[go: up one dir, main page]

WO2015052743A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2015052743A1
WO2015052743A1 PCT/JP2013/005985 JP2013005985W WO2015052743A1 WO 2015052743 A1 WO2015052743 A1 WO 2015052743A1 JP 2013005985 W JP2013005985 W JP 2013005985W WO 2015052743 A1 WO2015052743 A1 WO 2015052743A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power supply
power
frequency
output voltage
Prior art date
Application number
PCT/JP2013/005985
Other languages
English (en)
French (fr)
Inventor
啓臣 王
藤田 悟
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to CN201380075290.XA priority Critical patent/CN105075099B/zh
Priority to PCT/JP2013/005985 priority patent/WO2015052743A1/ja
Priority to EP13895179.3A priority patent/EP2966770B1/en
Priority to JP2015541308A priority patent/JP6142926B2/ja
Publication of WO2015052743A1 publication Critical patent/WO2015052743A1/ja
Priority to US14/877,260 priority patent/US9887539B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from AC input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC
    • H02M5/42Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters
    • H02M5/44Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters using discharge tubes or semiconductor devices to convert the intermediate DC into AC
    • H02M5/453Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters using discharge tubes or semiconductor devices to convert the intermediate DC into AC using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters using discharge tubes or semiconductor devices to convert the intermediate DC into AC using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters using discharge tubes or semiconductor devices to convert the intermediate DC into AC using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/0093Converters characterised by their input or output configuration wherein the output is created by adding a regulated voltage to or subtracting it from an unregulated input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters

Definitions

  • the present invention relates to a power conversion device that can supply a stable voltage to a load even when the voltage of an AC power supply decreases.
  • FIG. 7 is a diagram for explaining a power converter of a constant inverter feeding method disclosed in Patent Document 1 and Patent Document 2.
  • 1 is a single-phase AC power source
  • 2 is a capacitor
  • 3 is a converter
  • 4 is an inverter
  • 5 is a filter
  • 6 is a load.
  • This power converter once converts the voltage of the AC power source 1 into a DC voltage, converts this DC voltage into an AC voltage again, and supplies it to the load 6.
  • Converter 3 converts the voltage of AC power supply 1 into a DC voltage by turning on and off switching elements Qp and Qn.
  • the DC voltage generated by the converter 3 is smoothed by the capacitors Cp and Cn.
  • the DC voltage smoothed by the capacitors Cp and Cn is output to the inverter 4.
  • the inverter 4 converts the DC voltage of the capacitors Cp and Cn into the AC voltage Vu of the pulse train whose pulse width is controlled by selectively turning on and off the switching elements Q1 and Q2 and the bidirectional switch BS1.
  • the filter 5 removes a harmonic component contained in the AC voltage Vu formed of this pulse train, and outputs a sinusoidal AC voltage Vload. This sinusoidal AC voltage Vload is applied to the load 6.
  • the power conversion device has a direct transmission mode, a step-up mode, a step-down mode, and a backup mode as its operation mode. Which mode the power converter operates in is determined by detecting the voltage of the AC power supply 1 or the like.
  • the direct transmission mode is an operation mode in which the voltage of the AC power supply 1 is output as the AC voltage Vload when the voltage of the AC power supply 1 is within a predetermined range.
  • this operation mode the switching elements Q1 and Q2 are turned off, and the bidirectional switch BS1 is turned on.
  • the boost mode is an operation mode in which, when the voltage of the AC power source 1 becomes lower than a predetermined value, the voltage of the AC power source 1 is boosted and an AC voltage Vload having a predetermined amplitude is output.
  • the switching elements Q1, Q2 and the bidirectional switch BS1 are selectively turned on / off based on a control signal subjected to pulse width modulation.
  • the step-down mode is an operation mode in which, when the voltage of the AC power supply 1 becomes higher than a predetermined value, the voltage of the AC power supply 1 is stepped down and an AC voltage Vload having a predetermined amplitude is output.
  • this operation mode the switching elements Q1 and Q2 are turned off, and the bidirectional switch BS1 is turned on and off based on a control signal subjected to pulse width modulation.
  • the backup mode is an operation mode in which, when a power failure of the AC power supply 1 is detected, the AC voltage Vload having a predetermined amplitude is output using the DC voltage of the capacitors Cp and Cn.
  • the bidirectional switch BS1 is turned off, and the switching elements Q1, Q2 are selectively turned on / off based on the control signal subjected to pulse width modulation.
  • a current including a ripple current flows to the reactor Lf of the filter 5.
  • the ripple component of the current flowing through the reactor Lf must be suppressed within a predetermined value.
  • the power conversion device turns on and off the switching elements Q1 and Q2 at the same frequency in both operations in the boost mode and the backup mode.
  • the change width of the voltage applied to the reactor Lf is maximized when an AC voltage is output using only the voltage of the DC power supply. Therefore, the ripple current flowing through reactor Lf is maximized in the backup mode. Therefore, the inductance value of reactor Lf is determined so that the ripple current in the backup mode is within a predetermined value.
  • the inductance value of the reactor Lf determined in this way is a larger value than the inductance value required during the boosting operation.
  • the conductor resistance of the coil is increased and the copper loss of the reactor Lf is increased.
  • the efficiency of the power converter decreases.
  • a power converter device enlarges with the reactor Lf becoming large.
  • an object of the present invention is to provide a power converter that can suppress a ripple current within a predetermined value even when an instantaneous voltage drop of an AC power supply is suppressed while suppressing an increase in inductance value of a reactor Lf. is there.
  • the present invention is applied to a power converter that outputs an AC voltage based on an output voltage command.
  • the power converter includes a DC power supply, an AC power supply, an inverter, a reactor that smoothes the output voltage of the inverter, and a control unit that controls the inverter.
  • One end of the AC power supply is connected to an intermediate potential point of the DC power supply.
  • the control unit commands a carrier signal having the first frequency under the first condition.
  • the control unit commands a carrier signal having a second frequency higher than the first frequency when the second condition is satisfied.
  • the first condition is that the voltage of the AC power supply is small with respect to the output voltage command, and the difference between the two is smaller than a predetermined value.
  • the second condition is that the voltage of the AC power supply is small with respect to the output voltage command, and the difference between the two is larger than a predetermined value.
  • the control unit generates a control signal for operating the inverter based on the output voltage command and the commanded carrier signal.
  • the inverter outputs a predetermined AC voltage based on the control signal generated by the control unit. This AC voltage is generated using the both-end voltage of the DC power supply, the neutral point voltage, and the voltage of the AC power supply.
  • control unit can use at least the effective value of each of the output voltage command and the voltage of the AC power supply or the instantaneous value of each when determining the first condition and the second condition. .
  • the first frequency and the second frequency of the carrier signal are set such that the maximum amplitude of the ripple current flowing through the reactor is substantially the same when the inverter operates at each frequency. Yes.
  • the second frequency of the carrier signal is set according to the difference between the output voltage command and the voltage of the AC power supply.
  • the inverter operates until the voltage of the AC power supply drops to 0V.
  • the embodiment of the inverter in the power converter includes at least a switching element series circuit and a bidirectional switch.
  • the switching element series circuit is configured by connecting a first switching element and a second switching element in series.
  • the switching element series circuit is connected to both ends of the DC power supply.
  • a first diode is connected in antiparallel to the first switching element.
  • a second diode is connected in antiparallel to the second switching element.
  • One end of the bidirectional switch is connected to the connection point of the first and second switching elements, and the other end is connected to the other end of the AC power supply.
  • the first and second switching elements can be configured by MOSFETs formed of a wide band gap semiconductor made of either silicon carbide or gallium nitride.
  • the first and second diodes can be formed of a wide band gap semiconductor made of either silicon carbide or gallium nitride.
  • the bidirectional switch can be configured by connecting in reverse parallel a MOSFET formed of a wide band gap semiconductor made of either silicon carbide or gallium nitride.
  • the bidirectional switch may include a diode formed of a wide band gap semiconductor made of either silicon carbide or gallium nitride.
  • the operating frequency of the inverter since the operating frequency of the inverter is switched in the boost mode, it is possible to suppress the ripple current within a predetermined value even when the instantaneous voltage of the AC power supply is reduced while suppressing an increase in the inductance value of the reactor. it can.
  • FIG. 1 is a diagram for explaining a circuit configuration of a power conversion device according to an embodiment of the present invention.
  • 1 is a single-phase AC power source.
  • a capacitor 2 is connected between the terminal R and the terminal S of the AC power supply 1.
  • 30 is a DC power source
  • 40 is an inverter
  • 5 is a filter
  • 6 is a load
  • 80 is a control unit.
  • the DC power supply 30 is a power supply formed by connecting a positive DC power supply Psp (first DC power supply) and a negative DC power supply Psn (second DC power supply) in series.
  • the DC power supply 30 includes terminals P, O, and N.
  • the terminal P is connected to the high potential side terminal of the DC power supply 30.
  • the terminal N is connected to the low potential side terminal of the DC power supply 30.
  • the terminal O is connected to a connection point between the DC power supply Psp and the DC power supply Psn (terminal that outputs an intermediate voltage of the DC power supply 30).
  • a terminal S of the AC power source 1 is connected to a terminal O of the DC power source 30.
  • the DC power supply 30 including the DC power supply Psp and the DC power supply Psn can be configured by the converter 3 shown in FIG. 7, for example.
  • Converter 3 outputs a three-level potential using voltage Vr of AC power supply 1.
  • the DC power supply 30 is not limited to a circuit configuration such as the converter 3, and may be a circuit configured by another method.
  • the inverter 40 includes a switching element series circuit and a bidirectional switch BS1.
  • the inverter 40 includes a terminal U (first AC output terminal) and a terminal V (second AC output terminal) for outputting an AC voltage.
  • the switching element series circuit is a circuit in which switching elements Q1 and Q2 are connected in series. This switching element series circuit is connected between a terminal P and a terminal N of the DC power supply 30. The connection point of the switching elements Q1, Q2 is connected to the terminal U. Terminal V is connected to terminal O of DC power supply 30.
  • the bidirectional switch BS1 is a circuit in which switch elements S1 and S2 are connected in reverse parallel. The bidirectional switch BS1 is connected between the terminal U and the terminal R. Specifically, the collector terminal side of the switch element S1 is connected to the terminal R. The emitter terminal side of the switch element S1 is connected to the terminal U.
  • the filter 5 is composed of a series circuit of a reactor Lf and a capacitor Cf.
  • the filter 5 is connected between the terminals U and V of the inverter 40.
  • the load 6 is connected to both ends of the capacitor Cf.
  • the switching elements Q1 and Q2 are represented by IGBTs (Insulated Gate-Bipolar-Transistors) in which diodes are connected in antiparallel.
  • IGBTs Insulated Gate-Bipolar-Transistors
  • the switching elements Q1 and Q2 are not limited to the elements configured as described above.
  • the switching elements Q1 and Q2 may be configured by using other semiconductor elements that can be turned on and off at a frequency several tens of times higher than the frequency of the AC power supply 1, such as MOSFET (Metal Oxide Semiconductor Field Effect Transistor). .
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the bidirectional switch BS1 can flow a current in one direction by turning on one of the switch elements. Further, the bidirectional switch BS1 can flow current in the other direction by turning on the other switch element. Therefore, the bidirectional switch BS1 may have another configuration as long as such a function can be exhibited.
  • the terminal P of the DC power supply 30 outputs the positive potential of the DC power supply Psp (hereinafter referred to as a positive voltage Vp).
  • the terminal O of the DC power supply 30 outputs an intermediate potential of the DC power supply 30 (hereinafter referred to as zero voltage).
  • a terminal N of the DC power supply 30 outputs a negative potential (hereinafter referred to as a negative voltage Vn) of the DC power supply Psn.
  • the terminal R of the AC power supply 1 outputs the voltage Vr of the AC power supply 1.
  • the inverter 40 outputs a positive voltage Vp between the terminals U and V by passing a current through the switching element Q1. Further, the inverter 40 outputs a negative voltage Vn between the terminals U and V by causing a current to flow through the switching element Q2. Further, the inverter 40 outputs the voltage Vr of the AC power supply 1 between the terminals U and V by flowing a current in either direction of the bidirectional switch BS1. The inverter 40 outputs a single-phase AC voltage Vu between the terminals U and V by controlling the on / off operation of the switching elements Q1 and Q2 and the bidirectional switch BS1.
  • This power conversion device has a direct transmission mode, a step-up mode, and a step-down mode.
  • the operations of the direct conversion mode and the step-down mode of this power conversion device are the same as those of the power conversion device shown in FIG.
  • the operation of the power conversion device in the boost mode will be mainly described, and the description of the direct transmission mode and the step-down mode will be omitted.
  • This power converter operates in the boost mode when the voltage Vr of the AC power supply 1 becomes equal to or lower than the first set voltage. Then, this power conversion device continues the operation in the boost mode until the voltage Vr further decreases to 0V. During this time, a power failure of the AC power supply 1 is not detected.
  • the power converter uses the voltage Vr of the AC power supply 1 and the three-level voltage (voltages Vp, Vn, and zero voltage) of the DC power supply 30 to generate a predetermined voltage Vload that is higher than the voltage Vr. This is the output mode.
  • This power converter switches the frequency at which switching elements Q1, Q2 are turned on and off in accordance with the magnitude of voltage Vr of AC power supply 1 in the boost mode. By this operation, an increase in the ripple current flowing through the reactor Lf is suppressed.
  • the power converter, the voltage Vr of the AC power supply 1 and the output voltage command V * smaller than, and when the difference between the voltage Vr output voltage command V * of more than a predetermined value (second condition) the Step-up operation is performed at a frequency of 2.
  • the second frequency is a higher frequency than the first frequency.
  • the control circuit 80 has a function realized by the control block shown in FIG.
  • the voltage Vr of the AC power supply 1 detected by the voltage detector 71 is input to the output voltage command generation circuit 81, the operation mode determination circuit 82, and the carrier signal generation circuit 83 of the control circuit 80. Further, the voltage Vp of the DC power source Psp detected by the voltage detector 72 and the voltage Vn of the DC power source Psn detected by the voltage detector 73 are input to the modulation signal generation circuit 84.
  • the output voltage command generation circuit 81 outputs a command V * for the output voltage of the power converter.
  • the output voltage command V * is synchronized with the voltage Vr of the AC power supply 1.
  • the output voltage command V * is input to the operation mode determination circuit 82 and the modulation signal generation circuit 84.
  • the operation mode determination circuit 82 generates the operation mode signal ⁇ of the power converter according to the result of comparing the magnitude of the voltage Vr of the AC power supply 1 and the output voltage command V * . That is, if voltage Vr of AC power supply 1 is within a predetermined range with respect to output voltage command V * , operation mode determination circuit 82 sets operation mode signal ⁇ to a signal indicating the direct transmission mode. . If the voltage Vr of the AC power supply 1 is larger than the upper limit value of a predetermined range centering on the output voltage command V * , the operation mode determination circuit 82 displays the operation mode signal ⁇ as a signal indicating the step-down mode. Set to.
  • operation mode determination circuit 82 uses operation mode signal ⁇ as a signal indicating the boost mode.
  • the lower limit value of the predetermined range is referred to as a first set value.
  • the first set value is equal to the output voltage command V * .
  • the carrier signal generation circuit 83 outputs, for example, a triangular wave carrier signal Sc in accordance with the operation mode signal ⁇ .
  • the carrier signal generation circuit 83 Uses the frequency of the carrier signal Sc as the first frequency f1.
  • the carrier signal generation circuit 83 The frequency of the carrier signal Sc is the second frequency f2.
  • the carrier signal Sc output from the carrier signal generation circuit 83 is input to the pulse width modulation circuit 85.
  • the magnitude relationship between the output voltage command V * and the voltage Vr of the AC power supply 1 can be determined by comparing each effective value or each instantaneous value.
  • the carrier signal generation circuit 83 sets the frequency of the carrier signal Sc to the first frequency f1 or the second frequency f2 for each cycle of the output voltage. Further, when comparing the instantaneous values of the respective voltages, the carrier signal generation circuit 83 sets the frequency of the carrier signal Sc to the first frequency f1 or the second frequency f2 for each of the compared control periods.
  • FIG. 3 shows the relationship between the signals when the frequency of the carrier signal Sc is set by comparing the instantaneous values of the output voltage command V * and the voltage Vr of the AC power supply 1.
  • the difference between the voltage Vr of the AC power supply 1 is reduced while maintaining the sinusoidal, the output voltage command V * phase is near [pi / 2 and 3 [pi] / 2, the output voltage command V * and the voltage Vr of the AC power supply 1 Is greater than or equal to the second set value.
  • the carrier signal generation circuit 83 is a region where the difference between the output voltage command V * and the voltage Vr of the AC power supply 1 is greater than or equal to the second set value (the phase of the output voltage command V * is around ⁇ / 2 and 3 ⁇ / 2).
  • the frequency of the carrier signal Sc is set to the second frequency f2. In the other region, the carrier signal generation circuit 83 sets the frequency of the carrier signal Sc to the first frequency f1.
  • the carrier signal generation circuit 83 sets the frequency of the carrier signal Sc to the first frequency for each cycle of the output voltage command V *. Set to f1 or the second frequency f2.
  • the carrier signal generation circuit 83 sets the frequency of the carrier signal Sc to the first frequency f1.
  • the carrier signal generation circuit 83 may set the frequency of the carrier signal Sc to a third frequency f3 different from the first frequency f1.
  • the modulation signal generation circuit 84 generates the modulation signal ⁇ using the output voltage command V * .
  • the modulation signal ⁇ is a signal normalized with reference to the amplitude of the carrier signal Sc.
  • the voltages Vp and Vn of the DC power supply 30 are used.
  • the modulation signal ⁇ output from the modulation signal generation circuit 84 is input to the pulse width modulation circuit 85.
  • the pulse width modulation circuit 85 generates control signals G1, G2, Gs1, and Gs2 for operating the inverter 40 using the carrier signal Sc and the modulation signal ⁇ .
  • the control signal G1 is a signal for turning on / off the switching element Q1.
  • the control signal G2 is a signal for turning on / off the switching element Q2.
  • the control signal Gs1 is a signal for turning on / off the switch element S1.
  • the control signal Gs2 is a signal for turning on / off the switching element S2.
  • the AC voltage Vu shown in FIG. 4 is output between the terminals U and V.
  • the AC voltage Vu is a voltage obtained by selectively outputting the voltage Vr and the voltage Vp or the voltage Vn of the AC power supply 1.
  • the AC voltage Vu contains many harmonic components. This harmonic component can be removed by the filter 5. By removing the harmonic component from the AC voltage Vu, a sinusoidal AC voltage Vload is obtained. A sinusoidal AC voltage Vload is applied to the load 6.
  • the voltage Vr of the AC power supply 1 is reduced to 0 V in the boost mode, the AC voltage Vu and the AC voltage Vload have waveforms shown in FIG. Since the voltage Vr of the AC power supply 1 is 0 V, the AC voltage Vu is a voltage composed of a pulse train having an amplitude of Vp or Vn.
  • the inverter 40 operates in any one of the direct transmission mode, the step-down mode, and the step-up mode.
  • both switching elements Q1, Q2 are turned off.
  • the bidirectional switch BS1 is in a state capable of conducting in both directions. In this case, the voltage Vr of the AC power supply 1 is output between the terminals U and V. Therefore, current Iu flowing through reactor Lf is sinusoidal. This current Iu does not include a ripple component accompanying the operation of the inverter 40.
  • the bidirectional switch BS1 When inverter 40 operates in the step-down mode, switching elements Q1 and Q2 are both off.
  • the bidirectional switch BS1 performs an on / off operation in accordance with the control signals Gs1 and Gs2.
  • the control signals Gs1 and Gs2 are signals subjected to pulse width modulation using the carrier signal Sc having the frequency f1 and the modulation signal ⁇ .
  • a voltage Vu obtained by pulse-width modulating the voltage Vr of the AC power supply 1 is output between the terminals U and V. Therefore, the current Iu flowing through the reactor Lf includes a ripple component generated in accordance with the on / off operation of the bidirectional switch BS1.
  • the frequency of this ripple component is twice the frequency f1 of the carrier signal Sc.
  • the bidirectional switch BS1 When the inverter 40 operates in the boost mode, the bidirectional switch BS1 is always on.
  • the switching elements Q1, Q2 perform an on / off operation according to the control signals G1, G2.
  • the control signals G1 and G2 are signals subjected to pulse width modulation using the carrier signal Sc and the modulation signal ⁇ .
  • the frequency of the carrier signal Sc is the first frequency f1 or the second frequency f2.
  • a voltage Vu obtained by alternately selecting the voltage Vr of the AC power supply 1 and the voltage obtained by pulse width modulation of the voltage of the DC power supply 30 is output between the terminals U and V. Therefore, the current Iu flowing through reactor Lf includes a ripple component that is generated in accordance with the on / off operation of switching elements Q1, Q2.
  • the frequency of the ripple component is twice the frequency of the carrier signal Sc.
  • the ripple current flowing through the reactor Lf increases as the difference between the output voltage command V * and the voltage Vr of the AC power supply 1 increases.
  • the ripple current flowing through the reactor Lf decreases.
  • the switching loss of the switching elements Q1, Q2 increases.
  • the inductance value of reactor Lf and the frequency of carrier signal Sc are set so that the magnitude of the ripple current flowing through reactor Lf becomes a predetermined value.
  • the first frequency f1 of the carrier signal Sc is set on condition that the difference between the output voltage command V * and the voltage Vr of the AC power supply 1 is equal to a predetermined second set value.
  • the loss (first loss) generated in the reactor Lf due to the ripple current (first ripple current) flowing through the reactor Lf is set to be within a predetermined value.
  • the value of the maximum current flowing through reactor Lf (first maximum current value) is set to be within the controllable range of switching elements Q1, Q2.
  • the second frequency f2 of the carrier signal Sc is set on condition that the voltage Vr of the AC power supply 1 is 0V.
  • the inductance value of reactor Lf is the value set above. Under the above conditions, when the inverter 40 operates in the boost mode, the ripple current flowing through the reactor Lf becomes almost the same value as the first ripple current. Further, the maximum value of the current flowing through the reactor Lf is substantially the same as the first maximum current value. On the other hand, since the frequency of the ripple current is increased, the loss generated in the reactor Lf is larger than the first loss. However, since the thermal time constant of the reactor is longer than the instantaneous voltage drop time of the AC power supply 1, no thermal problem occurs.
  • the power conversion device suppresses the ripple current flowing through the reactor Lf within a predetermined value even when the instantaneous voltage of the AC power supply 1 is reduced while suppressing the increase in the inductance value of the reactor Lf. be able to.
  • the semiconductor elements constituting the switching elements Q1 and Q2 may be formed of a wide band gap semiconductor made of silicon carbide or gallium nitride.
  • the wide band gap semiconductor element has the characteristics that low loss and high frequency are possible, and high temperature operation is possible.
  • the semiconductor element forming the bidirectional switch BS1 may be formed of a wide band gap semiconductor made of silicon carbide or gallium nitride.
  • the application target of the present invention is not limited to the embodiment described above.
  • the present invention can also be applied to the power conversion device shown in FIG.
  • This power converter differs from the power converter shown in FIG. 1 in that the inverter 41 further includes a bidirectional switch BS2 with respect to the inverter 40.
  • the inverter 41 performs the same operation as the inverter 40 by turning off the bidirectional switches BS1 and BS2 in the boost mode.
  • the power conversion device including the switching elements Q1 and Q2 of the inverter circuit 40 shown in FIG. 1 and the bidirectional switch BS1 and performing the boosting operation using the voltage Vr of the AC power source 1 and the voltage of the DC power source 30. If so, the present invention can be applied.
  • the present invention can be applied to a power conversion device for supplying a stable voltage to a load even when a voltage fluctuation of the AC power supply and a power failure of the AC power supply occur, such as an instantaneous voltage drop compensation device or an uninterruptible power supply device. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

 出力電圧指令に対応する交流電圧を出力する電力変換装置であって、この電力変換装置は、直流電源1、交流電源30、インバータ40、出力電圧を平滑するフィルタ5およびインバータを制御するためのインバータ制御部80を備える。インバータ制御部80は、出力電圧指令Vに対して交流電源の電圧Vrが小さく、かつその差が所定値よりも小さい第1条件のとき、第1周波数f1のキャリア信号Scを指令する。また、インバータ制御部80は、出力電圧指令Vに対して交流電源の電圧Vrが小さく、かつその差が所定値よりも大きい第2条件のとき、第1周波数f1よりも高い第2周波数f2のキャリア信号Scを指令する。

Description

電力変換装置
 本発明は、交流電源の電圧が低下しても、安定した電圧を負荷に供給することができる電力変換装置に関する。
 交流電源の電圧が低下しても負荷に安定した電圧を供給する電力変換装置として、常時インバータ給電方式の電力変換装置が知られている。図7は、特許文献1および特許文献2に開示されている常時インバータ給電方式の電力変換装置を説明するための図である。図において、1は単相の交流電源、2はコンデンサ、3はコンバータ、4はインバータ、5はフィルタ、6は負荷である。
 この電力変換装置は、交流電源1の電圧を一旦直流電圧に変換し、この直流電圧を再度交流電圧に変換して負荷6に供給する。
 ここで、交流電源1の電圧を直流電圧に変換する動作は、コンバータ3によって行われる。コンバータ3は、スイッチング素子Qp,Qnをオンオフさせることによって、交流電源1の電圧を直流電圧に変換する。コンバータ3が生成する直流電圧は、コンデンサCp,Cnで平滑される。コンデンサCp,Cnで平滑された直流電圧が、インバータ4に出力される。
 インバータ4は、スイッチング素子Q1,Q2および双方向スイッチBS1を選択的にオンオフさせることによって、コンデンサCp,Cnの直流電圧を、パルス幅制御されたパルス列の交流電圧Vuに変換する。フィルタ5は、このパルス列からなる交流電圧Vuに含まれる高調波成分を除去し、正弦波状の交流電圧Vloadを出力する。この正弦波状の交流電圧Vloadが、負荷6に印加される。
 上記電力変換装置は、その動作モードとして、直送モード、昇圧モード、降圧モード、バックアップモードを備えている。電力変換装置がいずれのモードで動作するかは、交流電源1の電圧等を検出することによって、決定される。
 直送モードは、交流電源1の電圧が所定の範囲内にあるとき、交流電源1の電圧を交流電圧Vloadとして出力する動作モードである。この動作モードでは、スイッチング素子Q1,Q2がオフし、双方向スイッチBS1がオンしている。
 昇圧モードは、交流電源1の電圧が所定値よりも低くなったとき、交流電源1の電圧を昇圧して、所定の振幅を有する交流電圧Vloadを出力する動作モードである。この動作モードでは、スイッチング素子Q1,Q2および双方向スイッチBS1が、パルス幅変調された制御信号に基づいて、選択的にオンオフする。
 降圧モードは、交流電源1の電圧が所定値よりも高くなったとき、交流電源1の電圧を降圧して、所定の振幅を有する交流電圧Vloadを出力する動作モードである。この動作モードでは、スイッチング素子Q1,Q2がオフし、双方向スイッチBS1がパルス幅変調された制御信号に基づいてオンオフする。
 バックアップモードは、交流電源1の停電を検出したとき、コンデンサCp,Cnの直流電圧を用いて、所定の振幅を有する交流電圧Vloadを出力する動作モードである。この動作モードでは、双方向スイッチBS1がオフし、スイッチング素子Q1,Q2が、パルス幅変調された制御信号に基づいて、選択的にオンオフする。
特開平10-075581号公報 国際公開WO2012/067167A1
 ところで、上記のような電力変換装置では、リプル電流を含んだ電流が、フィルタ5のリアクトルLfに流れる。リアクトルLfを小さくするためには、このリプル電流によって生じる損失を抑制する必要がある。そのため、上記電力変換装置では、リアクトルLfに流れる電流のリプル成分を、所定値内に抑制しなければならない。
 一方、上記電力変換装置は、昇圧モード時及びバックアップモード時の両動作において、スイッチング素子Q1,Q2を同じ周波数でオンオフさせる。リアクトルLfに印加される電圧の変化幅は、直流電源の電圧のみを用いて交流電圧を出力するときに最大となる。したがって、バックアップモード時に、リアクトルLfに流れるリプル電流が最大になる。そのため、バックアップモード時のリプル電流が所定値以内になるように、リアクトルLfのインダクタンス値が決定される。
 しかしながら、このようにして決めたリアクトルLfのインダクタンス値は、昇圧動作時に必要とされるインダクタンス値に比べて、大きな値となる。大きなインダクタンス値を得るためには、リアクトルLfの鉄心に巻き回すコイルの巻数を増やす必要がある。コイルの巻数を増やすと、コイルの導体抵抗が増加し、リアクトルLfの銅損が増加する。その結果、電力変換装置の効率が低下するという問題が生じる。また、リアクトルLfが大きくなることにともない、電力変換装置が大型化するという問題がある。
 本発明は、このような従来技術が有している問題を解決するためになされたものである。すなわち、本発明の目的は、リアクトルLfのインダクタンス値の増加を抑制しながら、交流電源の瞬時電圧低下時においても、リプル電流を所定値内に抑制することができる電力変換装置を提供することである。
 上記目的を達成するため、本発明は、出力電圧指令に基づいて交流電圧を出力する電力変換装置に適用される。この電力変換装置は、直流電源、交流電源、インバータ、このインバータの出力電圧を平滑するリアクトルおよびインバータを制御する制御部を備えている。交流電源の一端は、直流電源の中間電位点に接続されている。
 制御部は、第1の条件のとき、第1の周波数のキャリア信号を指令する。また、制御部は、第2の条件のとき、第1の周波数よりも高い第2の周波数のキャリア信号を指令する。第1の条件は、出力電圧指令に対して交流電源の電圧が小さく、かつ両者の差が所定値よりも小さいことである。第2の条件は、出力電圧指令に対して交流電源の電圧が小さく、かつ両者の差が所定値よりも大きいことである。そして、制御部は、出力電圧指令と指令されたキャリア信号とに基づいて、インバータを動作させるための制御信号を生成する。
 インバータは、制御部で生成された制御信号に基づいて、所定の交流電圧を出力する。この交流電圧は、直流電源の両端電圧および中性点電圧と交流電源の電圧とを用いて、生成される。
 上記電力変換装置において、制御部は、第1の条件と第2の条件とを判断するに際し、少なくとも出力電圧指令および交流電源の電圧それぞれの実効値、または、それぞれの瞬時値を用いることができる。
 上記電力変換装置において、キャリア信号の第1の周波数と第2の周波数とは、それぞれの周波数でインバータが動作したときに、リアクトルに流れるリプル電流の最大振幅が略同じになる関係に設定されている。
 上記電力変換装置において、キャリア信号の第2の周波数は、出力電圧指令と交流電源の電圧との差に応じて設定される。
 上記電力変換装置において、インバータは、交流電源の電圧が0Vに低下するまで、動作する。
 上記電力変換装置におけるインバータの実施態様は、少なくともスイッチング素子直列回路と双方向スイッチとを含む。スイッチング素子直列回路は、第1のスイッチング素子と第2のスイッチング素子とを直列に接続して構成されている。スイッチング素子直列回路は、直流電源の両端に接続される。第1のスイッチング素子には、第1のダイオードが逆並列に接続される。第2のスイッチング素子には、第2のダイオードが逆並列に接続される。
 双方向スイッチの一端は、第1と第2のスイッチング素子の接続点に接続され、他端は、交流電源の他端と接続される。
 上記電力変換装置のインバータにおいて、第1と第2のスイッチング素子は、炭化ケイ素または窒化ガリウムのいずれか一方を材料とするワイドバンドギャップ半導体で形成されたMOSFETで構成することができる。
 また、上記電力変換装置のインバータにおいて、第1と第2のダイオードは、炭化ケイ素または窒化ガリウムのいずれか一方を材料とするワイドバンドギャップ半導体で形成することができる。
 また、上記電力変換装置のインバータにおいて、双方向スイッチは、炭化ケイ素または窒化ガリウムのいずれか一方を材料とするワイドバンドギャップ半導体で形成されたMOSFETを逆並列に接続して構成することができる。
 また、上記電力変換装置のインバータにおいて、双方向スイッチは、炭化ケイ素または窒化ガリウムのいずれか一方を材料とするワイドバンドギャップ半導体で形成されたダイオードを含む構成とすることもできる。
 本発明によれば、昇圧モードにおいて、インバータの動作周波数を切り替えるので、リアクトルのインダクタンス値の増加を抑制しながら、交流電源の瞬時電圧低下時においても、リプル電流を所定値内に抑制することができる。
本発明を適用した電力変換装置の一の実施形態を説明するための図である。 本発明を適用した電力変換装置の制御部を説明するための図である。 キャリア信号の切替えの実施例を説明するための図である。 昇圧モード時の出力電圧波形を説明するための図である。 昇圧モード時(Vr=0V)の出力電圧波形を説明するための図である。 本発明を適用した電力変換装置の他の実施形態を説明するための図である。 従来技術に係る電力変換装置を説明するための図である。
 以下に、本発明の実施形態について、図面を参照しながら説明する。
 図1は、本発明の一実施形態に係る電力変換装置の回路構成を説明するための図である。図において、1は単相の交流電源である。交流電源1の端子Rと端子Sとの間に、コンデンサ2が接続される。また、30は直流電源、40はインバータ、5はフィルタ、6は負荷、80は制御部である。
 直流電源30は、正側直流電源Psp(第1の直流電源)と負側直流電源Psn(第2の直流電源)とを直列接続してなる電源である。直流電源30は、端子P,O,Nを備えている。端子Pは、直流電源30の高電位側端子に接続される。端子Nは、直流電源30の低電位側端子に接続される。端子Oは、直流電源Pspと直流電源Psnの接続点(直流電源30の中間電圧を出力する端子)に接続される。交流電源1の端子Sは、直流電源30の端子Oに接続されている。
 直流電源Pspと直流電源Psnからなる直流電源30は、例えば、図7に示したコンバータ3で構成することができる。コンバータ3は、交流電源1の電圧Vrを用いて3レベルの電位を出力する。しかし、直流電源30は、コンバータ3のような回路構成に限られるものではなく、他の方式によって構成された回路であってもよい。
 インバータ40は、スイッチング素子直列回路と双方向スイッチBS1とで構成されている。また、インバータ40は、交流電圧を出力するための端子U(第1の交流出力端子)と端子V(第2の交流出力端子)とを備えている。
 スイッチング素子直列回路は、スイッチング素子Q1,Q2を直列接続した回路である。このスイッチング素子直列回路は、直流電源30の端子Pと端子Nの間に接続される。スイッチング素子Q1,Q2の接続点は、端子Uに接続されている。端子Vは、直流電源30の端子Oに接続されている。
 双方向スイッチBS1は、スイッチ素子S1,S2を逆並列接続した回路である。この双方向スイッチBS1は、端子Uと端子Rとの間に接続されている。具体的には、スイッチ素子S1のコレクタ端子側が端子Rに接続される。また、スイッチ素子S1のエミッタ端子側が端子Uに接続される。
 フィルタ5は、リアクトルLfとコンデンサCfの直列回路で構成されている。フィルタ5は、インバータ40の端子U,V間に接続される。負荷6は、コンデンサCfの両端に接続される。
 図1では、スイッチング素子Q1,Q2を、ダイオードが逆並列に接続されたIGBT(Insulated Gate Bipolar Transistor)で示している。しかし、スイッチング素子Q1,Q2は、このように構成された素子に限られない。スイッチング素子Q1,Q2は、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)など、交流電源1の周波数に対して数10倍以上の高い周波数でオンオフ動作ができる他の半導体素子を用いて構成しても良い。
 双方向スイッチBS1は、一方のスイッチ素子をオンすることによって一方向に電流を流すことができる。また、双方向スイッチBS1は、他方のスイッチ素子をオンすることによって他方向に電流を流すことができる。したがって、双方向スイッチBS1は、このような機能を発揮することができれば、他の構成によるものであっても良い。
 上記電力変換装置において、直流電源30の端子Pは、直流電源Pspの正電位(以下、正電圧Vpという。)を出力する。直流電源30の端子Oは、直流電源30の中間電位(以下、ゼロ電圧という。)を出力する。直流電源30の端子Nは、直流電源Psnの負電位(以下、負電圧Vnという。)を出力する。交流電源1の端子Rは、交流電源1の電圧Vrを出力する。
 インバータ40は、スイッチング素子Q1に電流を流すことで、端子U,V間に、正電圧Vpを出力する。また、インバータ40は、スイッチング素子Q2に電流を流すことで、端子U,V間に、負電圧Vnを出力する。また、インバータ40は、双方向スイッチBS1のいずれかの方向に電流を流すことで、端子U,V間に、交流電源1の電圧Vrを出力する。そして、インバータ40は、スイッチング素子Q1,Q2と双方向スイッチBS1のオンオフ動作を制御することによって、端子U,V間に、単相の交流電圧Vuを出力する。
 次に、本実施形態に係る電力変換装置の動作について、説明する。この電力変換装置は、直送モード、昇圧モード、降圧モードを有する。この電力変換装置の直送モードおよび降圧モードの動作は、図7に示した電力変換装置と同様である。以下では、主に、昇圧モードにおけるこの電力変換装置の動作を説明し、直送モードおよび降圧モードの説明は、省略する。
 この電力変換装置は、交流電源1の電圧Vrが第1の設定電圧以下になったとき、昇圧モードで動作する。そして、この電力変換装置は、電圧Vrがさらに低下して0Vに至るまで、昇圧モードの動作を継続する。この間、交流電源1の停電は検出されない。ここで、昇圧モードは、電力変換装置が、交流電源1の電圧Vrと直流電源30の3レベル電圧(電圧Vp,Vnおよびゼロ電圧)とを用いて、電圧Vrよりも大きい所定の電圧Vloadを出力するモードである。
 この電力変換装置は、昇圧モードにおいて、交流電源1の電圧Vrの大きさに応じてスイッチング素子Q1,Q2がオンオフする周波数を切り替える。この動作により、リアクトルLfに流れるリプル電流の増加が抑制される。
 具体的には、この電力変換装置は、交流電源1の電圧Vrが出力電圧指令Vよりも小さく、かつ電圧Vrと出力電圧指令Vとの差が所定値よりも小さいとき(第1の条件)、第1の周波数で昇圧動作を行う。また、この電力変換装置は、交流電源1の電圧Vrが出力電圧指令Vよりも小さく、かつ電圧Vrと出力電圧指令Vとの差が所定値以上のとき(第2の条件)、第2の周波数で昇圧動作を行う。第2の周波数は、第1の周波数よりも高い周波数である。
 電力変換装置の上記動作モードを実現するため、制御回路80は、図2に示す制御ブロックで実現される機能を備えている。制御回路80の出力電圧指令生成回路81、動作モード判定回路82およびキャリア信号生成回路83には、電圧検出器71によって検出された交流電源1の電圧Vrが入力される。また、変調信号生成回路84には、電圧検出器72によって検出された直流電源Pspの電圧Vpと電圧検出器73によって検出された直流電源Psnの電圧Vnとが入力される。
 出力電圧指令生成回路81は、電力変換装置の出力電圧の指令Vを出力する。出力電圧指令Vは、交流電源1の電圧Vrに同期している。出力電圧指令Vは、動作モード判定回路82および変調信号生成回路84に入力される。
 動作モード判定回路82は、交流電源1の電圧Vrと出力電圧指令Vとの大小を比較した結果にしたがって、電力変換装置の動作モード信号δを生成する。すなわち、交流電源1の電圧Vrが、出力電圧指令Vに対して、予め決められた範囲内にあれば、動作モード判定回路82は、動作モード信号δを、直送モードを示す信号に設定する。また、交流電源1の電圧Vrが、出力電圧指令Vを中心として、予め決められた範囲の上限値よりも大きければ、動作モード判定回路82は、動作モード信号δを、降圧モードを示す信号に設定する。また、交流電源1の電圧Vrが、出力電圧指令Vに対して、予め決められた範囲の下限値よりも小さければ、動作モード判定回路82は、動作モード信号δを、昇圧モードを示す信号に設定する。以下では、この予め決められた範囲の下限値を、第1の設定値という。
 なお、直送モードを設けない場合は、第1の設定値は、出力電圧指令Vに等しい値となる。
 キャリア信号生成回路83は、動作モード信号δにしたがって、たとえば三角波状のキャリア信号Scを出力する。そして、動作モード信号δが昇圧モードであって、電圧Vrと出力電圧指令Vとの差が所定値(第2の設定値)よりも小さいとき(第1の条件)、キャリア信号生成回路83は、キャリア信号Scの周波数を第1の周波数f1とする。また、動作モード信号δが昇圧モードであって、電圧Vrと出力電圧指令Vとの差が所定値(第2の設定値)以上のとき(第2の条件)、キャリア信号生成回路83は、キャリア信号Scの周波数を第2の周波数f2とする。キャリア信号生成回路83から出力されたキャリア信号Scは、パルス幅変調回路85に入力される。
 ここで、出力電圧指令Vと交流電源1の電圧Vrとの大小関係は、それぞれの実効値またはそれぞれの瞬時値を比較することで、判定することができる。それぞれの電圧の実効値を比較する場合、キャリア信号生成回路83は、出力電圧の1周期ごとにキャリア信号Scの周波数を第1の周波数f1または第2の周波数f2に設定する。また、それぞれの電圧の瞬時値を比較する場合、キャリア信号生成回路83は、比較した制御周期ごとにキャリア信号Scの周波数を第1の周波数f1または第2の周波数f2に設定する。
 図3は、出力電圧指令Vと交流電源1の電圧Vrそれぞれの瞬時値を比較してキャリア信号Scの周波数を設定した場合の各信号の関係を示している。例えば、交流電源1の電圧Vrが正弦波状を保って低下すると、出力電圧指令Vの位相がπ/2および3π/2付近において、出力電圧指令Vと交流電源1の電圧Vrとの差が第2の設定値以上となる。キャリア信号生成回路83は、出力電圧指令Vと交流電源1の電圧Vrとの差が第2の設定値以上となる領域(出力電圧指令Vの位相がπ/2および3π/2付近)において、キャリア信号Scの周波数を第2の周波数f2に設定する。他の領域では、キャリア信号生成回路83は、キャリア信号Scの周波数を第1の周波数f1に設定する。
 出力電圧指令Vと交流電源1の電圧Vrそれぞれの実効値を比較する場合は、キャリア信号生成回路83は、出力電圧指令Vの一周期ごとに、キャリア信号Scの周波数を第1の周波数f1または第2の周波数f2に設定する。
 なお、動作モード信号δが直送モードもしくは降圧モードを示すとき、キャリア信号生成回路83は、キャリア信号Scの周波数を第1の周波数f1に設定する。ただし、動作モード信号δが直送モードもしくは降圧モードを示すとき、キャリア信号生成回路83は、キャリア信号Scの周波数を第1の周波数f1とは異なる第3の周波数f3としても良い。
 変調信号生成回路84は、出力電圧指令Vを用いて、変調信号λを生成する。変調信号λは、キャリア信号Scの振幅を基準に正規化された信号である。変調信号λの正規化には、直流電源30の電圧Vp,Vnが用いられる。変調信号生成回路84から出力された変調信号λは、パルス幅変調回路85に入力される。
 パルス幅変調回路85は、キャリア信号Scと変調信号λとを用いて、インバータ40を動作させるための制御信号G1,G2,Gs1,Gs2を生成する。制御信号G1は、スイッチング素子Q1をオンオフ動作させるための信号である。制御信号G2は、スイッチング素子Q2をオンオフ動作させるための信号である。制御信号Gs1は、スイッチ素子S1をオンオフ動作させるための信号である。制御信号Gs2は、スイッチング素子S2をオンオフ動作させるための信号である。
 上記制御回路80から出力される制御信号にしたがってインバータ40が昇圧モードで動作すると、端子U-V間には、図4に示す交流電圧Vuが出力される。交流電圧Vuは、交流電源1の電圧Vrと電圧Vpまたは電圧Vnとを選択的に出力することにより得られる電圧である。交流電圧Vuには、多くの高調波成分が含まれている。この高調波成分は、フィルタ5によって除去することができる。交流電圧Vuから高調波成分を除去することにより、正弦波状の交流電圧Vloadが得られる。負荷6には、正弦波状の交流電圧Vloadが印加される。
 昇圧モードにおいて交流電源1の電圧Vrが0Vまで低下すると、交流電圧Vuと交流電圧Vloadとは、図5に示す波形となる。交流電源1の電圧Vrが0Vであるので、交流電圧Vuは、振幅がVpまたはVnのパルス列からなる電圧である。
 次に、フィルタ5のリアクトルLfに流れる電流Iuについて説明する。
 上述のとおり、インバータ40は、直送モード、降圧モード、昇圧モードのいずれかのモードで動作する。
 インバータ40が直送モードで動作するとき、スイッチング素子Q1,Q2はいずれもオフする。一方、双方向スイッチBS1は双方向に導通可能な状態になる。この場合、交流電源1の電圧Vrが、端子U-V間に出力される。したがって、リアクトルLfに流れる電流Iuは、正弦波状である。この電流Iuには、インバータ40の動作に伴うリプル成分は含まれない。
 インバータ40が降圧モードで動作するとき、スイッチング素子Q1,Q2はいずれもオフしている。一方、双方向スイッチBS1は、制御信号Gs1,Gs2にしたがって、オンオフ動作を行う。制御信号Gs1,Gs2は、周波数f1のキャリア信号Scと変調信号λとを用いて、パルス幅変調された信号である。
 この場合、端子U-V間には、交流電源1の電圧Vrをパルス幅変調した電圧Vuが出力される。したがって、リアクトルLfに流れる電流Iuには、双方向スイッチBS1のオンオフ動作に伴って生じるリプル成分が含まれる。このリプル成分の周波数は、キャリア信号Scの周波数f1の2倍の周波数である。
 インバータ40が昇圧モードで動作するとき、双方向スイッチBS1は、常に、オン状態にある。一方、スイッチング素子Q1,Q2は、制御信号G1,G2にしたがって、オンオフ動作を行う。この制御信号G1,G2は、キャリア信号Scと変調信号λとを用いて、パルス幅変調された信号である。キャリア信号Scの周波数は、第1の周波数f1または第2の周波数f2である。
 この場合、端子U-V間には、交流電源1の電圧Vrと直流電源30の電圧をパルス幅変調した電圧とを交互に選択して得られる電圧Vuが出力される。したがって、リアクトルLfに流れる電流Iuには、スイッチング素子Q1,Q2のオンオフ動作に伴って生じるリプル成分が含まれる。このリプル成分の周波数は、キャリア信号Scの周波数の2倍の周波数である。
 ここで、インバータ40が昇圧モードで動作するとき、出力電圧指令Vと交流電源1の電圧Vrとの差が大きくなるに従い、リアクトルLfに流れるリプル電流が大きくなる。一方、キャリア信号Scの周波数が高くなると、リアクトルLfに流れるリプル電流が小さくなる。ただし、キャリア信号Scの周波数を高くなると、スイッチング素子Q1,Q2のスイッチング損失が増加する。
 したがって、リアクトルLfのインダクタンス値とキャリア信号Scの周波数とは、リアクトルLfに流れるリプル電流の大きさが所定値となるように設定される。そして、キャリア信号Scの第1の周波数f1は、出力電圧指令Vと交流電源1の電圧Vrとの差が予め定められた第2の設定値に等しいことを条件に設定される。
 このときリアクトルLfに流れるリプル電流(第1のリプル電流)によってリアクトルLfで生じる損失(第1の損失)は、所定値内になるように設定されている。また、リアクトルLfに流れる最大電流の値(第1の最大電流値)は、スイッチング素子Q1,Q2の可制御範囲内になるように設定されている。
 次に、キャリア信号Scの第2の周波数f2は、交流電源1の電圧Vrが0Vになっていることを条件に設定される。なお、リアクトルLfのインダクタンス値は、上記で設定した値である。
 上記条件において、インバータ40が昇圧モードで動作すると、リアクトルLfに流れるリプル電流は、上記第1のリプル電流とほぼ同じ値になる。また、リアクトルLfに流れる電流の最大値は、上記第1の最大電流値とほぼ同じになる。
 一方、リプル電流の周波数が高くなったことにより、リアクトルLfに生じる損失は、上記第1の損失よりも大きくなる。しかし、リアクトルの熱時定数は交流電源1の瞬時電圧低下時間よりも長いため、熱的な問題は生じない。
 以上のとおり、本実施形態に係る電力変換装置は、リアクトルLfのインダクタンス値の増加を抑制しながら、交流電源1の瞬時電圧低下時においても、リアクトルLfに流れるリプル電流を所定値内に抑制することができる。
 なお、スイッチング素子Q1,Q2を構成する半導体素子は、炭化ケイ素または窒化ガリウムを材料とするワイドバンドギャップ半導体で構成しても良い。ワイドバンドギャップ半導体素子は、低損失・高周波化が可能であり、また、高温動作が可能であるという特徴を有している。
 また、双方向スイッチBS1を構成する半導体素子は、同様に、炭化ケイ素または窒化ガリウムを材料とするワイドバンドギャップ半導体で構成しても良い。
 本発明の適用対象は、上記で説明した実施形態に限られない。例えば、本発明は、図6に示す電力変換装置にも適用することができる。この電力変換装置が図1に示した電力変換装置と異なる点は、インバータ41が、インバータ40に対して、さらに双方向スイッチBS2を備えているところである。このインバータ41は、昇圧モードにおいて、双方向スイッチBS1,BS2をオフさせることにより、インバータ40と同様の動作を行う。
 このように、図1に示したインバータ回路40のスイッチング素子Q1,Q2と双方向スイッチBS1とを備えて交流電源1の電圧Vrと直流電源30の電圧とを用いて昇圧動作を行う電力変換装置であれば、本発明を適用することができる。
 本発明は、瞬時電圧低下補償装置または無停電電源装置など、交流電源の電圧変動および交流電源の停電が発生しても、負荷に安定な電圧を供給するための電力変換装置に適用することができる。
1  交流電源、2  コンデンサ、3  コンバータ、30  直流電源、4,40,41  インバータ、5  フィルタ、6  負荷、80,81  制御部。

Claims (11)

  1.  出力電圧指令に対応する交流電圧を出力する電力変換装置であって、
     前記電力変換装置は、3レベルの電圧を出力する直流電源、前記直流電源の中間電位点に一端が接続される交流電源、前記直流電源の3レベル電圧および前記交流電源の電圧のいずれかを選択して出力するインバータ、前記インバータの出力電圧を平滑するリアクトルおよび前記インバータを前記出力電圧指令にしたがって制御する制御部を備え、
     前記制御部は、
     前記出力電圧指令に対して前記交流電源の電圧が小さく、かつその差が所定値よりも小さい第1の条件のとき、第1の周波数のキャリア信号を指令し、
     前記出力電圧指令に対して前記交流電源の電圧が小さく、かつその差が所定値よりも大きい第2の条件のとき、前記第1の周波数よりも高い第2の周波数のキャリア信号を指令するとともに、
     前記出力電圧指令と前記指令されたキャリア信号に基づいて制御信号を生成し、
     前記インバータは、前記制御信号にしたがって、前記出力電圧指令に対応する交流電圧を出力する、
    ことを特徴とする電力変換装置。
  2.  前記制御部は、少なくとも前記出力電圧指令および前記交流電源の電圧それぞれの実効値に基づいて前記第1の条件と第2の条件とを判断する、ことを特徴とする請求項1に記載の電力変換装置。
  3.  前記制御部は、少なくとも前記出力電圧指令および前記交流電源の電圧それぞれの瞬時値に基づいて前記第1の条件と第2の条件とを判断する、ことを特徴とする請求項1に記載の電力変換装置。
  4.  前記キャリア信号の第1の周波数と第2の周波数とは、それぞれの周波数でインバータが動作したときに、リアクトルに流れるリプル電流の最大振幅が略同じになる関係に設定されていることを特徴とする請求項1に記載の電力変換装置。
  5.  前記キャリア信号の第2の周波数は、前記出力電圧指令と前記交流電源の電圧の差に応じて設定されることを特徴とする請求項1に記載の電力変換装置。
  6.  前記インバータは、前記交流電源の電圧が0Vに低下するまで、動作することを特徴とする請求項1に記載の電力変換装置。
  7.  前記インバータは、少なくともスイッチング素子直列回路と双方向スイッチとを含み、
     スイッチング素子直列回路は、第1のダイオードが逆並列に接続される第1のスイッチング素子と第2のダイオードが逆並列に接続される第2のスイッチング素子とを直列接続してなり、
     スイッチング素子直列回路は、前記直流電源の両端に接続され、
     双方向スイッチは、一端が前記第1と第2のスイッチング素子の接続点に接続され、他端が前記交流電源の他端と接続される、
    ことを特徴とする請求項1に記載の電力変換装置。
  8.  前記第1と第2のスイッチング素子は、炭化ケイ素または窒化ガリウムのいずれか一方を材料とするワイドバンドギャップ半導体で形成されたMOSFETであることを特徴とする請求項7に記載の電力変換装置。
  9.  前記第1と第2のダイオードは、炭化ケイ素または窒化ガリウムのいずれか一方を材料とするワイドバンドギャップ半導体で形成されていることを特徴とする請求項7に記載の電力変換装置。
  10.  前記双方向スイッチは、炭化ケイ素または窒化ガリウムのいずれか一方を材料とするワイドバンドギャップ半導体で形成されたMOSFETを逆並列に接続して構成されていることを特徴とする請求項7に記載の電力変換装置。
  11.  前記双方向スイッチは、炭化ケイ素または窒化ガリウムのいずれか一方を材料とするワイドバンドギャップ半導体で形成されたダイオードを含むことを特徴とする請求項7に記載の電力変換装置。
     
PCT/JP2013/005985 2013-10-08 2013-10-08 電力変換装置 WO2015052743A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380075290.XA CN105075099B (zh) 2013-10-08 2013-10-08 功率转换装置
PCT/JP2013/005985 WO2015052743A1 (ja) 2013-10-08 2013-10-08 電力変換装置
EP13895179.3A EP2966770B1 (en) 2013-10-08 2013-10-08 Electrical power converter
JP2015541308A JP6142926B2 (ja) 2013-10-08 2013-10-08 電力変換装置
US14/877,260 US9887539B2 (en) 2013-10-08 2015-10-07 Power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/005985 WO2015052743A1 (ja) 2013-10-08 2013-10-08 電力変換装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/877,260 Continuation US9887539B2 (en) 2013-10-08 2015-10-07 Power conversion device

Publications (1)

Publication Number Publication Date
WO2015052743A1 true WO2015052743A1 (ja) 2015-04-16

Family

ID=52812594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005985 WO2015052743A1 (ja) 2013-10-08 2013-10-08 電力変換装置

Country Status (5)

Country Link
US (1) US9887539B2 (ja)
EP (1) EP2966770B1 (ja)
JP (1) JP6142926B2 (ja)
CN (1) CN105075099B (ja)
WO (1) WO2015052743A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019004653A (ja) * 2017-06-19 2019-01-10 株式会社リコー Pwm制御装置、スイッチング電源装置、画像形成装置、pwm制御方法、及びプログラム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107612402B (zh) * 2017-09-27 2019-02-19 奥克斯空调股份有限公司 功率变换电路谐振抑制方法及装置
CN112737383B (zh) * 2020-12-29 2022-06-07 中国矿业大学 一种三电平npc逆变器载波频率有序变化反相层叠脉宽调制方法
CN113315404B (zh) * 2021-05-28 2022-05-27 张超 一种双直-双交对称型四象限变流器
CN115021541B (zh) * 2022-08-09 2022-11-04 西南交通大学 非隔离upqc电路离网运行状态下脉动功率的抑制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02168895A (ja) * 1988-12-21 1990-06-28 Fuji Electric Co Ltd 電圧形パルス幅変調制御インバータの電流ピーク値低減方法
JPH04236171A (ja) * 1991-01-21 1992-08-25 Meidensha Corp インバータの出力電圧波形歪み抑制法
JPH1075581A (ja) 1996-08-30 1998-03-17 Yuasa Corp 無停電電源装置
WO2012067167A1 (ja) 2010-11-17 2012-05-24 富士電機株式会社 交流-交流変換装置
JP2012175882A (ja) * 2011-02-24 2012-09-10 Mitsubishi Electric Corp 電源装置及び空気調和装置
JP2013021764A (ja) * 2011-07-07 2013-01-31 Fuji Electric Co Ltd 電力変換装置およびこれを用いたインバータ装置
JP2013172620A (ja) * 2012-02-22 2013-09-02 Mitsubishi Electric Corp パワーモジュール

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3203464B2 (ja) 1994-06-11 2001-08-27 サンケン電気株式会社 交流電力変換装置
JP2001078446A (ja) * 1999-06-29 2001-03-23 Toshiba Corp 電源装置
JP4882266B2 (ja) 2005-04-12 2012-02-22 富士電機株式会社 交流−交流変換装置
JP2011109739A (ja) * 2009-11-13 2011-06-02 Hitachi Ltd 電力変換装置
JP5569583B2 (ja) * 2012-12-21 2014-08-13 株式会社安川電機 マトリクスコンバータ
JP5850182B2 (ja) * 2013-01-30 2016-02-03 富士電機株式会社 電力変換装置
CN105659484B (zh) * 2013-10-23 2018-09-04 三菱电机株式会社 电力变换装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02168895A (ja) * 1988-12-21 1990-06-28 Fuji Electric Co Ltd 電圧形パルス幅変調制御インバータの電流ピーク値低減方法
JPH04236171A (ja) * 1991-01-21 1992-08-25 Meidensha Corp インバータの出力電圧波形歪み抑制法
JPH1075581A (ja) 1996-08-30 1998-03-17 Yuasa Corp 無停電電源装置
WO2012067167A1 (ja) 2010-11-17 2012-05-24 富士電機株式会社 交流-交流変換装置
JP2012175882A (ja) * 2011-02-24 2012-09-10 Mitsubishi Electric Corp 電源装置及び空気調和装置
JP2013021764A (ja) * 2011-07-07 2013-01-31 Fuji Electric Co Ltd 電力変換装置およびこれを用いたインバータ装置
JP2013172620A (ja) * 2012-02-22 2013-09-02 Mitsubishi Electric Corp パワーモジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2966770A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019004653A (ja) * 2017-06-19 2019-01-10 株式会社リコー Pwm制御装置、スイッチング電源装置、画像形成装置、pwm制御方法、及びプログラム

Also Published As

Publication number Publication date
JPWO2015052743A1 (ja) 2017-03-09
CN105075099B (zh) 2017-09-22
EP2966770B1 (en) 2020-12-09
EP2966770A4 (en) 2016-11-09
US9887539B2 (en) 2018-02-06
JP6142926B2 (ja) 2017-06-07
US20160028232A1 (en) 2016-01-28
CN105075099A (zh) 2015-11-18
EP2966770A1 (en) 2016-01-13

Similar Documents

Publication Publication Date Title
JP5995139B2 (ja) 双方向dc/dcコンバータ
JP5282855B2 (ja) 交流−交流変換装置
JP5530401B2 (ja) 電源装置
JP2013504295A (ja) 電気エネルギ変換回路装置
JP5370519B2 (ja) 電力変換装置
JP7124297B2 (ja) 電力変換装置
JP6142926B2 (ja) 電力変換装置
WO2014049779A1 (ja) 電力変換装置
JP4929863B2 (ja) 電力変換装置
JP2015100244A (ja) 電源装置
CN110350789A (zh) 绝缘型dc/dc变换器及其控制装置、以及dc/ac转换装置
KR20190115364A (ko) 단상 및 3상 겸용 충전기
JP4195948B2 (ja) 系統連系インバータ
US20160118904A1 (en) Power conversion apparatus
US9438132B2 (en) Multilevel AC/DC power converting method and converter device thereof
CN109196768B (zh) Ac-dc电源转换器及用于该电源转换器的方法
US8836296B2 (en) Power conversion apparatus
JP6409515B2 (ja) 絶縁形交流−直流変換装置
KR102416374B1 (ko) 고압인버터 전력셀의 직류단 전압 제어장치
KR100439414B1 (ko) 절연형 디씨/디씨 전력변환기 및 이를 이용한 무정전전원공급 장치
CN112075019B (zh) 具有升压开关的降压矩阵式整流器及其在一相损耗期间的操作
KR102231614B1 (ko) 전력 변환 효율이 개선된 전력 변환 장치
Aeloiza et al. Multilevel multichannel interleaved AC-DC converter for high current applications
US20190214917A1 (en) Converter system and method for operating a converter system
JP5915753B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380075290.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13895179

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013895179

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015541308

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE