[go: up one dir, main page]

WO2015052927A1 - Sputtering target and method for producing same - Google Patents

Sputtering target and method for producing same Download PDF

Info

Publication number
WO2015052927A1
WO2015052927A1 PCT/JP2014/005120 JP2014005120W WO2015052927A1 WO 2015052927 A1 WO2015052927 A1 WO 2015052927A1 JP 2014005120 W JP2014005120 W JP 2014005120W WO 2015052927 A1 WO2015052927 A1 WO 2015052927A1
Authority
WO
WIPO (PCT)
Prior art keywords
ppm
sputtering target
oxide
less
raw material
Prior art date
Application number
PCT/JP2014/005120
Other languages
French (fr)
Japanese (ja)
Inventor
麻美 西村
正嗣 大山
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013212108A external-priority patent/JP2017014534A/en
Priority claimed from JP2013212109A external-priority patent/JP2017014535A/en
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2015052927A1 publication Critical patent/WO2015052927A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron

Definitions

  • the present invention relates to a sputtering target suitable for manufacturing an oxide film, a manufacturing method thereof, an oxide film formed using the target, and a product using the same.
  • Transparent conductive films made of metal composite oxides that have both conductivity and light transmission have been used as electrodes in solar cells, liquid crystal display elements, and other various elements. It is used in a wide range of applications such as heat ray reflective films, antistatic films, and transparent heating elements for anti-fogging in refrigerated showcases. In particular, it is known that a transparent conductive film having low resistance and excellent conductivity is suitably used for solar cells, display elements such as liquid crystals, organic electroluminescence, and inorganic electroluminescence, and electronic devices such as touch panels. Yes.
  • ITO indium oxide-tin oxide
  • indium oxide-zinc oxide indium zinc oxide
  • zinc oxide with aluminum added zinc oxide with aluminum added, and the like are known. Since these are different in ease of manufacture, price, characteristics, etc., they are used as appropriate according to the application.
  • the indium zinc oxide film is characterized by a higher etching rate than the ITO film.
  • the indium zinc oxide target has a higher bulk resistance value than the ITO target, the discharge during sputtering may become unstable particularly in the DC magnetron sputtering process.
  • Patent Document 1 the bulk resistance value of the target is lowered with a slight addition amount of about 0.01 to 1 atomic% of an oxide of a third element having a valence of at least positive tetravalent to indium zinc oxide, Proposals have been made to stabilize the discharge of the target during sputtering and to achieve an industrially applicable etching rate with an oxalic acid etchant.
  • the target to which the third element addition amount described in the example of Patent Document 1 is added must be polished until color unevenness occurs on the target surface during the sintering process, and the color unevenness disappears. It was. As a result, the manufacturing tact time is increased and the yield is significantly reduced. On the other hand, in the target in which the third element addition amount was sequentially increased, the occurrence of color unevenness was suppressed, but a large amount of particles were observed on the film formation substrate during the sputter film formation.
  • Example 1 and Example 2 of Patent Document 2 a target to which cerium oxide is added as a rare earth oxide when an indium oxide-zinc oxide target is manufactured, and in Example 3, a target to which praseodymium oxide is added, It is disclosed that it is effective in preventing color unevenness.
  • these rare earth oxide-added targets can prevent color unevenness during the sintering process, but the resistance value of the formed transparent conductive film increases, and the etching performance (speed and residue) by the oxalic acid etchant also increases. Inferior. Also, the number of particles during sputter deposition increased.
  • the present invention reduces the amount of polishing when producing a sputtering target by suppressing the occurrence of color unevenness during sintering, improves the manufacturing tact time and yield, and also suppresses the generation of particles during film formation.
  • the purpose is to provide.
  • the following sputtering target and manufacturing method thereof, an oxide film formed by the target, and a product using the same are provided.
  • the method for producing a sputtering target according to 1, comprising a step of forming the mixture to produce a molded product, and a step of sintering the molded product at 1200 ° C. to 1600 ° C. for 1 hour to 50 hours. 7.
  • the following sputtering targets, its manufacturing method, etc. are provided.
  • the sputtering target does not contain Zr as an essential component, color unevenness on the target surface is eliminated. Therefore, the cutting amount of the target surface can be reduced, the manufacturing tact time can be shortened, and the yield can be improved.
  • Mainly composed of indium oxide and zinc oxide, A hexagonal layered compound represented by In 2 O 3 (ZnO) m (wherein m 2 to 7), Sn content is more than 2000ppm and 20000ppm or less, The difference ⁇ b * between the maximum chromaticity and the minimum chromaticity on the surface or arbitrarily cut surface is 0 to 5, A sputtering target having an average crystal grain size of 2 ⁇ m to 10 ⁇ m. 2. 2. The sputtering target according to 1, wherein the maximum chromaticity b * value on the surface or arbitrarily cut surface is 14 or less. 3.
  • a step of mixing the indium raw material, the zinc raw material and the Sn raw material so that the Sn content of the sputtering target is more than 2000 ppm and not more than 20000 ppm, Forming the mixture by molding the mixture, and sintering the molding at 1200 ° C. to 1600 ° C.
  • Mainly composed of indium oxide and zinc oxide, A hexagonal layered compound represented by In 2 O 3 (ZnO) m (wherein m 2 to 7), Sn content is more than 2000ppm and 20000ppm or less, The difference ⁇ b * between the maximum chromaticity and the minimum chromaticity on an unpolished surface or an arbitrarily cut surface is 0 to 10, An oxide sintered body having an average crystal grain size of 2 ⁇ m to 10 ⁇ m. 10. 10. The oxide sintered body according to 9, wherein the maximum chromaticity b * value on an unpolished surface or an arbitrarily cut surface is 20 or less.
  • the ratio of the Sn element to the total metal elements is more than 2000 ppm and less than 20000 ppm (over 2000 ppm to 20000 ppm) and contains Zr, thereby suppressing the generation of color unevenness on the surface of the sintered body.
  • the amount of particles during sputtering film formation can be suppressed.
  • a sputtering target according to an embodiment of the present invention includes indium oxide and zinc oxide as main components, and In 2 O 3 (ZnO) m [wherein, m is an integer of 2 to 7. And a Sn element and a Zr element. And the ratio of Sn element with respect to all the metal elements is more than 2000 ppm and 20000 ppm or less, It is characterized by the above-mentioned.
  • the hexagonal layered compound contained in the sputtering target of the present invention is a compound identified by X-ray diffraction and represented as In 2 O 3 (ZnO) m .
  • M in the formula is an integer of 2 to 7, preferably 3 to 5.
  • a compound in which m is 1 does not have a hexagonal layered structure, and a compound in which m exceeds 7 has a hexagonal layered structure, but its bulk resistance is high.
  • the ratio of Sn element to all metal elements contained in the sputtering target is more than 2000 ppm to 20000 ppm.
  • the Sn element ratio is 2000 ppm or less, color unevenness occurs during target sintering, and the yield decreases. If it exceeds 20000 ppm, the oxide film (transparent conductive film) formed using the sputtering target may be difficult to be etched with a weak acid such as oxalic acid.
  • the content ratio of the Sn element is preferably more than 2000 ppm to 20000 ppm, 2050 ppm to 10,000 ppm, more than 2100 ppm to 5000 ppm, or 3500 ppm to 5000 ppm.
  • the ratio of Zr element with respect to all the metal elements contained in a sputtering target is 50 ppm or more and 1000 ppm or less. If it is this range, the particle amount at the time of sputtering film-forming can be suppressed preferably, and the yield of a transparent conductive film will improve. In addition, the resistance value of the transparent conductive film formed using the sputtering target does not increase, etching with a weak acid such as oxalic acid can be performed, and no residue remains.
  • the ratio of the Zr element is more preferably 70 ppm to 700 ppm, and particularly preferably 100 ppm to 500 ppm.
  • the ratio (ppm) of Sn and Zr elements to all metal elements contained in the sputtering target can be measured by ICP emission spectroscopic analysis. Note that the proportions of the Sn and Zr elements substantially coincide with the blending proportion in the target material.
  • the addition effect of the Zr element has an effect on the ultrafine structure in the target. That is, when the addition ratio of Sn element increases, zinc oxide and tin oxide, which are target raw materials, selectively react to form a spinel phase having a high bulk resistance value. Therefore, it is considered that a micro arc is generated at the time of sputtering film formation, and the amount of particles increases. On the other hand, it is presumed that by adding Zr element, selective reaction between zinc oxide and tin oxide is suppressed, and solid solution of Sn element into indium oxide is promoted.
  • the bulk resistance of the sputtering target can be sufficiently lowered by setting the content ratio of the Sn element within the above range.
  • the bulk resistance of the sputtering target of the present invention is preferably 50 m ⁇ cm or less, 25 m ⁇ cm or less, 10 m ⁇ cm or less, or 5 m ⁇ cm or less.
  • the bulk resistance of the sputtering target exceeds 50 m ⁇ cm, it may be difficult to perform stable film formation by direct current sputtering.
  • the lower limit is not particularly limited, but is usually about 0.1 m ⁇ cm.
  • the transparent conductive film formed using this target can be etched with a weak acid such as oxalic acid.
  • the average crystal grain size of the sputtering target of the present invention is preferably 2 ⁇ m to 10 ⁇ m, more preferably 2 ⁇ m to 8 ⁇ m, from the viewpoint of preventing abnormal discharge.
  • the average crystal grain size can be adjusted according to the conditions of the raw material and the production method. Specifically, a raw material having a small average particle diameter, for example, a raw material having a diameter of 0.01 to 10 ⁇ m, preferably 5 ⁇ m or less can be used, or the raw material can be made small by pulverization conditions. On the other hand, during sintering, the higher the sintering temperature and the longer the sintering time, the larger the average crystal grain size tends to be.
  • the average crystal grain size was measured by the following method.
  • a square inscribed in the circle is divided into 16 equal areas, and at each of the 16 center points of each square, and when the shape of the sputtering target is square, each side is 4 etc.
  • the points to be divided are determined, the opposing points are connected and divided into 16 equal areas, and the surface of each square is observed with a scanning electron microscope (SEM) in a frame with a magnification of 1000 times at 16 central points. All the particle diameters of the particles observed within the 120 ⁇ 80 ⁇ m square of the field of view were measured to obtain an average value, and the average value of the particle diameters was further determined from the average values of all 16 locations.
  • the particle diameter was measured based on JIS R 1670 with the crystal particle diameter as the equivalent circle diameter.
  • the relative density of the sputtering target is preferably 95% or more, more preferably 96% or more. Since such a high-density target has high mechanical strength and excellent electrical conductivity, it is possible to further improve the stability when performing sputtering by mounting it on an RF magnetron sputtering apparatus or a DC magnetron sputtering apparatus.
  • the relative density is a value obtained by dividing the actual density obtained by measuring the sputtering target by the Archimedes method by the theoretical density calculated from the true density and the weight ratio of the oxide of each constituent element. More specifically, the calculation was made with reference to JP-A-2002-30429.
  • the sputtering target of the present invention contains indium oxide and zinc oxide as main components. Specifically, indium oxide and zinc oxide, a prescribed amount of tin oxide that suppresses the generation of the color unevenness layer, a prescribed amount of zirconium oxide that suppresses the amount of particles, and other inevitable impurities are included.
  • the main component is indium oxide and zinc oxide
  • the total of indium oxide and zinc oxide is more than 95% by weight, 97% by weight or more, and more preferably 98% by weight or more.
  • inevitable impurities may be included within a range not impairing the effects of the present invention.
  • the sputtering target of the present invention includes a step of mixing and grinding an indium raw material, a zinc raw material, a tin raw material and a zirconium raw material, a step of forming a raw material mixture, a step of sintering a molded product, and annealing a sintered body as necessary. It can be manufactured through a process, a process of polishing a sintered body, and a process of cutting into a specified shape.
  • the raw material is not particularly limited, and a compound or metal containing In, Zn, Sn, or Zr element can be used, and preferably an oxide. It is desirable to use raw materials such as indium oxide, zinc oxide, tin oxide, and zirconium oxide that have high purity, and the purity is 99% or more, preferably 99.9% or more, more preferably 99.99% or more. Those are preferably used. When a high-purity raw material is used, a sintered body having a dense structure is obtained, and the bulk resistance is lowered.
  • the raw material metal oxide preferably has an average particle size of 0.01 to 10 ⁇ m, more preferably 0.05 to 5 ⁇ m, and still more preferably 0.1 to 5 ⁇ m.
  • average particle size is less than 0.01 ⁇ m, aggregation tends to occur.
  • average particle size exceeds 10 ⁇ m, the mixing property becomes insufficient, and a sintered body having a dense structure may not be obtained.
  • Binders such as polyvinyl alcohol and vinyl acetate can be added to the raw material.
  • the mixing of the raw materials can be performed by a normal mixing and grinding machine such as a ball mill, a jet mill, or a bead mill.
  • the mixture thus obtained may be immediately molded, but may be calcined before the molding.
  • the calcination treatment is usually carried out at 700 to 900 ° C. for 1 to 5 hours.
  • the mixture of raw material powders and calcined metal oxide powders are granulated to improve fluidity and filling properties in the subsequent molding process.
  • the granulation treatment can be performed using a spray dryer or the like.
  • the particle size of the granulated product formed by the granulation treatment is preferably 1 to 100 ⁇ m, more preferably 5 to 100 ⁇ m, still more preferably 10 to 100 ⁇ m.
  • the raw material powder or granulated material is molded by a method such as die press molding, casting molding, injection molding or the like in the molding process.
  • a method such as die press molding, casting molding, injection molding or the like in the molding process.
  • it is preferable to perform compaction by cold isostatic pressing or the like after preforming by die pressing or the like in this molding step.
  • a conventional sintering method such as normal pressure sintering, hot press sintering, hot isostatic pressing sintering, or the like can be used.
  • the sintering temperature is preferably 1200 to 1600 ° C, more preferably 1250 to 1550 ° C, still more preferably 1300 to 1500 ° C.
  • the rate of temperature increase during sintering is preferably from 0.1 to 3 ° C./min from 800 ° C. to the sintering temperature.
  • the sintering time varies depending on the sintering temperature, but is preferably 1 to 50 hours, more preferably 2 to 30 hours, and further preferably 3 to 20 hours.
  • the atmosphere during sintering may be air or oxygen gas, or may be a reducing gas such as hydrogen gas, methane gas or carbon monoxide gas, or an inert gas such as argon gas or nitrogen gas.
  • the sintered body may be annealed.
  • the temperature is usually maintained at 700 to 900 ° C. for 1 to 5 hours.
  • the color unevenness layer on the surface of the sintered oxide immediately after sintering thus obtained was measured for b * and ⁇ b * by the method described in the examples, and the polished surface was b * ⁇ 4 and ⁇ b * ⁇ 2. It was defined by the polishing depth (thickness of the color unevenness layer) when polishing until the end.
  • the polishing depth is preferably 0 to 0.7 mm, more preferably 0 to 0.5 mm, and particularly preferably 0 to 0.3 mm.
  • a sputtering target can be obtained by cutting the sintered body obtained above into an appropriate shape.
  • a sputtering target according to another embodiment of the present invention includes indium oxide and zinc oxide, and In 2 O 3 (ZnO) m [wherein, m is an integer of 2 to 7. ]
  • the hexagonal layered compound represented by this is contained. Furthermore, Sn is contained in excess of 2000 ppm to 20000 ppm (weight conversion).
  • the hexagonal layered compound composed of indium oxide and zinc oxide is the same as that in the above-described embodiment.
  • the ratio of Sn contained in the sputtering target is more than 2000 ppm to 20000 ppm.
  • the Sn ratio is 2000 ppm or less, color unevenness occurs during target sintering, and the yield decreases.
  • it exceeds 20000 ppm it may become difficult to perform the etching process by weak acids, such as an oxalic acid, in the transparent conductive film formed using the sputtering target.
  • the content of Sn is preferably more than 2000 ppm to 20000 ppm, 2050 ppm to 10,000 ppm, more than 2100 ppm to 5000 ppm, or 3500 ppm to 5000 ppm.
  • the uneven color layer on the surface of the target can be reduced during sintering, and the color does not easily differ between the inside and the surface, leading to a reduction in the cutting amount.
  • the bulk resistance of a sputtering target can be made low enough by making the content rate of Sn into said range.
  • the bulk resistance of the sputtering target of the present invention is preferably 50 m ⁇ cm or less, 25 m ⁇ cm or less, 10 m ⁇ cm or less, or 5 m ⁇ cm or less.
  • the bulk resistance of the sputtering target exceeds 50 m ⁇ cm, it may be difficult to perform stable film formation by direct current sputtering.
  • the transparent conductive film formed using this target can be easily etched with a weak acid such as oxalic acid.
  • the average crystal grain size of the sputtering target of the present invention is preferably 2 ⁇ m to 10 ⁇ m, more preferably 2 ⁇ m to 8 ⁇ m, from the viewpoint of abnormal discharge.
  • the average crystal grain size can be adjusted according to the conditions of the raw material and the production method. Specifically, a raw material having a small average particle diameter, for example, a raw material having a diameter of 0.01 to 10 ⁇ m, preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less is used. Further, during sintering, the higher the sintering temperature and the longer the sintering time, the larger the average crystal grain size tends to be.
  • the relative density of the sputtering target is preferably 95% or more, more preferably 96% or more. With such a density, since the mechanical strength of the target is high and the conductivity is excellent, the stability when performing sputtering by mounting this on an RF magnetron sputtering apparatus or a DC magnetron sputtering apparatus is further increased. Can do.
  • the sputtering target of the present invention contains indium oxide and zinc oxide as main components. Specifically, indium oxide and zinc oxide may occupy 90% by weight, 95% by weight, 97% by weight, 98% by weight, or 98.5% by weight or more.
  • the metal element contained in the sputtering target of the present invention is substantially composed of In, Zn, and Sn, and contains inevitable impurities in addition to these metal oxides as long as the effects of the present invention are not impaired. You may go out.
  • “substantially” means that the effect as a sputtering target is caused by the oxides of In, Zn, and Sn, or 90 atomic% or more, 95 atomic% or more, 97 atoms of all metal elements of the sputtering target. % Or more, 98 atomic% or more, 99 atomic% or more, or 99.5 atomic% or more, and 100 atomic% or less means In, Zn, and Sn.
  • the sputtering target of the present invention is manufactured through a step of mixing an indium raw material, a zinc raw material and a Sn raw material, a step of molding the raw material mixture, a step of sintering the molded product, and a step of annealing the sintered body as necessary. can do. Specifically, it is the same as the manufacturing method of the above-described embodiment of the present invention except that the Zr element is not an essential component.
  • ⁇ b * measured by the method described in the examples is preferably 0 to 10, more preferably 0 to 5, particularly preferably. Is 0-4.
  • the maximum b * value of the surface of the unpolished oxide sintered body or the arbitrarily cut surface is preferably 20 or less, more preferably 19 or less, and particularly preferably 18 or less.
  • a sputtering target can be obtained by cutting the sintered body obtained above into an appropriate shape.
  • ⁇ b * measured by the method described in the examples is preferably 0 to 5, more preferably 0 to 3.
  • the maximum b * of the polished surface or the arbitrarily cut surface is preferably 14 or less, more preferably 12 or less, and particularly preferably 10 or less.
  • the oxide film of the present invention is obtained by forming a film by a sputtering method using the above-described sputtering target of the present invention.
  • the film formation by the sputtering method can be suitably performed by an RF magnetron sputtering method, a DC magnetron sputtering method, or the like, but the DC magnetron sputtering method is generally applied from the viewpoint of productivity.
  • the film formation conditions are not particularly limited, and the film formation can be suitably performed within the normally applied condition range.
  • Examples 1 to 9, Comparative Examples 1 to 4 Weigh 5000 g of indium oxide powder having a specific surface area of 11 m 2 / g and an average particle size of 0.98 ⁇ m, and 600 g of zinc oxide powder having the same specific surface area and average particle size, and the content in the obtained sputtering target is shown in Table 1.
  • the average particle size of each powder was measured with a laser diffraction particle size distribution analyzer SALD-300V (manufactured by Shimadzu Corporation), and the median particle size was a median diameter D50.
  • the granulated product was uniformly filled into a mold, and pressure-molded at 50 MPa with a cold press machine, and then pressure-molded with a cold isostatic press machine at 200 MPa.
  • the molded body thus obtained was sintered in a sintering furnace at 1400 ° C. (temperature increase rate from 800 ° C. to sintering temperature: 2 ° C./min) for 20 hours.
  • the crystal structure of the obtained sintered body was examined using an X-ray diffraction measurement apparatus (XRD).
  • XRD X-ray diffraction measurement apparatus
  • the measurement conditions of XRD are as follows. ⁇ Equipment: Ultimate-III manufactured by Rigaku Corporation -X-ray: Cu-K ⁇ ray (wavelength 1.5406mm, monochromatized with graphite monochromator) ⁇ 2 ⁇ - ⁇ reflection method, continuous scan (1.0 ° / min) ⁇ Sampling interval: 0.02 ° ⁇ Slit DS, SS: 2/3 °, RS: 0.6 mm
  • Average crystal grain size ( ⁇ m) The average crystal grain size of the quadrangular sputtering target is determined by dividing each side into four equal parts, connecting the opposing points into 16 equal areas, and the surface of each quadrant at 16 central points is multiplied by 1000 times. Was observed with a scanning electron microscope (SEM). All the particle diameters of the particles observed within the 120 ⁇ 80 ⁇ m square of the field of view were measured to obtain an average value, and the average value of the particle diameters was further determined from the average values of all 16 locations. The particle diameter was measured based on JIS R 1670 with the crystal particle diameter as the equivalent circle diameter.
  • a sputtering target is attached to a DC magnetron sputtering apparatus, sputter pressure is 0.3 Pa, sputter output is 100 W, Ar gas is 100%, sputtered for 10 minutes, and the entire thickness of the surface of a 100 mm ⁇ glass substrate is obtained.
  • a 100 nm transparent conductive film was formed. Under the above film forming conditions, an indium zinc oxide film having a thickness of 100 nm was formed on a glass substrate, and then the resistance value of the substrate was added to a commercially available oxalic acid etching solution (ITO-06N: manufactured by Kanto Chemical Co., Ltd.) at 30 ° C.
  • ITO-06N oxalic acid etching solution
  • the etching rate was determined by dividing the initial film thickness (100 nm) by the time required to reach infinity. Further, about five 100 mm square substrates, the substrate was immersed in an oxalic acid etching solution until the resistance value of the substrate became infinite, washed with pure water, dried, and then 10,000 times with a scanning electron microscope. And the number of residues present in the center 10 ⁇ 8 ⁇ m square of the field of view was counted. Observation was carried out at a total of five points of the intersection of the diagonal lines of each substrate and the center point of the intersection and the vertex. The number of the remaining residues was determined by an average value of five and defined as the etching residue as follows. Etching residue evaluation criteria ⁇ : 3 or less ⁇ ; 4 or more, 7/100 or less ⁇ ; 8 or more
  • Etching residue usually remains in the form of particles in the space in the etching process, which may cause a short circuit. Such particle adhesion is undesirable because it significantly reduces device yield.
  • the number is small, it can be normalized by a repair process. However, when the number is increased, repair becomes difficult and the yield of the element is lowered.
  • Particles generated on the film formation substrate during sputter film formation may be open (disconnected) if missing in the next etching process, and may be short (short circuit) if left in the form of particles. is there.
  • the wiring abnormality due to these particles is not preferable because it significantly reduces the yield of the element.
  • the number When the number is small, it can be normalized by a repair process. However, when the number is increased, repair becomes difficult and the yield of the element is lowered.
  • Reference Examples 1 to 4 and Reference Comparative Examples 1 to 3 Weigh 5000 g of indium oxide powder having a specific surface area of 11 m 2 / g and an average particle size of 0.98 ⁇ m, and 600 g of zinc oxide powder having the same specific surface area and average particle size, and the content in the obtained sputtering target is shown in Table 2.
  • Tin oxide was weighed so as to have the content (Sn weight) shown, and a molding binder was added to uniformly mix and granulate.
  • the average particle size of each powder was measured with a laser diffraction particle size distribution analyzer SALD-300V (manufactured by Shimadzu Corporation), and the median particle size was a median diameter D50.
  • this granulated product was uniformly filled in a mold and pressure-molded with a cold press machine.
  • the molded body thus obtained was sintered in a sintering furnace at 1400 ° C. (temperature increase rate from 800 ° C. to sintering temperature: 2 ° C./min) for 20 hours.
  • chromaticity (b * value), average crystal grain size and bulk resistance value were measured in the same manner as in the Examples.
  • the results are shown in Table 2.
  • the polishing depth is an arbitrarily polished depth.
  • the transparent conductive film produced using the sputtering target of the present invention can be used for solar cells, liquid crystal, organic electroluminescence, display elements such as inorganic electroluminescence, and electronic devices such as touch panels.
  • the oxide film of the present invention can be used for a thin film transistor or the like as a semiconductor film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

A sputtering target which contains a hexagonal layered compound that is mainly composed of indium oxide and zinc oxide and is represented by formula In2O3(ZnO)m (wherein m is an integer of 2-7), and which also contains elemental Sn and elemental Zr. The ratio of elemental Sn relative to all metal elements in this sputtering target is more than 2,000 ppm but 20,000 ppm or less.

Description

スパッタリングターゲット及びその製造方法Sputtering target and manufacturing method thereof
 本発明は、酸化物膜の製造に適したスパッタリングターゲット、その製造方法、そのターゲットにより成膜した酸化物膜及びそれを用いた製品に関する。 The present invention relates to a sputtering target suitable for manufacturing an oxide film, a manufacturing method thereof, an oxide film formed using the target, and a product using the same.
 導電性と光透過性とを兼ね備えた金属複合酸化物からなる透明導電膜は、従来から、太陽電池、液晶表示素子、その他各種素子における電極等として利用されているほか、自動車窓や建築用の熱線反射膜、帯電防止膜、冷凍ショーケースにおける防曇用透明発熱体等、幅広い用途に利用されている。特に、低抵抗で導電性に優れた透明導電膜は、太陽電池や、液晶、有機エレクトロルミネッセンス、無機エレクトロルミネッセンス等の表示素子、タッチパネル等の電子機器等に好適に使用されることが知られている。 Transparent conductive films made of metal composite oxides that have both conductivity and light transmission have been used as electrodes in solar cells, liquid crystal display elements, and other various elements. It is used in a wide range of applications such as heat ray reflective films, antistatic films, and transparent heating elements for anti-fogging in refrigerated showcases. In particular, it is known that a transparent conductive film having low resistance and excellent conductivity is suitably used for solar cells, display elements such as liquid crystals, organic electroluminescence, and inorganic electroluminescence, and electronic devices such as touch panels. Yes.
 このような透明導電膜の中で最も普及しているものはITOと呼ばれている酸化インジウム-酸化錫(インジウム錫酸化物)からなる透明導電膜である。
 この他に、酸化インジウム-酸化亜鉛(インジウム亜鉛酸化物)、酸化錫にアンチモンを添加したもの、又は酸化亜鉛にアルミニウムを添加したもの等が知られている。これらは、製造の容易さ、価格、特性等がそれぞれ異なるので、用途に応じて適宜使用されている。
Among such transparent conductive films, the most popular one is a transparent conductive film made of indium oxide-tin oxide (indium tin oxide) called ITO.
In addition, indium oxide-zinc oxide (indium zinc oxide), tin oxide with antimony added, zinc oxide with aluminum added, and the like are known. Since these are different in ease of manufacture, price, characteristics, etc., they are used as appropriate according to the application.
 インジウム亜鉛酸化物膜は、ITO膜よりもエッチング速度が大きいという特徴がある。しかし、インジウム亜鉛酸化物ターゲットはITOターゲットよりもバルク抵抗値が高いため、特にDCマグネトロンスパッタリングプロセスでは、スパッタリング中の放電が不安定となる場合がある。 The indium zinc oxide film is characterized by a higher etching rate than the ITO film. However, since the indium zinc oxide target has a higher bulk resistance value than the ITO target, the discharge during sputtering may become unstable particularly in the DC magnetron sputtering process.
 酸化インジウム系焼結体では酸化錫を5%程度添加することで、バルク抵抗が下がることが知られており、インジウム亜鉛酸化物焼結体においても、同様な効果が得られる。しかし、このように酸化錫を多量に添加することは、インジウム亜鉛酸化物透明導電膜の持つ特性を失うため、必ずしも目的に合致したものとは言い難い。 It is known that the bulk resistance is lowered by adding about 5% of tin oxide in the indium oxide-based sintered body, and the same effect can be obtained in the indium zinc oxide sintered body. However, adding a large amount of tin oxide in this way loses the characteristics of the indium zinc oxide transparent conductive film, and thus is not necessarily consistent with the purpose.
 そこで、特許文献1では、インジウム亜鉛酸化物に正四価以上の原子価を有する第三元素の酸化物を0.01~1原子%程度のわずかな添加量で、ターゲットのバルク抵抗値を下げ、スパッタリング時のターゲットの放電を安定化させ、かつシュウ酸エッチャントでの工業的に適用可能なエッチング速度を両立させるという提案がなされている。 Therefore, in Patent Document 1, the bulk resistance value of the target is lowered with a slight addition amount of about 0.01 to 1 atomic% of an oxide of a third element having a valence of at least positive tetravalent to indium zinc oxide, Proposals have been made to stabilize the discharge of the target during sputtering and to achieve an industrially applicable etching rate with an oxalic acid etchant.
 しかしながら、特許文献1の実施例に記載された第三元素添加量を添加したターゲットは、製造時の焼結過程でターゲット表面に色ムラが発生し、色ムラがなくなるまで研磨しなければならなかった。そのため、製造のタクトタイムが長くなり、歩留りも大幅に低くなった。一方、第三元素添加量を順次増加させたターゲットでは、色ムラの発生は抑制されるものの、スパッタ成膜時に成膜基板に多量のパーティクルが観測された。 However, the target to which the third element addition amount described in the example of Patent Document 1 is added must be polished until color unevenness occurs on the target surface during the sintering process, and the color unevenness disappears. It was. As a result, the manufacturing tact time is increased and the yield is significantly reduced. On the other hand, in the target in which the third element addition amount was sequentially increased, the occurrence of color unevenness was suppressed, but a large amount of particles were observed on the film formation substrate during the sputter film formation.
 特許文献2の実施例1及び実施例2には、酸化インジウム-酸化亜鉛ターゲットを製造する際に希土類酸化物として酸化セリウムを添加したターゲットが、また実施例3では酸化プラセオジウムを添加したターゲットが、色ムラ防止に有効であると開示されている。しかし、これら希土類酸化物を添加したターゲットでは、焼結過程での色ムラは防止できるものの、成膜した透明導電膜の抵抗値が上昇する上、シュウ酸エッチャントによるエッチング性能(速度と残渣)も劣る。また、スパッタ成膜時のパーティクルも増加した。 In Example 1 and Example 2 of Patent Document 2, a target to which cerium oxide is added as a rare earth oxide when an indium oxide-zinc oxide target is manufactured, and in Example 3, a target to which praseodymium oxide is added, It is disclosed that it is effective in preventing color unevenness. However, these rare earth oxide-added targets can prevent color unevenness during the sintering process, but the resistance value of the formed transparent conductive film increases, and the etching performance (speed and residue) by the oxalic acid etchant also increases. Inferior. Also, the number of particles during sputter deposition increased.
国際公開番号WO2003/008661International Publication Number WO2003 / 008661 特開2001-11613号公報JP 2001-11613 A
 本発明は、焼結時の色ムラの発生を抑制することでスパッタリングターゲット作製時の研磨量を低減し、製造タクトタイムと歩留りを向上させ、かつ成膜時のパーティクルの発生も抑制するスパッタリングターゲットを提供することを目的とする。 The present invention reduces the amount of polishing when producing a sputtering target by suppressing the occurrence of color unevenness during sintering, improves the manufacturing tact time and yield, and also suppresses the generation of particles during film formation. The purpose is to provide.
 本発明によれば、以下のスパッタリングターゲットとその製造方法、そのターゲットにより成膜した酸化物膜及びそれを用いた製品が提供される。
1.酸化インジウム及び酸化亜鉛を主成分とし、
 In(ZnO)(式中、m=2~7の整数)で表される六方晶層状化合物を含有し、
 Sn元素及びZr元素を含有し、
 全金属元素に対するSn元素の割合が2000ppmより多く20000ppm以下である、スパッタリングターゲット。
2.全金属元素に対する前記Zr元素の割合が50ppm以上1000ppm以下である、1に記載のスパッタリングターゲット。
3.平均結晶粒径が2μm~10μmである1又は2に記載のスパッタリングターゲット。
4.相対密度が95%以上である1~3のいずれかに記載のスパッタリングターゲット。
5.バルク抵抗値が50mΩcm以下である1~4のいずれかに記載のスパッタリングターゲット。
6.スパッタリングターゲット中の全金属元素に対するSn元素の割合が2000ppmより多く20000ppm以下、Zr元素の割合が50ppm以上1000ppm以下となるように、インジウム原料、亜鉛原料、Sn原料及びZr原料を混合粉砕して混合物を作製する工程、
 前記混合物を成型して成型物を作製する工程、及び
 前記成形物を1200℃~1600℃で1時間~50時間焼結する工程を具備する、1に記載のスパッタリングターゲットの製造方法。
7.1~5のいずれかに記載のスパッタリングターゲットを用いて成膜する酸化物膜の製造方法。
8.7に記載の方法で製造した酸化物膜。
9.透明導電膜である、8に記載の酸化物膜。
10.8又は9に記載の酸化物膜を用いた電子機器。
According to the present invention, the following sputtering target and manufacturing method thereof, an oxide film formed by the target, and a product using the same are provided.
1. Mainly composed of indium oxide and zinc oxide,
A hexagonal layered compound represented by In 2 O 3 (ZnO) m (wherein m = 2 to 7),
Contains Sn element and Zr element,
The sputtering target whose ratio of Sn element with respect to all the metal elements is more than 2000 ppm and 20000 ppm or less.
2. 2. The sputtering target according to 1, wherein the ratio of the Zr element to the total metal elements is 50 ppm or more and 1000 ppm or less.
3. 3. The sputtering target according to 1 or 2, wherein the average crystal grain size is 2 μm to 10 μm.
4). 4. The sputtering target according to any one of 1 to 3, having a relative density of 95% or more.
5. The sputtering target according to any one of 1 to 4, which has a bulk resistance value of 50 mΩcm or less.
6). Indium raw material, zinc raw material, Sn raw material and Zr raw material are mixed and pulverized so that the ratio of Sn element to all metal elements in the sputtering target is more than 2000 ppm and 20000 ppm or less, and the ratio of Zr element is 50 ppm or more and 1000 ppm or less. The process of producing,
2. The method for producing a sputtering target according to 1, comprising a step of forming the mixture to produce a molded product, and a step of sintering the molded product at 1200 ° C. to 1600 ° C. for 1 hour to 50 hours.
7. A method for producing an oxide film formed using the sputtering target according to any one of 1 to 5.
An oxide film produced by the method described in 8.7.
9. 9. The oxide film according to 8, which is a transparent conductive film.
An electronic device using the oxide film according to 10.8 or 9.
 また、本発明の別の態様によれば、以下のスパッタリングターゲットとその製造方法等が提供される。本態様では、スパッタリングターゲットがZrを必須成分として含有していなくとも、ターゲット表面の色ムラがなくなる。そのため、ターゲット表面の切削量を低減でき、製造のタクトタイムを短くすることができるとともに、歩留りを向上させることができる。
1.酸化インジウム及び酸化亜鉛を主成分とし、
 In(ZnO)(式中、m=2~7の整数)で表される六方晶層状化合物を含有し、
 Snの含有量が2000ppmより多く20000ppm以下であり、
 表面又は任意に切断した面における最大色度と最小色度の差Δb*値が、0~5であり、
 平均結晶粒径が2μm~10μmであるスパッタリングターゲット。
2.表面又は任意に切断した面における最大色度b*値が、14以下である1に記載のスパッタリングターゲット。
3.Snを含有量2100ppm、2700ppm、又は3400ppmで含むスパッタリングターゲットを除く、1又は2に記載のスパッタリングターゲット。
4.相対密度が95%以上である1乃至3のいずれかに記載のスパッタリングターゲット。
5.バルク抵抗値が50mΩcm以下である1乃至4のいずれかに記載のスパッタリングターゲット。
6.スパッタリングターゲットのSnの含量が2000ppmより多く20000ppm以下となるように、インジウム原料、亜鉛原料及びSn原料を混合して混合物を作製する工程、
 前記混合物を成形して成形物を作製する工程、及び
 前記成形物を1200℃~1600℃で1時間~50時間焼結する工程を具備する、表面又は任意に切断した面における最大色度と最小色度の差Δb*値が、0~5であり、平均結晶粒径が2μm~10μmであるスパッタリングターゲットの製造方法。
7.1乃至5のいずれかに記載のスパッタリングターゲットを用いて成膜する酸化物膜の製造方法。
8.7に記載の方法で製造した酸化物膜。
9.酸化インジウム及び酸化亜鉛を主成分とし、
 In(ZnO)(式中、m=2~7の整数)で表される六方晶層状化合物を含有し、
 Sn含有量が2000ppmより多く20000ppm以下であり、
 未研磨の表面又は任意に切断した面における最大色度と最小色度の差Δb*値が、0~10であり、
 平均結晶粒径が2μm~10μmである酸化物焼結体。
10.未研磨の表面又は任意に切断した面における最大色度b*値が、20以下である9に記載の酸化物焼結体。
Moreover, according to another aspect of this invention, the following sputtering targets, its manufacturing method, etc. are provided. In this embodiment, even if the sputtering target does not contain Zr as an essential component, color unevenness on the target surface is eliminated. Therefore, the cutting amount of the target surface can be reduced, the manufacturing tact time can be shortened, and the yield can be improved.
1. Mainly composed of indium oxide and zinc oxide,
A hexagonal layered compound represented by In 2 O 3 (ZnO) m (wherein m = 2 to 7),
Sn content is more than 2000ppm and 20000ppm or less,
The difference Δb * between the maximum chromaticity and the minimum chromaticity on the surface or arbitrarily cut surface is 0 to 5,
A sputtering target having an average crystal grain size of 2 μm to 10 μm.
2. 2. The sputtering target according to 1, wherein the maximum chromaticity b * value on the surface or arbitrarily cut surface is 14 or less.
3. The sputtering target according to 1 or 2, excluding a sputtering target containing Sn at a content of 2100 ppm, 2700 ppm, or 3400 ppm.
4). The sputtering target according to any one of 1 to 3, having a relative density of 95% or more.
5. The sputtering target according to any one of 1 to 4, wherein the bulk resistance value is 50 mΩcm or less.
6). A step of mixing the indium raw material, the zinc raw material and the Sn raw material so that the Sn content of the sputtering target is more than 2000 ppm and not more than 20000 ppm,
Forming the mixture by molding the mixture, and sintering the molding at 1200 ° C. to 1600 ° C. for 1 hour to 50 hours, the maximum chromaticity and minimum on the surface or arbitrarily cut surface A method for producing a sputtering target, wherein the chromaticity difference Δb * value is 0 to 5, and the average crystal grain size is 2 μm to 10 μm.
The manufacturing method of the oxide film formed into a film using the sputtering target in any one of 7.1 thru | or 5.
An oxide film produced by the method described in 8.7.
9. Mainly composed of indium oxide and zinc oxide,
A hexagonal layered compound represented by In 2 O 3 (ZnO) m (wherein m = 2 to 7),
Sn content is more than 2000ppm and 20000ppm or less,
The difference Δb * between the maximum chromaticity and the minimum chromaticity on an unpolished surface or an arbitrarily cut surface is 0 to 10,
An oxide sintered body having an average crystal grain size of 2 μm to 10 μm.
10. 10. The oxide sintered body according to 9, wherein the maximum chromaticity b * value on an unpolished surface or an arbitrarily cut surface is 20 or less.
 本発明によれば、全金属元素に対するSn元素の割合を2000ppmより多く20000ppm以下(2000ppm超~20000ppm)、かつZrを含有することにより、焼結体表面の色ムラの生成を抑制し、製造時のタクトタイムと歩留りを向上させるとともに、スパッタリング成膜時のパーティクル量を抑制することができる。 According to the present invention, the ratio of the Sn element to the total metal elements is more than 2000 ppm and less than 20000 ppm (over 2000 ppm to 20000 ppm) and contains Zr, thereby suppressing the generation of color unevenness on the surface of the sintered body. In addition to improving the tact time and yield, the amount of particles during sputtering film formation can be suppressed.
 本発明の一実施形態に係るスパッタリングターゲットは、酸化インジウムと酸化亜鉛を主成分とし、In(ZnO)〔式中、mは2~7の整数である。〕で表される六方晶層状化合物を含有し、さらに、Sn元素及びZr元素を含有する。そして、全金属元素に対するSn元素の割合が2000ppmより多く20000ppm以下であることを特徴とする。 A sputtering target according to an embodiment of the present invention includes indium oxide and zinc oxide as main components, and In 2 O 3 (ZnO) m [wherein, m is an integer of 2 to 7. And a Sn element and a Zr element. And the ratio of Sn element with respect to all the metal elements is more than 2000 ppm and 20000 ppm or less, It is characterized by the above-mentioned.
 本発明のスパッタリングターゲットに含有される六方晶層状化合物は、X線回折法により同定され、In(ZnO)と表される化合物である。式中のmは、2~7、好ましくは3~5の整数である。mが1の化合物は六方晶層状構造をとらず、また、mが7を超える化合物は六方晶層状構造をとるが、そのバルク抵抗が高い。 The hexagonal layered compound contained in the sputtering target of the present invention is a compound identified by X-ray diffraction and represented as In 2 O 3 (ZnO) m . M in the formula is an integer of 2 to 7, preferably 3 to 5. A compound in which m is 1 does not have a hexagonal layered structure, and a compound in which m exceeds 7 has a hexagonal layered structure, but its bulk resistance is high.
 スパッタリングターゲットに含有される全金属元素に対するSn元素の割合は、2000ppm超~20000ppmである。
 Sn元素の割合が2000ppm以下であると、ターゲット焼結時に色ムラを生じ歩留りが低下する。また、20000ppmを超えると、そのスパッタリングターゲットを用いて成膜された酸化物膜(透明導電膜)は、シュウ酸等の弱酸によるエッチング加工を行うことが困難になることがある。Sn元素の含有割合は、好ましくは、2000ppm超~20000ppm、2050ppm~10000ppm、2100ppm超~5000ppm、又は3500ppm~5000ppmである。
The ratio of Sn element to all metal elements contained in the sputtering target is more than 2000 ppm to 20000 ppm.
When the Sn element ratio is 2000 ppm or less, color unevenness occurs during target sintering, and the yield decreases. If it exceeds 20000 ppm, the oxide film (transparent conductive film) formed using the sputtering target may be difficult to be etched with a weak acid such as oxalic acid. The content ratio of the Sn element is preferably more than 2000 ppm to 20000 ppm, 2050 ppm to 10,000 ppm, more than 2100 ppm to 5000 ppm, or 3500 ppm to 5000 ppm.
 スパッタリングターゲットに含有される全金属元素に対するZr元素の割合は50ppm以上1000ppm以下であることが好ましい。本範囲であれば、スパッタリング成膜時のパーティクル量を好ましく抑制でき、透明導電膜の歩留まりが向上する。また、スパッタリングターゲットを用いて成膜された透明導電膜の抵抗値が上昇せず、シュウ酸等の弱酸によるエッチング加工ができ、残渣も残らない。
 Zr元素の割合は、より好ましくは70ppm~700ppmであり、特に好ましくは100ppm~500ppmである。
It is preferable that the ratio of Zr element with respect to all the metal elements contained in a sputtering target is 50 ppm or more and 1000 ppm or less. If it is this range, the particle amount at the time of sputtering film-forming can be suppressed preferably, and the yield of a transparent conductive film will improve. In addition, the resistance value of the transparent conductive film formed using the sputtering target does not increase, etching with a weak acid such as oxalic acid can be performed, and no residue remains.
The ratio of the Zr element is more preferably 70 ppm to 700 ppm, and particularly preferably 100 ppm to 500 ppm.
 スパッタリングターゲットに含有される全金属元素に対するSn及びZr元素の割合(ppm)は、ICP発光分光分析法により測定できる。尚、Sn及びZr元素の割合は、ターゲットの材料における配合割合とほぼ一致する。 The ratio (ppm) of Sn and Zr elements to all metal elements contained in the sputtering target can be measured by ICP emission spectroscopic analysis. Note that the proportions of the Sn and Zr elements substantially coincide with the blending proportion in the target material.
 本発明において、全金属元素に対するSn元素の割合を増加させるとスパッタリング成膜時にパーティクルが発生しやすくなる。一方、Zr元素を添加することにより、パーティクルの発生量は抑制される。本効果のメカニズムについては、必ずしも明らかではないが、Zr元素の添加効果として、ターゲット中の極微細組織への作用があると推定している。即ち、Sn元素の添加割合が増加すると、ターゲットの原料である酸化亜鉛と酸化錫が選択的に反応し、バルク抵抗値の高いスピネル相が生成する。そのためスパッタリング成膜時にマイクロアークが生じるようになり、パーティクル量が増加することが考えられる。
 一方、Zr元素を添加することにより、酸化亜鉛と酸化錫の選択的な反応が抑制され、Sn元素のインジウム酸化物への固溶が促進されるものと推察される。
In the present invention, if the ratio of Sn element to all metal elements is increased, particles are likely to be generated during sputtering film formation. On the other hand, the generation amount of particles is suppressed by adding the Zr element. Although the mechanism of this effect is not necessarily clear, it is estimated that the addition effect of the Zr element has an effect on the ultrafine structure in the target. That is, when the addition ratio of Sn element increases, zinc oxide and tin oxide, which are target raw materials, selectively react to form a spinel phase having a high bulk resistance value. Therefore, it is considered that a micro arc is generated at the time of sputtering film formation, and the amount of particles increases.
On the other hand, it is presumed that by adding Zr element, selective reaction between zinc oxide and tin oxide is suppressed, and solid solution of Sn element into indium oxide is promoted.
 全金属元素に対するSn元素の割合を上記範囲内とすることで、焼結体の表面色ムラ層の生成が抑制され、研磨量の低減、工業的に適用可能なタクトタイムの確保ができる。
 一方、Zr元素を添加することにより、Sn元素添加により増加したスパッタリング成膜時のパーティクル量を抑制することができる。
By setting the ratio of the Sn element to the total metal elements within the above range, generation of the surface color unevenness layer of the sintered body is suppressed, and the amount of polishing can be reduced and the industrially applicable tact time can be secured.
On the other hand, by adding the Zr element, it is possible to suppress the amount of particles at the time of sputtering film formation, which is increased by adding the Sn element.
 さらに、本発明では、Sn元素の含有割合を上記の範囲内とすることによって、スパッタリングターゲットのバルク抵抗を充分に低くすることができる。本発明のスパッタリングターゲットのバルク抵抗は、好ましくは50mΩcm以下、25mΩcm以下、10mΩcm以下、又は5mΩcm以下である。一方、スパッタリングターゲットのバルク抵抗が50mΩcm超の場合、直流スパッタで安定した成膜を行うことが困難となるおそれがある。尚、下限は特に限定しないが、通常、0.1mΩcm程度である。 Furthermore, in the present invention, the bulk resistance of the sputtering target can be sufficiently lowered by setting the content ratio of the Sn element within the above range. The bulk resistance of the sputtering target of the present invention is preferably 50 mΩcm or less, 25 mΩcm or less, 10 mΩcm or less, or 5 mΩcm or less. On the other hand, when the bulk resistance of the sputtering target exceeds 50 mΩcm, it may be difficult to perform stable film formation by direct current sputtering. The lower limit is not particularly limited, but is usually about 0.1 mΩcm.
 また、このターゲットを用いて成膜された透明導電膜は、シュウ酸等の弱酸によってエッチング加工を施すことができる。 Moreover, the transparent conductive film formed using this target can be etched with a weak acid such as oxalic acid.
 本発明のスパッタリングターゲットの平均結晶粒径は、異常放電を防止する観点から、好ましくは2μm~10μm、より好ましくは2μm~8μmである。
 平均結晶粒径は、原料や製造方法の条件により調整できる。具体的には、平均粒径が小さい原料、例えば、0.01~10μm、好ましくは5μm以下の原料を用いることや、粉砕条件により小さくできる。一方、焼結の際、焼結温度が高い程、焼結時間が長い程、平均結晶粒径が大きくなる傾向がある。
The average crystal grain size of the sputtering target of the present invention is preferably 2 μm to 10 μm, more preferably 2 μm to 8 μm, from the viewpoint of preventing abnormal discharge.
The average crystal grain size can be adjusted according to the conditions of the raw material and the production method. Specifically, a raw material having a small average particle diameter, for example, a raw material having a diameter of 0.01 to 10 μm, preferably 5 μm or less can be used, or the raw material can be made small by pulverization conditions. On the other hand, during sintering, the higher the sintering temperature and the longer the sintering time, the larger the average crystal grain size tends to be.
 平均結晶粒径は以下の方法で測定した。
 スパッタリングターゲットの形状が円形の場合、円に内接する正方形を等面積に16分割し、それぞれの正方形の中心点16箇所において、また、スパッタリングターゲットの形状が四角形の場合には、各辺を4等分する点を決め対向する点同士を結び等面積に16分割し、それぞれの四角形の中心点16箇所において、その表面を倍率1000倍の枠内で走査型電子顕微鏡(SEM)観察する。その視野の中心部120×80μm四方内に観察される粒子についてその全ての粒径を測定し平均値を求め、16箇所全ての平均値から更に粒径の平均値を求めた。粒径は、JIS R 1670に基づき、結晶粒子径を円相当径として測定した。
The average crystal grain size was measured by the following method.
When the shape of the sputtering target is circular, a square inscribed in the circle is divided into 16 equal areas, and at each of the 16 center points of each square, and when the shape of the sputtering target is square, each side is 4 etc. The points to be divided are determined, the opposing points are connected and divided into 16 equal areas, and the surface of each square is observed with a scanning electron microscope (SEM) in a frame with a magnification of 1000 times at 16 central points. All the particle diameters of the particles observed within the 120 × 80 μm square of the field of view were measured to obtain an average value, and the average value of the particle diameters was further determined from the average values of all 16 locations. The particle diameter was measured based on JIS R 1670 with the crystal particle diameter as the equivalent circle diameter.
