WO2015043187A1 - 天线及终端 - Google Patents
天线及终端 Download PDFInfo
- Publication number
- WO2015043187A1 WO2015043187A1 PCT/CN2014/076878 CN2014076878W WO2015043187A1 WO 2015043187 A1 WO2015043187 A1 WO 2015043187A1 CN 2014076878 W CN2014076878 W CN 2014076878W WO 2015043187 A1 WO2015043187 A1 WO 2015043187A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antenna
- srr
- ground
- dielectric substrate
- terminal
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
- H01Q15/006—Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
Definitions
- the present invention relates to the field of communications, and in particular to an antenna and a terminal.
- BACKGROUND With the continuous development of wireless communication technologies and the increase of communication services, there are higher requirements for wireless communication devices, especially wireless communication terminal devices.
- the antenna plays a vital role in communication quality, and is often the main obstacle to the wireless communication system to expand the communication traffic. Designing broadband, large-capacity, and multi-functional antennas that meet the increasing communication services and communication standards has become an important issue in the field of antenna research.
- most mobile terminal designs use multiple antenna schemes, such as main antenna, diversity antenna, Global Position System (GPS) antenna and WIFI antenna.
- GPS Global Position System
- the anti-interference performance will directly affect the wireless performance of the terminal and over-the-air (OTA) indicators (such as TRP and TIS). Therefore, it is urgent to develop a terminal antenna with excellent frequency selectivity and anti-interference performance.
- OTA over-the-air
- the antennas of the conventional terminal products are generally arranged on the support, which requires a large space, affects the miniaturization of the entire product, and needs to add a filter for suppressing the out-of-band interference signal at the receiving front end of the antenna. Therefore, in the related art, the antenna of the terminal has a problem of occupying a large space and a high cost.
- an antenna including: an antenna radiating patch, a dielectric substrate, and an antenna ground, wherein the dielectric substrate is located between the antenna radiating patch and the antenna ground,
- a split resonant ring SRR for filtering is attached to the antenna ground.
- the number of rings of the SRR is at least two.
- at least two of the SRRs are concentric half rings of a common diameter, wherein the concentric half rings are attached to the antenna ground in the form of grooves.
- the SRR determines the filtered frequency band according to at least one of the following: a size of the SRR common diameter, a width of the SRR groove, a split width of the SRR, and a number of layers of the medium of the dielectric substrate.
- the number of dielectric layers of the dielectric substrate is at least two layers.
- the antenna radiating patch and the antenna are separately fed by a microstrip line, or the antenna radiating patch and the antenna are coupledly fed.
- a double-step type matching transition structure is adopted between the feeding port for feeding the antenna radiation patch and the antenna radiation patch, wherein the matching transition structure is used for adjusting the impedance of the antenna match.
- the antenna is integrated on a printed circuit board PCB.
- the antenna is applied to at least one of the following: a radio frequency antenna, a WiFi antenna, a Bluetooth antenna, a global positioning system GPS antenna.
- a terminal comprising the antenna of any of the above.
- the antenna includes: an antenna radiating patch, a dielectric substrate, and an antenna ground, wherein the dielectric substrate is located between the antenna radiating patch and the antenna ground, and one antenna is attached to the antenna ground.
- the split resonant ring SRR for filtering solves the problem that the antenna of the terminal has a large space and a high cost in the related art, thereby achieving the effect of not only reducing the area of the antenna but also saving cost.
- FIG. 1 is a schematic structural view of an antenna according to an embodiment of the present invention
- 2 is a block diagram of a terminal according to an embodiment of the present invention
- FIG. 3 is a plan view of a terminal antenna according to an embodiment of the present invention
- FIG. 4 is a bottom view of an antenna according to an embodiment of the present invention
- 6 is a perspective view of an antenna according to an embodiment of the present invention
- FIG. 1 is a schematic structural view of an antenna according to an embodiment of the present invention
- 2 is a block diagram of a terminal according to an embodiment of the present invention
- FIG. 3 is a plan view of a terminal antenna according to an embodiment of the present invention
- FIG. 4 is a bottom view of an antenna according to an embodiment of the present invention
- 6 is a perspective view of an antenna according to an embodiment of the present invention
- FIG. 1 is a schematic structural view of an antenna according to an embodiment of the present invention
- 2 is a block diagram of a terminal according to an embodiment of the present invention
- FIG. 7 is a schematic diagram of a standing wave coefficient of an anti-jamming antenna according to an embodiment of the present invention.
- BEST MODE FOR CARRYING OUT THE INVENTION An antenna is provided in this embodiment.
- FIG. 1 is a schematic structural diagram of an antenna according to an embodiment of the present invention. As shown in FIG. 1, the antenna 10 includes: an antenna radiating patch 12, a dielectric substrate 14, and an antenna ground 16. The dielectric substrate 14 is located between the antenna radiating patch 12 and the antenna ground 16, and a split resonant ring SRR for filtering is attached to the antenna ground.
- the SRR structure with filtering characteristics is added to the antenna structure, and the frequency band of the antenna is effectively filtered by the standing wave resonance effect of the SRR structure, and the antenna in the related art needs to be increased at the front end of the antenna.
- a filter for suppressing out-of-band interference signals requires not only a large space but also a large cost.
- the SRR structure with filtering characteristics is added to the antenna structure, which solves the above problems in the related art and reduces the above problem.
- the footprint of the antenna effectively reduces the cost and also effectively improves the user experience.
- the number of rings of the SRR structure of the antenna may be one or more, for example, two, three, or four, and corresponding adjustments may be made according to the frequency bands that the antenna needs to filter.
- At least two rings in the SRR are concentric semi-rings of a common diameter, wherein the concentric half rings are attached to the antenna ground in the form of grooves.
- the SRR may determine the filtered frequency band according to at least one of the following: the size of the SRR common diameter, the width of the SRR groove, the split width of the SRR, and the number of layers of the medium of the dielectric substrate.
- the number of the dielectric layers of the dielectric substrate may be one layer or multiple layers, for example, may be at least two layers, and the material of the medium may be a single layer material, a plurality of layers of materials, a gradient type, or a mixture. Type.
- the antenna can be fed in various ways.
- the antenna radiating patch and the antenna ground can be directly fed through the microstrip line, or the antenna radiating patch and the antenna can be coupled and fed.
- a double-step matching transition structure can be adopted between the feeding port for feeding the antenna radiation patch and the antenna radiation patch, and the impedance matching of the antenna is adjusted by the matching transition structure.
- the antenna can be integrated on a Printed Circuit Board (PCB).
- PCB Printed Circuit Board
- the antenna can be applied in various types according to the needs of the terminal.
- the antenna can be applied in at least the following types: RF antenna, WiFi antenna, Bluetooth antenna, GPS GPS antenna.
- a terminal is also provided. FIG.
- the terminal 20 includes the antenna 22 of any of the above.
- the PCB antenna based on the DGS (Defected Ground Structure) structure of the Resonator Ring (SRR) provided by the above embodiments and the preferred embodiment can effectively realize the small antenna in addition to the anti-interference and out-of-band suppression effects. At the same time, the gain of the antenna is improved.
- a novel miniaturized terminal antenna is provided, which not only satisfies the requirements of the multi-frequency antenna, satisfies the requirement of ultra-thin appearance, but also eliminates the filter and achieves the above problems.
- the novel PCB antenna based on the SRR-based DGS structure can effectively filter out the out-of-band signal of the receiving frequency band on the basis of reducing the area of the antenna and without using the front-end filter, thereby greatly reducing The cost of the antenna.
- the following processing can be adopted: The SRR structure with filtering characteristics is added to the ground structure of the antenna, and the SRR structure is also a crack resonant ring, which can generate a standing wave resonance effect at a frequency point corresponding to a specified electrical length, thereby achieving a filtering effect.
- the center frequency and frequency width of the filter stop band can be effectively adjusted.
- the anti-interference effect can be effectively achieved.
- the number of SRR structures of the PCB antenna can be adjusted according to the frequency band that the antenna needs to be filtered; the metal patch radiating unit, the floor and the SRR structure of the upper and lower layers Any deformation (such as ellipse, regular, irregular polygon, etc.) and adjustment of the reserved space of the antenna of the UE board may be performed.
- the dielectric material of the PCB of the antenna area may not be a double layer medium, and may be a gradient type.
- the medium and the mixed medium; preferably, the feeding mode of the antenna may be directly connected to the metal radiating unit by using the feeding line, or may be fed by using a coupling manner;
- the type of the antenna can be changed according to the needs of the UE, and can be used as a radio frequency antenna (GSM/WCDMA/CDMA/LTE) or as a WIFI antenna, a Bluetooth antenna or a GPS antenna; after adopting the above structure, and the conventional Compared with the terminal antenna, the following advantages are achieved:
- the novel small-end terminal antenna based on the SRR-based DGS structure eliminates the filter of the antenna front end under the premise of further reducing the antenna size, and can change the number of structures of the SRR (control resistance) With the number and size (control the frequency position and bandwidth of the stop band) to adjust the frequency, bandwidth and number of the stop band, the miniaturization saves more cost and board space, in addition, high Gain and high radiation efficiency are also important features of the antenna.
- the antenna of the embodiment of the present invention will be described below in conjunction with the preferred embodiments. Place a clearing area on the PCB board of the CPE near the USB interface for the layout of the PCB antenna.
- the antenna is mainly composed of three parts: an antenna radiation patch, a dielectric substrate and an antenna ground.
- the antenna radiating patch is composed of a 50 ⁇ microstrip feed line, a stepped impedance matching structure, and a rectangular radiator (opening with equal spacing of rectangular grooves); the antenna ground has a SGS DGS structure for generating a stop band.
- FIG. 3 is a top view of the terminal antenna according to an embodiment of the present invention.
- the SRR structure is composed of three common diameter concentric resonance concentric half rings, and the SRR slot line is etched in the diversity.
- the ground structure of the antenna that is, the DGS structure of the SRR.
- the antenna structure between the antenna radiator and the ground structure is a single layer (also multi-layer).
- the antenna itself is a passband antenna operating in a specified frequency band.
- This passband contains all the FDD bands supported by the UE.
- a stop band with filtering, isolation and anti-interference effects is formed between the respective receiving bands of these FDD bands.
- the formation of the stop band is a representation of the standing wave resonance generated by the split ring.
- the position and width of the stop band can be adjusted by controlling the radius of the SRR, the width of the split, and the width of the slot.
- the feeding mode of the antenna can be a microstrip feed or a coupling feed.
- the microstrip feed feeds the microstrip line to the metal radiating antenna body and the underlying floor.
- a certain type of matching circuit can be left between the feed port and the motherboard circuit to adjust the impedance matching of the antenna.
- the DGS structure of the SRR can be as close as possible to the edge of the floor and the center of the feeder.
- the surface of the SRR slot line can be enhanced.
- the magnitude of the resonant current increases the anti-jamming effect of the specified frequency band.
- the shape of the metal patch can be adjusted according to the operating frequency band of the antenna. Based on the DGS structure of SRR, a two-layer microstrip antenna with anti-interference function is designed. 4 is a bottom view of an antenna according to an embodiment of the present invention, FIG.
- FIG. 5 is a side view of an antenna according to an embodiment of the present invention
- FIG. 6 is a 3D perspective view of the antenna according to an embodiment of the present invention, as shown in FIGS. 3, 4, and 5 P6, upper metal patch 1 (same as antenna radiating patch 12); feed port 2; lower metal patch 3 (same antenna ground 16 above); SRR DGS structure 4; dielectric substrate 5 (same medium) Substrate 14), the antenna is composed of a single layer (or multi-layer hybrid) medium, and the antenna feeds the upper metal patch through the lower floor.
- 7 is a schematic diagram of a VSWR of an anti-jamming antenna according to an embodiment of the present invention. As shown in FIG.
- the original antenna is a wideband antenna including all receiving bands of a specified UE, for example, for supporting LTE Bandl.
- the matching frequency band of the original antenna is 869MHz-2690MHz, and the transmission frequency band between each receiving frequency band is regarded as the interference frequency band.
- the DGS with SRR can be seen.
- the structure of the antenna in the 869 ⁇ 894MHz, 1805 ⁇ 1880MHz 2110 ⁇ 2170MHz and the P 2620 ⁇ 2690MHz, the impedance bandwidth of the four frequency bands is 25MHz 75MHz 60MHz and P 70MHz, the three bands of the stop band are: 894 ⁇ 1805MHz, The 1880 ⁇ 2110MHz, 2170 ⁇ 2620MHz, and their corresponding three impedance mismatch bandwidths are: 911MHz, 230MHz and 450MHz, and the gains of the antennas at 882MHz, 1843MHz 2140MHz and 2655MHz are 6dBi, 6.2dBi, 6.3dBi and 6.2dBi, respectively.
- This surface-filtered antenna structure can achieve high gain while miniaturizing the antenna.
- the impedance of the antenna can be adjusted by adjusting the size (diameter, slot width, and split width) of the SRR structure, the number of layers mixed in the medium, and the reserved antenna matching to change the impedance mismatch. Mismatched frequency band and bandwidth.
- the anti-jamming antenna provided in this embodiment can be promoted as an RF main/diversity antenna, a Bluetooth antenna, a WIFI antenna, and a GPS antenna.
- the antenna can be used as long as it is an antenna for anti-interference performance.
- the above is only one embodiment of the present invention applied to the CPE, and any modifications made in the shape of the microstrip antenna, the weight of the SRR structure, the number of layers to be mixed, etc., within the spirit and principles of the method, Equivalent substitutions, improvements, etc., are intended to be included within the scope of the present invention.
- the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices.
- the steps shown or described may be performed in an order different than that herein, or they may be separately fabricated into individual integrated circuit modules, or Multiple of these modules or steps are fabricated as a single integrated circuit module.
- the invention is not limited to any specific combination of hardware and software. The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.
- an antenna and a terminal provided by the embodiments of the present invention have the following beneficial effects:
- the antenna of the terminal has a large occupied space and a high cost, thereby achieving not only the reduction of the antenna but also the antenna. Area, and cost savings.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Waveguide Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
本发明提供了一种天线及终端,该天线包括:天线辐射贴片、介质基板和天线地,其中,介质基板位于天线辐射贴片与天线地之间,在天线地上附着有一个用于进行滤波的裂口谐振环SRR,通过本发明,解决了相关技术中,终端的天线存在占据空间大,成本高的问题,进而达到了不仅减小天线的面积,而且节省成本的效果。
Description
天线及终端 技术领域 本发明涉及通信领域, 具体而言, 涉及一种天线及终端。 背景技术 随着无线通信技术的不断发展、 通信业务的增加, 对无线通信设备, 尤其是无线 通信终端设备有了更高的要求。 天线作为任何无线通信系统前端收发信号的部件, 对 通信质量起着至关重要的作用, 也往往是制约无线通信系统实现扩大通信业务量的主 要障碍。 设计出满足日益增加的通信业务、 通信制式的宽频带、 大容量、 多功能的天 线已成为当今天线研究领域中一个很重要的课题。 目前多数移动终端设计中均采用多天线方案, 如主天线、 分集天线、 全球定位系 统 (Global Position System, 简称为 GPS) 天线和 WIFI天线, 很多情况下都是在这些 天线的几种甚至全部同时工作, 所以各个天线之间的互扰是不言而喻的。 可以预见, 随着技术进步和用户需求升级, 对手机射频功能的要求将进一步增加, 单个终端配置 多天线的趋势将会更加明显, 多天线之间的互扰形势会愈来愈严峻。 随着通信终端的多频段化和多功能化,天线所面临的干扰越来越复杂化和强烈化, 如 LTE Band 40和 WIFI频段之间的互扰、 LTE Band6与 PGSM之间的互扰等。 对于 一个用于无线通信系统的天线而言, 抗干扰性能的好坏将直接对终端的无线性能及空 中下载 (Over—the—Air, 简称为 OTA) 指标 (如 TRP和 TIS) 造成影响。 因此, 研 制出具有优秀的频率选择性及抗干扰性能的终端天线是迫切需要的。 传统的终端产品的天线一般都是做在支架上, 需要较大的空间, 影响了整个产品 的小型化, 并需要在天线的接收前端增加一个抑制带外干扰信号的滤波器。 因此, 在相关技术中, 终端的天线存在占据空间大, 成本高的问题。 发明内容 本发明提供了一种天线及终端, 以至少解决相关技术中, 终端的天线存在占据空 间大, 成本高的问题。
根据本发明的一个方面, 提供了一种天线, 包括: 天线辐射贴片、 介质基板和天 线地, 其中, 所述介质基板位于所述天线辐射贴片与所述天线地之间, 在所述天线地 上附着有一个用于进行滤波的裂口谐振环 SRR。 优选地, 所述 SRR的环数为至少两个。 优选地, 所述 SRR中的至少两个环为共用直径的同心半圆环, 其中所述同心半圆 环以凹槽的形式附着于所述天线地上。 优选地, 所述 SRR依据以下至少之一确定滤除的频段: 所述 SRR共用直径的大 小、 所述 SRR凹槽的宽度、 所述 SRR的裂口宽度、 所述介质基板的介质的层数。 优选地, 所述介质基板的介质层数为至少两层。 优选地, 通过微带线对所述天线辐射贴片和所述天线地分别进行馈电, 或者对所 述天线辐射贴片和所述天线地耦合馈电。 优选地, 在对所述天线辐射贴片进行馈电的馈电口与所述天线辐射贴片之间采用 双阶梯型的匹配过渡结构, 其中, 该匹配过渡结构用于调整所述天线的阻抗匹配。 优选地, 所述天线集成于印制电路板 PCB上。 优选地, 所述天线应用于以下至少之一: 射频天线、 WiFi天线、 蓝牙天线、 全球 定位系统 GPS天线。 根据本发明的另一方面, 提供了一种终端, 包括上述任一项所述的天线。 通过本发明, 采用天线包括: 天线辐射贴片、 介质基板和天线地, 其中, 所述介 质基板位于所述天线辐射贴片与所述天线地之间, 在所述天线地上附着有一个用于进 行滤波的裂口谐振环 SRR, 解决了相关技术中, 终端的天线存在占据空间大, 成本高 的问题, 进而达到了不仅减小天线的面积, 而且节省成本的效果。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1是根据本发明实施例的天线的结构示意图;
图 2是根据本发明实施例的终端的结构框图; 图 3是根据本发明实施例的终端天线俯视图; 图 4是根据本发明实施例的天线的仰视图; 图 5是根据本发明实施例天线的侧视图; 图 6是根据本发明实施例的天线的 3D透视图; 图 7是根据本发明实施例的抗干扰天线的驻波系数示意图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 在本实施例中提供了一种天线, 图 1是根据本发明实施例的天线的结构示意图, 如图 1所示, 该天线 10包括: 天线辐射贴片 12、 介质基板 14和天线地 16, 其中, 介 质基板 14位于天线辐射贴片 12与天线地 16之间,在天线地上附着有一个用于进行滤 波的裂口谐振环 SRR。 通过上述设计, 将带有滤波特性的 SRR结构加在了天线地结构上, 通过 SRR结 构的驻波谐振效应, 对天线的频带进行有效滤波, 相对于相关技术中的天线需要在天 线的前端增加一个抑制带外干扰信号的滤波, 不仅需要较大的空间, 而且成本较大, 采用将带有滤波特性的 SRR结构加在了天线地结构上, 解决了相关技术中的上述问 题, 减小了天线的占用空间, 有效降低了成本, 而且还有效地提高了用户体验。 需要说明的是, 天线的 SRR结构的环数可以为一个也可以为多个, 例如, 可以为 两个, 三个, 四个, 依据天线需要滤波的频段进行相应的调整。 其中, 该 SRR中的至 少两个环为共用直径的同心半圆环, 其中同心半圆环以凹槽的形式附着于天线地上。 并且, 该 SRR可以依据以下至少之一确定滤除的频段: SRR共用直径的大小、 SRR 凹槽的宽度、 SRR的裂口宽度、 介质基板的介质的层数。 介质基板的介质层数可以为一层也可以为多层, 例如, 可以为至少两层, 并且介 质的材料可以为单层材料, 也可以为多层材料, 还可以是渐变型的, 或者混合型的。 对天线进行馈电可以采用多种方式, 例如, 可以直接通过微带线对天线辐射贴片 和天线地分别进行馈电, 也可以对天线辐射贴片和天线地耦合馈电。
为了灵活调整阻抗匹配, 在对天线辐射贴片进行馈电的馈电口与天线辐射贴片之 间可以采用双阶梯型的匹配过渡结构, 通过该匹配过渡结构调整天线的阻抗匹配。 优选地, 可以将天线集成于印制电路板 (Printed Circuit Board, 简称为 PCB) 上。 该天线依据终端的需要可以以多种类型的方式应用, 例如, 可以以以下至少的类型方 式进行应用: 射频天线、 WiFi天线、 蓝牙天线、 全球定位系统 GPS天线。 在本实施例中,还提供了一种终端, 图 2是根据本发明实施例的终端的结构框图, 如图 2所示, 该终端 20包括上述任一项的天线 22。 通过上述实施例及优选实施方式提供的基于谐振环(Spilt Resonator Ring, 简称为 SRR) 的 DGS (Defected Ground Structure) 结构的 PCB天线, 除了具有抗干扰和带外 抑制效果, 还能够有效实现天线小型化, 同时提高了天线的增益。 针对相关技术中所存在的上述问题, 在本实施例中提供了一种新型小型化终端天 线, 不仅可以满足多频天线的需求、 满足超薄外观的需要, 还能够省去滤波器, 达到 了降成本的目的, 此外, 对于不同的应用范围, 还能推广为多用途天线 (例如, 射频 天线、 WIFI天线以及 GPS天线)。 在本实施例中该基于 SRR的 DGS结构的新型 PCB天线,可以在减小天线的面积 的基础上, 以及不用前端滤波器的前提下, 有效的滤除接收频带的带外信号, 大大地 降低了天线的成本。可以采用以下处理: 将具有滤波特性的 SRR结构加在了天线的地 结构上, SRR结构也即裂口谐振环, 可以在指定电长度所对应的频点产生驻波谐振效 应, 从而达到滤波的效果, 通过改变谐振环的大小和宽度, 可以有效地调节滤波阻带 的中心频点和频率宽度。 从而可以有效地达到抗干扰的效果。 较优地, 该 PCB天线的 SRR结构数 (单环、 双环、 三环和四环), 可以根据天线 需要滤除的频段进行相应的调整; 上下层的金属贴片辐射单元、地板以及 SRR结构可 以根据 UE电路板为天线预留空间的大小进行任意变形 (如椭圆形、 规则和不规则多 边形等) 和调整; 优选的, 天线区域的 PCB的介质材料可以不是双层介质, 可以是渐变型介质以及 混合介质; 优选的, 天线的馈电方式可以采用馈线与金属辐射单元直接连接, 也可以采用耦 合方式进行馈电;
优选的, 天线的类型可以根据 UE 的需要进行变化, 可以用作射频天线 ( GSM/WCDMA/CDMA/LTE) 也可以作 WIFI天线、 蓝牙天线或者是 GPS天线; 采用以上的结构之后, 和传统的终端天线相比, 具有以下的优点: 基于 SRR的 DGS结构设计的新型小型终端天线在进一步降低天线尺寸的前提下, 省去了天线前端的滤波器,可以通过改变 SRR的结构个数(控制阻带个数)及尺寸(控 制阻带的频率位置和带宽) 来任意调整阻带的频点、 频宽以及个数, 而小型化节省了 更多的成本和板面预留空间, 此外, 高增益和高辐射效率也是天线的重要特点。 下面结合优选实施方式对本发明实施例的天线进行说明。 在 CPE的 PCB电路板上靠近 USB接口的地方留出一块净空区域用于 PCB天线的 布局。 该天线主要是由三个部分组成的: 天线辐射贴片、 介质基板和天线地。 其中, 天 线辐射贴片是由 50 Ω微带馈线、 阶梯形阻抗匹配结构以及矩形辐射体(开有等间距的 矩形槽) 组成的; 天线地上有 SRR的 DGS结构, 用来产生阻带。 由于对于不同用途的 UE而言, 工作频段和天线用途 (射频主天线 /射频分集天线 /WIFI天线 /GPS天线) 是不同的, 所以, 需要抑制的频段也不同, 所以下面就以支持 LTE BandK 3、 5、 7的射频分集接收天线为例, 来描述天线的实施方式。 在 SRR的 DGS结构中, 图 3是根据本发明实施例的终端天线俯视图, 如图 3所 示, SRR结构是由三个共用直径的裂口谐振同心半圆环组成, SRR槽线蚀刻在了分集 天线的地结构上, 也即 SRR的 DGS结构。 天线辐射体和地结构之间便为单层 (亦可 多层)的介质结构, 天线本身是一个工作在指定频段的通带天线, 这一通带包含了 UE 所支持的所有的 FDD频段, 加入了 SRR的 DGS结构之后, 就会在这些 FDD频段的 各个接收频段之间形成了具有滤波、 隔离以及抗干扰效果的阻带, 阻带的形成是裂口 环产生驻波谐振的表征。 依据所需天线的工作频段的不同, 阻带的位置和宽度可以通 过控制 SRR的半径、 裂口宽度以及槽宽来进行相应的调整。 天线的馈电方式可以为微带馈电, 亦可为耦合馈电。 微带馈电即是将微带线对金 属辐射天线体和下层的地板进行馈电。 设计时可以在馈电口与主板电路之间留有一定 形式的匹配电路, 用来调整天线的阻抗匹配。 为了增强耦合谐振效果, 可以将 SRR的 DGS结构距离地板边缘以及馈线中心尽可能的近, 一方面可以增强 SRR槽线表面的
谐振电流大小, 从而增加了指定频段的抗干扰效果。 金属贴片的形状可以根据天线工 作频段的不同进行调整。 利用 SRR的 DGS结构, 设计了一种具有抗干扰功能的双层微带天线。 图 4是根 据本发明实施例的天线的仰视图, 图 5是根据本发明实施例天线的侧视图, 图 6是根 据本发明实施例的天线的 3D透视图, 如图 3、 4、 5禾 P 6所示, 上层金属贴片 1 (同上 述天线辐射贴片 12); 馈电端口 2; 下层金属贴片 3 (同上述天线地 16); SRR DGS结 构 4; 介质基板 5 (同上述介质基板 14), 天线是由单层 (或多层混合) 介质组成的, 天线是通过下层地板对上层金属贴片进行馈电的。 图 7是根据本发明实施例的抗干扰 天线的驻波系数示意图, 如图 7所示, 原始天线是一个包含了指定 UE的所有接收频 段在内的宽频带的天线, 例如, 对于支持 LTE Bandl、 3、 5、 7四个频段的 UE而言, 原始天线的匹配频段为 869MHz-2690MHz, 在各个接收频段之间的发射频段, 视为干 扰频段, 从图 5可以看到, 具有 SRR的 DGS结构的天线, 在 869〜894MHz、 1805〜 1880MHz 2110〜2170MHz 禾 P 2620~2690MHz 这四个频段天线的阻抗带宽分别为 25MHz 75MHz 60MHz禾 P 70MHz, 阻带的三个频段分别为: 894〜1805MHz、 1880〜 2110MHz、 2170〜2620MHz,与其对应的三个阻抗失配带宽分别为: 911MHz、 230MHz 和 450MHz, 天线在 882MHz、 1843MHz 2140MHz和 2655MHz的增益分别为 6dBi、 6.2dBi、 6.3dBi和 6.2dBi。这种表面滤波的天线结构可以实现高增益的同时还实现了天 线的小型化。 对于支持不同频段组合的不同的 CPE项目而言, 可以通过调节 SRR结构的尺寸 (直径,槽宽以及裂口宽度)、介质混合的层数以及预留天线匹配来改变阻抗失配来调 整天线的阻抗失配频带及带宽。 值得指出的是, 上述新型抗干扰小型化天线不仅适用于 CPE项目, 还适用于对于 一些 Wifi, 手机, 数据卡以及无线路由等所有可以应用天线的场所。 另外, 本实施例所提供的抗干扰天线可以推广为射频主 /分集天线, 蓝牙天线、 WIFI天线和 GPS天线, 只要是对抗干扰性能有要求的天线场合, 都可以用上述天线。 以上仅为本发明实施例应用于 CPE的一个实施例而已,凡在本方法的精神和原则 之内, 微带天线的形状、 SRR结构的重数, 混合的层数等方面所作的任何修改、 等同 替换、 改进等, 均应包含在本发明的保护范围之内。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以
将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。 工业实用性 如上所述, 本发明实施例提供的一种天线及终端具有以下有益效果: 解决了 相关技术中, 终端的天线存在占据空间大, 成本高的问题, 进而达到了不仅减小天 线的面积, 而且节省成本的效果。
Claims
权 利 要 求 书 一种天线, 包括: 天线辐射贴片、 介质基板和天线地, 其中, 所述介质基板位于所述天线辐 射贴片与所述天线地之间, 在所述天线地上附着有一个用于进行滤波的裂口谐 振环 SRR。 根据权利要求 1所述的天线, 其中, 所述 SRR的环数为至少两个。 根据权利要求 2所述的天线, 其中, 所述 SRR中的至少两个环为共用直径的同 心半圆环, 其中所述同心半圆环以凹槽的形式附着于所述天线地上。 根据权利要求 3所述的天线, 其中, 所述 SRR依据以下至少之一确定滤除的频 段:
所述 SRR共用直径的大小、所述 SRR凹槽的宽度、所述 SRR的裂口宽度、 所述介质基板的介质的层数。 根据权利要求 1所述的天线, 所述介质基板的介质层数为至少两层。 根据权利要求 1所述的天线, 其中, 通过微带线对所述天线辐射贴片和所述天 线地分别进行馈电, 或者对所述天线辐射贴片和所述天线地耦合馈电。 根据权利要求 1所述的天线, 其中, 在对所述天线辐射贴片进行馈电的馈电口 与所述天线辐射贴片之间采用双阶梯型的匹配过渡结构, 其中, 该匹配过渡结 构用于调整所述天线的阻抗匹配。 根据权利要求 1所述的天线, 其中, 所述天线集成于印制电路板 PCB上。 根据权利要求 1至 8所述的天线, 其中, 所述天线应用于以下至少之一: 射频天线、 WiFi天线、 蓝牙天线、 全球定位系统 GPS天线。 一种终端, 包括权利要求 1至 9中任一项所述的天线。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310447337.2 | 2013-09-26 | ||
CN201310447337.2A CN104518278A (zh) | 2013-09-26 | 2013-09-26 | 天线及终端 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015043187A1 true WO2015043187A1 (zh) | 2015-04-02 |
Family
ID=52741948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/076878 WO2015043187A1 (zh) | 2013-09-26 | 2014-05-06 | 天线及终端 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104518278A (zh) |
WO (1) | WO2015043187A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106777645A (zh) * | 2016-12-08 | 2017-05-31 | 大连海事大学 | 矩形贴片微带天线谐振电阻计算方法及系统 |
CN112259968A (zh) * | 2020-11-05 | 2021-01-22 | 辽宁工程技术大学 | 一种小型化单陷波双频带超宽带天线 |
CN115275589A (zh) * | 2022-08-16 | 2022-11-01 | 四川大学 | 二维切比雪夫馈电网络全耦合谐振环天线单元及阵列天线 |
CN116190949A (zh) * | 2022-12-13 | 2023-05-30 | 云南大学 | 一种电磁耦合可控的宽带集成基片间隙波导滤波器 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103700941A (zh) * | 2013-12-20 | 2014-04-02 | 惠州硕贝德无线科技股份有限公司 | 一种终端分集接收天线 |
CN104868236A (zh) * | 2015-04-16 | 2015-08-26 | 深圳市华信天线技术有限公司 | 抗载微带天线 |
CN105184351A (zh) * | 2015-08-03 | 2015-12-23 | 广东瑞德智能科技股份有限公司 | 一种在家电控制器嵌入射频识别芯片的方法 |
CN106356621A (zh) * | 2016-10-26 | 2017-01-25 | 集美大学 | 一种微带天线 |
CN107994331A (zh) * | 2017-11-10 | 2018-05-04 | 鹤壁天海电子信息系统有限公司 | 一种宽频带微带印刷天线 |
CN108075234A (zh) * | 2018-01-30 | 2018-05-25 | 厦门大学嘉庚学院 | 嵌套环-六边形阵列复合超宽频带天线及其制造方法 |
US11509060B2 (en) | 2019-10-21 | 2022-11-22 | City University Of Hong Kong | Filter-antenna and method for making the same |
CN112271446B (zh) * | 2020-08-20 | 2024-04-05 | 珠海格力电器股份有限公司 | 同心半圆环微带天线及基于智能家居的无线传感器天线 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1874058A (zh) * | 2005-05-31 | 2006-12-06 | 西北工业大学 | 含有负磁导率材料的手机天线 |
CN202121063U (zh) * | 2011-04-26 | 2012-01-18 | 肖丙刚 | 基于互补裂环谐振器实现抑制谐波的超宽带微带天线 |
CN202333132U (zh) * | 2011-11-15 | 2012-07-11 | 中国计量学院 | 多级阶梯式超宽带共面单极子天线 |
US20120223869A1 (en) * | 2011-03-02 | 2012-09-06 | Industry-University Cooperation Foundation Hanyang University | Microstrip patch antenna including planar metamaterial and method of operating microstrip patch antenna including planar metamaterial |
CN103700941A (zh) * | 2013-12-20 | 2014-04-02 | 惠州硕贝德无线科技股份有限公司 | 一种终端分集接收天线 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101388490A (zh) * | 2008-10-13 | 2009-03-18 | 北京东方信联科技有限公司 | 卡片式室内吸顶宽频天线 |
-
2013
- 2013-09-26 CN CN201310447337.2A patent/CN104518278A/zh active Pending
-
2014
- 2014-05-06 WO PCT/CN2014/076878 patent/WO2015043187A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1874058A (zh) * | 2005-05-31 | 2006-12-06 | 西北工业大学 | 含有负磁导率材料的手机天线 |
US20120223869A1 (en) * | 2011-03-02 | 2012-09-06 | Industry-University Cooperation Foundation Hanyang University | Microstrip patch antenna including planar metamaterial and method of operating microstrip patch antenna including planar metamaterial |
CN202121063U (zh) * | 2011-04-26 | 2012-01-18 | 肖丙刚 | 基于互补裂环谐振器实现抑制谐波的超宽带微带天线 |
CN202333132U (zh) * | 2011-11-15 | 2012-07-11 | 中国计量学院 | 多级阶梯式超宽带共面单极子天线 |
CN103700941A (zh) * | 2013-12-20 | 2014-04-02 | 惠州硕贝德无线科技股份有限公司 | 一种终端分集接收天线 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106777645A (zh) * | 2016-12-08 | 2017-05-31 | 大连海事大学 | 矩形贴片微带天线谐振电阻计算方法及系统 |
CN106777645B (zh) * | 2016-12-08 | 2020-02-07 | 大连海事大学 | 矩形贴片微带天线谐振电阻计算方法及系统 |
CN112259968A (zh) * | 2020-11-05 | 2021-01-22 | 辽宁工程技术大学 | 一种小型化单陷波双频带超宽带天线 |
CN112259968B (zh) * | 2020-11-05 | 2022-12-27 | 辽宁工程技术大学 | 一种小型化单陷波双频带超宽带天线 |
CN115275589A (zh) * | 2022-08-16 | 2022-11-01 | 四川大学 | 二维切比雪夫馈电网络全耦合谐振环天线单元及阵列天线 |
CN115275589B (zh) * | 2022-08-16 | 2024-04-09 | 四川大学 | 全耦合谐振环天线单元及二维切比雪夫网络馈电阵列天线 |
CN116190949A (zh) * | 2022-12-13 | 2023-05-30 | 云南大学 | 一种电磁耦合可控的宽带集成基片间隙波导滤波器 |
Also Published As
Publication number | Publication date |
---|---|
CN104518278A (zh) | 2015-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015043187A1 (zh) | 天线及终端 | |
CN103117452B (zh) | 一种新型lte终端天线 | |
US9525212B2 (en) | Feeding network, antenna, and dual-polarized antenna array feeding circuit | |
EP2337150B1 (en) | An antenna arrangement and a portable radio communication device comprising such an antenna arrangement | |
EP2583350A1 (en) | Two port antennas with separate antenna branches including respective filters | |
US9306266B2 (en) | Multi-band antenna for wireless communication | |
US10581148B2 (en) | External antenna for vehicle | |
JP2007533194A (ja) | 大きく曲がったスロットを有するマルチバンドコンパクトpifaアンテナ | |
WO2014161327A1 (zh) | 一种mimo天线、终端及其提高隔离度的方法 | |
KR101217468B1 (ko) | 기생 커플링 공진을 부가한 역f 안테나 | |
CN103151601A (zh) | 一种底边槽耦合天线 | |
EP3073568B1 (en) | Wireless device using an array of ground plane boosters for multiband operation | |
EP2381529A2 (en) | Communications structures including antennas with separate antenna branches coupled to feed and ground conductors | |
CN102544703A (zh) | 天线装置和无线通信装置 | |
WO2018148973A1 (zh) | 一种支持多进多出技术的通信设备 | |
CN104183926B (zh) | 一种缝隙天线和智能终端 | |
TWI484768B (zh) | 無線通訊裝置及訊號饋入方法 | |
WO2015096132A1 (zh) | 天线和终端 | |
CN102918708A (zh) | 天线装置 | |
CN103346393B (zh) | 一种应用于移动终端的含有凸出地板的多频平面印制天线 | |
WO2015120780A1 (zh) | 一种天线及移动终端 | |
US20110102282A1 (en) | Reconfigurable multi-band antenna system and electronic apparatus having the same | |
CN108134194B (zh) | 一种小型化wlan双频pifa天线 | |
TWI581508B (zh) | Lte天線結構 | |
KR101416931B1 (ko) | 동작선로 mimo 안테나 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14848689 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14848689 Country of ref document: EP Kind code of ref document: A1 |