WO2015053087A1 - 重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法 - Google Patents
重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法 Download PDFInfo
- Publication number
- WO2015053087A1 WO2015053087A1 PCT/JP2014/075392 JP2014075392W WO2015053087A1 WO 2015053087 A1 WO2015053087 A1 WO 2015053087A1 JP 2014075392 W JP2014075392 W JP 2014075392W WO 2015053087 A1 WO2015053087 A1 WO 2015053087A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- mass
- silica
- pore diameter
- carrier
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G65/00—Treatment of hydrocarbon oils by two or more hydrotreatment processes only
- C10G65/02—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
- C10G65/04—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/88—Molybdenum
- B01J23/883—Molybdenum and nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/185—Phosphorus; Compounds thereof with iron group metals or platinum group metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/186—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/186—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J27/188—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
- B01J27/19—Molybdenum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/613—10-100 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/615—100-500 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/63—Pore volume
- B01J35/635—0.5-1.0 ml/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/647—2-50 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0018—Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0215—Coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/04—Mixing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/28—Phosphorising
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/02—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
- C10G45/04—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
- C10G45/06—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
- C10G45/08—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1037—Hydrocarbon fractions
Definitions
- the present invention is used for hydrodesulfurization of atmospheric distillation residue oil (hereinafter also referred to as “AR”) and vacuum distillation residue oil (hereinafter also referred to as “VR”) using a direct desulfurization apparatus.
- Heavy hydrocarbon oil hydrotreating catalyst capable of improving the storage stability of the hydrotreated oil obtained by hydrotreating the hydrocarbon oil, method for producing the hydrotreating catalyst, and the hydrogenation
- the present invention relates to a method for hydrotreating heavy hydrocarbon oil using a treatment catalyst.
- a large amount of sulfur compounds are contained in AR obtained by treating crude oil with an atmospheric distillation apparatus and heavy hydrocarbon oils such as VR obtained by further treating AR with a vacuum distillation apparatus.
- heavy hydrocarbon oils such as VR obtained by further treating AR with a vacuum distillation apparatus.
- SOx sulfur oxide
- hydrotreated heavy hydrocarbon oil is heated and stored in order to maintain fluidity in consideration of workability at the time of shipment until it is shipped. Moreover, after being shipped as a product, it may be stored for a long time until it is used. For this reason, depending on the thermal history and the atmosphere at the time of storage, sediment may occur during storage, which may cause clogging of the filter, damage to the pump, and the like.
- the present invention is a hydrotreating catalyst capable of improving the storage stability of hydrotreated heavy hydrocarbon oil without reducing desulfurization activity or demetallizing activity, a method for producing the hydrotreating catalyst, Another object of the present invention is to provide a method for hydrotreating heavy hydrocarbon oil using the hydrotreating catalyst.
- the inventors of the present invention in the hydrogenation treatment of heavy hydrocarbon oil, in the phosphorus-silica-containing alumina support containing specific amounts of phosphorus and silica, respectively, the hydrogenation activity It has been found that by using a hydrotreating catalyst carrying a component, a hydrotreating oil with a reduced amount of latent sediment can be obtained, and the present invention has been completed.
- the present invention relates to the following heavy hydrocarbon oil hydrotreating catalyst, heavy hydrocarbon oil hydrotreating catalyst production method, and heavy hydrocarbon oil hydrotreating method.
- As the support at least one selected from Group 6 metals of the periodic table is a catalyst standard, 8 to 20% by mass in terms of oxide, and at least one selected from Group 8 to 10 metals of the periodic table is a catalyst standard, oxide
- a heavy hydrocarbon oil hydrotreating catalyst which is supported in an amount of 2 to 6% by mass in terms of conversion.
- a step of preparing an alumina gel A step of kneading a phosphorus compound and silica in the alumina gel so that phosphorus is contained on a carrier basis, 0.1 to 4% by mass in terms of oxide, and silica is contained in an amount of 0.1 to 1.5% by mass on a carrier basis;
- the obtained kneaded product is molded, dried and fired to obtain a phosphorus / silica-containing alumina carrier, and the phosphorus / silica-containing alumina carrier includes at least one selected from Group 6 metals of the periodic table.
- a method for producing a heavy hydrocarbon oil hydrotreating catalyst [3] A heavy hydrocarbon oil is mixed with a pre-catalyst at a hydrogen partial pressure of 3 to 20 MPa, a hydrogen / oil ratio of 400 to 3000 m 3 / m 3 , a temperature of 300 to 420 ° C., and a liquid space velocity of 0.1 to 3 h ⁇ 1 .
- a method of hydrotreating by sequentially contacting a middle catalyst and a latter catalyst (A) As a pre-stage catalyst, Into an inorganic oxide carrier containing 1 to 15% by mass of zinc oxide based on the carrier, 2 to 15% by mass of at least one selected from Group 6 metals of the periodic table on a catalyst basis and in terms of oxide, and the periodic table 0.001 to 5% by mass of at least one selected from Group 8 to 10 metals, A pore having a specific surface area of 70 to 150 m 2 / g, a pore volume of 0.6 to 1 mL / g, an average pore diameter of 15 to 35 nm, and an average pore diameter of ⁇ 2.0 nm A catalyst in which the ratio of the total volume to the total pore volume is 15 to 50% is used on a volume basis of 10 to 50% with respect to the whole catalyst.
- a silica-containing porous alumina carrier containing 0.1 to 1.5% by mass of silica on a carrier basis is loaded with a hydrogenation active component and has a total pore volume of 0.55 to 0.75 mL / g.
- the total volume of pores having a pore diameter of 5 to 10 nm is 30 to 45% of the total volume of pores having a pore diameter of 3 to 30 nm; (2) the total volume of pores having a pore diameter of 10 to 15 nm is 50 to 65% of the total volume of pores having a pore diameter of 3 to 30 nm; (3) the total volume of pores having a pore diameter of 30 nm or more is 3% or less of the total pore volume; (4)
- the average pore diameter of pores having a pore diameter of 10 to 30 nm is 10.5 to 13 nm, and (5) the total volume of pores having the average pore diameter of ⁇ 1 nm is 25% or more of the total volume of pores having a pore diameter of 3 to 30 nm, 10 to 50% of the total catalyst is used on a volume basis,
- C As a post-stage catalyst, The heavy hydrotreating catalyst according to the above [1] or the hydrotreating catalyst produced by the production method according to
- a hydrogenation active component is supported on a phosphorus-silica-containing alumina carrier containing specific amounts of phosphorus and silica, respectively, and is excellent in desulfurization activity of heavy hydrocarbon oil. Yes. Furthermore, by performing a hydrotreatment using the hydrotreating catalyst, a heavy hydrocarbon oil that is less susceptible to sedimentation and excellent in storage stability can be obtained.
- the hydrotreating catalyst according to the present invention contains alumina as a main carrier component.
- alumina such as ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, and ⁇ -alumina can be used as alumina, but porous and high specific surface area alumina is preferable, and ⁇ -alumina is particularly suitable.
- the purity of alumina as a main carrier component is preferably 98% by mass or more, more preferably 99% by mass or more.
- the impurities in alumina include SO 4 2 ⁇ , Cl ⁇ , Fe 2 O 3 , Na 2 O and the like.
- impurities are preferably as small as possible, and the total amount of impurities is preferably 2% by mass or less.
- the content is preferably 1% by mass or less, and for each component, SO 4 2 ⁇ is preferably 1.5% by mass or less, and C1 ⁇ , Fe 2 O 3 , and Na 2 O are preferably 0.1% by mass or less.
- the carrier used for the hydrotreating catalyst according to the present invention is a phosphorus / silica-containing alumina carrier obtained by further containing phosphorus and silica in an alumina carrier.
- Phosphorus and silica are added as components for improving the quality of the active sites in order to improve the desulfurization activity and decarburization activity per active metal amount.
- Active metals such as highly active NiMoS phase, NiWS phase, etc. It plays a role in precisely creating the sulfur phase.
- the silica contained in the phosphorus-silica-containing porous alumina support of the hydrotreating catalyst according to the present invention is 0.1 to 1.5% by mass, preferably 0.1 to 1.2% by mass, based on the support. It is. If the silica content is 0.1% by mass or more, the active sites of the Group 6 metal / Group 8 to 10 metal are optimally formed, and if the silica content is 1.5% by mass or less, the silica addition itself Sediment is difficult to generate because the decomposition reaction is difficult to be accelerated by the acid sites that appear.
- the content of phosphorus in the carrier of the hydrotreating catalyst according to the present invention is 0.1 to 4% by mass, preferably 0.5 to 2.5% by mass, based on the carrier and converted to oxide. If the phosphorus content in the support is 0.1% by mass or more in terms of the support and oxide, the sulfidity of the Group 6 metal of the periodic table will be sufficiently high. Further, if the phosphorus content is 4% by mass or less, the pore volume and the specific surface area are hardly reduced, and the Group 6 metal of the periodic table is appropriately dispersed, so that the effect of adding phosphorus is sufficiently obtained. .
- the phosphorus content is preferably 0.08 to 3.6% by mass on the catalyst basis and in terms of oxide.
- the phosphorus raw material compound to be contained in the carrier of the hydrotreating catalyst according to the present invention various compounds can be used.
- the phosphorus compound include orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, etc. Among them, orthophosphoric acid is preferable.
- support basis in terms of oxide means that the masses of all elements contained in the carrier are calculated as respective oxides, and the oxidation of phosphorus with respect to the total mass. It means the ratio of the amount of substance.
- the oxide mass of phosphorus is calculated in terms of diphosphorus pentoxide.
- Phosphorus and silica are added to the alumina carrier by periodic table Group 6 metal (hereinafter sometimes referred to as “Group 6 metal”) and periodic table Group 8 to 10 metal (hereinafter referred to as “Group 8 to 10”). It is considered that the interaction between the “metal” and the carrier is relaxed, and this facilitates the sulfidation of the Group 6 metal and the Group 8 to 10 metal, respectively. However, on the other hand, if the interaction between the Group 6 metal or the Group 8 to 10 metal and the support becomes too weak, active metal aggregation occurs. is necessary.
- Group 6 metal of the periodic table means a Group 6 metal in the long-period type periodic table
- Group 8-10 metal of the periodic table means in the long-period type periodic table. Means a Group 8-10 metal.
- an alumina gel is prepared by a conventional method.
- the alumina raw material any material containing aluminum can be used, but aluminum salts such as aluminum sulfate and aluminum nitrate are preferred.
- These alumina raw materials are usually provided as an aqueous solution, and the concentration thereof is not particularly limited, but is preferably 2 to 50% by mass, more preferably 5 to 40% by mass.
- a sulfuric acid aqueous solution, sodium aluminate, and aluminum hydroxide are mixed in a stirring vessel to prepare a slurry, and the resulting slurry is subjected to water removal by a rotary cylindrical continuous vacuum filter and pure water washing, and an alumina gel Get.
- the obtained alumina gel is washed until SO 4 2 ⁇ and Na + can no longer be detected in the filtrate, and then the alumina gel is made turbid in pure water to make a uniform slurry.
- the obtained alumina gel slurry is dehydrated until the water content becomes 60 to 90% by mass to obtain a cake.
- the method for producing a hydrotreating catalyst according to the present invention it is preferable to perform dehydration of the alumina gel slurry with a press filter.
- a press filter By dehydrating with a press filter, the surface state of the alumina carrier can be improved, which is beneficial for improving the level of sulfidity of the catalytically active metal (hydrogenated active metal) described later.
- the press filter is a filter that applies compressed air or pump pressure to the slurry to filter, and is generally called a press filter.
- a plate frame type and a concave plate type in the press filter.
- the filter plate and the filter frame are alternately clamped between the end plates, and the slurry is pressed into the filter frame and filtered.
- the filter plate has a groove serving as a filtrate flow path, and a furnace cloth is stretched on the furnace frame.
- the concave plate type filter a filter chamber and a concave plate type filter plate are alternately arranged to form a clamping filter chamber between the end plates (reference document: Chemical Engineering Handbook p715).
- the preparation method of the alumina gel includes a method of neutralizing an aqueous solution containing an alumina raw material with a neutralizing agent such as sodium aluminate, aluminate or ammonia, or a precipitating agent such as hexanemethylenetetramine or calcium carbonate. And the like.
- the amount of the neutralizing agent used is not particularly limited, but is preferably 30 to 70% by mass with respect to the total amount of the aqueous solution containing the alumina raw material and the neutralizing agent.
- the amount of the precipitating agent is not particularly limited, but is preferably 30 to 70% by mass with respect to the total amount of the aqueous solution containing the alumina raw material and the precipitating agent.
- a phosphorus compound and silica are added to the obtained alumina gel by kneading. Specifically, a phosphorous compound aqueous solution heated to 15 to 90 ° C. and silica are added to a water-adjusted product of alumina gel heated to 50 to 90 ° C., and kneaded and stirred using a heating kneader or the like. -A kneaded product of silica-containing alumina carrier is obtained.
- dehydration using a pressure filter may be performed after kneading and stirring alumina gel, phosphorus compound, and silica.
- the obtained kneaded material is molded, dried and fired to obtain a phosphorus / silica-containing alumina carrier.
- the kneaded product can be molded by various molding methods such as extrusion molding and pressure molding.
- the drying temperature is preferably 15 to 150 ° C., particularly preferably 80 to 120 ° C., and the drying time is preferably 30 minutes or more.
- the calcination temperature can be appropriately set as necessary.
- the calcination is preferably performed at 450 ° C. or more, more preferably 480 ° C. to 600 ° C. .
- the firing time is preferably 2 hours or more, particularly preferably 3 to 12 hours.
- the phosphorus-silica-containing alumina carrier of the hydrotreating catalyst according to the present invention preferably has the following physical property values.
- the specific surface area of the phosphorus / silica-containing alumina support is preferably 200 to 380 m 2 / g, more preferably 220 to 360 m 2 / g, as measured by a nitrogen adsorption method (BET method).
- BET method nitrogen adsorption method
- the average pore diameter in the pore distribution measured by the mercury intrusion method of the phosphorus / silica-containing alumina carrier is preferably 5 to 12 nm, more preferably 6 to 10 nm.
- the pore volume of the phosphorus / silica-containing alumina carrier is preferably 0.4 to 0.9 mL / g, more preferably 0.6 to 0.8 mL / g, as measured by mercury porosimetry.
- a small amount of solvent enters the pore volume.
- the solubility of the hydrogenated active metal compound is deteriorated, the dispersibility of the metal is lowered, and there is a possibility that the catalyst becomes a low activity catalyst.
- Phosphorus / silica-containing alumina support with at least one selected from Group 6 metals as catalyst standard, 8-20% by mass in terms of oxide, and at least one selected from Group 8-10 metals as catalyst standard, oxidation
- the hydrotreating catalyst according to the present invention can be produced by loading it so as to contain 2 to 5% by mass in terms of product.
- Catalyst standard, in terms of oxide means that the mass of all elements contained in the catalyst is calculated as each oxide, The ratio of the oxide mass of each metal with respect to the total mass is meant.
- the oxide mass of the Group 6 metal and the Group 8 to 10 metal is determined in terms of a hexavalent oxide for the Group 6 metal and a divalent oxide for the Group 8 to 10 metal.
- Examples of the Group 6 metal include molybdenum (Mo), tungsten (W), chromium (Cr), etc. Among them, Mo having high activity per unit mass is preferable.
- Examples of the Mo compound supported on the phosphorus-silica-containing alumina carrier include molybdenum trioxide, molybdophosphoric acid, ammonium molybdate, molybdic acid, and the like, and molybdophosphoric acid, molybdenum trioxide, and ammonium molybdate are preferable.
- the content of the Group 6 metal in the phosphorus / silica-containing alumina carrier is 8 to 20% by mass, preferably 10 to 16% by mass, in terms of oxide, based on the catalyst.
- the Group 6 metal is 8% by mass or more, it is sufficient to develop the effect caused by the Group 6 metal. Moreover, if it is 20 mass% or less, a Group 6 metal will disperse
- Examples of the Group 8-10 metals include nickel (Ni), cobalt (Co), etc. Among them, Ni is preferable because of its high hydrogenation ability and low catalyst preparation cost.
- Examples of the Ni compound supported on the phosphorus / silica-containing alumina carrier include Ni carbonates, acetates, nitrates, sulfates, and chlorides, preferably carbonates, acetates, and more preferably carbonates.
- the content of the Group 8-10 metal in the phosphorus / silica-containing alumina support is 2 to 6% by mass, preferably 2.5 to 4.5% by mass in terms of oxides based on the catalyst. If the Group 8-10 metal is 2% by mass or more, the active sites belonging to the Group 8-10 metal can be sufficiently obtained. On the other hand, when the content is 5% by mass or less, the group 8-10 metal compound hardly aggregates and the dispersibility of the active metal is not lowered. For example, when Ni is used, NiO species that are inactive precursors (present as NiS species after catalytic sulfidation and during hydrogenation treatment) and Ni spinel species that are incorporated in the lattice of the carrier are not easily generated. Therefore, the catalytic activity is improved.
- the optimum mass ratio of the Group 6 metal and the Group 8 to 10 metal that are hydrogenation active metals is [Group 8 to Group 10].
- Metal oxide mass] / ([Group 8 to 10 metal oxide mass] + [Group 6 metal oxide mass]) is preferably 0.14 to 0.3.
- the active metal-sulfur phase such as NiMoS phase, NiWS phase, etc.
- a method for supporting a Group 6 metal or a Group 8 to 10 metal on a phosphorus / silica-containing alumina support a known method such as an impregnation method or a coprecipitation method may be used.
- the hydrogenation active metal is added to the phosphorus / silica containing alumina support.
- An impregnation method in which a hydrogenation active metal is supported on a phosphorus / silica-containing alumina carrier by contacting with a solution containing the components can be employed.
- Specific methods for supporting the Group 6 metal and the Group 8 to 10 metal on the phosphorus / silica-containing alumina carrier include the following methods. First, an impregnation solution containing a Group 6 metal compound, a Group 8 to 10 metal compound, and a phosphorus compound is prepared. In addition, when phosphorus is contained in the metal compound, the phosphorus compound is not added or an appropriate amount of the phosphorus compound is added. During preparation, heating (30-100 ° C) and addition of acids (nitric acid, phosphoric acid, organic acids (citric acid, acetic acid, malic acid, tartaric acid, etc.)) are performed to promote dissolution of these compounds. May be.
- acids nitric acid, phosphoric acid, organic acids (citric acid, acetic acid, malic acid, tartaric acid, etc.
- the mass ratio in terms of oxide of phosphorus kneaded in the support for the sixth metal is preferably 0.25 or less. If it is 0.25 or less, it is difficult to reduce the surface area and pore volume of the catalyst, and not only the decrease in the catalyst activity is suppressed, but also the carbon deposition can be prevented without increasing the acid amount, thereby reducing the activity degradation. It is suppressed.
- the prepared impregnation solution is gradually added to the phosphorus / silica-containing alumina carrier so as to be uniform, and impregnated.
- the impregnation time is preferably 1 minute to 5 hours, more preferably 5 minutes to 3 hours, the temperature is preferably 5 to 100 ° C., more preferably 10 to 80 ° C., and the atmosphere is not particularly limited. Nitrogen and vacuum are suitable.
- LOI ⁇ Loss on ignition >> is 50% in a nitrogen stream, air stream, or vacuum at room temperature to 80 ° C. And is dried in an air stream at 80 to 150 ° C. for 10 minutes to 10 hours in a drying furnace.
- firing is performed in a firing furnace in an air stream, preferably at 300 to 700 ° C., more preferably at 500 to 650 ° C., preferably for 10 minutes to 10 hours, more preferably for 3 hours or more.
- the hydrotreating catalyst according to the present invention has its specific surface area, pore volume, average pore diameter, and pore distribution within the following ranges in order to increase the hydrogenation activity and desulfurization activity for heavy hydrocarbon oils. It is preferable to adjust.
- the specific surface area of the hydrotreating catalyst according to the present invention is a value measured by the BET method, is preferably 180 ⁇ 320m 2 / g, more preferably 200 ⁇ 300m 2 / g.
- the specific surface area is too small, the dispersibility of the hydrogenation active metal is deteriorated, and when the specific surface area is too large, the pore diameter becomes extremely small, so that the pore diameter of the catalyst also becomes small.
- the pore volume of the hydrotreating catalyst according to the present invention is a value measured by a mercury intrusion method, and is preferably 0.45 to 0.8 mL / g, more preferably 0.5 to 0.7 mL / g. If the pore volume is too small, the sulfur compound may not be sufficiently diffused in the catalyst pores during the hydrotreatment, and if the pore volume is too large, the specific surface area will be extremely high. There is a risk of becoming smaller. By setting the pore volume of the hydrotreating catalyst according to the present invention within the above range, both the dispersibility of the hydroactive metal and the diffusibility of the sulfur compound into the catalyst pores during the hydrotreating are further improved. Can be good.
- the average pore diameter in the pore distribution measured by the mercury intrusion method of the hydrotreating catalyst according to the present invention is preferably 7 to 13 nm, more preferably 7 to 12 nm.
- the pore distribution of the hydrotreating catalyst according to the present invention includes pores having an average pore diameter of ⁇ 1.5 nm.
- the ratio of the total volume to the total pore volume is preferably 45% or more, more preferably 55% or more.
- the distribution state of the hydrogenation active metal in the hydrotreating catalyst according to the present invention is preferably a uniform type in which the active metal is uniformly distributed in the catalyst.
- hydrotreating heavy hydrocarbon oil using the hydrotreating catalyst according to the present invention sulfur compounds in the heavy hydrocarbon oil can be reduced over a long period of time, and the resulting hydrogen It becomes possible to improve the storage stability of the chlorinated oil.
- the hydrotreating catalyst according to the present invention is generally activated by sulfiding in a reactor before use (that is, prior to performing the hydrotreating method according to the present invention).
- the sulfurization treatment is generally performed at a temperature of 200 to 400 ° C., preferably 250 to 350 ° C. under a hydrogen atmosphere of normal pressure or higher, and a petroleum distillate containing a sulfur compound, This is performed using hydrogen sulfide or a material added with a sulfiding agent such as fido or carbon disulfide.
- the hydrotreating catalyst according to the present invention is used as a post-stage catalyst in a hydrotreating method in which a heavy hydrocarbon oil is brought into contact with three types of catalysts (a pre-stage catalyst, an intermediate stage catalyst, and a post-stage catalyst).
- a catalyst in which a hydrogenation active metal is supported on an inorganic oxide carrier containing zinc oxide is used as a pre-stage catalyst, and a catalyst in which a hydrogenation active component is supported on a silica-containing porous alumina support is used as an intermediate stage catalyst.
- the three types of catalysts used in the hydrotreating method according to the present invention differ mainly in required performance.
- the former stage catalyst is required to have a metal removal activity mainly in order to protect the metal resistance and the catalyst after the middle stage.
- the middle stage catalyst is required to have a good balance of metal resistance and demetalization activity, and at the same time desulfurization performance. In the latter stage catalyst, desulfurization performance is mainly required.
- the inorganic oxide carrier of the catalyst used as the pre-stage catalyst contains 1 to 15% by mass, preferably 2 to 12% by mass of zinc oxide based on the carrier.
- the average particle diameter of the zinc oxide particles contained in the inorganic oxide carrier is preferably 2 to 12 ⁇ m, more preferably 4 to 10 ⁇ m, and further preferably 5 to 9 ⁇ m.
- the particle size of the zinc oxide particles was measured by a laser diffraction scattering method in accordance with JIS R1629, and the volume average particle size distribution was defined as the average particle size.
- the purity of zinc oxide is preferably 99% or more.
- the inorganic oxide support of the catalyst used as the pre-stage catalyst contains an inorganic oxide other than zinc oxide.
- the other inorganic oxide carrier is preferably porous, and examples thereof include alumina, silica, silica-alumina, titania, boria, manganese, zirconia and the like. These may be used alone or in combination of two or more.
- the zinc oxide content in the inorganic oxide support is within the above range, the average pore diameter can be increased while maintaining the catalyst strength in combination with other physical properties, and the metal resistance performance, A catalyst having excellent metal activity can be obtained.
- the zinc oxide content is 1% by mass or more, it is sufficient to improve the sulfidity of the Group 6 metal, and if the zinc oxide content is 15% by mass or less, the pore volume or The specific surface area is hardly lowered, the Group 6 metal can be dispersed, and the sulfidity of the Group 8 to 10 metal is hardly lowered.
- the average particle diameter of the zinc oxide particles is 12 ⁇ m or less, the effect of sufficiently interacting with alumina and improving the storage stability of the heavy hydrocarbon oil after the hydrotreatment is sufficiently exerted. Moreover, if the average particle diameter of the zinc oxide particles is 2 ⁇ m or more, zinc oxide and alumina can be easily mixed at the time of production, and the production process becomes simpler.
- a usual method can be adopted for catalyst preparation of the pre-stage catalyst used in the hydrotreating method according to the present invention.
- alumina can be produced by various methods. Specifically, a water-soluble aluminum compound, for example, aluminum sulfate, nitrate, or chloride is neutralized with a base such as ammonia, or an alkali metal aluminate is neutralized with an acidic aluminum salt or acid.
- a base such as ammonia
- an alkali metal aluminate is neutralized with an acidic aluminum salt or acid.
- an aluminum hydrogel is obtained.
- a normal alumina carrier can be produced by a general process such as aging, washing, dehydration drying, moisture adjustment, molding, drying, and firing of alumina gel.
- a zinc oxide-containing alumina carrier as a catalyst used as a pre-stage catalyst in the hydrotreating method according to the present invention is manufactured by adding zinc oxide to alumina gel to adjust water content, and adding a kneading step before the molding step. It is preferable.
- a method for supporting the hydrogenation active metal on the obtained zinc oxide-containing alumina support an impregnation method is preferable.
- the pre-stage catalyst used in the hydrotreating method according to the present invention comprises at least one selected from a hydrogenation active component, preferably a Group 6 metal and a Group 8 to 10 metal, on the inorganic oxide support prepared as described above. These metals are supported as hydrogenation active components.
- a hydrogenation active component preferably a Group 6 metal and a Group 8 to 10 metal
- the Group 6 metal any metal belonging to Group 6 may be used, but Mo or W is more preferable, and Mo is particularly preferable.
- the Group 8 to 10 metal may be any metal belonging to Groups 8 to 10, but Co or Ni is more preferable, and Ni is particularly preferable.
- the supported metal may be one type of active metal or a combination of two or more types of active metals.
- the supported amount of at least one selected from Group 6 metals is 2 to 15% by mass, preferably 5 to 10% by mass, based on the catalyst and in terms of oxide.
- the supported amount of at least one selected from Group 8 to 10 metals is 0.001 to 5% by mass, preferably 1 to 4% by mass, based on the catalyst and in terms of oxide.
- the hydrotreating activity is likely to be improved. If the carrying amount is not more than the above upper limit value, the metal resistance performance is likely to be improved. Further, if the loading amount of at least one active metal selected from Group 8 to 10 metals is set to the lower limit value or more, the effects caused by Group 6 metals are unlikely to decrease. If the loading amount is less than or equal to the above upper limit value, the metal resistance performance is likely to be improved.
- the specific surface area of the preceding catalyst is in the range of 70 to 150 m 2 / g, preferably in the range of 90 to 140 m 2 / g. If the specific surface area is greater than or equal to the lower limit, the catalytic activity is unlikely to decrease. If it is less than the above upper limit value, the average pore diameter tends to increase, the metal resistance performance does not deteriorate, and the diffusivity in the pores of metal compounds such as Ni and V can be maintained. Will improve.
- the pore volume of the preceding catalyst is in the range of 0.6 to 1 mL / g, preferably in the range of 0.65 to 1 mL / g.
- the metal resistance performance is hardly lowered, and the diffusivity in the pores of a metal compound such as Ni or V is hardly lowered. Thereby, the metal removal activity can be maintained.
- the amount is not more than the above upper limit value, the surface area is hardly reduced and high catalytic activity can be maintained.
- the average pore diameter of the preceding catalyst is in the range of 15 to 35 nm, preferably in the range of 18 to 30 nm.
- the average pore diameter is not less than the above lower limit value, the metal resistance performance is hardly lowered, and the diffusivity in the pores of metal compounds such as Ni and V is hardly lowered. For this reason, it is difficult for demetalization activity to fall.
- it is below the upper limit a large surface area can be maintained, and a high catalytic activity can be maintained.
- the ratio of the total volume of pores having an average pore diameter of ⁇ 2.0 nm of the catalyst to the total pore volume is in the range of 15 to 50%, preferably in the range of 20 to 50%. It is. If the ratio of the total volume of pores having an average pore diameter of ⁇ 2.0 nm to the total pore volume is not less than the lower limit, pores that are not useful for the hydrogenation reaction of metal compounds such as Ni and V can be obtained. It is difficult to form and the metal removal activity is likely to be improved.
- a silica-containing porous alumina support containing 0.1 to 1.5% by mass of silica based on the support is used as the support for the intermediate catalyst.
- the method for preparing the silica-containing porous alumina carrier is not particularly limited, and can be prepared by a general method. For example, two types of alumina gels having different particle diameters are prepared, and can be prepared by adding silica in each step of mixing and aging, and after preparing one type of alumina gel, the pH of the solution It can also be prepared by adding silica after preparing.
- the alumina gel neutralizes aluminum sulfate or aluminum nitrate, which is a water-soluble compound of aluminum, with a base such as ammonia, or neutralizes an alkali metal aluminate such as sodium aluminate with an acidic aluminum salt or acid. By doing so, it can be generated.
- the silica contained in the silica-containing porous alumina carrier of the middle catalyst is 0.1 to 1.5% by mass, preferably 0.1 to 1.2% by mass, based on the carrier.
- the silica content is 0.1% by mass or more, the active sites due to the Group 6 metal and the Group 8 to 10 metal are optimally formed.
- the silica content is 1.5% by mass or less, acid sites that are expressed by silica addition per se are hardly expressed, and it is difficult for a decomposition reaction to occur.
- Alumina which is a raw material for a hydrogenation catalyst having a specific pore diameter and pore volume, such as the support of the middle catalyst, is, for example, the pH at which an alumina gel is made by adding a precipitating agent or a neutralizing agent. It can be prepared by adjusting the concentration, time, temperature, etc. of the drug. Generally, on the acidic side, the pore diameter and the pore volume are small, and on the alkali side, both the pore diameter and the pore volume are large. Further, when the aging time is shortened, the pore diameter can be reduced, and when the aging time is increased, the pore distribution can be sharpened.
- each of the two kinds of alumina gels having different particle diameters is prepared by the above-described method, and then mixed, aged, washed, and watered. Make adjustments. At this time, each alumina gel is mixed according to the target catalyst pore distribution. The mixing ratio is adjusted according to the target catalyst pore structure. In general, the total volume of pores having a pore diameter of 30 nm or more can be suppressed to 3% or less of the total pore volume by performing gelation at pH 4 to 9 and temperature 40 to 90 ° C. for 1 to 10 hours. In addition, it is possible to easily remove impurities present in the aging alumina gel.
- alumina gel-containing solution having an average pore diameter of 10 to 15 nm after firing is prepared by the above method, and an acidic solution such as nitric acid is added to the alumina gel-containing solution.
- the target catalyst pore structure can be obtained by adjusting the pH, temperature, time, and the like of the alumina gel-containing solution.
- gelation is carried out at a pH of 3 to 7, a reaction temperature of 30 to 90 ° C., and a reaction time of 0.1 to 10 hours.
- the total volume of the pores having a pore diameter of 5 to 10 nm with respect to the total volume of the pores having a pore diameter of 3 to 30 nm by setting the pH to the acidic side, increasing the reaction temperature, and extending the reaction time.
- the percentage of can be increased.
- the catalyst In these alumina gels, moisture is adjusted by drying or adding water after washing impurities. By performing moisture adjustment, the catalyst can be easily molded.
- the water content after moisture adjustment is preferably 60 to 90% by mass.
- the alumina fine surface structure can be controlled by changing the primary drying temperature and method for moisture adjustment.
- the primary drying temperature is preferably less than 100 ° C., and heat is not applied as much as possible, and natural filtration, suction filtration, and pressure filtration at about 0.01 to 2 MPa. The method by is more preferable. Thereby, the desulfurization performance of the hydrotreating catalyst can be increased.
- the carrier is molded from the alumina gel after moisture adjustment.
- the molding method is not particularly limited, and general methods such as extrusion molding and tableting molding can be used.
- the pore distribution of alumina can also be controlled by adjusting the pressure and speed during molding.
- the catalyst shape of the hydrotreating catalyst according to the present invention is not particularly limited, and can be various shapes used for ordinary catalyst shapes.
- the shape of the hydrotreating catalyst according to the present invention is preferably a three-leaf type or a four-leaf type.
- a silica-containing porous alumina carrier is obtained by firing the formed alumina gel.
- the formed alumina gel is preferably held at 15 to 150 ° C., more preferably 100 to 120 ° C., preferably 5 hours or more, more preferably 12 to 24 hours, before firing.
- the firing is preferably performed at 350 to 600 ° C., more preferably 400 to 550 ° C., and preferably for 3 hours or more, more preferably 5 to 12 hours.
- the middle-stage catalyst has a hydrogenation active component, preferably at least one metal selected from Group 6 metals and Group 8 to 10 metals, on the silica-containing porous alumina support prepared as described above. It is supported as a component.
- the Group 6 metal may be any metal as long as it belongs to Group 6, but Mo or W is particularly preferable.
- the Group 8-10 metal may be any metal belonging to Groups 8-10, but Co or Ni is particularly preferred.
- the supported metal may be one type of active metal or a combination of two or more types of active metals.
- the method for supporting the hydrogenation active metal is not particularly limited, and various methods such as an ordinary method such as an impregnation method, a coprecipitation method, a kneading method, a deposition method, and an ion exchange method can be employed.
- an ordinary method such as an impregnation method, a coprecipitation method, a kneading method, a deposition method, and an ion exchange method can be employed.
- the Group 6 metal and the Group 8 to 10 metal are supported, whichever may be supported first, both may be supported simultaneously.
- the compound that can be used in the impregnation method as a solution is not particularly limited, and examples of the nickel compound include nickel nitrate, sulfate, fluoride, chloride, bromide, acetate, carbonate, phosphate, and the like.
- the molybdenum compound include ammonium paramolybdate, molybdic acid, ammonium molybdate, phosphomol
- the group 6 metal and 8 can be produced by supporting a compound of at least one metal selected from Group 10 metals, followed by drying and firing. Drying is preferably carried out by holding at 15 to 150 ° C., more preferably 100 to 120 ° C., preferably 5 hours or more, more preferably 12 to 24 hours. The calcination is preferably carried out by holding at 350 to 600 ° C., more preferably 400 to 550 ° C., preferably 3 hours or more, more preferably 12 to 24 hours.
- the amount of these active metal components supported can be appropriately selected depending on the physical properties of the alumina carrier and the combination state of the active metal species to be supported.
- the supported amount of these active metal components is preferably 3 to 30% by mass, more preferably 5 to 25% by mass, and further preferably 5% by mass in the case of a Group 6 metal in terms of oxide based on the catalyst. Is 8 to 20% by mass.
- a Group 8 to 10 metal it is preferably 0.5 to 18% by mass, more preferably 1 to 10% by mass, and further preferably 2 to 8% by mass. If the Group 6 metal is 3% by mass or more, the predetermined metal supporting effect can be sufficiently exhibited.
- the Group 6 metal is 30% by mass or less, the active metal hardly aggregates and the pore volume of the catalyst is greatly increased. Can be prevented. If the Group 8-10 metal is 0.5% by mass or more, the metal supporting effect can be sufficiently exerted, and if it is 18% by mass or less, an appropriate supporting effect can be obtained and the economy is excellent. .
- the total volume of pores having a pore diameter of 5 to 10 nm is 30 to 45% of the total volume of pores having a pore diameter of 3 to 30 nm; (2)
- the total volume of pores having a pore diameter of 10 to 15 nm is 50 to 65% of the total volume of pores having a pore diameter of 3 to 30 nm, and (3) has a pore diameter of 30 nm or more
- the intermediate catalyst having a pore distribution satisfying that the total volume of the pores is 3% or less of the total pore volume can be obtained.
- the total volume of pores having a pore diameter of 5 to 10 nm is 30% or more of the total volume of pores having a pore diameter of 3 to 30 nm, sufficient desulfurization activity can be obtained, and if it is 45% or less. In addition, the metal resistance performance is hardly lowered and the catalyst life is prolonged. Further, if the total volume of pores having a pore diameter of 10 to 15 nm is 50% or more of the volume of pores having a pore diameter of 3 to 30 nm, the metal resistance performance is hardly deteriorated and the catalyst life is prolonged. On the other hand, if it is 65% or less, the desulfurization activity is hardly lowered, and sufficient catalytic activity can be obtained. Further, if the total volume of pores having a pore diameter of 30 nm or more is 3% or less of the total pore volume, the desulfurization activity is unlikely to decrease, and sufficient desulfurization activity is obtained.
- the average pore diameter of pores having a pore diameter of 10 to 30 nm is 10.5 to 13 nm
- (5) the total volume of pores having the average pore diameter of ⁇ 1 nm is It has a pore distribution satisfying that it is 25% or more of the total volume of pores having a pore diameter of 3 to 30 nm.
- the average pore diameter of the pores having a pore diameter of 10 to 30 nm is 10.5 nm or more, sufficient metal resistance performance is obtained and the catalyst life is prolonged.
- the average pore diameter is 13 nm or less, the desulfurization activity does not decrease and sufficient desulfurization activity is obtained.
- the total volume of pores having an average pore diameter of ⁇ 1 nm is preferably 25% or more of the total volume of pores having a pore diameter of 3 to 30 nm, more preferably 30 to 65%. Preferably, it is 35 to 50%. Sufficient desulfurization activity can be obtained if the total volume of pores having an average pore diameter of ⁇ 1 nm is 25% or more of the total volume of pores having a pore diameter of 3 to 30 nm.
- the average pore diameter of pores having a pore diameter of 10 to 30 nm is 10.5 to 13 nm, and the total volume of pores having the average pore diameter ⁇ 1 nm is 3 to 30 nm.
- the silica-containing porous alumina support of the middle stage catalyst is prepared from two types of alumina gels, it should be adjusted to 25% or more of the total volume of the pores having the pore diameter. This is possible by mixing the respective alumina gels.
- the silica-containing porous alumina support of the middle stage catalyst is prepared from one kind of alumina gel, it is possible to add a precipitating agent or a neutralizing agent to adjust the aging time when making the alumina gel. is there.
- the aging time is shortened, the pore diameter can be reduced, and when the aging time is increased, the pore distribution can be sharpened.
- the middle stage catalyst preferably has a total pore volume of 0.55 to 0.75 mL / g, more preferably 0.60 to 0.70 mL / g, from the viewpoint of metal resistance.
- the total pore volume can be adjusted to the above range by adjusting the pH at the time of preparing an alumina gel by adding a precipitant or a neutralizing agent. In general, the pore volume decreases when the pH of the alumina gel is acidic on the acidic side, and increases on the alkali side.
- the filling ratio of the pre-stage catalyst is 10 to 50%, preferably 15 to 40% of the total catalyst volume
- the filling ratio of the middle stage catalyst is 10 to 50%, preferably Is 15 to 40%
- the packing ratio of the latter catalyst is 20 to 70%, preferably 30 to 65% of the total catalyst volume. This range is suitable for maintaining the catalyst life, desulfurization activity and demetallization activity of the entire catalyst system.
- the hydrotreating conditions in the hydrotreating method according to the present invention are as follows: temperature is 300 to 420 ° C., preferably 350 to 410 ° C., liquid space velocity (LHSV) is 0.1 to 3 h ⁇ 1 , preferably 0.15 to 2h -1, hydrogen partial pressure is 3 ⁇ 20 MPa, preferably 8 ⁇ 19 MPa, a hydrogen / oil ratio 400 ⁇ 3000m 3 / m 3 ( NL / L), preferably 500 ⁇ 1800m 3 / m 3.
- LHSV liquid space velocity
- Heavy hydrocarbon oils used in the hydrotreating method according to the present invention include atmospheric distillation residue oil obtained by distillation from crude oil, vacuum distillation residue oil, bisbreaking oil that is pyrolysis oil, other than petroleum Examples thereof include tar sand oil, shale oil, and the like, which are heavy hydrocarbon oils, and mixtures thereof.
- Preferred are atmospheric distillation residue oil, vacuum distillation residue oil, and mixed oil thereof.
- the heavy hydrocarbon oil is subjected to hydrotreatment process according to the present invention, density of 0.91 ⁇ 1.10 g / cm 3, particularly 0.95 ⁇ 1.05 g / cm 3, the sulfur content of 2 to Heavy hydrocarbon oils of 6% by mass, especially 2-5% by mass, metal content of nickel, vanadium, etc. of 1-1500 ppm, particularly 20-400 ppm, asphaltene content of 2-15% by mass, especially 3-10% by mass. preferable.
- the specific catalyst defined in the present invention and heavy hydrocarbon oil are contacted to perform hydrotreating, and the sulfur content in the raw material is reduced. Reduce heavy metal content.
- Example 1 Preparation of hydrotreating catalyst A First, a phosphorus-silica-containing alumina support was prepared. To 100 L of pure water stretched in a stirring vessel, 1.5 L of a 12% by mass sulfuric acid aqueous solution was added and heated to 95 ° C., and then vigorously stirred with a stirring blade for 5 minutes. Next, 3.9 L of sodium aluminate having an alumina concentration of 70 g / L was added to the stirring kettle to prepare aluminum hydroxide, which was stirred with a stirring blade for 24 hours. The obtained slurry was put into a filter and filtered to remove moisture and obtain a gel.
- the obtained gel was washed with pure water until SO 4 2 ⁇ and Na + could not be detected in the filtrate.
- the gel after washing was made turbid in pure water to make a uniform slurry, and the slurry was put into a squeeze type filter.
- the slurry obtained through the filter cloth was sandwiched with a filter plate, and dewatering was performed by pressing the filter plate. Filtration was stopped when the amount of water in the obtained cake reached 80%.
- This cake was put into a heating type kneader (set temperature 80 ° C.) and sufficiently kneaded so as to be uniform, and then phosphoric acid and silica were added and further kneaded so as to be uniform.
- the cake obtained by kneading was put into an extruder, and a four-leaf shaped extruded product having a major axis of 1.3 mm and a minor axis of 1.1 mm was obtained.
- the molded product was dried and then calcined at 600 ° C. for 4 hours to obtain a phosphorus / silica-containing alumina carrier.
- the obtained phosphorus / silica-containing alumina carrier contains phosphorus in an amount of 1.2% by mass based on the carrier, converted to oxide, 0.2% by mass of silica in terms of the carrier, and a pore volume of 0.76 mL / g.
- the specific surface area was 320 m 2 / g and the average pore diameter was 7.5 nm.
- Example 2 (Preparation of hydrotreating catalyst B) Hydrotreating catalyst B was prepared in the same manner as in Example 1 except that the addition amount of silica was changed from 0.2% by mass to 1.0% by mass.
- Ni / Mo (upper stage) 4/12 (lower stage)” in the column “active metal_active metal amount (mass%)” is 4 masses of Ni in terms of catalyst in terms of catalyst and oxide conversion. %, 12% by mass of Mo.
- pore distribution means the ratio of the total volume of pores having a mean pore diameter of ⁇ 1.5 nm to the total pore volume. The physical properties and chemical properties of the catalyst were measured as follows.
- the pore volume is the total volume of mercury per gram of catalyst that has entered the pores.
- the average pore diameter is an average value of D calculated as a function of P.
- the pore distribution is a distribution of D calculated as a function of P.
- the hydrotreating catalyst was charged into a high-pressure flow reactor to form a fixed bed catalyst layer, and pretreated under the following conditions.
- a mixed fluid of the raw material oil heated to the reaction temperature and the hydrogen-containing gas is introduced from the upper part of the reaction apparatus, and the hydrogenation reaction of the desulfurization reaction and the decomposition reaction proceeds under the following conditions, A gas mixed fluid was allowed to flow out from the lower part of the reaction apparatus, and the produced oil was separated by a gas-liquid separator.
- the measurement method is JIS K 2249-1 “Crude oil and petroleum products-Density test method and density / mass / capacity conversion table (vibration density test method)”, and the sulfur content is JIS K 2541-4 “Crude oil and Petroleum products-Sulfur content test method Part 4: Radiation-type excitation method ", latent sediment content conformed to JPI-5S-60-2000. Specifically, the potential sediment content was analyzed by the following method.
- the contents of nickel and vanadium were in accordance with the Japan Petroleum Institute Standard JPI-5S-62-2000 “Petroleum Products Metal Analysis Test Method (ICP Luminescence Analysis Method)”.
- the asphaltene content was filtered through a cellulose filter after toluene was added to the sample, and the toluene-insoluble content was recovered. This insoluble content was defined as asphaltene content.
- Toluene was added to the sample, and the resin was filtered through a cellulose filter, and the toluene-soluble component as a filtrate was concentrated.
- a heptane solution obtained by adding heptane to this concentrate was passed through an activated alumina packed column and separated into saturated, aromatic and resin components, and the resin component was recovered.
- Catalyst pretreatment conditions The preliminary sulfidation of the catalyst was carried out with a vacuum gas oil at a hydrogen partial pressure of 10.3 MPa and 370 ° C. for 12 hours. Then, it switched to the raw material oil 1 for activity evaluation.
- reaction temperature 385 ° C Pressure (hydrogen partial pressure): 10.3 MPa
- Hydrogen / oil ratio 1690 m 3 / m 3
- Oil type Atmospheric distillation residue density of Middle Eastern crude oil density (15 ° C.): 0.9731 g / cm 3
- Sulfur component 3.45% by mass
- Vanadium 55ppm
- Nickel 10ppm
- Asphaltene content 2.7% by mass
- the catalytic activity was analyzed by the following method.
- the reactor was operated at 385 ° C., and the product oil 25 days after the start of operation was collected and its properties (desulfurization rate (HDS) (%), desulfurization reaction rate constant (Ks), desulfurization specific activity (%), demetalization rate, (HDM)) was analyzed.
- the results are shown in Table 3.
- Desulfurization reaction rate constant (Ks) The desulfurization reaction rate constant (Ks) is a constant in the reaction rate equation for obtaining the second order reaction order with respect to the reduction amount of the sulfur content (Sp) of the product oil. It calculated by the following formula
- Sf sulfur content (mass%) in the raw material oil
- Sp Sulfur content (% by mass) in the product oil
- LHSV Liquid space velocity (h -1 ).
- the desulfurization specific activity and the demetallation rate were almost the same for all the catalysts.
- the amount of resin is larger when the catalyst A or the catalyst B is used than when the catalyst a or the catalyst b is used.
- the product oil obtained by using the catalyst A or the catalyst B was less likely to generate sediment than the oil obtained by using the catalyst a or the catalyst b, and was excellent in storage stability.
- the molybdenum (Mo) content is 9% by mass in terms of catalyst and oxide
- the nickel (Ni) content is 2% by mass in terms of catalyst and oxide.
- Catalyst D contains 9.1% by mass of Mo in terms of catalyst and in terms of oxide, 2.0% by mass of Ni in terms of catalyst and in terms of oxide, and has a pore volume of 0.72 mL / g, The ratio of the total volume of pores having a specific surface area of 131 m 2 / g, an average pore diameter of 20.6 nm, and an average pore diameter of ⁇ 2.0 nm to the total pore volume was 24%.
- This alumina gel (A) and (B) is mixed in a mass ratio of 1: 2, and silica is mixed so that the mass becomes 0.2% by mass, and dehydrated by suction filtration at 25 ° C.
- the water content was adjusted so that the water content after drying was 70% by mass.
- the silica-containing alumina gel after moisture adjustment was extruded with an extruder so as to fit into a four-leaf type having a catalyst diameter of 1.3 mm, dried at 120 ° C. for 20 hours, and then fired at 550 ° C. for 3 hours to obtain silica-containing porous alumina.
- a carrier was obtained.
- the silica content of the silica-containing porous alumina support was 0.2% by mass based on the support.
- an active metal component was supported on 100 g of this silica-containing porous alumina carrier as follows. That is, an aqueous solution prepared by dissolving 26.0 g of ammonium molybdate, 6.33 g of nickel carbonate, and 4.9 g of phosphoric acid in 79.6 g of ion-exchanged water in an eggplant type flask at room temperature and an aqueous solution for impregnation. did. The entire amount of the aqueous solution for impregnation was dropped on a silica-containing porous alumina support in an eggplant-shaped flask and allowed to stand at 25 ° C. for 1 hour.
- hydrotreating catalyst E The amount of active metal of the hydrotreating catalyst E is 15% by mass for Mo and 3% by mass for Ni in terms of catalyst and oxide, and the content of phosphorus is 2.8% by mass in terms of catalyst and oxide. there were.
- the hydrotreating catalyst E has a specific surface area of 244 m 2 / g, a total pore volume of 0.65 mL / g, and a pore diameter of 3 to 30 nm of the total volume of pores having a pore diameter of 5 to 10 nm.
- the ratio to the total volume of the pores is 35%, the ratio of the total volume of the pores having a pore diameter of 10 to 15 nm to the total volume of the pores having a pore diameter of 3 to 30 nm is 60%, and the pore diameter of 30 nm or more.
- the ratio of the total pore volume to the total pore volume is 2.4%, the average pore diameter of the pores having a pore diameter of 10 to 30 nm is 11.2 nm, and the average of the pores having a pore diameter of 10 to 30 nm
- the ratio of the total volume of pores having a pore diameter of ⁇ 1 nm to the total volume of pores having a pore diameter of 3 to 30 nm was 41%.
- Catalysts D and E were measured in the same manner as Catalyst A and the like.
- Example 4 (Hydroprocessing reaction of heavy hydrocarbon oil using catalysts D, E, and A)
- the catalyst D is used as the front stage catalyst
- the catalyst E is used as the middle stage catalyst
- the catalyst A is used as the rear stage catalyst.
- the raw material oil 2 was subjected to hydrogenation treatment under the following reaction conditions to obtain a product oil.
- reaction condition 2 Reaction temperature: 390 ° C Hydrogen partial pressure: 10.3 MPa Liquid space velocity: 0.253h -1 Hydrogen / oil ratio: 876.2m 3 / m 3
- Feedstock Middle-Earth crude oil vacuum distillation residue, Density (15 ° C.): 1.015 g / cm 3 Sulfur content: 4.20% by mass Nickel content: 53ppm Vanadium content: 90ppm Asphaltene content: 7.8% by mass
- Example 5 Hydroprocessing reaction of heavy hydrocarbon oil using catalysts D, E, and B Except that the latter catalyst was changed from the catalyst A to the catalyst B, a hydrogenation treatment was performed in the same manner as in Example 4 to obtain a product oil.
- the hydrotreating catalyst according to the present invention is excellent in the desulfurization activity of heavy hydrocarbon oil. Furthermore, by performing a hydrotreatment using the hydrotreating catalyst, a heavy hydrocarbon oil that is less susceptible to sedimentation and excellent in storage stability can be obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
- Nanotechnology (AREA)
Abstract
Description
本願は、2013年10月11日に、日本に出願された特願2013-213769号に基づき優先権を主張し、その内容をここに援用する。
[1] リンを担体基準、酸化物換算で0.1~4質量%含有し、シリカを担体基準で0.1~1.5質量%含有するリン・シリカ含有アルミナを担体とし、
前記担体に周期表第6族金属から選ばれる少なくとも1種を触媒基準、酸化物換算で8~20質量%、および周期表第8~10族金属から選ばれる少なくとも1種を触媒基準、酸化物換算で2~6質量%担持していることを特徴とする重質炭化水素油の水素化処理触媒。
[2] アルミナゲルを調製する工程、
リンを担体基準、酸化物換算で0.1~4質量%、シリカを担体基準で0.1~1.5質量%含有させるように、前記アルミナゲルにリン化合物及びシリカを混練する工程、
得られた混練物を成型し、これを乾燥、焼成して、リン・シリカ含有アルミナ担体を得る工程、及び
前記リン・シリカ含有アルミナ担体に、周期表第6族金属から選ばれる少なくとも1種を触媒基準、酸化物換算で8~20質量%、および周期表第8~10族金属から選ばれる少なくとも1種を触媒基準、酸化物換算で2~6質量%含有するように担持させる工程
を有することを特徴とする重質炭化水素油の水素化処理触媒の製造方法。
[3] 重質炭化水素油を、水素分圧3~20MPa、水素/油比400~3000m3/m3、温度300~420℃、液空間速度0.1~3h-1で、前段触媒、中段触媒、及び後段触媒と順次接触させて水素化処理する方法であって、
(a)前段触媒として、
酸化亜鉛を担体基準で1~15質量%含有する無機酸化物担体に、触媒基準かつ酸化物換算で、周期表第6族金属から選ばれた少なくとも1種を2~15質量%、および周期表第8~10族金属から選ばれた少なくとも1種を0.001~5質量%含有させてなり、
比表面積が70~150m2/gであり、細孔容積が0.6~1mL/gであり、平均細孔径が15~35nmであり、平均細孔径±2.0nmの細孔径を有する細孔の全容積の全細孔容積に対する割合が15~50%である触媒を、触媒全体に対して、容積基準で10~50%用い、
(b)中段触媒として、
シリカを担体基準で0.1~1.5質量%含有するシリカ含有多孔性アルミナ担体に、水素化活性成分が担持されてなり、全細孔容積が0.55~0.75mL/gであり、かつ細孔分布に関して、
(1)5~10nmの細孔径を有する細孔の全容積が、3~30nmの細孔径を有する細孔の全容積の30~45%であること、
(2)10~15nmの細孔径を有する細孔の全容積が、3~30nmの細孔径を有する細孔の全容積の50~65%であること、
(3)30nm以上の細孔径を有する細孔の全容積が、全細孔容積の3%以下であること、
(4)10~30nmの細孔径を有する細孔の平均細孔径が、10.5~13nmにあること、及び
(5)前記平均細孔径±1nmの細孔径を有する細孔の全容積が、3~30nmの細孔径を有する細孔の全容積の25%以上であること、
を充足する触媒を、触媒全体に対して、容積基準で10~50%用い、
(c)後段触媒として、
前記[1]の水素化処理触媒又は前記[2]に記載の製造方法により製造された水素化処理触媒を、触媒全体に対して、容積基準で20~70%用いること
を特徴とする重質炭化水素油の水素化処理方法。
さらに、当該水素化処理触媒を用いて水素化処理を行うことにより、セジメントが発生し難い、貯蔵安定性に優れた重質炭化水素油を得ることができる。
本発明に係る水素化処理触媒は、アルミナを担体主成分とする。
アルミナとしては、α-アルミナ、β-アルミナ、γ-アルミナ、δ-アルミナ等の種々のアルミナを使用することができるが、多孔質で高比表面積であるアルミナが好ましく、中でもγ-アルミナが適している。
また、担体主成分とするアルミナの純度は、好ましくは98質量%以上、より好ましくは99質量%以上のものが適している。
アルミナ中の不純物としては、SO4 2-、Cl-、Fe2O3、Na2O等が挙げられるが、これらの不純物はできるだけ少ないことが好ましく、不純物全量で好ましくは2質量%以下、より好ましくは1質量%以下であり、成分毎ではSO4 2-が1.5質量%以下、C1-、Fe2O3、Na2Oが0.1質量%以下であることが好ましい。
リン及びシリカは、活性金属量当たりの脱硫活性及び脱残炭活性を向上させるために活性点の質的向上を図る成分として加えられものであり、高活性なNiMoS相、NiWS相等の活性金属-硫黄相を精密に創製する役割をなす。
また、本発明に係る水素化処理触媒としては、リンの含有量が、触媒基準、酸化物換算で好ましくは0.08~3.6質量%である。
本発明に係る水素化処理触媒では、リンやシリカを精密に制御して添加することにより、NiMoS相、NiWS相等の活性金属-硫黄相が高分散である状態を保持しつつ、積層数などの構造形態も最適化されると考えられる。
なお、本発明において、「周期表第6族金属」とは、長周期型周期表における第6族金属を意味し、「周期表第8~10族金属」とは、長周期型周期表における第8~10族金属を意味する。
アルミナの原料は、アルミニウムを含む物質であればどのようなものでも使用できるが、硫酸アルミニウム、硝酸アルミニウム等のアルミニウム塩が好ましい。これらのアルミナ原料は、通常は水溶液として供され、その濃度は特に制限されないが、好ましくは2~50質量%、より好ましくは5~40質量%である。
なお、この圧搾濾過器による脱水工程は、アルミナゲルを調製する工程、及び後述するリン化合物及びシリカを混練する工程のうち少なくとも一方の工程の後に行うことが好ましく、いずれの工程の後に行ってもよい。より好ましくは、アルミナゲル調製後、リン化合物及びシリカの混練前に行う。
圧搾濾過器には板枠型と凹板型がある。板枠型圧濾器は、濾板と濾枠が交互に端板間に締め付けられており、濾枠の中へスラリーを圧入して濾過する。濾板は濾液流路となる溝を持ち、炉枠には炉布が張ってある。一方、凹板型圧濾器は、濾布と凹板型の濾板を交互に並べて端板との間で締め付け濾室を構成している(参考文献:化学工学便覧p715)。
当該混練物の成型に当たっては、押出し成型、加圧成型等の種々の成型方法により行うことができる。
また、得られた成型物の乾燥に当たっては、乾燥温度は15~150℃が好ましく、特に好ましくは80~120℃であり、乾燥時間は30分間以上が好ましい。
得られた乾燥物の焼成において、焼成温度は必要に応じて適宜設定できるが、例えばγ-アルミナとするためには450℃以上で焼成することが好ましく、更に好ましくは480℃~600℃である。焼成時間は2時間以上が好ましく、特に好ましくは3~12時間である。
比表面積が小さすぎると、水素化活性金属の分散性が悪くなり、脱硫活性が低下するおそれがある。比表面積が大きすぎると、細孔径が極端に小さくなるため、触媒の細孔径も小さくなって、水素化処理の際、硫黄化合物の触媒細孔内への拡散が不十分となり、脱硫活性が低下するおそれがある。リン・シリカ含有アルミナ担体の比表面積を前記範囲内とすることにより、水素化活性金属の分散性が良好であり、かつ充分な大きさの細孔径を有する水素化処理触媒が得られる。
リン・シリカ含有アルミナ担体の平均細孔径を前記範囲内とすることにより、充分な細孔内表面積を有しつつ、反応物質の細孔内における拡散性も良好であり、脱硫反応が効率的に進行し脱硫活性がより向上する。
細孔容積が小さすぎる場合には、通常の含浸法で触媒を調製する場合、細孔容積内に入り込む溶媒が少量となる。溶媒が少量であると、水素化活性金属化合物の溶解性が悪くなり、金属の分散性が低下し、低活性の触媒となるおそれがある。活性金属化合物の溶解性を上げるためには、硝酸等の酸を多量に加える方法があるが、加えすぎると担体の低表面積化が起こり、脱硫性能低下の主原因となる。一方で、細孔容積が大きすぎる場合には、比表面積が極端に小さくなって、活性金属の分散性が低下するおそれがある。
リン・シリカ含有アルミナ担体の細孔容積を前記範囲内とすることにより、充分な比表面積を有しつつ、細孔容積内に充分量の溶媒が入り込めるため、水素化活性金属化合物の溶解性と分散性が共に良好になり、脱硫活性がより向上する。
第6族金属及び第8~10族金属の酸化物質量は、第6族金属については6価の酸化物、第8~10族金属については2価の酸化物に換算して求める。
第6族金属が8質量%以上であれは、第6族金属に起因する効果を発現させるに十分である。また20質量%以下であれば、第6族金属が効率的に分散する。また、触媒表面積が大幅に低下することなく、触媒活性の向上が図れる。
第8~10族金属が2質量%以上ならば、第8~10族金属に帰属する活性点が十分に得られる。また、5質量%以下であれば、第8~10族金属化合物の凝集し難く活性金属の分散性を低下させることない。例えばNiを用いた場合に、不活性な前駆体であるNiO種(触媒硫化後や水素化処理中はNiS種として存在する)や、担体の格子内に取り込まれたNiスピネル種が生成され難いため、触媒活性の向上がみられる。
第6族金属と第8~10族金属との総量に対する第8~10族金属の質量比が小さすぎる場合には、脱硫の活性点と考えられるNiMoS相、NiWS相等の活性金属-硫黄相が十分に生成できず、脱硫活性が向上しないおそれがある。また、当該質量比が大きすぎる場合には、活性に関与しない無駄な金属種(NiS種や、担体の格子内に取り込まれたNiスピネル種)が生成し、触媒活性が低下するおそれがある。前記質量比を前記範囲内とすることにより、活性金属-硫黄相が十分に生成され、かつ活性に関与しない無駄な金属種の生成が抑制され得る。
まず、第6族金属化合物、第8~10族金属化合物、およびリン化合物を含む含浸用溶液を調製する。なお、金属化合物にリンが含まれている場合は、リン化合物を加えないか、適当量のリン化合物を添加する。調製時、これらの化合物の溶解を促進するために、加温(30~100℃)や、酸(硝酸、リン酸、有機酸《クエン酸、酢酸、リンゴ酸、酒石酸等》)の添加を行ってもよい。
本発明に係る水素化処理方法では、重質炭化水素油を3種類の触媒(前段触媒、中段触媒、後段触媒)と接触させる水素化処理方法において、後段触媒として本発明に係る水素化処理触媒を用い、前段触媒として酸化亜鉛を含有する無機酸化物担体に水素化活性金属を担持した触媒を用い、中段触媒としてシリカ含有多孔性アルミナ担体に水素化活性成分が担持した触媒を用いる。
本発明に係る水素化処理方法において、前記前段触媒として用いられる触媒の無機酸化物担体には、酸化亜鉛を担体基準で1~15質量%、好ましくは2~12質量%含有させる。また、無機酸化物担体に含有させる酸化亜鉛の粒子の平均粒子径は、好ましくは2~12μm、より好ましく4~10μmであり、さらに好ましくは5~9μmである。
なお、酸化亜鉛の粒子の粒径は、JIS R1629に準拠したレーザー回折散乱法により測定し、粒度分布の体積平均を平均粒子径とした。また、酸化亜鉛の純度としては99%以上であることが好ましい。
当該他の無機酸化物担体としては、多孔質のものが好ましく、例えば、アルミナ、シリカ、シリカ-アルミナ、チタニア、ボリア、マンガン、ジルコニア等を挙げることができる。これらは単独で用いてもよく、二種類以上を組み合わせてもよい。
酸化亜鉛の含有量が1質量%以上であれば、第6族金属の硫化度を向上させるために十分であり、また、酸化亜鉛の含有量が15質量%以下であれば、細孔容積や比表面積の低下が起こり難く、第6族金属を分散させることができ、更には第8~10族金属の硫化度が低下し難い。
また、酸化亜鉛の粒子の平均粒子径が12μm以下であれば、アルミナと十分に相互作用し、水素化処理後の重質炭化水素油の貯蔵安定性を改善する効果が充分に発揮される。また、酸化亜鉛の粒子の平均粒子径が2μm以上であれば、製造時に酸化亜鉛とアルミナを混合させやすく、製造過程がより簡易になる。
具体的には、水溶性のアルミニウム化合物、例えば、アルミニウムの硫酸塩、硝酸塩、若しくは塩化物をアンモニアのような塩基で中和するか、又はアルカリ金属アルミン酸塩を酸性アルミニウム塩若しくは酸で中和する等して、アルミニウムヒドロゲルを得る。通常のアルミナ担体は、アルミナゲルを熟成、洗浄、脱水乾燥、水分調整、成形、乾燥、焼成等の一般的な工程により製造することができる。
本発明に係る水素化処理方法において前段触媒として用いる触媒の酸化亜鉛含有アルミナ担体は、アルミナゲル中に酸化亜鉛を添加して水分調整し、混練工程を前記成形工程の前に付加して製造することが好ましい。得られた酸化亜鉛含有アルミナ担体への、水素化活性金属の担持方法としては、含浸法が好ましい。
第6族金属としては、第6族に属する金属であればどのような金属でもよいが、Mo又はWがより好ましく、特にMoが好ましい。
第8~10族金属についても、第8~10族に属する金属であればどのようなものでもよいが、Co又はNiがより好ましく、特にNiが好ましい。
また、担持する金属は1種類の活性金属でもよく、2種類以上の活性金属を組み合わせて使用してもよい。
また、第8~10族金属から選ばれた少なくとも1種の活性金属の担持量を前記下限値以上とすれば、第6族金属に起因する効果が低下し難い。担持量を前記上限値以下とすれば、耐金属性能が向上しやすい。
本発明に係る水素化処理方法において、前記中段触媒の担体として、シリカを担体基準で0.1~1.5質量%含有するシリカ含有多孔性アルミナ担体を用いる。
シリカ含有多孔性アルミナ担体の調製方法は特に限定されず、一般的な方法により調製することができる。例えば、2種類の粒子径の異なるアルミナゲルをそれぞれ調製し、これらを混合、熟成する各工程において、シリカを添加することによっても調製でき、また、1種のアルミナゲルを調製後、溶液のpHを調製した後にシリカを添加することによっても調製することができる。前記アルミナゲルは、アルミニウムの水溶性化合物である硫酸アルミニウムや硝酸アルミニウムをアンモニアのような塩基で中和し、又は、アルミン酸ナトリウムのようなアルカリ金属アルミン酸塩を酸性アルミニウム塩若しくは酸で中和することにより、生成することができる。
また、熟成時間を短くすると細孔径を小さくすることができ、熟成時間を長くすると細孔分布をシャープにすることができる。
例えば、ゲル生成の際のpHを3~7、温度を15~90℃の範囲にすることにより、焼成後のアルミナ担体の平均細孔径が5~10nmのアルミナゲルを得ることができる。また、ゲル生成の際のpHを7~11、温度を30~90℃の範囲にすることにより、焼成後のアルミナ担体の平均細孔径が10~15nmであるアルミナゲルを得ることができる。
また、通常、ゲル化を、pH4~9、温度40~90℃で1~10時間行うことにより、30nm以上の細孔径を有する細孔の全容積を全細孔容積の3%以下に抑制できる他、熟成後のアルミナゲル中に存在する不純物を除去し易くできる。一方、1種類のアルミナゲルから調製する場合には、例えば、以下のように調製することができる。
まず、前記方法により焼成後のアルミナ担体の平均細孔径が10~15nmとなるアルミナゲル含有溶液を調製し、このアルミナゲル含有溶液に硝酸等の酸性溶液を添加する。このとき、当該アルミナゲル含有溶液のpH、温度、時間等を調整することにより目的の触媒細孔構造を得ることができる。通常、ゲル化を、pH3~7、反応温度30~90℃、反応時間0.1~10時間で行う。この際、pHを酸性側とし、反応温度を高くし、反応時間を長くすることにより、3~30nmの細孔径を有する細孔の全容積に対する5~10nmの細孔径を有する細孔の全容積の割合を増加させることができる。
本発明に係る水素化処理触媒の調製では、1次乾燥の温度を100℃未満にすることが好ましく、熱を極力与えず、約0.01~2MPaでの自然濾過、吸引濾過、加圧濾過による方法がより好ましい。これにより、水素化処理触媒の脱硫性能を増加させることができる。
第6族金属としては、第6族に属する金属であればどのような金属でもよいが、Mo又はWが特に好ましい。
第8~10族金属についても、第8~10族に属する金属であればどのようなものでもよいが、Co又はNiが特に好ましい。
また、担持する金属は1種類の活性金属でもよく、2種類以上の活性金属を組み合わせて使用してもよい。
第6族金属と第8~10族金属とを担持する場合、順序はどちらを先に担持してもよく、両者を同時に担持してもよい。
溶液として含浸法等に使用できる化合物も特に制限はなく、例えば、ニッケル化合物として、ニッケルの硝酸塩、硫酸塩、フッ化物、塩化物、臭化物、酢酸塩、炭酸塩、リン酸塩などが挙げられ、またモリブデン化合物としては、パラモリブデン酸アンモニウム、モリブデン酸、モリブデン酸アンモニウム、リンモリブデン酸、リンモリブデン酸アンモニウム、リンモリブデン酸などが挙げられる。
乾燥は、好ましくは15~150℃、より好ましくは100~120℃で、好ましくは5時間以上、より好ましくは12~24時間保持することにより行われる。焼成は、好ましくは350~600℃、より好ましくは400~550℃で、好ましくは3時間以上、より好ましくは12~24時間保持することにより行われる。
前記中段触媒としては、これらの活性金属成分の担持量は、触媒基準、酸化物換算で、第6族金属の場合、好ましくは3~30質量%、より好ましくは5~25質量%、さらに好ましくは8~20質量%である。また、第8~10族金属の場合、好ましくは0.5~18質量%、より好ましくは1~10質量%、さらに好ましくは2~8質量%である。
第6族金属が3質量%以上であれば、所定の金属担持効果を充分に発揮することができ、30質量%以下であれば、活性金属の凝集が生じ難く、触媒の細孔容積が大幅に低下することを防止し得る。
第8~10族金属が0.5質量%以上であれば、金属担持効果を充分に発揮することができ、18質量%以下であれば適度な担持効果が得られ、かつ経済性にも優れる。
(1)5~10nmの細孔径を有する細孔の全容積が、3~30nmの細孔径を有する細孔の全容積の30~45%であり、
(2)10~15nmの細孔径を有する細孔の全容積が、3~30nmの細孔径を有する細孔の全容積の50~65%であり、そして
(3)30nm以上の細孔径を有する細孔の全容積が、全細孔容積の3%以下である、を充足する細孔分布を有する前記中段触媒を得ることができる。
5~10nmの細孔径を有する細孔の全容積が、3~30nmの細孔径を有する細孔の全容積の30%以上であれば、十分な脱硫活性が得られ、45%以下であれば、耐金属性能が低下し難く触媒寿命が長くなる。
また、10~15nmの細孔径を有する細孔の全容積が、3~30nmの細孔径を有する細孔の容積の50%以上であれば、耐金属性能が劣り難く触媒寿命が長くなる。一方、65%以下であれば脱硫活性が低下し難く、十分な触媒活性が得られる。
また、30nm以上の細孔径を有する細孔の全容積が、全細孔容積の3%以下であれば、脱硫活性が低下し難く、十分な脱硫活性が得られる。
(4)10~30nmの細孔径を有する細孔の平均細孔径が、10.5~13nmにあること、及び
(5)前記平均細孔径±1nmの細孔径を有する細孔の全容積が、3~30nmの細孔径を有する細孔の全容積の25%以上であること、を充足する細孔分布を有する。
前記10~30nmの細孔径を有する細孔の平均細孔径が10.5nm以上であれば、十分な耐金属性能が得られ触媒寿命が長くなる。一方で、当該平均細孔径が13nm以下であれば、脱硫活性が低下せず、十分な脱硫活性が得られる。
前記平均細孔径±1nmの細孔径を有する細孔の全容積が、3~30nmの細孔径を有する細孔の全容積の25%以上であることが好ましく、30~65%であることがより好ましく、35~50%であることがさらに好ましい。前記平均細孔径±1nmの細孔径を有する細孔の全容積が、3~30nmの細孔径を有する細孔の全容積の25%以上であれば、十分な脱硫活性が得られる。
一方、前記中段触媒のシリカ含有多孔性アルミナ担体を1種類のアルミナゲルから調製する場合には、沈澱剤や中和剤を添加してアルミナゲルを作る際の熟成時間を調整することにより可能である。一般的に、熟成時間を短くすると細孔径を小さくすることができ、長くすると細孔分布をシャープにすることができる。
全細孔容積を上記範囲とすることは、沈殿剤や中和剤を添加してアルミナゲルを作る際のpHを調整することにより可能である。一般的に、アルミナゲルを作る際のpHが酸性側では細孔容積は小さくなり、アルカリ側では細孔容積が大きくなる。
常圧蒸留残渣油と減圧蒸留残渣油とを混合する場合は、その性状にもよるが、混合割合としては、減圧蒸留残渣油が1~60容量%程度となるように混合することがよく用いられる。
先ず、リン・シリカ含有アルミナ担体の調製を行った。攪拌釜に張込んだ純水100Lに、12質量%の硫酸水溶液1.5Lを投入し、95℃に加熱した後、攪拌羽根で5分間激しく攪拌した。次いで、当該攪拌釜にアルミナ濃度70g/Lのアルミン酸ナトリウム3.9Lを投入して、水酸化アルミニウムを調製し、24時間攪拌羽根で攪拌した。得られたスラリーを濾過器に投入して濾過を行い、水分を除去してゲルを得た。その後、得られたゲルを、純水を用いて、濾液中にSO4 2-、Na+が検出できなくなるまで洗浄した。次いで、洗浄後のゲルを純水に混濁させて均一なスラリーとし、当該スラリーを圧搾型濾過器へ投入した。濾布を介して得られたスラリーを濾板ではさみ、濾板を圧搾することにより脱水を行った。得られたケーキ中の水分量が80%になった時点で濾過を中断した。このケーキを加温型ニーダー(設定温度80℃)に投入し、均一になるように十分に混練した後、リン酸及びシリカを投入し、均一になるように更に混練した。混練して得られたケーキを押し出し成形器に投入し、長径1.3mm、短径1.1mmの四つ葉型形状の押し出し成形物とした。この成形物を、乾燥し、次いで600℃で4時間焼成することにより、リン・シリカ含有アルミナ担体を得た。
得られたリン・シリカ含有アルミナ担体は、リンを担体基準、酸化物換算で1.2質量%含有し、シリカを担体基準で0.2質量%含有し、細孔容積が0.76mL/gであり、比表面積が320m2/gであり、平均細孔径が7.5nmであった。
次いで、前記モリブデン担持リン・シリカ含有アルミナ担体に、イオン交換水31.8gに硝酸ニッケル9.27gを溶解させた溶液を滴下した後に静置し、その後、乾燥させた後、650℃で4時間焼成することにより、触媒Aを得た。
シリカの添加量を0.2質量%から1.0質量%に変更した以外は実施例1と同様にして、水素化処理触媒Bを調製した。
シリカの添加量を0.2質量%から0.05質量%に変更した以外は実施例1と同様にして、水素化処理触媒aを調製した。
シリカの添加量を0.2質量%から3.0質量%に変更した以外は実施例1と同様にして、水素化処理触媒bを調製した。
実施例1、2及び比較例1、2で調製した水素化処理触媒A、B、a、及びbの担体の性状[リンの含有量(担体基準、酸化物換算)、シリカの含有量(担体基準)、平均細孔径、比表面積、及び細孔容積]を表1に示す。
実施例1、2及び比較例1、2で調製した水素化処理触媒A、B、a、及びbの性状[Mo及びNiの担持量(触媒基準、酸化物換算)、リンの含有量(触媒基準、酸化物換算)、平均細孔径、比表面積、細孔容積、及び細孔分布]を表2に示す。
表2中、「活性金属_活性金属量(質量%)」欄中の「Ni/Mo(上段) 4/12(下段)」は、当該触媒が触媒基準、酸化物換算で、Niを4質量%、Moを12質量%含有していることを意味する。
また、表2中、「細孔分布」は、平均細孔径±1.5nmの細孔径を有する細孔の全容積の全細孔容積に対する割合を意味する。
なお、触媒の物理性状及び化学性状は、次の要領で測定した。
a)測定方法及び使用機器:
・比表面積は、窒素吸着によるBET法により測定した。窒素吸着装置は、日本ベル(株)製の表面積測定装置(ベルソープMini)を使用した。
・細孔容積、平均細孔径、及び細孔分布は、水銀圧入法により測定した。水銀圧入装置は、ポロシメーター(MICROMERITICS AUTO-PORE 9200:島津製作所製)を使用した。
・水銀圧入法は、毛細管現象の法則に基づく。水銀と円筒細孔の場合には、この法則は次式で表される。式中、Dは細孔径、Pは掛けた圧力、γは表面張力、θは接触角である。掛けた圧力Pの関数としての細孔への進入水銀体積を測定する。なお、触媒の細孔水銀の表面張力は484dyne/cmとし、接触角は130度とした。
式: D=-(1/P)4γcosθ
・細孔分布は、Pを関数として算出されたDの分布である。
1)真空加熱脱気装置の電源を入れ、温度400℃、真空度5×10-2Torr以下になることを確認した。
2)サンプルビュレットを空のまま真空加熱脱気装置に掛けた。
3)真空度が5×10-2Torr以下となったら、当該サンプルビュレットを、そのコックを閉じて真空加熱脱気装置から取り外し、冷却後、重量を測定した。
4)当該サンプルビュレットに試料(担体又は触媒)を入れた。
5)試料入りサンプルビュレットを真空加熱脱気装置に掛け、真空度が5×10-2Torr以下になってから1時間以上保持した。
6)試料入りサンプルビュレットを真空加熱脱気装置から取り外し、冷却後、重量を測定し、試料重量を求めた。
7)AUTO-PORE 9200用セルに試料を入れた。
8)AUTO-PORE 9200により測定した。
a)分析方法及び使用機器:
・担体及び触媒の金属分析は、誘導結合プラズマ発光分析(ICPS-2000:島津製作所製)を用いて行った。
・金属の定量は、絶対検量線法にて行った。
1)ユニシールに、試料0.05g、塩酸(50質量%)1mL、フッ酸一滴、及び純水1mLを投入し、加熱して溶解させた。
2)溶解後、得られた溶液をポリプロピレン製メスフラスコ(50mL容)に移し換え、純水を加えて、50mLに秤量した。
3)当該溶液をICPS-2000により測定した。
以下の要領にて、下記性状の常圧蒸留残渣油(AR)の水素化処理を行った。水素化処理触媒として、実施例1、2、比較例1、2で製造した触媒A、B、a、及びbをそれぞれ用いた。
1)60℃に加温した試料を三角フラスコに25g採取し、エアーコンデンサーを取り付けて100℃の油浴に挿入し、24時間保持した。
2)当該試料を充分に振とうした後、10.5gをガラスビーカーにサンプリングした。
3)試料の入ったガラスビーカーを、100℃で10分間加温した。
4)乾燥したガラス繊維濾紙(直径47mm、気孔径1.6μm)を3枚重ねでセットし、減圧ポンプで80kPaまで減圧した減圧濾過器に、前記試料を投入し、30秒後に40kPaまで減圧した。
5)濾過が完了し、濾紙表面が乾いた後に、さらに5分間減圧を続けた。
6)減圧ポンプ停止後、濾過器をアスピレータで引きながら25mLの洗浄溶剤(ヘプタン85mL+トルエン15mL)で漏斗とフィルター全域を洗浄した。
7)さらに20mLヘプタンで当該濾紙を洗浄した後、最上部の濾紙(上から1枚目)を取り外して、下部の濾紙を20mLヘプタンで洗浄した。
8)上から1枚目及び2枚目の濾紙を、110℃で20分乾燥後、30分放冷した。
9)濾過前に対する濾過後の1枚目及び2枚目濾紙の各重量増加分を測定し、1枚目濾紙の増加重量から2枚目濾紙の増加重量を差し引いた重量を、試料採取重量に対する百分率としたものを、潜在セジメント(質量%)とした。
なお、濾過が25分間で終了しない場合はサンプル量を5gあるいは2gとして再測定した。
アスファルテン分は、試料にトルエンを加えた後、セルロースフィルターで濾過し、トルエン不溶解分を回収した。この不溶性分をアスファルテン分とした。
レジン分は、試料にトルエンを加えた後、セルロースフィルターで濾過し、濾液であるトルエン溶解分を濃縮した。この濃縮物にヘプタンを加えたヘプタン溶液を活性アルミナ充填カラムに流通させ、飽和、芳香族、レジン分に分離し、レジン分を回収した。
触媒の予備硫化は、減圧軽油により、水素分圧10.3MPa、370℃において12時間行った。その後、活性評価用の原料油1に切り替えた。
反応温度:385℃
圧力(水素分圧):10.3MPa
液空間速度 :0.4h-1
水素/油比 :1690m3/m3
油種:中東系原油の常圧蒸留残渣油
密度(15℃):0.9731g/cm3
硫黄成分:3.45質量%
バナジウム:55ppm
ニッケル:10ppm
アスファルテン分:2.7質量%
〔1〕脱硫率(HDS)(%):原料油中の硫黄分を脱硫反応によって硫化水素に転換することにより、原料油から消失した硫黄分の割合を脱硫率と定義し、原料油及び生成油の硫黄分析値から以下の式(1)により算出した。
〔2〕脱硫反応速度定数(Ks):生成油の硫黄分(Sp)の減少量に対して、2次の反応次数を得る反応速度式の定数を脱硫反応速度定数(Ks)とする。以下の式(2)により算出した。なお、反応速度定数が高い程、触媒活性が優れていることを示している。
〔3〕脱硫比活性(%):触媒Aの脱硫反応速度定数を100としたときの相対値で示した。以下の式(3)により算出した。
〔4〕脱金属率(HDM)(%):原料油から消失した金属分(ニッケルとバナジウムの合計)の割合を脱金属率と定義し、原料油及び生成油の金属分析値から以下の式(4)により算出した。
脱硫反応速度定数=〔1/Sp-1/Sf〕×(LHSV) ………(2)
式中、Sf:原料油中の硫黄分(質量%)、
Sp:生成油中の硫黄分(質量%)、
LHSV:液空間速度(h-1)。
脱硫比活性(%)=(各触媒の脱硫反応速度定数/触媒Aの脱硫反応速度定数)×100………(3)
脱金属率(%)=〔(Mf-Mp)/Mf〕×100 ………(4)
式中、Mf:原料油中のニッケルとバナジウムの合計(質量ppm)、
Mp:生成油中のニッケルとバナジウムの合計(質量ppm)。
前記の水素化処理反応で得た運転日数25日目の生成油から求めた脱硫比活性、脱金属率、レジン分、アスファルテン分、レジン分に対するアスファルテン分の含量比(質量比、[アスファルテン分(質量%)]/[レジン分(質量%)])、及び潜在セジメント含量の結果を表3に示す。
アルミナゲルに、平均粒子径が7.1μmの酸化亜鉛を、担体基準で8質量%となるように(すなわち、亜鉛(Zn)含有量が担体基準、酸化物換算で8質量%となるように)添加して水分調整し、混練、成型した後、乾燥、焼成することで酸化亜鉛含有アルミナ担体を調製した。該酸化亜鉛含有アルミナ担体は、酸化亜鉛の含有量が担体基準で8.0質量%であった。
一方、三酸化モリブデンと炭酸ニッケルとを、モリブデン(Mo)含有量が触媒基準、酸化物換算で9質量%、ニッケル(Ni)含有量が触媒基準、酸化物換算で2質量%となるように、イオン交換水に添加し、更に添加した金属化合物が完全に溶解するまでクエン酸を添加して金属化合物の水溶液を調製した。この水溶液を前記酸化亜鉛含有アルミナ担体に滴下した後に静置し、その後、乾燥、焼成することにより、触媒Dを得た。
触媒Dは、Moを触媒基準、酸化物換算で9.1質量%含有し、Niを触媒基準、酸化物換算で2.0質量%含有し、細孔容積が0.72mL/gであり、比表面積が131m2/gであり、平均細孔径が20.6nm、平均細孔径±2.0nmの細孔径を有する細孔の全容積の全細孔容積に対する割合が24%であった。
5質量%のアルミン酸ナトリウム水溶液10kgを60℃に加熱し、温度を保持したまま25質量%の硫酸アルミニウム水溶液を滴下し、最終的な水溶液のpHを4に調整した。生成したアルミナスラリーを濾過し、濾別されたアルミナゲルを0.2質量%のアンモニア水溶液を加えてpH7に調整し、焼成後のアルミナ担体の平均細孔径が6nmとなるアルミナゲル(A)を得た。
これとは別に、5質量%のアルミン酸ナトリウム水溶液10kgを70℃に加熱し、温度を保持したまま、25質量%の硫酸アルミニウム水溶液を滴下し、最終的に溶液のpHを8に調整した。生成したアルミナスラリーを濾過し、濾別したアルミナゲルに硝酸水溶液を加えてpH7に調整し、焼成後の平均細孔径が12nmとなるアルミナゲル(B)を得た。
水素化処理触媒Eの活性金属量は、触媒基準、酸化物換算としてMoが15質量%、Niが3質量%であり、リンの含有量は触媒基準、酸化物換算で2.8質量%であった。また、水素化処理触媒Eは、比表面積が244m2/g、全細孔容積が0.65mL/g、5~10nmの細孔径を有する細孔の全容積の3~30nmの細孔径を有する細孔の全容積に対する割合が35%、10~15nmの細孔径を有する細孔の全容積の3~30nmの細孔径を有する細孔の全容積に対する割合が60%、30nm以上の細孔径を有する細孔の全容積の全細孔容積に対する割合が2.4%、10~30nmの細孔径を有する細孔の平均細孔径が11.2nm、10~30nmの細孔径を有する細孔の平均細孔径±1nmの細孔の全容積が3~30nmの細孔径を有する細孔の全容積に占める割合が41%であった。
前段触媒として触媒Dを、中段触媒として触媒Eを、後段触媒として触媒Aを用い、容積比触媒D:触媒E:触媒A=20:30:50で固定床流通式反応装置に充填し、下記性状の原料油2を用いて、下記反応条件で水素化処理を行い、生成油を得た。
反応温度:390℃
水素分圧:10.3MPa
液空間速度:0.253h-1
水素/油比:876.2m3/m3
原料油:中東系原油の減圧蒸留残渣油、
密度(15℃):1.015g/cm3
硫黄分:4.20質量%
ニッケル分:53ppm
バナジウム分:90ppm
アスファルテン分:7.8質量%
後段触媒を触媒Aから触媒Bに変更した以外は、実施例4と同様にして水素化処理を行い、生成油を得た。
後段触媒を触媒Aから触媒aに変更した以外は、実施例4と同様にして水素化処理を行い、生成油を得た。
後段触媒を触媒Aから触媒bに変更した以外は、実施例4と同様にして水素化処理を行い、生成油を得た。
前記の水素化処理反応で得た運転日数25日目の生成油から求めた脱硫比活性、脱金属率、レジン分、アスファルテン分、レジン分に対するアスファルテン分の含量比(質量比、[アスファルテン分(質量%)]/[レジン分(質量%)])、及び潜在セジメント含量の結果を表4に示す。
脱金属率、レジン分、アスファルテン分、レジン分に対するアスファルテン分の含量比(質量比、[アスファルテン分(質量%)]/[レジン分(質量%)])、及び潜在セジメント含量は、前記と同様にして求めた。
脱硫比活性は、実施例4で得た生成油における脱硫反応速度定数を100としたときの相対値で示した。
さらに、当該水素化処理触媒を用いて水素化処理を行うことにより、セジメントが発生し難い、貯蔵安定性に優れた重質炭化水素油を得ることができる。
Claims (3)
- リンを担体基準、酸化物換算で0.1~4質量%含有し、シリカを担体基準で0.1~1.5質量%含有するリン・シリカ含有アルミナを担体とし、前記担体に周期表第6族金属から選ばれる少なくとも1種を触媒基準、酸化物換算で8~20質量%、および周期表第8~10族金属から選ばれる少なくとも1種を触媒基準、酸化物換算で2~6質量%担持していることを特徴とする重質炭化水素油の水素化処理触媒。
- アルミナゲルを調製する工程、
リンを担体基準、酸化物換算で0.1~4質量%、シリカを担体基準で0.1~1.5質量%含有させるように、前記アルミナゲルにリン化合物及びシリカを混練する工程、
得られた混練物を成型し、これを乾燥、焼成して、リン・シリカ含有アルミナ担体を得る工程、及び
前記リン・シリカ含有アルミナ担体に、周期表第6族金属から選ばれる少なくとも1種を触媒基準、酸化物換算で8~20質量%、周期表第8~10族金属から選ばれる少なくとも1種を触媒基準、酸化物換算で2~6質量%含有するように担持させる工程
を有することを特徴とする重質炭化水素油の水素化処理触媒の製造方法。 - 重質炭化水素油を、水素分圧3~20MPa、水素/油比400~3000m3/m3、温度300~420℃、液空間速度0.1~3h-1で、前段触媒、中段触媒、及び後段触媒と順次接触させて水素化処理する方法であって、
(a)前段触媒として、
酸化亜鉛を担体基準で1~15質量%含有する無機酸化物担体に、触媒基準かつ酸化物換算で、周期表第6族金属から選ばれた少なくとも1種を2~15質量%、周期表第8~10族金属から選ばれた少なくとも1種を0.001~5質量%含有させており、
比表面積が70~150m2/gであり、細孔容積が0.6~1mL/gであり、平均細孔径が15~35nmであり、平均細孔径±2.0nmの細孔径を有する細孔の全容積の全細孔容積に対する割合が15~50%である触媒を、触媒全体に対して、容積基準で10~50%用い、
(b)中段触媒として、
シリカを担体基準で0.1~1.5質量%含有するシリカ含有多孔性アルミナ担体に水素化活性成分が担持されており、全細孔容積が0.55~0.75mL/gであり、かつ細孔分布に関して、
(1)5~10nmの細孔径を有する細孔の全容積が、3~30nmの細孔径を有する細孔の全容積の30~45%であること、
(2)10~15nmの細孔径を有する細孔の全容積が、3~30nmの細孔径を有する細孔の全容積の50~65%であること、
(3)30nm以上の細孔径を有する細孔の全容積が、全細孔容積の3%以下であること、
(4)10~30nmの細孔径を有する細孔の平均細孔径が、10.5~13nmにあること、及び、
(5)前記平均細孔径±1nmの細孔径を有する細孔の全容積が、3~30nmの細孔径を有する細孔の全容積の25%以上であること、
を充足する触媒を、触媒全体に対して、容積基準で10~50%用い、
(c)後段触媒として、
請求項1に記載の水素化処理触媒又は請求項2に記載の製造方法により製造された水素化処理触媒を、触媒全体に対して、容積基準で20~70%用いること、
を特徴とする重質炭化水素油の水素化処理方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14851746.9A EP3056271B8 (en) | 2013-10-11 | 2014-09-25 | Hydroprocessing catalyst for heavy hydrocarbon oil, method for manufacturing hydroprocessing catalyst for heavy hydrocarbon oil, and use in a hydroprocessing method for heavy hydrocarbon oil |
CN201480053498.6A CN105579135B (zh) | 2013-10-11 | 2014-09-25 | 重质烃油的加氢处理催化剂、重质烃油的加氢处理催化剂的制造方法以及重质烃油的加氢处理方法 |
KR1020167008700A KR102229944B1 (ko) | 2013-10-11 | 2014-09-25 | 중질 탄화수소유의 수소화 처리 촉매, 중질 탄화수소유의 수소화 처리 촉매의 제조 방법 및 중질 탄화수소유의 수소화 처리 방법 |
JP2015541512A JP6600912B2 (ja) | 2013-10-11 | 2014-09-25 | 重質炭化水素油の水素化処理触媒及び重質炭化水素油の水素化処理触媒の製造方法 |
US15/021,960 US10202553B2 (en) | 2013-10-11 | 2014-09-25 | Hydroprocessing catalyst for heavy hydrocarbon oil, method for manufacturing hydroprocessing catalyst for heavy hydrocarbon oil, and hydroprocessing method for heavy hydrocarbon oil |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-213769 | 2013-10-11 | ||
JP2013213769 | 2013-10-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015053087A1 true WO2015053087A1 (ja) | 2015-04-16 |
Family
ID=52812906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/075392 WO2015053087A1 (ja) | 2013-10-11 | 2014-09-25 | 重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10202553B2 (ja) |
EP (1) | EP3056271B8 (ja) |
JP (2) | JP6600912B2 (ja) |
KR (1) | KR102229944B1 (ja) |
CN (1) | CN105579135B (ja) |
WO (1) | WO2015053087A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022004786A1 (ja) | 2020-07-03 | 2022-01-06 | コスモ石油株式会社 | 炭化水素油の水素化処理触媒、炭化水素油の水素化処理触媒の製造方法、及び炭化水素油の水素化処理方法 |
WO2024228292A1 (ja) * | 2023-05-01 | 2024-11-07 | Eneos株式会社 | 重質油の水素化精製方法 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6476525B2 (ja) * | 2013-09-27 | 2019-03-06 | コスモ石油株式会社 | 重質炭化水素油の水素化処理触媒、及び重質炭化水素油の水素化処理方法 |
CN105579134B (zh) | 2013-09-27 | 2018-12-07 | 克斯莫石油株式会社 | 重质烃油的加氢处理催化剂以及重质烃油的加氢处理方法 |
US11788017B2 (en) | 2017-02-12 | 2023-10-17 | Magëmã Technology LLC | Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil |
US20190233741A1 (en) | 2017-02-12 | 2019-08-01 | Magēmā Technology, LLC | Multi-Stage Process and Device for Reducing Environmental Contaminates in Heavy Marine Fuel Oil |
US12025435B2 (en) | 2017-02-12 | 2024-07-02 | Magēmã Technology LLC | Multi-stage device and process for production of a low sulfur heavy marine fuel oil |
US12071592B2 (en) | 2017-02-12 | 2024-08-27 | Magēmā Technology LLC | Multi-stage process and device utilizing structured catalyst beds and reactive distillation for the production of a low sulfur heavy marine fuel oil |
US10604709B2 (en) | 2017-02-12 | 2020-03-31 | Magēmā Technology LLC | Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials |
CN108722454A (zh) * | 2018-06-06 | 2018-11-02 | 重集团大连工程建设有限公司 | 一种煤焦油加氢脱金属催化剂及其制备方法 |
JP6630458B1 (ja) * | 2019-05-15 | 2020-01-15 | 日本ケッチェン株式会社 | 炭化水素油の水素化処理触媒及び当該触媒を用いる炭化水素油の水素化処理方法 |
CN116020501B (zh) * | 2021-10-27 | 2024-07-12 | 中国石油化工股份有限公司 | 一种加氢催化剂及其制备方法和应用 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000135438A (ja) | 1998-10-30 | 2000-05-16 | Catalysts & Chem Ind Co Ltd | 水素化処理触媒およびその製造方法 |
JP2000313891A (ja) * | 1999-01-05 | 2000-11-14 | Idemitsu Kosan Co Ltd | 燃料油の脱硫方法および燃料油の脱硫システム |
JP2004263117A (ja) * | 2003-03-04 | 2004-09-24 | Idemitsu Kosan Co Ltd | 原油の接触水素化処理方法 |
JP2005169232A (ja) | 2003-12-10 | 2005-06-30 | Petroleum Energy Center | 炭化水素油の水素化脱硫触媒及びその製造方法 |
JP2005305418A (ja) * | 2004-03-26 | 2005-11-04 | Cosmo Oil Co Ltd | 炭化水素油の水素化処理触媒及びその製造方法並びに炭化水素油の水素化処理方法 |
JP2008143917A (ja) * | 2004-07-05 | 2008-06-26 | 出光興産株式会社 | 炭化水素油の水素化改質方法 |
JP2012521292A (ja) * | 2009-03-24 | 2012-09-13 | シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー | 重質炭化水素原料の接触水素転換における使用のための高表面積組成物、このような組成物の製造方法及びこの使用 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3904550A (en) * | 1973-10-19 | 1975-09-09 | Exxon Research Engineering Co | Hydrocarbon conversion catalyst comprising alumina and aluminum phosphate |
JP3302150B2 (ja) * | 1993-12-30 | 2002-07-15 | 株式会社コスモ総合研究所 | 炭化水素油の水素化処理用触媒 |
JP2992971B2 (ja) * | 1994-09-01 | 1999-12-20 | 株式会社ジャパンエナジー | 水素化処理用触媒 |
US6013598A (en) * | 1996-02-02 | 2000-01-11 | Exxon Research And Engineering Co. | Selective hydrodesulfurization catalyst |
EP0968764A4 (en) * | 1997-11-18 | 2001-10-17 | Tonen Corp | CATALYST AND METHOD FOR HYDRO TREATMENT OF OIL |
US6716525B1 (en) * | 1998-11-06 | 2004-04-06 | Tapesh Yadav | Nano-dispersed catalysts particles |
JP3957122B2 (ja) | 2000-05-11 | 2007-08-15 | 財団法人石油産業活性化センター | 重質炭化水素油の水素化精製方法 |
JP4638610B2 (ja) * | 2001-01-05 | 2011-02-23 | 日本ケッチェン株式会社 | 水素化処理用触媒並びに水素化処理方法 |
JP4612229B2 (ja) * | 2001-06-08 | 2011-01-12 | 日本ケッチェン株式会社 | 重質炭化水素油の水素化処理用触媒並びに水素化処理方法 |
JP4156859B2 (ja) * | 2001-06-20 | 2008-09-24 | コスモ石油株式会社 | 軽油の水素化処理触媒及びその製造方法並びに軽油の水素化処理方法 |
JP4519379B2 (ja) | 2001-09-28 | 2010-08-04 | 財団法人石油産業活性化センター | 重質炭化水素油の水素化処理触媒 |
US7297251B2 (en) * | 2002-05-21 | 2007-11-20 | Exxonmobil Research And Engineering Company | Multi-stage hydrodesulfurization of cracked naphtha streams with a stacked bed reactor |
JP4798685B2 (ja) * | 2002-09-24 | 2011-10-19 | Jx日鉱日石エネルギー株式会社 | 石油系重質油の脱金属方法 |
JP2005314657A (ja) | 2004-03-29 | 2005-11-10 | Cosmo Oil Co Ltd | 重質炭化水素油の水素化処理方法 |
US20070114156A1 (en) * | 2005-11-23 | 2007-05-24 | Greeley John P | Selective naphtha hydrodesulfurization with high temperature mercaptan decomposition |
JP4818163B2 (ja) * | 2007-03-01 | 2011-11-16 | 日揮触媒化成株式会社 | アルミナ担体及びそれを用いた水素化脱金属触媒並びにそれらの製造方法 |
JP2009285385A (ja) * | 2008-05-30 | 2009-12-10 | Aruze Corp | 遊技機 |
JP5439673B2 (ja) | 2009-03-23 | 2014-03-12 | 一般財団法人石油エネルギー技術センター | 重質炭化水素油の水素化処理方法 |
AU2010239228A1 (en) * | 2009-04-21 | 2011-09-29 | Sapphire Energy, Inc. | Methods of preparing oil compositions for fuel refining |
JP5563491B2 (ja) | 2011-01-14 | 2014-07-30 | 出光興産株式会社 | 重質炭化水素油の水素化処理方法 |
CN103205271B (zh) * | 2012-01-12 | 2016-03-09 | 易高环保能源研究院有限公司 | 高温煤焦油加氢生产中间相沥青的方法 |
JP6476525B2 (ja) * | 2013-09-27 | 2019-03-06 | コスモ石油株式会社 | 重質炭化水素油の水素化処理触媒、及び重質炭化水素油の水素化処理方法 |
CN105579134B (zh) * | 2013-09-27 | 2018-12-07 | 克斯莫石油株式会社 | 重质烃油的加氢处理催化剂以及重质烃油的加氢处理方法 |
CN105940087B (zh) * | 2014-01-28 | 2018-11-23 | 国际壳牌研究有限公司 | 生物质或剩余废料向生物燃料的转化 |
-
2014
- 2014-09-25 EP EP14851746.9A patent/EP3056271B8/en active Active
- 2014-09-25 US US15/021,960 patent/US10202553B2/en active Active
- 2014-09-25 WO PCT/JP2014/075392 patent/WO2015053087A1/ja active Application Filing
- 2014-09-25 CN CN201480053498.6A patent/CN105579135B/zh active Active
- 2014-09-25 JP JP2015541512A patent/JP6600912B2/ja active Active
- 2014-09-25 KR KR1020167008700A patent/KR102229944B1/ko active Active
-
2019
- 2019-08-09 JP JP2019148106A patent/JP6773384B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000135438A (ja) | 1998-10-30 | 2000-05-16 | Catalysts & Chem Ind Co Ltd | 水素化処理触媒およびその製造方法 |
JP2000313891A (ja) * | 1999-01-05 | 2000-11-14 | Idemitsu Kosan Co Ltd | 燃料油の脱硫方法および燃料油の脱硫システム |
JP2004263117A (ja) * | 2003-03-04 | 2004-09-24 | Idemitsu Kosan Co Ltd | 原油の接触水素化処理方法 |
JP2005169232A (ja) | 2003-12-10 | 2005-06-30 | Petroleum Energy Center | 炭化水素油の水素化脱硫触媒及びその製造方法 |
JP2005305418A (ja) * | 2004-03-26 | 2005-11-04 | Cosmo Oil Co Ltd | 炭化水素油の水素化処理触媒及びその製造方法並びに炭化水素油の水素化処理方法 |
JP2008143917A (ja) * | 2004-07-05 | 2008-06-26 | 出光興産株式会社 | 炭化水素油の水素化改質方法 |
JP2012521292A (ja) * | 2009-03-24 | 2012-09-13 | シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー | 重質炭化水素原料の接触水素転換における使用のための高表面積組成物、このような組成物の製造方法及びこの使用 |
Non-Patent Citations (4)
Title |
---|
"Crude oil and petroleum products-Determination of sulfur content, Part 4: Energy-dispersive X-ray fluorescence method", JIS K 2541-4 |
"Crude petroleum and petroleum products-Determination of density and petroleum measurement tables (oscillation type density testing method", JIS K 2249-1 |
"Petroleum products-Determination of metal content (ICP emission spectrometry", THE JAPAN PETROLEUM INSTITUTE STANDARD JPI-55-62-2000 |
See also references of EP3056271A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022004786A1 (ja) | 2020-07-03 | 2022-01-06 | コスモ石油株式会社 | 炭化水素油の水素化処理触媒、炭化水素油の水素化処理触媒の製造方法、及び炭化水素油の水素化処理方法 |
WO2024228292A1 (ja) * | 2023-05-01 | 2024-11-07 | Eneos株式会社 | 重質油の水素化精製方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6773384B2 (ja) | 2020-10-21 |
US20160230102A1 (en) | 2016-08-11 |
EP3056271A4 (en) | 2017-06-28 |
EP3056271A1 (en) | 2016-08-17 |
JP2019218556A (ja) | 2019-12-26 |
CN105579135B (zh) | 2018-12-21 |
EP3056271B1 (en) | 2021-12-01 |
US10202553B2 (en) | 2019-02-12 |
EP3056271B8 (en) | 2022-02-16 |
JP6600912B2 (ja) | 2019-11-06 |
CN105579135A (zh) | 2016-05-11 |
KR20160068759A (ko) | 2016-06-15 |
JPWO2015053087A1 (ja) | 2017-03-09 |
KR102229944B1 (ko) | 2021-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6600912B2 (ja) | 重質炭化水素油の水素化処理触媒及び重質炭化水素油の水素化処理触媒の製造方法 | |
JP6432086B2 (ja) | 重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法 | |
JP6413168B2 (ja) | 重質炭化水素油の水素化処理触媒、及び重質炭化水素油の水素化処理方法 | |
EP2772308B1 (en) | Hydrogenation catalyst and method for producing same | |
US10137436B2 (en) | Hydrogenation catalyst for heavy hydrocarbon oil and hydrogenation method for heavy hydrocarbon oil | |
KR20150028301A (ko) | 티타니아를 함유하는 개선된 잔류 수소처리 촉매 | |
JP4805211B2 (ja) | 重質炭化水素油の水素化処理触媒、その製造方法、及び水素化処理方法 | |
JP2019177356A (ja) | 重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法 | |
CN115702040A (zh) | 烃油的加氢处理催化剂、烃油的加氢处理催化剂的制造方法、以及烃油的加氢处理方法 | |
JP4519379B2 (ja) | 重質炭化水素油の水素化処理触媒 | |
WO2023033172A1 (ja) | 重質炭化水素油の水素化処理用触媒およびその製造方法、ならびに重質炭化水素油の水素化処理方法 | |
JP5337978B2 (ja) | 水素化処理触媒及び減圧軽油の水素化処理方法 | |
WO2021193617A1 (ja) | 重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法 | |
JP2019177357A (ja) | 重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法 | |
JP2022156584A (ja) | 炭化水素油の水素化処理触媒の製造方法、及び炭化水素油の水素化処理方法 | |
JP2023007720A (ja) | 重質炭化水素油の水素化処理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480053498.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14851746 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015541512 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2014851746 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014851746 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15021960 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20167008700 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |