[go: up one dir, main page]

WO2015046995A1 - 폴리올레핀 - Google Patents

폴리올레핀 Download PDF

Info

Publication number
WO2015046995A1
WO2015046995A1 PCT/KR2014/009119 KR2014009119W WO2015046995A1 WO 2015046995 A1 WO2015046995 A1 WO 2015046995A1 KR 2014009119 W KR2014009119 W KR 2014009119W WO 2015046995 A1 WO2015046995 A1 WO 2015046995A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
molecular weight
polyolefin
aryl
formula
Prior art date
Application number
PCT/KR2014/009119
Other languages
English (en)
French (fr)
Inventor
금돈호
이충훈
박상은
정승환
조윤희
도영실
박해웅
이영우
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140129367A external-priority patent/KR101657680B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/021,149 priority Critical patent/US9701768B2/en
Priority to CN201480048452.5A priority patent/CN105518034B/zh
Priority to ES14849825T priority patent/ES2966662T3/es
Priority to JP2016545698A priority patent/JP6407291B2/ja
Priority to EP14849825.6A priority patent/EP3037441B1/en
Publication of WO2015046995A1 publication Critical patent/WO2015046995A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/01Cp or analog bridged to a non-Cp X neutral donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+

Definitions

  • the present invention relates to polyolefins, and more particularly, to polyolefins having a narrow molecular weight distribution and exhibiting a characteristic comonomer distribution.
  • SUBSTITUTE SHEET (RULE 26) Compounds listed in the above figure have a phosphorus (1), ethylene or propylene (2), methylidene (3) and methylene ( 4 ) bridges instead of the CGC-structured silicon bridges, but ethylene polymerization or ethylene and alphalephine are introduced, respectively. When applied to the copolymerization did not show excellent results in terms of polymerization activity and co-polymerization performance compared to CGC.
  • the present invention uses a metallocene catalyst to control the distribution of comonomers according to the molecular weight.
  • the present invention controls the distribution of comonomers according to the molecular weight by using a metallocene catalyst.
  • Eggplant is to provide a polyolefin.
  • One aspect of the present invention for achieving the above object provides a polyolefin having a molecular weight distribution of 1.5 to 3, the branch gradient number (BGN) value of 0.01 to 1.0 calculated by the following formula (1):
  • the low molecular weight grain content means the grain content at the left boundary of 80%, except for the left and right ends 10% of the total area (branch content of 2 or more carbon atoms per 1,000 carbons, unit: 1,000 C).
  • the high molecular weight side branch content means the content of the branch at the right boundary.
  • the polyolefins of the present invention can be used in various fields, such as household articles, automobiles, shock absorbers, which alone or blended with other polymers, requiring high laminar strength and elasticity.
  • FIG. 1 is a graph showing the results of GPC-FTIR measurement of the polyolefin of Example 1.
  • FIG. 2 is a graph showing the results of GPC-FTIR measurement of polyolefin of Example 2.
  • FIG. 3 is a graph showing the results of GPC-FTIR measurement of polyolefin of Comparative Example 1.
  • first and second are used to describe various components, and the terms are used only for the purpose of distinguishing one component from other components.
  • the molecular weight distribution is 1.5 to 3, and the BGN (Branch gradient number) value calculated by the following Equation 1 provides 0.01 to 1.0 polyolefin.
  • Branch Gradient Number (BGN) High Molecular Weight Side Branch Content-Low Molecular Weight
  • BGN branch gradient number
  • SCB short carbon branch
  • LCB long carbon branch
  • the BGN (Branch gradient number) value is measured by using the GPC-FTIR equipment to measure the molecular weight, molecular weight distribution, and defect content at the same time continuously, and log-log (w / w) of the molecular weight (Molecular weight, Mw) as the x-axis.
  • the molecular weight distribution curve is plotted using the logarithmic molecular weight distribution (dwt / dlog Mw) as the y-axis, the low-molecular weight content of the low-molecular weight defect is determined at the left boundary of 80% except for the left and right ends 10% of the total area.
  • the content (unit: dog / 1,000C), and the high molecular weight side branch content means the value calculated according to the following formula 1 as the content of the defect at the right boundary of the middle 80%.
  • the content of the grains is to mean the content of two or more carbon atoms per 1,000 carbons.
  • the BGN value is positive, it means that the low content of grains is low in the low molecular weight region according to the molecular weight distribution curve for the logarithm of the molecular weight, and that the side branch content is relatively high in the high molecular weight region.
  • the value is negative (-), it means a structure that has a high content of grains in a low molecular weight region and a relatively low content of grains in a high molecular weight region.
  • the polyolefin of the present invention has a BGN value measured and calculated in the same manner as 0.01 to 1.0, or about 0.01 to about 0.9, or about 0.01 to about 0.5, or about 0.01 to about 0.2, or about 0.01 to about 0.1, or From about 0.03 to about 0.1. That is, the polyolefin of the present invention has a low branched content in the low molecular weight region, a relatively high branched content in the high molecular weight region, and the slope thereof is within the above-described range.
  • the physical properties of the polyolefin can be optimized to achieve high impact strength and good mechanical properties. This results in high layer strength and good mechanical properties when compounded with other polymers such as polypropylene resins. Can be achieved.
  • the polyolefin of the present invention may have a range of about 20 to about 120 carbon atoms, preferably about 50 to about 100 carbon atoms per 1,000 carbon atoms.
  • the polyolefins of the invention also have a range 3 ⁇ 4 ⁇ in which the molecular weight distribution (weight average molecular weight / number average molecular weight) is from about 1.0 to about 3.0, or from about 1.5 to about 3.0, or from about 1.5 to about 2.8, or from about 2.0 to about 18.
  • the polyolefin of the present invention may exhibit high layer strength by having a very narrow molecular weight distribution.
  • the polyolefin has a melt flow index (Ml) measured at 190 ° C. and a 2.16 kg load condition in accordance with ASTM D1238 of about 0.1 to about 2000 g / 10 min, preferably about 0.1 to about 1000 g / 10 min, Preferably about 0.1 to 500 g / 10min, but is not limited thereto.
  • Ml melt flow index
  • melt flow rate ratio (MFRR) of the polyolefin may be about 5 to about 15, preferably about 6 to about 13, but is not limited thereto.
  • density of the polyolefin can be about 0.85 to about 0.91 g cc, preferably about 0.86 to about 0.91 g / cc, more preferably about 0.86 to about 0.90 g / cc, but is not limited thereto. It is not.
  • the physical properties may be more optimized to achieve high laminar strength and good mechanical properties.
  • the polyolefin which concerns on this invention is a copolymer of ethylene which is an olefinic monomer, and an alpha olefin comonomer.
  • Alpha olefins having 3 or more carbon atoms may be used as the alpha olefin copolymer.
  • Alpha olefins having 3 or more carbon atoms include propylene, 1-butene, 1-pentene, 4 -methylxopentene, 1'nucleene, 1-heptene, 1'octene, ⁇ decene, 1-undecene, 1-dodecene and 1- Tetradecene, 1-nuxadecene, 1-octadecene, or 1-eicosene.
  • Ateo a copolymer of said ethylene and alpha-olefin comonomer on, alpha eulre content of the pins co-monomer is from about 5 to about 70 parts by weight 0/0, preferably from about 5 to about 60 Increased 0 /., And more preferably About 10 to about 50 weight%.
  • the weight average molecular weight of the polyolefin according to the present invention may be about 10,000 to about 500,000 g / mol, preferably about 20,000 to about 200,000 g / m, but is not limited thereto.
  • the polyolefin according to the present invention has excellent layer strength when mixed with other polymers, and can be used in various fields such as household articles, automobiles, layer absorbers, and the like.
  • Polyolefins according to the present invention having the above characteristics can be obtained by copolymerization with ethylene and alpha olepin using a common metallocene compound including two metallocene compounds of different structures as catalysts,
  • the polyolefin may have a molecular weight distribution and a BGN value as described above. More specifically, the polyolefin of the present invention, the first metallocene compound represented by the formula (1); And in the presence of a common metallocene catalyst comprising a second metallocene compound represented by the formula (2), it can be obtained by combining the ethylene and alpha olepin comonomer.
  • R1 and R2 may be the same as or different from each other, and each independently hydrogen; Alkyl having 1 to 20 carbon atoms; Alkenyl having 2 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Alkylsilyl having 1 to 20 carbon atoms, arylsilyl having 6 to 20 carbon atoms; Alkylaryl having 7 to 20 carbon atoms; Arylalkyl having 7 to 20 carbon atoms; Or a metalloid of a Group 4 metal substituted with hydrocarbyl; R 1 and R 2 or two R 2 may be connected to each other by an alkylidine including an alkyl having 1 to 20 carbon atoms or an aryl functional group having 6 to 20 carbon atoms to form a ring;
  • R3, 3 'and R3 may be the same or different from each other, and each independently Hydrogen; halogen; Alkyl having 1 to 20 carbon atoms; Alkenyl having 2 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Alkylaryl having 7 to 20 carbon atoms; Arylalkyl having 7 to 20 carbon atoms; Alkoxy having 1 to 20 carbon atoms; Aryloxy having 6 to 20 carbon atoms; Or an amido group; Two or more of said R3, R3 ', and R3 "may be linked to each other to form an aliphatic ring or an aromatic ring;
  • CY is a substituted or unsubstituted aliphatic or aromatic ring, and the substituents substituted in CY are halogen; Alkyl having 1 to 20 carbon atoms; Alkenyl having 2 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Alkylaryl having 7 to 20 carbon atoms; Arylalkyl having 7 to 20 carbon atoms; Alkoxy having 1 to 20 carbon atoms; Aryloxy having 6 to 20 carbon atoms; Or an alkyl amido group having 1 to 20 carbon atoms; An aryl amido group having 6 to 20 carbon atoms, and when there are a plurality of substituents, two or more substituents in the substituents may be linked to each other to form an aliphatic or aromatic ring;
  • Ml is a Group 4 transition metal
  • Q1 and Q2 may be the same as or different from each other, and each independently halogen; Alkyl having 1 to 20 carbon atoms; Alkenyl having 2 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Alkylaryl having 7 to 20 carbon atoms; Arylalkyl having 7 to 20 carbon atoms; Alkyl amido having 1 to 20 carbon atoms; Aryl amido having 6 to 20 carbon atoms; Or alkylidene having 1 to 20 carbon atoms.
  • M 2 is a Group 4 transition metal
  • Q3 and Q4 may be the same or different from each other, and each independently halogen; Alkyl having 1 to 20 carbon atoms; Alkenyl having 2 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Alkylaryl having 7 to 20 carbon atoms; Arylalkyl having 7 to 20 carbon atoms; Carbon number 1 Alkyl amido of from 20 to 20; Aryl amido having 6 to 20 carbon atoms; Or alkylidene having 1 to 20 carbon atoms;
  • R4 to R10 may be the same as or different from each other, and each independently hydrogen; Alkyl having 1 to 20 carbon atoms; Alkenyl having 2 to 20 carbon atoms; Alkoxy having 1 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Alkylsilyl having 1 to 20 carbon atoms, arylsilyl having 6 to 20 carbon atoms; Or alkylaryl having 7 to 20 carbon atoms; Arylalkyl having 7 to 20 carbon atoms;
  • B is carbon, silicon, or germanium, and is a bridge that binds a cyclopentadienyl-based ligand and JR10 zy by a covalent bond;
  • J is a periodic table group 15 element or group 16 element
  • z is the oxidation number of the element J
  • y is the bond number of the J element
  • n is an integer of 0-10.
  • the polymerization reaction of the ethylene and alpha olefin comonomer may be made at about 130 to about 250 ° C, preferably about 140 to about 200 ° C.
  • the activity of the catalyst may be maintained even in a high temperature synthesis process of 130 ° C. or higher, so that the active point of the catalyst in the synthesis reaction of the polyolefin is 2 Make it ideal.
  • the metallocene catalyst for synthesizing the high-density pleurepine is generally not used in the solution polymerization step of applying a high reaction resistance due to its low activity in the high temperature region, but the second metallocene compound of Chemical Formula 2 is represented by Chemical Formula 1 When mixed with the first metallocene compound of the excellent catalytic activity can be exhibited even in a high temperature region of 130 ° C or more.
  • reaction reaction of the ethylene and alpha olefin comonomer may be carried out in a continuous solution polymerization process, bulk polymerization process, suspension polymerization process or emulsion polymerization process. It may proceed, but preferably by solution polymerization reaction in a single reactor.
  • polyolefin can be synthesized in a single reactor even though two different metallocene catalysts are used, and thus a simple manufacturing process can be configured to reduce process time and cost.
  • first metallocene compound of Formula 1 include, but are not limited to, the compound of Formula 3 or Formula 4.
  • R1, R2, Q1, Q2 and Ml are the same as defined in Formula 1, and R11 may be the same as or different from each other, and each independently hydrogen; halogen; Alkyl having 1 to 20 carbon atoms; Alkenyl having 2 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Alkylaryl having 7 to 20 carbon atoms; Arylalkyl having 7 to 20 carbon atoms; Alkoxy having 1 to 20 carbon atoms; Aryloxy having 6 to 20 carbon atoms; Or amido group; Two or more of the R 11 may be connected to each other to form an aliphatic ring or an aromatic ring.
  • R1, R2, Q1, Q2 and Ml are the same as defined in Formula 1, and R12 may be the same or different from each other, and each independently hydrogen; halogen; Alkyl having 1 to 20 carbon atoms; Alkenyl having 2 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Alkylaryl having 7 to 20 carbon atoms; Arylalkyl having 7 to 20 carbon atoms; Alkoxy having 1 to 20 carbon atoms; Aryloxy having 6 to 20 carbon atoms; Or an amido group; Two or more of the R 12 may be connected to each other to form an aliphatic ring or an aromatic ring.
  • R2 may be each independently hydrogen or methyl group
  • Q1 or Q2 may be the same or different from each other, and each independently may be a methyl group : dimethylamido group or chloride group.
  • Specific examples of the second metallocene compound of Chemical Formula 2 may include a compound of the following chemical formula, but are not limited thereto.
  • the common metallocene catalyst in the method for preparing the polyolefin, may further include a cocatalyst compound in addition to the first and second metallocene compounds described above.
  • the cocatalyst compound includes a Group 13 metal of the periodic table, and may be at least one selected from the group consisting of a compound of Formula 5, a compound of Formula 6, and a compound of Formula 7.
  • R13 is a halogen radical, a hydrocarbyl radical having 1 to 20 carbon atoms, or a hydrocarbyl radical having 1 to 20 carbon atoms substituted with halogen, c is an integer of 2 or more,
  • D is aluminum or boron
  • R14 is hydrocarbyl having 1 to 20 carbon atoms or hydrocarbyl having 1 to 20 carbon atoms substituted with halogen
  • L is a neutral or cationic Lewis base
  • H is a hydrogen atom
  • Z is a Group 13 element
  • E may be the same or different from each other, and each independently one or more hydrogen atoms is halogen, hydrocarbon having 1 to 20 carbon atoms, alkoxy or Or an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 20 carbon atoms unsubstituted or substituted with phenoxy.
  • a compound represented by the above formula (V) may, for example, such as methyl aluminoxane (MAO), ethyl aluminoxane, isobutyl aluminoxane, butyl aluminoxane may be.
  • MAO methyl aluminoxane
  • ethyl aluminoxane ethyl aluminoxane
  • isobutyl aluminoxane isobutyl aluminoxane
  • butyl aluminoxane may be.
  • alkyl metal compound represented by the formula (6) for example, trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, tripropyl aluminum,.
  • Examples of the compound represented by the formula (7) include triethylammonium tetraphenylboron, tributylammonium tetraphenylboron, trimethylammonium tetraphenylboron, tripropylammonium tetraphenylboron, and trimethylammonium tetra (P).
  • Tripropylammonium tetraphenylaluminum trimethylammonium tetra ( ⁇ -rylryl) aluminum, tripropylammonium tetra ( ⁇ -rylryl) aluminum, triethylammonium tetra ( ⁇ , ⁇ -dimethylphenyl) aluminum, tributylammonium Tetra ( ⁇ -trifluoromethylphenyl) aluminum, trimethylammonium tetra ( ⁇ - trifluoromethylphenyl) aluminum, tributylammonium tetrapentafluorophenylaluminum, ⁇ , ⁇ -diethylanilinium tetraphenylaluminum, ⁇ , ⁇ - diethylanilinium tetraphenylaluminum, ⁇ , ⁇ - diethylanilinium tetrapentafluorophenylaluminum,
  • Triphenylphosphonium tetraphenylaluminum Trimethylphosphonium tetraphenylaluminum, triphenylcarbonium tetraphenylboron, triphenylcarbonium tetraphenylaluminum, triphenylcarbonium tetra ( ⁇ -trifluoromethylphenyl) boron,
  • Triphenylcarbonium tetrapentafluorophenylboron and the like Triphenylcarbonium tetrapentafluorophenylboron and the like.
  • the content of the promoter is the amount of the first and second metallocene compound
  • the molar ratio of the Group 13 metals to Group 4 metals may be about 1 to about 10,000, preferably about 1 to about 1,000, more preferably about 1 to about 500. remind If the molar ratio is less than 1, the effect of the addition of the promoter is insignificant. If the molar ratio exceeds 10,000, the excess alkyl group, which does not participate in the reaction and the residual alkyl group, rather inhibits the catalytic reaction and may act as a catalyst poison. This may cause a problem that excess aluminum or boron will remain in the polymer.
  • a hydrocarbon solvent such as pentane, nucleic acid, heptane, or an aromatic solvent such as benzene or toluene may be used as the reaction solvent, but is not necessarily limited thereto, and may be used in the art. Any solvent can be used.
  • the common metallocene catalyst is an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms suitable for an olefin polymerization process, for example, pentane, nucleic acid, heptane, nonane, decane, and isomers thereof. It can be injected by dissolving or diluting with aromatic hydrocarbon solvents such as and toluene and benzene, and hydrocarbon solvents substituted with chlorine atoms such as dichloromethane and chlorobenzene.
  • the solvent used herein is preferably used by removing a small amount of water or air that acts as a catalyst poison by treating a small amount of alkylaluminum, and may be carried out by further using a promoter.
  • a polyolefin satisfying the above-described physical properties may be manufactured. Copolymerization with alpha olefins when using a mixed metallocene catalyst is particularly induced by the second metallocene compound that makes the high molecular weight moiety, which enables the production of high performance polyolefins in which alpha olefin comonomers are concentrated on the high molecular weight chain side. do.
  • the polyolefin production can be carried out by solution polymerization, for example, can be carried out according to the conventional method while continuously supplying ethylene and alpha olefin comonomer at a constant ratio.
  • the alpha olephine comonomer is, for example, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-nucleene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dodecene, 1-tetradecene, 1-nuxadecene, 1-octadecene or 1-eicosene may be used.
  • the present invention is not limited thereto.
  • the polymerization temperature when copolymerizing alpha olefin as a comonomer with the common metallocene catalyst may range from about 130 to about 250 ° C., preferably from about 140 to about 200 ° C.
  • the activity of the catalyst can be maintained even in a high temperature synthesis process of 130 ° C. or higher, so that the catalyst in the synthesis reaction of polyolefin Let the active point of be at least 2.
  • the metallocene catalyst for synthesizing high-density polyolefin is not generally used in the solution thickening step of applying a high reaction temperature because of its low activity in the high temperature region, but the second metallocene compound of Formula 2 is When mixed with the first metallocene compound, excellent catalytic activity may be exhibited even in a high temperature region of 130 ° C or higher.
  • the polymerization pressure is preferably performed at about 1 to about 150 bar, more preferably about 1 to about 120 bar, most preferably about 10 to about 120 bar.
  • the polymerization reaction of the ethylene and the alpha olefin pin comonomer can control the physical properties of the polyolefin prepared by adjusting the content of the second metallocene compound.
  • the common metallocene catalyst includes a second metallocene compound in a relatively low content. More specifically, the second metallocene compound is more than 0 mol% to less than about 50 mol%, preferably about 5 to about 30 mol%, based on the total amount of the first and second metallocene compounds, More preferably from about 5 to about 25 mol%.
  • the second metallocene compound is included in such a content ratio, it is possible to provide a polyolefin having a narrow molecular weight distribution but having a BGN value in the above-described range.
  • 1,2,3,4-tetrahydroquinoline 13.08 g, 98.24 mmol
  • diethyl ether 150 mL
  • the shield tank was immersed in a -78 ° C. low temperature bath made of dry ice and acetone and stirred for 30 minutes.
  • n-BuLi n-butyllithium, 39.3 mL, 2.5M, 98.24 mmol
  • the flask was stirred for 2 hours, the flask was cooled to room temperature while removing the generated butane gas.
  • the flask was again immersed in a -78 ° C low temperature bath to lower the silver and added CO 2 gas. As the carbon dioxide gas was added, the slurry disappeared and became a transparent solution. The flask was connected to a bubbler to raise the temperature to room temperature while removing carbon dioxide gas. Thereafter, excess C0 2 gas and solvent were removed under vacuum. The flask was transferred to a dry box, pentane was added thereto, stirred vigorously, and filtered to obtain lithium carbamate of a white solid compound. The white solid compound is coordinated with diethyl ether. The yield is 100%.
  • 6-t-buthoxyhexane was confirmed by ⁇ -NMR, and the Grignard reaction proceeded well from 6-t-butoxynucleic acid. .
  • 6-t-buthoxyhexyl magnesium chloride was synthesized.
  • the 2 L autoclave continuous process reactor was charged with nucleic acid solvent (5.38 kg / h) and 1-butene (0.82 kg / h), then the temperature at the top of the reactor was preheated to 160 ° C.
  • Triisobutylaluminum compound (0.05 mmol / min)
  • the first metallocene compound obtained above (0.45 ⁇ / ⁇ )
  • the crab 2 metallocene compound 0.05 ⁇ / min
  • dimethylanilinium tetrakis prenta Florophenyl
  • ethylene (0.87 kg / h) was introduced into the autoclave reactor and maintained at 160 ° C. for 30 minutes or more in a continuous process at a pressure of 89 bar, followed by copolymerization to obtain a copolymer.
  • the remaining ethylene gas was removed and the polymer solution was dried in a vacuum oven for at least 12 hours, and then physical properties were measured.
  • LG Chem's LLDPE (product name: SN318) prepared with a Ziegler-Natta catalyst was prepared. Comparative Example 2
  • BGN Branch gradient number: In the GPC-FTIR measurement result, the log value (log Mw) of the molecular weight (Mw) is the X-axis, and the molecular weight distribution (dwt / dlog Mw) is y for the log value.
  • the content of low molecular weight side branches is 80% at the left boundary, except for the left and right ends 10% of the total area.
  • the amount of grains was determined as the amount of grains at the right boundary of 80%, and the BGN value was obtained by calculating the value of the following formula (1). [Expression i] '
  • FIGS. 1 to 4 GPC-FTIR measurement results of the polyolefins of Examples 1 and 2 and Comparative Examples 1 and 2 are shown in FIGS. 1 to 4, respectively.
  • the content of the carbon content of 2 or more carbon atoms at the left boundary point (point A) and the carbon content of 2 or more carbon atoms at the right boundary point (point B) in the middle 80% region of the molecular weight distribution curve area By measuring the content it can be seen that the BGN value calculated according to 1 has a positive value.
  • the polyolefin of Comparative Example 1 had a negative BGN value of ⁇ 0.14 and a molecular weight distribution exceeded 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 분자량 분포가 1.5 내지 3.0이고, BGN (Branch gradient number) 값이 0.01 내지 1.0인 폴리올레핀에 관한 것이다. 본 발명에 따르면, 좁은 분자량 분포를 가지고 고유한 공단량체 분포를 나타내어 충격 강도 및 기계적 물성이 우수한 폴리올레핀이 제공될 수 있다.

Description

【명세서】
【발명의 명칭]
폴리올레핀
【기술분야】
본 발명은 폴리을레핀에 관한 것으로서, 보다 상세하게는 좁은 분자량 분포를 가지면서 특징적인 공단량체 분포도를 나타내는 폴리올레핀에 관한 것이다.
본 출원은 2013년 9월 30일에 한국특허청에 제출된 한국 특허 출원 제 10ᅳ2013-0116760호 및 2014년 9월 26일에 한국특허청에 제출된 한국 특허 출원 제 10-2014-0129367호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
【배경기술】
다우 (Dow)사가 1990년대 초반 [Me2Si(Me4C5)NtBu]TiCl2 (Constrained- Geometry Catalyst, CGC)를 발표하였는데 (미국 특허 5,064,802), 에틸렌과 알파올레핀의 공중합 반웅에서 상기 CGC가 기존에 알려진 메탈로센 촉매들에 비해 상기 CGC의 우수한 측면은 크게 다음과 같이 두 가지로 요약된다: (1) 높은 중합 온도에서도 높은 활성도를 나타내면서 고분자량의 공중합체를 생성하며, (2) 1-핵센 및 1-옥텐과 같은 입체적 장애가 큰 알파올레핀의 공증합성에도 매우 뛰어나다는 점이디-ᅳ 그 외에도 증합 반웅 시, CGC의 여러 가지 특성들이 점차 알려지면서 이의 유도체를 합성하여 중합 촉매로 사용하고자 하는 노력이 학계 및 산업계에서 활발히 이루어지고 있다. ―
그 중 하나의 접근 방법으로 실리콘 브릿지 .대신에 다른 다양한 브릿지 및 질소 치환체가 도입된 금속 화합물의 합성과 이를 이용한 중합이 시도되었다. 최근까지 알려진 대표적인 금속 화합물들을 열거하면 하기와 같다 (Ozem. i?ev.2003, 103, 283).
Figure imgf000003_0001
SUBSTITUTE SHEET (RULE 26) 상기 그림에 나열된 화합물들은 CGC 구조의 실리콘 브릿지 대신에 포스포러스 (1), 에틸렌 또는 프로필렌 (2), 메틸리덴 (3) 및 메틸렌 (4) 브릿지가 각각 도입되어 있으나, 에틸렌 중합 또는 에틸렌과 알파을레핀의 공중합에의 적용시에 CGC 대비하여 중합 활성도나 공증합 성능 등의 측면에서 뛰어난 결과들을 나타내지 못하였다.
다른 접근 방법으로는 상기 CGC의 아미도 리간드 대신에 옥시도 리간드로 구성된 화합물들 많이 합성되었으며, 이를 이용한 중합도 일부 시도되었다.
그러나 이러한 모든 시도들 중에서 실제로 상업 공장에 적용되고 있는 촉매들은 몇몇에 불과한 수준이다. 대부분의 전이금속 화합물을 이용하여 중합되는 에틸렌과 알파올레핀의 공중합체의 경우, 기존의 고압 공정을 통하여 얻어지는 LDPE에 비하여 좁은 분자량 분포를 "나타내나, 고분자 구조 측면에서는 장쇄분지를 포함하지 않거나, 상대적으로 적은 함량의 장쇄분지를 포함한다. 최근에는 장쇄분지를 갖는 고분자 구조 및 다양한 특성을 갖는 폴리올레핀계 공증합체를 얻고자 하는 노력이 학계 및 산업계에서 활발히 이루어지고 있으며, 이를 위한 새로운 촉매 및 공정의 개발이 여전히 요구된다.
【발명의 내용】
【해결하려는 과제】
본 발명은 메탈로센 촉매를 이용하여 분자량에 따른 공단량체의 분포를 본 발명은 메탈로센 촉매를 이용하여 분자량에 따른 공단량체의 분포를 조절함으로써 분자량 분포가 좁으면서도 새로운 조성의 공단량체 분포를 가지는 폴리올레핀을 제공하기 위한 것이다.
【과제의 해결 수단】
상기 목적을 달성하기 위한 본 발명의 일 측면은, 분자량 분포가 1.5 내지 3이고, 하기 식 1로 계산한 BGN (Branch gradient number) 값이 0.01 내지 1.0인 폴리올레핀을 제공한다:
[식 1] (고분자량의 결?ᅡ지함량 -저분자량의 곁가지함량) Branch Gradient Number (BGISI)
(저분자량의 곁가지함량)
상기 식 1에서,
분자량 (Molecular weight, Mw)의 로그값 (log Mw)을 x축으로 하고, 상기 로그값에 대한 분자량 분포 (dwt/dlog Mw)를 y축으로 하여 분자량 분포 곡선을 그렸을 때,
저분자량의 결가지 함량은 전체 면적 대비 좌우 끝 10%를 제외한 가운데 80%의 좌측 경계에서의 결가지 함량 (탄소 1,000 개당의 탄소수 2 이상의 곁가지 (branch) 함량, 단위: 개 /1,000C)을 의미하고, 고분자량의 곁가지 함량은 우측 경계에서 결가지 함량을 의미한다.
【발명의 효과】
본 발명에 따르면, 좁은 분자량 분포를 가지고 고유한 공단량체 분포를 나타내어 충격 강도 및 기계적 물성이 우수한 폴리올레핀을 제공할 수 있다. 따라서, 본 발명의 폴리을레핀은 단독으로 또는 다른 고분자와 블렌딩하여 높은 층격 강도 및 탄성을 요구하는 생활 용품, 자동차, 충격 흡수재 둥의 분야에 다양하게 사용될 수 있다.
【도면의 간단한 설명】
도 1은 실시예 1의 폴리올레핀의 GPC-FTIR 측정 결과를 나타내는 그래프이다.
도 2는 실시예 2의 폴리을레핀의 GPC-FTIR 측정 결과를 나타내는 그래프이다.
도 3은 비교예 1의 폴리을레핀의 GPC-FTIR 측정 결과를 나타내는 그래프이다.
도 4는 비교예 2의 폴리을레핀의 GPC-FTIR 측정 결과를 나타내는 그래프이다ᅳ
【발명을 실시하기 위한 구체적인 내용】
본 발명에서, 제 1, 제 2 등의 용어는 다양한 구성요소들을 설명하는데 사용되며, 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만사용된다.
또한, 본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하 발명의 구체적인 구현예에 따른 폴리을레핀에 대하여 상세히 설명하기로 한다.
본 발명의 일 구현예에 따르면, 분자량 분포가 1.5 내지 3이고, 하기 식 1로 계산한 BGN (Branch gradient number) 값이 0.01 내지 1.0인 폴리을레핀을 제공한다.
[식 1]
(고분자량의 곁가지함량 -저분자량의 결가지함량) Branch Gradient Number (BGN) =
(저분자량의 결가지함량)
본 발명의 명세서에서 사용되는 BGN (Branch gradient number)라는 용어에서, BGN은 알파 을레핀과 같은 공단량체의 함량이 분자량에 따라 어떠한 형태로 분포하는지를 보여주는 척도이다. 상기 BGN에서 의미하는 결가지 (branch)는, 폴리올레핀 중합 공정시 공단량체로서 프로필렌, 1-부텐, 1- 핵센, 1-옥텐 등과 같은 알파 올레핀을 사용할 경우 이로부터 유래하여 만들어지는, 주사슬에 붙어 있는 곁가지들을 의미한다. 또한 상기 결가지는 탄소수 2 내지 6의 SCB (short carbon branch) 및 탄소수 7 이상의 LCB (long carbon branch)를 모두 포함하는 것으로 한다.
GPC-FTIR 장비를 이용하여 분자량, 분자량 분포 및 결가지 함량을 동시에 연속적으로 측정할 수 있다.
BGN(Branch gradient number)값은 GPC-FTIR 장비를 이용하여 분자량, 분자량 분포 및 결가지 함량을 동시에 연속적으로 측정하여 분자량 (Molecular weight, Mw)의 로그값 (log Mw)을 x축으로 하고, 상기 로그값에 대한 분자량 분포 (dwt/dlog Mw)를 y축으로 하여 분자량 분포 곡선을 그렸을 때, 저분자량의 결가지 함량을 전체 면적 대비 좌우 끝 10%를 제외한 가운데 80%의 좌측 경계에서의 결가지 함량 (단위: 개 /1,000C)으로 하고, 고분자량의 곁가지 함량은 가운데 80%의 우측 경계에서 결가지 함량으로 하여 하기 식 1에 따라 계산한 값을 의미한다. 여기서, 상기 결가지의 함량은 탄소 1,000 개당의 탄소수 2개 이상의 결가지 함량을 의미하는 것으로 한다.
[식 1]
(고분자량의 결가지함량 -저분자량의 결가지함량) Branch Gradient Number (BGN) = :
(저분자량의 결가지함량)
BGN 값이 양 (+)의 값이면 분자량의 로그값에 대한 분자량 분포 곡선에 따른 저분자량 영역에서 결가지 함량이 낮고, 고분자량 영역에서는 곁가지 함량이 상대적으로 높은 분포를 보이는 것으로 의미하며, 반대로 BGN 값이 음 (-)의 값아면 저분자량 영역에서 결가지 함량이 높고, 고분자량 영역에서는 결가지 함량이 상대적으로 낮은 분포를 보이는 구조를 의미한다. 본 발명의 폴리올레핀은 상기와 같은 방법으로 측정 및 계산한 BGN 값이 0.01 내지 1.0, 또는 약 0.01 내지 약 0.9, 또는 약 0.01 내지 약 0.5, 또는 약 0.01 내지 약 0.2, 또는 약 0.01 내지 약 0.1, 또는 약 0.03 내지 약 0.1인 범위를 갖는다. 즉, 본 발명의 폴리올레핀은 저분자량 영역에서 곁가지 함량이 낮고, 고분자량 영역에서는 곁가지 함량이 상대적으로 높은 구조이며, 그 기울기가 상술한 범위 내에 있는 것을 특징으로 한다.
BGN 값이 상기 범위에 있으면서 좁은 범위의 분자량 분포를 동시에 만족할 때, 폴리을레핀의 물성이 최적화되어 높은 충격 강도 및 양호한 기계적 물성을 달성할 수 있다. 이에 따라, 폴리프로필렌 수지와 같은 다른 고분자와 컴파운딩되었을 때, 높은 층격 강도 및 양호한 기계적 물성을 달성할 수 있다.
또한, 본 발명의 폴리을레핀은, 1,000개 탄소당 탄소수 2 이상의 결가지 함량의 개수의 범위가 약 20 내지 약 120개, 바람직하게는 약 50 내지 약 100개일 수 있다.
본 발명의 폴리올레핀은 또한 분자량 분포 (중량 평균 분자량 /수 평균 분자량)가 약 1.0 내지 약 3.0, 또는 약 1.5 내지 약 3.0, 또는 약 1.5 내지 약 2.8, 또는 약 2.0 내지 약 18인 범위 ¾ 갖는다. 이와 같이 본 발명의 폴리올레핀은 매우 좁은 분자량 분포를 가짐으로써 높은 층격 강도를 나타낼 수 있다.
또한, 상기 폴리을레핀은 ASTM D1238에 따라 190°C, 2.16kg 하중 조건에서 측정한 용융 흐름 지수 (Ml)가 약 0.1 내지 약 2000 g/10min, 바람직하게는 약 0.1 내지 약 1000 g/10min, 보다 바람직하게는 약 0.1 내지 500 g/10min 일 수 있으나, 이에 한정되는 것은 아니다.
또한, 상기 폴리올레핀의 용융 유동율비 (MFRR)는 약 5 내지 약 15, 바람직하게는 약 6 내지 약 13일 수 있으나, 이에 한정되는 것은 아니다. 또한, 상기 폴리을레핀의 밀도 (density)는 약 0.85 내지 약 0.91 g cc, 바람직하게는 약 0.86 내지 약 0.91 g/cc, 보다 바람직하게는 약 0.86 내지 약 0.90 g/cc 일 수 있으나, 이에 한정되는 것은 아니다.
다만 상기와 같이 용융 흐름 지수, 용융 유동율비, 밀도 등이 상술한 범위에 있을 때, 물성이 보다 최적화되어 높은 층격 강도 및 양호한 기계적 물성을 달성할 수 있다.
본 발명에 따른 폴리올레핀은 올레핀계 단량체인 에틸렌과 알파 올레핀 공단량체의 공중합체인 것이 바람직하다.
상기 알파 _올레핀 공단량체로는 탄소수 3 이상인 알파 을레핀이 사용될 수 있다. 탄소수 3 이상의 알파 올레핀으로는 프로필렌, 1-부텐, 1-펜텐, 4-메틸小펜텐, 1ᅳ핵센, 1-헵텐, 1ᅳ옥텐, μ데센, 1-운데센, 1-도데센, 1-테트라데센, 1-핵사데센, 1-옥타데센 또는 1-에이코센 등이 있다.
상기 에틸렌 및 알파 올레핀계 공단량체의 공중합체에 았어서, 알파 을레핀 공단량체의 함량은 약 5 내지 약 70 중량0 /0, 바람직하게는 약 5 내지 약 60 증량0 /。, 보다 바람직하게는 약 10 내지 약 50 중량 % 일 수 있다. 본 발명에 따른 폴리올레핀의 중량 평균 분자량은 약 10,000 내지 약 500,000 g/mol, 바람직하게는 약 20,000 내지 약 200,000 g/m이일 수 있으나, 이에만 한정되는 것은 아니다.
본 발명에 따른 폴리올레핀은 다른 고분자와 흔합할 시에 층격 강도가 우수하여, 생활 용품, 자동차, 층격 흡수재 등의 분야에 다양하게 사용될 수 있다.
상술한 특징을 갖는 본 발명에 따른 폴리을레핀은 서로 다른 구조의 메탈로센 화합물 2종을 포함하는 흔성 메탈로센 화합물을 촉매로 사용하여, 에틸렌 및 알파 을레핀과의 공중합으로 얻을 수 있으며, 이러한 폴리올레핀은 전술한 바와 같은 분자량 분포 및 BGN 값을 가질 수 있다. 보다 구체적으로, 본 발명의 폴리올레핀은, 하기 화학식 1로 표시되는 제 1 메탈로센 화합물; 및 하기 화학식 2로 표시되는 제 2 메탈로센 화합물을 포함하는 흔성 메탈로센 촉매의 존재 하에, 에틸렌 및 알파 을레핀 공단량체를 증합하여 수득될 수 있다.
[
Figure imgf000009_0001
상기 화학식 1에서,
R1 및 R2는 서로 같거나 다를 수 있으며, 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 1 내지 20의 알킬실릴, 탄소수 6 내지 20의 아릴실릴; 탄소수 7 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 또는 하이드로카르빌로 치환된 4족 금속의 메탈로이드이고; 상기 R1과 R2 또는 2개의 R2가 탄소수 1 내지 20의 알킬 또는 탄소수 6 내지 20의 아릴 작용기를 포함하는 알킬리딘에 의해 서로 연결되어 고리를 형성할 수 있으며;
R3, 3' 및 R3"는 서로 같거나 다를 수 있으며, 각각 독립적으로 수소; 할로겐; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 탄소수 1 내지 20의 알콕시; 탄소수 6 내지 20의 아릴옥시; 또는 아미도 그룹이고; 상기 R3, R3' 및 R3"중에서 2개 이상이 서로 연결되어 지방족 고리 또는 방향족 고리를 형성할 수 있으며;
CY는 치환 또는 치환되지 않은 지방족 또는 방향족 고리이고, 상기 CY에서 치환되는 치환기는 할로겐; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 탄소수 1 내지 20의 알콕시; 탄소수 6 내지 20의 아릴옥시; 또는 탄소수 1 내지 20의 알킬 아미도기; 탄소수 6 내지 20의 아릴 아미도기이며, 상기 치환기가 복수 개일 경우에는 상기 치환기 중에서 2개 이상의 치환기가 서로 연결되어 지방족 또는 방향족 고리를 형성할 수 있으며;
Ml은 4족 전이금속이고;
Q1 및 Q2는 서로 같거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 탄소수 1 내지 20의 알킬 아미도; 탄소수 6 내지 20의 아릴 아미도; 또는 탄소수 1 내지 20의 알킬리덴일 수 있다.
[
Figure imgf000010_0001
상기 화학식 2에서,
M2는 4족 전이금속이고;
Q3 및 Q4는 서로 같거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 탄소수 1 내지 20의 알킬 아미도; 탄소수 6 내지 20의 아릴 아미도; 또는 탄소수 1 내지 20의 알킬리덴일 수 있고;
R4 내지 R10은 서로 같거나 다를 수 있으며, 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 1 내지 20의 알콕시; 탄소수 6 내지 20의 아릴; 탄소수 1 내지 20의 알킬실릴, 탄소수 6 내지 20의 아릴실릴; 또는 탄소수 7 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬이고;
B는 탄소, 실리콘, 또는 게르마늄이고, 시클로펜타디에닐 계열 리간드와 JR10z-y를 공유 결합에 의해 묶어주는 다리이고;
J는 주기율표 15족 원소 또는 16족 원소이며;
z는 J 원소의 산화수이고;
y는 J 원소의 결합수이며;
n은 0 내지 10의 정수이다.
상기 화학식 1의 제 1 메탈로센 화합물 및 상기 화학식 2의 제 2 메탈로센 화합물을 포함하는 흔성 메탈로센 촉매를 사용하여 에틸렌 및 알파 을레핀 공단량체를 중합하면, 상술한 바와 같이 저분자량 영역에서 곁가지 함량이 낮고, 고분자량 영역에서는 결가지 함량이 상대적으로 높은 구조를 갖는 폴리을레핀을 얻을 수 있다.
한편, 상기 에틸렌 및 알파 올레핀 공단량체의 중합 반웅은 약 130 내지 약 250 °C , 바람직하게는 약 140 내지 약 200°C에서 이루어질 수 있다. 상기 제 2 메탈로센 화합물은 제 1 메탈로센 화합물과 흔합되어 사용되는 경우, 130°C이상의 고온의 합성 과정에서도 촉매의 활성이 유지될 수 있어서, 폴리 올레핀의 합성 반응에서 촉매의 활성점이 2 이상이 될 수 있게 한다. 특히, 고밀도 플리을레핀 합성용 메탈로센 촉매는 고온 영역에서 활성이 낮기 때문에 높은 반웅 은도를 적용하는 용액 중합 단계에서는 사용되지 않는 것이 일반적이나, 상기 화학식 2의 제 2 메탈로센 화합물은 상기 화학식 1의 제 1 메탈로센 화합물과 흔합되면 130 °C이상의 고온 영역에서도 우수한 촉매 활성이 나타낼 수 있다.
또한, 상기 에틸렌 및 알파 올레핀 공단량체의 증합 반웅은 연속식 용액 중합 공정, 벌크 중합 공정, 현탁 중합 공정 또는 유화 증합 공정으로 진행될 수 있으나, 바람직하게는 단일 반응기에서 이루어지는 용액 중합 (solution polymerization) 반웅에 의할 수 있다. 상기 폴리올레핀의 제조 방법에서는 서로 다른 2종의 메탈로센 촉매를 이용함에도 단일 반응기 내에서 폴리올레핀을 합성해 낼 수 있어서, 간단한 제조 공정을 구성하여 공정 시간 및 비용을 줄일 수 있다.
상기 화학식 1의 제 1 메탈로센 화합물의 구체적인 예로는 하기 화학식 3 또는 화학식 4의 화합물을 들 수 있으나, 이에 한정되는 것은 아니다.
Figure imgf000012_0001
상기 화학식 3에서,
R1, R2, Q1, Q2 및 Ml은 상기 화학식 1에 정의한 바와 동일하고, 상기 R11들은 서로 같거나 다를 수 있으며, 각각 독립적으로 수소; 할로겐; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 탄소수 1 내지 20의 알콕시; 탄소수 6 내지 20의 아릴옥시; 또는 아미도 그룹아고; 상기 R11들 중에서 2개 이상이 서로 연결되어 지방족 고리 또는 방향족 고리를 형성할 수 있다.
[화학식 4]
Figure imgf000013_0001
상기 화학식 4에서,
R1, R2, Q1, Q2 및 Ml은 상기 화학식 1에서 정의한 바와 동일하고, 상기 R12들은 서로 같거나 다를 수 있으며, 각각 독립적으로 수소; 할로겐; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 탄소수 1 내지 20의 알콕시; 탄소수 6 내지 20의 아릴옥시; 또는 아미도 그룹이고; 상기 R12들 중에서 2개 이상이 서로 연결되어 지방족 고리 또는 방향족 고리를 형성할 수 있다.
그리고, 상기 화학식 1의 화합물에서 금속 주위의 전자적 입체 환경의 제어를 위해서 더욱 선호되는 화합물의 구체적인 예는 다음과 같다. 하기 화학식들에서, R2는 각각 독립적으로 수소 또는 메틸기일 수 있으며, Q1 또는 Q2는 서로 같거나 다를 수 있으며, 각각 독립적으로 메틸기 : 디메틸아미도기 또는 클로라이드기일 수 있다.
Figure imgf000014_0001
상기 화학식 2의 제 2 메탈로센 화합물의 구체적인 예로 하기 화학식의 화합물을 들 수 있으나, 이에 한정되는 것은 아니다.
Figure imgf000014_0002
본 발명의 일 실시예에 따르면, 상기 폴리올레핀의 제조방법에 있어서, 상기 흔성 메탈로센 촉매는 상술한 제 1 및 제 2 메탈로센 화합물 이외에 조촉매 화합물을 추가로 포함할 수 있다.
상기 조촉매 화합물은 주기율표 13족 금속을 포함하는 것으로, 하기 화학식 5의 화합물, 하기 화학식 6의 화합물 및 하기 화학식 7의 화합물로 이루어진 군에서 선택된 1종 이상일 수 있다.
[화학식 5]
-[Al(R13)-0]c- 상기 화학식 5에서, R13은 할로겐 라디칼, 탄소수 1 내지 20의 하이드로카빌 라디칼, 또는 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카빌 라디칼이고, c는 2 이상의 정수이며,
[화학식 6]
D(R14)3
상기 화학식 6에서,
D는 알루미늄 또는 보론이고, R14는 탄소수 1 내지 20의 하이드로카빌 또는 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카빌이고,
[화학식 7]
[L-H]+[ZE4]"또는 [L]+[ZE4]- 상기 화학식 7에서,
L은 중성 또는 양이온성 루이스 염기이고, H는 수소 원자이며, Z는 13족 원소이고, E는 서로 동일하거나 다를 수 있으며, 각각 독립적으로 1 이상의 수소 원자가 할로겐, 탄소수 1 내지 20의 탄화수소, 알콕시 또는 페녹시로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기 또는 탄소수 1 내지 20의 알킬기이다.
상기 화학식 5로 표시되는 화합물로는, 예를 들어 메틸알루미녹산 (MAO), 에틸알루미녹산, 이소부틸알루미녹산, 부틸알루미녹산 등이 '될 수 있다.
상기 화학식 6으로 표시되는 알킬 금속 화합물로는, 예를 들어 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, . 트리부틸알루미늄, 디메틸클로로알루미늄, 디메틸이소부틸알루미늄, 디메틸에틸알루미늄, 디에틸클로로알루미늄, 트리이소프로필알루미늄 트리 -S-부틸알루미늄, 트리씨클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄 트리핵실알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리 -P- 를릴알루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에톡시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론 트리부틸보론 등일 수 있다. 상기 화학식 7로 표시되는 화합물로는, 예를 들어 트리에틸암모니움테트라페닐보론, 트리부틸암모니움테트라페닐보론, 트리메틸암모니움테트라페닐보론, 트리프로필암모니움테트라페닐보론, 트리메틸암모니움테트라 (P-를릴)보론, 트리프로필암모니움테트라 (P-를릴)보론, 트리에틸암모니움테트라 (ο,ρ-디메틸페닐)보론, 트리메틸암모니움테트라 (ο,ρ- 디메틸페닐)보론, 트리부틸암모니움테트라 (Ρ-트리플루오로메틸페닐)보론, 트리메틸암모니움테트라 (Ρ-트리플로로메틸페닐)보론,
트리부틸암모니움테트라펜타플루오로페닐보론, Ν,Ν- 디에틸아닐리니움테트라페닐보론, Ν,Ν-디에틸아닐리니움테트라페닐보론, Ν,Ν- 디에틸아닐리니움테트라펜타폴루오로페닐보론,
디에틸암모니움테트라펜타플루오로페닐보론,
트리페닐포스포늄테트라페닐보론, 트리메틸포스포늄테트라페닐보론, 트리에틸암모니움테트라페닐알루미늄, 트리부틸암모니움테트라페닐알루미늄, 트리메틸암모니움테트라페닐알루미늄,
트리프로필암모니움테트라페닐알루미늄, 트리메틸암모니움테트라 (Ρ- 를릴)알루미늄, 트리프로필암모니움테트라 (Ρ-를릴)알루미늄, 트리에틸암모니움테트라 (ο,ρ-디메틸페닐)알루미늄, 트리부틸암모니움테트라 (Ρ- 트리플루오로메틸페닐)알루미늄, 트리메틸암모니움테트라 (Ρ- 트리플루오로메틸페닐)알루미늄,트리부틸암모니움테트라펜타플루오로페닐알 루미늄, Ν,Ν-디에틸아닐리니움테트라페닐알루미늄, Ν,Ν- 디에틸아닐리니움테트라페닐알루미늄, Ν,Ν- 디에틸아닐리니움테트라펜타플로로페닐알루미늄,
디에틸암모니움테트라펜타플루오로페닐알루미늄,
트리페닐포스포늄테트라페닐알루미늄, 트리메틸포스포늄테트라페닐알루미늄, 트리페닐카보니움테트라페닐보론, 트리페닐카보니움테트라페닐알루미늄, 트리페닐카보니움테트라 (Ρ-트리플로로메틸페닐)보론,
트리페닐카보니움테트라펜타플루오로페닐보론 등일 수 있다.
또한, 상기 조촉매의 함량은 상기 제 1 및 제 2 메탈로센 화합물의
13족 금속 /4족 금속의 몰비는 약 1 내지 약 10,000, 바람직하게는 약 1 내지 약 1,000, 보다 바람직게는 약 1 내지 약 500이 되도록 포함할 수 있다. 상기 몰비가 1 미만인 경우에는 조촉매의 첨가의 효과가 미미하고, 10,000을 초과하는 경우에는 반응에 참여하지 못하고 잔류하는 과량의 알킬기 등이 오히려 촉매 반응을 저해하여 촉매독으로 작용할 수 있으며, 이에 따라 부반응이 진행되어 과량의 알루미늄 또는 붕소가 중합체에 잔류하게 되는 문제가 발생할 수 있다.
상기 흔성 메탈로센 촉매의 제조 시에 반응 용매로서 펜탄, 핵산, 헵탄 등과 같은 탄화수소계 용매이거나 벤젠, 를루엔 등과 같은 방향족계 용매가 사용될 수 있으나, 반드시 이에 한정되지는 않으며 당해 기술 분야에서 사용가능한 모든 용매가사용될 수 있다.
본 발명에 따른 폴리을레핀의 제조방법에 있어서, 상기 흔성 메탈로센 촉매는 올레핀 중합 공정에 적합한 탄소수 5 내지 12의 지방족 탄화수소 용매, 예를 들면 펜탄, 핵산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 를루엔, 벤젠과 같은 방향족 탄화수소 용매, 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등에 용해하거나 희석하여 주입 가능하다. 여기에 사용되는 용매는 소량의 알킬알루미늄 처리함으로써 촉매 독으로 작용하는 소량의 물 또는 공기 등을 제거하여 사용하는 것이 바람직하며, 조촉매를 더 사용하여 실시하는 것도 가능하다. 상기 흔성 메탈로센 촉매를 이용하여 상술한 물성을 만족하는 폴리올레핀을 제조할 수 있다. 혼성 메탈로센 촉매 이용시 알파 올레핀과의 공중합은, 특히 고분자량 부분을 만드는 제 2 메탈로센 화합물에 의해 유도되어, 알파 올레핀 공단량체가 고분자량 사슬 쪽에 집중적으로 결합된 고성능의 폴리올레핀 제조를 가능하게 한다.
상기의 폴리올레핀 제조는 용액 중합에 의해 수행될 수 있으며, .예를 들어 에틸렌과 알파 올레핀 공단량체를 일정 비율로 연속 공급하면서 정법에 따라 수행할 수 있다.
상기 흔성 메탈로센 촉매를 이용하여 에틸렌과 공단량체로서 알파 을레핀을 공중합할 때, 상기 알파 을레핀 공단량체로 예를 들어 프로필렌, 1- 부텐, 1-펜텐, 4-메틸 -1-펜텐, 1-핵센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1- 테트라데센, 1-핵사데센, 1-옥타데센 또는 1-에이코센 등을 사용할 수 있으나, 이에 제한되는 것은 아니다. 상기 흔성 메탈로센 촉매를 이용하여 에틸렌과 공단량체로서 알파 올레핀을 공중합할 때의 중합 온도는 약 130 내지 약 250°C, 바람직하게는 약 140 내지 약 200°C의 범위일 수 있다. 상술한 바와 같이, 상기 제 2 메탈로센 화합물은 제 1 메탈로센 화합물과 흔합되어 사용되는 경우, 130°C이상의 고온의 합성 과정에서도 촉매의 활성이 유지될 수 있어서, 폴리올레핀의 합성 반응에서 촉매의 활성점이 2 이상이 될 수 있게 한다. 특히, 고밀도 폴리올레핀 합성용 메탈로센 촉매는 고온 영역에서 활성이 낮기 때문에 높은 반웅 온도를 적용하는 용액 증합 단계에서는 사용되지 않는 것이 일반적이나, 상기 화학식 2의 제 2 메탈로센 화합물은 상기 화학식 1의 제 1 메탈로센 화합물과 흔합되면 130°C이상의 고온 영역에서도 우수한 촉매 활성이 나타낼 수 있다.
또한, 중합 압력은 약 1 내지 약 150 bar에서 수행하는 것이 바람직하며, 약 1 내지 약 120 bar가 보다 바람직하고, 약 10 내지 약 120 bar가 가장 바람직하다.
한편, 상기 에틸렌 및 알파 을레핀 공단량체의 증합 반응에서는 상기 제 2 메탈로센 화합물의 함량을 조절하여 제조되는 폴리올레핀의 물성을 조절할 수 있다.
특히, 상기 흔성 메탈로센 촉매에서는 제 2 메탈로센 화합물을 상대적으로 낮은 함량으로 포함한다. 보다 구체적으로, 상기 제 2 메탈로센 화합물은 상기 제 1 및 제 2 메탈로센 화합물의 총량을 기준으로 0 mol% 초과 내지 약 50 mol% 미만으로, 바람직하게는 약 5 내지 약 30 mol%, 보다 바람직하게는 약 5 내지 약 25 mol%로 사용될 수 있다. 이와 같은 함량비로 제 2 메탈로센 화합물을 포함할 때, 좁은 분자량 분포를 나타면서도 상술한 범위의 양의 BGN값을 갖는 폴리올레핀을 제공할 수 있다.
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다. '
<실시예 >
<메탈로센 화합물의 제조예 > 제조예 1 : 제 1 메탈로세 화합물의 합성
제조예 1-1
8-ί2,3,4,5-테트라메틸 -1.3-시클로펜타디에닐) -1,2,3,4- 테트라하이드로퀴놀린 ((8-(2,3,4,5-Tetramethyl-l,3-cvclopentadienyr)-l,2,3,4- tetrahydroquinoline))의 제조
1,2,3,4-테트라히드로퀴놀린 (13.08 g, 98.24 mmol)과 디에틸에테르 (150 mL)를 쉴행크 플라스크에 넣었다. 드라이 아이스와 아세톤으로 만든 -78 °C 저은조에 상기 쉴탱크 플라스크를 담궈 30분간 교반하였다. 이어서 , n-BuLi(n- 부틸리튬, 39.3 mL, 2.5M, 98.24 mmol)을 질소 분위기하에 주사기로 투입하여, 연한 노란색의 슬러리가 형성되었다. 이어서, 플라스크를 2시간동안 교반한 후에, 생성된 부탄 가스를 제거하면서 상온으로 플라스크의 온도를 을렸다. 플라스크를 다시 -78 °C 저온조에 담가 은도를 낮춘 후 C02 가스를 투입하였다. 이산화탄소 가스를 투입함에 따라 슬러리가 없어지면서 투명한 용액이 되었다. 플라스크를 버블러 (bubbler)에 연결하여 이산화탄소가스를 제거하면서 온도를 상온으로 올렸다. 그 후에, 진공하에서 여분의 C02 가스와 용매를 제거하였다. 드라이박스로 플라스크를 옮긴 후 펜탄을 가하고 심하게 교반한 후 여과하여 흰색 고체 화합물의 리튬 카바메이트를 얻었다. 상기 흰색 고체 화합물은 디에틸에테르가 배위결합 되어있다ᅳ 이때 수율은 100% 이다.
1H NMR(C6D6, C5D5N) : δ 1.90 (t, J = 7.2 Hz, 6H, ether), 1.50 (br s, 2H, quin-CH2), 2.34 (br s, 2H,quin-CH2), 3.25 (q, J = 7.2 Hz, 4H, ether), 3.87 (br, s, 2H, quin-CH2), 6.76 (br d, J = 5.6 Hz, lH,quin-CH)ppm
13C NMR(C6D6) : δ 24.24, 28.54, 45.37, 65.95, 121.17, 125.34, 125.57, 142.04, 163.09(C=O)ppm. 상기에서 제조된 리튬 카바메이트 화합물 (8.47 g, 42.60 mmol)을 쉴탱크 플라스크에 넣었다. 이어서, 테트라히드로퓨란 (4.6 g, 63.9 mmol)과 디에틸에테르 45 mL 를 차례로 넣었다. 아세톤과 소량의 드라이 아이스로 만든 -20°C 저은조에 상기 쉴렝크 플라스크를 담가 30분간.교반한 후, tert- BuLi (25.1 mL, 1.7 M, 42.60 mmol)을 넣었다. 이때 반응 흔합물의 색깔이 붉은색으로 변했다ᅳ -20°C를 계속 유지하면서 6시간동안 교반하였다. 테트라히드로퓨란에 녹아있는 CeCl 2LiCl 용액 (129 mL, 0.33 M, 42.60 mmol)과 테트라메틸씨클로펜티논 (5.89 g, 42.60 mmol)을 주사기 안에서 섞어준 다음, 질소 분위기하에서 플라스크로 투입하였다. 플라스크의 온도를 상온으로 천천히 을리다가 1시간 후에 항온조를 제거하고 온도를 상온으로 유지하였다. 이어서, 상기 플라스크에 물 (15 mL)을 첨가한 후, 에틸아세테이트를 넣고 여과해서 여액을 얻었다. 그 여액을 분별 깔때기에 옮긴 후에 염산 (2N, 80 mL)을 넣어서 12분간 흔들어주었다. 그리고, 포화된 탄산수소나트륨 수용액 (160 mL)를 넣어서 중화한 후에 유기층을 추출하였다. 이 유기층에 무수황산마그네슴을 넣어 수분을 제거하고 여과한 후, 그 여액을 취하고 용매를 제거하였다. 얻어진 여액을 핵산과 에틸아세테이트 (v/v, 10 : 1) 용매를 사용하여 컬럼 크로마토그래피 방법으로 정제하여 노란색 오일을 얻었다. 수율은 40% 이었다.
1H NMR(C6D6): δ 1.00 (br d, 3H, Cp-CH3), 1.63 - 1.73 (m, 2H, quin-CH2), 1.80 (s, 3H, Cp-CH3), 1.81(s, 3H, Cp-CH3), 1.85 (s, 3H, Cp-CH3), 2.64 (t, J = 6.0 Hz, 2H, quin-CH2), 2.84 ~ 2.90 (br, 2H, quin-CH2), 3.06 (br s, 1H, Cp-H), 3.76 (br s, 1H, N- H), 6.77 (t, J = 7.2 Hz, 1H, quin-CH), 6.92 (d, J = 2.4Hz, 1H, quin-CH), 6.94 (d, J = 2.4 Hz, 1 H, quin-CH) ppm. 제조예 1-2
「0,2,3,4-테트라하이드로퀴놀린 -8-일)테트라메틸사이클로펜타디에닐-
Figure imgf000020_0001
vDtetramethylcvclopentadienyl-etaS-kapa-Nltita^ dimethyl)의 제조
드라이 박스 안에서 상기 제조예 1-1에서 제조된 화합물 (8.07 g, 32.0 mmol)와 디에틸에테르 140 mL를 등근 플라스크에 넣은 후, -30°C 로 온도를 낮추고, n-BuLi (17.7 g, 2.5 M, 64.0 mmol)을 교반하면서 천천히 넣었다. 온도를 상온으로 올리면서 6시간동안 반응시켰다. 그 후에, 디에틸에테르로 여러 번 씻어내면서 여과하여 고체를 얻었다. 진공을 걸어 남아 있는 용매를 제거하면 노란색 고체의 디리튬 화합물 (화합물 4a) (9.83 g)이 얻어졌다. 수율은 95% 이었다. IH NMR(C6D6, C5D5N): δ 2.38 (br s, 2H, quin-CH2), 2.53 (br s, 12H, Cp- CH3), 3.48 (br s, 2H, quin-CH2), 4.19 (br s, 2H, quin-CH2), 6.77 (t, J = 6.8 Hz, 2H, quin-CH), 7.28 (br s, IH, quin-CH), 7.75 (brs, IH, quin-CH) ppm.
드라이 박스 안에서 TiC14*DME (4.41 g, 15.76 mmol)와 디에틸에테르 (150 mL)을 등근플라스크에 넣고 -30°C 에서 교반하면서 MeLi (21.7 mL, 31.52 mmol, 1.4 M)을 천천히 넣었다. 15분 동안 교반한 후에 상기에서 제조된 [(1,2,3,4-테트라하이드로퀴놀린 -8-일)테트라메틸사이클로펜타디에닐 - 에타 5,카파 -N]디리튬 화합물 (화합물 4a)([(l,2,3,4-Tetrahydroquinolin-8- yl)tetramethylcyclopentadienyl-eta5,kapa-N]dilithium) (5.30g, 15.76 mmol)을 플라스크에 넣었다. 온도를 상온으로 올리면서 3시간동안 교반하였다. 반웅이 끝난 후, 진공을 걸어 용매를 제거하고, 펜탄에 녹인 후 여과하여 여액을 취하였다. 진공을 걸어 펜탄을 제거하면 진한 갈색의 화합물 (3.70 g)이 얻어졌다. 수율은 71.3% 이었다. '
IH NMR(C6D6): δ 0.59 (s, 6H, Ti-CH3), 1.66 (s, 6H, Cp-CH3), 1.69 (br t, J = 6.4 Hz, 2H, quin-CH2),2.05 (s, 6H, Cp-CH3), 2.47 (t, J = 6.0 Hz, 2H, quin-CH2), 4.53 (m, 2H, quin-CH2), 6.84 (t, J = 7.2 Hz, IH, quin-CH), 6.93 (d, J =7.6 Hz, quin-CH), 7.01 (d, J =6.8 Hz, quin-CH) ppm.
13C NMR(C6D6): δ 12.12, 23.08, 27.30, 48.84, 51.01, 1 19.70, 1 19.96, 120.95, 126.99, 128.73, 131.67, 136.21ppm. 제조예 2: 제 2 메탈로센 화합물의 합성
rmethyl(6-t-buthoxyhexyl)silyl(n5-tetramethylCp) (ᅡ 제조 상온에서 50 g의 Mg(s)를 10 L 반응기에 가한 후, THF 300 mL을 가하였다. 12를 0.5 g 정도 가한후, 반응기 온도를 50°C로 유지하였다. 반웅기 온도가 안정화된 후 250 g의 6-t-부록시핵실클로라이드 (6-t-buthoxyhexyl chloride)를 주입 펌프 (feeding pump)를 이용하여 5 mL/min의 속도로 반응기에 가하였다. 6-t-부특시핵실클로라이드를 가함에 따라 반웅기 온도가 4 ~ 5 °C 정도 상승하는 것을 관찰할 수 있었다. 계속적으로 6-t- 부톡시핵실클로라이드를 가하면서 12시간 교반하였다. 반웅 12시간 후 검은색의 반응 용액을 얻을 수 있었다. 생성된 검은색꾀 용액 2 mL을 취한 ; 뒤 물을 가하여 유기층을 얻어 ^-NMR을 통해 6-t-부록시핵산 (6-t- buthoxyhexane)을 확인할 수 있었으며, 6-t-부톡시핵산으로부터 그리냐드 반응이 잘 진행되었음을 알 수 있었다. 그리하여 6-t-부록시핵실 마그네슘 클로라이드 (6-t-buthoxyhexyl magnesium chloride)를 합성'하였다 .
MeSiCl3 500 g과 1 L의 THF를 반웅기에 가한 후 반웅기 온도를 -
20 °C까지 냉각하였다. 합성한 6-t-부록시핵실마그네슘클로라이드 중 560 g을 주입 핍프를 이용하여 5 mL/min의 속도로 반응기에 가하였다. 그리냐드 시약의 주입이 끝난 후 반응기 온도를 천천히 상온으로 올리면서 12시간 교반하였다. 반응 12시간 후 흰색의 MgCl2 염이 생성되는 것을 확인하였다. 핵산 4 L를 가하여 실험용 가압 탈수 여과 장치 (labdori, (주) 한강엔지니어링)를 통해 염을 제거하여 필터 용액을 얻을 수 있었다. 얻을 필터 용액을 반웅기에 가한 후 70°C에서 핵산을 제거하여 엷은 노란색의 액체를 얻을 수 있었다. 얻은 액체를 1H-NMR을 통해 원하는 메틸 (6-t- 부록시핵실)디클로로실란 화합물임을 확인할 수 있었다.
Ή-NMR (CDC13): 3.3 (t, 2H), 1.5 (m, 3H), 1.3 (m, 5H), 1.2 (s, 9H), 1.1 (m,
2H), 0.7 (s, 3H)
테트라메틸시클로펜타디엔 1.2몰 (150 g)과 2.4 L의 THF를 반웅기에 가한 후 반웅기 온도를 -20 °C로 넁각하였다. n-BuLi 480 mL을 주입 펌프를 이용하여 5 mL/min의 속도로 반웅기에 가하였다. n-BuLi를 가한 후 반응기 온도를 천천히 상온으로 을리면서 12시간 교반하였다. 반웅 12시간 후, 당량의 Methyl(6-t-buthoxy hexyl)dichlorosilane (326 g, 350 mL)을 빠르게 반응기에 가하였다. 반응기 온도를 천천히 상온으로 올리면서 12시간 교반한 후 다시 반웅기 온도를 0 °C로 넁각시킨 후 2 당량의 t-BuNH2을 가하였다. 반응기 온도를 천천히 상온으로 을리면서 12시간 교반하였다ᅳ 반웅 12시간 후 THF를 제거하고 4 L의 핵산을 가하여 labdori을 통해 염을 제거한 필터 용액을 얻을 수 있었다. 필터 용액을 다시 반응기에 가한 후, 핵산을 70°C에서 제거하여 노란색의 용액을 얻을 수 있었다. 얻은 노란색의 용액을 1 H-NMR을 통해 Methyl(6-t-buthoxyhexyl)(tetramethylCpH)t-Butylaminosilane 화합물임을 확인할 수 있었다.
n-BuLi과 리간드 Dimethyl(tetramethylCpH)t-Butylaminosilane로부터 THF 용액에서 합성한 -78 °C의 리간드의 디리튬염에 TiCl3(THF)3 (10 mmol)을 빠르게 가하였다. 반웅용액을 _천천히 -78 °C에서 상온으로 올리면서 12시간 교반하였다. 12시간 교반 후, 상온에서 당량의 PbCl2 (10 mmol)를 반응 용액에 가한 후 12시간 교반하였다. 12시간 교반 후, 푸른색을 띠는 질은 검은색의 용액을 얻을 수 있었다ᅳ 생성된 반응 용액에서 THF를 제거한 후 핵산을 가하여 생성물을 필터하였다. 얻은 필터 용액에서 핵산을 제거한 후, 1H- NMR로부터 원하는 [methyl(6-t-buthoxyhexyl)silyl(n5-tetrametliylCp)(t-
Butylamido)]TiCl2화합물임을 확인하였다.
Ή-NMR (CDC13): 3.3 (s, 4H), 2.2 (s, 6H), 2.1 (s, 6H), 1.8 ~ 0.8 (m), 1.4 (s, 9H), 1.2 (s, 9H), 0.7 (s, 3H)
<폴리을레핀의 중합실시예 >
실시예 1
2L 오토클레이브 연속 공정 반웅기에 핵산 용매 (5.38 kg/h)와 1- 부텐 (0.82 kg/h)을 채운 후, 반웅기 상단의 온도를 160°C로 예열하였다. 트리이소부틸알루미늄 화합물 (0.05 mmol/min), 상기에서 수득된 제 1 메탈로센 화합물 (0.45 μηιοΐ/ιηϊη), 게 2 메탈로센 화합물 (0.05 μπιοΐ/min), 및 디메틸아닐리늄 테트라키스 (펜타플로로페닐) 보레이트 조촉매 (1.5 μηιοΐ/η ι)을 동시에 반웅기로 투입하였다. 이어서, 상기 오토클레이브 반응기 속으로 에틸렌 (0.87 kg/h)를 투입하여 89 bar의 압력으로 연속 공정에서 160°C로 30분 이상 유지된 후 공중합 반응을 진행하여 공중합체를 얻었다. 다음으로, 남은 에틸렌 가스를 빼내고 고분자 용액을 진공 오븐에서 12시간 이상 건조한 후 물성을 측정하였다. 실시예 2
2L 오토클레이브 연속 공정 반웅기에 핵산 용매 (5.9 kg/h)와 1- 부텐 (1.01 kg/h)을 채운 후, 반웅기 상단의 온도를 160 °C로 예열하였다. 트리이소부틸알루미늄 화합물 (0.05 mmol/min), 상기에서 수득된 제 1 메탈로센 화합물 (().4 μιηοΐ/min), 제 2 메탈로센 화합물 (0.1 μηιοΐ/ηιΐη), 및 디메틸아닐리늄 테트라키스 (펜타플로로페닐) 보레이트 조촉매 (1.5 μιηοΐ/πώι)을 동시에 반응기로 투입하였다. 이어서, 상기 오토클레이브 반웅기 속으로 에틸렌 (1.0 kg/h)를 투입하여 89 bar의 압력으로 연속 공정에서 160°C로 30분 이상 유지된 후 공중합 반응을 진행하여 공중합체를 얻었다. 다음으로, 남은 에틸렌 가스를 빼내고 고분자 용액을 진공 오븐에서 12시간 이상 건조한 후 물성을 측정하였다. 비교예 1
지글러 -나타 촉매로 제조된 LG 화학의 LLDPE (제품명: SN318)를 준비하였다. 비교예 2
제 1 메탈로센 촉매만을 이용하여 제조된 LG 화학의 에틸렌 -1-부텐 공중합체 (제품명 : LC565)를 준비하였다. <실험예 >
하기와 같은 방법으로 실시예 1,2 및 비교예 1, 2의 폴리올레핀의 물성을 측정하여 하기 표 1에 나타냈다.
1) 밀도: ASTM 1505
2) 용융 흐름 지수 (MI, 2.16 kg/10분): 측정 은도 190°C , ASTM 1 8 3) 분자량, 및 분자량분포: 측정 온도 160°C , 겔투과 크로마토그라피- 에프티아이알 (GPC-FTIR)을 이용하여 수 평균 분자량, 중량 평균분자량, Z 평균분자량을 측정하였다. 분자량 분포는. 중량 평균분자량과 수 평균분자량의 비로 나타내었다.
4) BGN(Branch gradient number): 상기 GPC-FTIR 측정 결과에 있어, 분자량 (Mw)의 로그값 (log Mw)을 X축으로 하고, 상기 로그값에 대한 분자량 분포 (dwt/dlog Mw)를 y축으로 하여 분자량 분포 곡선을 그렸을 때, 저분자량의 곁가지 함량을 전체 면적 대비 좌우 끝 10%를 제외한 가운데 80%의 좌측 경계에서의 결가지 함량 (단위: 개 /1,000C)으로 하고, 고분자량의 결가지 함량은 가운데 80%의 우측 경계에서 결가지 함량으로 하여, 하기 식 1로 그 값을 계산하여 BGN값을 구하였다. [식 i] '
(고분자량의 곁가지함량 -저분자량의 결가지함량)
Branch Gradient Number (BGN)
(저분자량의 결가지함량)
【표 1 ]
Figure imgf000025_0001
실시예 1, 2 및 비교예 1, 2의 폴리올레핀의 GPC-FTIR 측정 결과를 각각 도 1 내지 4에 나타내었다.
도 1 및 2를 참조하면, 분자량 분포 곡선 면적의 가운데 80% 영역에서의 좌측 경계 지점 (A 지점)에서의 탄소수 2 이상의 결가지 함량과, 우측 경계 지점 (B 지점)에서의 탄소수 2 이상의 결가지 함량을 측정하여 상기 1에 따라 계산한 BGN값이 양의 값을 가짐을 확인할 수 있다.
도 3을 참조하면, 비교예 1의 폴리을레핀은 -0.14로 음의 BGN값을 나타내며, 분자량 분포가 3을 초과하였다.
또한, 도 4를 참조하면, 비교예 2의'폴리을레핀은 0에 가까운 BGN값 나타내어, 본 발명과 같은 특징적인 공단량체 분포를 보여주지 못함을 알 수 있다.

Claims

【특허청구범위】 【청구항 1】 분자량 분포가 1.5 내지 3.0이고, 하기 식 1로 계산한 BGN (Branch gradient number) 값이 0.01 내지 1.0인 폴리올레핀:
[식 1]
(고분자량의 결가지함량 -X1분자량의 결가지함량)
Branch Gradient iNumber (BGN) =
' (저분자량의 결가지함량)
상기 식 1에서,
분자량 (Molecular weight, Mw)의 로그값 (log Mw)을 x축으로 하고, 상기 로그값에 대한 분자량 분포 (dwt/dlog Mw)를 y축으로 하여 분자량 분포 곡선을 그렸을 때,
저분자량의 결가지 함량은 전체 면적 대비 좌우 끝 10%를 제외한 가운데 80%의 좌측 경계에서의 결가지 함량 (탄소 1,000 개당의 탄소수 2 이상의 곁가지 (branch) 함량, 단위: 개 /1,000C)을 의미하고, 고분자량의 곁가지 함량은 우측 경계에서 결가지 함량을 의미한다.
【청구항 2】
제 1 항에 있어서, 밀도가 0.85 내지 0.91 g/cc인 폴리올레핀.
【청구항 3】
제 1 항에 있어서, 1,000개 탄소당 탄소수 2 이상의 결가지 함량의 개수가 20 내지 120개인 폴리올레핀.
【청구항 4】
제 1 항에 있어서, 에틸렌과 알파 올레핀 공단량체의 공중합체이며, 상기 알파 올레핀 공단량체의 함량은 전체 폴리을레핀에 대하여 5 내지 70 중량0 /0인, 폴리을레핀.
【청구항 5】
제 1 항에 있어서, 상기 폴리을레핀은 하기 화학식 1로 표시되는 제 1 메탈로센 화합물, 및 하기 화학식 2로 표시되는 제 2 메탈로센 화합물을 포함하는 흔성 메탈로센 촉매의 존재 하에, 에틸렌 및 알파 을레핀 공단량체를 중합하여 수득되는 폴리을레핀:
[화학식 1]
Figure imgf000027_0001
상기 화학식 1에서,
R1 및 R2는 서로 같거나 다를 수 있으며, 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 1내지 20의 알킬실릴, 탄소수 6 내지 20의 아릴실릴; 탄소수 7 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 또는 하이드로카르빌로 치환된 4족 금속의 메탈로이드이고; 상기 R1과 R2 또는 2개의 R2가 탄소수 1 내지 20의 알킬 또는 탄소수 6 내지 20의 아릴 작용기를 포함하는 알킬리딘에 의해 서로 연결되어 고리를 형성할 수 있으며;
R3, R3' 및 R3"는 서로 같거나 다를 수 있으며, 각각 독립적으로 수소; 할로겐; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 탄소수 1 내지 20의 알콕시; 탄소수 6 내지 20의 아릴옥시; 또는 아미도 그룹이고; 상기 R3, R3' 및 R3" 중에서 2개 이상이 서로 연결되어 ' 지방족 고리 또는 방향족 고리를 형성할 수 있으며;
CY는 치환 또는 치환되지 않은 지방족 또는 방향족 고리이고, 상기
CY에서 치환되는 치환기는 할로겐; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 탄소수 1 내지 20의 알콕시; 탄소수 6 내지 20의 아릴옥시; 또는 탄소수 1 내지 20의 알킬 아미도기거나 탄소수 6 내지 20의 아릴 아미도기이며, 상기 치환기가 복수 개일 경우에는 상기 치환기 중에서 2개 이상의 치환기가 서로 연결되어 지방족 또는 방향족 고리를 형성할 수 있으며;
Ml은 4족 전이금속이고;
Q1 및 Q2는 서로 같거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 탄소수 1 내지 20의 알킬 아미도; 탄소수 6 내지 20의 아릴 아미도; 또는 탄소수 1 내지 20의 알킬리덴이고;
[
Figure imgf000028_0001
、 상기 화학식 2에서,
. M2는 4족 전이금속이고;
Q3 및 Q4는 서로 같거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의5 아릴; 탄소수 7 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 탄소수 1 내지 20의 알킬 아미도; 탄소수 6 내지 20의 아릴 아미도; 또는 탄소수 1 내지 20의 알킬리덴일 수 있고;
R4 내지 R10은 서로 같거나 다를 수 있으며, 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 1 내지 20의0 알콕시; 탄소수 6 내지 20의 아릴; 탄소수 1 내지 20의 알킬실릴, 탄소수 6 내지 20의 아릴실릴; 또는 탄소수 7 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬이고;
B는 탄소, 실리콘, 또는 게르마늄이고, 시클로펜타디에닐 계열 리간드와 JRIOzy를 공유 결합에 의해 묶어주는 다리이고;
5 J는 주기율표 15족 원소 또는 16족 원소이며;
z는 J 원소의 산화수이고; y는 J 원소의 결합수이며;
n은 0 내지 10의 정수이다.
【청구항 6】
제 5항에 있어서, 상기 흔성 메탈로센 촉매는 상기 제 2 메탈로센 화합물을 상기 제 1 및 제 2 메탈로센 화합물의 총량을 기준으로 0 md% 초과 내지 50 mol% 미만으로 포함하는 폴리을레핀.
【청구항 7】
제 5항에 있어서, 에틸렌 및 알파 올레핀 공단량체의 중합은 연속 용액 중합 공정으로 수행하는 폴리올레핀.
【청구항 8】
제 5항에 있어서, 상기 흔성 메탈로센 촉매는 하기 화학식 5 내지 7로 표시되는 화합물 중 선택되는 1종 이상의 조촉매를 더 포함하는 폴리올레핀:
[화학식 5]
-[Al(R13)-0]c- 상기 화학식 5에서, R13은 할로겐 라디칼, 탄소수 1 내지 20의 하이드로카빌 라디칼, 또는 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카빌 라디칼이고, c는 2 이상의 정수이며,
[화학식 6]
D(R14)3
상기 화학식 6에서,
D는 알루미늄 또는 보론이고, R14는 탄소수 1 내지 20의 하이드로카빌 또는 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카빌이고,
[화학식 7]
[L-H]+[ZE4]- 또는 [L]+[ZE4]"
상기 화학식 7에서,
L은 중성 또는 양이은성 루이스 염기이고, H는 수소 원자이며, Z는 13족 원소이고, E는 서로 동일하거나 다를 수 있으며, 각각 독립적으로 1 이상의 수소 원자가 할로겐, 탄소수 1 내지 20의 탄화수소, 알콕시 또는 페녹시로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기 또는 탄소수 1 내지 20의 알킬기이다.
【청구항 9】
제 5항에 있어서, 에틸렌 및 알파 을레핀 공단량체의 중합은 130 내지 250°C에서 수행되는 폴리올레핀.
【청구항 10]
제 5항에 있어서, 상기 알파 을레핀 공단량체는 프로필렌, 1-부텐, 1- 펜텐, 4-메틸 -1-펜텐, 1ᅳ핵센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1- 테트라데센, 1-핵사데센, 1-옥타데센 및 1-에이코센으로 이루어진 군으로부터 선택되는 1종 이상인, 폴리을레핀.
PCT/KR2014/009119 2013-09-30 2014-09-29 폴리올레핀 WO2015046995A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/021,149 US9701768B2 (en) 2013-09-30 2014-09-29 Polyolefin
CN201480048452.5A CN105518034B (zh) 2013-09-30 2014-09-29 聚烯烃
ES14849825T ES2966662T3 (es) 2013-09-30 2014-09-29 Poliolefina
JP2016545698A JP6407291B2 (ja) 2013-09-30 2014-09-29 ポリオレフィン
EP14849825.6A EP3037441B1 (en) 2013-09-30 2014-09-29 Polyolefin

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0116760 2013-09-30
KR20130116760 2013-09-30
KR10-2014-0129367 2014-09-26
KR1020140129367A KR101657680B1 (ko) 2013-09-30 2014-09-26 폴리올레핀

Publications (1)

Publication Number Publication Date
WO2015046995A1 true WO2015046995A1 (ko) 2015-04-02

Family

ID=52743997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009119 WO2015046995A1 (ko) 2013-09-30 2014-09-29 폴리올레핀

Country Status (1)

Country Link
WO (1) WO2015046995A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019515097A (ja) * 2016-04-27 2019-06-06 ハンファ ケミカル コーポレーション 混成担持メタロセン触媒を用いた高密度エチレン系重合体及び製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4547551A (en) * 1982-06-22 1985-10-15 Phillips Petroleum Company Ethylene polymer blends and process for forming film
US5064802A (en) 1989-09-14 1991-11-12 The Dow Chemical Company Metal complex compounds
KR960010734B1 (ko) * 1991-06-07 1996-08-07 후지쓰 가부시끼가이샤 메모리 셀 캐패시터를 구비한 반도체 메모리장치 및 그의 제조방법
JP2003507538A (ja) * 1999-08-19 2003-02-25 ボレアリス テクノロジー オイ 容器製造方法
KR20050088087A (ko) * 2002-11-27 2005-09-01 보레알리스 테크놀로지 오와이. 폴리에틸렌 조성물로서의 용도

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4547551A (en) * 1982-06-22 1985-10-15 Phillips Petroleum Company Ethylene polymer blends and process for forming film
US5064802A (en) 1989-09-14 1991-11-12 The Dow Chemical Company Metal complex compounds
KR960010734B1 (ko) * 1991-06-07 1996-08-07 후지쓰 가부시끼가이샤 메모리 셀 캐패시터를 구비한 반도체 메모리장치 및 그의 제조방법
JP2003507538A (ja) * 1999-08-19 2003-02-25 ボレアリス テクノロジー オイ 容器製造方法
KR20050088087A (ko) * 2002-11-27 2005-09-01 보레알리스 테크놀로지 오와이. 폴리에틸렌 조성물로서의 용도

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEM. REV., vol. 103, 2003, pages 283

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019515097A (ja) * 2016-04-27 2019-06-06 ハンファ ケミカル コーポレーション 混成担持メタロセン触媒を用いた高密度エチレン系重合体及び製造方法

Similar Documents

Publication Publication Date Title
KR102065164B1 (ko) 올레핀계 중합체
KR101726820B1 (ko) 가공성 및 환경 응력 균열 저항성이 우수한 에틸렌/1-헥센 또는 에틸렌/1-부텐 공중합체
KR101657680B1 (ko) 폴리올레핀
CN111108131A (zh) 基于烯烃的聚合物
CN106795242B (zh) 基于烯烃的聚合物
KR102028063B1 (ko) 전이 금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용하는 올레핀 중합체의 제조 방법
CN111491960B (zh) 基于烯烃的聚合物
JP6440832B2 (ja) メタロセン化合物、メタロセン担持触媒およびこれを用いるポリオレフィンの製造方法
US10669356B2 (en) Supported hybrid catalyst and method for preparing olefin polymer using the same
KR101049260B1 (ko) 새로운 포스트 메탈로센형 전이금속 화합물
JP6499280B2 (ja) メタロセン担持触媒およびこれを用いるポリオレフィンの製造方法
KR101675509B1 (ko) 우수한 물성을 갖는 폴리올레핀
WO2017111513A1 (ko) 메탈로센 담지 촉매 및 이를 이용하는 폴리올레핀의 제조방법
WO2015046995A1 (ko) 폴리올레핀
EP3330296B1 (en) Method for preparing supported metallocene catalyst
KR102071588B1 (ko) 올레핀계 중합체
KR102779863B1 (ko) 신규 전이금속 화합물 및 이를 이용한 폴리에틸렌의 제조방법
CN111491961B (zh) 基于烯烃的聚合物
KR20170074678A (ko) 신규한 전이금속 화합물
KR101579615B1 (ko) 폴리프로필렌계 수지 조성물 및 이로부터 제조되는 성형품
KR102034807B1 (ko) 신규한 전이금속 화합물
KR102034133B1 (ko) 신규한 전이금속 화합물, 이를 포함하는 촉매 조성물, 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법
RU2596186C2 (ru) Нанесенный на носитель неметаллоценовый катализатор, его получение и применение
KR20220062210A (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리에틸렌 공중합체의 제조 방법
KR20220069822A (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리에틸렌 공중합체의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849825

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016545698

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15021149

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014849825

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE