[go: up one dir, main page]

WO2015041189A1 - Method for manufacturing multilayer wiring substrate, and three-dimensional modeling device used for same - Google Patents

Method for manufacturing multilayer wiring substrate, and three-dimensional modeling device used for same Download PDF

Info

Publication number
WO2015041189A1
WO2015041189A1 PCT/JP2014/074338 JP2014074338W WO2015041189A1 WO 2015041189 A1 WO2015041189 A1 WO 2015041189A1 JP 2014074338 W JP2014074338 W JP 2014074338W WO 2015041189 A1 WO2015041189 A1 WO 2015041189A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring layer
wiring board
multilayer wiring
insulating material
conductive material
Prior art date
Application number
PCT/JP2014/074338
Other languages
French (fr)
Japanese (ja)
Inventor
新井 義之
岩出 卓
Original Assignee
東レエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レエンジニアリング株式会社 filed Critical 東レエンジニアリング株式会社
Publication of WO2015041189A1 publication Critical patent/WO2015041189A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1241Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing
    • H05K3/125Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing by ink-jet printing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4664Adding a circuit layer by thick film methods, e.g. printing techniques or by other techniques for making conductive patterns by using pastes, inks or powders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0104Tools for processing; Objects used during processing for patterning or coating
    • H05K2203/013Inkjet printing, e.g. for printing insulating material or resist
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/025Abrading, e.g. grinding or sand blasting

Definitions

  • a method of forming a circuit shape by a photolithographic technique is known in a method for manufacturing a wiring board having a circuit made of a conductor such as copper wiring.
  • the circuit on the wiring substrate is formed by applying a photosensitive resist on a metal film formed on the surface of the insulating substrate, exposing and developing through a photomask, and dry etching the exposed film portion.
  • a photosensitive resist on a metal film formed on the surface of the insulating substrate, exposing and developing through a photomask, and dry etching the exposed film portion.
  • the present invention further includes a polishing step of polishing the surface of the wiring layer.
  • the present invention further includes a polishing step of polishing the surface of the wiring layer.
  • the wiring layer forming step is further performed on a support substrate having a flat surface.
  • the curing device is a combination of two types of curing devices, a photocuring device and a thermosetting device.
  • the present invention is a three-dimensional modeling apparatus used for manufacturing a multilayer wiring board in which a wiring layer composed of a conductive portion and an insulating portion is laminated, and discharges either a modeling stage and a conductive material or an insulating material.
  • Nozzle, coating device for applying either conductive material or insulating material, curing device for curing conductive material and insulating material, driving device for driving nozzle, coating device, and curing device And a control device having a function of controlling the modeling stage, the nozzle, the coating device, the curing device, and the driving device.
  • the modeling stage 7 constitutes a modeling space for the multilayer wiring board.
  • the modeling stage 7 includes a modeling table 8 and a driving device 9.
  • the modeling table 8 is composed of a substantially rectangular plate member.
  • the modeling table 8 is configured so that the conductive material and the insulating material can be discharged from the discharge device 2 onto the table.
  • the modeling stage 7 is configured such that the modeling table 8 is moved by the drive device 9 in the Z direction orthogonal to the X direction and the Y direction.
  • step S140 the control device 10 has the same Z coordinate among the calculated spatial coordinates S (X (i), Y (j), Z (k)) (for example, Z (a), where a is a constant).
  • the conductive material and the insulating material are respectively discharged from the conductive material discharge nozzle 3 and the insulating material discharge nozzle 4 to each spatial coordinate S (X (i), Y (j), Z (a)).
  • the control device 10 irradiates a laser beam composed of ultraviolet light from the curing device 5. That is, the control device 10 discharges the conductive material and the insulating material at predetermined positions on the same XY plane, and irradiates the conductive material and the insulating material with ultraviolet light, and the process proceeds to step S150.
  • the control device 10 moves the XY coordinates in step S260 and then proceeds to step S140 (step S440 in FIG. 10).
  • the method for manufacturing a multilayer wiring board according to the present invention includes a wiring layer forming step, a wiring layer laminating step, a one-side terminal forming step, a base material peeling step, and an other-side terminal forming step.
  • a wiring film composed of the conductive portion 13 and the insulating portion 14 in which the conductive material and the insulating material are deposited on the support substrate 12 by the deposition thickness D is formed.
  • a material such as metal, glass, plastic, or the like can be used.
  • a release layer having releasability with respect to the wiring layer is formed on the surface of the support substrate 12, and the releasability of the release layer with respect to the wiring layer is expressed by light irradiation or a chemical solution. May be.
  • FIG. 5 (b) it is formed on the support substrate 12 of the modeling table 8 based on the calculated spatial coordinates S (X (i), Y (j), Z (k)) and the ejection command.
  • a conductive material is discharged by the three-dimensional modeling apparatus 1 onto the conductive portion 13 that has been formed.
  • the insulating material is discharged by the three-dimensional modeling apparatus 1 onto the insulating portion 14 formed on the support substrate 12 of the modeling table 8.
  • the conductive portion 13 in which the conductive material is deposited by the deposition thickness D is formed on the conductive portion 13, and the insulating portion in which the insulating material is deposited by the deposition thickness D on the insulating portion 14.
  • connection terminal 15 made of a conductive material is formed by the three-dimensional modeling apparatus 1.
  • the multilayer wiring board is discharged to a predetermined position on the final wiring layer by the three-dimensional modeling apparatus 1 until the conductive material reaches a predetermined deposition thickness by a deposition thickness D.
  • the conductive portion 13 in which the conductive material is deposited at a predetermined deposition thickness is formed as a connection terminal 15 at a predetermined position on the wiring layer of the final layer.
  • the control device 10 is connected to the polishing device 17 and can control the positions of the driving device 6 in the X and Y directions and the polishing amount.
  • the control device 10 configured as described above controls the polishing device 17 based on the spatial coordinates S (X (i), Y (j), Z (k)) calculated by the spatial coordinate calculation program.