 スパッタリングターゲットの相対密度は、好ましくは95%以上、より好ましくは96%以上である。このような高密度ターゲットは機械的強度が高く、かつ導電性に優れることから、これをRFマグネトロンスパッタリング装置やDCマグネトロンスパッタリング装置に装着してスパッタリングを行う際の安定性をより高めることができる。相対密度は、スパッタリングターゲットをアルキメデス法で測定した実測密度を、各構成元素の酸化物の真密度及び重量比から算出される理論密度で割った値である。より具体的には、特開2002-30429号公報を参考に算出した。 The relative density of the sputtering target is preferably 95% or more, more preferably 96% or more. Since such a high-density target has high mechanical strength and excellent electrical conductivity, it is possible to further improve the stability when performing sputtering by mounting it on an RF magnetron sputtering apparatus or a DC magnetron sputtering apparatus. The relative density is a value obtained by dividing the actual density obtained by measuring the sputtering target by the Archimedes method by the theoretical density calculated from the true density and the weight ratio of the oxide of each constituent element. More specifically, the calculation was made with reference to JP-A-2002-30429.
 本発明のスパッタリングターゲットでは、インジウムと亜鉛の原子比は、通常In/(In+Zn)=0.2~0.95であり、好ましくは、In/(In+Zn)=0.3~0.9である。 In the sputtering target of the present invention, the atomic ratio of indium to zinc is usually In / (In + Zn) = 0.2 to 0.95, preferably In / (In + Zn) = 0.3 to 0.9. .
 本発明のスパッタリングターゲットは、酸化インジウムと酸化亜鉛を主成分とする。具体的には、酸化インジウムと酸化亜鉛と、色ムラ層の生成を抑制する規定量の酸化スズ、パーティクル量を抑制する規定量の酸化ジルコニウム及びこれら以外に不可避な不純物を含む。 The sputtering target of the present invention contains indium oxide and zinc oxide as main components. Specifically, indium oxide and zinc oxide, a prescribed amount of tin oxide that suppresses the generation of the color unevenness layer, a prescribed amount of zirconium oxide that suppresses the amount of particles, and other inevitable impurities are included.
 酸化インジウムと酸化亜鉛を主成分とするとは、酸化インジウムと酸化亜鉛の合計が95重量%超、97重量%以上、更に好ましくは98重量%以上である。本発明の効果を損なわない範囲でこれらの金属酸化物のほかに不可避不純物を含んでいてもよい。 When the main component is indium oxide and zinc oxide, the total of indium oxide and zinc oxide is more than 95% by weight, 97% by weight or more, and more preferably 98% by weight or more. In addition to these metal oxides, inevitable impurities may be included within a range not impairing the effects of the present invention.
 本発明のスパッタリングターゲットは、インジウム原料、亜鉛原料、錫原料及びジルコニウム原料を混合粉砕する工程、原料混合物を成型する工程、成型物を焼結する工程、及び必要に応じて焼結体をアニーリングする工程、焼結体を研磨する工程、規定の形状に切削加工する工程を経て製造することができる。 The sputtering target of the present invention includes a step of mixing and grinding an indium raw material, a zinc raw material, a tin raw material and a zirconium raw material, a step of forming a raw material mixture, a step of sintering a molded product, and annealing a sintered body as necessary. It can be manufactured through a process, a process of polishing a sintered body, and a process of cutting into a specified shape.
 原料は特に制限されず、In、Zn、Sn又はZr元素を含む化合物又は金属を用いることができ、好ましくは酸化物である。
 酸化インジウム、酸化亜鉛、酸化錫、酸化ジルコニウム等の原料は、高純度のものを用いるのが望ましく、その純度が99%以上、好ましくは99.9%以上、さらに好ましくは99.99%以上のものが好適に用いられる。高純度の原料を用いると緻密な組織の焼結体が得られ、バルク抵抗が低くなる。
The raw material is not particularly limited, and a compound or metal containing In, Zn, Sn, or Zr element can be used, and preferably an oxide.
It is desirable to use raw materials such as indium oxide, zinc oxide, tin oxide, and zirconium oxide that have high purity, and the purity is 99% or more, preferably 99.9% or more, more preferably 99.99% or more. Those are preferably used. When a high-purity raw material is used, a sintered body having a dense structure is obtained, and the bulk resistance is lowered.
 また、原料の金属酸化物は、平均粒径が好ましくは0.01~10μm、より好ましくは0.05~5μm、さらに好ましくは0.1~5μmである。平均粒径が0.01μm未満であると凝集しやすくなり、また10μmを超えるものでは混合性が不十分になり、緻密な組織の焼結体が得られなくなることがある。 The raw material metal oxide preferably has an average particle size of 0.01 to 10 μm, more preferably 0.05 to 5 μm, and still more preferably 0.1 to 5 μm. When the average particle size is less than 0.01 μm, aggregation tends to occur. When the average particle size exceeds 10 μm, the mixing property becomes insufficient, and a sintered body having a dense structure may not be obtained.
 原料には、ポリビニルアルコール、酢酸ビニル等のバインダーを添加することができる。
 原料の混合は、ボールミルやジェットミル、ビーズミル等の通常の混合粉砕機により行うことができる。
Binders such as polyvinyl alcohol and vinyl acetate can be added to the raw material.
The mixing of the raw materials can be performed by a normal mixing and grinding machine such as a ball mill, a jet mill, or a bead mill.
 このようにして得られた混合物は、直ちに成型してもよいが、その成型前に仮焼処理を施してもよい。仮焼処理は、通常、700~900℃で1~5時間実施する。 The mixture thus obtained may be immediately molded, but may be calcined before the molding. The calcination treatment is usually carried out at 700 to 900 ° C. for 1 to 5 hours.
 原料粉末の混合物や仮焼処理済の金属酸化物粉末は、造粒処理することによって、その後の成型工程での流動性や充填性が改善される。造粒処理はスプレードライヤー等を用いて行うことができる。造粒処理によって形成される造粒物の粒径は、好ましくは1~100μm、より好ましくは5~100μm、さらに好ましくは10~100μmである。 The mixture of raw material powders and calcined metal oxide powders are granulated to improve fluidity and filling properties in the subsequent molding process. The granulation treatment can be performed using a spray dryer or the like. The particle size of the granulated product formed by the granulation treatment is preferably 1 to 100 μm, more preferably 5 to 100 μm, still more preferably 10 to 100 μm.
 次に、原料の粉末又は造粒物は、成型工程において金型プレス成型、鋳込み成型、射出成型等の方法により成型する。スパッタリングターゲットとして、その焼結密度の高い焼結体を得る場合には、この成型工程において金型プレス成型等により予備成型した後に、冷間静水圧プレス成型等によりさらに圧密化することが好ましい。 Next, the raw material powder or granulated material is molded by a method such as die press molding, casting molding, injection molding or the like in the molding process. When a sintered body having a high sintering density is obtained as a sputtering target, it is preferable to perform compaction by cold isostatic pressing or the like after preforming by die pressing or the like in this molding step.
 成型体の焼結工程においては、常圧焼結、ホットプレス焼結、熱間静水圧プレス焼結等の通常行われている焼結方法を用いることができる。焼結温度は、好ましくは1200~1600℃、より好ましくは1250~1550℃、さらに好ましくは1300~1500℃である。焼結温度が1200℃未満では、十分な焼結密度が得られず、1600℃を超える温度では、酸化インジウムや酸化亜鉛の昇華により、得られる焼結体中の金属酸化物の組成が変動することがある。焼結に際しての昇温速度は、800℃から焼結温度までを0.1~3℃/分とすることが好ましい。 In the sintering process of the molded body, a conventional sintering method such as normal pressure sintering, hot press sintering, hot isostatic pressing sintering, or the like can be used. The sintering temperature is preferably 1200 to 1600 ° C, more preferably 1250 to 1550 ° C, still more preferably 1300 to 1500 ° C. When the sintering temperature is less than 1200 ° C., a sufficient sintering density cannot be obtained, and at a temperature exceeding 1600 ° C., the composition of the metal oxide in the sintered body varies due to sublimation of indium oxide or zinc oxide. Sometimes. The rate of temperature increase during sintering is preferably from 0.1 to 3 ° C./min from 800 ° C. to the sintering temperature.
 焼結時間は、焼結温度によって異なるが、好ましくは1~50時間、より好ましくは2~30時間、さらに好ましくは3~20時間である。焼結時の雰囲気は、空気や酸素ガスでもよいし、水素ガスやメタンガス、一酸化炭素ガス等の還元性ガスや、アルゴンガス、窒素ガス等の不活性ガスでもよい。 The sintering time varies depending on the sintering temperature, but is preferably 1 to 50 hours, more preferably 2 to 30 hours, and further preferably 3 to 20 hours. The atmosphere during sintering may be air or oxygen gas, or may be a reducing gas such as hydrogen gas, methane gas or carbon monoxide gas, or an inert gas such as argon gas or nitrogen gas.
 焼結体を、アニーリング処理してもよい。アニーリング処理は、通常、700~900℃で1~5時間、温度を保持する。 The sintered body may be annealed. In the annealing treatment, the temperature is usually maintained at 700 to 900 ° C. for 1 to 5 hours.
 こうして得られた焼結直後の酸化物焼結体表面の色ムラ層は、実施例記載の方法でb*及びΔb*を測定し、研磨後の表面がb*≦4かつΔb*≦2となるまで研磨したときの研磨深さ(色ムラ層の厚さ)で定義した。研磨深さは、好ましくは0~0.7mm、さらに好ましくは0~0.5mm、特に好ましくは0~0.3mmである。 The color unevenness layer on the surface of the sintered oxide immediately after sintering thus obtained was measured for b * and Δb * by the method described in the examples, and the polished surface was b * ≦ 4 and Δb * ≦ 2. It was defined by the polishing depth (thickness of the color unevenness layer) when polishing until the end. The polishing depth is preferably 0 to 0.7 mm, more preferably 0 to 0.5 mm, and particularly preferably 0 to 0.3 mm.
 上記で得られた焼結体を、適当な形状に切削加工することによりスパッタリングターゲットとすることができる。 A sputtering target can be obtained by cutting the sintered body obtained above into an appropriate shape.
 本発明の他の実施形態のスパッタリングターゲットは、酸化インジウムと酸化亜鉛からなり、In(ZnO)〔式中、mは2~7の整数である。〕で表される六方晶層状化合物を含有する。さらにSnを2000ppm超~20000ppm(重量換算)含有する。 A sputtering target according to another embodiment of the present invention includes indium oxide and zinc oxide, and In 2 O 3 (ZnO) m [wherein, m is an integer of 2 to 7. ] The hexagonal layered compound represented by this is contained. Furthermore, Sn is contained in excess of 2000 ppm to 20000 ppm (weight conversion).
 酸化インジウムと酸化亜鉛からなる六方晶層状化合物については、上述した本願実施形態と同様である。 The hexagonal layered compound composed of indium oxide and zinc oxide is the same as that in the above-described embodiment.
 スパッタリングターゲットに含有されるSnの割合は、2000ppm超~20000ppmである。
 Snの割合が2000ppm以下であると、ターゲット焼結時に色ムラを生じ歩留りが低下する。また、20000ppmを超えると、そのスパッタリングターゲットを用いて製膜された透明導電膜は、シュウ酸等の弱酸によるエッチング加工を行うことが困難になることがある。Snの含有割合は、好ましくは、2000ppm超~20000ppm、2050ppm~10000ppm、2100ppm超~5000ppm、又は3500ppm~5000ppmである。
The ratio of Sn contained in the sputtering target is more than 2000 ppm to 20000 ppm.
When the Sn ratio is 2000 ppm or less, color unevenness occurs during target sintering, and the yield decreases. Moreover, when it exceeds 20000 ppm, it may become difficult to perform the etching process by weak acids, such as an oxalic acid, in the transparent conductive film formed using the sputtering target. The content of Sn is preferably more than 2000 ppm to 20000 ppm, 2050 ppm to 10,000 ppm, more than 2100 ppm to 5000 ppm, or 3500 ppm to 5000 ppm.
 Snの含有量を上記範囲内とすることで、焼結の際にターゲット表面の色ムラ層を低減することができ、また内部と表面で色が異なり難いため、切削量の低減にも繋がる。 By setting the Sn content in the above range, the uneven color layer on the surface of the target can be reduced during sintering, and the color does not easily differ between the inside and the surface, leading to a reduction in the cutting amount.
 さらに、本発明では、Snの含有割合を上記の範囲内とすることによって、スパッタリングターゲットのバルク抵抗を充分に低くすることができる。本発明のスパッタリングターゲットのバルク抵抗は、好ましくは50mΩcm以下、25mΩcm以下、10mΩcm以下、又は5mΩcm以下である。一方、スパッタリングターゲットのバルク抵抗が50mΩcm超の場合、直流スパッタで安定的な成膜を行うことが困難となるおそれがある。 Furthermore, in this invention, the bulk resistance of a sputtering target can be made low enough by making the content rate of Sn into said range. The bulk resistance of the sputtering target of the present invention is preferably 50 mΩcm or less, 25 mΩcm or less, 10 mΩcm or less, or 5 mΩcm or less. On the other hand, when the bulk resistance of the sputtering target exceeds 50 mΩcm, it may be difficult to perform stable film formation by direct current sputtering.
 また、このターゲットを用いて製膜された透明導電膜は、シュウ酸等の弱酸によって容易にエッチング加工を施すことができる。 Moreover, the transparent conductive film formed using this target can be easily etched with a weak acid such as oxalic acid.
 本発明のスパッタリングターゲットの平均結晶粒径は、異常放電の観点から、好ましくは2μm~10μm、より好ましくは2μm~8μmである。
 平均結晶粒径は、原料や製造方法の条件により調整できる。具体的には、平均粒径が小さい原料、例えば、0.01~10μm、好ましくは5μm以下、さらに好ましくは1μm以下の原料を用いる。さらに、焼結の際、焼結温度が高い程、焼結時間が長い程、平均結晶粒径が大きくなる傾向がある。
The average crystal grain size of the sputtering target of the present invention is preferably 2 μm to 10 μm, more preferably 2 μm to 8 μm, from the viewpoint of abnormal discharge.
The average crystal grain size can be adjusted according to the conditions of the raw material and the production method. Specifically, a raw material having a small average particle diameter, for example, a raw material having a diameter of 0.01 to 10 μm, preferably 5 μm or less, more preferably 1 μm or less is used. Further, during sintering, the higher the sintering temperature and the longer the sintering time, the larger the average crystal grain size tends to be.
 スパッタリングターゲットの相対密度は、好ましくは95%以上、より好ましくは96%以上である。このような密度であると、ターゲットの機械的強度が高く、かつ導電性に優れることから、これをRFマグネトロンスパッタリング装置やDCマグネトロンスパッタリング装置に装着してスパッタリングを行う際の安定性をより高めることができる。 The relative density of the sputtering target is preferably 95% or more, more preferably 96% or more. With such a density, since the mechanical strength of the target is high and the conductivity is excellent, the stability when performing sputtering by mounting this on an RF magnetron sputtering apparatus or a DC magnetron sputtering apparatus is further increased. Can do.
 尚、平均結晶粒径及び相対密度の測定は、上述した実施形態と同様である。 Note that the average crystal grain size and the relative density are measured in the same manner as in the above-described embodiment.
 本発明のスパッタリングターゲットでは、インジウムと亜鉛の原子比は、通常In/(In+Zn)=0.2~0.95であり、好ましくは、In/(In+Zn)=0.3~0.9である。 In the sputtering target of the present invention, the atomic ratio of indium to zinc is usually In / (In + Zn) = 0.2 to 0.95, preferably In / (In + Zn) = 0.3 to 0.9. .
 本発明のスパッタリングターゲットは、酸化インジウムと酸化亜鉛を主成分とする。具体的には、酸化インジウムと酸化亜鉛で、90重量%以上、95重量%以上、97重量%以上、98重量%以上、又は98.5重量%以上を占めてもよい。 The sputtering target of the present invention contains indium oxide and zinc oxide as main components. Specifically, indium oxide and zinc oxide may occupy 90% by weight, 95% by weight, 97% by weight, 98% by weight, or 98.5% by weight or more.
 または、本発明のスパッタリングターゲットに含有される金属元素は、実質的にIn、Zn、Snからなっており、本発明の効果を損なわない範囲で、これらの金属酸化物の他に不可避不純物を含んでいてもよい。
 本発明において「実質的」とは、スパッタリングターゲットとしての効果が上記In、Zn及びSnの酸化物に起因すること、又はスパッタリングターゲットの全金属元素の90原子%以上、95原子%以上、97原子%以上、98原子%以上、99原子%以上、又は99.5原子%以上であって、100原子%以下がIn、Zn及びSnであることを意味する。
Alternatively, the metal element contained in the sputtering target of the present invention is substantially composed of In, Zn, and Sn, and contains inevitable impurities in addition to these metal oxides as long as the effects of the present invention are not impaired. You may go out.
In the present invention, “substantially” means that the effect as a sputtering target is caused by the oxides of In, Zn, and Sn, or 90 atomic% or more, 95 atomic% or more, 97 atoms of all metal elements of the sputtering target. % Or more, 98 atomic% or more, 99 atomic% or more, or 99.5 atomic% or more, and 100 atomic% or less means In, Zn, and Sn.
 本発明のスパッタリングターゲットは、インジウム原料、亜鉛原料及びSn原料を混合する工程、原料混合物を成型する工程、成型物を焼結する工程、及び必要に応じて焼結体をアニーリングする工程を経て製造することができる。具体的には、Zr元素を必須成分としない他は、上述した本願実施形態の製法と同様である。 The sputtering target of the present invention is manufactured through a step of mixing an indium raw material, a zinc raw material and a Sn raw material, a step of molding the raw material mixture, a step of sintering the molded product, and a step of annealing the sintered body as necessary. can do. Specifically, it is the same as the manufacturing method of the above-described embodiment of the present invention except that the Zr element is not an essential component.
 本実施形態における酸化物焼結体の表面又は任意に切断した面の色ムラについては、実施例記載の方法で測定したΔb*は、好ましくは0~10、さらに好ましくは0~5、特に好ましくは0~4である。また、未研磨の酸化物焼結体の表面又は任意に切断した面の色については、表面の最大b*値が、好ましくは20以下、さらに好ましくは19以下、特に好ましくは18以下である。 Regarding the color unevenness of the surface of the oxide sintered body or the arbitrarily cut surface in this embodiment, Δb * measured by the method described in the examples is preferably 0 to 10, more preferably 0 to 5, particularly preferably. Is 0-4. The maximum b * value of the surface of the unpolished oxide sintered body or the arbitrarily cut surface is preferably 20 or less, more preferably 19 or less, and particularly preferably 18 or less.
 上記で得られた焼結体を、適当な形状に切削加工することによりスパッタリングターゲットとすることができる。 A sputtering target can be obtained by cutting the sintered body obtained above into an appropriate shape.
 こうして得られたターゲット表面又は任意に切断した面の色ムラについては、実施例記載の方法で測定したΔb*は、好ましくは0~5、さらに好ましくは0~3である。また、研磨後の表面又は任意に切断した面の最大b*については、好ましくは14以下、さらに好ましくは12以下、特に好ましくは10以下である。 Regarding the color unevenness of the target surface or the arbitrarily cut surface thus obtained, Δb * measured by the method described in the examples is preferably 0 to 5, more preferably 0 to 3. Further, the maximum b * of the polished surface or the arbitrarily cut surface is preferably 14 or less, more preferably 12 or less, and particularly preferably 10 or less.
 本発明の酸化物膜は、上記説明した本発明のスパッタリングターゲットを用いて、スパッタリング法により成膜して得られる。
 スパッタリング法による成膜は、RFマグネトロンスパッタ法、DCマグネトロンスパッタ法などで好適に行うことができるが、生産性からDCマグネトロンスパッタ法が一般的に適用される。成膜条件についても特に制限されることなく、通常適用される条件範囲内で好適に成膜することができる。
The oxide film of the present invention is obtained by forming a film by a sputtering method using the above-described sputtering target of the present invention.
The film formation by the sputtering method can be suitably performed by an RF magnetron sputtering method, a DC magnetron sputtering method, or the like, but the DC magnetron sputtering method is generally applied from the viewpoint of productivity. The film formation conditions are not particularly limited, and the film formation can be suitably performed within the normally applied condition range.
実施例1~9、比較例1~4
 比表面積が11m/g、平均粒径0.98μmの酸化インジウム粉5000gと、同じ比表面積と平均粒径の酸化亜鉛粉600gを秤量し、さらに、得られるスパッタリングターゲットにおける含有量が表1に示す含有量(ppm=Sn又はZr/全金属元素(In+Zn+Sn+Zr)×10)となるように酸化スズ及び酸化ジルコニウムを秤量し、成型用バインダーを加えて均一に混合及び造粒した。
 尚、各粉末の平均粒径はレーザー回折式粒度分布測定装置SALD-300V(島津製作所製)で測定し、平均粒径はメジアン径D50を採用した。
Examples 1 to 9, Comparative Examples 1 to 4
Weigh 5000 g of indium oxide powder having a specific surface area of 11 m 2 / g and an average particle size of 0.98 μm, and 600 g of zinc oxide powder having the same specific surface area and average particle size, and the content in the obtained sputtering target is shown in Table 1. Tin oxide and zirconium oxide were weighed so as to have the content shown (ppm = Sn or Zr / all metal elements (In + Zn + Sn + Zr) × 10 6 ), and a molding binder was added to uniformly mix and granulate.
The average particle size of each powder was measured with a laser diffraction particle size distribution analyzer SALD-300V (manufactured by Shimadzu Corporation), and the median particle size was a median diameter D50.
 次に、この造粒物を金型へ均一に充填しコールドプレス機にて50MPaで加圧成型した後、200MPaで冷間静水等方圧プレス機により加圧成型した。このようにして得た成型体を、焼結炉にて1400℃(800℃から焼結温度までの昇温速度:2℃/分)で20時間焼結した。 Next, the granulated product was uniformly filled into a mold, and pressure-molded at 50 MPa with a cold press machine, and then pressure-molded with a cold isostatic press machine at 200 MPa. The molded body thus obtained was sintered in a sintering furnace at 1400 ° C. (temperature increase rate from 800 ° C. to sintering temperature: 2 ° C./min) for 20 hours.
 得られた焼結体についてX線回折測定装置(XRD)により結晶構造を調べた。その結果、全ての実施例及び比較例においてIn(ZnO)(式中、m=2~7の整数)で表される六方晶層状化合物の存在を確認した。XRDの測定条件は以下の通りである。
・装置:(株)リガク製Ultima-III
・X線:Cu-Kα線(波長1.5406Å、グラファイトモノクロメータにて単色化)
・2θ-θ反射法、連続スキャン(1.0°/分)
・サンプリング間隔:0.02°
・スリット DS、SS:2/3°、RS:0.6mm
The crystal structure of the obtained sintered body was examined using an X-ray diffraction measurement apparatus (XRD). As a result, the presence of a hexagonal layered compound represented by In 2 O 3 (ZnO) m (wherein m = 2 to 7) was confirmed in all Examples and Comparative Examples. The measurement conditions of XRD are as follows.
・ Equipment: Ultimate-III manufactured by Rigaku Corporation
-X-ray: Cu-Kα ray (wavelength 1.5406mm, monochromatized with graphite monochromator)
・ 2θ-θ reflection method, continuous scan (1.0 ° / min)
・ Sampling interval: 0.02 °
・ Slit DS, SS: 2/3 °, RS: 0.6 mm
 さらに、得られた焼結体について以下の特性を測定した。結果を表1に示す。
(1)色度(b*値)及び研磨深さ
 焼結直後の酸化物焼結体及び研磨後の酸化物焼結体表面の色度(b*値)を測色色差計(日本電色社製NR-11A)にて測定した。酸化物焼結体表面を観察し、目視により黄色味が強い箇所(b*の一番高い値:最大b*)と黄色味が薄く深緑から黒味がかった箇所(b*の一番低い値)との差(Δb*)を求めた。研磨深さは、b*≦4かつΔb*≦2以下となるまで研磨したときの深さを前後の厚みをノギスで測定し、その差から求めた。
Furthermore, the following characteristics were measured for the obtained sintered body. The results are shown in Table 1.
(1) Chromaticity (b * value) and polishing depth Colorimetric colorimeter (Nippon Denshoku) was used to measure the chromaticity (b * value) of the oxide sintered body immediately after sintering and the surface of the oxide sintered body after polishing Measured with NR-11A). Observe the surface of the oxide sintered body and visually observe a portion with a strong yellowness (the highest value of b *: maximum b *) and a portion where the yellowness is light and dark green to blackish (the lowest value of b *) ) (Δb *). The polishing depth was determined by measuring the depth before and after polishing with calipers until b * ≦ 4 and Δb * ≦ 2 or less.
(2)平均結晶粒径(μm)
 四角形のスパッタリングターゲットの平均結晶粒径は、各辺を4等分する点を決め対向する点同士を結び等面積に16分割し、それぞれの四角形の中心点16箇所において、その表面を倍率1000倍の枠内で走査型電子顕微鏡(SEM)観察した。その視野の中心部120×80μm四方内に観察される粒子についてその全ての粒径を測定し平均値を求め、16箇所全ての平均値から更に粒径の平均値を求めた。粒径は、JIS R 1670に基づき、結晶粒子径を円相当径として測定した。
(2) Average crystal grain size (μm)
The average crystal grain size of the quadrangular sputtering target is determined by dividing each side into four equal parts, connecting the opposing points into 16 equal areas, and the surface of each quadrant at 16 central points is multiplied by 1000 times. Was observed with a scanning electron microscope (SEM). All the particle diameters of the particles observed within the 120 × 80 μm square of the field of view were measured to obtain an average value, and the average value of the particle diameters was further determined from the average values of all 16 locations. The particle diameter was measured based on JIS R 1670 with the crystal particle diameter as the equivalent circle diameter.
(3)バルク抵抗値(mΩcm)
 ターゲットのバルク抵抗(導電性)を抵抗率計(三菱化学(株)製、ロレスタ)を使用して四探針法に基づき測定した。
(3) Bulk resistance value (mΩcm)
The bulk resistance (conductivity) of the target was measured based on the four-probe method using a resistivity meter (Made by Mitsubishi Chemical Corporation, Loresta).
(4)相対密度
 スパッタリングターゲットをアルキメデス法で測定した実測密度を、各構成元素の酸化物の真密度及び重量比から算出される理論密度で除することにより算出した(特開2002-30429号公報参照)。
(4) Relative density Calculated by dividing the actual density measured by the Archimedes method of the sputtering target by the theoretical density calculated from the true density and weight ratio of the oxide of each constituent element (Japanese Patent Laid-Open No. 2002-30429) reference).
(5)エッチング速度及び残渣
 スパッタリングターゲットをDCマグネトロンスパッタリング装置に取り付け、スパッタ圧力0.3Pa、スパッタ出力100W、Arガス100%、10分間スパッタし、100mm□のガラス基板表面の全面に亘って厚さ100nmの透明導電膜を成膜した。
 上記成膜条件にて、ガラス基板上にインジウム亜鉛酸化物膜を膜厚100nm成膜した後、30℃の市販のシュウ酸エッチング液(ITO-06N:関東化学社製)に、基板の抵抗値が無限大になるまで浸漬し、当初の膜厚(100nm)を無限大になるまでに要した時間で割ることによりエッチング速度を求めた。
 また、100mm□の基板5枚について、上記と同様に基板の抵抗値が無限大になるまでシュウ酸エッチング液に浸漬後、純水にて洗浄し乾燥した後、走査型電子顕微鏡にて10000倍で観察し、その視野の中心部10×8μm四方内に存在する残渣の個数を数えた。観察は、各基板の対角線の交点及び交点と頂点の中心点の計5箇所において実施し、存在する残渣の個数を5枚の平均値で求め、エッチング残渣として以下のとおり定義した。
・エッチング残渣評価基準
 ○;3個以下
 △;4個以上、7個/100以下
 ×;8個以上
(5) Etching rate and residue A sputtering target is attached to a DC magnetron sputtering apparatus, sputter pressure is 0.3 Pa, sputter output is 100 W, Ar gas is 100%, sputtered for 10 minutes, and the entire thickness of the surface of a 100 mm □ glass substrate is obtained. A 100 nm transparent conductive film was formed.
Under the above film forming conditions, an indium zinc oxide film having a thickness of 100 nm was formed on a glass substrate, and then the resistance value of the substrate was added to a commercially available oxalic acid etching solution (ITO-06N: manufactured by Kanto Chemical Co., Ltd.) at 30 ° C. Was etched until the film reached infinity, and the etching rate was determined by dividing the initial film thickness (100 nm) by the time required to reach infinity.
Further, about five 100 mm square substrates, the substrate was immersed in an oxalic acid etching solution until the resistance value of the substrate became infinite, washed with pure water, dried, and then 10,000 times with a scanning electron microscope. And the number of residues present in the center 10 × 8 μm square of the field of view was counted. Observation was carried out at a total of five points of the intersection of the diagonal lines of each substrate and the center point of the intersection and the vertex. The number of the remaining residues was determined by an average value of five and defined as the etching residue as follows.
Etching residue evaluation criteria ○: 3 or less △; 4 or more, 7/100 or less ×; 8 or more
 エッチング残渣は、通常エッチング加工におけるスペース部分に粒子状に残留し、ショート(短絡)の原因となる場合がある。このような、粒子の付着は素子の歩留まりを著しく低下させるため望ましくない。個数が少ない場合はリペア工程により正常化することが可能であるが、個数が増加した場合はリペアが困難となり素子の歩留まりを低下させる。 Etching residue usually remains in the form of particles in the space in the etching process, which may cause a short circuit. Such particle adhesion is undesirable because it significantly reduces device yield. When the number is small, it can be normalized by a repair process. However, when the number is increased, repair becomes difficult and the yield of the element is lowered.
(6)平均パーティクル数
 上記(5)と同様にして、厚さ100nmの透明導電膜を成膜し、当該透明導電膜上に付着する最大径が0.5μm以上のパーティクル数をパーティクルカウンター(V-TECHNOLOGY社製FPD検査装置 Capricorn)により測定した。成膜を1枚のターゲットにつき5回繰り返し、得られた個数の平均値を平均パーティクル数とした。評価は以下のとおりとした。
・パーティクルの評価基準
 ○;5個/100mm□以下
 △;6個/100mm□以上、9個/100mm□以下
 ×;10個/100mm□以上
(6) Average number of particles In the same manner as (5) above, a transparent conductive film having a thickness of 100 nm was formed, and the number of particles having a maximum diameter of 0.5 μm or more adhering to the transparent conductive film was determined as a particle counter (V -Measured by FPD inspection apparatus Capricorn manufactured by TECHNOLOGY. The film formation was repeated 5 times for one target, and the average value of the obtained numbers was defined as the average number of particles. The evaluation was as follows.
・ Evaluation criteria of particles ○: 5/100 mm □ or less △; 6/100 mm □ or more, 9/100 mm □ or less ×; 10/100 mm □ or more
 スパッタ成膜時に成膜基板上に生じたパーティクルは、次工程のエッチング加工で欠落した場合はオープン(断線)となる場合があり、また粒子状に残留した場合はショート(短絡)となる場合がある。これらパーティクルによる配線異常は、素子の歩留まりを著しく低下させるため好ましくない。個数が少ない場合はリペア工程により正常化することが可能であるが、個数が増加した場合はリペアが困難となり素子の歩留まりを低下させる。 Particles generated on the film formation substrate during sputter film formation may be open (disconnected) if missing in the next etching process, and may be short (short circuit) if left in the form of particles. is there. The wiring abnormality due to these particles is not preferable because it significantly reduces the yield of the element. When the number is small, it can be normalized by a repair process. However, when the number is increased, repair becomes difficult and the yield of the element is lowered.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
参考例1~4、参考比較例1~3
 比表面積が11m/g、平均粒径0.98μmの酸化インジウム粉5000gと、同じ比表面積と平均粒径の酸化亜鉛粉600gを秤量し、さらに、得られるスパッタリングターゲットにおける含有量が表2に示す含有量(Sn重量)となるように酸化スズを秤量し、成形用バインダーを加えて均一に混合及び造粒した。
 尚、各粉末の平均粒径はレーザー回折式粒度分布測定装置SALD-300V(島津製作所製)で測定し、平均粒径はメジアン径D50を採用した。
Reference Examples 1 to 4 and Reference Comparative Examples 1 to 3
Weigh 5000 g of indium oxide powder having a specific surface area of 11 m 2 / g and an average particle size of 0.98 μm, and 600 g of zinc oxide powder having the same specific surface area and average particle size, and the content in the obtained sputtering target is shown in Table 2. Tin oxide was weighed so as to have the content (Sn weight) shown, and a molding binder was added to uniformly mix and granulate.
The average particle size of each powder was measured with a laser diffraction particle size distribution analyzer SALD-300V (manufactured by Shimadzu Corporation), and the median particle size was a median diameter D50.
 次に、この造粒物を金型へ均一に充填しコールドプレス機にて加圧成形した。このようにして得た成形体を、焼結炉にて1400℃(800℃から焼結温度までの昇温速度:2℃/分)で20時間焼結した。 Next, this granulated product was uniformly filled in a mold and pressure-molded with a cold press machine. The molded body thus obtained was sintered in a sintering furnace at 1400 ° C. (temperature increase rate from 800 ° C. to sintering temperature: 2 ° C./min) for 20 hours.
 得られた焼結体について、実施例1と同様にして、XRDにより結晶構造を調べた。その結果、全ての例においてIn(ZnO)(式中、m=2~7の整数)で表される六方晶層状化合物の存在を確認した。 About the obtained sintered compact, the crystal structure was investigated by XRD like Example 1. FIG. As a result, the presence of a hexagonal layered compound represented by In 2 O 3 (ZnO) m (wherein m = 2 to 7) was confirmed in all examples.
 さらに、得られた焼結体について、実施例と同様にして色度(b*値)、平均結晶粒径及びバルク抵抗値を測定した。結果を表2に示す。尚、研磨深さは任意に研磨した深さである。 Furthermore, with respect to the obtained sintered body, chromaticity (b * value), average crystal grain size and bulk resistance value were measured in the same manner as in the Examples. The results are shown in Table 2. The polishing depth is an arbitrarily polished depth.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記の結果から、ターゲット表面の色ムラを低減するためには、Sn元素を2000ppm超以上添加することが必要であることが確認できた。
 一方、Sn元素含有量を増加させる(多量に添加する)に従って、さらにΔb*を低減することができるが、20000ppmを超えてもSn元素含有量の増加によるΔb*の大幅な改善効果は見られない。上記したように、Sn元素を20000ppmより多く添加した場合はスパッタリングターゲットから得られた膜のエッチング特性を阻害する可能性があるので過剰な添加はむしろ好ましくない。
 以上から、バルク抵抗値を下げかつインジウム亜鉛酸化物の特性を維持し、色ムラを低減させるためには、Sn元素の含有量を2000ppm超~20000ppmの範囲とするのが適当であると確認できた。
 また、Zrを添加することにより、スパッタリング成膜時のエッチング残渣及びパーティクルの量を抑制することができることが確認できた。
From the above results, it was confirmed that it was necessary to add more than 2000 ppm of Sn element in order to reduce color unevenness on the target surface.
On the other hand, as the Sn element content is increased (added in a large amount), Δb * can be further reduced, but even if it exceeds 20000 ppm, a significant improvement effect of Δb * due to the increase in Sn element content is seen. Absent. As described above, when Sn element is added in an amount of more than 20000 ppm, excessive addition is not preferable because it may hinder the etching characteristics of the film obtained from the sputtering target.
From the above, it can be confirmed that it is appropriate to set the Sn element content in the range of more than 2000 ppm to 20000 ppm in order to lower the bulk resistance value, maintain the characteristics of indium zinc oxide, and reduce color unevenness. It was.
It was also confirmed that the amount of etching residue and particles during sputtering film formation can be suppressed by adding Zr.
 本発明のスパッタリングターゲットを用いて、製造した透明導電膜は、太陽電池や、液晶、有機エレクトロルミネッセンス、無機エレクトロルミネッセンス等の表示素子、タッチパネル等の電子機器等に使用できる。また、本発明の酸化物膜は、半導体膜として薄膜トランジスタ等に使用できる。 The transparent conductive film produced using the sputtering target of the present invention can be used for solar cells, liquid crystal, organic electroluminescence, display elements such as inorganic electroluminescence, and electronic devices such as touch panels. The oxide film of the present invention can be used for a thin film transistor or the like as a semiconductor film.
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。
Although several embodiments and / or examples of the present invention have been described in detail above, those skilled in the art will appreciate that these exemplary embodiments and / or embodiments are substantially without departing from the novel teachings and advantages of the present invention. It is easy to make many changes to the embodiment. Accordingly, many of these modifications are within the scope of the present invention.
All the contents of the Japanese application specification that is the basis of the priority of Paris in this application are incorporated herein.

Claims (10)

  1.  酸化インジウム及び酸化亜鉛を主成分とし、
     In(ZnO)(式中、m=2~7の整数)で表される六方晶層状化合物を含有し、
     Sn元素及びZr元素を含有し、
     全金属元素に対するSn元素の割合が2000ppmより多く20000ppm以下である、スパッタリングターゲット。
    Mainly composed of indium oxide and zinc oxide,
    A hexagonal layered compound represented by In 2 O 3 (ZnO) m (wherein m = 2 to 7),
    Contains Sn element and Zr element,
    The sputtering target whose ratio of Sn element with respect to all the metal elements is more than 2000 ppm and 20000 ppm or less.
  2.  全金属元素に対する前記Zr元素の割合が50ppm以上1000ppm以下である、請求項1に記載のスパッタリングターゲット。 The sputtering target according to claim 1, wherein the ratio of the Zr element to the total metal elements is 50 ppm or more and 1000 ppm or less.
  3.  平均結晶粒径が2μm~10μmである請求項1又は2に記載のスパッタリングターゲット。 3. The sputtering target according to claim 1, wherein the average crystal grain size is 2 μm to 10 μm.
  4.  相対密度が95%以上である請求項1~3のいずれかに記載のスパッタリングターゲット。 The sputtering target according to any one of claims 1 to 3, wherein the relative density is 95% or more.
  5.  バルク抵抗値が50mΩcm以下である請求項1~4のいずれかに記載のスパッタリングターゲット。 The sputtering target according to any one of claims 1 to 4, wherein the bulk resistance value is 50 mΩcm or less.
  6.  スパッタリングターゲット中の全金属元素に対するSn元素の割合が2000ppmより多く20000ppm以下、Zr元素の割合が50ppm以上1000ppm以下となるように、インジウム原料、亜鉛原料、Sn原料及びZr原料を混合粉砕して混合物を作製する工程、
     前記混合物を成型して成型物を作製する工程、及び
     前記成形物を1200℃~1600℃で1時間~50時間焼結する工程を具備する、請求項1に記載のスパッタリングターゲットの製造方法。
    Indium raw material, zinc raw material, Sn raw material and Zr raw material are mixed and pulverized so that the ratio of Sn element to all metal elements in the sputtering target is more than 2000 ppm and 20000 ppm or less, and the ratio of Zr element is 50 ppm or more and 1000 ppm or less. The process of producing,
    The method for producing a sputtering target according to claim 1, comprising a step of molding the mixture to produce a molded product, and a step of sintering the molded product at 1200 ° C to 1600 ° C for 1 hour to 50 hours.
  7.  請求項1~5のいずれかに記載のスパッタリングターゲットを用いて成膜する酸化物膜の製造方法。 A method for producing an oxide film formed using the sputtering target according to any one of claims 1 to 5.
  8.  請求項7に記載の方法で製造した酸化物膜。 An oxide film produced by the method according to claim 7.
  9.  透明導電膜である、請求項8に記載の酸化物膜。 The oxide film according to claim 8, which is a transparent conductive film.
  10.  請求項8又は9に記載の酸化物膜を用いた電子機器。 An electronic device using the oxide film according to claim 8 or 9.
PCT/JP2014/005120 2013-10-09 2014-10-08 Sputtering target and method for producing same WO2015052927A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-212109 2013-10-09
JP2013-212108 2013-10-09
JP2013212108A JP2017014534A (en) 2013-10-09 2013-10-09 Sputtering target and manufacturing method thereof
JP2013212109A JP2017014535A (en) 2013-10-09 2013-10-09 Sputtering target and production method thereof

Publications (1)

Publication Number Publication Date
WO2015052927A1 true WO2015052927A1 (en) 2015-04-16

Family

ID=52812757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005120 WO2015052927A1 (en) 2013-10-09 2014-10-08 Sputtering target and method for producing same

Country Status (2)

Country Link
TW (1) TW201522689A (en)
WO (1) WO2015052927A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114032517A (en) * 2021-10-22 2022-02-11 芜湖映日科技股份有限公司 Preparation method of rare earth ion doped ITO target material
CN116288180A (en) * 2022-09-09 2023-06-23 长沙壹纳光电材料有限公司 A kind of oxide target material, oxide thin film and its preparation method and application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008661A1 (en) * 2001-07-17 2003-01-30 Idemitsu Kosan Co., Ltd. Sputtering target and transparent conductive film
WO2004105054A1 (en) * 2003-05-20 2004-12-02 Idemitsu Kosan Co. Ltd. Amorphous transparent conductive film, sputtering target as its raw material, amorphous transparent electrode substrate, process for producing the same and color filter for liquid crystal display
JP2013030784A (en) * 2008-08-27 2013-02-07 Idemitsu Kosan Co Ltd Field-effect transistor, method of manufacturing the same, and sputtering target

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008661A1 (en) * 2001-07-17 2003-01-30 Idemitsu Kosan Co., Ltd. Sputtering target and transparent conductive film
WO2004105054A1 (en) * 2003-05-20 2004-12-02 Idemitsu Kosan Co. Ltd. Amorphous transparent conductive film, sputtering target as its raw material, amorphous transparent electrode substrate, process for producing the same and color filter for liquid crystal display
JP2013030784A (en) * 2008-08-27 2013-02-07 Idemitsu Kosan Co Ltd Field-effect transistor, method of manufacturing the same, and sputtering target

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114032517A (en) * 2021-10-22 2022-02-11 芜湖映日科技股份有限公司 Preparation method of rare earth ion doped ITO target material
CN116288180A (en) * 2022-09-09 2023-06-23 长沙壹纳光电材料有限公司 A kind of oxide target material, oxide thin film and its preparation method and application

Also Published As

Publication number Publication date
TW201522689A (en) 2015-06-16

Similar Documents

Publication Publication Date Title
TWI433823B (en) Composite oxide sinter, method for producing composite oxide sinter, method for producing sputtering target and thin film
US8038911B2 (en) Lanthanoid-containing oxide target
KR101155358B1 (en) Composite oxide sinter, process for producing amorphous composite oxide film, amorphous composite oxide film, process for producing crystalline composite oxide film, and crystalline composite oxide film
JP5109418B2 (en) ZnO vapor deposition material, method for producing the same, and method for forming ZnO film
TWI525060B (en) An oxide sintered body, a sputtering target, a thin film, and an oxide sintered body
JP5339100B2 (en) Zn-Si-O-based oxide sintered body, method for producing the same, sputtering target, and tablet for vapor deposition
KR20100012040A (en) Amorphous composite oxide film,crystalline composite oxide film,process for producing amorphous composite oxide film,process for producing crystalline composite oxide film,and composite oxide sinter
WO2013065786A1 (en) Oxide sintered compact and sputtering target, and method for producing same
JP6229366B2 (en) Composite oxide sintered body and oxide transparent conductive film
JP2012054335A (en) Oxide sintered compact and oxide semiconductor thin film
JP5000230B2 (en) Lanthanum oxide containing oxide target
JP5392633B2 (en) Target for ZnO-based transparent conductive film and method for producing the same
JP2011074479A (en) Target for ion plating for producing zinc oxide-based transparent conductive thin film, and zinc oxide-based transparent conductive thin film
WO2015052927A1 (en) Sputtering target and method for producing same
JP5087605B2 (en) Indium oxide-zinc oxide-magnesium oxide sputtering target and transparent conductive film
JP2017014535A (en) Sputtering target and production method thereof
JP6155919B2 (en) Composite oxide sintered body and oxide transparent conductive film
TW202344489A (en) Sputtering target material, manufacturing method of sputtering target material, oxide semiconductor film, thin film semiconductor device and manufacturing method thereof
JP5000231B2 (en) Gadolinium oxide-containing oxide target
JP2017014534A (en) Sputtering target and manufacturing method thereof
WO2013065785A1 (en) Oxide sintered body, sputtering target, and method for producing same
JP5799870B2 (en) Transparent conductive film and method for producing the same
JP4960053B2 (en) Oxide target containing dysprosium oxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14851559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14851559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP