WO2015046232A1 - Method for treating fluorine-containing liquid electrolyte - Google Patents
Method for treating fluorine-containing liquid electrolyte Download PDFInfo
- Publication number
- WO2015046232A1 WO2015046232A1 PCT/JP2014/075251 JP2014075251W WO2015046232A1 WO 2015046232 A1 WO2015046232 A1 WO 2015046232A1 JP 2014075251 W JP2014075251 W JP 2014075251W WO 2015046232 A1 WO2015046232 A1 WO 2015046232A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluorine
- electrolyte
- waste battery
- solution
- contained
- Prior art date
Links
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 title claims abstract description 89
- 239000011737 fluorine Substances 0.000 title claims abstract description 89
- 229910052731 fluorine Inorganic materials 0.000 title claims abstract description 89
- 238000000034 method Methods 0.000 title claims abstract description 45
- 239000011244 liquid electrolyte Substances 0.000 title abstract 6
- 239000003513 alkali Substances 0.000 claims abstract description 40
- 239000003960 organic solvent Substances 0.000 claims abstract description 32
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 25
- 239000011574 phosphorus Substances 0.000 claims abstract description 25
- 230000008016 vaporization Effects 0.000 claims abstract description 23
- 239000008151 electrolyte solution Substances 0.000 claims description 87
- 239000010926 waste battery Substances 0.000 claims description 55
- 239000003792 electrolyte Substances 0.000 claims description 50
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 39
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 34
- 239000000243 solution Substances 0.000 claims description 18
- 238000003672 processing method Methods 0.000 claims description 16
- 235000011121 sodium hydroxide Nutrition 0.000 claims description 13
- 239000012670 alkaline solution Substances 0.000 claims description 12
- 150000002009 diols Chemical class 0.000 claims description 12
- 238000005520 cutting process Methods 0.000 claims description 6
- 239000002002 slurry Substances 0.000 claims description 6
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 2
- 230000003301 hydrolyzing effect Effects 0.000 claims 1
- 238000009834 vaporization Methods 0.000 abstract description 20
- 150000004649 carbonic acid derivatives Chemical class 0.000 abstract description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 33
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 27
- 239000007789 gas Substances 0.000 description 26
- 239000007788 liquid Substances 0.000 description 22
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 20
- 229910013870 LiPF 6 Inorganic materials 0.000 description 17
- 150000002222 fluorine compounds Chemical class 0.000 description 16
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 14
- 229910001416 lithium ion Inorganic materials 0.000 description 14
- 150000004651 carbonic acid esters Chemical class 0.000 description 11
- 238000002347 injection Methods 0.000 description 11
- 239000007924 injection Substances 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 239000001569 carbon dioxide Substances 0.000 description 10
- 229910002092 carbon dioxide Inorganic materials 0.000 description 10
- 238000007792 addition Methods 0.000 description 8
- 238000009835 boiling Methods 0.000 description 8
- -1 carbonate ester Chemical class 0.000 description 7
- 229910052744 lithium Inorganic materials 0.000 description 7
- 239000000725 suspension Substances 0.000 description 7
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 6
- 238000007599 discharging Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 5
- 229910019142 PO4 Inorganic materials 0.000 description 5
- 150000001298 alcohols Chemical class 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 5
- 238000004817 gas chromatography Methods 0.000 description 5
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 5
- 239000010452 phosphate Substances 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical group COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000002253 acid Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 235000011116 calcium hydroxide Nutrition 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 238000002083 X-ray spectrum Methods 0.000 description 1
- IDSMHEZTLOUMLM-UHFFFAOYSA-N [Li].[O].[Co] Chemical compound [Li].[O].[Co] IDSMHEZTLOUMLM-UHFFFAOYSA-N 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/54—Reclaiming serviceable parts of waste accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
- H01M2300/0034—Fluorinated solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/52—Reclaiming serviceable parts of waste cells or batteries, e.g. recycling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/84—Recycling of batteries or fuel cells
Definitions
- the present invention relates to a safe processing method for a fluorine-containing electrolytic solution used in a lithium ion battery or the like.
- This application claims priority based on Japanese Patent Application No. 2013-204125 for which it applied to Japan on September 30, 2013, and uses the content here.
- Electrolytic solutions used in lithium ion batteries and the like contain fluorine compounds (LiPF 6 , LiBF 4, etc.) that serve as electrolytes and volatile organic solvents, which are mainly carbonates. It is a flammable substance. Moreover, when LiPF 6 reacts with water, it hydrolyzes to generate toxic hydrogen fluoride. For this reason, a safe processing method is required.
- fluorine compounds LiPF 6 , LiBF 4, etc.
- the following treatment methods are known as a treatment method for a lithium ion battery and its electrolytic solution.
- Patent Document 1 Processing method to separate (Patent Document 1), (B) Battered used lithium battery, crushing the baked product and separating it into a magnetic material and a non-magnetic material, with a large amount of useful metals such as aluminum and copper Treatment method (Patent Document 2), (C) a lithium battery is opened with ultra-high pressure water, and an electrolytic solution is recovered using an organic solvent (Patent Document 3), (D) used battery is crushed Then, after washing with water, the positive electrode is peeled off to recover Al, Cu, Ni and Co, and Li is extracted from the remaining liquid by solvent extraction (Patent Document 4), (E) used batteries are crushed , washed with water to elute the LiPF 6, cobalt oxide lithium is peeled off cathode While recovering, the washing solution after the addition of hot acid decomposes LiPF 6 phosphate and fluorine, this was added slaked lime, processing method of recovering a mixture of fluoride Ca and phosphate Ca (JP 5).
- Patent Document 2
- the said processing method (A) requires a freezing equipment in order to disassemble and crush a lithium battery under freezing, it is difficult to implement.
- a fluorine is processed as a combustion gas in the roasting process of a lithium battery, a highly pure fluorine component cannot be collect
- recovered electrolyte solution becomes a problem.
- the electrolyte solution contains a flammable organic solvent, and the fluorine compound in the electrolyte solution reacts with water to generate toxic hydrogen fluoride, so that safe treatment is required.
- cleaning containing an organic solvent becomes a problem.
- the present invention solves the above-mentioned problems in conventional processing methods, and an object thereof is to provide a method for safely processing an electrolytic solution containing a fluorine compound (LiPF 6 or the like) and an organic solvent.
- a fluorine compound LiPF 6 or the like
- the present invention is a method for treating a fluorine-containing electrolytic solution having the following constitution.
- [1] After adding an alkali to a fluorine-containing electrolyte solution to hydrolyze a carbonate ester contained in the fluorine-containing electrolyte solution and fixing fluorine and phosphorus contained in the fluorine-containing electrolyte solution, the fluorine-containing electrolyte solution
- the above-mentioned fluorine-containing electrolyte is an electrolyte in a waste battery, an electrolyte in a state where the waste battery is cut or crushed, an electrolyte before use, or an electrolyte extracted from a waste battery
- the fluorine-containing electrolytic solution is an electrolytic solution in a waste battery, and after the alkali is injected into the waste battery or the waste battery is immersed in the alkaline solution, the waste battery is subjected to normal pressure or reduced pressure.
- the fluorine-containing electrolyte is an electrolyte in a waste battery, and after cutting or crushing the waste battery and adding a powdered alkali or alkaline solution, the waste battery is heated under normal pressure or reduced pressure.
- alkali is added to the fluorine-containing electrolytic solution, the fluorine compound (LiPF 6 ) contained in the fluorine-containing electrolytic solution is decomposed, and fluorine and phosphorus are fixed. Generation of hydrogen can be avoided. As a result, it is possible to work safely. Further, in the treatment method of the present invention, the organic solvent component is taken out by vaporizing the fluorine-containing electrolytic solution, so that it is not necessary to freeze or burn the waste battery at a high temperature.
- the carbonates in the fluorine-containing electrolyte are decomposed by addition of alkali to alcohols or diols, the organic solvent components (alcohols and diols) at a temperature lower than the boiling point of the carbonates. ) Can be vaporized. As a result, recovery of these becomes easy.
- fluorine in the fluorine-containing electrolyte is separated prior to vaporization of the organic solvent component by addition of alkali, so that the recovered alcohol or diol does not contain fluorine. For this reason, since harmful hydrogen fluoride etc. do not generate
- the treatment method of the present embodiment can be applied to an electrolytic solution used for a lithium battery or the like.
- Electrolytic solutions used in lithium ion batteries and the like contain an electrolyte fluorine compound and an organic solvent.
- the fluorine compound is mainly lithium hexafluorophosphate (LiPF 6 )
- the organic solvent is dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), propylene carbonate (PC), ethylene carbonate (EC). And so on.
- DMC, EMC and DEC are flammable substances.
- the treatment method of this embodiment is suitable as a treatment method for a lithium ion battery or the like in which an electrolytic solution containing such a fluorine compound and an organic solvent is used.
- the treatment method of the present embodiment is such a fluorine-containing electrolytic solution, which is an electrolytic solution in a waste battery or an electrolytic solution in a state where the waste battery is cut or crushed (obtained by cutting or crushing the waste battery). Or an electrolytic solution before use, or an electrolytic solution extracted from a waste battery.
- the waste battery that has been cut or crushed is in a state in which the electrolyte inside the battery is exposed to the outside together with the electrode material, so that the electrolyte can be treated.
- Cutting or crushing the waste battery may be performed in an inert gas atmosphere so as not to ignite the electrolyte.
- alkali addition process In the treatment method of the present embodiment, alkali is added to the fluorine-containing electrolytic solution (step S1), and then the electrolytic solution is heated to vaporize volatile components (step S2).
- the method of adding alkali to the electrolyte of the waste battery include a method of directly injecting alkali into the waste battery after discharging the used battery.
- the used battery may be immersed in an alkaline solution after the used battery is discharged.
- a battery is provided with a safety valve in order to lower an excessive internal pressure. Therefore, the safety valve may be opened to inject an alkaline solution, or the safety valve may be opened and immersed in the alkaline solution.
- powdered alkali or alkaline solution may be added to the cut or crushed waste battery.
- Na-based neutralizer Na 2 CO 3
- Ca-based neutralizer Ca (OH) 2 , CaCO 3 , CaO]
- Mg-based neutralizer (MgO, Mg (OH) 2
- the concentration of is preferably 0.1 to 20% of the total weight of the solution or slurry, where when alkali is injected into the waste battery, the amount of alkali injected into the waste battery, that is, the weight of pure alkali is the amount of electrolyte.
- the alkali amount (g) is the weight (g) of the solid, and when the alkali is liquid, the alkali amount (g) is “liquid weight (g ) X alkali weight
- the alkali amount (g) is “slurry amount (g) ⁇ alkali weight concentration (%)”.
- the carbonate ester contained in the electrolytic solution is hydrolyzed into alcohol and diol by the addition of alkali.
- a linear carbonate ester is hydrolyzed into alcohol and carbon dioxide.
- the cyclic carbonate is hydrolyzed into diol and carbon dioxide. The generated carbon dioxide becomes gas and flows out of the system, and alcohol and diol remain in the electrolyte.
- DMC decomposes to produce methanol.
- EMC decomposes to produce methanol and ethanol.
- DEC decomposes to produce ethanol.
- EC decomposes to produce ethylene glycol. Since these alcohols and diols have a boiling point of about 30 to 60 ° C. lower than that of the carbonate ester, the vaporization temperature in the vaporization step can be lowered. This facilitates recovery of organic solvents such as alcohol and diol.
- LiPF 6 contained in the electrolytic solution is decomposed by reacting with alkali Na and Ca, and as shown in the following formulas (3) and (4), precipitation of fluorine compounds (LiF, NaF, CaF 2 ), And precipitation of phosphate compound (Na 2 HPO 4 , CaHPO 4 ) occurs, and fluorine and phosphorus are immobilized. Further, these phosphate compounds are decomposed into NaHF 2 , NaF, and CaF.
- FIG. 2 shows an XRD diagram (X-ray spectrum diagram) obtained when XRD (X-ray diffraction) measurement is performed on a liquid obtained by adding a NaOH solution to the electrolytic solution. As shown in the figure, peaks of NaF, NaHF 2 and LiF are seen, and fluorine is immobilized.
- fluorine and phosphorus contained in the electrolytic solution are fixed as precipitates. Therefore, generation of harmful hydrogen fluoride in the subsequent process is avoided, and high safety can be ensured. .
- LiPF 6 is decomposed to fix fluorine and phosphorus. Thereby, even when the waste battery is heated, almost no hydrogen fluoride is generated, and the waste battery can be safely processed.
- the alkali-treated waste battery is heated to vaporize the volatile component of the electrolytic solution.
- the alkaline battery may be washed with a washing solvent to extract an electrolytic solution, and the extracted electrolytic solution may be heated to vaporize volatile components.
- the washing solvent is preferably water or an organic solvent having a boiling point of 150 ° C. or lower.
- the carbonic acid ester is decomposed into alcohols and diols, so that the alcohols and diols can be vaporized at a temperature lower than the boiling point of the carbonic acid ester.
- the boiling points of DMC, EMC, DEC, and EC are 90 ° C., 109 ° C., 127 ° C., and 244 ° C. under normal pressure, respectively.
- the boiling point of methanol is 65 ° C.
- the boiling point of ethanol is 78 ° C.
- the boiling point of ethylene glycol is 197 ° C.
- the electrolytic solution may be heated to 65 ° C. to 197 ° C. or higher.
- the inside of a waste battery When heated under reduced pressure, the internal temperature increases, and volatile components are easily vaporized.
- the inside of a waste battery is depressurized to 5 kPa and heated to 20 ° C. to 90 ° C., it becomes 98 ° C. to 181 ° C. in terms of atmospheric pressure. For this reason, methanol, ethanol, ethylene glycol, and the like can be easily vaporized.
- the inside of the waste battery may be reduced to 1 kPa to 0.1 kPa and heated to 10 ° C. to 40 ° C.
- step S3 the gas (vaporized gas) vaporized in the vaporization step is cooled and condensed, whereby the volatile components vaporized in the vaporization step can be recovered as a condensate. Further, since methanol, ethanol, and ethylene glycol contained in the vaporized gas are dissolved in water, they can be recovered as an aqueous solution by introducing the vaporized gas into a water-cooled trap.
- the vaporized carbonic acid ester When a part of the carbonic acid ester contained in the electrolyte is vaporized without being decomposed, the vaporized carbonic acid ester does not dissolve in water, so it is separated as an organic phase on the aqueous phase surface of the aqueous solution obtained by the water-cooled trap. . By separating such a liquid into oil and water, the carbonate ester can be recovered.
- Step S4 The waste battery after the vaporization treatment is crushed (step S4), and the crushed material is separated according to the material used (step S5) and recycled.
- the vaporization step may be performed after cutting or crushing the waste battery, and the crushed material obtained by cutting or crushing the waste battery may be separated and recycled according to the material used after the vaporization treatment. .
- the fluorine concentration was analyzed by the fluoride ion electrode method.
- the phosphoric acid concentration was measured by ICP-AES (Inductively Coupled Plasma Atomic Emission Spectrometer).
- Example 1 After discharging a lithium ion waste battery (electrolyte content: 100 mL, weight: 122.6 g), the safety valve was removed, and a 24 wt% NaOH solution was injected from the opening. At the time of injection, it was visually confirmed that a gas considered to be carbon dioxide generated by the decomposition of the carbonic acid ester in the electrolytic solution was generated. After injecting the NaOH solution, the inside of the waste battery was depressurized to 20 kPa, heated at 120 ° C. for 2 hours, the vaporized gas was cooled and condensed, and the condensate was recovered.
- Table 1 shows the concentration and the injection amount of the NaOH solution used, the amount of the condensed liquid recovered (the amount of organic solvent), the fluorine concentration and the phosphorus concentration in the liquid.
- the recovered condensate had a fluorine concentration of 31 ppm and a phosphorus concentration of less than 1 ppm. This suggests that the fluorine compound (LiPF 6 ) contained in the electrolytic solution is decomposed, and that almost the entire amount is fixed in the vaporized residue (the residue that is not vaporized after the electrolytic solution is vaporized). .
- the collected condensate was analyzed by gas chromatography, and it was confirmed that methanol, ethanol, and ethylene glycol were contained. This suggests that the carbonates of the electrolytic solution were decomposed into these.
- Example 2 After discharging a lithium ion waste battery (electrolyte content: 100 mL, weight: 122.6 g), the safety valve was removed, and a 20 wt% Na 2 CO 3 solution was injected from the opening. At the time of injection, it was visually confirmed that a gas considered to be carbon dioxide generated by the decomposition of the carbonic acid ester in the electrolytic solution was generated. After injecting the Na 2 CO 3 solution, it was vaporized under the same conditions as in Example 1, the vaporized gas was cooled and condensed, and the condensate was recovered.
- Table 2 shows the concentration and injection amount of the used Na 2 CO 3 solution, the amount of the aggregate liquid recovered (amount of organic solvent), the fluorine concentration and the phosphorus concentration in the liquid.
- the recovered aggregate liquid had a fluorine concentration of 46 ppm and a phosphorus concentration of less than 1 ppm. This suggests that the fluorine compound (LiPF 6 ) contained in the electrolytic solution is decomposed, and almost the entire amount is fixed in the vaporization residue.
- the collected condensate was analyzed by gas chromatography, and it was confirmed that methanol, ethanol, and ethylene glycol were contained. This suggests that the carbonate of the electrolytic solution was hydrolyzed.
- Example 3 After discharging the lithium ion waste battery (electrolyte content: 100 mL, weight: 122.6 g), the safety valve was removed, and a 20 wt% Ca (OH) 2 suspension was injected from the opening. At the time of injection, it was visually confirmed that a gas considered to be carbon dioxide generated by the decomposition of the carbonic acid ester in the electrolytic solution was generated. After injecting the Ca (OH) 2 suspension, vaporization was performed under the same conditions as in Example 1, the vaporized gas was cooled and condensed, and the condensate was recovered.
- Table 3 shows the concentration and injection amount of the Ca (OH) 2 suspension, the amount of recovered condensate (the amount of organic solvent), the fluorine concentration and the phosphorus concentration in the solution.
- the recovered condensate had a fluorine concentration of 29 ppm and a phosphorus concentration of less than 1 ppm. This suggests that the fluorine compound (LiPF 6 ) contained in the electrolytic solution is decomposed, and almost the entire amount is fixed in the vaporization residue.
- the collected condensate was analyzed by gas chromatography, and it was confirmed that methanol, ethanol, and ethylene glycol were contained. This suggests that the carbonate of the electrolytic solution was hydrolyzed.
- Example 4 After discharging a lithium ion waste battery (electrolyte content: 100 mL, weight: 122.6 g), the safety valve was removed, and a 20 wt% MgO suspension was injected from the opening. At the time of injection, it was visually confirmed that a gas considered to be carbon dioxide generated by the decomposition of the carbonic acid ester in the electrolytic solution was generated. After injecting the MgO suspension, vaporization was performed under the same conditions as in Example 1, the vaporized gas was cooled and condensed, and the condensate was recovered. Table 4 shows the concentration and injection amount of the MgO suspension used, the amount of the aggregate liquid recovered (the amount of organic solvent), the fluorine concentration and the phosphorus concentration in the liquid.
- the recovered aggregate liquid had a fluorine concentration of 39 ppm and a phosphorus concentration of 1 ppm. This suggests that the fluorine compound (LiPF 6 ) contained in the electrolytic solution is decomposed, and almost the entire amount is fixed in the vaporization residue.
- the collected condensate was analyzed by gas chromatography, and it was confirmed that methanol, ethanol, and ethylene glycol were contained. This suggests that the carbonate of the electrolytic solution was hydrolyzed.
- Lithium ion waste battery (electrolyte content 100mL, weight 122.6g) was vaporized in the same manner as in Example 1 except that sulfuric acid was injected instead of alkali, and the vaporized gas was cooled and condensed. The liquid was collected.
- Table 5 shows the concentration and injection amount of sulfuric acid, the amount of recovered condensate (the amount of organic solvent), the fluorine concentration and the phosphorus concentration in the liquid. As shown in Table 5, the recovered condensate had a fluorine concentration of 20500 ppm and a phosphorus concentration of 1 ppm.
- Example 2 A lithium ion waste battery (electrolyte content: 100 mL, weight: 122.6 g) is vaporized in the same manner as in Example 1 except that no alkali or sulfuric acid is injected, the vaporized gas is cooled and condensed, and the condensate Was recovered.
- Table 6 shows the amount of condensed liquid recovered (the amount of organic solvent), the fluorine concentration and the phosphorus concentration in the liquid. As shown in Table 6, the recovered condensate had a fluorine concentration of 3800 ppm and a phosphorus concentration of 5000 ppm.
- Example 5 A commercially available electrolyte solution (100 mL) was placed in a flask, and a 24 wt% NaOH solution was injected therein. At the time of injection, it was visually confirmed that a gas considered to be carbon dioxide generated by the decomposition of the carbonic acid ester in the electrolytic solution was generated. After injecting the NaOH solution, the inside of the flask was decompressed to 20 kPa, heated at 120 ° C. for 2 hours, the vaporized gas was cooled and condensed, and the condensate was recovered. Table 7 shows the concentration and the injection amount of the used NaOH solution, the amount of the condensed liquid recovered (the amount of the organic solvent), the fluorine concentration and the phosphorus concentration in the liquid.
- the recovered condensate had a fluorine concentration of 20 ppm and a phosphorus concentration of 1 ppm. This suggests that the fluorine compound (LiPF 6 ) contained in the electrolytic solution is decomposed, and almost the entire amount is fixed in the vaporization residue.
- the collected condensate was analyzed by gas chromatography, and it was confirmed that methanol, ethanol, and ethylene glycol were contained. This suggests that the carbonates of the electrolytic solution were decomposed into these. Furthermore, a peak derived from Na 2 CO 3 was confirmed by XRD measurement of the vaporized residual liquid. This suggests that the carbonic acid ester in the electrolytic solution was hydrolyzed to generate CO 2 together with methanol and the like, and this CO 2 reacted with Na in the alkaline solution.
- an electrolyte containing a fluorine compound and an organic solvent can be safely treated.
- the lithium battery containing a fluorine-containing electrolyte solution can be processed safely.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
Abstract
In this method for treating a fluorine-containing liquid electrolyte, an alkali is added to a fluorine-containing liquid electrolyte so as to hydrolyze carbonate esters in said fluorine-containing liquid electrolyte, fluorine and phosphorus in the fluorine-containing liquid electrolyte are fixated, the fluorine-containing liquid electrolyte is then heated so as to vaporize volatile components therein, and an organic solvent component is recovered from a gas resulting from the vaporization of said volatile components.
Description
本発明は、リチウムイオン電池などに使用されているフッ素含有電解液の安全な処理方法に関する。
本願は、2013年9月30日に、日本に出願された特願2013-204125号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a safe processing method for a fluorine-containing electrolytic solution used in a lithium ion battery or the like.
This application claims priority based on Japanese Patent Application No. 2013-204125 for which it applied to Japan on September 30, 2013, and uses the content here.
本願は、2013年9月30日に、日本に出願された特願2013-204125号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a safe processing method for a fluorine-containing electrolytic solution used in a lithium ion battery or the like.
This application claims priority based on Japanese Patent Application No. 2013-204125 for which it applied to Japan on September 30, 2013, and uses the content here.
電気自動車や電子機器には高容量の電気を供給するために大型のリチウムイオン電池が多く使用されており、電気自動車や電子機器の普及によって大量に生じる使用済み大型電池の処理が問題になりつつある。
Many large-sized lithium ion batteries are used in electric vehicles and electronic devices to supply high-capacity electricity, and the treatment of large-sized used batteries that are generated in large quantities due to the widespread use of electric vehicles and electronic devices is becoming a problem. is there.
リチウムイオン電池などに使用されている電解液には、電解質となるフッ素化合物(LiPF6、LiBF4等)および揮発性の有機溶媒が含まれており、有機溶媒は主に炭酸エステル類であって引火性の物質である。また、LiPF6は水と反応すると加水分解して有毒なフッ化水素を発生する。このため、安全な処理方法が求められている。
Electrolytic solutions used in lithium ion batteries and the like contain fluorine compounds (LiPF 6 , LiBF 4, etc.) that serve as electrolytes and volatile organic solvents, which are mainly carbonates. It is a flammable substance. Moreover, when LiPF 6 reacts with water, it hydrolyzes to generate toxic hydrogen fluoride. For this reason, a safe processing method is required.
リチウムイオン電池やその電解液の処理方法として、従来、以下のような処理方法が知られている。(A)リチウムイオン電池などを電解液の融点以下に冷凍して電池を解体破砕し、破砕体を有機溶媒中で電解液を分離し、抽出された電解液を蒸留して電解質と有機溶媒に分離する処理方法(特許文献1)、(B)使用済みリチウム電池を焙焼し、その焙焼物を破砕して磁性物と非磁性物に分別し、アルミニウムや銅などの有用金属量の多いものを回収する処理方法(特許文献2)、(C)リチウム電池を超高圧水で開口し、有機溶媒を用いて電解液を回収する処理方法(特許文献3)、(D)使用済電池を破砕し、水洗浄後、正極を剥離してAl,Cu,Ni,Coを回収し、残液からLiを溶媒抽出して回収する処理方法(特許文献4)、(E)使用済電池を破砕し、水洗浄してLiPF6を溶出させ、正極を剥離してコバルト酸リチウムを回収する一方、洗浄後液に高温の酸を添加してLiPF6をリン酸とフッ素に分解し、これに消石灰を加え、フッ化Caとリン酸Caの混合物を回収する処理方法(特許文献5)。(F)リチウムイオン廃電池をアルカリ土類金属を含む水に浸漬して放電すると共に、電解液に含まれているフッ素やリンを固形化し、さらに予備焙焼して有機成分を燃焼除去した後に、廃電池を解体して粉砕し、粉砕物を焙焼して有価物を回収する方法(特許文献6)。
Conventionally, the following treatment methods are known as a treatment method for a lithium ion battery and its electrolytic solution. (A) Freeze the lithium ion battery or the like below the melting point of the electrolytic solution, disassemble and crush the battery, separate the electrolytic solution from the crushed body in an organic solvent, and distill the extracted electrolytic solution into an electrolyte and an organic solvent. Processing method to separate (Patent Document 1), (B) Battered used lithium battery, crushing the baked product and separating it into a magnetic material and a non-magnetic material, with a large amount of useful metals such as aluminum and copper Treatment method (Patent Document 2), (C) a lithium battery is opened with ultra-high pressure water, and an electrolytic solution is recovered using an organic solvent (Patent Document 3), (D) used battery is crushed Then, after washing with water, the positive electrode is peeled off to recover Al, Cu, Ni and Co, and Li is extracted from the remaining liquid by solvent extraction (Patent Document 4), (E) used batteries are crushed , washed with water to elute the LiPF 6, cobalt oxide lithium is peeled off cathode While recovering, the washing solution after the addition of hot acid decomposes LiPF 6 phosphate and fluorine, this was added slaked lime, processing method of recovering a mixture of fluoride Ca and phosphate Ca (JP 5). (F) After immersing the lithium ion waste battery in water containing alkaline earth metal and discharging, solidifying fluorine and phosphorus contained in the electrolyte, and further pre-baking to burn off organic components A method of disassembling and pulverizing a waste battery and roasting the pulverized material to recover valuable materials (Patent Document 6).
上記処理方法(A)は、リチウム電池を冷凍下で解体破砕するために冷凍設備を必要とするので実施し難い。上記処理方法(B)ではリチウム電池の焙焼工程においてフッ素が燃焼ガスとして処理されるので、純度の高いフッ素成分を回収できずフッ素を再利用することができない。上記処理方法(C)では、回収された電解液の処理が問題になる。電解液には引火性の有機溶媒が含まれており、また電解液中のフッ素化合物は水と反応して有毒なフッ化水素を発生させるので、安全な処理が求められる。上記処理方法(D)では、有機溶媒が含まれる洗浄後液の処理が問題になる。上記処理方法(E)では、洗浄後液に高温の酸を添加してLiPF6をリン酸とフッ素に分解し、これに消石灰を加えてフッ化Caとリン酸Caを生成させているが、生成される固形分はフッ化Caとリン酸Caの混合物であるので再利用が難しい。上記処理方法(F)では、水浸漬したときに有機溶媒を含む廃水が大量に生じるので、その処理に負担がかかる。
Since the said processing method (A) requires a freezing equipment in order to disassemble and crush a lithium battery under freezing, it is difficult to implement. In the said processing method (B), since a fluorine is processed as a combustion gas in the roasting process of a lithium battery, a highly pure fluorine component cannot be collect | recovered and a fluorine cannot be reused. In the said processing method (C), the process of the collect | recovered electrolyte solution becomes a problem. The electrolyte solution contains a flammable organic solvent, and the fluorine compound in the electrolyte solution reacts with water to generate toxic hydrogen fluoride, so that safe treatment is required. In the said processing method (D), the process of the liquid after washing | cleaning containing an organic solvent becomes a problem. In the above processing method (E), a high-temperature acid is added to the solution after washing to decompose LiPF 6 into phosphoric acid and fluorine, and slaked lime is added thereto to produce Ca fluoride and Ca phosphate. Since the solid content produced is a mixture of Ca fluoride and Ca phosphate, it is difficult to reuse. In the said processing method (F), when a water immersion is carried out, since the waste water containing an organic solvent arises in large quantities, a burden will be applied to the process.
本発明は、従来の処理方法における上記問題を解決したものであり、フッ素化合物(LiPF6等)および有機溶媒を含む電解液を安全に処理する方法を提供することを目的とする。
The present invention solves the above-mentioned problems in conventional processing methods, and an object thereof is to provide a method for safely processing an electrolytic solution containing a fluorine compound (LiPF 6 or the like) and an organic solvent.
本発明は以下の構成からなるフッ素含有電解液の処理方法である。
〔1〕フッ素含有電解液にアルカリを添加して前記フッ素含有電解液に含まれる炭酸エステルを加水分解すると共に、前記フッ素含有電解液に含まれるフッ素およびリンを固定した後に、前記フッ素含有電解液を加熱して前記フッ素含有電解液に含まれる揮発成分を気化し、前記揮発成分が気化した気化ガスから有機溶媒成分を回収するフッ素含有電解液の処理方法。
〔2〕前記フッ素含有電解液が、廃電池中の電解液、廃電池を切断ないし破砕した状態の電解液、使用前の電解液、または廃電池から抜き出された電解液である上記[1]に記載のフッ素含有電解液の処理方法。
〔3〕前記フッ素含有電解液が廃電池中の電解液であって、前記廃電池にアルカリを注入し、あるいは前記廃電池をアルカリ溶液に浸漬した後に、前記廃電池を常圧下あるいは減圧下で加熱して、前記電解液に含まれる揮発成分を気化する上記[1]に記載のフッ素含有電解液の処理方法。
〔4〕前記フッ素含有電解液が廃電池中の電解液であって、前記廃電池を切断または破砕して粉末アルカリあるいはアルカリ溶液を加えた後に、常圧下あるいは減圧下で前記廃電池を加熱して前記電解液に含まれる揮発成分を気化する上記[1]に記載のフッ素含有電解液の処理方法。
〔5〕前記アルカリとして、苛性ソーダ(NaOH)、Ca系中和剤〔Ca(OH)2、CaCO3、CaO〕、またはMg系中和剤〔(MgO、Mg(OH)2〕の粉末、溶液、またはスラリーを用いる上記[1]~上記[4]の何れかに記載のフッ素含有電解液の処理方法。
〔6〕前記気化ガスを水冷トラップに導入し、前記気化ガスに含まれるアルコールやジオールを回収する上記[1]~上記[5]の何れかに記載のフッ素含有電解液の処理方法。
〔7〕前記フッ素含有電解液を減圧下で加熱して、前記揮発成分を気化する上記[1]に記載のフッ素含有電解液の処理方法。
〔8〕前記気化ガスを凝縮して有機溶媒成分を回収する上記[1]に記載のフッ素含有電解液の処理方法。 The present invention is a method for treating a fluorine-containing electrolytic solution having the following constitution.
[1] After adding an alkali to a fluorine-containing electrolyte solution to hydrolyze a carbonate ester contained in the fluorine-containing electrolyte solution and fixing fluorine and phosphorus contained in the fluorine-containing electrolyte solution, the fluorine-containing electrolyte solution A method for treating a fluorine-containing electrolyte solution in which a volatile component contained in the fluorine-containing electrolyte solution is vaporized to recover an organic solvent component from a vaporized gas obtained by vaporizing the volatile component.
[2] The above-mentioned fluorine-containing electrolyte is an electrolyte in a waste battery, an electrolyte in a state where the waste battery is cut or crushed, an electrolyte before use, or an electrolyte extracted from a waste battery [1] ] The processing method of the fluorine-containing electrolyte solution of description.
[3] The fluorine-containing electrolytic solution is an electrolytic solution in a waste battery, and after the alkali is injected into the waste battery or the waste battery is immersed in the alkaline solution, the waste battery is subjected to normal pressure or reduced pressure. The method for treating a fluorine-containing electrolyte solution according to the above [1], wherein the volatile component contained in the electrolyte solution is vaporized by heating.
[4] The fluorine-containing electrolyte is an electrolyte in a waste battery, and after cutting or crushing the waste battery and adding a powdered alkali or alkaline solution, the waste battery is heated under normal pressure or reduced pressure. The method for treating a fluorine-containing electrolyte solution according to the above [1], wherein a volatile component contained in the electrolyte solution is vaporized.
[5] Powder or solution of caustic soda (NaOH), Ca-based neutralizer [Ca (OH) 2 , CaCO 3 , CaO], or Mg-based neutralizer [(MgO, Mg (OH) 2 ] as the alkali Or the method for treating a fluorine-containing electrolytic solution according to any one of [1] to [4] above, wherein a slurry is used.
[6] The method for treating a fluorine-containing electrolyte solution according to any one of [1] to [5] above, wherein the vaporized gas is introduced into a water-cooled trap and alcohol or diol contained in the vaporized gas is recovered.
[7] The method for treating a fluorine-containing electrolyte according to [1], wherein the fluorine-containing electrolyte is heated under reduced pressure to vaporize the volatile component.
[8] The method for treating a fluorine-containing electrolytic solution according to [1], wherein the vaporized gas is condensed to recover an organic solvent component.
〔1〕フッ素含有電解液にアルカリを添加して前記フッ素含有電解液に含まれる炭酸エステルを加水分解すると共に、前記フッ素含有電解液に含まれるフッ素およびリンを固定した後に、前記フッ素含有電解液を加熱して前記フッ素含有電解液に含まれる揮発成分を気化し、前記揮発成分が気化した気化ガスから有機溶媒成分を回収するフッ素含有電解液の処理方法。
〔2〕前記フッ素含有電解液が、廃電池中の電解液、廃電池を切断ないし破砕した状態の電解液、使用前の電解液、または廃電池から抜き出された電解液である上記[1]に記載のフッ素含有電解液の処理方法。
〔3〕前記フッ素含有電解液が廃電池中の電解液であって、前記廃電池にアルカリを注入し、あるいは前記廃電池をアルカリ溶液に浸漬した後に、前記廃電池を常圧下あるいは減圧下で加熱して、前記電解液に含まれる揮発成分を気化する上記[1]に記載のフッ素含有電解液の処理方法。
〔4〕前記フッ素含有電解液が廃電池中の電解液であって、前記廃電池を切断または破砕して粉末アルカリあるいはアルカリ溶液を加えた後に、常圧下あるいは減圧下で前記廃電池を加熱して前記電解液に含まれる揮発成分を気化する上記[1]に記載のフッ素含有電解液の処理方法。
〔5〕前記アルカリとして、苛性ソーダ(NaOH)、Ca系中和剤〔Ca(OH)2、CaCO3、CaO〕、またはMg系中和剤〔(MgO、Mg(OH)2〕の粉末、溶液、またはスラリーを用いる上記[1]~上記[4]の何れかに記載のフッ素含有電解液の処理方法。
〔6〕前記気化ガスを水冷トラップに導入し、前記気化ガスに含まれるアルコールやジオールを回収する上記[1]~上記[5]の何れかに記載のフッ素含有電解液の処理方法。
〔7〕前記フッ素含有電解液を減圧下で加熱して、前記揮発成分を気化する上記[1]に記載のフッ素含有電解液の処理方法。
〔8〕前記気化ガスを凝縮して有機溶媒成分を回収する上記[1]に記載のフッ素含有電解液の処理方法。 The present invention is a method for treating a fluorine-containing electrolytic solution having the following constitution.
[1] After adding an alkali to a fluorine-containing electrolyte solution to hydrolyze a carbonate ester contained in the fluorine-containing electrolyte solution and fixing fluorine and phosphorus contained in the fluorine-containing electrolyte solution, the fluorine-containing electrolyte solution A method for treating a fluorine-containing electrolyte solution in which a volatile component contained in the fluorine-containing electrolyte solution is vaporized to recover an organic solvent component from a vaporized gas obtained by vaporizing the volatile component.
[2] The above-mentioned fluorine-containing electrolyte is an electrolyte in a waste battery, an electrolyte in a state where the waste battery is cut or crushed, an electrolyte before use, or an electrolyte extracted from a waste battery [1] ] The processing method of the fluorine-containing electrolyte solution of description.
[3] The fluorine-containing electrolytic solution is an electrolytic solution in a waste battery, and after the alkali is injected into the waste battery or the waste battery is immersed in the alkaline solution, the waste battery is subjected to normal pressure or reduced pressure. The method for treating a fluorine-containing electrolyte solution according to the above [1], wherein the volatile component contained in the electrolyte solution is vaporized by heating.
[4] The fluorine-containing electrolyte is an electrolyte in a waste battery, and after cutting or crushing the waste battery and adding a powdered alkali or alkaline solution, the waste battery is heated under normal pressure or reduced pressure. The method for treating a fluorine-containing electrolyte solution according to the above [1], wherein a volatile component contained in the electrolyte solution is vaporized.
[5] Powder or solution of caustic soda (NaOH), Ca-based neutralizer [Ca (OH) 2 , CaCO 3 , CaO], or Mg-based neutralizer [(MgO, Mg (OH) 2 ] as the alkali Or the method for treating a fluorine-containing electrolytic solution according to any one of [1] to [4] above, wherein a slurry is used.
[6] The method for treating a fluorine-containing electrolyte solution according to any one of [1] to [5] above, wherein the vaporized gas is introduced into a water-cooled trap and alcohol or diol contained in the vaporized gas is recovered.
[7] The method for treating a fluorine-containing electrolyte according to [1], wherein the fluorine-containing electrolyte is heated under reduced pressure to vaporize the volatile component.
[8] The method for treating a fluorine-containing electrolytic solution according to [1], wherein the vaporized gas is condensed to recover an organic solvent component.
本発明の処理方法では、フッ素含有電解液にアルカリを添加し、フッ素含有電解液に含まれるフッ素化合物(LiPF6)を分解して、フッ素およびリンを固定するので、後工程における有害なフッ化水素の発生を回避することができる。その結果、安全に作業を進めることができる。さらに、本発明の処理方法ではフッ素含有電解液を気化させて有機溶媒成分を取り出すので、廃電池を冷凍ないし高温で燃焼する必要がない。
In the treatment method of the present invention, alkali is added to the fluorine-containing electrolytic solution, the fluorine compound (LiPF 6 ) contained in the fluorine-containing electrolytic solution is decomposed, and fluorine and phosphorus are fixed. Generation of hydrogen can be avoided. As a result, it is possible to work safely. Further, in the treatment method of the present invention, the organic solvent component is taken out by vaporizing the fluorine-containing electrolytic solution, so that it is not necessary to freeze or burn the waste battery at a high temperature.
また、本発明の処理方法では、アルカリの添加によってフッ素含有電解液中の炭酸エステル類が分解されてアルコールやジオールになるので、炭酸エステル類の沸点よりも低い温度で有機溶媒成分(アルコールおよびジオール)を気化させることができる。この結果、これらの回収が容易になる。
Further, in the treatment method of the present invention, since the carbonates in the fluorine-containing electrolyte are decomposed by addition of alkali to alcohols or diols, the organic solvent components (alcohols and diols) at a temperature lower than the boiling point of the carbonates. ) Can be vaporized. As a result, recovery of these becomes easy.
さらに、本発明の処理方法では、フッ素含有電解液のフッ素はアルカリの添加によって有機溶媒成分の気化よりも先に分離されているので、回収されたアルコールやジオールにはフッ素が含まれていない。このため、有害なフッ化水素などが発生しないので安全である。
Furthermore, in the treatment method of the present invention, fluorine in the fluorine-containing electrolyte is separated prior to vaporization of the organic solvent component by addition of alkali, so that the recovered alcohol or diol does not contain fluorine. For this reason, since harmful hydrogen fluoride etc. do not generate | occur | produce, it is safe.
〔具体的な説明〕
以下、本発明の一実施形態を具体的に説明する。なお、%は特に説明がない限り質量%を表し、ppmは質量ppmを表す。
本実施形態の処理方法では、フッ素含有電解液にアルカリを添加して、前記フッ素含有電解液に含まれる炭酸エステルを分解すると共に、前記フッ素含有電解液に含まれるフッ素分およびリン分を固定化した後に、前記フッ素含有電解液を加熱して揮発成分を気化し、前記揮発成分が気化した気化ガスから有機溶媒成分を回収する。
本実施形態の処理方法の工程図を図1に示す。 [Specific description]
Hereinafter, an embodiment of the present invention will be specifically described. Unless otherwise specified,% represents mass%, and ppm represents mass ppm.
In the treatment method of the present embodiment, alkali is added to the fluorine-containing electrolytic solution to decompose the carbonic acid ester contained in the fluorine-containing electrolytic solution and to fix the fluorine content and phosphorus content contained in the fluorine-containing electrolytic solution. Then, the fluorine-containing electrolyte is heated to vaporize the volatile component, and the organic solvent component is recovered from the vaporized gas from which the volatile component is vaporized.
A process diagram of the processing method of the present embodiment is shown in FIG.
以下、本発明の一実施形態を具体的に説明する。なお、%は特に説明がない限り質量%を表し、ppmは質量ppmを表す。
本実施形態の処理方法では、フッ素含有電解液にアルカリを添加して、前記フッ素含有電解液に含まれる炭酸エステルを分解すると共に、前記フッ素含有電解液に含まれるフッ素分およびリン分を固定化した後に、前記フッ素含有電解液を加熱して揮発成分を気化し、前記揮発成分が気化した気化ガスから有機溶媒成分を回収する。
本実施形態の処理方法の工程図を図1に示す。 [Specific description]
Hereinafter, an embodiment of the present invention will be specifically described. Unless otherwise specified,% represents mass%, and ppm represents mass ppm.
In the treatment method of the present embodiment, alkali is added to the fluorine-containing electrolytic solution to decompose the carbonic acid ester contained in the fluorine-containing electrolytic solution and to fix the fluorine content and phosphorus content contained in the fluorine-containing electrolytic solution. Then, the fluorine-containing electrolyte is heated to vaporize the volatile component, and the organic solvent component is recovered from the vaporized gas from which the volatile component is vaporized.
A process diagram of the processing method of the present embodiment is shown in FIG.
本実施形態の処理方法は、リチウム電池などに使用されている電解液に適用できる。リチウムイオン電池などに使用されている電解液には、電解質のフッ素化合物と有機溶媒が含まれている。フッ素化合物は主にヘキサフルオロリン酸リチウム(LiPF6)であり、有機溶媒はジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC),エチレンカーボネート(EC)などの炭酸エステルである。DMC、EMC、DECは引火性物質である。本実施形態の処理方法は、このようなフッ素化合物と有機溶媒とを含む電解液が使用されているリチウムイオン電池などの処理方法として好適である。
The treatment method of the present embodiment can be applied to an electrolytic solution used for a lithium battery or the like. Electrolytic solutions used in lithium ion batteries and the like contain an electrolyte fluorine compound and an organic solvent. The fluorine compound is mainly lithium hexafluorophosphate (LiPF 6 ), and the organic solvent is dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), propylene carbonate (PC), ethylene carbonate (EC). And so on. DMC, EMC and DEC are flammable substances. The treatment method of this embodiment is suitable as a treatment method for a lithium ion battery or the like in which an electrolytic solution containing such a fluorine compound and an organic solvent is used.
また、本実施形態の処理方法は、このようなフッ素含有電解液であって、廃電池中の電解液、または廃電池を切断ないし破砕した状態の電解液(廃電池を切断ないし破砕して得た電解液)、または使用前の電解液、または廃電池から抜き出された電解液などを処理する方法である。切断ないし破砕された廃電池は、電池内部の電解液が電極材料と共に外部に露出された状態にあるので、電解液を処理することができる。廃電池の切断または破砕は、電解液に引火しないよう不活性ガス雰囲気で行うとよい。
Further, the treatment method of the present embodiment is such a fluorine-containing electrolytic solution, which is an electrolytic solution in a waste battery or an electrolytic solution in a state where the waste battery is cut or crushed (obtained by cutting or crushing the waste battery). Or an electrolytic solution before use, or an electrolytic solution extracted from a waste battery. The waste battery that has been cut or crushed is in a state in which the electrolyte inside the battery is exposed to the outside together with the electrode material, so that the electrolyte can be treated. Cutting or crushing the waste battery may be performed in an inert gas atmosphere so as not to ignite the electrolyte.
〔アルカリ添加工程〕
本実施形態の処理方法では、フッ素含有電解液にアルカリを添加し(ステップS1)、その後に該電解液を加熱して揮発成分を気化する(ステップS2)。廃電池の電解液にアルカリを添加する方法として、例えば、使用済みの電池を放電処理した後に、廃電池にアルカリを直接注入する方法が挙げられる。あるいは、使用済みの電池を放電処理した後に、廃電池をアルカリ溶液に浸漬してもよい。一般に、電池には過剰な内部圧を下げるために安全弁が設けられているので、この安全弁を開いてアルカリ溶液を注入し、あるいは安全弁を開いてアルカリ溶液に浸漬するとよい。 [Alkali addition process]
In the treatment method of the present embodiment, alkali is added to the fluorine-containing electrolytic solution (step S1), and then the electrolytic solution is heated to vaporize volatile components (step S2). Examples of the method of adding alkali to the electrolyte of the waste battery include a method of directly injecting alkali into the waste battery after discharging the used battery. Alternatively, the used battery may be immersed in an alkaline solution after the used battery is discharged. In general, a battery is provided with a safety valve in order to lower an excessive internal pressure. Therefore, the safety valve may be opened to inject an alkaline solution, or the safety valve may be opened and immersed in the alkaline solution.
本実施形態の処理方法では、フッ素含有電解液にアルカリを添加し(ステップS1)、その後に該電解液を加熱して揮発成分を気化する(ステップS2)。廃電池の電解液にアルカリを添加する方法として、例えば、使用済みの電池を放電処理した後に、廃電池にアルカリを直接注入する方法が挙げられる。あるいは、使用済みの電池を放電処理した後に、廃電池をアルカリ溶液に浸漬してもよい。一般に、電池には過剰な内部圧を下げるために安全弁が設けられているので、この安全弁を開いてアルカリ溶液を注入し、あるいは安全弁を開いてアルカリ溶液に浸漬するとよい。 [Alkali addition process]
In the treatment method of the present embodiment, alkali is added to the fluorine-containing electrolytic solution (step S1), and then the electrolytic solution is heated to vaporize volatile components (step S2). Examples of the method of adding alkali to the electrolyte of the waste battery include a method of directly injecting alkali into the waste battery after discharging the used battery. Alternatively, the used battery may be immersed in an alkaline solution after the used battery is discharged. In general, a battery is provided with a safety valve in order to lower an excessive internal pressure. Therefore, the safety valve may be opened to inject an alkaline solution, or the safety valve may be opened and immersed in the alkaline solution.
切断または破砕された廃電池の電解液を処理する場合は、切断または破砕された廃電池に粉末アルカリあるいはアルカリ溶液を加えてもよい。また、使用前の電解液や廃電池から抜き出された電解液を処理する場合は、使用前の電解液または廃電池から抜き出された電解液に粉末アルカリあるいはアルカリ溶液を加えてもよい。
When processing the electrolyte solution of the cut or crushed waste battery, powdered alkali or alkaline solution may be added to the cut or crushed waste battery. Moreover, when processing the electrolyte solution extracted from the electrolyte solution before use or a waste battery, you may add a powder alkali or an alkaline solution to the electrolyte solution before use or the electrolyte solution extracted from the waste battery.
アルカリとして、Na系中和剤〔NaOH、Na2CO3〕、Ca系中和剤〔Ca(OH)2、CaCO3、CaO〕、またはMg系中和剤〔(MgO、Mg(OH)2〕の粉末、溶液、またはスラリーを用いることができる。または、これらの混合物を用いてもよい。Ca系中和剤は安価なので使用しやすい。アルカリの溶液またはスラリーを使用する場合には、アルカリの濃度は溶液またはスラリーの全重量の0.1~20%が好ましい。ここで、アルカリを廃電池に注入する場合、廃電池に注入されるアルカリ量、すなわち純アルカリ分の重量は電解液量の10~80%であればよい。例えば、アルカリが固体の場合、アルカリ量(g)は固体の重量(g)であり、アルカリが液体の場合、アルカリ量(g)は「液体重量(g)×アルカリ重量濃度(%)」である。アルカリがスラリー(懸濁液)の場合、アルカリ量(g)は「スラリー量(g)×アルカリ重量濃度(%)」である。
As an alkali, Na-based neutralizer [NaOH, Na 2 CO 3 ], Ca-based neutralizer [Ca (OH) 2 , CaCO 3 , CaO], or Mg-based neutralizer [(MgO, Mg (OH) 2 A powder, solution, or slurry may be used, or a mixture thereof may be used, and Ca-based neutralizers are inexpensive and easy to use. The concentration of is preferably 0.1 to 20% of the total weight of the solution or slurry, where when alkali is injected into the waste battery, the amount of alkali injected into the waste battery, that is, the weight of pure alkali is the amount of electrolyte. For example, when the alkali is solid, the alkali amount (g) is the weight (g) of the solid, and when the alkali is liquid, the alkali amount (g) is “liquid weight (g ) X alkali weight When the alkali is a slurry (suspension), the alkali amount (g) is “slurry amount (g) × alkali weight concentration (%)”.
電解液に含まれている炭酸エステルは、アルカリの添加によってアルコールやジオールに加水分解される。例えば、次式(1)に示すように、直鎖炭酸エステルはアルコールと二酸化炭素に加水分解される。また、次式(2)に示すように、環状炭酸エステルはジオールと二酸化炭素に加水分解される。生じた二酸化炭素はガスになり系外に流出し、アルコールやジオールは電解液中に残る。
The carbonate ester contained in the electrolytic solution is hydrolyzed into alcohol and diol by the addition of alkali. For example, as shown in the following formula (1), a linear carbonate ester is hydrolyzed into alcohol and carbon dioxide. Further, as shown in the following formula (2), the cyclic carbonate is hydrolyzed into diol and carbon dioxide. The generated carbon dioxide becomes gas and flows out of the system, and alcohol and diol remain in the electrolyte.
例えば、DMCは分解してメタノールを生じる。EMCは分解してメタノールとエタノールを生じる。DECは分解してエタノールを生じる。ECは分解してエチレングルコールを生じる。これらのアルコールやジオールは炭酸エステルよりも沸点が約30~60℃低いので、気化工程での気化温度を低くすることができる。これにより、アルコールやジオールなどの有機溶媒の回収が容易になる。
For example, DMC decomposes to produce methanol. EMC decomposes to produce methanol and ethanol. DEC decomposes to produce ethanol. EC decomposes to produce ethylene glycol. Since these alcohols and diols have a boiling point of about 30 to 60 ° C. lower than that of the carbonate ester, the vaporization temperature in the vaporization step can be lowered. This facilitates recovery of organic solvents such as alcohol and diol.
電解液に含まれているLiPF6は、アルカリのNa、Caと反応して分解し、次式(3)、次式(4)に示すように、フッ素化合物の沈殿(LiF、NaF、CaF2)、およびリン酸化合物の沈殿(Na2HPO4、CaHPO4)が生じて、フッ素およびリンが固定化される。さらに、これらのリン酸化合物はNaHF2やNaF、CaFに分解される。
LiPF 6 contained in the electrolytic solution is decomposed by reacting with alkali Na and Ca, and as shown in the following formulas (3) and (4), precipitation of fluorine compounds (LiF, NaF, CaF 2 ), And precipitation of phosphate compound (Na 2 HPO 4 , CaHPO 4 ) occurs, and fluorine and phosphorus are immobilized. Further, these phosphate compounds are decomposed into NaHF 2 , NaF, and CaF.
電解液にNaOH溶液を加えた液体に対し、XRD(X線回折)測定を行ったときに得られたXRD図(X線スペクトル図)を図2に示す。図示するように、NaF、NaHF2、LiFのピークが見られ、フッ素が固定化されている。
FIG. 2 shows an XRD diagram (X-ray spectrum diagram) obtained when XRD (X-ray diffraction) measurement is performed on a liquid obtained by adding a NaOH solution to the electrolytic solution. As shown in the figure, peaks of NaF, NaHF 2 and LiF are seen, and fluorine is immobilized.
本実施形態の処理方法では、電解液に含まれているフッ素およびリンが沈殿物として固定されるので、後工程における有害なフッ化水素の発生が回避され、高い安全性を確保することができる。具体的には、例えば、廃電池にアルカリを注入し、または廃電池をアルカリ溶液に浸漬することによって、LiPF6を分解し、フッ素およびリンを固定する。これにより、該廃電池を加熱してもフッ化水素は殆ど発生せず、安全に廃電池の処理作業を進めることができる。
In the treatment method of the present embodiment, fluorine and phosphorus contained in the electrolytic solution are fixed as precipitates. Therefore, generation of harmful hydrogen fluoride in the subsequent process is avoided, and high safety can be ensured. . Specifically, for example, by injecting alkali into a waste battery or immersing the waste battery in an alkaline solution, LiPF 6 is decomposed to fix fluorine and phosphorus. Thereby, even when the waste battery is heated, almost no hydrogen fluoride is generated, and the waste battery can be safely processed.
〔気化工程〕
気化工程(ステップS2)では、上記アルカリ処理した廃電池を加熱して、電解液の揮発成分を気化させる。あるいは、アルカリ処理した廃電池を洗浄溶媒で洗浄して電解液を抽出し、抽出された電解液を加熱して揮発成分を気化させてもよい。この場合、洗浄溶媒は水あるいは沸点が150℃以下の有機溶媒が好ましい。
内部を不活性ガス雰囲気にした容器内で切断または破砕した廃電池に粉末アルカリあるいはアルカリ溶液を加えた場合は、該容器のまま加熱して揮発成分を気化させればよい。 [Vaporization process]
In the vaporization step (step S2), the alkali-treated waste battery is heated to vaporize the volatile component of the electrolytic solution. Alternatively, the alkaline battery may be washed with a washing solvent to extract an electrolytic solution, and the extracted electrolytic solution may be heated to vaporize volatile components. In this case, the washing solvent is preferably water or an organic solvent having a boiling point of 150 ° C. or lower.
When a powdered alkali or alkaline solution is added to a waste battery that has been cut or crushed in a container having an inert gas atmosphere, the container may be heated to vaporize volatile components.
気化工程(ステップS2)では、上記アルカリ処理した廃電池を加熱して、電解液の揮発成分を気化させる。あるいは、アルカリ処理した廃電池を洗浄溶媒で洗浄して電解液を抽出し、抽出された電解液を加熱して揮発成分を気化させてもよい。この場合、洗浄溶媒は水あるいは沸点が150℃以下の有機溶媒が好ましい。
内部を不活性ガス雰囲気にした容器内で切断または破砕した廃電池に粉末アルカリあるいはアルカリ溶液を加えた場合は、該容器のまま加熱して揮発成分を気化させればよい。 [Vaporization process]
In the vaporization step (step S2), the alkali-treated waste battery is heated to vaporize the volatile component of the electrolytic solution. Alternatively, the alkaline battery may be washed with a washing solvent to extract an electrolytic solution, and the extracted electrolytic solution may be heated to vaporize volatile components. In this case, the washing solvent is preferably water or an organic solvent having a boiling point of 150 ° C. or lower.
When a powdered alkali or alkaline solution is added to a waste battery that has been cut or crushed in a container having an inert gas atmosphere, the container may be heated to vaporize volatile components.
アルカリ添加工程を経た電解液では、炭酸エステルが分解されてアルコールやジオールになっているので、炭酸エステルの沸点よりも低い温度でアルコールやジオールを気化させることができる。具体的には、DMC、EMC、DEC、ECの沸点はおのおの常圧下で90℃、109℃、127℃、244℃である。一方、メタノールの沸点は65℃、エタノールの沸点は78℃、エチレングリコールの沸点は197℃である。このため、65℃~197℃以上になるように電解液を加熱すればよい。
In the electrolytic solution that has undergone the alkali addition step, the carbonic acid ester is decomposed into alcohols and diols, so that the alcohols and diols can be vaporized at a temperature lower than the boiling point of the carbonic acid ester. Specifically, the boiling points of DMC, EMC, DEC, and EC are 90 ° C., 109 ° C., 127 ° C., and 244 ° C. under normal pressure, respectively. On the other hand, the boiling point of methanol is 65 ° C., the boiling point of ethanol is 78 ° C., and the boiling point of ethylene glycol is 197 ° C. For this reason, the electrolytic solution may be heated to 65 ° C. to 197 ° C. or higher.
減圧下で加熱すれば、内部温度が高くなるので揮発成分が気化しやすくなる。例えば、廃電池内部を5kPaに減圧して20℃~90℃に加熱すると、大気圧換算温度で98℃~181℃の状態になる。このため、メタノール、エタノール、およびエチレングリコールなどを容易に気化させることができる。若しくは、廃電池内部を1kPa~0.1kPaに減圧して10℃~40℃に加熱しても良い。
When heated under reduced pressure, the internal temperature increases, and volatile components are easily vaporized. For example, when the inside of a waste battery is depressurized to 5 kPa and heated to 20 ° C. to 90 ° C., it becomes 98 ° C. to 181 ° C. in terms of atmospheric pressure. For this reason, methanol, ethanol, ethylene glycol, and the like can be easily vaporized. Alternatively, the inside of the waste battery may be reduced to 1 kPa to 0.1 kPa and heated to 10 ° C. to 40 ° C.
〔回収工程〕
気化ガス回収工程(ステップS3)では、気化工程において気化されたガス(気化ガス)を冷却して凝縮することにより、気化工程で気化された揮発成分を凝縮液として回収することができる。また、気化ガスに含まれるメタノールやエタノール、エチレングリコールは水に溶けるので、気化されたガスを水冷トラップに導入することにより、これらを水溶液として回収することができる。 [Recovery process]
In the vaporized gas recovery step (step S3), the gas (vaporized gas) vaporized in the vaporization step is cooled and condensed, whereby the volatile components vaporized in the vaporization step can be recovered as a condensate. Further, since methanol, ethanol, and ethylene glycol contained in the vaporized gas are dissolved in water, they can be recovered as an aqueous solution by introducing the vaporized gas into a water-cooled trap.
気化ガス回収工程(ステップS3)では、気化工程において気化されたガス(気化ガス)を冷却して凝縮することにより、気化工程で気化された揮発成分を凝縮液として回収することができる。また、気化ガスに含まれるメタノールやエタノール、エチレングリコールは水に溶けるので、気化されたガスを水冷トラップに導入することにより、これらを水溶液として回収することができる。 [Recovery process]
In the vaporized gas recovery step (step S3), the gas (vaporized gas) vaporized in the vaporization step is cooled and condensed, whereby the volatile components vaporized in the vaporization step can be recovered as a condensate. Further, since methanol, ethanol, and ethylene glycol contained in the vaporized gas are dissolved in water, they can be recovered as an aqueous solution by introducing the vaporized gas into a water-cooled trap.
電解液に含まれる炭酸エステルの一部が分解されずに気化された場合、気化された炭酸エステルは水に溶けないので、水冷トラップにより得られた水溶液の水相表面に有機相として分離される。このような液体を油水分離することにより、炭酸エステルを回収することができる。
When a part of the carbonic acid ester contained in the electrolyte is vaporized without being decomposed, the vaporized carbonic acid ester does not dissolve in water, so it is separated as an organic phase on the aqueous phase surface of the aqueous solution obtained by the water-cooled trap. . By separating such a liquid into oil and water, the carbonate ester can be recovered.
〔分別工程〕
気化処理した後の廃電池は破砕され(ステップS4)、破砕物を使用材料に応じて分別し(ステップS5)、再資源化するとよい。もしくは、廃電池を切断または破砕した後に気化工程を行ってもよく、廃電池を切断または破砕することにより得られた破砕物を、気化処理後に使用材料に応じて分別し、再資源化するとよい。 [Separation process]
The waste battery after the vaporization treatment is crushed (step S4), and the crushed material is separated according to the material used (step S5) and recycled. Alternatively, the vaporization step may be performed after cutting or crushing the waste battery, and the crushed material obtained by cutting or crushing the waste battery may be separated and recycled according to the material used after the vaporization treatment. .
気化処理した後の廃電池は破砕され(ステップS4)、破砕物を使用材料に応じて分別し(ステップS5)、再資源化するとよい。もしくは、廃電池を切断または破砕した後に気化工程を行ってもよく、廃電池を切断または破砕することにより得られた破砕物を、気化処理後に使用材料に応じて分別し、再資源化するとよい。 [Separation process]
The waste battery after the vaporization treatment is crushed (step S4), and the crushed material is separated according to the material used (step S5) and recycled. Alternatively, the vaporization step may be performed after cutting or crushing the waste battery, and the crushed material obtained by cutting or crushing the waste battery may be separated and recycled according to the material used after the vaporization treatment. .
本発明の実施形態に係る実施例を以下に示す。フッ素濃度はフッ化物イオン電極法によって分析した。リン酸濃度はICP-AES(誘導結合プラズマ発光分光分析装置)によって測定した。
Examples according to the embodiment of the present invention are shown below. The fluorine concentration was analyzed by the fluoride ion electrode method. The phosphoric acid concentration was measured by ICP-AES (Inductively Coupled Plasma Atomic Emission Spectrometer).
〔実施例1〕
リチウムイオン廃電池(電解液含有量100mL、重量として122.6g含有)を放電した後に安全弁を外して、その開口から24wt%NaOH溶液を注入した。注入時に、電解液中の炭酸エステルの分解によって生じた二酸化炭素と思われるガスが発生するのを、目視により確認した。NaOH溶液を注入後、廃電池内部を20kPaに減圧して、120℃で2時間加熱し、気化ガスを冷却して凝縮し、凝縮液を回収した。使用されたNaOH溶液の濃度と注入量、回収された凝縮液量(有機溶媒量)、液中のフッ素濃度およびリン濃度を表1に示す。
表1に示すように、回収された凝縮液のフッ素濃度は31ppm、リン濃度は1ppm未満であった。このことから、電解液に含まれるフッ素化合物(LiPF6)が分解され、ほぼ全量が気化残留物(電解液の気化処理後に気化されず残留した物)中に固定されていることが示唆される。回収された凝縮液をガスクロマトグラフィーによって分析し、メタノール、エタノール、およびエチレングリコールが含まれていることを確認した。このことから、電解液の炭酸エステル類がこれらに分解されたことが示唆される。 [Example 1]
After discharging a lithium ion waste battery (electrolyte content: 100 mL, weight: 122.6 g), the safety valve was removed, and a 24 wt% NaOH solution was injected from the opening. At the time of injection, it was visually confirmed that a gas considered to be carbon dioxide generated by the decomposition of the carbonic acid ester in the electrolytic solution was generated. After injecting the NaOH solution, the inside of the waste battery was depressurized to 20 kPa, heated at 120 ° C. for 2 hours, the vaporized gas was cooled and condensed, and the condensate was recovered. Table 1 shows the concentration and the injection amount of the NaOH solution used, the amount of the condensed liquid recovered (the amount of organic solvent), the fluorine concentration and the phosphorus concentration in the liquid.
As shown in Table 1, the recovered condensate had a fluorine concentration of 31 ppm and a phosphorus concentration of less than 1 ppm. This suggests that the fluorine compound (LiPF 6 ) contained in the electrolytic solution is decomposed, and that almost the entire amount is fixed in the vaporized residue (the residue that is not vaporized after the electrolytic solution is vaporized). . The collected condensate was analyzed by gas chromatography, and it was confirmed that methanol, ethanol, and ethylene glycol were contained. This suggests that the carbonates of the electrolytic solution were decomposed into these.
リチウムイオン廃電池(電解液含有量100mL、重量として122.6g含有)を放電した後に安全弁を外して、その開口から24wt%NaOH溶液を注入した。注入時に、電解液中の炭酸エステルの分解によって生じた二酸化炭素と思われるガスが発生するのを、目視により確認した。NaOH溶液を注入後、廃電池内部を20kPaに減圧して、120℃で2時間加熱し、気化ガスを冷却して凝縮し、凝縮液を回収した。使用されたNaOH溶液の濃度と注入量、回収された凝縮液量(有機溶媒量)、液中のフッ素濃度およびリン濃度を表1に示す。
表1に示すように、回収された凝縮液のフッ素濃度は31ppm、リン濃度は1ppm未満であった。このことから、電解液に含まれるフッ素化合物(LiPF6)が分解され、ほぼ全量が気化残留物(電解液の気化処理後に気化されず残留した物)中に固定されていることが示唆される。回収された凝縮液をガスクロマトグラフィーによって分析し、メタノール、エタノール、およびエチレングリコールが含まれていることを確認した。このことから、電解液の炭酸エステル類がこれらに分解されたことが示唆される。 [Example 1]
After discharging a lithium ion waste battery (electrolyte content: 100 mL, weight: 122.6 g), the safety valve was removed, and a 24 wt% NaOH solution was injected from the opening. At the time of injection, it was visually confirmed that a gas considered to be carbon dioxide generated by the decomposition of the carbonic acid ester in the electrolytic solution was generated. After injecting the NaOH solution, the inside of the waste battery was depressurized to 20 kPa, heated at 120 ° C. for 2 hours, the vaporized gas was cooled and condensed, and the condensate was recovered. Table 1 shows the concentration and the injection amount of the NaOH solution used, the amount of the condensed liquid recovered (the amount of organic solvent), the fluorine concentration and the phosphorus concentration in the liquid.
As shown in Table 1, the recovered condensate had a fluorine concentration of 31 ppm and a phosphorus concentration of less than 1 ppm. This suggests that the fluorine compound (LiPF 6 ) contained in the electrolytic solution is decomposed, and that almost the entire amount is fixed in the vaporized residue (the residue that is not vaporized after the electrolytic solution is vaporized). . The collected condensate was analyzed by gas chromatography, and it was confirmed that methanol, ethanol, and ethylene glycol were contained. This suggests that the carbonates of the electrolytic solution were decomposed into these.
〔実施例2〕
リチウムイオン廃電池(電解液含有量100mL、重量として122.6g含有)を放電した後に安全弁を外して、その開口から20wt%Na2CO3溶液を注入した。注入時に、電解液中の炭酸エステルの分解によって生じた二酸化炭素と思われるガスが発生するのを、目視により確認した。Na2CO3溶液を注入後、実施例1と同様の条件で気化処理し、気化ガスを冷却して凝縮し、凝縮液を回収した。使用されたNa2CO3溶液の濃度と注入量、回収された凝集液量(有機溶媒量)、液中のフッ素濃度およびリン濃度を表2に示す。
表2に示すように、回収された凝集液のフッ素濃度は46ppm、リン濃度は1ppm未満であった。このことから、電解液に含まれるフッ素化合物(LiPF6)が分解され、ほぼ全量が気化残留物中に固定されていることが示唆される。回収された凝縮液をガスクロマトグラフィーによって分析し、メタノール、エタノール、およびエチレングリコールが含まれていることを確認した。このことから、電解液の炭酸エステルが加水分解されたことが示唆される。 [Example 2]
After discharging a lithium ion waste battery (electrolyte content: 100 mL, weight: 122.6 g), the safety valve was removed, and a 20 wt% Na 2 CO 3 solution was injected from the opening. At the time of injection, it was visually confirmed that a gas considered to be carbon dioxide generated by the decomposition of the carbonic acid ester in the electrolytic solution was generated. After injecting the Na 2 CO 3 solution, it was vaporized under the same conditions as in Example 1, the vaporized gas was cooled and condensed, and the condensate was recovered. Table 2 shows the concentration and injection amount of the used Na 2 CO 3 solution, the amount of the aggregate liquid recovered (amount of organic solvent), the fluorine concentration and the phosphorus concentration in the liquid.
As shown in Table 2, the recovered aggregate liquid had a fluorine concentration of 46 ppm and a phosphorus concentration of less than 1 ppm. This suggests that the fluorine compound (LiPF 6 ) contained in the electrolytic solution is decomposed, and almost the entire amount is fixed in the vaporization residue. The collected condensate was analyzed by gas chromatography, and it was confirmed that methanol, ethanol, and ethylene glycol were contained. This suggests that the carbonate of the electrolytic solution was hydrolyzed.
リチウムイオン廃電池(電解液含有量100mL、重量として122.6g含有)を放電した後に安全弁を外して、その開口から20wt%Na2CO3溶液を注入した。注入時に、電解液中の炭酸エステルの分解によって生じた二酸化炭素と思われるガスが発生するのを、目視により確認した。Na2CO3溶液を注入後、実施例1と同様の条件で気化処理し、気化ガスを冷却して凝縮し、凝縮液を回収した。使用されたNa2CO3溶液の濃度と注入量、回収された凝集液量(有機溶媒量)、液中のフッ素濃度およびリン濃度を表2に示す。
表2に示すように、回収された凝集液のフッ素濃度は46ppm、リン濃度は1ppm未満であった。このことから、電解液に含まれるフッ素化合物(LiPF6)が分解され、ほぼ全量が気化残留物中に固定されていることが示唆される。回収された凝縮液をガスクロマトグラフィーによって分析し、メタノール、エタノール、およびエチレングリコールが含まれていることを確認した。このことから、電解液の炭酸エステルが加水分解されたことが示唆される。 [Example 2]
After discharging a lithium ion waste battery (electrolyte content: 100 mL, weight: 122.6 g), the safety valve was removed, and a 20 wt% Na 2 CO 3 solution was injected from the opening. At the time of injection, it was visually confirmed that a gas considered to be carbon dioxide generated by the decomposition of the carbonic acid ester in the electrolytic solution was generated. After injecting the Na 2 CO 3 solution, it was vaporized under the same conditions as in Example 1, the vaporized gas was cooled and condensed, and the condensate was recovered. Table 2 shows the concentration and injection amount of the used Na 2 CO 3 solution, the amount of the aggregate liquid recovered (amount of organic solvent), the fluorine concentration and the phosphorus concentration in the liquid.
As shown in Table 2, the recovered aggregate liquid had a fluorine concentration of 46 ppm and a phosphorus concentration of less than 1 ppm. This suggests that the fluorine compound (LiPF 6 ) contained in the electrolytic solution is decomposed, and almost the entire amount is fixed in the vaporization residue. The collected condensate was analyzed by gas chromatography, and it was confirmed that methanol, ethanol, and ethylene glycol were contained. This suggests that the carbonate of the electrolytic solution was hydrolyzed.
〔実施例3〕
リチウムイオン廃電池(電解液含有量100mL、重量として122.6g含有)を放電した後に安全弁を外して、その開口から20wt%Ca(OH)2懸濁液を注入した。注入時に、電解液中の炭酸エステルの分解によって生じた二酸化炭素と思われるガスが発生するのを、目視により確認した。Ca(OH)2懸濁液注入後、実施例1と同様の条件で気化処理し、気化ガスを冷却して凝縮し、凝縮液を回収した。Ca(OH)2懸濁液の濃度と注入量、回収された凝縮液量(有機溶媒量)、液中のフッ素濃度およびリン濃度を表3に示す。
表3に示すように、回収された凝縮液のフッ素濃度は29ppm、リン濃度は1ppm未満であった。このことから、電解液に含まれるフッ素化合物(LiPF6)が分解され、ほぼ全量が気化残留物中に固定されていることが示唆される。回収された凝縮液をガスクロマトグラフィーによって分析し、メタノール、エタノール、およびエチレングリコールが含まれていることを確認した。このことから、電解液の炭酸エステルが加水分解されたことが示唆される。 Example 3
After discharging the lithium ion waste battery (electrolyte content: 100 mL, weight: 122.6 g), the safety valve was removed, and a 20 wt% Ca (OH) 2 suspension was injected from the opening. At the time of injection, it was visually confirmed that a gas considered to be carbon dioxide generated by the decomposition of the carbonic acid ester in the electrolytic solution was generated. After injecting the Ca (OH) 2 suspension, vaporization was performed under the same conditions as in Example 1, the vaporized gas was cooled and condensed, and the condensate was recovered. Table 3 shows the concentration and injection amount of the Ca (OH) 2 suspension, the amount of recovered condensate (the amount of organic solvent), the fluorine concentration and the phosphorus concentration in the solution.
As shown in Table 3, the recovered condensate had a fluorine concentration of 29 ppm and a phosphorus concentration of less than 1 ppm. This suggests that the fluorine compound (LiPF 6 ) contained in the electrolytic solution is decomposed, and almost the entire amount is fixed in the vaporization residue. The collected condensate was analyzed by gas chromatography, and it was confirmed that methanol, ethanol, and ethylene glycol were contained. This suggests that the carbonate of the electrolytic solution was hydrolyzed.
リチウムイオン廃電池(電解液含有量100mL、重量として122.6g含有)を放電した後に安全弁を外して、その開口から20wt%Ca(OH)2懸濁液を注入した。注入時に、電解液中の炭酸エステルの分解によって生じた二酸化炭素と思われるガスが発生するのを、目視により確認した。Ca(OH)2懸濁液注入後、実施例1と同様の条件で気化処理し、気化ガスを冷却して凝縮し、凝縮液を回収した。Ca(OH)2懸濁液の濃度と注入量、回収された凝縮液量(有機溶媒量)、液中のフッ素濃度およびリン濃度を表3に示す。
表3に示すように、回収された凝縮液のフッ素濃度は29ppm、リン濃度は1ppm未満であった。このことから、電解液に含まれるフッ素化合物(LiPF6)が分解され、ほぼ全量が気化残留物中に固定されていることが示唆される。回収された凝縮液をガスクロマトグラフィーによって分析し、メタノール、エタノール、およびエチレングリコールが含まれていることを確認した。このことから、電解液の炭酸エステルが加水分解されたことが示唆される。 Example 3
After discharging the lithium ion waste battery (electrolyte content: 100 mL, weight: 122.6 g), the safety valve was removed, and a 20 wt% Ca (OH) 2 suspension was injected from the opening. At the time of injection, it was visually confirmed that a gas considered to be carbon dioxide generated by the decomposition of the carbonic acid ester in the electrolytic solution was generated. After injecting the Ca (OH) 2 suspension, vaporization was performed under the same conditions as in Example 1, the vaporized gas was cooled and condensed, and the condensate was recovered. Table 3 shows the concentration and injection amount of the Ca (OH) 2 suspension, the amount of recovered condensate (the amount of organic solvent), the fluorine concentration and the phosphorus concentration in the solution.
As shown in Table 3, the recovered condensate had a fluorine concentration of 29 ppm and a phosphorus concentration of less than 1 ppm. This suggests that the fluorine compound (LiPF 6 ) contained in the electrolytic solution is decomposed, and almost the entire amount is fixed in the vaporization residue. The collected condensate was analyzed by gas chromatography, and it was confirmed that methanol, ethanol, and ethylene glycol were contained. This suggests that the carbonate of the electrolytic solution was hydrolyzed.
〔実施例4〕
リチウムイオン廃電池(電解液含有量100mL、重量として122.6g含有)を放電した後に安全弁を外して、その開口から20wt%MgO懸濁液を注入した。注入時に、電解液中の炭酸エステルの分解によって生じた二酸化炭素と思われるガスが発生するのを、目視により確認した。MgO懸濁液注入後、実施例1と同様の条件で気化処理し、気化ガスを冷却して凝縮し、凝縮液を回収した。使用されたMgO懸濁液の濃度と注入量、回収された凝集液量(有機溶媒量)、液中のフッ素濃度およびリン濃度を表4に示す。
表4に示すように、回収された凝集液のフッ素濃度は39ppm、リン濃度は1ppmであった。このことから、電解液に含まれるフッ素化合物(LiPF6)が分解され、ほぼ全量が気化残留物中に固定されていることが示唆される。回収された凝縮液をガスクロマトグラフィーによって分析し、メタノール、エタノール、およびエチレングリコールが含まれていることを確認した。このことから、電解液の炭酸エステルが加水分解されたことが示唆される。 Example 4
After discharging a lithium ion waste battery (electrolyte content: 100 mL, weight: 122.6 g), the safety valve was removed, and a 20 wt% MgO suspension was injected from the opening. At the time of injection, it was visually confirmed that a gas considered to be carbon dioxide generated by the decomposition of the carbonic acid ester in the electrolytic solution was generated. After injecting the MgO suspension, vaporization was performed under the same conditions as in Example 1, the vaporized gas was cooled and condensed, and the condensate was recovered. Table 4 shows the concentration and injection amount of the MgO suspension used, the amount of the aggregate liquid recovered (the amount of organic solvent), the fluorine concentration and the phosphorus concentration in the liquid.
As shown in Table 4, the recovered aggregate liquid had a fluorine concentration of 39 ppm and a phosphorus concentration of 1 ppm. This suggests that the fluorine compound (LiPF 6 ) contained in the electrolytic solution is decomposed, and almost the entire amount is fixed in the vaporization residue. The collected condensate was analyzed by gas chromatography, and it was confirmed that methanol, ethanol, and ethylene glycol were contained. This suggests that the carbonate of the electrolytic solution was hydrolyzed.
リチウムイオン廃電池(電解液含有量100mL、重量として122.6g含有)を放電した後に安全弁を外して、その開口から20wt%MgO懸濁液を注入した。注入時に、電解液中の炭酸エステルの分解によって生じた二酸化炭素と思われるガスが発生するのを、目視により確認した。MgO懸濁液注入後、実施例1と同様の条件で気化処理し、気化ガスを冷却して凝縮し、凝縮液を回収した。使用されたMgO懸濁液の濃度と注入量、回収された凝集液量(有機溶媒量)、液中のフッ素濃度およびリン濃度を表4に示す。
表4に示すように、回収された凝集液のフッ素濃度は39ppm、リン濃度は1ppmであった。このことから、電解液に含まれるフッ素化合物(LiPF6)が分解され、ほぼ全量が気化残留物中に固定されていることが示唆される。回収された凝縮液をガスクロマトグラフィーによって分析し、メタノール、エタノール、およびエチレングリコールが含まれていることを確認した。このことから、電解液の炭酸エステルが加水分解されたことが示唆される。 Example 4
After discharging a lithium ion waste battery (electrolyte content: 100 mL, weight: 122.6 g), the safety valve was removed, and a 20 wt% MgO suspension was injected from the opening. At the time of injection, it was visually confirmed that a gas considered to be carbon dioxide generated by the decomposition of the carbonic acid ester in the electrolytic solution was generated. After injecting the MgO suspension, vaporization was performed under the same conditions as in Example 1, the vaporized gas was cooled and condensed, and the condensate was recovered. Table 4 shows the concentration and injection amount of the MgO suspension used, the amount of the aggregate liquid recovered (the amount of organic solvent), the fluorine concentration and the phosphorus concentration in the liquid.
As shown in Table 4, the recovered aggregate liquid had a fluorine concentration of 39 ppm and a phosphorus concentration of 1 ppm. This suggests that the fluorine compound (LiPF 6 ) contained in the electrolytic solution is decomposed, and almost the entire amount is fixed in the vaporization residue. The collected condensate was analyzed by gas chromatography, and it was confirmed that methanol, ethanol, and ethylene glycol were contained. This suggests that the carbonate of the electrolytic solution was hydrolyzed.
〔比較例1〕
リチウムイオン廃電池(電解液含有量100mL、重量として122.6g含有)について、アルカリに代えて硫酸を注入した以外は実施例1と同様にして気化処理し、気化ガスを冷却して凝縮し、凝縮液を回収した。硫酸の濃度と注入量、回収された凝縮液量(有機溶媒量)、液中のフッ素濃度およびリン濃度を表5に示す。
表5に示すように、回収された凝縮液のフッ素濃度は20500ppm、リン濃度は1ppmであった。このように、電解液に含まれるフッ素化合物(LiPF6)のフッ素とリンは、気化残留物に固定されず有機溶媒に含まれていた。また、実施例1において目視された二酸化炭素と思われる気体の発生は確認されなかった。 [Comparative Example 1]
Lithium ion waste battery (electrolyte content 100mL, weight 122.6g) was vaporized in the same manner as in Example 1 except that sulfuric acid was injected instead of alkali, and the vaporized gas was cooled and condensed. The liquid was collected. Table 5 shows the concentration and injection amount of sulfuric acid, the amount of recovered condensate (the amount of organic solvent), the fluorine concentration and the phosphorus concentration in the liquid.
As shown in Table 5, the recovered condensate had a fluorine concentration of 20500 ppm and a phosphorus concentration of 1 ppm. Thus, the fluorine and phosphorus of the fluorine compound (LiPF 6 ) contained in the electrolytic solution were not fixed to the vaporization residue but contained in the organic solvent. Moreover, generation | occurrence | production of the gas considered to be the carbon dioxide visually observed in Example 1 was not confirmed.
リチウムイオン廃電池(電解液含有量100mL、重量として122.6g含有)について、アルカリに代えて硫酸を注入した以外は実施例1と同様にして気化処理し、気化ガスを冷却して凝縮し、凝縮液を回収した。硫酸の濃度と注入量、回収された凝縮液量(有機溶媒量)、液中のフッ素濃度およびリン濃度を表5に示す。
表5に示すように、回収された凝縮液のフッ素濃度は20500ppm、リン濃度は1ppmであった。このように、電解液に含まれるフッ素化合物(LiPF6)のフッ素とリンは、気化残留物に固定されず有機溶媒に含まれていた。また、実施例1において目視された二酸化炭素と思われる気体の発生は確認されなかった。 [Comparative Example 1]
Lithium ion waste battery (electrolyte content 100mL, weight 122.6g) was vaporized in the same manner as in Example 1 except that sulfuric acid was injected instead of alkali, and the vaporized gas was cooled and condensed. The liquid was collected. Table 5 shows the concentration and injection amount of sulfuric acid, the amount of recovered condensate (the amount of organic solvent), the fluorine concentration and the phosphorus concentration in the liquid.
As shown in Table 5, the recovered condensate had a fluorine concentration of 20500 ppm and a phosphorus concentration of 1 ppm. Thus, the fluorine and phosphorus of the fluorine compound (LiPF 6 ) contained in the electrolytic solution were not fixed to the vaporization residue but contained in the organic solvent. Moreover, generation | occurrence | production of the gas considered to be the carbon dioxide visually observed in Example 1 was not confirmed.
〔比較例2〕
リチウムイオン廃電池(電解液含有量100mL、重量として122.6g含有)について、アルカリまたは硫酸を注入しないこと以外は実施例1と同様にして気化処理し、気化ガスを冷却して凝縮し、凝縮液を回収した。回収された凝縮液量(有機溶媒量)、液中のフッ素濃度およびリン濃度を表6に示す。
表6に示すように、回収された凝縮液のフッ素濃度は3800ppm、リン濃度は5000ppmであった。このように、電解液に含まれるフッ素化合物(LiPF6)のフッ素とリンは、気化残留物に固定されず有機溶媒に含まれていた。また、実施例1において目視された二酸化炭素と思われる気体の発生は確認されなかった。 [Comparative Example 2]
A lithium ion waste battery (electrolyte content: 100 mL, weight: 122.6 g) is vaporized in the same manner as in Example 1 except that no alkali or sulfuric acid is injected, the vaporized gas is cooled and condensed, and the condensate Was recovered. Table 6 shows the amount of condensed liquid recovered (the amount of organic solvent), the fluorine concentration and the phosphorus concentration in the liquid.
As shown in Table 6, the recovered condensate had a fluorine concentration of 3800 ppm and a phosphorus concentration of 5000 ppm. Thus, the fluorine and phosphorus of the fluorine compound (LiPF 6 ) contained in the electrolytic solution were not fixed to the vaporization residue but contained in the organic solvent. Moreover, generation | occurrence | production of the gas considered to be the carbon dioxide visually observed in Example 1 was not confirmed.
リチウムイオン廃電池(電解液含有量100mL、重量として122.6g含有)について、アルカリまたは硫酸を注入しないこと以外は実施例1と同様にして気化処理し、気化ガスを冷却して凝縮し、凝縮液を回収した。回収された凝縮液量(有機溶媒量)、液中のフッ素濃度およびリン濃度を表6に示す。
表6に示すように、回収された凝縮液のフッ素濃度は3800ppm、リン濃度は5000ppmであった。このように、電解液に含まれるフッ素化合物(LiPF6)のフッ素とリンは、気化残留物に固定されず有機溶媒に含まれていた。また、実施例1において目視された二酸化炭素と思われる気体の発生は確認されなかった。 [Comparative Example 2]
A lithium ion waste battery (electrolyte content: 100 mL, weight: 122.6 g) is vaporized in the same manner as in Example 1 except that no alkali or sulfuric acid is injected, the vaporized gas is cooled and condensed, and the condensate Was recovered. Table 6 shows the amount of condensed liquid recovered (the amount of organic solvent), the fluorine concentration and the phosphorus concentration in the liquid.
As shown in Table 6, the recovered condensate had a fluorine concentration of 3800 ppm and a phosphorus concentration of 5000 ppm. Thus, the fluorine and phosphorus of the fluorine compound (LiPF 6 ) contained in the electrolytic solution were not fixed to the vaporization residue but contained in the organic solvent. Moreover, generation | occurrence | production of the gas considered to be the carbon dioxide visually observed in Example 1 was not confirmed.
〔実施例5〕
市販の電解液100mLをフラスコ中に入れ、そこに24wt%NaOH溶液を注入した。注入時に、電解液中の炭酸エステルの分解によって生じた二酸化炭素と思われるガスが発生するのを、目視により確認した。NaOH溶液を注入後、フラスコ内部を20kPaに減圧して、120℃で2時間加熱し、気化ガスを冷却して凝縮し、凝縮液を回収した。使用されたNaOH溶液の濃度と注入量、回収された凝縮液量(有機溶媒量)、液中のフッ素濃度およびリン濃度を表7に示す。
表7に示すように、回収された凝縮液のフッ素濃度は20ppm、リン濃度は1ppmであった。このことから、電解液に含まれるフッ素化合物(LiPF6)が分解され、ほぼ全量が気化残留物中に固定されていることが示唆される。回収された凝縮液をガスクロマトグラフィーによって分析し、メタノール、エタノール、およびエチレングリコールが含まれていることを確認した。このことから、電解液の炭酸エステル類がこれらに分解されたことが示唆される。さらに、気化残留液のXRD測定よって、Na2CO3由来のピークが確認された。このことから、電解液中の炭酸エステルが加水分解されて、メタノール等と共にCO2が発生し、このCO2がアルカリ溶液のNaと反応したことが示唆される。 Example 5
A commercially available electrolyte solution (100 mL) was placed in a flask, and a 24 wt% NaOH solution was injected therein. At the time of injection, it was visually confirmed that a gas considered to be carbon dioxide generated by the decomposition of the carbonic acid ester in the electrolytic solution was generated. After injecting the NaOH solution, the inside of the flask was decompressed to 20 kPa, heated at 120 ° C. for 2 hours, the vaporized gas was cooled and condensed, and the condensate was recovered. Table 7 shows the concentration and the injection amount of the used NaOH solution, the amount of the condensed liquid recovered (the amount of the organic solvent), the fluorine concentration and the phosphorus concentration in the liquid.
As shown in Table 7, the recovered condensate had a fluorine concentration of 20 ppm and a phosphorus concentration of 1 ppm. This suggests that the fluorine compound (LiPF 6 ) contained in the electrolytic solution is decomposed, and almost the entire amount is fixed in the vaporization residue. The collected condensate was analyzed by gas chromatography, and it was confirmed that methanol, ethanol, and ethylene glycol were contained. This suggests that the carbonates of the electrolytic solution were decomposed into these. Furthermore, a peak derived from Na 2 CO 3 was confirmed by XRD measurement of the vaporized residual liquid. This suggests that the carbonic acid ester in the electrolytic solution was hydrolyzed to generate CO 2 together with methanol and the like, and this CO 2 reacted with Na in the alkaline solution.
市販の電解液100mLをフラスコ中に入れ、そこに24wt%NaOH溶液を注入した。注入時に、電解液中の炭酸エステルの分解によって生じた二酸化炭素と思われるガスが発生するのを、目視により確認した。NaOH溶液を注入後、フラスコ内部を20kPaに減圧して、120℃で2時間加熱し、気化ガスを冷却して凝縮し、凝縮液を回収した。使用されたNaOH溶液の濃度と注入量、回収された凝縮液量(有機溶媒量)、液中のフッ素濃度およびリン濃度を表7に示す。
表7に示すように、回収された凝縮液のフッ素濃度は20ppm、リン濃度は1ppmであった。このことから、電解液に含まれるフッ素化合物(LiPF6)が分解され、ほぼ全量が気化残留物中に固定されていることが示唆される。回収された凝縮液をガスクロマトグラフィーによって分析し、メタノール、エタノール、およびエチレングリコールが含まれていることを確認した。このことから、電解液の炭酸エステル類がこれらに分解されたことが示唆される。さらに、気化残留液のXRD測定よって、Na2CO3由来のピークが確認された。このことから、電解液中の炭酸エステルが加水分解されて、メタノール等と共にCO2が発生し、このCO2がアルカリ溶液のNaと反応したことが示唆される。 Example 5
A commercially available electrolyte solution (100 mL) was placed in a flask, and a 24 wt% NaOH solution was injected therein. At the time of injection, it was visually confirmed that a gas considered to be carbon dioxide generated by the decomposition of the carbonic acid ester in the electrolytic solution was generated. After injecting the NaOH solution, the inside of the flask was decompressed to 20 kPa, heated at 120 ° C. for 2 hours, the vaporized gas was cooled and condensed, and the condensate was recovered. Table 7 shows the concentration and the injection amount of the used NaOH solution, the amount of the condensed liquid recovered (the amount of the organic solvent), the fluorine concentration and the phosphorus concentration in the liquid.
As shown in Table 7, the recovered condensate had a fluorine concentration of 20 ppm and a phosphorus concentration of 1 ppm. This suggests that the fluorine compound (LiPF 6 ) contained in the electrolytic solution is decomposed, and almost the entire amount is fixed in the vaporization residue. The collected condensate was analyzed by gas chromatography, and it was confirmed that methanol, ethanol, and ethylene glycol were contained. This suggests that the carbonates of the electrolytic solution were decomposed into these. Furthermore, a peak derived from Na 2 CO 3 was confirmed by XRD measurement of the vaporized residual liquid. This suggests that the carbonic acid ester in the electrolytic solution was hydrolyzed to generate CO 2 together with methanol and the like, and this CO 2 reacted with Na in the alkaline solution.
以上、本発明の好ましい実施例を説明したが、本発明はこの実施例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。本発明は前述した説明によって限定されることはなく、添付の請求の範囲によってのみ限定される。
The preferred embodiment of the present invention has been described above, but the present invention is not limited to this embodiment. Additions, omissions, substitutions, and other modifications can be made without departing from the spirit of the present invention. The present invention is not limited by the above description, but only by the appended claims.
本発明のフッ素含有電解液の処理方法によれば、フッ素化合物および有機溶媒を含む電解液を安全に処理できる。これにより、フッ素含有電解液を含むリチウム電池を安全に処理できる。
According to the method for treating a fluorine-containing electrolyte of the present invention, an electrolyte containing a fluorine compound and an organic solvent can be safely treated. Thereby, the lithium battery containing a fluorine-containing electrolyte solution can be processed safely.
S1 アルカリ添加工程
S2 気化工程
S3 気化ガス回収工程
S4 破砕
S5 分別工程 S1 alkali addition step S2 vaporization step S3 vaporized gas recovery step S4 crushing S5 fractionation step
S2 気化工程
S3 気化ガス回収工程
S4 破砕
S5 分別工程 S1 alkali addition step S2 vaporization step S3 vaporized gas recovery step S4 crushing S5 fractionation step
Claims (8)
- フッ素含有電解液にアルカリを添加して前記フッ素含有電解液に含まれる炭酸エステルを加水分解すると共に、前記フッ素含有電解液に含まれるフッ素およびリンを固定した後に、
前記フッ素含有電解液を加熱して前記フッ素含有電解液に含まれる揮発成分を気化し、
前記揮発成分が気化した気化ガスから有機溶媒成分を回収するフッ素含有電解液の処理方法。 After adding an alkali to the fluorine-containing electrolyte and hydrolyzing the carbonate contained in the fluorine-containing electrolyte, and fixing the fluorine and phosphorus contained in the fluorine-containing electrolyte,
Heating the fluorine-containing electrolyte solution to vaporize volatile components contained in the fluorine-containing electrolyte solution;
A method for treating a fluorine-containing electrolytic solution, wherein an organic solvent component is recovered from a vaporized gas obtained by vaporizing the volatile component. - 前記フッ素含有電解液が、廃電池中の電解液、廃電池を切断ないし破砕した状態の電解液、使用前の電解液、または廃電池から抜き出された電解液である請求項1に記載のフッ素含有電解液の処理方法。 2. The electrolyte according to claim 1, wherein the fluorine-containing electrolyte is an electrolyte in a waste battery, an electrolyte in a state where the waste battery is cut or crushed, an electrolyte before use, or an electrolyte extracted from the waste battery. Treatment method for fluorine-containing electrolyte.
- 前記フッ素含有電解液が廃電池中の電解液であって、
前記廃電池にアルカリを注入し、あるいは前記廃電池をアルカリ溶液に浸漬した後に、前記廃電池を常圧下あるいは減圧下で加熱して、前記電解液に含まれる揮発成分を気化する請求項1に記載のフッ素含有電解液の処理方法。 The fluorine-containing electrolyte is an electrolyte in a waste battery,
The alkali is injected into the waste battery, or the waste battery is immersed in an alkaline solution, and then the waste battery is heated under normal pressure or reduced pressure to vaporize a volatile component contained in the electrolytic solution. The processing method of fluorine-containing electrolyte solution of description. - 前記フッ素含有電解液が廃電池中の電解液であって、
前記廃電池を切断または破砕して粉末アルカリあるいはアルカリ溶液を加えた後に、常圧下あるいは減圧下で前記廃電池を加熱して前記電解液に含まれる揮発成分を気化する請求項1に記載のフッ素含有電解液の処理方法。 The fluorine-containing electrolyte is an electrolyte in a waste battery,
2. The fluorine according to claim 1, wherein after cutting or crushing the waste battery and adding powdered alkali or an alkaline solution, the waste battery is heated under normal pressure or reduced pressure to vaporize volatile components contained in the electrolyte. Processing method of contained electrolyte. - 前記アルカリとして、苛性ソーダ(NaOH)、Ca系中和剤〔Ca(OH)2、CaCO3、CaO〕、またはMg系中和剤〔(MgO、Mg(OH)2〕の粉末、溶液、またはスラリーを用いる請求項1~請求項4の何れかに記載のフッ素含有電解液の処理方法。 Caustic soda (NaOH), Ca-based neutralizer [Ca (OH) 2 , CaCO 3 , CaO], or Mg-based neutralizer [(MgO, Mg (OH) 2 ] powder, solution, or slurry as the alkali The method for treating a fluorine-containing electrolytic solution according to any one of claims 1 to 4, wherein
- 前記気化ガスを水冷トラップに導入し、前記気化ガスに含まれるアルコールやジオールを回収する請求項1~請求項5の何れかに記載のフッ素含有電解液の処理方法。 The method for treating a fluorine-containing electrolyte solution according to any one of claims 1 to 5, wherein the vaporized gas is introduced into a water-cooled trap, and alcohol or diol contained in the vaporized gas is recovered.
- 前記フッ素含有電解液を減圧下で加熱して、前記揮発成分を気化する請求項1に記載のフッ素含有電解液の処理方法。 The method for treating a fluorine-containing electrolyte according to claim 1, wherein the fluorine-containing electrolyte is heated under reduced pressure to vaporize the volatile component.
- 前記気化ガスを凝縮して有機溶媒成分を回収する請求項1に記載のフッ素含有電解液の処理方法。 The method for treating a fluorine-containing electrolyte according to claim 1, wherein the vaporized gas is condensed to recover an organic solvent component.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013204125 | 2013-09-30 | ||
JP2013-204125 | 2013-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015046232A1 true WO2015046232A1 (en) | 2015-04-02 |
Family
ID=52743367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/075251 WO2015046232A1 (en) | 2013-09-30 | 2014-09-24 | Method for treating fluorine-containing liquid electrolyte |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2015092466A (en) |
WO (1) | WO2015046232A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108011146A (en) * | 2017-11-17 | 2018-05-08 | 四川长虹电器股份有限公司 | Waste lithium cell renewable resources recovery method |
CN108923092A (en) * | 2018-06-29 | 2018-11-30 | 惠州市宙邦化工有限公司 | A kind of waste and old lithium ionic cell electrolyte processing method |
CN110034351A (en) * | 2019-04-29 | 2019-07-19 | 浙江华友钴业股份有限公司 | A kind of innoxious minimizing technology of used Li ion cell electrolyte |
JP2022504106A (en) * | 2018-10-18 | 2022-01-13 | ベーハーエス-ゾントホーフェン ゲーエムベーハー | Equipment for recycling used batteries |
CN114715922A (en) * | 2022-02-18 | 2022-07-08 | 广东邦普循环科技有限公司 | A kind of method of recycling lithium ion battery electrolyte |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6562212B2 (en) * | 2015-12-19 | 2019-08-21 | 三菱マテリアル株式会社 | Method and apparatus for thermal decomposition treatment of lithium ion battery |
JP7122093B2 (en) * | 2017-08-23 | 2022-08-19 | 住友大阪セメント株式会社 | Method for recovering valuables from used lithium-ion batteries |
JP6978361B2 (en) * | 2018-03-26 | 2021-12-08 | 三井化学株式会社 | Method for manufacturing lithium salt complex compound |
CN110416654A (en) * | 2019-08-02 | 2019-11-05 | 中国科学院宁波材料技术与工程研究所 | A method and system for harmless treatment of waste power battery electrolyte |
JP7153245B2 (en) * | 2021-01-18 | 2022-10-14 | 住友大阪セメント株式会社 | Method for recovering valuables from used lithium-ion batteries |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000030741A (en) * | 1998-07-09 | 2000-01-28 | Morita Kagaku Kogyo Kk | Treating method of organic electrolyte containing lithium hexafluorophosphate |
JP2005026089A (en) * | 2003-07-02 | 2005-01-27 | Toyota Motor Corp | Lithium battery, manufacturing method and processing method thereof |
JP2012186150A (en) * | 2011-02-15 | 2012-09-27 | Sumitomo Chemical Co Ltd | Method for recovering active material from discarded battery material |
JP2012204000A (en) * | 2011-03-23 | 2012-10-22 | Toyota Motor Corp | Recycling method and processing unit of battery pack |
-
2014
- 2014-09-24 WO PCT/JP2014/075251 patent/WO2015046232A1/en active Application Filing
- 2014-09-27 JP JP2014197664A patent/JP2015092466A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000030741A (en) * | 1998-07-09 | 2000-01-28 | Morita Kagaku Kogyo Kk | Treating method of organic electrolyte containing lithium hexafluorophosphate |
JP2005026089A (en) * | 2003-07-02 | 2005-01-27 | Toyota Motor Corp | Lithium battery, manufacturing method and processing method thereof |
JP2012186150A (en) * | 2011-02-15 | 2012-09-27 | Sumitomo Chemical Co Ltd | Method for recovering active material from discarded battery material |
JP2012204000A (en) * | 2011-03-23 | 2012-10-22 | Toyota Motor Corp | Recycling method and processing unit of battery pack |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108011146A (en) * | 2017-11-17 | 2018-05-08 | 四川长虹电器股份有限公司 | Waste lithium cell renewable resources recovery method |
CN108011146B (en) * | 2017-11-17 | 2021-04-23 | 四川长虹电器股份有限公司 | Recycling method of waste lithium battery |
CN108923092A (en) * | 2018-06-29 | 2018-11-30 | 惠州市宙邦化工有限公司 | A kind of waste and old lithium ionic cell electrolyte processing method |
JP2022504106A (en) * | 2018-10-18 | 2022-01-13 | ベーハーエス-ゾントホーフェン ゲーエムベーハー | Equipment for recycling used batteries |
CN110034351A (en) * | 2019-04-29 | 2019-07-19 | 浙江华友钴业股份有限公司 | A kind of innoxious minimizing technology of used Li ion cell electrolyte |
CN114715922A (en) * | 2022-02-18 | 2022-07-08 | 广东邦普循环科技有限公司 | A kind of method of recycling lithium ion battery electrolyte |
CN114715922B (en) * | 2022-02-18 | 2024-01-05 | 广东邦普循环科技有限公司 | Method for recycling lithium ion battery electrolyte |
Also Published As
Publication number | Publication date |
---|---|
JP2015092466A (en) | 2015-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015046232A1 (en) | Method for treating fluorine-containing liquid electrolyte | |
JP6311877B2 (en) | Treatment method for fluorine-containing electrolyte | |
JP6315198B2 (en) | Treatment method for fluorine-containing electrolyte | |
JP6124001B2 (en) | Treatment method for fluorine-containing electrolyte | |
WO2014155784A1 (en) | Method for processing fluorine-containing electrolyte solution | |
KR102043711B1 (en) | Manufacturing method of lithium hydroxide monohydrate using waste cathode material of lithium ion secondary battery | |
EP2813587B1 (en) | Method for recovering lithium | |
EP2811040B1 (en) | Lithium recovery method | |
JP5459146B2 (en) | Lithium recovery method | |
KR20220103769A (en) | Lithium salt purification method | |
Mao et al. | Recycling of electrolyte from spent lithium-ion batteries | |
JP6311882B2 (en) | Treatment method for fluorine-containing electrolyte | |
US20250062431A1 (en) | Process | |
WO2024003541A1 (en) | Battery recycling | |
Iizuka et al. | Mass Spectrometric Study on Volatilization Behavior of Electrolyte Solvents of Lithium-Ion Batteries | |
JP2022118636A (en) | Method for recovering manganese compound aqueous solution | |
WO2024169010A1 (en) | Method for recovering electrolyte of waste lithium battery for resource utilization | |
US20220194806A1 (en) | Lithium oxide recovery method from lithium manganese oxide (lmo) | |
EP4317487A1 (en) | Separation method for separating constituent material from member and method for processing member | |
WO2024055071A1 (en) | A recycling method for recovery of valuable metal elements from waste battery materials | |
TW202349783A (en) | A method of removing and safe disposal of electrolyte from spent lithium-ion batteries | |
CN115732789A (en) | Method for removing lithium from metal-containing lithium waste |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14847374 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14847374 Country of ref document: EP Kind code of ref document: A1 |