyloxy, trifluoromethanesulfonyloxy or p-toluenesulfonyloxy,
Y represents —NO 2 , —NH 2 , —NHCO 2 R 1 , —NHSOR 1 or —NHSO 2 R 1 ;
R 1 represents C 1 -C 6 haloalkyl or C 1 -C 6 alkyl. A benzyl compound represented by formula (9):
Figure JPOXMLDOC01-appb-C000029
[Wherein R 2 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl,
R 3 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl, and R 2 and R 3 together with the carbon atom to which each is attached together with C 3 -C 6 cycloalkyl may be formed,
R 4 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl,
R 5 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl, and R 4 and R 5 together with the carbon atom to which each is bonded together, C 3 -C 6 cycloalkyl may be formed,
n represents an integer of 0, 1, 2, or 3. Wherein the lactam compound represented by the formula (10) is reacted in the presence of a base:
Figure JPOXMLDOC01-appb-C000030
[Wherein, A, Y, R 1 , R 2 , R 3 , R 4 , R 5 and n represent the same meaning as described above. ] The manufacturing method of the N-benzyl lactam compound represented by this.
〔18〕式(8):
Figure JPOXMLDOC01-appb-C000031
[式中、Aは、-CH=CH-又は硫黄原子を表し、
 Xは、ハロゲン原子、メタンスルホニルオキシ、トリフルオロメタンスルホニルオキシ又はp-トルエンスルホニルオキシを表し、
 Yは、-NO、-NH、-NHCO、-NHSOR又は-NHSOを表し、
 Rは、C~Cハロアルキル又はC~Cアルキルを表す。]で表されるベンジル化合物と、式(11):
Figure JPOXMLDOC01-appb-C000032
[式中、Rは、水素原子、ハロゲン原子、C~Cハロアルキル、C~Cアルコキシ又はC~Cアルキルを表し、
 Rは、水素原子、ハロゲン原子、C~Cハロアルキル、C~Cアルコキシ又はC~Cアルキルを表し、RとRはそれぞれが結合する炭素原子と共にC~Cシクロアルキルを形成しても良く、
 Rは、水素原子、ハロゲン原子、C~Cハロアルキル、C~Cアルコキシ又はC~Cアルキルを表し、
 Rは、水素原子、ハロゲン原子、C~Cハロアルキル、C~Cアルコキシ又はC~Cアルキルを表し、RとRはそれぞれが結合する炭素原子と共にC~Cシクロアルキルを形成しても良く、
 nは、0、1、2又は3の整数を表し、
 Xは、ハロゲン原子、メタンスルホニルオキシ、トリフルオロメタンスルホニルオキシ又はp-トルエンスルホニルオキシを表す。]で表されるアミド化合物を塩基の存在下で反応させることを特徴とする、式(12):
Figure JPOXMLDOC01-appb-C000033
[式中、A、Y、R、R、R、R、R、n及びXは上記と同様の意味を表す。]で表されるN-ベンジルアミド化合物の製造方法。
[18] Formula (8):
Figure JPOXMLDOC01-appb-C000031
[In the formula, A represents —CH═CH— or a sulfur atom,
X 1 represents a halogen atom, methanesulfonyloxy, trifluoromethanesulfonyloxy or p-toluenesulfonyloxy,
Y represents —NO 2 , —NH 2 , —NHCO 2 R 1 , —NHSOR 1 or —NHSO 2 R 1 ;
R 1 represents C 1 -C 6 haloalkyl or C 1 -C 6 alkyl. A benzyl compound represented by formula (11):
Figure JPOXMLDOC01-appb-C000032
[Wherein R 2 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl,
R 3 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl, and R 2 and R 3 together with the carbon atom to which each is attached together with C 3 -C 6 cycloalkyl may be formed,
R 4 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl,
R 5 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl, and R 4 and R 5 together with the carbon atom to which each is bonded together, C 3 -C 6 cycloalkyl may be formed,
n represents an integer of 0, 1, 2, or 3;
X 2 represents a halogen atom, methanesulfonyloxy, trifluoromethanesulfonyloxy or p-toluenesulfonyloxy. Wherein the amide compound represented by formula (12) is reacted in the presence of a base:
Figure JPOXMLDOC01-appb-C000033
[Wherein, A, Y, R 1 , R 2 , R 3 , R 4 , R 5 , n, and X 2 represent the same meaning as described above. ] The manufacturing method of the N-benzylamide compound represented by this.
〔19〕式(12):
Figure JPOXMLDOC01-appb-C000034
 [式中、Aは、-CH=CH-又は硫黄原子を表し、
 Yは、-NO、-NH、-NHCO、-NHSOR又は-NHSOを表し、
 Rは、C~Cハロアルキル又はC~Cアルキルを表し、
 Rは、水素原子、ハロゲン原子、C~Cハロアルキル、C~Cアルコキシ又はC~Cアルキルを表し、
 Rは、水素原子、ハロゲン原子、C~Cハロアルキル、C~Cアルコキシ又はC~Cアルキルを表し、RとRはそれぞれが結合する炭素原子と共にC~Cシクロアルキルを形成しても良く、
 Rは、水素原子、ハロゲン原子、C~Cハロアルキル、C~Cアルコキシ又はC~Cアルキルを表し、
 Rは、水素原子、ハロゲン原子、C~Cハロアルキル、C~Cアルコキシ又はC~Cアルキルを表し、RとRはそれぞれが結合する炭素原子と共にC~Cシクロアルキルを形成しても良く、
 nは、0,1,2又は3の整数を表し、
 Xは、ハロゲン原子、メタンスルホニルオキシ、トリフルオロメタンスルホニルオキシ又はp-トルエンスルホニルオキシを表す。]で表されるN-ベンジルアミド化合物を塩基の存在下で反応させることを特徴とする、式(10):
Figure JPOXMLDOC01-appb-C000035
[式中、A、Y、R、R、R、R、R及びnは上記と同様の意味を表す。]で表されるN-ベンジルラクタム化合物の製造方法。
[19] Formula (12):
Figure JPOXMLDOC01-appb-C000034
[In the formula, A represents —CH═CH— or a sulfur atom,
Y represents —NO 2 , —NH 2 , —NHCO 2 R 1 , —NHSOR 1 or —NHSO 2 R 1 ;
R 1 represents C 1 -C 6 haloalkyl or C 1 -C 6 alkyl,
R 2 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl,
R 3 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl, and R 2 and R 3 together with the carbon atom to which each is attached together with C 3 -C 6 cycloalkyl may be formed,
R 4 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl,
R 5 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl, and R 4 and R 5 together with the carbon atom to which each is bonded together, C 3 -C 6 cycloalkyl may be formed,
n represents an integer of 0, 1, 2 or 3,
X 2 represents a halogen atom, methanesulfonyloxy, trifluoromethanesulfonyloxy or p-toluenesulfonyloxy. Wherein the N-benzylamide compound represented by the formula (10) is reacted in the presence of a base:
Figure JPOXMLDOC01-appb-C000035
[Wherein, A, Y, R 1 , R 2 , R 3 , R 4 , R 5 and n represent the same meaning as described above. ] The manufacturing method of the N-benzyl lactam compound represented by this.
〔20〕添加物として相間移動触媒を加える上記〔17〕乃至〔19〕に記載の製造方法。
〔21〕nは、0を表す上記〔17〕乃至〔20〕に記載の製造方法。
〔22〕nは、1の整数を表す上記〔17〕乃至〔20〕に記載の製造方法。
〔23〕nは、2の整数を表す上記〔17〕乃至〔20〕に記載の製造方法。
〔24〕nは、3の整数を表す上記〔17〕乃至〔20〕に記載の製造方法。
[20] The production method according to the above [17] to [19], wherein a phase transfer catalyst is added as an additive.
[21] The production method according to [17] to [20], wherein n represents 0.
[22] The production method according to [17] to [20], wherein n represents an integer of 1.
[23] The production method according to [17] to [20], wherein n represents an integer of 2.
[24] The production method according to [17] to [20], wherein n represents an integer of 3.
〔25〕塩基が、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム、炭酸水素カリウム、燐酸ナトリウム、燐酸カリウム、燐酸一水素ナトリウム又は燐酸一水素カリウムである上記〔17〕~〔24〕に記載の製造方法。
〔26〕塩基が、水酸化ナトリウム、炭酸カリウム又は燐酸カリウムである上記〔25〕に記載の製造方法。
〔27〕相間移動触媒が、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラ-n-ブチルアンモニウムフルオリド、テトラ-n-ブチルアンモニウムクロリド、テトラ-n-ブチルアンモニウムブロミド、テトラ-n-ブチルアンモニウムヨージド、テトラ-n-ブチルアンモニウム硫酸水素塩、テトラ-n-ブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムクロリド、ベンジルトリメチルアンモニウムブロミド、ベンジルトリ-n-ブチルアンモニウムクロリド、ベンジルトリ-n-ブチルアンモニウムブロミド、テトラエチルホスホニウムブロミド、テトラ-n-ブチルホスホニウムブロミド、テトラ-n-ブチルホスホニウムクロリド又はテトラフェニルホスホニウムブロミドである上記〔20〕乃至〔26〕に記載のN-ベンジルラクタム化合物の製造方法。
〔28〕相間移動触媒が、テトラ-n-ブチルアンモニウムブロミドである上記〔27〕に記載の製造方法。
〔29〕前記式中、Aは、-CH=CH-を表す上記〔17〕乃至〔28〕に記載の製造方法。
〔30〕前記式中、Aは、硫黄原子を表す上記〔17〕乃至〔28〕に記載の製造方法。
[25] The base is lithium hydroxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, sodium carbonate, potassium carbonate, cesium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium phosphate, The production method according to the above [17] to [24], which is potassium phosphate, sodium monohydrogen phosphate or potassium monohydrogen phosphate.
[26] The production method of the above-mentioned [25], wherein the base is sodium hydroxide, potassium carbonate or potassium phosphate.
[27] Phase transfer catalyst is tetramethylammonium chloride, tetramethylammonium bromide, tetra-n-butylammonium fluoride, tetra-n-butylammonium chloride, tetra-n-butylammonium bromide, tetra-n-butylammonium iodide Tetra-n-butylammonium hydrogen sulfate, tetra-n-butylammonium hydroxide, benzyltrimethylammonium chloride, benzyltrimethylammonium bromide, benzyltri-n-butylammonium chloride, benzyltri-n-butylammonium bromide, tetraethylphosphonium bromide Tetra-n-butylphosphonium bromide, tetra-n-butylphosphonium chloride or tetraphenylphosphonium bromide Method for producing N- benzyl lactam compound according to [20] to [26].
[28] The production method of the above-mentioned [27], wherein the phase transfer catalyst is tetra-n-butylammonium bromide.
[29] The production method of the above-mentioned [17] to [28], wherein A represents —CH═CH—.
[30] The production method according to the above [17] to [28], wherein A represents a sulfur atom.
 本発明によれば、医農薬及び各種化学品の製造中間体として工業的に有用なN-ベンジルラクタム化合物、トリフルオロメタンスルホンアミド化合物の製造方法並びにその中間体として有用なトリフルオロメタンスルフィニル化合物及びその製造方法が提供される。 INDUSTRIAL APPLICABILITY According to the present invention, N-benzyl lactam compounds and trifluoromethanesulfonamide compounds that are industrially useful as intermediates for the production of medical and agricultural chemicals and various chemicals, and trifluoromethanesulfinyl compounds that are useful as intermediates thereof, and the production thereof A method is provided.
 本発明の製造方法に用いる原材料となる化合物が1個又は2個以上の不斉炭素原子を有する場合には、本発明は全ての光学活性体、ラセミ体又はジアステレオマーを包含する。 When the compound used as a raw material used in the production method of the present invention has one or more asymmetric carbon atoms, the present invention includes all optically active substances, racemates or diastereomers.
 次に、本明細書において示した各置換基の具体例を以下に示す。ここでは、n-はノルマル、i-はイソ、s-はセカンダリー及びt-はターシャリーを各々意味し、m-はメタ及びp-はパラを意味する。 Next, specific examples of each substituent shown in the present specification are shown below. Here, n- means normal, i- means iso, s- means secondary and t- means tertiary, m- means meta and p- means para.
 本発明におけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。尚、本明細書中「ハロ」の表記もこれらのハロゲン原子を表す。
 本発明に包含される化合物のうちで、常法に従って塩にすることができるものは、例えば、フッ化水素、塩化水素、臭化水素、ヨウ化水素等のハロゲン化水素の塩、硝酸、硫酸、燐酸、塩素酸、過塩素酸等の無機酸の塩、メタンスルホン酸、エタンスルホン酸、トリフルオロメタンスルホン酸等のスルホン酸の塩、ギ酸、酢酸、プロピオン酸、トリフルオロ酢酸、フマール酸、酒石酸、蓚酸、マレイン酸、リンゴ酸、コハク酸、安息香酸、マンデル酸、アスコルビン酸、乳酸、グルコン酸、クエン酸等のカルボン酸の塩、グルタミン酸、アスパラギン酸等のアミノ酸の塩、リチウム、ナトリウム、カリウムといったアルカリ金属の塩、カルシウム、バリウム、マグネシウムといったアルカリ土類金属の塩、アルミニウムの塩、テトラメチルアンモニウム塩、テトラブチルアンモニウム塩、ベンジルトリメチルアンモニウム塩等の四級アンモニウム塩とすることでき、本発明書中におけるトリフルオロメタンスルフィンアニリド化合物の塩とは、これらの塩を表す。
As a halogen atom in this invention, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are mentioned. In the present specification, the notation “halo” also represents these halogen atoms.
Among the compounds included in the present invention, those that can be converted into a salt according to a conventional method include, for example, salts of hydrogen halides such as hydrogen fluoride, hydrogen chloride, hydrogen bromide, hydrogen iodide, nitric acid, sulfuric acid , Inorganic acid salts such as phosphoric acid, chloric acid, perchloric acid, sulfonic acid salts such as methanesulfonic acid, ethanesulfonic acid, trifluoromethanesulfonic acid, formic acid, acetic acid, propionic acid, trifluoroacetic acid, fumaric acid, tartaric acid , Succinic acid, maleic acid, malic acid, succinic acid, benzoic acid, mandelic acid, ascorbic acid, carboxylic acid salts such as lactic acid, gluconic acid, citric acid, amino acid salts such as glutamic acid, aspartic acid, lithium, sodium, potassium Alkali metal salts such as alkaline earth metal salts such as calcium, barium and magnesium, aluminum salts, tetramethyla Moniumu salts, tetrabutylammonium salts, can be a quaternary ammonium salt such as benzyltrimethylammonium salts, salts of trifluoromethane sulfinic anilide compound in the present invention the term denotes these salts.
 本明細書におけるCa~Cbアルキルの表記は、炭素原子数がa~b個よりなる直鎖状又は分岐鎖状の炭化水素基を表し、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、s-ブチル基、n-ペンチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1-エチルプロピル基、1,1-ジメチルプロピル基、1,2-ジメチルプロピル基、ネオペンチル基、n-ヘキシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、1-エチルブチル基、2-エチルブチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、1,3-ジメチルブチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、3,3-ジメチルブチル基、1,1,2-トリメチルプロピル基、1-エチル-1-メチルプロピル基、1-エチル-2-メチルプロピル基、1-ヘプチル基、1-オクチル基、1-ノニル基、1-デシル基、1-ウンデシル基、1-ドデシル基等が具体例として挙げられ、各々の指定の炭素数の範囲で選択される。 In the present specification, C a -C b alkyl represents a linear or branched hydrocarbon group having from a to b carbon atoms, for example, a methyl group, an ethyl group, or an n-propyl group. I-propyl group, n-butyl group, i-butyl group, t-butyl group, s-butyl group, n-pentyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1-ethylpropyl group Group, 1,1-dimethylpropyl group, 1,2-dimethylpropyl group, neopentyl group, n-hexyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, 1-ethylbutyl group, 2-ethylbutyl group, 1,1-dimethylbutyl group, 1,2-dimethylbutyl group, 1,3-dimethylbutyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, 3,3-di Tylbutyl group, 1,1,2-trimethylpropyl group, 1-ethyl-1-methylpropyl group, 1-ethyl-2-methylpropyl group, 1-heptyl group, 1-octyl group, 1-nonyl group, 1- Specific examples include a decyl group, a 1-undecyl group, a 1-dodecyl group, and the like, and each is selected within a range of each designated carbon number.
 本明細書におけるCa~Cbアルコキシの表記は、前記の意味であるCa~Cbアルキル-O-基を表し、例えば、メチル-O-基、エチル-O-基、n-プロピル-O-基、i-プロピル-O-基、n-ブチル-O-基、i-ブチル-O-基、t-ブチル-O-基、s-ブチル-O-基、ペンチル-O-基、1-メチルブチル-O-基、2-メチルブチル-O-基、3-メチルブチル-O-基、1-エチルプロピル-O-基、1,1-ジメチルプロピル-O-基、1,2-ジメチルプロピル-O-基、ネオペンチル-O-基、n-ヘキシル-O-基、1-メチルペンチル-O-基、2-メチルペンチル-O-基、3-メチルペンチル-O-基、4-メチルペンチル-O-基、1-エチルブチル-O-基、2-エチルブチル-O-基、1,1-ジメチルブチル-O-基、1,2-ジメチルブチル-O-基、1,3-ジメチルブチル-O-基、2,2-ジメチルブチル-O-基、2,3-ジメチルブチル-O-基、3,3-ジメチルブチル-O-基、1,1,2-トリメチルプロピル-O-基、1-エチル-1-メチルプロピル-O-基、1-エチル-2-メチルプロピル-O-基、1-ヘプチル-O-基、1-オクチル-O-基、1-ノニル-O-基、1-デシル-O-基、1-ウンデシル-O-基、1-ドデシル-O-基等が具体例として挙げられ、各々の指定の炭素数の範囲で選択される。 In the present specification, the expression C a -C b alkoxy represents the C a -C b alkyl-O— group having the above-mentioned meaning, for example, methyl-O-group, ethyl-O-group, n-propyl- O-group, i-propyl-O-group, n-butyl-O-group, i-butyl-O-group, t-butyl-O-group, s-butyl-O-group, pentyl-O-group, 1-methylbutyl-O-group, 2-methylbutyl-O-group, 3-methylbutyl-O-group, 1-ethylpropyl-O-group, 1,1-dimethylpropyl-O-group, 1,2-dimethylpropyl -O- group, neopentyl-O- group, n-hexyl-O- group, 1-methylpentyl-O- group, 2-methylpentyl-O- group, 3-methylpentyl-O- group, 4-methylpentyl -O- group, 1-ethylbutyl-O- group, 2-ethylbutyl-O- group, 1,1-dimethylbutyl-O- group, 1,2-dimethylbutyl-O- group, 1,3-dimethylbutyl O-group, 2,2-dimethylbutyl-O-group, 2,3-dimethylbutyl-O-group, 3,3-dimethylbutyl-O-group, 1,1,2-trimethylpropyl-O-group, 1-ethyl-1-methylpropyl-O- group, 1-ethyl-2-methylpropyl-O- group, 1-heptyl-O- group, 1-octyl-O- group, 1-nonyl-O- group, Specific examples include a 1-decyl-O— group, a 1-undecyl-O— group, a 1-dodecyl-O— group, and the like, and each is selected within a range of each designated carbon number.
 本明細書におけるCa~Cbアルコキシ(Ca~Cb)アルキルの表記は、前記の意味であるCa~Cbアルコキシによって炭素原子に結合した水素原子が任意に置換された前記の意味であるCa~Cbアルキルを表し、例えば、メチル-O-メチル基、エチル-O-メチル基、n-プロピル-O-メチル基、i-プロピル-O-メチル基、n-ブチル-O-メチル基、i-ブチル-O-メチル基、t-ブチル-O-メチル基、s-ブチル-O-メチル基、ペンチル-O-メチル基、1-メチルブチル-O-メチル基、2-メチルブチル-O-メチル基、3-メチルブチル-O-メチル基、1-エチルプロピル-O-メチル基、1,1-ジメチルプロピル-O-メチル基、1,2-ジメチルプロピル-O-メチル基、ネオペンチル-O-メチル基、n-ヘキシル-O-メチル基、1-メチルペンチル-O-メチル基、2-メチルペンチル-O-メチル基、3-メチルペンチル-O-メチル基、4-メチルペンチル-O-メチル基、1-エチルブチル-O-メチル基、1-(メチル-O-)エチル基、2-(メチル-O-)エチル基、3-(メチル-O-)プロピル基、4-(メチル-O-)ブチル基、5-(メチル-O-)ペンチル基、6-(メチル-O-)ヘキシル基等が具体例として挙げられ、各々の指定の炭素数の範囲で選択される。 The notation of C a -C b alkoxy (C a -C b ) alkyl in the present specification means the above-mentioned meaning that a hydrogen atom bonded to a carbon atom is optionally substituted by C a -C b alkoxy as defined above. C a -C b alkyl, such as methyl-O-methyl group, ethyl-O-methyl group, n-propyl-O-methyl group, i-propyl-O-methyl group, n-butyl-O -Methyl group, i-butyl-O-methyl group, t-butyl-O-methyl group, s-butyl-O-methyl group, pentyl-O-methyl group, 1-methylbutyl-O-methyl group, 2-methylbutyl -O-methyl group, 3-methylbutyl-O-methyl group, 1-ethylpropyl-O-methyl group, 1,1-dimethylpropyl-O-methyl group, 1,2-dimethylpropyl-O-methyl group, neopentyl -O-methyl group, n-hexyl-O-methyl group, 1-methylpentyl-O-methyl Group, 2-methylpentyl-O-methyl group, 3-methylpentyl-O-methyl group, 4-methylpentyl-O-methyl group, 1-ethylbutyl-O-methyl group, 1- (methyl-O-) ethyl Group, 2- (methyl-O-) ethyl group, 3- (methyl-O-) propyl group, 4- (methyl-O-) butyl group, 5- (methyl-O-) pentyl group, 6- (methyl Specific examples include —O—) hexyl group and the like, and each is selected within a range of each designated carbon number.
 本明細書におけるCa~Cbアルコキシカルボニルの表記は、前記の意味であるCa~Cbアルキル-O-C(O)-基を表し、例えば、メチル-O-C(O)-基、エチル-O-C(O)-基、n-プロピル-O-C(O)-基、i-プロピル-O-C(O)-基、n-ブチル-O-C(O)-基、i-ブチル-O-C(O)-基、t-ブチル-O-C(O)-基、s-ブチル-O-C(O)-基、n-ペンチル-O-C(O)-基、1-メチルブチル-O-C(O)-基、2-メチルブチル-O-C(O)-基、3-メチルブチル-O-C(O)-基、1-エチルプロピル-O-C(O)-基、1,1-ジメチルプロピル-O-C(O)-基、1,2-ジメチルプロピル-O-C(O)-基、ネオペンチル-O-C(O)-基、n-ヘキシル-O-C(O)-基、1-メチルペンチル-O-C(O)-基、2-メチルペンチル-O-C(O)-基、3-メチルペンチル-O-C(O)-基、4-メチルペンチル-O-C(O)-基、1-エチルブチル-O-C(O)-基、2-エチルブチル-O-C(O)-基、1,1-ジメチルブチル-O-C(O)-基、1,2-ジメチルブチル-O-C(O)-基、1,3-ジメチルブチル-O-C(O)-基、2,2-ジメチルブチル-O-C(O)-基、2,3-ジメチルブチル-O-C(O)-基、3,3-ジメチルブチル-O-C(O)-基、1,1,2-トリメチルプロピル-O-C(O)-基、1-エチル-1-メチルプロピル-O-C(O)-基、1-エチル-2-メチルプロピル-O-C(O)-基、1-ヘプチル-O-C(O)-基、1-オクチル-O-C(O)-基、1-ノニル-O-C(O)-基、1-デシル-O-C(O)-基、1-ウンデシル-O-C(O)-基、1-ドデシル-O-C(O)-基等が具体例として挙げられ、各々の指定の炭素数の範囲で選択される。 In the present specification, the expression C a -C b alkoxycarbonyl represents a C a -C b alkyl-O—C (O) — group as defined above, for example, a methyl-O—C (O) — group. , Ethyl-O-C (O)-group, n-propyl-O-C (O)-group, i-propyl-O-C (O)-group, n-butyl-O-C (O)-group , I-butyl-O-C (O)-group, t-butyl-O-C (O)-group, s-butyl-O-C (O)-group, n-pentyl-O-C (O) -Group, 1-methylbutyl-O-C (O)-group, 2-methylbutyl-O-C (O)-group, 3-methylbutyl-O-C (O)-group, 1-ethylpropyl-O-C (O)-group, 1,1-dimethylpropyl-O-C (O)-group, 1,2-dimethylpropyl-O-C (O)-group, neopentyl-O-C (O)-group, n -Hexyl-O-C (O)-group, 1-methylpentyl-O-C (O)-group, 2-methylpentyl-O-C (O)-group, 3-methylpentyl-O-C (O ) -Group, 4-methylpen -O-C (O)-group, 1-ethylbutyl-O-C (O)-group, 2-ethylbutyl-O-C (O)-group, 1,1-dimethylbutyl-O-C (O) -Group, 1,2-dimethylbutyl-O-C (O)-group, 1,3-dimethylbutyl-O-C (O)-group, 2,2-dimethylbutyl-O-C (O)-group 2,3-dimethylbutyl-O—C (O) — group, 3,3-dimethylbutyl-O—C (O) — group, 1,1,2-trimethylpropyl-O—C (O) — group 1-ethyl-1-methylpropyl-O—C (O) — group, 1-ethyl-2-methylpropyl-O—C (O) — group, 1-heptyl-O—C (O) — group, 1-octyl-O—C (O) — group, 1-nonyl-O—C (O) — group, 1-decyl-O—C (O) — group, 1-undecyl-O—C (O) — group Specific examples include a group, 1-dodecyl-O—C (O) — group, and the like, and each is selected within the range of the designated number of carbon atoms.
 本明細書におけるハロ(Ca~Cb)アルキルの表記は、前記の意味であるハロゲン原子によって炭素原子に結合した水素原子が任意に置換された前記の意味であるCa~Cbアルキルを表し、例えば、フルオロメチル基、クロロメチル基、ブロモメチル基、ヨードメチル基、2-フルオロエチル基、2-クロロエチル基、2-ブロモエチル基、3-フルオロプロピル基、3-クロロプロピル基、ジフルオロメチル基、トリフルオロメチル基、ジクロロメチル基、トリクロロメチル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、2,2,2-トリクロロエチル基、クロロジフルオロメチル基、ブロモジフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ヘプタフルオロイソプロピル基、4-クロロブチル基、4-フルオロブチル基等が具体例として挙げられ、各々の指定の炭素数の範囲で選択される。 Halo notation (C a ~ C b) alkyl in the present specification, the C a ~ C b alkyl by halogen atom is meant the meaning of the in which a hydrogen atom bonded to a carbon atom which is optionally substituted For example, fluoromethyl group, chloromethyl group, bromomethyl group, iodomethyl group, 2-fluoroethyl group, 2-chloroethyl group, 2-bromoethyl group, 3-fluoropropyl group, 3-chloropropyl group, difluoromethyl group, Trifluoromethyl group, dichloromethyl group, trichloromethyl group, 2,2-difluoroethyl group, 2,2,2-trifluoroethyl group, 2,2,2-trichloroethyl group, chlorodifluoromethyl group, bromodifluoromethyl Group, pentafluoroethyl group, heptafluoropropyl group, heptafluoroisopropyl group, 4- Rorobuchiru group, 4-fluoro butyl group as specific examples, may be selected from the range of the specified number of carbon.
 本明細書におけるCa~Cbアルキルカルボニルの表記は、炭素原子数がa~b個よりなる前記の意味であるアルキル-C(O)-基を表し、例えばアセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、2-メチルブタノイル基、ピバロイル基等が具体例として挙げられ、各々の指定の炭素数の範囲で選択される。 The notation of C a -C b alkylcarbonyl in the present specification represents an alkyl-C (O) — group having the above-mentioned meaning consisting of a to b carbon atoms, for example, acetyl group, propionyl group, butyryl group. Specific examples thereof include isobutyryl group, valeryl group, isovaleryl group, 2-methylbutanoyl group, pivaloyl group, and the like, and each is selected within the range of each designated carbon number.
 本明細書におけるハロ(Ca~Cb)アルキルカルボニルの表記は、炭素原子数がa~b個よりなる前記の意味であるハロアルキル-C(O)-基を表し、例えばフルオロアセチル基、クロロアセチル基、ジフルオロアセチル基、ジクロロアセチル基、トリフルオロアセチル基、クロロジフルオロアセチル基、ブロモジフルオロアセチル基、トリクロロアセチル基、ペンタフルオロプロピオニル基、ヘプタフルオロブタノイル基、3-クロロ-2,2-ジメチルプロパノイル基等が具体例として挙げられ、各々の指定の炭素数の範囲で選択される。 In the present specification, the notation of halo (C a -C b ) alkylcarbonyl represents a haloalkyl-C (O) -group having the above-mentioned meaning consisting of a to b carbon atoms, such as fluoroacetyl group, chloro Acetyl group, difluoroacetyl group, dichloroacetyl group, trifluoroacetyl group, chlorodifluoroacetyl group, bromodifluoroacetyl group, trichloroacetyl group, pentafluoropropionyl group, heptafluorobutanoyl group, 3-chloro-2,2-dimethyl Specific examples include a propanoyl group and the like, and each is selected within a range of each designated carbon number.
 本明細書におけるCa~Cbシクロアルキルの表記は、炭素原子数がa~b個よりなる環状の炭化水素基を表し、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等が具体例として挙げられ、各々の指定の炭素数の範囲で選択される。 In the present specification, C a -C b cycloalkyl represents a cyclic hydrocarbon group having a to b carbon atoms, for example, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl. Groups and the like are listed as specific examples, and each group is selected within the range of each designated carbon number.
 次に、本発明の、式(1)で表されるトリフルオロメタンスルフィンアニリド化合物の製造方法について説明する。
 Rが水素原子以外の置換基を表す場合、式(1)で表されるトリフルオロメタンスルフィンアニリド化合物は、例えば以下の方法により製造することができる。
 反応式1
Next, the manufacturing method of the trifluoromethanesulfine anilide compound represented by Formula (1) of this invention is demonstrated.
When R 1 represents a substituent other than a hydrogen atom, the trifluoromethanesulfinanilide compound represented by the formula (1) can be produced, for example, by the following method.
Reaction formula 1
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 すなわち、式(13)[式中、A及びQは前記と同じ意味を表す。]で表されるトリフルオロメタンスルフィンアニリド化合物と、式(14)[式中、RはC~C12アルコキシカルボニルを表し、Tはハロゲン原子を表す。]で表される化合物とを、塩基の存在下で反応させることにより、式(1)で表されるトリフルオロメタンスルフィンアニリド化合物を製造することができる。
 式(14)で表される化合物は、式(13)で表される化合物1当量に対して1~5当量用いることができる。
That is, Formula (13) [In the Formula, A and Q represent the same meaning as the above. And a trifluoromethanesulfinanilide compound represented by the formula (14): wherein R 1 represents C 1 -C 12 alkoxycarbonyl, and T represents a halogen atom. Can be produced in the presence of a base to produce a trifluoromethanesulfine anilide compound represented by the formula (1).
The compound represented by the formula (14) can be used in an amount of 1 to 5 equivalents relative to 1 equivalent of the compound represented by the formula (13).
 塩基としては、例えば水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カルシウム、炭酸カリウム等のアルカリ金属炭酸塩、炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属重炭酸塩、トリエチルアミン、トリブチルアミン、ピリジン、4-(ジメチルアミノ)ピリジン、イミダゾール、1,8-ジアザビシクロ[5,4,0]-7-ウンデセンなどの有機塩基等を、式(13)で表される化合物に対して1~5当量用いることができる。 Examples of the base include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate, calcium carbonate and potassium carbonate, alkali metal bicarbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate, An organic base such as triethylamine, tributylamine, pyridine, 4- (dimethylamino) pyridine, imidazole, 1,8-diazabicyclo [5,4,0] -7-undecene, etc. is converted into the compound represented by the formula (13). 1 to 5 equivalents can be used.
 溶媒を用いる場合、用いられる溶媒としては反応の進行を阻害しないものであれば特に制限はないが、例えば、ヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ヘプタン、ベンゼン、キシレン、トルエン等の炭化水素類、ジクロロメタン、四塩化炭素、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、トリフルオロメチルベンゼン等のハロゲン系炭化水素類、メタノール、エタノール、2-プロパノール等のアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、アセトニトリル、プロピオニトリル等のニトリル類、酢酸エチル、プロピオン酸エチル等のカルボン酸エステル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン等の含窒素非プロトン性極性溶媒、水等が挙げられ、好ましくは、キシレン、トルエン等の炭化水素類、ジクロロメタン、ジクロロエタン等のハロゲン系炭化水素、水を用いることができる。これらの溶媒は2種以上を混合しても使用することができる。
 反応温度は、通常-90~200℃、好ましくは0~150℃である。
 反応時間は、反応基質の濃度、反応温度によって変化するが、通常10分~100時間、好ましくは10分~24時間である。
When using a solvent, the solvent used is not particularly limited as long as it does not inhibit the progress of the reaction. For example, hydrocarbons such as hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, heptane, benzene, xylene, toluene, etc. Halogenated hydrocarbons such as dichloromethane, carbon tetrachloride, chloroform, 1,2-dichloroethane, chlorobenzene, trifluoromethylbenzene, alcohols such as methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, etc. Ketones, nitriles such as acetonitrile and propionitrile, carboxylic acid esters such as ethyl acetate and ethyl propionate, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone Examples thereof include nitrogen-containing aprotic polar solvents such as 1,3-dimethyl-2-imidazolidinone, water and the like, preferably hydrocarbons such as xylene and toluene, halogenated hydrocarbons such as dichloromethane and dichloroethane, water Can be used. These solvents can be used by mixing two or more kinds.
The reaction temperature is usually -90 to 200 ° C, preferably 0 to 150 ° C.
The reaction time varies depending on the concentration of the reaction substrate and the reaction temperature, but is usually 10 minutes to 100 hours, preferably 10 minutes to 24 hours.
 本発明のトリフルオロメタンスルホンアニリド化合物の製造において、式(1)で表されるトリフルオロメタンスルフィンアニリド化合物及びそれを酸化して得られる式(2)で表されるトリフルオロメタンスルホンアニリド化合物は、各置換基が上記したものであるが、なかでも、各置換基が以下のものである、トリフルオロメタンスルフィンアニリド及びトリフルオロメタンスルホンアニリド化合物が望ましい。
 Aは、-CH=CH-を表し、
 Rは、水素原子又はC~Cアルコキシカルボニルを表し、
 Qは、CHOR、C(=O)OR、シアノ又はCHN(Q)Qの何れかを表し、
 Rは、水素原子又はC~Cアルキルを表し、
 Q、Qはそれぞれ独立して、水素原子、C~C12アルキル、ハロ(C~C12)アルキル、C~C12アルキルカルボニル、ハロ(C~C12)アルキルカルボニル、フェニル、(Y)によって置換されたフェニル、フェニルカルボニル又は(Y)によって置換されたフェニルカルボニルを表し、
 Yはハロゲン原子を表し、
 nは、1、2、3、4又は5の整数を表し、
 mは、1、2、3、4又は5の整数を表す。
In the production of the trifluoromethanesulfonanilide compound of the present invention, the trifluoromethanesulfine anilide compound represented by the formula (1) and the trifluoromethanesulfonanilide compound represented by the formula (2) obtained by oxidizing it are each substituted. Among them, trifluoromethanesulfine anilide and trifluoromethanesulfonanilide compounds in which the substituents are as follows are preferable.
A represents —CH═CH—,
R 1 represents a hydrogen atom or C 1 -C 6 alkoxycarbonyl,
Q represents CH 2 OR 2 , C (═O) OR 2 , cyano, or CH 2 N (Q 1 ) Q 2 ,
R 2 represents a hydrogen atom or C 1 -C 6 alkyl,
Q 1 and Q 2 are each independently a hydrogen atom, C 1 -C 12 alkyl, halo (C 1 -C 12 ) alkyl, C 1 -C 12 alkylcarbonyl, halo (C 1 -C 12 ) alkylcarbonyl, It represents phenyl, phenylcarbonyl substituted by the (Y) phenyl substituted by n, phenylcarbonyl or (Y) m,
Y represents a halogen atom,
n represents an integer of 1, 2, 3, 4 or 5;
m represents an integer of 1, 2, 3, 4 or 5.
 上記トリフルオロメタンスルホンアニリド化合物の製造方法に関しては、必要に応じて溶媒を使用できる。用いられる溶媒としては反応の進行を阻害しないものであれば特に制限はないが、例えば、ヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ヘプタン、ベンゼン、キシレン、トルエン等の炭化水素類、ジクロロメタン、四塩化炭素、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、トリフルオロメチルベンゼン等のハロゲン系炭化水素類、アセトニトリル、プロピオニトリル等のニトリル類、メタノール、エタノール、2-プロパノール等のアルコール類、ギ酸、酢酸等の酸類、水等が挙げられ、好ましくは、キシレン、トルエン等の炭化水素類、ジクロロメタン、クロロホルム、ジクロロエタン等のハロゲン系炭化水素、アセトニトリル、プロピオニトリル等のニトリル類、メタノール、エタノール、2-プロパノール等のアルコール類、水を用いることができる。これらの溶媒は2種以上を混合して使用することもできる。 For the method for producing the trifluoromethanesulfonanilide compound, a solvent can be used as necessary. The solvent used is not particularly limited as long as it does not inhibit the progress of the reaction. For example, hydrocarbons such as hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, heptane, benzene, xylene, toluene, dichloromethane, tetrachloride Halogenated hydrocarbons such as carbon, chloroform, 1,2-dichloroethane, chlorobenzene and trifluoromethylbenzene, nitriles such as acetonitrile and propionitrile, alcohols such as methanol, ethanol and 2-propanol, formic acid and acetic acid Acid, water, etc., preferably hydrocarbons such as xylene, toluene, halogenated hydrocarbons such as dichloromethane, chloroform, dichloroethane, nitriles such as acetonitrile, propionitrile, methanol, ethanol Alcohols such as 2-propanol, water can be used. These solvents can be used in a mixture of two or more.
 上記トリフルオロメタンスルホンアニリド化合物の製造方法に関しては、必要に応じて酸を添加して行うことができる。使用される酸に特に制限はないが、例えばギ酸、酢酸、トリフルオロ酢酸等の脂肪酸類、メタンスルホン酸、トリフルオロメタンスルホン酸、4-メチルベンゼンスルホン酸等のスルホン酸類、安息香酸等のカルボン酸類、アミノメチルホスホン酸、フェニルホスホン酸等のホスホン酸類、塩酸、硫酸、リン酸等の無機酸類が挙げられる。好ましくは、酢酸、塩酸、硫酸、リン酸、フェニルホスホン酸等が使用される。酸は式(1)又は式(3)で表される化合物1当量に対して通常100当量以下、好ましくは2当量以下、より好ましくは0.01乃至2当量使用される。 The method for producing the trifluoromethanesulfonanilide compound can be carried out by adding an acid as necessary. The acid used is not particularly limited, but for example, fatty acids such as formic acid, acetic acid and trifluoroacetic acid, sulfonic acids such as methanesulfonic acid, trifluoromethanesulfonic acid and 4-methylbenzenesulfonic acid, and carboxylic acids such as benzoic acid Phosphonic acids such as aminomethylphosphonic acid and phenylphosphonic acid, and inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid. Preferably, acetic acid, hydrochloric acid, sulfuric acid, phosphoric acid, phenylphosphonic acid and the like are used. The acid is usually used in an amount of 100 equivalents or less, preferably 2 equivalents or less, more preferably 0.01 to 2 equivalents, relative to 1 equivalent of the compound represented by formula (1) or formula (3).
 上記トリフルオロメタンスルホンアニリド化合物の製造方法における酸化剤の具体例として、m-クロロ過安息香酸、モノペルオキシフタル酸マグネシウム、過酢酸等の過酸、過ヨウ素酸ナトリウム、ヨードソベンゼン等のヨウ素過酸化物、過硫酸水素カリウム等の過硫酸塩、過酸化水素、t-ブチルヒドロペルオキシド、クメンヒドロペルオキシド等のヒドロペルオキシドが挙げられる。 Specific examples of the oxidizing agent in the above method for producing a trifluoromethanesulfonanilide compound include m-chloroperbenzoic acid, magnesium monoperoxyphthalate, peracid such as peracetic acid, iodine peroxidation such as sodium periodate and iodosobenzene. Products, persulfates such as potassium hydrogen persulfate, hydroperoxides such as hydrogen peroxide, t-butyl hydroperoxide, cumene hydroperoxide.
 酸化剤としては、過酸、ヨウ素過酸化物、過硫酸塩及びヒドロペルオキシドからなる群から選ばれる1種であることが好ましい。その具体例としては、m-クロロ過安息香酸、モノペルオキシフタル酸マグネシウム、過ヨウ素酸ナトリウム及び過酸化水素水からなる群から選ばれる1種であることが望ましい。 The oxidizing agent is preferably one selected from the group consisting of peracids, iodine peroxides, persulfates and hydroperoxides. Specific examples thereof are preferably one selected from the group consisting of m-chloroperbenzoic acid, magnesium monoperoxyphthalate, sodium periodate, and aqueous hydrogen peroxide.
 酸化剤として過酸化水素を使用する場合、好ましくは、1~50質量%過酸化水素水、過酸化水素尿素等を使用することができ、より好ましくは、30~36質量%過酸化水素水を使用することができる。酸化剤は、式(1)で表される化合物1当量に対して通常0.5乃至100当量、好ましくは1乃至5当量使用される。
 酸化剤として過ヨウ素酸ナトリウムを使用する場合、3塩化ルテニウムの存在下で反応を行うことが望ましい。3塩化ルテニウムは、式(1)で表される化合物1当量に対して通常0.001乃至100当量、好ましくは0.01乃至2当量使用される。
When hydrogen peroxide is used as the oxidizing agent, preferably 1 to 50% by mass hydrogen peroxide solution, urea hydrogen peroxide, etc. can be used, more preferably 30 to 36% by mass hydrogen peroxide solution. Can be used. The oxidizing agent is generally used in an amount of 0.5 to 100 equivalents, preferably 1 to 5 equivalents, relative to 1 equivalent of the compound represented by the formula (1).
When using sodium periodate as the oxidizing agent, it is desirable to carry out the reaction in the presence of ruthenium trichloride. Ruthenium trichloride is usually used in an amount of 0.001 to 100 equivalents, preferably 0.01 to 2 equivalents, per 1 equivalent of the compound represented by the formula (1).
 酸化剤として過酸化水素水を使用する場合、タングステン酸ナトリウム及び/又は相間移動触媒の存在下で反応を行うことが望ましい。
 タングステン酸ナトリウムの存在下で反応を行う場合、タングステン酸ナトリウムは、式(1)で表される化合物1当量に対して通常0.001乃至100当量、好ましくは0.01乃至2当量使用される。
When using hydrogen peroxide as an oxidizing agent, it is desirable to carry out the reaction in the presence of sodium tungstate and / or a phase transfer catalyst.
When the reaction is carried out in the presence of sodium tungstate, sodium tungstate is usually used in an amount of 0.001 to 100 equivalents, preferably 0.01 to 2 equivalents, relative to 1 equivalent of the compound represented by formula (1). .
 上記相間移動触媒の存在下で反応を行う場合、相間移動触媒の具体例として、テトラブチルアンモニウムクロリド、テトラブチルアンモニウムブロミド、テトラメチルアンモニウム硫酸水素塩、テトラエチルアンモニウム硫酸水素塩、テトラプロピルアンモニウム硫酸水素塩、テトラブチルアンモニウム硫酸水素塩、テトラヘキシルアンモニウム硫酸水素塩、メチルトリオクチルアンモニウム硫酸水素塩、メチルトリオクチルアンモニウムクロリド等の4級アンモニウム塩、塩化セチルピリジニウム等のピリジニウム塩、テトラブチルホスホニウムブロミド、トリブチルヘキサデシルホスホニウムクロリド、テトラフェニルホスホニウムクロリド等のホスホニウム塩等が挙げられる。テトラメチルアンモニウム硫酸水素塩、テトラエチルアンモニウム硫酸水素塩、テトラプロピルアンモニウム硫酸水素塩、テトラブチルアンモニウム硫酸水素塩、テトラヘキシルアンモニウム硫酸水素塩、メチルトリオクチルアンモニウム硫酸水素塩等の4級アンモニウム塩を使用することが好ましく、テトラブチルアンモニウム硫酸水素塩を使用することがより好ましい。相間移動触媒は、式(1)で表される化合物1当量に対して通常100当量以下、好ましくは2当量以下、より好ましくは、0.01乃至1当量使用される。 When the reaction is performed in the presence of the phase transfer catalyst, specific examples of the phase transfer catalyst include tetrabutylammonium chloride, tetrabutylammonium bromide, tetramethylammonium hydrogensulfate, tetraethylammonium hydrogensulfate, tetrapropylammonium hydrogensulfate. , Quaternary ammonium salts such as tetrabutylammonium hydrogensulfate, tetrahexylammonium hydrogensulfate, methyltrioctylammonium hydrogensulfate, methyltrioctylammonium chloride, pyridinium salts such as cetylpyridinium chloride, tetrabutylphosphonium bromide, tributylhexa Examples thereof include phosphonium salts such as decylphosphonium chloride and tetraphenylphosphonium chloride. Use quaternary ammonium salts such as tetramethylammonium hydrogensulfate, tetraethylammonium hydrogensulfate, tetrapropylammonium hydrogensulfate, tetrabutylammonium hydrogensulfate, tetrahexylammonium hydrogensulfate, methyltrioctylammonium hydrogensulfate It is preferable to use tetrabutylammonium hydrogen sulfate. The phase transfer catalyst is generally used in an amount of 100 equivalents or less, preferably 2 equivalents or less, more preferably 0.01 to 1 equivalent, per 1 equivalent of the compound represented by the formula (1).
 上記トリフルオロメタンスルホンアニリド化合物の製造方法における反応は、0.001~100MPa、好ましくは0.1~10MPaの圧力の範囲で実施することができる。反応温度は、通常-20~100℃、好ましくは0~80℃である。反応時間は、通常10分~100時間、好ましくは10分~24時間である。必要であれば窒素、アルゴン等の不活性ガス雰囲気下で実施できる。 The reaction in the above method for producing a trifluoromethanesulfonanilide compound can be carried out in a pressure range of 0.001 to 100 MPa, preferably 0.1 to 10 MPa. The reaction temperature is usually −20 to 100 ° C., preferably 0 to 80 ° C. The reaction time is usually 10 minutes to 100 hours, preferably 10 minutes to 24 hours. If necessary, it can be carried out in an inert gas atmosphere such as nitrogen or argon.
 反応後の処理方法は特に制限はないが、反応終了後の反応混合物は、直接濃縮、又は有機溶媒に溶解した後、水投入、分液、必要に応じて濃縮、又は水に投入、有機溶媒抽出、必要に応じて濃縮等の通常の後処理を行ない、製造化合物を得ることができる。また、必要に応じて、還元剤、酸、塩基等で反応混合物、反応処理にて得た溶液を処理することもできる。また、反応終了後の反応混合物は、そのまま次工程に使用することができる。また、製造した化合物は後処理によって得た溶液のまま、次工程に使用することもできる。精製の必要が生じたときには、蒸留、再結晶、カラムクロマトグラフ、薄層クロマトグラフ、液体クロマトグラフ分取等の任意の精製方法によって分離、精製することができる。 The treatment method after the reaction is not particularly limited, but the reaction mixture after completion of the reaction is directly concentrated or dissolved in an organic solvent, and then poured into water, separated, concentrated as necessary, or poured into water. The post-treatment such as extraction and concentration as necessary can be carried out to obtain the produced compound. If necessary, the reaction mixture and the solution obtained by the reaction treatment can be treated with a reducing agent, an acid, a base and the like. Moreover, the reaction mixture after completion | finish of reaction can be used for the following process as it is. Moreover, the manufactured compound can also be used for the following process with the solution obtained by the post-process. When the need for purification arises, it can be separated and purified by any purification method such as distillation, recrystallization, column chromatograph, thin layer chromatograph, liquid chromatographic fractionation and the like.
 次に本発明における式(3)で表されるアミン化合物を出発原料とする式(1)で表されるトリフルオロメタンスルフィンアニリド化合物の製造方法について説明する。 Next, a method for producing the trifluoromethanesulfinanilide compound represented by the formula (1) using the amine compound represented by the formula (3) in the present invention as a starting material will be described.
 上記トリフルオロメタンスルフィンアニリド化合物の製造方法で使用される式(3)で表されるアミン化合物は、各置換基が上記したものであるが、なかでも、以下のものであるアミン化合物が好ましい。
 なお、この製造方法は、下記Aが-CH=CH-であるベンゼン環上のアミノ基だけではなく、Aが硫黄原子であるヘテロ環上のアミノ基にも適用可能である。
 Aは、-CH=CH-を表し、
 Rは、水素原子又はC~Cアルコキシカルボニルを表し、
 Qは、CHOR、C(=O)OR、シアノ又はCHNHQの何れかを表し、
 Rは、水素原子又はC~Cアルキルを表し、
 Qは、水素原子、C~C12アルキル、ハロ(C~C12)アルキル、C~C12アルキルカルボニル、ハロ(C~C12)アルキルカルボニル、フェニル、(Y)によって置換されたフェニル、フェニルカルボニル又は(Y)によって置換されたフェニルカルボニルを表し、
 Yはハロゲン原子を表し、
 nは、1、2、3、4又は5の整数を表し、
 mは、1、2、3、4又は5の整数を表す。
In the amine compound represented by the formula (3) used in the method for producing the trifluoromethanesulfine anilide compound, each substituent is as described above, and among these, the following amine compounds are preferable.
This production method can be applied not only to the amino group on the benzene ring where A is —CH═CH— but also to the amino group on the heterocycle where A is a sulfur atom.
A represents —CH═CH—,
R 1 represents a hydrogen atom or C 1 -C 6 alkoxycarbonyl,
Q represents CH 2 OR 2 , C (═O) OR 2 , cyano or CH 2 NHQ 1 ,
R 2 represents a hydrogen atom or C 1 -C 6 alkyl,
Q 1 is a hydrogen atom, C 1 -C 12 alkyl, halo (C 1 -C 12 ) alkyl, C 1 -C 12 alkylcarbonyl, halo (C 1 -C 12 ) alkylcarbonyl, phenyl, (Y) n Represents substituted phenyl, phenylcarbonyl or phenylcarbonyl substituted by (Y) m ;
Y represents a halogen atom,
n represents an integer of 1, 2, 3, 4 or 5;
m represents an integer of 1, 2, 3, 4 or 5.
 上記トリフルオロメタンスルフィンアニリド化合物の製造方法で使用される式(4)で表される化合物としては、トリフルオロメタンスルフィニルフルオリド、トリフルオロメタンスルフィニルクロリド、トリフルオロメタンスルフィニルブロミド、トリフルオロメタンスルフィニルヨージドが挙げられる。トリフルオロメタンスルフィニルクロリドは、文献記載の一般的な合成方法に準じて合成することができる。例えば、特開平10-218857号公報記載、ケミッシェ ベリヒテ 1974年、107巻、508頁、テトラヘドロン 1999年, 55巻, 7243頁又はテトラヘドロン 1976年,32巻,1627頁記載の方法により製造可能である。式(4)で表される化合物は、式(3)で表される化合物1当量に対して通常0.5乃至2当量使用される。 Examples of the compound represented by the formula (4) used in the method for producing the trifluoromethanesulfinylide compound include trifluoromethanesulfinyl fluoride, trifluoromethanesulfinyl chloride, trifluoromethanesulfinyl bromide, and trifluoromethanesulfinyl iodide. Trifluoromethanesulfinyl chloride can be synthesized according to a general synthesis method described in the literature. For example, it can be produced by the method described in JP-A-10-218857, Chemiche Beirichte 1974, 107, 508, Tetrahedron 1999, Vol. 55, Vol. 7243, or Tetrahedron, 1976, Vol. 32, 1627. is there. The compound represented by the formula (4) is usually used in an amount of 0.5 to 2 equivalents with respect to 1 equivalent of the compound represented by the formula (3).
 上記トリフルオロメタンスルフィンアニリド化合物の製造方法における、式(5)で表されるトリフルオロメタンスルフィン酸の塩としては、リチウム、ナトリウム、カリウムといったアルカリ金属の塩が挙げられる。これらのうち、トリフルオロメタンスルフィン酸のナトリウムの塩であるトリフルオロメタンスルフィン酸ナトリウムは、市販品として入手可能であり、トリフルオロメタンスルフィン酸のカリウムの塩であるトリフルオロメタンスルフィン酸カリウムは、文献記載の一般的な合成方法に準じて合成することができる。例えば、ジャーナル オブ ザ アメリカン ケミカル ソサイエティ 1974年, 96巻, 2275頁記載の方法により製造可能である。式(5)で表されるトリフルオロメタンスルフィン酸の塩は、式(3)で表される化合物1当量に対して通常0.5乃至2当量使用される。 Examples of the salt of trifluoromethanesulfinic acid represented by the formula (5) in the method for producing the trifluoromethanesulfinanilide compound include alkali metal salts such as lithium, sodium, and potassium. Of these, sodium trifluoromethanesulfinate, which is a sodium salt of trifluoromethanesulfinic acid, is commercially available, and potassium trifluoromethanesulfinate, which is a potassium salt of trifluoromethanesulfinic acid, is generally described in the literature. It can be synthesized according to a typical synthesis method. For example, it can be manufactured by the method described in Journal of the American Chemical Society, 1974, Vol. 96, page 2275. The salt of trifluoromethanesulfinic acid represented by the formula (5) is usually used in an amount of 0.5 to 2 equivalents per 1 equivalent of the compound represented by the formula (3).
 上記トリフルオロメタンスルフィンアニリド化合物の製造方法に関しては、必要に応じて溶媒を使用できる。用いられる溶媒としては反応の進行を阻害しないものであれば特に制限はないが、例えば、n-ヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、n-ヘプタン、ベンゼン、キシレン、トルエン等の炭化水素類、ジクロロメタン、四塩化炭素、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、トリフルオロメチルベンゼン等のハロゲン系炭化水素類、ジエチルエーテル、ジイソプロピルエーテル、1,4-ジオキサン、テトラヒドロフラン等のエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、アセトニトリル、プロピオニトリル等のニトリル類、酢酸エチル、プロピオン酸エチル等のカルボン酸エステル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン等の含窒素非プロトン性極性溶媒、水等が挙げられ、好ましくは、ベンゼン、キシレン、トルエン等の炭化水素類、ジクロロメタン、ジクロロエタン等のハロゲン系炭化水素、メタノール、エタノール、2-プロパノール等のアルコール類、水を用いることができる。これらの溶媒は2種以上を混合して使用することもできる。 As for the method for producing the trifluoromethanesulfinanilide compound, a solvent can be used as necessary. The solvent used is not particularly limited as long as it does not inhibit the progress of the reaction. For example, hydrocarbons such as n-hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, n-heptane, benzene, xylene, and toluene, Halogenated hydrocarbons such as dichloromethane, carbon tetrachloride, chloroform, 1,2-dichloroethane, chlorobenzene, trifluoromethylbenzene, ethers such as diethyl ether, diisopropyl ether, 1,4-dioxane, tetrahydrofuran, acetone, methyl ethyl ketone, Ketones such as methyl isobutyl ketone, nitriles such as acetonitrile and propionitrile, carboxylic acid esters such as ethyl acetate and ethyl propionate, N, N-dimethylformamide, N, N-dimethylacetoa Nitrogen, aprotic polar solvents such as N-methylpyrrolidone and 1,3-dimethyl-2-imidazolidinone, water, etc., preferably hydrocarbons such as benzene, xylene and toluene, dichloromethane, Halogenated hydrocarbons such as dichloroethane, alcohols such as methanol, ethanol and 2-propanol, and water can be used. These solvents can be used in a mixture of two or more.
 上記トリフルオロメタンスルフィンアニリド化合物の製造方法において、式(3)で表されるアミン化合物と式(4)で表される化合物との反応は塩基の存在下で行うことも出来る。 In the above method for producing a trifluoromethanesulfinanilide compound, the reaction between the amine compound represented by the formula (3) and the compound represented by the formula (4) can be performed in the presence of a base.
 使用される塩基に特に制限はないが、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、水素化ナトリウム、リン酸カリウム等の無機塩基類、ピリジン、4-ジメチルアミノピリジン、トリエチルアミン、トリブチルアミン、5-エチル-2-メチルピリジン、2-メチルピリジン、4-メチルピリジン、2,6-ジメチルピリジン、N,N-ジメチルアニリン、N,N-ジエチルアニリン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン等の有機塩基類、n-ブチルリチウム、s-ブチルリチウム等の有機リチウム化合物類、リチウムジイソプロピルアミド、リチウムビス(トリメチルシリル)アミド等のリチウムアミド類、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムi-プロポキシド、カリウムt-ブトキシド等の金属アルコキシド類等が挙げられる。好ましくは、トリエチルアミン、トリブチルアミン、5-エチル-2-メチルピリジン、2-メチルピリジン、4-メチルピリジン、2,6-ジメチルピリジン、ピリジンが使用される。塩基は式(1)又は式(3)で表される化合物1当量に対して通常10当量以下、好ましくは4当量以下、より好ましくは0.01乃至2当量使用される。 The base to be used is not particularly limited, but examples thereof include inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium hydride, potassium phosphate, pyridine, 4 -Dimethylaminopyridine, triethylamine, tributylamine, 5-ethyl-2-methylpyridine, 2-methylpyridine, 4-methylpyridine, 2,6-dimethylpyridine, N, N-dimethylaniline, N, N-diethylaniline, Organic bases such as 1,8-diazabicyclo [5.4.0] -7-undecene, organic lithium compounds such as n-butyllithium and s-butyllithium, lithium diisopropylamide, lithium bis (trimethylsilyl) amide, etc. Lithium amides, sodium methoxide, sodium And metal alkoxides such as muethoxide, sodium i-propoxide and potassium t-butoxide. Preferably, triethylamine, tributylamine, 5-ethyl-2-methylpyridine, 2-methylpyridine, 4-methylpyridine, 2,6-dimethylpyridine and pyridine are used. The base is generally used in an amount of 10 equivalents or less, preferably 4 equivalents or less, more preferably 0.01 to 2 equivalents, relative to 1 equivalent of the compound represented by Formula (1) or Formula (3).
 上記式(4)で表される化合物は、前記式(5)で表される化合物をハロゲン化剤と反応させて製造することが出来る。
 使用されるハロゲン化剤としては、例えば塩化チオニル、塩化オキサリル、三塩化リン、五塩化リン、オキシ塩化リン等が挙げられる。好ましくは、塩化チオニルが挙げられる。ハロゲン化剤は、式(3)で表される化合物に対して、通常0.5乃至100当量、好ましくは1乃至10当量使用される。
The compound represented by the above formula (4) can be produced by reacting the compound represented by the above formula (5) with a halogenating agent.
Examples of the halogenating agent used include thionyl chloride, oxalyl chloride, phosphorus trichloride, phosphorus pentachloride, and phosphorus oxychloride. Preferably, thionyl chloride is used. The halogenating agent is generally used in an amount of 0.5 to 100 equivalents, preferably 1 to 10 equivalents, relative to the compound represented by the formula (3).
 上記トリフルオロメタンスルフィンアニリド化合物の製造方法において、式(5)で表される化合物から式(4)で表される化合物を製造する際に、添加物としてN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド化合物、トリエチルアミンなどのアミン化合物を添加することができる。添加物は、式(3)で表される化合物に対し、通常100当量以下、好ましくは10当量以下、特に好ましくは、0.001乃至1当量使用される。 In the above method for producing a trifluoromethanesulfinanilide compound, when the compound represented by the formula (4) is produced from the compound represented by the formula (5), N, N-dimethylformamide, N, N— Amide compounds such as dimethylacetamide and amine compounds such as triethylamine can be added. The additive is generally used in an amount of 100 equivalents or less, preferably 10 equivalents or less, particularly preferably 0.001 to 1 equivalent, based on the compound represented by the formula (3).
 上記トリフルオロメタンスルフィンアニリド化合物の製造方法における反応は、0.001~100MPa、好ましくは0.1~10MPaの圧力の範囲で実施することができる。反応温度は、通常-90~200℃、好ましくは-50~50℃である。反応時間は、通常10分~100時間、好ましくは10分~24時間である。必要であれば窒素、アルゴン等の不活性ガス雰囲気下で実施できる。 The reaction in the above method for producing a trifluoromethanesulfinanilide compound can be carried out in a pressure range of 0.001 to 100 MPa, preferably 0.1 to 10 MPa. The reaction temperature is usually −90 to 200 ° C., preferably −50 to 50 ° C. The reaction time is usually 10 minutes to 100 hours, preferably 10 minutes to 24 hours. If necessary, it can be carried out in an inert gas atmosphere such as nitrogen or argon.
 反応後の処理方法は特に制限はないが、反応終了後の反応混合物は、直接濃縮、又は有機溶媒に溶解した後、水投入、分液、必要に応じて濃縮、又は水に投入、有機溶媒抽出、必要に応じて濃縮等の通常の後処理を行ない、製造化合物を得ることができる。また、必要に応じて、還元剤、酸、塩基等で反応混合物、反応処理にて得た溶液を処理することもできる。また、反応終了後の反応混合物は、そのまま次工程に使用することができる。また、製造した化合物は後処理によって得た溶液のまま、次工程に使用することもできる。精製の必要が生じたときには、蒸留、再結晶、カラムクロマトグラフ、薄層クロマトグラフ、液体クロマトグラフ分取等の任意の精製方法によって分離、精製することができる。 The treatment method after the reaction is not particularly limited, but the reaction mixture after completion of the reaction is directly concentrated or dissolved in an organic solvent, and then poured into water, separated, concentrated as necessary, or poured into water. The post-treatment such as extraction and concentration as necessary can be carried out to obtain the produced compound. If necessary, the reaction mixture and the solution obtained by the reaction treatment can be treated with a reducing agent, an acid, a base and the like. Moreover, the reaction mixture after completion | finish of reaction can be used for the following process as it is. Moreover, the manufactured compound can also be used for the following process with the solution obtained by the post-process. When the need for purification arises, it can be separated and purified by any purification method such as distillation, recrystallization, column chromatograph, thin layer chromatograph, liquid chromatographic fractionation and the like.
 なお、上記本発明の製造方法にかかわる酸、塩基、添加物、酸化剤、ハロゲン化剤、タングステン酸ナトリウム、3塩化ルテニウム及び相間移動触媒については、水和物等の溶媒和物、溶媒に希釈したものも使用できる。
 ここで用いられる、式(3)で表される(ただし、QはC(=O)OR又はシアノであり、Rは前記と同じ意味を表す)化合物は公知化合物であり、一部は市販品としても入手できる。また、それ以外のものも公知化合物に関する文献記載の一般的な合成方法に準じて合成することができる。
In addition, the acid, base, additive, oxidizing agent, halogenating agent, sodium tungstate, ruthenium trichloride, and phase transfer catalyst related to the production method of the present invention are diluted in solvates such as hydrates and solvents. Can also be used.
As used herein, a compound represented by the formula (3) (where Q is C (═O) OR 2 or cyano, and R 1 represents the same meaning as described above) is a known compound, and a part thereof Also available as a commercial product. Others can also be synthesized according to general synthesis methods described in literatures relating to known compounds.
 本発明はまた前記式(1)で表されるトリフルオロメタンスルフィンアニリド化合物又はその塩である。式(1)で表されるトリフルオロメタンスルフィンアニリド化合物における置換基の好ましいものについても前記の通りである。
 前記式(1)で表されるトリフルオロメタンスルフィンアニリド化合物の塩としては、ナトリウム塩、カリウム塩等が挙げられる。
 上記式(7)で表されるアミノベンジルアミン化合物は、例えば、以下の反応式2で示される方法により製造される。
反応式2
The present invention is also a trifluoromethanesulfinanilide compound represented by the above formula (1) or a salt thereof. The preferable substituents in the trifluoromethanesulfinanilide compound represented by the formula (1) are also as described above.
Examples of the salt of the trifluoromethanesulfinanilide compound represented by the formula (1) include sodium salts and potassium salts.
The aminobenzylamine compound represented by the above formula (7) is produced, for example, by the method represented by the following reaction formula 2.
Reaction formula 2
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 つまり、式(15)[式中、Qは前記と同じ意味を表す。]で表されるニトロベンジルアミン化合物を還元することにより、式(7)[式中、Rは水素原子を表し、Qは前記と同じ意味を表す。]で表されるアミノベンジルアミン化合物を製造することが出来る。 That is, Formula (15) [wherein Q 1 represents the same meaning as described above. In the formula (7), R 1 represents a hydrogen atom, and Q 1 represents the same meaning as described above. The aminobenzylamine compound represented by this can be manufactured.
 工程2で用いる還元方法としては、例えば水素化ホウ素ナトリウム、水素化ホウ素リチウム、水素化アルミニウムリチウムなどの金属ヒドリドによる方法、パラジウム触媒存在下での水素添加による方法、鉄、塩化亜鉛、塩化スズ等の金属還元による方法を用いることが出来る。
 用いる還元剤の量は、式(15)で表される化合物1当量に対して0.01~5当量を用いることができる。
Examples of the reduction method used in Step 2 include a method using a metal hydride such as sodium borohydride, lithium borohydride, and lithium aluminum hydride, a method using hydrogenation in the presence of a palladium catalyst, iron, zinc chloride, tin chloride, and the like. The metal reduction method can be used.
The amount of the reducing agent used can be 0.01 to 5 equivalents per 1 equivalent of the compound represented by the formula (15).
 溶媒を用いる場合、用いられる溶媒としては反応の進行を阻害しないものであれば特に制限はないが、例えば、ヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ヘプタン、ベンゼン、キシレン、トルエン等の炭化水素類、ジクロロメタン、四塩化炭素、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、トリフルオロメチルベンゼン等のハロゲン系炭化水素類、メタノール、エタノール、2-プロパノール等のアルコール類、ジエチルエーテル、テトラヒドロフラン、シクロペンチルメチルエーテル、ターシャリーブチルメチルエーテル等のエーテル類、水等が挙げられる。好ましくは、メタノール、エタノール等のアルコール類、テトラヒドロフラン、シクロペンチルメチルエーテル等のエーテル類、水を用いることができる。これらの溶媒は2種以上を混合して使用することもできる。
 反応温度は、通常-90~200℃、好ましくは0~150℃である。
 反応時間は、反応基質の濃度、反応温度によって変化するが、通常10分~100時間、好ましくは10分~24時間である。
When using a solvent, the solvent used is not particularly limited as long as it does not inhibit the progress of the reaction. For example, hydrocarbons such as hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, heptane, benzene, xylene, toluene, etc. Halogenated hydrocarbons such as dichloromethane, carbon tetrachloride, chloroform, 1,2-dichloroethane, chlorobenzene, trifluoromethylbenzene, alcohols such as methanol, ethanol, 2-propanol, diethyl ether, tetrahydrofuran, cyclopentyl methyl ether, Examples include ethers such as tertiary butyl methyl ether, water, and the like. Preferably, alcohols such as methanol and ethanol, ethers such as tetrahydrofuran and cyclopentyl methyl ether, and water can be used. These solvents can be used in a mixture of two or more.
The reaction temperature is usually -90 to 200 ° C, preferably 0 to 150 ° C.
The reaction time varies depending on the concentration of the reaction substrate and the reaction temperature, but is usually 10 minutes to 100 hours, preferably 10 minutes to 24 hours.
 上記アミノベンジルアミン化合物の製造方法における反応は、0.001~100MPa、好ましくは0.1~10MPaの圧力の範囲で実施することができる。反応温度は、通常-20~100℃、好ましくは0~80℃である。反応時間は、通常10分~100時間、好ましくは10分~24時間である。必要であれば窒素、アルゴン等の不活性ガス雰囲気下で実施できる。 The reaction in the above method for producing an aminobenzylamine compound can be carried out in a pressure range of 0.001 to 100 MPa, preferably 0.1 to 10 MPa. The reaction temperature is usually −20 to 100 ° C., preferably 0 to 80 ° C. The reaction time is usually 10 minutes to 100 hours, preferably 10 minutes to 24 hours. If necessary, it can be carried out in an inert gas atmosphere such as nitrogen or argon.
 反応後の処理方法は特に制限はないが、反応終了後の反応混合物は、直接濃縮、又は有機溶媒に溶解した後、水投入、分液、必要に応じて濃縮、又は水に投入、有機溶媒抽出、必要に応じて濃縮等の通常の後処理を行ない、製造化合物を得ることができる。また、必要に応じて、還元剤、酸、塩基等で反応混合物、反応処理にて得た溶液を処理することもできる。また、反応終了後の反応混合物は、そのまま次工程に使用することができる。また、製造した化合物は後処理によって得た溶液のまま、次工程に使用することもできる。精製の必要が生じたときには、蒸留、再結晶、カラムクロマトグラフ、薄層クロマトグラフ、液体クロマトグラフ分取等の任意の精製方法によって分離、精製することができる。 The treatment method after the reaction is not particularly limited, but the reaction mixture after completion of the reaction is directly concentrated or dissolved in an organic solvent, and then poured into water, separated, concentrated as necessary, or poured into water. The post-treatment such as extraction and concentration as necessary can be carried out to obtain the produced compound. If necessary, the reaction mixture and the solution obtained by the reaction treatment can be treated with a reducing agent, an acid, a base and the like. Moreover, the reaction mixture after completion | finish of reaction can be used for the following process as it is. Moreover, the manufactured compound can also be used for the following process with the solution obtained by the post-process. When the need for purification arises, it can be separated and purified by any purification method such as distillation, recrystallization, column chromatograph, thin layer chromatograph, liquid chromatographic fractionation and the like.
 上記式(7)で表されるアミノベンジルアミン化合物は、例えば、以下の反応式3で示される方法によっても製造される。
反応式3
The aminobenzylamine compound represented by the above formula (7) is also produced, for example, by the method represented by the following reaction formula 3.
Reaction formula 3
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 つまり、式(16)[式中、Rは、水素原子又はC~Cアルコキシカルボニルを表す。]で表されるアミノベンジルアミン化合物と式(17)[式中、Lはハロゲン原子等の脱離基を表し、Qは前記と同じ意味を表す。]で表される化合物を反応させることにより、式(7)[式中、RびQは前記と同じ意味を表す。]で表されるアミノベンジルアミン化合物を製造することが出来る。 That is, formula (16) [wherein R 1 represents a hydrogen atom or C 1 -C 6 alkoxycarbonyl. And an aminobenzylamine compound represented by the formula (17): wherein L represents a leaving group such as a halogen atom, and Q 1 represents the same meaning as described above. By reacting the compound represented by formula (7), R 1 and Q 1 represent the same meaning as described above. The aminobenzylamine compound represented by this can be manufactured.
 上記アミノベンジルアミン化合物の製造方法において、式(16)で表されるアミノベンジルアミン化合物と式(17)で表される化合物との反応は、塩基の存在下で行われることが好ましい。 In the method for producing an aminobenzylamine compound, the reaction between the aminobenzylamine compound represented by the formula (16) and the compound represented by the formula (17) is preferably performed in the presence of a base.
 使用される塩基に特に制限はないが、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、水素化ナトリウム、リン酸カリウム等の無機塩基類、ピリジン、4-ジメチルアミノピリジン、トリエチルアミン、トリブチルアミン、5-エチル-2-メチルピリジン、2-メチルピリジン、4-メチルピリジン、2,6-ジメチルピリジン、N,N-ジメチルアニリン、N,N-ジエチルアニリン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン等の有機塩基類、n-ブチルリチウム、s-ブチルリチウム等の有機リチウム化合物類、リチウムジイソプロピルアミド、リチウムビス(トリメチルシリル)アミド等のリチウムアミド類、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムi-プロポキシド、カリウムt-ブトキシド等の金属アルコキシド類等が挙げられる。好ましくは、トリエチルアミン、トリブチルアミン、5-エチル-2-メチルピリジン、2-メチルピリジン、4-メチルピリジン、2,6-ジメチルピリジン、ピリジンが使用される。塩基は式(16)で表される化合物1当量に対して通常10当量以下、好ましくは4当量以下、より好ましくは0.01乃至2当量使用される。 The base to be used is not particularly limited, but examples thereof include inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium hydride, potassium phosphate, pyridine, 4 -Dimethylaminopyridine, triethylamine, tributylamine, 5-ethyl-2-methylpyridine, 2-methylpyridine, 4-methylpyridine, 2,6-dimethylpyridine, N, N-dimethylaniline, N, N-diethylaniline, Organic bases such as 1,8-diazabicyclo [5.4.0] -7-undecene, organic lithium compounds such as n-butyllithium and s-butyllithium, lithium diisopropylamide, lithium bis (trimethylsilyl) amide, etc. Lithium amides, sodium methoxide, sodium And metal alkoxides such as muethoxide, sodium i-propoxide and potassium t-butoxide. Preferably, triethylamine, tributylamine, 5-ethyl-2-methylpyridine, 2-methylpyridine, 4-methylpyridine, 2,6-dimethylpyridine and pyridine are used. The base is generally used in an amount of 10 equivalents or less, preferably 4 equivalents or less, more preferably 0.01 to 2 equivalents, relative to 1 equivalent of the compound represented by Formula (16).
 上記アミノベンジルアミン化合物の製造方法においては、必要に応じて溶媒を使用できる。溶媒を用いる場合、用いられる溶媒としては反応の進行を阻害しないものであれば特に制限はない。例えば、ヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ヘプタン、ベンゼン、キシレン、トルエン等の炭化水素類、ジクロロメタン、四塩化炭素、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、トリフルオロメチルベンゼン等のハロゲン系炭化水素類、メタノール、エタノール、2-プロパノール等のアルコール類、ジエチルエーテル、テトラヒドロフラン、シクロペンチルメチルエーテル、ターシャリーブチルメチルエーテル等のエーテル類、水等が挙げられる。好ましくは、メタノール、エタノール等のアルコール類、テトラヒドロフラン、シクロペンチルメチルエーテル等のエーテル類、水を用いることができる。これらの溶媒は2種以上を混合して使用することもできる。 In the method for producing the aminobenzylamine compound, a solvent can be used as necessary. When using a solvent, the solvent used is not particularly limited as long as it does not inhibit the progress of the reaction. For example, hydrocarbons such as hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, heptane, benzene, xylene, toluene, and halogen-based carbonization such as dichloromethane, carbon tetrachloride, chloroform, 1,2-dichloroethane, chlorobenzene, trifluoromethylbenzene, etc. Examples thereof include hydrogens, alcohols such as methanol, ethanol and 2-propanol, ethers such as diethyl ether, tetrahydrofuran, cyclopentyl methyl ether and tertiary butyl methyl ether, and water. Preferably, alcohols such as methanol and ethanol, ethers such as tetrahydrofuran and cyclopentyl methyl ether, and water can be used. These solvents can be used in a mixture of two or more.
 反応温度は、通常-90~200℃、好ましくは0~150℃である。
 反応時間は、反応基質の濃度、反応温度によって変化するが、通常10分~100時間、好ましくは10分~24時間である。
 上記アミノベンジルアミン化合物の製造方法における反応は、0.001~100MPa、好ましくは0.1~10MPaの圧力の範囲で実施することができる。反応温度は、通常-20~100℃、好ましくは0~80℃である。反応時間は、通常10分~100時間、好ましくは10分~24時間である。必要であれば窒素、アルゴン等の不活性ガス雰囲気下で実施できる。
The reaction temperature is usually -90 to 200 ° C, preferably 0 to 150 ° C.
The reaction time varies depending on the concentration of the reaction substrate and the reaction temperature, but is usually 10 minutes to 100 hours, preferably 10 minutes to 24 hours.
The reaction in the method for producing an aminobenzylamine compound can be carried out in a pressure range of 0.001 to 100 MPa, preferably 0.1 to 10 MPa. The reaction temperature is usually −20 to 100 ° C., preferably 0 to 80 ° C. The reaction time is usually 10 minutes to 100 hours, preferably 10 minutes to 24 hours. If necessary, it can be carried out in an inert gas atmosphere such as nitrogen or argon.
 反応後の処理方法は特に制限はないが、反応終了後の反応混合物は、直接濃縮、又は有機溶媒に溶解した後、水投入、分液、必要に応じて濃縮、又は水に投入、有機溶媒抽出、必要に応じて濃縮等の通常の後処理を行ない、製造化合物を得ることができる。また、必要に応じて、還元剤、酸、塩基等で反応混合物、反応処理にて得た溶液を処理することもできる。また、反応終了後の反応混合物は、そのまま次工程に使用することができる。また、製造した化合物は後処理によって得た溶液のまま、次工程に使用することもできる。精製の必要が生じたときには、蒸留、再結晶、カラムクロマトグラフ、薄層クロマトグラフ、液体クロマトグラフ分取等の任意の精製方法によって分離、精製することができる。 The treatment method after the reaction is not particularly limited, but the reaction mixture after completion of the reaction is directly concentrated or dissolved in an organic solvent, and then poured into water, separated, concentrated as necessary, or poured into water. The post-treatment such as extraction and concentration as necessary can be carried out to obtain the produced compound. If necessary, the reaction mixture and the solution obtained by the reaction treatment can be treated with a reducing agent, an acid, a base and the like. Moreover, the reaction mixture after completion | finish of reaction can be used for the following process as it is. Moreover, the manufactured compound can also be used for the following process with the solution obtained by the post-process. When the need for purification arises, it can be separated and purified by any purification method such as distillation, recrystallization, column chromatograph, thin layer chromatograph, liquid chromatographic fractionation and the like.
 本発明に係る式(8)で表される化合物と(9)で表される化合物を反応させることによる、式(10)で表されるN-ベンジルラクタム化合物の製造法について、以下に説明する。 The production method of the N-benzyllactam compound represented by the formula (10) by reacting the compound represented by the formula (8) and the compound represented by (9) according to the present invention will be described below. .
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 Aは、-CH=CH-又は硫黄原子を表し、
 Xは、ハロゲン原子、メタンスルホニルオキシ、トリフルオロメタンスルホニルオキシ又はp-トルエンスルホニルオキシを表し、
 Yは、-NO、-NH、-NHCO、-NHSOR又は-NHSOを表し、
 Rは、C~Cハロアルキル又はC~Cアルキルを表す。
 Rは、水素原子、ハロゲン原子、C~Cハロアルキル、C~Cアルコキシ又はC~Cアルキルを表し、
 Rは、水素原子、ハロゲン原子、C~Cハロアルキル、C~Cアルコキシ又はC~Cアルキルを表し、RとRはそれぞれが結合する炭素原子と共にC~Cシクロアルキルを形成しても良く、
 Rは、水素原子、ハロゲン原子、C~Cハロアルキル、C~Cアルコキシ又はC~Cアルキルを表し、
 Rは、水素原子、ハロゲン原子、C~Cハロアルキル、C~Cアルコキシ又はC~Cアルキルを表し、RとRはそれぞれが結合する炭素原子と共にC~Cシクロアルキルを形成しても良く、
 nは、0、1、2又は3の整数を表す。
A represents —CH═CH— or a sulfur atom,
X 1 represents a halogen atom, methanesulfonyloxy, trifluoromethanesulfonyloxy or p-toluenesulfonyloxy,
Y represents —NO 2 , —NH 2 , —NHCO 2 R 1 , —NHSOR 1 or —NHSO 2 R 1 ;
R 1 represents C 1 -C 6 haloalkyl or C 1 -C 6 alkyl.
R 2 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl,
R 3 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl, and R 2 and R 3 together with the carbon atom to which each is attached together with C 3 -C 6 cycloalkyl may be formed,
R 4 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl,
R 5 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl, and R 4 and R 5 together with the carbon atom to which each is bonded together, C 3 -C 6 cycloalkyl may be formed,
n represents an integer of 0, 1, 2, or 3.
 本発明で使用できる溶媒としては、トルエン、ベンゼン、クロロベンゼン、オルトジクロロベンゼン、ニトロベンゼン、トリフルオロメチルベンゼン等の芳香族系溶媒、ヘキサン、ヘプタン、オクタン、ノナン等の炭化水素系溶媒、アセトニトリル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、ジメチルスルホキシド、水等の極性溶媒、メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、エチレングリコール、プロピレングリコールなどのアルコール系溶媒、ジクロロメタン、クロロホルム、1,2-ジクロロエタン等のハロゲン系溶媒、テトラヒドロフラン、ジエチルエーテル、1,2--ジメトキシエタン、シクロペンチルメチルエーテル、メチル-t-ブチルエーテル等のエーテル系溶媒、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル系溶媒などがあげられ、これらの混合溶媒も使用できる。これらのうち、トルエン、テトラヒドロフラン、アセトニトリルが好ましい。 Solvents that can be used in the present invention include aromatic solvents such as toluene, benzene, chlorobenzene, orthodichlorobenzene, nitrobenzene, and trifluoromethylbenzene, hydrocarbon solvents such as hexane, heptane, octane, and nonane, acetonitrile, N, Polar solvents such as N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, dimethyl sulfoxide, water, alcohols such as methanol, ethanol, n-propanol, i-propanol, n-butanol, ethylene glycol, propylene glycol Solvents, halogen solvents such as dichloromethane, chloroform, 1,2-dichloroethane, tetrahydrofuran, diethyl ether, 1,2-dimethoxyethane, cyclopentyl methyl ether, methyl-t-butyl Examples include ether solvents such as tilether, and ester solvents such as methyl acetate, ethyl acetate, and butyl acetate, and mixed solvents thereof can also be used. Of these, toluene, tetrahydrofuran, and acetonitrile are preferable.
 使用する上記溶媒の量は、原料である式(8)で表される化合物1重量部に対して0.1~100重量部の範囲で使用し、好ましくは1~30重量部の範囲で使用する。 The amount of the solvent to be used is used in the range of 0.1 to 100 parts by weight, preferably in the range of 1 to 30 parts by weight with respect to 1 part by weight of the compound represented by the formula (8) as the raw material. To do.
 本製造法に使用できる塩基としては、水素化カルシウム、水素化ナトリウム、カリウム-t-ブトキシド、ナトリウム-t-ブトキシド、ナトリウムメトキシド、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム、炭酸水素カリウム、燐酸ナトリウム、燐酸カリウム、燐酸一水素ナトリウム、燐酸一水素カリウムなどの無機塩基、トリエチルアミン、トリブチルアミン、ピリジン、4-(ジメチルアミノ)ピリジン、イミダゾール、1,8-ジアザビシクロ[5,4,0]-7-ウンデセンなどの有機塩基が挙げられる。これらのうち、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム、炭酸水素カリウム、燐酸ナトリウム、燐酸カリウム、燐酸一水素ナトリウム、又は燐酸一水素カリウムであることが好ましい。特に、水酸化ナトリウム、炭酸カリウム、又は燐酸カリウムが好ましい。
 本製造法に使用できる塩基の量は、原料である式(8)で表される化合物1モルに対して1~100モルの範囲で使用し、好ましくは1~10モルの範囲で使用する。
Bases that can be used in this production method include calcium hydride, sodium hydride, potassium-t-butoxide, sodium-t-butoxide, sodium methoxide, lithium hydroxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide, Calcium hydroxide, barium hydroxide, sodium carbonate, potassium carbonate, cesium carbonate, sodium bicarbonate, potassium bicarbonate, sodium phosphate, potassium phosphate, potassium phosphate monobasic, potassium monohydrogen phosphate, triethylamine, tributylamine, And organic bases such as pyridine, 4- (dimethylamino) pyridine, imidazole, and 1,8-diazabicyclo [5,4,0] -7-undecene. Of these, lithium hydroxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, sodium carbonate, potassium carbonate, cesium carbonate, sodium bicarbonate, potassium bicarbonate, sodium phosphate, potassium phosphate , Sodium monohydrogen phosphate, or potassium monohydrogen phosphate. In particular, sodium hydroxide, potassium carbonate, or potassium phosphate is preferable.
The amount of the base that can be used in this production method is in the range of 1 to 100 mol, preferably in the range of 1 to 10 mol, relative to 1 mol of the compound represented by the formula (8) as the raw material.
 本製造法において相間移動触媒を添加することができる。使用できる相間移動触媒としては、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラ-n-ブチルアンモニウムフルオリド、テトラ-n-ブチルアンモニウムクロリド、テトラ-n-ブチルアンモニウムブロミド、テトラ-n-ブチルアンモニウムヨージド、テトラ-n-ブチルアンモニウム硫酸水素塩、テトラ-n-ブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムクロリド、ベンジルトリメチルアンモニウムブロミド、ベンジルトリ-n-ブチルアンモニウムクロリド、ベンジルトリ-n-ブチルアンモニウムブロミド等の4級アンモニウム塩並びにテトラエチルホスホニウムブロミド、テトラ-n-ブチルホスホニウムブロミド、テトラ-n-ブチルホスホニウムクロリド、テトラフェニルホスホニウムブロミド等の4級ホスホニウム塩等が挙げられる。これらのうち、テトラ-n-ブチルアンモニウムブロミドが好ましい。
 本製造法において使用できる相間移動触媒の量は、原料である式(8)で表される化合物1モルに対して0.01~1モルの範囲で使用し、好ましくは0.01~0.5モルの範囲で使用する。
In this production method, a phase transfer catalyst can be added. Examples of phase transfer catalysts that can be used include tetramethylammonium chloride, tetramethylammonium bromide, tetra-n-butylammonium fluoride, tetra-n-butylammonium chloride, tetra-n-butylammonium bromide, and tetra-n-butylammonium iodide. Quaternary such as tetra-n-butylammonium hydrogen sulfate, tetra-n-butylammonium hydroxide, benzyltrimethylammonium chloride, benzyltrimethylammonium bromide, benzyltri-n-butylammonium chloride, benzyltri-n-butylammonium bromide Ammonium salts and tetraethylphosphonium bromide, tetra-n-butylphosphonium bromide, tetra-n-butylphosphonium chloride, tetra Quaternary phosphonium salts such as E sulfonyl bromide and the like. Of these, tetra-n-butylammonium bromide is preferred.
The amount of the phase transfer catalyst that can be used in the present production method is in the range of 0.01 to 1 mol, preferably 0.01 to 0.1 mol, relative to 1 mol of the compound represented by the formula (8) as the raw material. Used in the range of 5 moles.
 本製造法において-50℃以上200℃以下で反応を行うことが好ましく、さらに好ましくは0℃以上150℃以下で反応を行う。また、本製造法においては、窒素、アルゴン、キセノン等の不活性ガスの雰囲気下で反応を行うことが好ましい。 In this production method, the reaction is preferably performed at −50 ° C. or more and 200 ° C. or less, more preferably 0 ° C. or more and 150 ° C. or less. In this production method, the reaction is preferably carried out in an atmosphere of an inert gas such as nitrogen, argon or xenon.
 次に、本発明に係る式(8)で表される化合物と、式(11)で表される化合物を反応させることによる、式(12)で表されるN-ベンジルアミド化合物の製造方法について、以下に説明する。 Next, a method for producing an N-benzylamide compound represented by formula (12) by reacting a compound represented by formula (8) according to the present invention with a compound represented by formula (11) This will be described below.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 A、X、Yについては上記の化合物(8)における場合と同じである。
 Rは、水素原子、ハロゲン原子、C~Cハロアルキル、C~Cアルコキシ又はC~Cアルキルを表し、
 Rは、水素原子、ハロゲン原子、C~Cハロアルキル、C~Cアルコキシ又はC~Cアルキルを表し、RとRはそれぞれが結合する炭素原子と共にC~Cシクロアルキルを形成しても良く、
 Rは、水素原子、ハロゲン原子、C~Cハロアルキル、C~Cアルコキシ又はC~Cアルキルを表し、
 Rは、水素原子、ハロゲン原子、C~Cハロアルキル、C~Cアルコキシ又はC~Cアルキルを表し、RとRはそれぞれが結合する炭素原子と共にC~Cシクロアルキルを形成しても良く、
 nは、0、1、2又は3の整数を表し、
 Xは、ハロゲン原子、メタンスルホニルオキシ、トリフルオロメタンスルホニルオキシ又はp-トルエンスルホニルオキシを表す。
A, X 1 and Y are the same as those in the above compound (8).
R 2 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl,
R 3 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl, and R 2 and R 3 together with the carbon atom to which each is attached together with C 3 -C 6 cycloalkyl may be formed,
R 4 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl,
R 5 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl, and R 4 and R 5 together with the carbon atom to which each is bonded together, C 3 -C 6 cycloalkyl may be formed,
n represents an integer of 0, 1, 2, or 3;
X 2 represents a halogen atom, methanesulfonyloxy, trifluoromethanesulfonyloxy or p-toluenesulfonyloxy.
 本製造法に使用できる溶媒、塩基、相間移動触媒等については、式(8)で表される化合物から式(10)で表されるN-ベンジルラクタム化合物の製造法と同様である。 The solvent, base, phase transfer catalyst, and the like that can be used in this production method are the same as the production method of the N-benzyllactam compound represented by formula (10) from the compound represented by formula (8).
 次に式(12)で表される化合物から、式(10)で表されるN-ベンジルラクタム化合物の製造方法について、以下に説明する。 Next, a method for producing the N-benzyl lactam compound represented by the formula (10) from the compound represented by the formula (12) will be described below.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 A、Y、R、R、R、R、R、n及びXについては、上記の化合物(12)における場合と同じである。 A, Y, R 1 , R 2 , R 3 , R 4 , R 5 , n and X 2 are the same as in the above compound (12).
 本製造法に使用できる溶媒、塩基、相間移動触媒等については、式(8)で表される化合物から式(10)で表されるN-ベンジルラクタム化合物の製造法の場合と同じである。 The solvent, base, phase transfer catalyst and the like that can be used in this production method are the same as those in the production method of the N-benzyllactam compound represented by the formula (10) from the compound represented by the formula (8).
 以下に、本発明の実施例を挙げて、本発明をさらに具体的に説明するが、本発明はこれらによって限定されるものではない。
 実施例のプロトン核磁気共鳴ケミカルシフト値は、基準物質としてMeSi(テトラメチルシラン)を用い、重クロロホルム溶媒中で、300MHzにて測定した。
The present invention will be described more specifically with reference to examples of the present invention. However, the present invention is not limited to these examples.
The proton nuclear magnetic resonance chemical shift values of the examples were measured at 300 MHz in deuterated chloroform solvent using Me 4 Si (tetramethylsilane) as a reference substance.
 [実施例1]
 2-(N-トリフルオロメタンスルフィニル)アミノベンジルアルコールの合成
 トリフルオロメタンスルフィン酸ナトリウム7gのジクロロメタン4gスラリーに、塩化チオニル580mg及びN,N-ジメチルホルムアミド50mgを氷冷下で滴下した。滴下終了後、室温まで昇温し、1時間攪拌した。このスラリーを、2-アミノベンジルアルコール5gのジクロロメタン50g溶液に氷冷下で滴下し、氷冷下で2時間攪拌した。反応終了後、反応混合物に酢酸エチル及び水を添加し、有機層を分離した。得られた有機層を水、飽和食塩水の順で洗浄し、無水硫酸ナトリウムで脱水後、減圧下で溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー{n-ヘキサン/酢酸エチル=9/1~2/1(体積比、以下同じである)}で精製し、目的物1.69gを赤色の油状物として得た。
H NMR:δ 7.45-7.12 (m,4H), 4.90 -4.55 (m,2H), 3.40-2.70 (brs,2H)
[Example 1]
Synthesis of 2- (N-trifluoromethanesulfinyl) aminobenzyl alcohol To a slurry of 7 g of sodium trifluoromethanesulfinate 7 g of dichloromethane, 580 mg of thionyl chloride and 50 mg of N, N-dimethylformamide were added dropwise under ice cooling. After completion of dropping, the temperature was raised to room temperature and stirred for 1 hour. This slurry was added dropwise to a solution of 5 g of 2-aminobenzyl alcohol in 50 g of dichloromethane under ice cooling, and the mixture was stirred for 2 hours under ice cooling. After completion of the reaction, ethyl acetate and water were added to the reaction mixture, and the organic layer was separated. The obtained organic layer was washed with water and saturated brine in this order, dehydrated with anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography {n-hexane / ethyl acetate = 9/1 to 2/1 (volume ratio, the same shall apply hereinafter)} to obtain 1.69 g of the desired product as a red oil. It was.
1 H NMR: δ 7.45-7.12 (m, 4H), 4.90 -4.55 (m, 2H), 3.40-2.70 (brs, 2H)
 [実施例2]
 2-(N-トリフルオロメタンスルホニル)アミノベンジルアルコールの合成
 2-(N-トリフルオロメタンスルフィニル)アミノベンジルアルコール280mgのトルエン5g溶液に、30質量%過酸化水素水400mg、タングステン酸ナトリウム二水和物39mg及びテトラブチルアンモニウム硫酸水素塩40mgを添加し、50℃で1時間攪拌した。反応終了後、反応混合物に亜硫酸水素ナトリウム水溶液及び酢酸エチルを添加し、有機層を分離した。得られた有機層を水、飽和食塩水の順で洗浄し、無水硫酸ナトリウムで脱水後、減圧下で溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル=3/1)で精製し、目的物170mgを黄色結晶として得た。融点:48~48.5℃
[Example 2]
Synthesis of 2- (N-trifluoromethanesulfonyl) aminobenzyl alcohol 2- (N-trifluoromethanesulfinyl) aminobenzyl alcohol 280 mg in toluene 5 g solution, 30% by mass hydrogen peroxide 400 mg, sodium tungstate dihydrate 39 mg Then, 40 mg of tetrabutylammonium hydrogen sulfate was added and stirred at 50 ° C. for 1 hour. After completion of the reaction, an aqueous sodium hydrogen sulfite solution and ethyl acetate were added to the reaction mixture, and the organic layer was separated. The obtained organic layer was washed with water and saturated brine in this order, dehydrated with anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (n-hexane / ethyl acetate = 3/1) to obtain 170 mg of the desired product as yellow crystals. Melting point: 48-48.5 ° C
 [実施例3]
 2-(N-トリフルオロメタンスルフィニル)アミノベンゾニトリルの合成 その1
 トリフルオロメタンスルフィン酸ナトリウム4.2gにトルエン30g、ジクロロメタン15g及びN,N-ジメチルホルムアミド0.3gを加え、0℃に冷却した後、塩化チオニル3.6gを滴下した。0℃にて2時間攪拌した後、-15℃まで冷却した。2-アミノベンゾニトリル3.0gのトルエン6g及びジクロロメタン3g混合溶液を滴下した後、30分間攪拌した。続いて、N,N-ジメチルアニリン4.6gのトルエン6g及びジクロロメタン3g混合溶液を2時間かけて滴下した。さらに1時間攪拌した後、反応混合物に水を添加した。この混合溶液を酢酸エチルで2回抽出して得られた有機層を飽和食塩水で洗浄し、減圧下で溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル=95/5~2/1)で精製し、目的物4.8gを黄色油状物として得た。得られた油状物をトルエンに溶解し、水酸化ナトリウム水溶液で抽出した。水層をトルエンで2回洗浄し、1mol/L塩酸水溶液を加えて酸性にした後、トルエンで2回抽出した。有機層を合わせて飽和食塩水で2回洗浄し、減圧下で溶媒を留去して、目的物2.0gを白色固体として得た。融点:98~101℃ 
[Example 3]
Synthesis of 2- (N-trifluoromethanesulfinyl) aminobenzonitrile Part 1
To 4.2 g of sodium trifluoromethanesulfinate, 30 g of toluene, 15 g of dichloromethane and 0.3 g of N, N-dimethylformamide were added and cooled to 0 ° C., and 3.6 g of thionyl chloride was added dropwise. After stirring at 0 ° C. for 2 hours, the mixture was cooled to −15 ° C. A mixed solution of 6 g of toluene in 3.0 g of 2-aminobenzonitrile and 3 g of dichloromethane was added dropwise, and the mixture was stirred for 30 minutes. Subsequently, a mixed solution of 4.6 g of N, N-dimethylaniline in 6 g of toluene and 3 g of dichloromethane was added dropwise over 2 hours. After stirring for an additional hour, water was added to the reaction mixture. The organic layer obtained by extracting this mixed solution twice with ethyl acetate was washed with saturated brine, and the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (n-hexane / ethyl acetate = 95/5 to 2/1) to obtain 4.8 g of the desired product as a yellow oil. The resulting oil was dissolved in toluene and extracted with aqueous sodium hydroxide. The aqueous layer was washed twice with toluene, acidified with 1 mol / L hydrochloric acid aqueous solution, and extracted twice with toluene. The organic layers were combined and washed twice with saturated brine, and the solvent was distilled off under reduced pressure to obtain 2.0 g of the desired product as a white solid. Melting point: 98-101 ° C
 [実施例4]
 2-(N-トリフルオロメタンスルフィニル)アミノベンゾニトリルの合成 その2
 トリフルオロメタンスルフィン酸ナトリウム4.0gにトルエン35g及びN,N-ジメチルアセトアミド9.4gを加え、0℃に冷却した後、塩化チオニル3.3gを滴下した。0℃にて0.5時間攪拌した後、-15℃まで冷却した。2-アミノベンゾニトリル3.0gのトルエン6.9g及びN,N-ジメチルアセトアミド1.9g混合溶液を0.5時間かけて滴下した。さらに3時間攪拌した後、反応混合物に食塩水30gを添加した。この混合溶液を分液し、水層をトルエン26gで抽出した。得られた有機層を混合し、ついで高速液体クロマトグラフィー〔分析条件;カラム:XBridge C18,4.6×150mm,粒子径3.5μm、溶離液:アセトニトリル/20mMギ酸アンモニウム水溶液=40/60(v/v)、カラム温度:40℃、流速:1.00mL/min、観測波長:254nm〕で分析したところ、目的物が相対面積比91.5%で生成していることを確認した。
[Example 4]
Synthesis of 2- (N-trifluoromethanesulfinyl) aminobenzonitrile Part 2
To 4.0 g of sodium trifluoromethanesulfinate were added 35 g of toluene and 9.4 g of N, N-dimethylacetamide. After cooling to 0 ° C., 3.3 g of thionyl chloride was added dropwise. After stirring at 0 ° C. for 0.5 hour, the mixture was cooled to −15 ° C. A mixed solution of 3.0 g of 2-aminobenzonitrile in 6.9 g of toluene and 1.9 g of N, N-dimethylacetamide was added dropwise over 0.5 hours. After further stirring for 3 hours, 30 g of brine was added to the reaction mixture. The mixed solution was separated, and the aqueous layer was extracted with 26 g of toluene. The obtained organic layer was mixed and then subjected to high performance liquid chromatography [analysis conditions; column: XBridge C18, 4.6 × 150 mm, particle size 3.5 μm, eluent: acetonitrile / 20 mM ammonium formate aqueous solution = 40/60 (v / V), column temperature: 40 ° C., flow rate: 1.00 mL / min, observation wavelength: 254 nm], it was confirmed that the target product was produced at a relative area ratio of 91.5%.
 [実施例5]
 2-(N-トリフルオロメタンスルホニル)アミノベンゾニトリルの合成
 2-(N-トリフルオロメタンスルフィニル)アミノベンゾニトリル0.21gのトルエン1.8g溶液に、30質量%過酸化水素水0.31g、タングステン酸ナトリウム二水和物38mg及びテトラブチルアンモニウム硫酸水素塩42mgを添加し、50℃で6時間攪拌した。反応終了後、反応混合物に亜硫酸水素ナトリウム水溶液及び酢酸エチルを添加し、有機層を分離した。得られた有機層を飽和食塩水で3回洗浄し、減圧下で溶媒を留去して、目的物0.24gを褐色固体として得た。融点:78~81℃
H NMR:δ 7.61-7.71 (m,3H), 7.38 (t,1H), 5.3-5.6 (brs,1H)
[Example 5]
Synthesis of 2- (N-trifluoromethanesulfonyl) aminobenzonitrile 2-1.8N toluene solution of 0.21 g of 2- (N-trifluoromethanesulfinyl) aminobenzonitrile, 0.31 g of 30% by mass hydrogen peroxide, tungstic acid Sodium dihydrate (38 mg) and tetrabutylammonium hydrogensulfate (42 mg) were added, and the mixture was stirred at 50 ° C. for 6 hours. After completion of the reaction, an aqueous sodium hydrogen sulfite solution and ethyl acetate were added to the reaction mixture, and the organic layer was separated. The obtained organic layer was washed 3 times with saturated brine, and the solvent was distilled off under reduced pressure to obtain 0.24 g of the desired product as a brown solid. Melting point: 78-81 ° C
1 H NMR: δ 7.61-7.71 (m, 3H), 7.38 (t, 1H), 5.3-5.6 (brs, 1H)
 なお、以下の実施例6乃至16、参考例4乃至11に記載されている高速液体クロマトグラフィーによる分析は、以下に記載した条件に従って行った。
カラム:Inertsil-Ph-3 4.6×50mm、3μm(GLサイエンス社製)
溶離液:アセトニトリル/水/酢酸=30/70/0.07~85/15/0.015(体積比)、オーブン温度:45℃、流速:1ml/min.、検出波長:220nm
 また、定量収率は、上記記載の高速液体クロマトグラフィーの条件に準じて測定し、内標は2-エトキシナフタレンを用いて算出した。
 ガスクロマトグラフィーによる分析は、以下に記載した条件に従い行った。
カラム:DB-1 30m×0.25mm、film0.25μm(アジレント・テクノロジー社製)、キャリアガス:ヘリウム、制御モード:圧力(100kPa、一定)、
注入量:1μL、気化室温度:150℃、注入法:スプリット(30/1)、検出器温度:FID 250℃、オーブン温度:50℃(1min)-10℃/min-300℃(15min)
The analysis by high performance liquid chromatography described in Examples 6 to 16 and Reference Examples 4 to 11 below was performed according to the conditions described below.
Column: Inertsil-Ph-3 4.6 × 50 mm, 3 μm (GL Science Co., Ltd.)
Eluent: acetonitrile / water / acetic acid = 30/70 / 0.07 to 85/15 / 0.015 (volume ratio), oven temperature: 45 ° C., flow rate: 1 ml / min., Detection wavelength: 220 nm
The quantitative yield was measured according to the above-mentioned high performance liquid chromatography conditions, and the internal standard was calculated using 2-ethoxynaphthalene.
Analysis by gas chromatography was performed according to the conditions described below.
Column: DB-1 30 m × 0.25 mm, film 0.25 μm (manufactured by Agilent Technologies), carrier gas: helium, control mode: pressure (100 kPa, constant),
Injection volume: 1 μL, vaporization chamber temperature: 150 ° C., injection method: split (30/1), detector temperature: FID 250 ° C., oven temperature: 50 ° C. (1 min) −10 ° C./min−300° C. (15 min)
 〔実施例6〕
 3,3-ジメチル-1-(2-ニトロベンジル)アゼチジン-2-オンの合成 その1
 1-(ブロモメチル)-2-ニトロベンゼン1.00g(4.63ミリモル)のアセトニトリル10.0g溶液に、3,3-ジメチルアゼチジン-2-オン1.38g(13.9ミリモル)及び燐酸カリウム1.47g(6.94ミリモル)を添加した。添加終了後、該反応混合物を窒素雰囲気下、加熱還流下にて3時間攪拌した。反応終了後、該反応混合物を室温まで冷却した後、析出した固形物をろ過によりろ別した。得られたろ液を高速液体クロマトグラフィーにて分析した結果、目的物の相対面積値は83%であった(定量収率81%)。
Example 6
Synthesis of 3,3-dimethyl-1- (2-nitrobenzyl) azetidin-2-one Part 1
To a solution of 1.00 g (4.63 mmol) of 1- (bromomethyl) -2-nitrobenzene in 10.0 g of acetonitrile, 1.38 g (13.9 mmol) of 3,3-dimethylazetidin-2-one and potassium phosphate 1 .47 g (6.94 mmol) was added. After completion of the addition, the reaction mixture was stirred for 3 hours under heating and refluxing under a nitrogen atmosphere. After completion of the reaction, the reaction mixture was cooled to room temperature, and the precipitated solid was separated by filtration. As a result of analyzing the obtained filtrate by high performance liquid chromatography, the relative area value of the target product was 83% (quantitative yield 81%).
 〔実施例7〕
 3,3-ジメチル-1-(2-ニトロベンジル)アゼチジン-2-オンの合成 その2
 1-(ブロモメチル)-2-ニトロベンゼン1.00g(4.63ミリモル)のトルエン10.0g溶液に、3,3-ジメチルアゼチジン-2-オン1.38g(13.9ミリモル)、テトラ-n-ブチルアンモニウムブロミド0.149g(0.463ミリモル)及び30質量%水酸化ナトリウム水溶液0.926g(6.94ミリモル)を添加した。添加終了後、該反応混合物を窒素雰囲気下、70℃にて5時間攪拌した。反応終了後、該反応混合物を室温まで冷却した後、1M塩酸5gにて洗浄した。得られた溶液を高速液体クロマトグラフィーにて分析した結果、目的物の相対面積値は81%であった(定量収率63%)。
Example 7
Synthesis of 3,3-dimethyl-1- (2-nitrobenzyl) azetidin-2-one Part 2
To a solution of 1.00 g (4.63 mmol) of 1- (bromomethyl) -2-nitrobenzene in 10.0 g of toluene, 1.38 g (13.9 mmol) of 3,3-dimethylazetidin-2-one, tetra-n -0.149 g (0.463 mmol) of butylammonium bromide and 0.926 g (6.94 mmol) of 30 wt% aqueous sodium hydroxide solution were added. After completion of the addition, the reaction mixture was stirred at 70 ° C. for 5 hours under a nitrogen atmosphere. After completion of the reaction, the reaction mixture was cooled to room temperature and washed with 5 g of 1M hydrochloric acid. As a result of analyzing the obtained solution by high performance liquid chromatography, the relative area value of the target product was 81% (quantitative yield: 63%).
 〔実施例8〕
 3,3-ジメチル-1-(2-ニトロベンジル)アゼチジン-2-オンの合成 その3
 1-(ブロモメチル)-2-ニトロベンゼン2.00g(9.26ミリモル)のトルエン20.0g溶液に、3,3-ジメチルアゼチジン-2-オン1.84g(18.5ミリモル)、テトラ-n-ブチルアンモニウムブロミド0.298g(0.926ミリモル)及び炭酸カリウム3.84g(27.8ミリモル)を添加した。添加終了後、該反応混合物を窒素雰囲気下、80℃にて4時間攪拌した。反応終了後、該反応混合物を室温まで冷却した後、1M塩酸20gにて洗浄した。得られた溶液を高速液体クロマトグラフィーにて分析した結果、目的物の相対面積値は84%であった(定量収率87%)。
Example 8
Synthesis of 3,3-dimethyl-1- (2-nitrobenzyl) azetidin-2-one Part 3
To a solution of 2.00 g (9.26 mmol) of 1- (bromomethyl) -2-nitrobenzene in 20.0 g of toluene, 1.84 g (18.5 mmol) of 3,3-dimethylazetidin-2-one, tetra-n -0.298 g (0.926 mmol) of butylammonium bromide and 3.84 g (27.8 mmol) of potassium carbonate were added. After completion of the addition, the reaction mixture was stirred at 80 ° C. for 4 hours under a nitrogen atmosphere. After completion of the reaction, the reaction mixture was cooled to room temperature and washed with 20 g of 1M hydrochloric acid. As a result of analyzing the obtained solution by high performance liquid chromatography, the relative area value of the target product was 84% (quantitative yield: 87%).
 〔実施例9〕
 1-(2-ニトロベンジル)ピロリジン-2-オンの合成 その1
 1-(ブロモメチル)-2-ニトロベンゼン0.200g(0.930ミリモル)のアセトニトリル2.00g溶液に、ピロリジン-2-オン0.236g(2.78ミリモル)及び燐酸カリウム0.295g(1.39ミリモル)を添加した。添加終了後、該反応混合物を窒素雰囲気下、加熱還流下にて4時間攪拌した。反応終了後、該反応混合物を室温まで冷却した後、析出した固形物をろ過によりろ別した。得られたろ液を高速液体クロマトグラフィーにて分析した結果、目的物の相対面積値は65%であった。
Example 9
Synthesis of 1- (2-nitrobenzyl) pyrrolidin-2-one 1
To a solution of 0.200 g (0.930 mmol) of 1- (bromomethyl) -2-nitrobenzene in 2.00 g of acetonitrile was added 0.236 g (2.78 mmol) of pyrrolidin-2-one and 0.295 g (1.39 mmol) of potassium phosphate. Mmol) was added. After completion of the addition, the reaction mixture was stirred for 4 hours under heating and refluxing under a nitrogen atmosphere. After completion of the reaction, the reaction mixture was cooled to room temperature, and the precipitated solid was separated by filtration. As a result of analyzing the obtained filtrate by high performance liquid chromatography, the relative area value of the target product was 65%.
 〔実施例10〕
 1-(2-ニトロベンジル)ピロリジン-2-オンの合成 その2
 1-(ブロモメチル)-2-ニトロベンゼン0.500g(2.31ミリモル)のトルエン5.00g溶液に、ピロリジン-2-オン0.591g(6.94ミリモル)、テトラ-n-ブチルアンモニウムブロミド0.0746g(0.231ミリモル)及び30質量%水酸化ナトリウム水溶液0.463g(3.47ミリモル)を添加した。添加終了後、該反応混合物を窒素雰囲気下、70℃にて1時間攪拌した。反応終了後、該反応混合物を室温まで冷却した後、1M塩酸5gにて洗浄した。得られた溶液を高速液体クロマトグラフィーにて分析した結果、目的物の相対面積値は76%であった。
Example 10
Synthesis of 1- (2-nitrobenzyl) pyrrolidin-2-one 2
To a solution of 0.500 g (2.31 mmol) of 1- (bromomethyl) -2-nitrobenzene in 5.00 g of toluene, 0.591 g (6.94 mmol) of pyrrolidin-2-one, 0.4% of tetra-n-butylammonium bromide. 0746 g (0.231 mmol) and 30 wt% aqueous sodium hydroxide solution 0.463 g (3.47 mmol) were added. After completion of the addition, the reaction mixture was stirred at 70 ° C. for 1 hour under a nitrogen atmosphere. After completion of the reaction, the reaction mixture was cooled to room temperature and washed with 5 g of 1M hydrochloric acid. As a result of analyzing the obtained solution by high performance liquid chromatography, the relative area value of the target product was 76%.
 〔実施例11〕
 1-(2-ニトロベンジル)ピロリジン-2-オンの合成 その3
 1-(ブロモメチル)-2-ニトロベンゼン0.500g(2.31ミリモル)のトルエン5.00g溶液に、ピロリジン-2-オン0.394g(4.63ミリモル)、テトラ-n-ブチルアンモニウムブロミド0.0746g(0.230ミリモル)及び炭酸カリウム0.960g(6.94ミリモル)を添加した。添加終了後、該反応混合物を窒素雰囲気下、80℃にて7時間攪拌した。反応終了後、該反応混合物を室温まで冷却した後、1M塩酸5gにて洗浄した。得られた溶液を高速液体クロマトグラフィーにて分析した結果、目的物の相対面積値は67%であった。
Example 11
Synthesis of 1- (2-nitrobenzyl) pyrrolidin-2-one 3
To a solution of 0.500 g (2.31 mmol) of 1- (bromomethyl) -2-nitrobenzene in 5.00 g of toluene, 0.394 g (4.63 mmol) of pyrrolidin-2-one, 0.4% of tetra-n-butylammonium bromide. 0746 g (0.230 mmol) and 0.960 g (6.94 mmol) potassium carbonate were added. After completion of the addition, the reaction mixture was stirred at 80 ° C. for 7 hours under a nitrogen atmosphere. After completion of the reaction, the reaction mixture was cooled to room temperature and washed with 5 g of 1M hydrochloric acid. As a result of analyzing the obtained solution by high performance liquid chromatography, the relative area value of the target product was 67%.
 〔実施例12〕
 4,4-ジメチル-1-(2-ニトロベンジル)ピロリジン-2-オンの合成
 1-(ブロモメチル)-2-ニトロベンゼン0.216g(1.00ミリモル)のアセトニトリル3.00g溶液に、WO2006/072953に記載の方法に準じて合成した合成した4,4-ジメチルピロリジン-2-オン0.678g(3.00ミリモル)及び燐酸カリウム0.318g(1.50ミリモル)を添加した。添加終了後、該反応混合物を窒素雰囲気下、50℃にて2時間攪拌した。反応終了後、該反応混合物を室温まで冷却した後、酢酸エチル5gにて抽出した。得られた有機層を希塩酸5g、亜硫酸水素ナトリウム水溶液5g、飽和食塩水5gの順番で洗浄した後、無水硫酸ナトリウムにて乾燥し、アセトニトリルを減圧留去した。シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=3:1)にて精製し、目的物0.185gを淡黄色固体として得た(収率75%)。
融点:91~92℃
Example 12
Synthesis of 4,4-dimethyl-1- (2-nitrobenzyl) pyrrolidin-2-one To a solution of 0.216 g (1.00 mmol) of 1- (bromomethyl) -2-nitrobenzene in a 3.00 g acetonitrile solution, WO2006 / 072953 0.678 g (3.00 mmol) of synthesized 4,4-dimethylpyrrolidin-2-one and 0.318 g (1.50 mmol) of potassium phosphate synthesized according to the method described in 1) were added. After completion of the addition, the reaction mixture was stirred at 50 ° C. for 2 hours under a nitrogen atmosphere. After completion of the reaction, the reaction mixture was cooled to room temperature and extracted with 5 g of ethyl acetate. The obtained organic layer was washed with 5 g of diluted hydrochloric acid, 5 g of an aqueous sodium hydrogen sulfite solution, and 5 g of saturated brine in that order, and then dried over anhydrous sodium sulfate, and acetonitrile was distilled off under reduced pressure. Purification by silica gel column chromatography (hexane: ethyl acetate = 3: 1) gave 0.185 g of the desired product as a pale yellow solid (yield 75%).
Melting point: 91-92 ° C
 〔実施例13〕
 4,4-ジメチル-1-(2-ニトロベンジル)ピペリジン-2-オンの合成
 1-(ブロモメチル)-2-ニトロベンゼン0.432g(2.00ミリモル)のアセトニトリル5.00g溶液に、WO2010/026989に記載の方法に準じて合成した4,4-ジメチルピペリジン-2-オン0.762g(6.00ミリモル)及び燐酸カリウム1.27g(6.00ミリモル)を添加した。添加終了後、該反応混合物を窒素雰囲気下、80℃にて4時間攪拌した。反応終了後、該反応混合物を室温まで冷却した後、酢酸エチル10gにて抽出した。得られた有機層を水10g、希塩酸10g、飽和食塩水10gの順番で洗浄した後、無水硫酸ナトリウムにて乾燥し、アセトニトリルを減圧留去した。得られた残留物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=3:1)にて精製し、目的物0.203gを淡褐色固体として得た(収率39%)。
融点:90~92℃
Example 13
Synthesis of 4,4-dimethyl-1- (2-nitrobenzyl) piperidin-2-one To a solution of 0.432 g (2.00 mmol) of 1- (bromomethyl) -2-nitrobenzene in 5.00 g of acetonitrile, WO2010 / 026989 4,62-dimethylpiperidin-2-one synthesized according to the method described in 1) (0.762 g (6.00 mmol)) and 1.27 g (6.00 mmol) of potassium phosphate were added. After completion of the addition, the reaction mixture was stirred at 80 ° C. for 4 hours under a nitrogen atmosphere. After completion of the reaction, the reaction mixture was cooled to room temperature and extracted with 10 g of ethyl acetate. The obtained organic layer was washed with 10 g of water, 10 g of dilute hydrochloric acid and 10 g of saturated saline in this order, and then dried over anhydrous sodium sulfate, and acetonitrile was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (hexane: ethyl acetate = 3: 1) to obtain 0.203 g of the desired product as a light brown solid (yield 39%).
Melting point: 90-92 ° C
 〔実施例14〕
 N-[2-{(3,3-ジメチル-2-オキソアゼチジン-1-イル)メチル}フェニル] -1,1,1-トリフルオロメタンスルホンアミドの合成 その1
 3-クロロ-2,2-ジメチル-N-{2-(トリフルオロメタンスルホンアミド)ベンジル}プロパンアミド0.186g(0.50ミリモル)に、2.5質量%水酸化ナトリウム水溶液2.00g(1.25ミリモル)を添加した。添加終了後、該反応混合物を80℃にて3時間攪拌した。反応終了後、該反応混合物を室温まで冷却し、希塩酸3gを添加した後、酢酸エチル10gにて抽出した。得られた酢酸エチル溶液を高速液体クロマトグラフィーで分析した結果、目的物の相対面積値は97%であった(定量収率97%)。
Example 14
Synthesis of N- [2-{(3,3-dimethyl-2-oxoazetidin-1-yl) methyl} phenyl] -1,1,1-trifluoromethanesulfonamide Part 1
To 0.186 g (0.50 mmol) of 3-chloro-2,2-dimethyl-N- {2- (trifluoromethanesulfonamido) benzyl} propanamide, 2.00 g (1 wt. .25 mmol) was added. After completion of the addition, the reaction mixture was stirred at 80 ° C. for 3 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, 3 g of diluted hydrochloric acid was added, and the mixture was extracted with 10 g of ethyl acetate. As a result of analyzing the obtained ethyl acetate solution by high performance liquid chromatography, the relative area value of the target product was 97% (quantitative yield 97%).
 〔実施例15〕
 N-[2-{(3,3-ジメチル-2-オキソアゼチジン-1-イル)メチル}フェニル] -1,1,1-トリフルオロメタンスルホンアミドの合成 その2
 3-クロロ-2,2-ジメチル-N-{2-(トリフルオロメタンスルホンアミド)ベンジル}プロパンアミド0.186g(0.50ミリモル)のアセトニトリル3ml溶液に、燐酸カリウム0.318g(1.50ミリモル)を添加した。添加終了後、該反応混合物を80℃にて9時間攪拌した。該反応混合物を高速液体クロマトグラフィーで分析した結果、目的物の相対面積値は88%であった。
Example 15
Synthesis of N- [2-{(3,3-dimethyl-2-oxoazetidin-1-yl) methyl} phenyl] -1,1,1-trifluoromethanesulfonamide Part 2
To a solution of 0.186 g (0.50 mmol) of 3-chloro-2,2-dimethyl-N- {2- (trifluoromethanesulfonamido) benzyl} propanamide in 3 ml of acetonitrile was added 0.318 g (1.50 mmol) of potassium phosphate. ) Was added. After completion of the addition, the reaction mixture was stirred at 80 ° C. for 9 hours. As a result of analyzing the reaction mixture by high performance liquid chromatography, the relative area value of the target product was 88%.
 〔実施例16〕
 N-[2-{(3,3-ジメチル-2-オキソアゼチジン-1-イル)メチル}フェニル]-1,1,1-トリフルオロメタンスルホンアミドの合成 その3
 N-{2-(アミノメチル)フェニル} -1,1,1-トリフルオロメタンスルホンアミド1.02g(4.00ミリモル)のトルエン7.00g溶液に、5質量%水酸化ナトリウム水溶液7.04g(8.80ミリモル)を添加した。添加終了後、該反応混合物を30℃にて30分攪拌した後、3-クロロピバロイルクロリド0.684g(4.40ミリモル)を添加した後、30℃にて5時間撹拌した。攪拌終了後、該反応混合物に5質量%水酸化ナトリウム水溶液6.40g(8.00ミリモル)を添加し、80℃にて3時間攪拌した。反応終了後、該反応混合物に35質量%塩酸1.29g(12.4ミリモル)を添加して、水層を分離した。得られた有機層を水3gで洗浄した。得られた溶液を無水硫酸ナトリウムにて乾燥し、トルエンを減圧留去して、目的物1.13gを白色結晶として得た。
融点:114~116℃
Example 16
Synthesis of N- [2-{(3,3-dimethyl-2-oxoazetidin-1-yl) methyl} phenyl] -1,1,1-trifluoromethanesulfonamide Part 3
N- {2- (aminomethyl) phenyl} -1,1,1-trifluoromethanesulfonamide 1.02 g (4.00 mmol) in a 7.00 g toluene solution 7.00 g 5% by weight aqueous sodium hydroxide solution ( 8.80 mmol) was added. After completion of the addition, the reaction mixture was stirred at 30 ° C. for 30 minutes, and then 0.684 g (4.40 mmol) of 3-chloropivaloyl chloride was added, followed by stirring at 30 ° C. for 5 hours. After completion of the stirring, 6.40 g (8.00 mmol) of 5 mass% aqueous sodium hydroxide solution was added to the reaction mixture, and the mixture was stirred at 80 ° C. for 3 hours. After completion of the reaction, 1.29 g (12.4 mmol) of 35 mass% hydrochloric acid was added to the reaction mixture, and the aqueous layer was separated. The obtained organic layer was washed with 3 g of water. The obtained solution was dried over anhydrous sodium sulfate, and toluene was distilled off under reduced pressure to obtain 1.13 g of the desired product as white crystals.
Melting point: 114-116 ° C
 [参考例1]
 2-(N-トリフルオロメタンスルホニル)アミノ安息香酸メチルの合成
 2-アミノ安息香酸3.02gのジクロロメタン20g溶液にトリフルオロメタンスルホン酸無水物2.82g、トリエチルアミン2.02g、トリフルオロメタンスルホン酸無水物2.82g及びトリエチルアミン0.40gを氷冷下で続けて添加し、氷冷下で1時間攪拌した。反応終了後、反応混合物に水を添加し、有機層を分液した。得られた有機層を水、飽和食塩水の順に洗浄し、無水硫酸マグネシウムで脱水した。減圧下、溶媒を留去し、目的物3.51gを薄黄色固体として得た。融点:33~35℃
[Reference Example 1]
Synthesis of methyl 2- (N-trifluoromethanesulfonyl) aminobenzoate To a solution of 3.02 g of 2-aminobenzoic acid in 20 g of dichloromethane, 2.82 g of trifluoromethanesulfonic anhydride, 2.02 g of triethylamine, trifluoromethanesulfonic anhydride 2 .82 g and triethylamine 0.40 g were continuously added under ice cooling, followed by stirring for 1 hour under ice cooling. After completion of the reaction, water was added to the reaction mixture, and the organic layer was separated. The obtained organic layer was washed with water and saturated brine in this order, and dehydrated with anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain 3.51 g of the desired product as a pale yellow solid. Melting point: 33-35 ° C
 [参考例2]
 2-(N-トリフルオロメタンスルホニル)ベンジルアルコールの合成
 2-(N-トリフルオロメタンスルホニル)アミノ安息香酸メチル566mgのテトラヒドロフラン10ml溶液に水素化ホウ素ナトリウム114mgを加え、50℃に加熱した。反応液にメタノール0.1mlをゆっくりと滴下し、50℃で2時間加熱攪拌した。反応液を高速液体クロマトグラフィー〔分析条件;カラム:Inertsil ODS-4,4.6×250mm,粒子径5μm、溶離液:アセトニトリル/水/トリフルオロ酢酸=600/400/0.1(v/v/v)、カラム温度:40℃、流速:1.00mL/min、観測波長:220nm〕で分析したところ、目的物が相対面積比73.5%で生成していることを確認した。
[Reference Example 2]
Synthesis of 2- (N-trifluoromethanesulfonyl) benzyl alcohol 114 mg of sodium borohydride was added to 10 ml of tetrahydrofuran solution of 566 mg of methyl 2- (N-trifluoromethanesulfonyl) aminobenzoate and heated to 50 ° C. 0.1 ml of methanol was slowly added dropwise to the reaction solution, and the mixture was heated and stirred at 50 ° C. for 2 hours. The reaction solution was subjected to high performance liquid chromatography [analysis conditions; column: Inertsil ODS-4, 4.6 × 250 mm, particle size 5 μm, eluent: acetonitrile / water / trifluoroacetic acid = 600/400 / 0.1 (v / v / V), column temperature: 40 ° C., flow rate: 1.00 mL / min, observation wavelength: 220 nm], it was confirmed that the target product was produced at a relative area ratio of 73.5%.
 [参考例3]
 2-(N-トリフルオロメタンスルホニル)アミノベンゾニトリルの合成
 2-アミノベンゾニトリル3.0gのジクロロメタン20g溶液にトリフルオロメタンスルホン酸無水物3.6g、トリエチルアミン2.6g、トリフルオロメタンスルホン酸無水物3.6g及びトリエチルアミン0.51gを氷冷下で続けて添加し、氷冷下で1時間攪拌した。反応終了後、反応液を5質量%水酸化ナトリウム水溶液で2回分液した。水層を混合し、ジクロロメタンで洗浄後した後、1mol/L塩酸水溶液を添加して酸性にし、ジクロロメタンで抽出した。有機層を水で2回洗浄し、減圧下で溶媒を濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル=95/5~2/1)で精製し、目的物3.4gを白色固体として得た。融点:78~81℃
[Reference Example 3]
Synthesis of 2- (N-trifluoromethanesulfonyl) aminobenzonitrile To a solution of 3.0 g of 2-aminobenzonitrile in 20 g of dichloromethane, 3.6 g of trifluoromethanesulfonic acid anhydride, 2.6 g of triethylamine, trifluoromethanesulfonic acid anhydride; 6 g and 0.51 g of triethylamine were continuously added under ice cooling, followed by stirring for 1 hour under ice cooling. After completion of the reaction, the reaction solution was separated twice with a 5 mass% aqueous sodium hydroxide solution. The aqueous layer was mixed, washed with dichloromethane, acidified with 1 mol / L aqueous hydrochloric acid solution, and extracted with dichloromethane. The organic layer was washed twice with water and the solvent was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (n-hexane / ethyl acetate = 95/5 to 2/1) to obtain 3.4 g of the desired product as a white solid. Melting point: 78-81 ° C
 [参考例4]
 3-クロロピバリン酸アミドの合成
 28質量%アンモニア水39.2g(645ミリモル)に酢酸エチル200g、3-クロロピバリン酸クロリド20.0g(129ミリモル)を常温にて滴下した。滴下終了後、該反応混合物を室温にて4時間攪拌した。反応終了後、常温にて該反応混合物に飽和塩化アンモニウム水溶液60gを少しずつ添加した後、水層を分離した。水層を酢酸エチル60gで抽出し、先の有機層と合わせて無水硫酸ナトリウムにて乾燥した。得られた有機層を減圧留去し、目的物16.1gを白色固体として得た(収率92%)。融点:100~102℃
[Reference Example 4]
Synthesis of 3-chloropivalic acid amide To 39.2 g (645 mmol) of 28% by mass aqueous ammonia, 200 g of ethyl acetate and 20.0 g (129 mmol) of 3-chloropivalic acid chloride were added dropwise at room temperature. After completion of the dropwise addition, the reaction mixture was stirred at room temperature for 4 hours. After completion of the reaction, 60 g of a saturated aqueous ammonium chloride solution was added little by little to the reaction mixture at room temperature, and then the aqueous layer was separated. The aqueous layer was extracted with 60 g of ethyl acetate, combined with the previous organic layer, and dried over anhydrous sodium sulfate. The obtained organic layer was distilled off under reduced pressure to obtain 16.1 g of the desired product as a white solid (yield 92%). Melting point: 100-102 ° C
 [参考例5]
 3,3-ジメチル-2-アゼチジノンの合成-その1
 3-クロロピバリン酸アミド40.7g(300ミリモル)のアセトニトリル410g溶液に、燐酸カリウム127g(600ミリモル)を添加した。添加終了後、加熱還流下にて9時間攪拌した後、室温まで冷却した後、該反応混合物中に析出した固形物をろ別した。得られたろ液から減圧下にてアセトニトリルを留去した後、得られた残留物に減圧蒸留を行い、3kPaにて110℃から118℃で留出した目的物26.0gを無色液体として得た。ガスクロマトグラフィーにて分析した結果、目的物の相対面積値は96%であった。
[Reference Example 5]
Synthesis of 3,3-dimethyl-2-azetidinone-1
To a solution of 40.7 g (300 mmol) of 3-chloropivalic acid amide in 410 g of acetonitrile, 127 g (600 mmol) of potassium phosphate was added. After completion of the addition, the mixture was stirred for 9 hours under reflux with heating, and then cooled to room temperature, and then the solid matter precipitated in the reaction mixture was filtered off. Acetonitrile was distilled off under reduced pressure from the obtained filtrate, and then the obtained residue was distilled under reduced pressure to obtain 26.0 g of the objective product distilled at 110 to 118 ° C. at 3 kPa as a colorless liquid. . As a result of analysis by gas chromatography, the relative area value of the target product was 96%.
 [参考例6]
 3,3-ジメチル-2-アゼチジノンの合成-その2
 3-クロロピバリン酸アミド10.0g(73.8ミリモル)のテトラヒドロフラン300g溶液に、カリウム tert-ブトキシド16.6g(148ミリモル)を添加した。添加終了後、該反応混合物を常温にて4時間攪拌した。反応終了後、該反応混合物を飽和塩化アンモニウム水溶液80gで洗浄した後、無水硫酸ナトリウムにて乾燥し、アセトニトリルを減圧留去して目的物6.82gを無色液体として得た。ガスクロマトグラフィーにて分析した結果、目的物の相対面積値は92%であった。
[Reference Example 6]
Synthesis of 3,3-dimethyl-2-azetidinone-2
To a solution of 10.0 g (73.8 mmol) of 3-chloropivalic acid amide in 300 g of tetrahydrofuran was added 16.6 g (148 mmol) of potassium tert-butoxide. After completion of the addition, the reaction mixture was stirred at room temperature for 4 hours. After completion of the reaction, the reaction mixture was washed with 80 g of a saturated aqueous ammonium chloride solution and dried over anhydrous sodium sulfate, and acetonitrile was distilled off under reduced pressure to obtain 6.82 g of the desired product as a colorless liquid. As a result of analysis by gas chromatography, the relative area value of the target product was 92%.
 [参考例7]
 N-{2-(アミノメチル)フェニル}-1,1,1-トリフルオロメタンスルホンアミドの合成-その1
 N-(2-シアノフェニル) -1,1,1-トリフルオロメタンスルホンアミド615mg(2.46ミリモル)のメタノール6.15g溶液に、ラネーニッケル57.7mgを添加した。添加終了後、該反応混合物を、水素雰囲気下、50℃にて16時間撹拌した。反応終了後、該反応混合物をセライトろ過にてラネーニッケルを除去した。得られた溶液を高速液体クロマトグラフィーにて分析した結果、目的物の相対面積値は77%であった。
[Reference Example 7]
Synthesis of N- {2- (aminomethyl) phenyl} -1,1,1-trifluoromethanesulfonamide-Part 1
To a solution of N- (2-cyanophenyl) -1,1,1-trifluoromethanesulfonamide (615 mg, 2.46 mmol) in 6.15 g of methanol was added 57.7 mg of Raney nickel. After completion of the addition, the reaction mixture was stirred at 50 ° C. for 16 hours under a hydrogen atmosphere. After completion of the reaction, Raney nickel was removed from the reaction mixture by Celite filtration. As a result of analyzing the obtained solution by high performance liquid chromatography, the relative area value of the target product was 77%.
 [参考例8]
 N-{2-(アミノメチル)フェニル}-1,1,1-トリフルオロメタンスルホンアミドの合成-その2
 N-(2-シアノフェニル) -1,1,1-トリフルオロメタンスルホンアミド1.00g(4.00ミリモル)のメタノール20.0g溶液に、10%パラジウム炭素(エヌ・イー・ケムキャット社製、NXタイプ)200mgを添加した。添加終了後、該反応混合物を、水素雰囲気下、常温にて3時間撹拌した。反応終了後、該反応混合物をセライトろ過にてパラジウム炭素を除去した。得られた溶液を高速液体クロマトグラフィーにて分析した結果、目的物の相対面積値は88%であった。
[Reference Example 8]
Synthesis of N- {2- (aminomethyl) phenyl} -1,1,1-trifluoromethanesulfonamide-Part 2
To a solution of 1.00 g (4.00 mmol) of N- (2-cyanophenyl) -1,1,1-trifluoromethanesulfonamide in 20.0 g of methanol was added 10% palladium on carbon (manufactured by NE Chemcat, NX Type) 200 mg was added. After completion of the addition, the reaction mixture was stirred at room temperature for 3 hours under a hydrogen atmosphere. After completion of the reaction, palladium carbon was removed from the reaction mixture by Celite filtration. As a result of analyzing the obtained solution by high performance liquid chromatography, the relative area value of the target product was 88%.
 [参考例9]
 N-{2-(アミノメチル)フェニル}-1,1,1-トリフルオロメタンスルホンアミド硫酸塩の合成
 N-(2-シアノフェニル) -1,1,1-トリフルオロメタンスルホンアミド1.00g(4.00ミリモル)のメタノール10.0g溶液に、濃硫酸0.41g(4.00ミリモル)及び5質量%パラジウム炭素(エヌ・イー・ケムキャット社製、STDタイプ)50mgを添加した。添加終了後、該反応混合物を水素ガス雰囲気下、常温にて7時間撹拌した。反応終了後、該反応混合物をセライトろ過にてパラジウム炭素を除去した。得られた溶液を液体クロマトグラフィーにて分析した結果、目的物の相対面積値は99%であった。
[Reference Example 9]
Synthesis of N- {2- (aminomethyl) phenyl} -1,1,1-trifluoromethanesulfonamide sulfate 1.00 g of N- (2-cyanophenyl) -1,1,1-trifluoromethanesulfonamide (4 0.001 g (4.00 mmol) of concentrated sulfuric acid and 50 mg of 5 mass% palladium carbon (manufactured by N.E. Chemcat, STD type) were added to a 10.0 g methanol solution. After completion of the addition, the reaction mixture was stirred at room temperature for 7 hours under a hydrogen gas atmosphere. After completion of the reaction, palladium carbon was removed from the reaction mixture by Celite filtration. As a result of analyzing the obtained solution by liquid chromatography, the relative area value of the target product was 99%.
 [参考例10]
 3-クロロ-2,2-ジメチル-N-{2-(トリフルオロメタンスルホンアミド)ベンジル}プロパンアミドの合成 その1
 N-{2-(アミノメチル)フェニル} -1,1,1-トリフルオロメタンスルホンアミド500mg(1.97ミリモル)のトルエン5.00g溶液に、炭酸カリウム574mg(4.15ミリモル)、3-クロロピバロイルクロリド322mg(2.08ミリモル)を添加した。添加終了後、該反応混合物を70℃にて3時間撹拌した。反応終了後、該反応混合物を室温まで冷却した後、5質量%水酸化ナトリウム水溶液5gにて2回抽出した。得られた水酸化ナトリウム水溶液を35質量%塩酸2gにて酸性にした後、トルエン5gにて2回抽出した。得られた有機層を無水硫酸ナトリウムにて乾燥し、トルエンを減圧留去して目的物662mgを白色結晶として得た(収率94%)。
融点:92~93℃
[Reference Example 10]
Synthesis of 3-chloro-2,2-dimethyl-N- {2- (trifluoromethanesulfonamido) benzyl} propanamide Part 1
To a solution of 500 mg (1.97 mmol) of N- {2- (aminomethyl) phenyl} -1,1,1-trifluoromethanesulfonamide in 5.00 g of toluene, 574 mg (4.15 mmol) of potassium carbonate, 3-chloro 322 mg (2.08 mmol) of pivaloyl chloride was added. After the addition was complete, the reaction mixture was stirred at 70 ° C. for 3 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and extracted twice with 5 g of a 5 mass% aqueous sodium hydroxide solution. The obtained aqueous sodium hydroxide solution was acidified with 2 g of 35% by mass hydrochloric acid and then extracted twice with 5 g of toluene. The obtained organic layer was dried over anhydrous sodium sulfate, and toluene was distilled off under reduced pressure to obtain 662 mg of the desired product as white crystals (yield 94%).
Melting point: 92-93 ° C
 [参考例11]
 3-クロロ-2,2-ジメチル-N-{2-(トリフルオロメタンスルホンアミド)ベンジル}プロパンアミドの合成 その2
 N-{2-(アミノメチル)フェニル} -1,1,1-トリフルオロメタンスルホンアミド258mg(1.01ミリモル)のトルエン8.67g及び酢酸エチル4.49g溶液に、トリエチルアミン307mg(3.03ミリモル)及び3-クロロピバロイルクロリド167mg(1.08ミリモル)を添加した。添加終了後、該反応混合物を20℃にて1時間撹拌した。反応終了後、該反応混合物に水5g及び希塩酸7gを添加して分液し、水層をトルエン18gで抽出した。得られた有機層を併せて飽和食塩水5gで洗浄した。得られた溶液を高速液体クロマトグラフィーにて分析した結果、目的物の相対面積値は94%であった。
[Reference Example 11]
Synthesis of 3-chloro-2,2-dimethyl-N- {2- (trifluoromethanesulfonamido) benzyl} propanamide Part 2
To a solution of N- {2- (aminomethyl) phenyl} -1,1,1-trifluoromethanesulfonamide (258 mg, 1.01 mmol) in toluene (8.77 g) and ethyl acetate (4.49 g), triethylamine (307 mg, 3.03 mmol). ) And 3-chloropivaloyl chloride 167 mg (1.08 mmol). After completion of the addition, the reaction mixture was stirred at 20 ° C. for 1 hour. After completion of the reaction, 5 g of water and 7 g of dilute hydrochloric acid were added to the reaction mixture for liquid separation, and the aqueous layer was extracted with 18 g of toluene. The obtained organic layers were combined and washed with 5 g of saturated brine. As a result of analyzing the obtained solution by high performance liquid chromatography, the relative area value of the target product was 94%.
 本発明に係るトリフルオロメタンスルフィンアニリド化合物は、イネ、トウモロコシ、ムギ、ビート及び大豆に高い選択性を持ち、優れた除草効果を有するトリフルオロメタンスルホンアニリド化合物の新規な製造中間体として極めて有用である。
 なお、2013年10月25日に出願された日本特許出願2013-221858号、2014年1月27日に出願された日本特許出願2014-012677号、2014年2月26日に出願された日本特許出願2014-034902号、2014年5月29日に出願された日本特許出願2014-111609号、および、2014年9月5日に出願された日本特許出願2014-180886号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The trifluoromethanesulfinanilide compound according to the present invention is extremely useful as a novel production intermediate of a trifluoromethanesulfonanilide compound having high selectivity for rice, corn, wheat, beet and soybean and having an excellent herbicidal effect.
Japanese Patent Application No. 2013-221858 filed on October 25, 2013, Japanese Patent Application No. 2014-012677 filed on January 27, 2014, Japanese Patent Application filed on February 26, 2014 Application No. 2014-034902, Japanese Patent Application No. 2014-111609 filed on May 29, 2014, and Japanese Patent Application No. 2014-180886 filed on September 5, 2014 The entire contents of the scope, drawings and abstract are hereby incorporated by reference as disclosure of the specification of the present invention.

Claims (30)

  1.  式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式中、Aは、-CH=CH-又は硫黄原子を表し、
     Rは、水素原子又はC~C12アルコキシカルボニルを表し、
     Qは、CHOR、C(=O)OR、シアノ又はCHN(Q)Qの何れかを表し、
     Rは、水素原子又はC~Cアルキルを表し、
     Q、Qはそれぞれ独立して、水素原子、C~C12アルキル、C~C12アルコキシ、ハロ(C~C12)アルキル、ハロ(C~C12)アルコキシ、C~Cシクロアルキル、C~C12アルキルカルボニル、C~C12アルコキシカルボニル、ハロ(C~C12)アルキルカルボニル、ハロ(C~C12)アルコキシカルボニル、C~Cシクロアルキルカルボニル、フェニル、(Y)によって置換されたフェニル、フェニルカルボニル、(Y)によって置換されたフェニルカルボニル、C~Cアルコキシ(C~C)アルキル、C~Cアルキルチオ(C~C)アルキル、C~Cアルキルスルフィニル(C~C)アルキル、C~Cアルキルスルホニル(C~C)アルキル、C~Cアルコキシ(C~C)アルキルカルボニル、C~Cアルキルチオ(C~C)アルキルカルボニル、C~Cアルキルスルフィニル(C~C)アルキルカルボニル又はC~Cアルキルスルホニル(C~C)アルキルカルボニルを表し、
     Yは、ハロゲン原子を表し、
     nは、1、2、3、4又は5の整数を表し、
     mは、1、2、3、4又は5の整数を表す。]で表されるトリフルオロメタンスルフィンアニリド化合物を、酸化剤と反応させることを特徴とする、式(2):
    Figure JPOXMLDOC01-appb-C000002
    [式中、A、R及びQは前記と同じ意味を表す]で表されるトリフルオロメタンスルホンアニリド化合物の製造方法。
    Formula (1):
    Figure JPOXMLDOC01-appb-C000001
    [In the formula, A represents —CH═CH— or a sulfur atom,
    R 1 represents a hydrogen atom or C 1 -C 12 alkoxycarbonyl,
    Q represents CH 2 OR 2 , C (═O) OR 2 , cyano, or CH 2 N (Q 1 ) Q 2 ,
    R 2 represents a hydrogen atom or C 1 -C 6 alkyl,
    Q 1 and Q 2 are each independently a hydrogen atom, C 1 -C 12 alkyl, C 1 -C 12 alkoxy, halo (C 1 -C 12 ) alkyl, halo (C 1 -C 12 ) alkoxy, C 3 -C 8 cycloalkyl, C 1 -C 12 alkylcarbonyl, C 1 -C 12 alkoxycarbonyl, halo (C 1 -C 12 ) alkylcarbonyl, halo (C 1 -C 12 ) alkoxycarbonyl, C 3 -C 8 cyclo Alkylcarbonyl, phenyl, phenyl substituted by (Y) n , phenylcarbonyl, phenylcarbonyl substituted by (Y) m , C 1 -C 6 alkoxy (C 1 -C 6 ) alkyl, C 1 -C 6 alkylthio (C 1 ~ C 6) alkyl, C 1 ~ C 6 alkylsulfinyl (C 1 ~ C 6) alkyl, C 1 ~ C 6 Alkylsulfonyl (C 1 ~ C 6) alkyl, C 1 ~ C 6 alkoxy (C 1 ~ C 6) alkylcarbonyl, C 1 ~ C 6 alkylthio (C 1 ~ C 6) alkylcarbonyl, C 1 ~ C 6 alkylsulfinyl Represents (C 1 -C 6 ) alkylcarbonyl or C 1 -C 6 alkylsulfonyl (C 1 -C 6 ) alkylcarbonyl,
    Y represents a halogen atom,
    n represents an integer of 1, 2, 3, 4 or 5;
    m represents an integer of 1, 2, 3, 4 or 5. Wherein the trifluoromethanesulfinanilide compound represented by the formula (2) is reacted with an oxidizing agent:
    Figure JPOXMLDOC01-appb-C000002
    [Wherein, A, R 1 and Q represent the same meaning as described above] A method for producing a trifluoromethanesulfonanilide compound represented by the formula:
  2.  Aは、-CH=CH-を表し、
     Rは、水素原子又はC~Cアルコキシカルボニルを表し、
     Q、Qはそれぞれ独立して、水素原子、C~C12アルキル、ハロ(C~C12)アルキル、C~C12アルキルカルボニル、ハロ(C~C12)アルキルカルボニル、フェニル、(Y)によって置換されたフェニル、フェニルカルボニル又は(Y)によって置換されたフェニルカルボニルを表す、請求項1に記載のトリフルオロメタンスルホンアニリド化合物の製造方法。
    A represents —CH═CH—,
    R 1 represents a hydrogen atom or C 1 -C 6 alkoxycarbonyl,
    Q 1 and Q 2 are each independently a hydrogen atom, C 1 -C 12 alkyl, halo (C 1 -C 12 ) alkyl, C 1 -C 12 alkylcarbonyl, halo (C 1 -C 12 ) alkylcarbonyl, The method for producing a trifluoromethanesulfonanilide compound according to claim 1, which represents phenyl, phenyl substituted by (Y) n , phenylcarbonyl or phenylcarbonyl substituted by (Y) m .
  3.  酸化剤が、過酸、ヨウ素過酸化物、過硫酸塩及びヒドロペルオキシドからなる群から選ばれる1種である、請求項1又は2に記載のトリフルオロメタンスルホンアニリド化合物の製造方法。 The method for producing a trifluoromethanesulfonanilide compound according to claim 1 or 2, wherein the oxidizing agent is one selected from the group consisting of peracids, iodine peroxides, persulfates and hydroperoxides.
  4.  酸化剤が、m-クロロ過安息香酸、モノペルオキシフタル酸マグネシウム、過ヨウ素酸ナトリウム及び過酸化水素水からなる群から選ばれる1種である、請求項3に記載のトリフルオロメタンスルホンアニリド化合物の製造方法。 The production of a trifluoromethanesulfonanilide compound according to claim 3, wherein the oxidizing agent is one selected from the group consisting of m-chloroperbenzoic acid, magnesium monoperoxyphthalate, sodium periodate and hydrogen peroxide. Method.
  5.  酸化剤が過ヨウ素酸ナトリウムであり、3塩化ルテニウムの存在下で反応を行う、請求項4に記載のトリフルオロメタンスルホンアニリド化合物の製造方法。 The method for producing a trifluoromethanesulfonanilide compound according to claim 4, wherein the oxidizing agent is sodium periodate and the reaction is performed in the presence of ruthenium trichloride.
  6.  酸化剤が過酸化水素水であり、タングステン酸ナトリウム及び/又は相間移動触媒の存在下で行う、請求項4に記載のトリフルオロメタンスルホンアニリド化合物の製造方法。 The method for producing a trifluoromethanesulfonanilide compound according to claim 4, wherein the oxidizing agent is hydrogen peroxide water, and is performed in the presence of sodium tungstate and / or a phase transfer catalyst.
  7.  相間移動触媒が4級アンモニウム塩である、請求項6に記載のトリフルオロメタンスルホンアニリド化合物の製造方法。 The method for producing a trifluoromethanesulfonanilide compound according to claim 6, wherein the phase transfer catalyst is a quaternary ammonium salt.
  8.  式(3):
    Figure JPOXMLDOC01-appb-C000003
    [式中、Aは、-CH=CH-又は硫黄原子を表し、
     Rは、水素原子又はC~C12アルコキシカルボニルを表し、
     Qは、CHOR、C(=O)OR、シアノ又はCHN(Q)Qの何れかを表し、
     Rは、水素原子又はC~Cアルキルを表し、
     Q、Qはそれぞれ独立して、水素原子、C~C12アルキル、C~C12アルコキシ、ハロ(C~C12)アルキル、ハロ(C~C12)アルコキシ、C~Cシクロアルキル、C~C12アルキルカルボニル、C~C12アルコキシカルボニル、ハロ(C~C12)アルキルカルボニル、ハロ(C~C12)アルコキシカルボニル、C~Cシクロアルキルカルボニル、フェニル、(Y)によって置換されたフェニル、フェニルカルボニル、(Y)によって置換されたフェニルカルボニル、C~Cアルコキシ(C~C)アルキル、C~Cアルキルチオ(C~C)アルキル、C~Cアルキルスルフィニル(C~C)アルキル、C~Cアルキルスルホニル(C~C)アルキル、C~Cアルコキシ(C~C)アルキルカルボニル、C~Cアルキルチオ(C~C)アルキルカルボニル、C~Cアルキルスルフィニル(C~C)アルキルカルボニル又はC~Cアルキルスルホニル(C~C)アルキルカルボニルを表し、
     Yは、ハロゲン原子を表し、
     nは、1、2、3、4又は5の整数を表し、
     mは、1、2、3、4又は5の整数を表す]で表されるアミン化合物を、式(4):
    Figure JPOXMLDOC01-appb-C000004
    [式中、Xは、ハロゲン原子を表す。]で表される化合物と反応させることを特徴とする、式(1):
    Figure JPOXMLDOC01-appb-C000005
    [式中、A、R及びQは、前記と同じ意味を表す]で表されるトリフルオロメタンスルフィンアニリド化合物の製造方法。
    Formula (3):
    Figure JPOXMLDOC01-appb-C000003
    [In the formula, A represents —CH═CH— or a sulfur atom,
    R 1 represents a hydrogen atom or C 1 -C 12 alkoxycarbonyl,
    Q represents CH 2 OR 2 , C (═O) OR 2 , cyano, or CH 2 N (Q 1 ) Q 2 ,
    R 2 represents a hydrogen atom or C 1 -C 6 alkyl,
    Q 1 and Q 2 are each independently a hydrogen atom, C 1 -C 12 alkyl, C 1 -C 12 alkoxy, halo (C 1 -C 12 ) alkyl, halo (C 1 -C 12 ) alkoxy, C 3 -C 8 cycloalkyl, C 1 -C 12 alkylcarbonyl, C 1 -C 12 alkoxycarbonyl, halo (C 1 -C 12 ) alkylcarbonyl, halo (C 1 -C 12 ) alkoxycarbonyl, C 3 -C 8 cyclo Alkylcarbonyl, phenyl, phenyl substituted by (Y) n , phenylcarbonyl, phenylcarbonyl substituted by (Y) m , C 1 -C 6 alkoxy (C 1 -C 6 ) alkyl, C 1 -C 6 alkylthio (C 1 ~ C 6) alkyl, C 1 ~ C 6 alkylsulfinyl (C 1 ~ C 6) alkyl, C 1 ~ C 6 Alkylsulfonyl (C 1 ~ C 6) alkyl, C 1 ~ C 6 alkoxy (C 1 ~ C 6) alkylcarbonyl, C 1 ~ C 6 alkylthio (C 1 ~ C 6) alkylcarbonyl, C 1 ~ C 6 alkylsulfinyl Represents (C 1 -C 6 ) alkylcarbonyl or C 1 -C 6 alkylsulfonyl (C 1 -C 6 ) alkylcarbonyl,
    Y represents a halogen atom,
    n represents an integer of 1, 2, 3, 4 or 5;
    m represents an integer of 1, 2, 3, 4 or 5, and an amine compound represented by the formula (4):
    Figure JPOXMLDOC01-appb-C000004
    [Wherein X represents a halogen atom. A compound represented by formula (1):
    Figure JPOXMLDOC01-appb-C000005
    [Wherein, A, R 1 and Q represent the same meaning as described above] A method for producing a trifluoromethanesulfine anilide compound represented by the formula:
  9.  Aは、-CH=CH-を表し、
     Rは、水素原子又はC~Cアルコキシカルボニルを表し、
     Q、Qはそれぞれ独立して、水素原子、C~C12アルキル、ハロ(C~C12)アルキル、C~C12アルキルカルボニル、ハロ(C~C12)アルキルカルボニル、フェニル、(Y)によって置換されたフェニル、フェニルカルボニル又は(Y)によって置換されたフェニルカルボニルを表す、請求項8に記載のトリフルオロメタンスルフィンアニリド化合物の製造方法。
    A represents —CH═CH—,
    R 1 represents a hydrogen atom or C 1 -C 6 alkoxycarbonyl,
    Q 1 and Q 2 are each independently a hydrogen atom, C 1 -C 12 alkyl, halo (C 1 -C 12 ) alkyl, C 1 -C 12 alkylcarbonyl, halo (C 1 -C 12 ) alkylcarbonyl, The method for producing a trifluoromethanesulfinanilide compound according to claim 8, which represents phenyl, phenyl substituted by (Y) n , phenylcarbonyl, or phenylcarbonyl substituted by (Y) m .
  10.  塩基の存在下で反応を行う、請求項8又は9に記載のトリフルオロメタンスルフィンアニリド化合物の製造方法。 The method for producing a trifluoromethanesulfinanilide compound according to claim 8 or 9, wherein the reaction is carried out in the presence of a base.
  11.  式(5):
    Figure JPOXMLDOC01-appb-C000006
    [式中、Mは、ナトリウム又はカリウムを表す。]で表される化合物を、ハロゲン化剤と反応させて式(4)で表される化合物を製造し、製造した式(4)で表される化合物を用いる、請求項8、9又は10に記載のトリフルオロメタンスルフィンアニリド化合物の製造方法。
    Formula (5):
    Figure JPOXMLDOC01-appb-C000006
    [Wherein M represents sodium or potassium. The compound represented by formula (4) is produced by reacting the compound represented by formula (4) with a halogenating agent, and the produced compound represented by formula (4) is used. A process for producing the trifluoromethanesulfinanilide compound described.
  12.  ハロゲン化剤が塩化チオニルである、請求項11に記載のトリフルオロメタンスルフィンアニリド化合物の製造方法。 The method for producing a trifluoromethanesulfinanilide compound according to claim 11, wherein the halogenating agent is thionyl chloride.
  13.  式(1):
    Figure JPOXMLDOC01-appb-C000007
    [式中、Aは、-CH=CH-又は硫黄原子を表し、
     Rは、水素原子又はC~C12アルコキシカルボニルを表し、
     Qは、CHOR、C(=O)OR、シアノ又はCHN(Q)Qの何れかを表し、
     Rは、水素原子又はC~Cアルキルを表し、
     Q、Qはそれぞれ独立して、水素原子、C~C12アルキル、C~C12アルコキシ、ハロ(C~C12)アルキル、ハロ(C~C12)アルコキシ、C~Cシクロアルキル、C~C12アルキルカルボニル、C~C12アルコキシカルボニル、ハロ(C~C12)アルキルカルボニル、ハロ(C~C12)アルコキシカルボニル、C~Cシクロアルキルカルボニル、フェニル、(Y)によって置換されたフェニル、フェニルカルボニル、(Y)によって置換されたフェニルカルボニル、C~Cアルコキシ(C~C)アルキル、C~Cアルキルチオ(C~C)アルキル、C~Cアルキルスルフィニル(C~C)アルキル、C~Cアルキルスルホニル(C~C)アルキル、C~Cアルコキシ(C~C)アルキルカルボニル、C~Cアルキルチオ(C~C)アルキルカルボニル、C~Cアルキルスルフィニル(C~C)アルキルカルボニル又はC~Cアルキルスルホニル(C~C)アルキルカルボニルを表し、
     Yは、ハロゲン原子を表し、
     nは、1、2、3、4又は5の整数を表し、
     mは、1、2、3、4又は5の整数を表す]で表されるトリフルオロメタンスルフィンアニリド化合物又はその塩。
    Formula (1):
    Figure JPOXMLDOC01-appb-C000007
    [In the formula, A represents —CH═CH— or a sulfur atom,
    R 1 represents a hydrogen atom or C 1 -C 12 alkoxycarbonyl,
    Q represents CH 2 OR 2 , C (═O) OR 2 , cyano, or CH 2 N (Q 1 ) Q 2 ,
    R 2 represents a hydrogen atom or C 1 -C 6 alkyl,
    Q 1 and Q 2 are each independently a hydrogen atom, C 1 -C 12 alkyl, C 1 -C 12 alkoxy, halo (C 1 -C 12 ) alkyl, halo (C 1 -C 12 ) alkoxy, C 3 -C 8 cycloalkyl, C 1 -C 12 alkylcarbonyl, C 1 -C 12 alkoxycarbonyl, halo (C 1 -C 12 ) alkylcarbonyl, halo (C 1 -C 12 ) alkoxycarbonyl, C 3 -C 8 cyclo Alkylcarbonyl, phenyl, phenyl substituted by (Y) n , phenylcarbonyl, phenylcarbonyl substituted by (Y) m , C 1 -C 6 alkoxy (C 1 -C 6 ) alkyl, C 1 -C 6 alkylthio (C 1 ~ C 6) alkyl, C 1 ~ C 6 alkylsulfinyl (C 1 ~ C 6) alkyl, C 1 ~ C 6 Alkylsulfonyl (C 1 ~ C 6) alkyl, C 1 ~ C 6 alkoxy (C 1 ~ C 6) alkylcarbonyl, C 1 ~ C 6 alkylthio (C 1 ~ C 6) alkylcarbonyl, C 1 ~ C 6 alkylsulfinyl Represents (C 1 -C 6 ) alkylcarbonyl or C 1 -C 6 alkylsulfonyl (C 1 -C 6 ) alkylcarbonyl,
    Y represents a halogen atom,
    n represents an integer of 1, 2, 3, 4 or 5;
    m represents an integer of 1, 2, 3, 4 or 5.] A trifluoromethanesulfinanilide compound or a salt thereof.
  14.  Aは、-CH=CH-を表し、
     Rは、水素原子又はC~Cアルコキシカルボニルを表し、
     Q、Qは、水素原子、C~C12アルキル、ハロ(C~C12)アルキル、C~C12アルキルカルボニル、ハロ(C~C12)アルキルカルボニル、フェニル、(Y)によって置換されたフェニル、フェニルカルボニル又は(Y)によって置換されたフェニルカルボニルを表す、請求項13に記載のトリフルオロメタンスルフィンアニリド化合物又はその塩。
    A represents —CH═CH—,
    R 1 represents a hydrogen atom or C 1 -C 6 alkoxycarbonyl,
    Q 1 and Q 2 are each a hydrogen atom, C 1 -C 12 alkyl, halo (C 1 -C 12 ) alkyl, C 1 -C 12 alkylcarbonyl, halo (C 1 -C 12 ) alkylcarbonyl, phenyl, (Y The trifluoromethanesulfinanilide compound or a salt thereof according to claim 13, which represents phenyl substituted by n , phenylcarbonyl or phenylcarbonyl substituted by (Y) m .
  15.  式(6):
    Figure JPOXMLDOC01-appb-C000008
     [Rは、水素原子又はC~Cアルコキシカルボニルを表し、
     Q、Qはそれぞれ独立して、ハロ(C~C12)アルキルカルボニル、ハロ(C~C12)アルコキシカルボニル、C~Cアルコキシ(C~C)アルキルカルボニル、C~Cアルキルチオ(C~C)アルキルカルボニル、C~Cアルキルスルフィニル(C~C)アルキルカルボニル又はC~Cアルキルスルホニル(C~C)アルキルカルボニルを表す]で表されるトリフルオロメタンスルホンアミド化合物又はその塩。
    Formula (6):
    Figure JPOXMLDOC01-appb-C000008
    [R 1 represents a hydrogen atom or C 1 -C 6 alkoxycarbonyl;
    Q 1 and Q 2 are each independently halo (C 1 -C 12 ) alkylcarbonyl, halo (C 1 -C 12 ) alkoxycarbonyl, C 1 -C 6 alkoxy (C 1 -C 6 ) alkylcarbonyl, C It represents a 1 ~ C 6 alkylthio (C 1 ~ C 6) alkylcarbonyl, C 1 ~ C 6 alkylsulfinyl (C 1 ~ C 6) alkylcarbonyl or C 1 ~ C 6 alkylsulfonyl (C 1 ~ C 6) alkylcarbonyl ] The trifluoromethanesulfonamide compound represented by these, or its salt.
  16.  式(7):
    Figure JPOXMLDOC01-appb-C000009
     [Rは、水素原子又はC~Cアルコキシカルボニルを表し、
     Qは、ハロ(C~C12)アルキルカルボニル、ハロ(C~C12)アルコキシカルボニル、C~Cアルコキシ(C~C)アルキルカルボニル、C~Cアルキルチオ(C~C)アルキルカルボニル、C~Cアルキルスルフィニル(C~C)アルキルカルボニル又はC~Cアルキルスルホニル(C~C)アルキルカルボニルを表す]で表されるアミノベンジルアミン化合物。
    Formula (7):
    Figure JPOXMLDOC01-appb-C000009
    [R 1 represents a hydrogen atom or C 1 -C 6 alkoxycarbonyl;
    Q 1 is halo (C 1 -C 12 ) alkylcarbonyl, halo (C 1 -C 12 ) alkoxycarbonyl, C 1 -C 6 alkoxy (C 1 -C 6 ) alkylcarbonyl, C 1 -C 6 alkylthio (C 1 -C 6 ) alkylcarbonyl, C 1 -C 6 alkylsulfinyl (C 1 -C 6 ) alkylcarbonyl or C 1 -C 6 alkylsulfonyl (C 1 -C 6 ) represents alkylcarbonyl] Amine compounds.
  17.  式(8):
    Figure JPOXMLDOC01-appb-C000010
    [式中、Aは、-CH=CH-又は硫黄原子を表し、
     Xは、ハロゲン原子、メタンスルホニルオキシ、トリフルオロメタンスルホニルオキシ又はp-トルエンスルホニルオキシを表し、
     Yは、-NO、-NH、-NHCO、-NHSOR又は-NHSOを表し、
     Rは、C~Cハロアルキル又はC~Cアルキルを表す。]で表されるベンジル化合物と、式(9):
    Figure JPOXMLDOC01-appb-C000011
    [式中、Rは、水素原子、ハロゲン原子、C~Cハロアルキル、C~Cアルコキシ又はC~Cアルキルを表し、
     Rは、水素原子、ハロゲン原子、C~Cハロアルキル、C~Cアルコキシ又はC~Cアルキルを表し、RとRはそれぞれが結合する炭素原子と共にC~Cシクロアルキルを形成しても良く、
     Rは、水素原子、ハロゲン原子、C~Cハロアルキル、C~Cアルコキシ又はC~Cアルキルを表し、
     Rは、水素原子、ハロゲン原子、C~Cハロアルキル、C~Cアルコキシ又はC~Cアルキルを表し、RとRはそれぞれが結合する炭素原子と共にC~Cシクロアルキルを形成しても良く、
     nは、0、1、2又は3の整数を表す。]で表されるラクタム化合物を、塩基の存在下で反応させることを特徴とする、式(10):
    Figure JPOXMLDOC01-appb-C000012
    [式中、A、Y、R、R、R、R、R及びnは上記と同じ意味を表す。]で表されるN-ベンジルラクタム化合物の製造方法。
    Formula (8):
    Figure JPOXMLDOC01-appb-C000010
    [In the formula, A represents —CH═CH— or a sulfur atom,
    X 1 represents a halogen atom, methanesulfonyloxy, trifluoromethanesulfonyloxy or p-toluenesulfonyloxy,
    Y represents —NO 2 , —NH 2 , —NHCO 2 R 1 , —NHSOR 1 or —NHSO 2 R 1 ;
    R 1 represents C 1 -C 6 haloalkyl or C 1 -C 6 alkyl. A benzyl compound represented by formula (9):
    Figure JPOXMLDOC01-appb-C000011
    [Wherein R 2 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl,
    R 3 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl, and R 2 and R 3 together with the carbon atom to which each is attached together with C 3 -C 6 cycloalkyl may be formed,
    R 4 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl,
    R 5 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl, and R 4 and R 5 together with the carbon atom to which each is bonded together, C 3 -C 6 cycloalkyl may be formed,
    n represents an integer of 0, 1, 2, or 3. Wherein the lactam compound represented by the formula (10) is reacted in the presence of a base:
    Figure JPOXMLDOC01-appb-C000012
    [Wherein, A, Y, R 1 , R 2 , R 3 , R 4 , R 5 and n represent the same meaning as described above. ] The manufacturing method of the N-benzyl lactam compound represented by this.
  18.  式(8):
    Figure JPOXMLDOC01-appb-C000013
    [式中、Aは、-CH=CH-又は硫黄原子を表し、
     Xは、ハロゲン原子、メタンスルホニルオキシ、トリフルオロメタンスルホニルオキシ又はp-トルエンスルホニルオキシを表し、
     Yは、-NO、-NH、-NHCO、-NHSOR又は-NHSOを表し、
     Rは、C~Cハロアルキル又はC~Cアルキルを表す。]で表されるベンジル化合物と、式(11):
    Figure JPOXMLDOC01-appb-C000014
    [式中、Rは、水素原子、ハロゲン原子、C~Cハロアルキル、C~Cアルコキシ又はC~Cアルキルを表し、
     Rは、水素原子、ハロゲン原子、C~Cハロアルキル、C~Cアルコキシ又はC~Cアルキルを表し、RとRはそれぞれが結合する炭素原子と共にC~Cシクロアルキルを形成しても良く、
     Rは、水素原子、ハロゲン原子、C~Cハロアルキル、C~Cアルコキシ又はC~Cアルキルを表し、
     Rは、水素原子、ハロゲン原子、C~Cハロアルキル、C~Cアルコキシ又はC~Cアルキルを表し、RとRはそれぞれが結合する炭素原子と共にC~Cシクロアルキルを形成しても良く、
     nは、0、1、2又は3の整数を表し、
     Xは、ハロゲン原子、メタンスルホニルオキシ、トリフルオロメタンスルホニルオキシ又はp-トルエンスルホニルオキシを表す。]で表されるアミド化合物を塩基の存在下で反応させることを特徴とする、式(12):
    Figure JPOXMLDOC01-appb-C000015
    [式中、A、Y、R、R、R、R、R、n及びXは上記と同様の意味を表す。]で表されるN-ベンジルアミド化合物の製造方法。
    Formula (8):
    Figure JPOXMLDOC01-appb-C000013
    [In the formula, A represents —CH═CH— or a sulfur atom,
    X 1 represents a halogen atom, methanesulfonyloxy, trifluoromethanesulfonyloxy or p-toluenesulfonyloxy,
    Y represents —NO 2 , —NH 2 , —NHCO 2 R 1 , —NHSOR 1 or —NHSO 2 R 1 ;
    R 1 represents C 1 -C 6 haloalkyl or C 1 -C 6 alkyl. A benzyl compound represented by formula (11):
    Figure JPOXMLDOC01-appb-C000014
    [Wherein R 2 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl,
    R 3 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl, and R 2 and R 3 together with the carbon atom to which each is attached together with C 3 -C 6 cycloalkyl may be formed,
    R 4 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl,
    R 5 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl, and R 4 and R 5 together with the carbon atom to which each is bonded together, C 3 -C 6 cycloalkyl may be formed,
    n represents an integer of 0, 1, 2, or 3;
    X 2 represents a halogen atom, methanesulfonyloxy, trifluoromethanesulfonyloxy or p-toluenesulfonyloxy. Wherein the amide compound represented by formula (12) is reacted in the presence of a base:
    Figure JPOXMLDOC01-appb-C000015
    [Wherein, A, Y, R 1 , R 2 , R 3 , R 4 , R 5 , n, and X 2 represent the same meaning as described above. ] The manufacturing method of the N-benzylamide compound represented by this.
  19.  式(12):
    Figure JPOXMLDOC01-appb-C000016
     [式中、Aは、-CH=CH-又は硫黄原子を表し、
     Yは、-NO、-NH、-NHCO、-NHSOR又は-NHSOを表し、
     Rは、C~Cハロアルキル又はC~Cアルキルを表し、
     Rは、水素原子、ハロゲン原子、C~Cハロアルキル、C~Cアルコキシ又はC~Cアルキルを表し、
     Rは、水素原子、ハロゲン原子、C~Cハロアルキル、C~Cアルコキシ又はC~Cアルキルを表し、RとRはそれぞれが結合する炭素原子と共にC~Cシクロアルキルを形成しても良く、
     Rは、水素原子、ハロゲン原子、C~Cハロアルキル、C~Cアルコキシ又はC~Cアルキルを表し、
     Rは、水素原子、ハロゲン原子、C~Cハロアルキル、C~Cアルコキシ又はC~Cアルキルを表し、RとRはそれぞれが結合する炭素原子と共にC~Cシクロアルキルを形成しても良く、
     nは、0,1,2又は3の整数を表し、
     Xは、ハロゲン原子、メタンスルホニルオキシ、トリフルオロメタンスルホニルオキシ又はp-トルエンスルホニルオキシを表す。]で表されるN-ベンジルアミド化合物を塩基の存在下で反応させることを特徴とする、式(10):
    Figure JPOXMLDOC01-appb-C000017
    [式中、A、Y、R、R、R、R、R及びnは上記と同様の意味を表す。]で表されるN-ベンジルラクタム化合物の製造方法。
    Formula (12):
    Figure JPOXMLDOC01-appb-C000016
    [In the formula, A represents —CH═CH— or a sulfur atom,
    Y represents —NO 2 , —NH 2 , —NHCO 2 R 1 , —NHSOR 1 or —NHSO 2 R 1 ;
    R 1 represents C 1 -C 6 haloalkyl or C 1 -C 6 alkyl,
    R 2 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl,
    R 3 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl, and R 2 and R 3 together with the carbon atom to which each is attached together with C 3 -C 6 cycloalkyl may be formed,
    R 4 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl,
    R 5 represents a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy or C 1 -C 6 alkyl, and R 4 and R 5 together with the carbon atom to which each is bonded together, C 3 -C 6 cycloalkyl may be formed,
    n represents an integer of 0, 1, 2 or 3,
    X 2 represents a halogen atom, methanesulfonyloxy, trifluoromethanesulfonyloxy or p-toluenesulfonyloxy. Wherein the N-benzylamide compound represented by the formula (10) is reacted in the presence of a base:
    Figure JPOXMLDOC01-appb-C000017
    [Wherein, A, Y, R 1 , R 2 , R 3 , R 4 , R 5 and n represent the same meaning as described above. ] The manufacturing method of the N-benzyl lactam compound represented by this.
  20.  添加物として相間移動触媒を加える請求項17乃至19に記載の製造方法。 20. The production method according to claim 17, wherein a phase transfer catalyst is added as an additive.
  21.  nは、0を表す請求項17乃至20に記載の製造方法。 21. The manufacturing method according to claim 17, wherein n represents 0.
  22.  nは、1の整数を表す請求項17乃至20に記載の製造方法。 21. The manufacturing method according to claim 17, wherein n represents an integer of 1.
  23.  nは、2の整数を表す請求項17乃至20に記載の製造方法。 21. The manufacturing method according to claim 17, wherein n represents an integer of 2.
  24.  nは、3の整数を表す請求項17乃至20に記載の製造方法。 21. The manufacturing method according to claim 17, wherein n represents an integer of 3.
  25.  塩基が、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム、炭酸水素カリウム、燐酸ナトリウム、燐酸カリウム、燐酸一水素ナトリウム又は燐酸一水素カリウムである請求項17乃至24に記載の製造方法。 The base is lithium hydroxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, sodium carbonate, potassium carbonate, cesium carbonate, sodium bicarbonate, potassium bicarbonate, sodium phosphate, potassium phosphate, The production method according to any one of claims 17 to 24, which is sodium monohydrogen phosphate or potassium monohydrogen phosphate.
  26.  塩基が、水酸化ナトリウム、炭酸カリウム又は燐酸カリウムである請求項25に記載の製造方法。 The production method according to claim 25, wherein the base is sodium hydroxide, potassium carbonate or potassium phosphate.
  27.  相間移動触媒が、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラ-n-ブチルアンモニウムフルオリド、テトラ-n-ブチルアンモニウムクロリド、テトラ-n-ブチルアンモニウムブロミド、テトラ-n-ブチルアンモニウムヨージド、テトラ-n-ブチルアンモニウム硫酸水素塩、テトラ-n-ブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムクロリド、ベンジルトリメチルアンモニウムブロミド、ベンジルトリ-n-ブチルアンモニウムクロリド、ベンジルトリ-n-ブチルアンモニウムブロミド、テトラエチルホスホニウムブロミド、テトラ-n-ブチルホスホニウムブロミド、テトラ-n-ブチルホスホニウムクロリド又はテトラフェニルホスホニウムブロミドである請求項20~26に記載のN-ベンジルラクタム化合物の製造方法。 Phase transfer catalysts are tetramethylammonium chloride, tetramethylammonium bromide, tetra-n-butylammonium fluoride, tetra-n-butylammonium chloride, tetra-n-butylammonium bromide, tetra-n-butylammonium iodide, tetra -N-butylammonium hydrogen sulfate, tetra-n-butylammonium hydroxide, benzyltrimethylammonium chloride, benzyltrimethylammonium bromide, benzyltri-n-butylammonium chloride, benzyltri-n-butylammonium bromide, tetraethylphosphonium bromide, tetra- n-butylphosphonium bromide, tetra-n-butylphosphonium chloride or tetraphenylphosphonium bromide Method for producing N- benzyl lactam compound according to 20-26.
  28.  相間移動触媒が、テトラ-n-ブチルアンモニウムブロミドである請求項27に記載の製造方法。 The production method according to claim 27, wherein the phase transfer catalyst is tetra-n-butylammonium bromide.
  29.  前記式中、Aは、-CH=CH-を表す請求項17乃至28に記載の製造方法。 29. The production method according to claim 17, wherein A represents —CH═CH—.
  30.  前記式中、Aは、硫黄原子を表す請求項17乃至28に記載の製造方法。 In the above formula, A represents a sulfur atom.
PCT/JP2014/078254 2013-10-25 2014-10-23 Production method for trifluoromethanesulfonanilide compound WO2015060402A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015543914A JP6512104B2 (en) 2013-10-25 2014-10-23 Process for producing N-benzyl lactam compound

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2013221858 2013-10-25
JP2013-221858 2013-10-25
JP2014012677 2014-01-27
JP2014-012677 2014-01-27
JP2014034902 2014-02-26
JP2014-034902 2014-02-26
JP2014-111609 2014-05-29
JP2014111609 2014-05-29
JP2014-180886 2014-09-05
JP2014180886 2014-09-05

Publications (1)

Publication Number Publication Date
WO2015060402A1 true WO2015060402A1 (en) 2015-04-30

Family

ID=52992989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078254 WO2015060402A1 (en) 2013-10-25 2014-10-23 Production method for trifluoromethanesulfonanilide compound

Country Status (2)

Country Link
JP (1) JP6512104B2 (en)
WO (1) WO2015060402A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3639474A (en) * 1969-06-12 1972-02-01 Minnesota Mining & Mfg N-substituted perfluoroalkane-sulfonamides
JPH09286771A (en) * 1996-04-23 1997-11-04 Central Glass Co Ltd Production of trifluoromethane sulfonanilide derivative
JPH10218857A (en) * 1995-12-07 1998-08-18 Sumitomo Chem Co Ltd Trifluoromethanesulfinanilide compound and use thereof
JP2003300950A (en) * 2002-02-07 2003-10-21 Sumitomo Chem Co Ltd Method for producing sulfone compound or sulfoxide compound and catalyst thereof
JP2005314407A (en) * 2004-03-31 2005-11-10 Nippon Nohyaku Co Ltd Novel haloalkylsulfonanilide derivatives, herbicides, methods of use and intermediates thereof
WO2008038640A1 (en) * 2006-09-28 2008-04-03 Shionogi & Co., Ltd. Method for producing salt of 4-sulfinylamino-1-cyclohexanecarboxylic acid
JP2009091350A (en) * 2007-09-18 2009-04-30 Central Glass Co Ltd Processes for producing 2-bromo-2,2-difluoroethanol and 2-(alkylcarbonyloxy)-1,1-difluoroethanesulfonic acid salt
WO2009102057A1 (en) * 2008-02-14 2009-08-20 Hodogaya Chemical Co., Ltd. Successive production process for oxidized cyclic phenol sulfide
JP2011037746A (en) * 2009-08-10 2011-02-24 Nissan Chem Ind Ltd Method for producing haloalkyl sulfonanilide compound
WO2013061973A1 (en) * 2011-10-25 2013-05-02 石原産業株式会社 Heteroaryl sulfonamide compound or salt thereof
WO2014046244A1 (en) * 2012-09-20 2014-03-27 日産化学工業株式会社 Method for producing trifluoromethanesulfonanilide compound

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3639474A (en) * 1969-06-12 1972-02-01 Minnesota Mining & Mfg N-substituted perfluoroalkane-sulfonamides
JPH10218857A (en) * 1995-12-07 1998-08-18 Sumitomo Chem Co Ltd Trifluoromethanesulfinanilide compound and use thereof
JPH09286771A (en) * 1996-04-23 1997-11-04 Central Glass Co Ltd Production of trifluoromethane sulfonanilide derivative
JP2003300950A (en) * 2002-02-07 2003-10-21 Sumitomo Chem Co Ltd Method for producing sulfone compound or sulfoxide compound and catalyst thereof
JP2005314407A (en) * 2004-03-31 2005-11-10 Nippon Nohyaku Co Ltd Novel haloalkylsulfonanilide derivatives, herbicides, methods of use and intermediates thereof
WO2008038640A1 (en) * 2006-09-28 2008-04-03 Shionogi & Co., Ltd. Method for producing salt of 4-sulfinylamino-1-cyclohexanecarboxylic acid
JP2009091350A (en) * 2007-09-18 2009-04-30 Central Glass Co Ltd Processes for producing 2-bromo-2,2-difluoroethanol and 2-(alkylcarbonyloxy)-1,1-difluoroethanesulfonic acid salt
WO2009102057A1 (en) * 2008-02-14 2009-08-20 Hodogaya Chemical Co., Ltd. Successive production process for oxidized cyclic phenol sulfide
JP2011037746A (en) * 2009-08-10 2011-02-24 Nissan Chem Ind Ltd Method for producing haloalkyl sulfonanilide compound
WO2013061973A1 (en) * 2011-10-25 2013-05-02 石原産業株式会社 Heteroaryl sulfonamide compound or salt thereof
WO2014046244A1 (en) * 2012-09-20 2014-03-27 日産化学工業株式会社 Method for producing trifluoromethanesulfonanilide compound

Also Published As

Publication number Publication date
JP6512104B2 (en) 2019-05-15
JPWO2015060402A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
JP7658912B2 (en) Process for preparing microbicidal oxadiazole derivatives
US11560367B2 (en) Pyrrolidinones and a process to prepare them
JP5843182B2 (en) Partially saturated nitrogen-containing heterocyclic compounds
JP6429016B2 (en) Process for producing trifluoromethanesulfonanilide compound
US8664402B2 (en) Process for preparing 1-(6-methylpyridin-3-yl)-2-[4-(methylsulfonyl)phenyl]ethanone, an intermediate of etoricoxib
JP5304818B2 (en) Process for producing 4-substituted or unsubstituted tetrahydropyran-4-carboxylic acid compound or ester compound thereof
JP6512104B2 (en) Process for producing N-benzyl lactam compound
US20120029202A1 (en) Process for the Preparation of 5-Substituted 3-Aryl-3-(trifluoromethyl)-3,4-dihydro-2H-pyrroles
JP6173364B2 (en) A medicament containing a partially saturated nitrogen-containing heterocyclic compound as an active ingredient
WO2016021539A1 (en) Method for producing pyrimidin-1-ol compound, and intermediate thereof
JP5140776B1 (en) Process for producing 1-substituted-3-fluoroalkylpyrazole-4-carboxylic acid ester
JP5526538B2 (en) Process for producing 3- (2-cyano-1-propenyl) -2,2-dimethylcyclopropanecarboxylic acid compound and intermediates thereof
JP6961595B2 (en) Method for producing 4-alkoxy-3-trifluoromethylbenzyl alcohol
Yang et al. Synthesis of asymmetric halomesylate mustards with aziridineethanol/alkali metal halides: application to an improved synthesis of the hypoxia prodrug PR-104
WO2017186624A1 (en) Process for the preparation of herbicidal pyridinylimidazolone compounds
JP6687914B2 (en) Method for producing O- [1- (2-hydroxypropyl)] oxime compound
EP3670487A1 (en) Process for the preparation of substituted phenoxyphenyl ketones
JP2020537680A (en) Process for producing herbicidal pyridadinone compounds
JP5487692B2 (en) Compound having heterocyclic skeleton and method for producing optically active compound using said compound as asymmetric catalyst
KR20170140202A (en) Method for producing dicarboxylic acid compound
JPWO2005058859A1 (en) Process for producing 3- (4-tetrahydropyranyl) -3-oxopropanoic acid alkyl compound and 4-acyltetrahydropyran
WO2024135652A1 (en) Reissert-henze reaction using phosphonic acid anhydride as activator
WO2004087674A1 (en) Process for producing acrylonitrile compound
JPWO2018105492A1 (en) Method for producing 3- (pyridyl-2-amino) propionitrile and its analogs
JP2006045108A (en) 3- (N-acylamino) -3- (4-tetrahydropyranyl) propenoic acid ester and process for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14856246

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015543914

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14856246

Country of ref document: EP

Kind code of ref document: A1