  • the three-dimensional modeling apparatus 1 manufactures an arbitrary modeled object by discharging, depositing, and curing a conductive material and an insulating material that are modeling materials.
  • the three-dimensional modeling apparatus 1 includes a coating device 18.
  • control mode of the three-dimensional modeling apparatus 1 in the third embodiment of the method for manufacturing a multilayer wiring board according to the present invention will be specifically described with reference to FIG.
  • step S ⁇ b> 470 the control device 10, other than the portion where one material of the conductive material and the insulating material is applied in one layer formed on the modeling table 8 of the modeling stage 7 by the coating device 18.
  • the other material of the conductive material and the insulating material is applied to the portion and cured, and the process proceeds to step S390.
  • a polishing step for polishing the surface of the wiring layer may be further included.
  • the multilayer wiring board is formed in each layer from the surface of the support substrate 12 or the immediately polished layer to the polishing position of the polishing device 17 in the three-dimensional modeling apparatus 1.
  • the wiring layer is disposed at a predetermined position equal to the thickness Thn (see FIG. 9A).
  • the surface of the first layer of the multilayer wiring board is polished by the polishing apparatus 17 of the three-dimensional modeling apparatus 1 (see FIG. 9B).
  • the deposition thickness of each layer is maintained within a predetermined range, and the surface roughness of each layer is maintained within a predetermined range (see FIG. 9C).

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

 To provide a method for manufacturing a multilayer wiring substrate in which the production process can be simplified and the production cost can be reduced, and a three-dimensional modeling device used for the method. Specifically, a method for manufacturing a multilayer wiring substrate obtained by stacking wiring layers comprising an electroconductive part (13) and an insulating part (14), wherein the method includes: a wiring layer formation step for discharging an electroconductive material or an insulating material onto a predetermined position while performing a scanning motion, causing the discharged material to accumulate to a predetermined thickness (Thn), and forming a wiring layer; and a wiring layer stacking step for discharging an electroconductive material or an insulating material onto a predetermined position on the surface of the wiring layer while performing a scanning motion, causing the discharged material to accumulate to a predetermined thickness (Thn), and forming a further wiring layer.

Description

多層配線基板の製造方法及びこれに用いる三次元造形装置Multilayer wiring board manufacturing method and three-dimensional modeling apparatus used therefor
 本発明は、多層配線基板の製造方法及びこれに用いる三次元造形装置に関する。 The present invention relates to a method for manufacturing a multilayer wiring board and a three-dimensional modeling apparatus used therefor.
 従来、銅配線等の導電体からなる回路を有する配線基板の製造方法において、フォトリソグラフ技術で回路形状を形成する方法が知られている。配線基板上の回路は、絶縁基板の表面に形成された金属膜上に感光性レジストを塗布し、フォトマスクを介して露光、現像した後、露光した膜部分をドライエッチングすることで形成される。例えば特許文献1の如くである。 Conventionally, a method of forming a circuit shape by a photolithographic technique is known in a method for manufacturing a wiring board having a circuit made of a conductor such as copper wiring. The circuit on the wiring substrate is formed by applying a photosensitive resist on a metal film formed on the surface of the insulating substrate, exposing and developing through a photomask, and dry etching the exposed film portion. . For example, it is like patent document 1.
 また、近年の電子機器等の小型化、複雑化に対応するために、配線基板を積層させた多層配線基板の製造方法が公知である。多層配線基板は、特許文献1に記載の製造方法で生産された配線基板を積層プレスし、穴あけ、めっき、エッチング等による内層パターンの形成を繰り返すことで製造される。しかし、多層配線基板は、特許文献1に記載の製造方法で製造された配線基板がさらに複雑な工程を経ることで製造されるため、工程が煩雑になり生産コストが増大する問題があった。 Also, a method for manufacturing a multilayer wiring board in which wiring boards are laminated is known in order to cope with the recent downsizing and complexity of electronic devices and the like. A multilayer wiring board is manufactured by laminating and pressing a wiring board produced by the manufacturing method described in Patent Document 1 and repeatedly forming an inner layer pattern by drilling, plating, etching, or the like. However, since the multilayer wiring board is manufactured by a more complicated process of the wiring board manufactured by the manufacturing method described in Patent Document 1, there is a problem that the process becomes complicated and the production cost increases.
特開平8-242059号公報Japanese Patent Laid-Open No. 8-24259
 本発明の目的は、生産工程を簡易化して生産コストを抑制することができる多層配線基板の製造方法及びこれに用いる三次元造形装置を提供することである。 An object of the present invention is to provide a method for manufacturing a multilayer wiring board capable of simplifying a production process and suppressing production costs, and a three-dimensional modeling apparatus used therefor.
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。 The problems to be solved by the present invention are as described above. Next, means for solving the problems will be described.
 即ち、本発明は、導電部と絶縁部とからなる配線層を積層した多層配線基板の製造方法であって、走査運動を行いながら所定の位置に導電性材料または絶縁性材料のいずれかを吐出し、所定の厚さまで堆積させて配線層を形成する配線層形成工程と、走査運動を行いながら配線層の表面の所定の位置に導電性材料または絶縁性材料のいずれかを吐出し、所定の厚さまで堆積させて更に配線層を形成する配線層積層工程と、を含むものである。 That is, the present invention is a method of manufacturing a multilayer wiring board in which a wiring layer composed of a conductive portion and an insulating portion is laminated, and discharges either a conductive material or an insulating material to a predetermined position while performing a scanning motion. A wiring layer forming step of depositing to a predetermined thickness to form a wiring layer, and discharging either a conductive material or an insulating material to a predetermined position on the surface of the wiring layer while performing a scanning motion, And a wiring layer stacking step of forming a wiring layer by depositing to a thickness.
 本発明は、前記配線層の表面を研磨する研磨工程を更に含むものである。 The present invention further includes a polishing step of polishing the surface of the wiring layer.
 本発明は、前記配線層に素子を配置した状態で前記配線層積層工程を行う素子埋め込み工程を更に含むものである。 The present invention further includes an element embedding step of performing the wiring layer stacking step in a state where elements are arranged in the wiring layer.
 本発明は、導電部と絶縁部とからなる配線層を積層した多層配線基板の製造方法であって、走査運動を行いながら所定の位置に導電性材料と絶縁性材料とのうち一方の材料を吐出して堆積させる吐出工程と、吐出工程によって堆積されている導電部または絶縁部以外の部分に他方の材料を塗布する塗布工程と、を含むものである。 The present invention relates to a method of manufacturing a multilayer wiring board in which wiring layers composed of a conductive portion and an insulating portion are laminated, and one of a conductive material and an insulating material is placed at a predetermined position while performing a scanning motion. A discharge step of discharging and depositing, and a coating step of applying the other material to a portion other than the conductive portion or the insulating portion deposited by the discharge step.
 本発明は、前記配線層の表面を研磨する研磨工程を更に含むものである。 The present invention further includes a polishing step of polishing the surface of the wiring layer.
 本発明は、更に、前記配線層形成工程を平坦な表面を有する支持基板上で行うものである。 In the present invention, the wiring layer forming step is further performed on a support substrate having a flat surface.
 本発明は、更に、前記支持基板表面上に、前記配線層に対して離型性を有する剥離層が形成されているものである。 In the present invention, a release layer having releasability from the wiring layer is further formed on the surface of the support substrate.
 本発明は、前記絶縁材料としてフィルム状にすると柔軟性を有する樹脂を用いて、フレキシブルな多層配線基板を製造するものである。 In the present invention, a flexible multilayer wiring board is manufactured using a resin having flexibility when formed into a film as the insulating material.
 本発明は、導電部と絶縁部からなる配線層を積層した多層配線基板を製造するのに用いる三次元造形装置であって、造形ステージと、導電性材料を吐出する導電性材料吐出ノズルと、絶縁性材料を吐出する絶縁性材料吐出ノズルと、導電性材料及び絶縁性材料を硬化させる硬化装置と、前記導電性材料吐出ノズルと前記絶縁性材料吐出ノズルと前記硬化装置とを駆動する駆動装置と、前記造形ステージと前記導電性材料吐出ノズルと前記絶縁性材料吐出ノズルと前記硬化装置と前記駆動装置とを制御する機能を有する、制御装置を備えるものである。 The present invention is a three-dimensional modeling apparatus used for manufacturing a multilayer wiring board in which a wiring layer composed of a conductive portion and an insulating portion is laminated, a modeling stage, a conductive material discharge nozzle for discharging a conductive material, Insulating material discharge nozzle for discharging insulating material, curing device for curing conductive material and insulating material, drive device for driving said conductive material discharge nozzle, said insulating material discharge nozzle, and said curing device And a control device having a function of controlling the modeling stage, the conductive material discharge nozzle, the insulating material discharge nozzle, the curing device, and the driving device.
 本発明は、前記硬化装置が、光硬化装置と熱硬化装置の2種類の硬化装置の組み合わせからなるものである。 In the present invention, the curing device is a combination of two types of curing devices, a photocuring device and a thermosetting device.
 本発明は、前記配線層の表面を研磨する研磨装置を更に備え、前記制御装置が前記研磨装置を制御する機能を有するものである。 The present invention further includes a polishing device for polishing the surface of the wiring layer, and the control device has a function of controlling the polishing device.
 本発明は、導電部と絶縁部からなる配線層を積層した多層配線基板を製造するのに用いる三次元造形装置であって、造形ステージと、導電性材料または絶縁性材料の何れかを吐出するノズルと、導電性材料または絶縁性材料の何れかを塗布する塗布装置と、導電性材料及び絶縁性材料を硬化させる硬化装置と、前記ノズルと前記塗布装置と前記硬化装置とを駆動する駆動装置と、前記造形ステージと前記ノズルと前記塗布装置と前記硬化装置と前記駆動装置とを制御する機能を有する、制御装置を備えるものである。 The present invention is a three-dimensional modeling apparatus used for manufacturing a multilayer wiring board in which a wiring layer composed of a conductive portion and an insulating portion is laminated, and discharges either a modeling stage and a conductive material or an insulating material. Nozzle, coating device for applying either conductive material or insulating material, curing device for curing conductive material and insulating material, driving device for driving nozzle, coating device, and curing device And a control device having a function of controlling the modeling stage, the nozzle, the coating device, the curing device, and the driving device.
 本発明の効果として、以下に示すような効果を奏する。 As the effects of the present invention, the following effects are obtained.
 本発明においては、露光・現像およびエッチング等によって回路を形成したり不要な部分を除去したりする工程を経ることなく多層配線基板が形成される。これにより、生産工程を簡易化して生産コストを抑制することができる。 In the present invention, a multilayer wiring board is formed without going through a process of forming a circuit or removing unnecessary portions by exposure / development and etching. Thereby, a production process can be simplified and production cost can be suppressed.
 本発明においては、導電性材料と絶縁性材料との堆積厚の精度が向上するので複数の配線層を積層させた多層配線基板を構成してもその全厚さが所定の範囲内に保持される。これにより、生産工程を簡易化して生産コストを抑制することができる。 In the present invention, since the accuracy of the deposited thickness of the conductive material and the insulating material is improved, even if a multilayer wiring board in which a plurality of wiring layers are laminated is configured, the total thickness is maintained within a predetermined range. The Thereby, a production process can be simplified and production cost can be suppressed.
 本発明においては、素子を配置して導電性材料と絶縁性材料とを吐出するだけで埋め込み配線層が形成される。これにより、生産工程を簡易化して生産コストを抑制することができる。 In the present invention, the embedded wiring layer is formed simply by disposing the element and discharging the conductive material and the insulating material. Thereby, a production process can be simplified and production cost can be suppressed.
 本発明においては、導電部と絶縁部との形成において吐出工程と塗布工程とのうち最適な工程が選択される。これにより、生産工程を簡易化して生産コストを抑制することができる。 In the present invention, an optimal process is selected from the discharge process and the coating process in forming the conductive portion and the insulating portion. Thereby, a production process can be simplified and production cost can be suppressed.
本発明の一実施形態に係る三次元造形装置の全体構成を示す概略図。Schematic which shows the whole structure of the three-dimensional modeling apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る駆動装置が2種類の硬化装置を備えた例を示す図。The figure which shows the example with which the drive device which concerns on one Embodiment of this invention was equipped with two types of hardening devices. 本発明の一実施形態に係る三次元造形装置の制御構成を示す構成図。The block diagram which shows the control structure of the three-dimensional modeling apparatus which concerns on one Embodiment of this invention. 本発明の第一実施形態に係る多層配線基板の製造方法における三次元造形装置の制御態様を表すフローチャートを示す図。The figure which shows the flowchart showing the control aspect of the three-dimensional modeling apparatus in the manufacturing method of the multilayer wiring board which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係る多層配線基板の製造方法における各工程を示す概略図。Schematic which shows each process in the manufacturing method of the multilayer wiring board which concerns on 1st embodiment of this invention. 本発明の別実施形態に係る多層配線基板の製造方法における工程の一部を示す概略図。Schematic which shows a part of process in the manufacturing method of the multilayer wiring board which concerns on another embodiment of this invention. 本発明の別実施形態に係る多層配線基板の製造方法における端子の埋め込み工程を示す概略図。Schematic which shows the embedding process of the terminal in the manufacturing method of the multilayer wiring board which concerns on another embodiment of this invention. 本発明の第二実施形態に係る多層配線基板の製造方法における三次元造形装置の制御態様を表すフローチャートを示す図。The figure which shows the flowchart showing the control aspect of the three-dimensional modeling apparatus in the manufacturing method of the multilayer wiring board which concerns on 2nd embodiment of this invention. 本発明の第二実施形態に係る多層配線基板の製造方法における工程の一部を示す概略図。Schematic which shows a part of process in the manufacturing method of the multilayer wiring board which concerns on 2nd embodiment of this invention. 本発明の第三実施形態に係る多層配線基板の製造方法における三次元造形装置の制御態様を表すフローチャートを示す図。The figure which shows the flowchart showing the control aspect of the three-dimensional modeling apparatus in the manufacturing method of the multilayer wiring board which concerns on 3rd embodiment of this invention. 本発明の第三実施形態に係る多層配線基板の製造方法における工程の一部を示す概略図。Schematic which shows a part of process in the manufacturing method of the multilayer wiring board which concerns on 3rd embodiment of this invention. 本発明の一実施形態に係る三次元造形装置の空間座標の構成を示す概念図。The conceptual diagram which shows the structure of the spatial coordinate of the three-dimensional modeling apparatus which concerns on one Embodiment of this invention.
 まず、図1と図3とを用いて、本発明に係る多層配線基板の製造方法における一実施形態である三次元造形装置1について説明する。以下の説明では後述の吐出装置2の移動方向(図1における矢印方向)として走査運動が行われる方向をX方向、これに直交するY方向、後述の造形ステージ7の移動方向をZ方向として説明する。なお、本実施形態においては、三次元造形装置1の一実施形態としてインクジェット方式の三次元造形装置1について説明するが、これに限定されるものではない。 First, with reference to FIG. 1 and FIG. 3, a three-dimensional modeling apparatus 1 that is an embodiment of a method for manufacturing a multilayer wiring board according to the present invention will be described. In the following description, the direction in which the scanning motion is performed is defined as the X direction, the Y direction orthogonal to the direction in which the scanning motion is performed, and the movement direction of the modeling stage 7 described later is the Z direction. To do. In addition, in this embodiment, although the inkjet type three-dimensional modeling apparatus 1 is demonstrated as one Embodiment of the three-dimensional modeling apparatus 1, it is not limited to this.
 ここで、導電性材料と絶縁性材料とは、配線層を構成するものである。導電性材料と絶縁性材料との基材は、電気的絶縁性を有するエポキシ系やポリイミド系等で光硬化性を有する樹脂から構成されている。なお、本実施形態において、導電性材料と絶縁性材料との基材を紫外線硬化性を有するエポキシ系、ポリイミド系等の光硬化樹脂から構成したがこれに限定されるものではなく、加熱によって硬化する熱硬化樹脂など何らかの物理的、化学的作用によって硬化するものであればよい。 Here, the conductive material and the insulating material constitute the wiring layer. The base material of the conductive material and the insulating material is composed of a photocurable resin such as an epoxy type or polyimide type having electrical insulation. In this embodiment, the base material of the conductive material and the insulating material is composed of a photo-curing resin such as an epoxy-based or polyimide-based material having ultraviolet curing properties, but is not limited thereto, and is cured by heating. Any thermosetting resin that cures by some physical or chemical action may be used.
 導電性材料は、配線層の導電体部分(回路パターン)を形成するためのものである。導電性材料は、電気的絶縁性を有するエポキシ系やポリイミド系等で光硬化性を有する樹脂に金、銀、銀パラジウム、白金、銅などの金属粉末を添加して構成されている。つまり、導電性材料は、絶縁性材料である光硬化樹脂にこれらの金属粉末を添加することによって導電性を確保している。絶縁性材料は、配線層の絶縁体部分(回路パターン以外の部分)を形成するためのものである。絶縁性材料は、金属粉末が添加されていない基材(エポキシ系やポリイミド系等の光硬化樹脂)から構成されている。 The conductive material is for forming a conductor portion (circuit pattern) of the wiring layer. The conductive material is configured by adding metal powder such as gold, silver, silver palladium, platinum, copper, etc. to a resin having photo-curability such as epoxy or polyimide having electrical insulation. In other words, the conductive material ensures conductivity by adding these metal powders to a photo-curing resin that is an insulating material. The insulating material is for forming an insulating portion (a portion other than the circuit pattern) of the wiring layer. The insulating material is composed of a base material (an epoxy-based or polyimide-based photocurable resin) to which metal powder is not added.
 図1に示すように、三次元造形装置1は、造形材である導電性材料と絶縁性材料とを吐出、堆積、硬化させることで任意の造形物を製造するものである。三次元造形装置1は、吐出装置2、造形ステージ7および制御装置10を具備している。 As shown in FIG. 1, the three-dimensional modeling apparatus 1 manufactures an arbitrary modeled object by discharging, depositing, and curing a conductive material and an insulating material that are modeling materials. The three-dimensional modeling apparatus 1 includes a discharge device 2, a modeling stage 7, and a control device 10.
 吐出装置2は、造形材を吐出するものである。吐出装置2は、導電性材料吐出ノズル3、絶縁性材料吐出ノズル4、硬化装置5および駆動装置6を具備している。吐出装置2は、導電性材料吐出ノズル3、絶縁性材料吐出ノズル4および硬化装置5が一体的に構成されている。吐出装置2は、導電性材料吐出ノズル3、絶縁性材料吐出ノズル4および硬化装置5が駆動装置6によって造形ステージ7の上方をX方向およびY方向に一体的に移動するように構成されている。つまり、吐出装置2は、導電性材料吐出ノズル3、絶縁性材料吐出ノズル4および硬化装置5を駆動装置6によって造形ステージ7上方の任意の位置に移動させることができる。 The discharge device 2 discharges a modeling material. The discharge device 2 includes a conductive material discharge nozzle 3, an insulating material discharge nozzle 4, a curing device 5, and a driving device 6. In the discharge device 2, a conductive material discharge nozzle 3, an insulating material discharge nozzle 4 and a curing device 5 are integrally configured. The discharge device 2 is configured such that the conductive material discharge nozzle 3, the insulating material discharge nozzle 4 and the curing device 5 are integrally moved in the X direction and the Y direction above the modeling stage 7 by the driving device 6. . That is, the discharge device 2 can move the conductive material discharge nozzle 3, the insulating material discharge nozzle 4, and the curing device 5 to any position above the modeling stage 7 by the driving device 6.
 導電性材料吐出ノズル3と絶縁性材料吐出ノズル4とは、導電性材料と絶縁性材料とをそれぞれ吐出するものである。導電性材料吐出ノズル3と絶縁性材料吐出ノズル4とは、ピエゾ方式のインクジェットヘッド、すなわち圧電素子の体積変化によって発生する吐出力で導電性材料と絶縁性材料とをそれぞれ吐出(噴出)できるように構成されている。導電性材料吐出ノズル3と絶縁性材料吐出ノズル4とは、一回の吐出で導電性材料と絶縁性材料との単位面積当たりの堆積厚がそれぞれ堆積厚Dになるように構成されている。なお、導電性材料吐出ノズル3と絶縁性材料吐出ノズル4とは、本実施形態においてインクジェット方式としたがこれに限定されるものではなく、導電性材料と絶縁性材料とを堆積厚Dずつ吐出できるものであればよい。 The conductive material discharge nozzle 3 and the insulating material discharge nozzle 4 discharge the conductive material and the insulating material, respectively. The conductive material discharge nozzle 3 and the insulating material discharge nozzle 4 can discharge (spout) the conductive material and the insulating material by a discharge force generated by the volume change of the piezoelectric element, that is, the piezoelectric element. It is configured. The conductive material discharge nozzle 3 and the insulating material discharge nozzle 4 are configured such that the deposition thickness per unit area of the conductive material and the insulating material becomes the deposition thickness D by one discharge. The conductive material discharge nozzle 3 and the insulating material discharge nozzle 4 are ink jet in this embodiment. However, the present invention is not limited to this, and the conductive material and the insulating material are discharged by a deposition thickness D. Anything is possible.
 硬化装置5は、紫外線硬化樹脂からなる導電性材料と絶縁性材料とを硬化させるものである。本実施形態において硬化装置5は、紫外線光を局所的に照射するレーザー照射装置から構成されている。すなわち、硬化装置5は、微小な液滴として導電性材料吐出ノズル3と絶縁性材料吐出ノズル4とから吐出された導電性材料と絶縁性材料とに紫外線光を照射するように構成されている。なお、本実施形態において、硬化装置5は、紫外線光を照射するレーザー照射装置から構成したがこれに限定されるものではなく、熱硬化性樹脂において赤外線光を照射するレーザー照射装置やフラッシュランプ等、導電性材料と絶縁性材料との硬化特性に合わせたものであればよい。また、導電性材料と絶縁性材料で硬化方式が異なってもよく、例えば、図2に示すように硬化装置5が紫外線硬化樹脂用の光硬化装置5Pと熱硬化性樹脂用の熱硬化装置5Tを組み合わせたものであっても良い。 The curing device 5 cures a conductive material and an insulating material made of an ultraviolet curable resin. In the present embodiment, the curing device 5 includes a laser irradiation device that locally irradiates ultraviolet light. That is, the curing device 5 is configured to irradiate the conductive material and the insulating material discharged from the conductive material discharge nozzle 3 and the insulating material discharge nozzle 4 as fine droplets with ultraviolet light. . In the present embodiment, the curing device 5 is configured by a laser irradiation device that irradiates ultraviolet light, but is not limited to this, and a laser irradiation device that irradiates infrared light in a thermosetting resin, a flash lamp, or the like. Any material that matches the curing characteristics of the conductive material and the insulating material may be used. Further, the curing method may be different between the conductive material and the insulating material. For example, as shown in FIG. 2, the curing device 5 includes a photocuring device 5P for ultraviolet curing resin and a thermosetting device 5T for thermosetting resin. May be combined.
 駆動装置6は、導電性材料吐出ノズル3、絶縁性材料吐出ノズル4および硬化装置5を一体的に駆動させるものである。駆動装置6は、リニアモータ等のアクチュエータから構成される。駆動装置6は、導電性材料吐出ノズル3、絶縁性材料吐出ノズル4および硬化装置5をX方向とY方向とに設けられる図示しない案内ガイドにそって移動するように構成されている。このように構成される駆動装置6は、導電性材料吐出ノズル3、絶縁性材料吐出ノズル4および硬化装置5をX方向に走査運動させ、一回の走査運動毎にY方向に所定量だけ移動するように構成されている。つまり、駆動装置6は、XY平面上の全ての位置に導電性材料吐出ノズル3、絶縁性材料吐出ノズル4および硬化装置5を移動できるように構成されている。 The driving device 6 drives the conductive material discharge nozzle 3, the insulating material discharge nozzle 4 and the curing device 5 integrally. The drive device 6 is composed of an actuator such as a linear motor. The drive device 6 is configured to move the conductive material discharge nozzle 3, the insulating material discharge nozzle 4, and the curing device 5 along a guide guide (not shown) provided in the X direction and the Y direction. The drive device 6 configured as described above causes the conductive material discharge nozzle 3, the insulating material discharge nozzle 4 and the curing device 5 to scan in the X direction, and moves by a predetermined amount in the Y direction for each scanning motion. Is configured to do. That is, the driving device 6 is configured to move the conductive material discharge nozzle 3, the insulating material discharge nozzle 4, and the curing device 5 to all positions on the XY plane.
 造形ステージ7は、多層配線基板の造形空間を構成するものである。造形ステージ7は、造形台8と駆動装置9とを具備している。造形台8は、略矩形状の板状部材から構成されている。造形台8は、その台上に吐出装置2から導電性材料と絶縁性材料とが吐出できるように構成されている。造形ステージ7は、駆動装置9によってX方向とY方向とに直交するZ方向に造形台8が移動するように構成されている。 The modeling stage 7 constitutes a modeling space for the multilayer wiring board. The modeling stage 7 includes a modeling table 8 and a driving device 9. The modeling table 8 is composed of a substantially rectangular plate member. The modeling table 8 is configured so that the conductive material and the insulating material can be discharged from the discharge device 2 onto the table. The modeling stage 7 is configured such that the modeling table 8 is moved by the drive device 9 in the Z direction orthogonal to the X direction and the Y direction.
 図3に示すように、制御装置10は、吐出装置2、造形ステージ7等を制御するものである。制御装置10は、実体的には、CPU、ROM、RAM、HDD等がバスで接続される構成であってもよく、あるいはワンチップのLSI等からなる構成であってもよい。制御装置10には、データの入力や各種設定を行うための入力装置11が接続されている。 As shown in FIG. 3, the control device 10 controls the discharge device 2, the modeling stage 7, and the like. The control device 10 may actually be configured such that a CPU, ROM, RAM, HDD, or the like is connected by a bus, or may be configured by a one-chip LSI or the like. An input device 11 for inputting data and various settings is connected to the control device 10.
 制御装置10は、吐出装置2、造形ステージ7等を制御するために種々のプログラムが格納されている。具体的には、制御装置10は、入力された多層配線基板の構成データ(三次元CADデータ等)に基づいて所定の厚さ毎にX座標、Y座標、Z座標から構成される空間座標データである空間座標S(X(i),Y(j)、Z(k))を算出する空間座標算出プログラムが格納されている。ここで、X(i)は、i番目のX座標、Y(j)はj番目のY座標、Z(k)はk番目のZ座標を示している(図12参照)。また、制御装置10は、作成された空間座標S(X(i),Y(j)、Z(k))毎に導電性材料と絶縁性材料とのそれぞれの吐出の有無を算出する吐出命令算出プログラムが格納されている。 The control device 10 stores various programs for controlling the discharge device 2, the modeling stage 7, and the like. Specifically, the control device 10 uses the coordinate data (multi-dimensional CAD data, etc.) of the input multilayer wiring board to obtain spatial coordinate data composed of an X coordinate, a Y coordinate, and a Z coordinate for each predetermined thickness. A spatial coordinate calculation program for calculating the spatial coordinates S (X (i), Y (j), Z (k)) is stored. Here, X (i) represents the i-th X coordinate, Y (j) represents the j-th Y coordinate, and Z (k) represents the k-th Z coordinate (see FIG. 12). Moreover, the control apparatus 10 calculates the discharge command which calculates the presence or absence of each discharge of an electroconductive material and an insulating material for every created space coordinate S (X (i), Y (j), Z (k)). A calculation program is stored.
 制御装置10は、入力装置11から入力された多層配線基板の構成データや各種設定値を取得することが可能である。 The control device 10 can acquire the configuration data and various set values of the multilayer wiring board input from the input device 11.
 制御装置10は、導電性材料吐出ノズル3と絶縁性材料吐出ノズル4とに接続され、導電性材料吐出ノズル3と絶縁性材料吐出ノズル4との吐出時期をそれぞれ制御することが可能である。 The control device 10 is connected to the conductive material discharge nozzle 3 and the insulating material discharge nozzle 4, and can control the discharge timing of the conductive material discharge nozzle 3 and the insulating material discharge nozzle 4, respectively.
 制御装置10は、硬化装置5に接続され、硬化装置5が照射するレーザー光の発振と照射時期とを制御することが可能である。ここで、硬化装置5が光硬化装置5Pと熱硬化装置5Tの組み合わせの場合、制御装置10は、光硬化装置5Pと熱硬化装置5Tのそれぞれを制御することが可能となる。 The control device 10 is connected to the curing device 5 and can control the oscillation and irradiation timing of the laser light irradiated by the curing device 5. Here, when the curing device 5 is a combination of the photocuring device 5P and the thermosetting device 5T, the control device 10 can control each of the photocuring device 5P and the thermosetting device 5T.
 制御装置10は、吐出装置2の駆動装置6に接続され、駆動装置6を制御して吐出装置2のX方向とY方向との移動量をそれぞれ制御することが可能である。 The control device 10 is connected to the drive device 6 of the discharge device 2 and can control the movement amount of the discharge device 2 in the X direction and the Y direction by controlling the drive device 6.
 制御装置10は、造形ステージ7の駆動装置9に接続され、駆動装置9を制御して造形ステージ7のZ方向の移動量を制御することが可能である。 The control device 10 is connected to the driving device 9 of the modeling stage 7 and can control the movement amount of the modeling stage 7 in the Z direction by controlling the driving device 9.
 制御装置10は、入力装置11に接続され、入力装置11から入力される多層配線基板の構成データ(三次元CADデータ等)に基づいて所定の厚さ毎にX座標、Y座標、Z座標から構成される空間座標データである空間座標S(X(i),Y(j)、Z(k))を算出することが可能である。 The control device 10 is connected to the input device 11 and based on the configuration data (three-dimensional CAD data, etc.) of the multilayer wiring board input from the input device 11, from the X coordinate, Y coordinate, and Z coordinate for each predetermined thickness. It is possible to calculate the spatial coordinates S (X (i), Y (j), Z (k)), which is the spatial coordinate data configured.
 このように構成される制御装置10は、空間座標算出プログラムが算出した空間座標S(X(i),Y(j)、Z(k))毎に、吐出命令算出プログラムが算出した吐出命令に基づいて導電性材料と絶縁性材料とが吐出するように導電性材料吐出ノズル3、絶縁性材料吐出ノズル4、硬化装置5および造形ステージ7を制御する。 The control device 10 configured as described above uses the discharge command calculated by the discharge command calculation program for each spatial coordinate S (X (i), Y (j), Z (k)) calculated by the spatial coordinate calculation program. Based on this, the conductive material discharge nozzle 3, the insulating material discharge nozzle 4, the curing device 5 and the modeling stage 7 are controlled so that the conductive material and the insulating material are discharged.
 以下では、図4を用いて、本発明に係る多層配線基板の製造方法の第一実施形態における三次元造形装置1の制御態様について具体的に説明する。 Hereinafter, the control mode of the three-dimensional modeling apparatus 1 in the first embodiment of the method for manufacturing a multilayer wiring board according to the present invention will be specifically described with reference to FIG.
 図4に示すように、ステップS110において、制御装置10は、入力装置11から入力された多層配線基板の構成データや各種設定値を取得し、ステップをステップS120に移行させる。 As shown in FIG. 4, in step S110, the control device 10 acquires the configuration data and various set values of the multilayer wiring board input from the input device 11, and shifts the step to step S120.
 ステップS120において、制御装置10は、取得した多層配線基板の構造データや各種設定値に基づいて空間座標算出プログラムから空間座標S(X(i),Y(j)、Z(k))を算出する。さらに、制御装置10は、取得した各種設定値と算出した各空間座標S(X(i),Y(j)、Z(k))とに基づいて吐出命令算出プログラムから各空間座標S(X(i),Y(j)、Z(k))における吐出命令を算出し、ステップをステップS130に移行させる。 In step S120, the control device 10 calculates the spatial coordinates S (X (i), Y (j), Z (k)) from the spatial coordinate calculation program based on the acquired structure data and various set values of the multilayer wiring board. To do. Further, the control device 10 determines each spatial coordinate S (X (X) from the discharge command calculation program based on the acquired various set values and each calculated spatial coordinate S (X (i), Y (j), Z (k)). (I), Y (j), Z (k)) are calculated, and the process proceeds to step S130.
 ステップS130において、制御装置10は、駆動装置6によって造形ステージ7の造形台8を導電性材料と絶縁性材料との一回の走査運動における堆積厚D分、すなわちZ座標の増加分だけ下降させ、ステップをステップS140に移行させる。 In step S <b> 130, the control device 10 lowers the modeling table 8 of the modeling stage 7 by the driving device 6 by the deposition thickness D in one scanning movement of the conductive material and the insulating material, that is, the increase in the Z coordinate. , The process proceeds to step S140.
 ステップS140において、制御装置10は、算出した各空間座標S(X(i),Y(j)、Z(k))のうちZ座標が同一(例えばZ(a)、ここでaは定数)である各空間座標S(X(i),Y(j)、Z(a))と算出した空間座標S(X(i),Y(j)、Z(a))毎の吐出命令とに基づいて、各空間座標S(X(i),Y(j)、Z(a))に導電性材料吐出ノズル3と絶縁性材料吐出ノズル4とから導電性材料と絶縁性材料とをそれぞれ吐出する。合わせて、制御装置10は、硬化装置5から紫外線光からなるレーザー光を照射する。すなわち、制御装置10は、同一XY平面上における所定の位置に導電性材料と絶縁性材料とを吐出するとともに、導電性材料と絶縁性材料とに紫外線光を照射し、ステップをステップS150に移行させる。 In step S140, the control device 10 has the same Z coordinate among the calculated spatial coordinates S (X (i), Y (j), Z (k)) (for example, Z (a), where a is a constant). Each of the spatial coordinates S (X (i), Y (j), Z (a)) and the ejection command for each calculated spatial coordinate S (X (i), Y (j), Z (a)). Based on this, the conductive material and the insulating material are respectively discharged from the conductive material discharge nozzle 3 and the insulating material discharge nozzle 4 to each spatial coordinate S (X (i), Y (j), Z (a)). To do. At the same time, the control device 10 irradiates a laser beam composed of ultraviolet light from the curing device 5. That is, the control device 10 discharges the conductive material and the insulating material at predetermined positions on the same XY plane, and irradiates the conductive material and the insulating material with ultraviolet light, and the process proceeds to step S150. Let
 ステップS150において、制御装置10は、算出した各空間座標S(X(i),Y(j)、Z(k))のうちZ座標が同一のZ(a)である各空間座標S(X(i),Y(j)、Z(a))の全ての座標位置の必要箇所において導電性材料または絶縁性材料の吐出と、紫外線光が照射されたか否か判断する。 In step S150, the control device 10 determines the spatial coordinates S (X) where the Z coordinates are the same Z (a) among the calculated spatial coordinates S (X (i), Y (j), Z (k)). (I), Y (j), Z (a)) It is determined whether or not the conductive material or the insulating material is discharged and ultraviolet light is irradiated at the necessary positions of the coordinate positions.
 その結果、Z座標が同一の各空間座標S(X(i),Y(j)、Z(a))の全ての座標位置の必要箇所において導電性材料または絶縁性材料が吐出と、紫外線光の照射が完了したと判定した場合、制御装置10はステップをステップS160(図8、図10においてはステップS360)に移行させる。 As a result, when the conductive material or the insulating material is discharged at the necessary positions of all the coordinate positions of the spatial coordinates S (X (i), Y (j), Z (a)) having the same Z coordinate, ultraviolet light is emitted. When it is determined that the irradiation is completed, the control device 10 shifts the step to step S160 (step S360 in FIGS. 8 and 10).
 一方、Z座標が同一の各空間座標S(X(i),Y(j)、Z(a))の全ての座標位置においては、導電性材料または絶縁性材料が吐出と、紫外線光の照射が完了していないと判定した場合、制御装置10はステップS260でXY座標を移動してからステップS140(図10においてはステップS440)に移行させる。 On the other hand, at all coordinate positions of the spatial coordinates S (X (i), Y (j), Z (a)) having the same Z coordinate, the conductive material or the insulating material is ejected and irradiated with ultraviolet light. If it is determined that the process has not been completed, the control device 10 moves the XY coordinates in step S260 and then proceeds to step S140 (step S440 in FIG. 10).
 ステップS160において、制御装置10は、駆動装置6による造形ステージ7の造形台8の全降下量Lが多層配線基板の全厚さTh0(図5(g)参照)と等しいか否か判断する。すなわち、制御装置10は、造形台8上に多層配線基板の全ての階層が形成されているか否か判断する。 In step S160, the control device 10 determines whether or not the total lowering amount L of the modeling stage 8 of the modeling stage 7 by the driving device 6 is equal to the total thickness Th0 of the multilayer wiring board (see FIG. 5G). That is, the control device 10 determines whether or not all layers of the multilayer wiring board are formed on the modeling table 8.
 その結果、駆動装置6による造形ステージ7の造形台8の全降下量Lが多層配線基板の全厚さTh0に等しい、すなわち、造形台8上に多層配線基板の全ての階層が形成されていると判定した場合、制御装置10はステップを終了する。 As a result, the total descending amount L of the modeling stage 8 of the modeling stage 7 by the driving device 6 is equal to the total thickness Th0 of the multilayer wiring board, that is, all the layers of the multilayer wiring board are formed on the modeling table 8. If determined to be, the control device 10 ends the step.
 一方、駆動装置6による造形ステージ7の造形台8の全降下量Lが多層配線基板の全厚さTh0と等しくない、すなわち、造形台8上に多層配線基板の全ての階層が形成されていないと判定した場合、制御装置10はステップをステップS270に移行させる。 On the other hand, the total lowering amount L of the modeling stage 8 of the modeling stage 7 by the driving device 6 is not equal to the total thickness Th0 of the multilayer wiring board, that is, not all the layers of the multilayer wiring board are formed on the modeling table 8. If determined to be, the control device 10 shifts the step to step S270.
 ステップS270において、制御装置10は、Z座標Z(a)のaをa=a+1として、すなわち、制御装置10は、導電性材料と絶縁性材料とを吐出する空間座標SをZ座標が同一のZ座標Z(a+1)である空間座標S(X(i),Y(j)、Z(a+1))として、ステップをステップS130に移行させる。 In step S270, the control device 10 sets a of the Z coordinate Z (a) to a = a + 1, that is, the control device 10 sets the spatial coordinate S for discharging the conductive material and the insulating material to the same Z coordinate. As the spatial coordinates S (X (i), Y (j), Z (a + 1)) which are the Z coordinates Z (a + 1), the step proceeds to step S130.
 このように構成することで、三次元造形装置1は、多層配線基板の構成データから算出された空間座標S(X(i),Y(j)、Z(k))毎に導電性材料と絶縁性材料とを所定の位置に吐出、硬化させる。これにより、三次元造形装置1は、導電性材料と絶縁性材料とを堆積厚Dずつ堆積させて多層配線基板の導体部分と絶縁体部分とを同時に、かつ立体的に形成することができる。 By configuring in this way, the three-dimensional modeling apparatus 1 is configured so that the conductive material and the spatial coordinate S (X (i), Y (j), Z (k)) calculated from the configuration data of the multilayer wiring board An insulating material is discharged and cured at a predetermined position. Thereby, the three-dimensional modeling apparatus 1 can deposit the conductive material and the insulating material by the deposition thickness D to form the conductor portion and the insulator portion of the multilayer wiring board simultaneously and three-dimensionally.
 次に、図5を用いて、本発明に係る多層配線基板の製造方法の第一実施形態について具体的に説明する。本発明に係る多層配線基板の製造方法は、配線層形成工程、配線層積層工程、一側端子形成工程、基材剥離工程及び他側端子形成工程を含む。 Next, the first embodiment of the method for manufacturing a multilayer wiring board according to the present invention will be specifically described with reference to FIG. The method for manufacturing a multilayer wiring board according to the present invention includes a wiring layer forming step, a wiring layer laminating step, a one-side terminal forming step, a base material peeling step, and an other-side terminal forming step.
 図5(a)に示すように、配線層形成工程において、三次元造形装置1の造形台8に配置されている基材となる支持基板12上に三次元造形装置1によって導電部13と絶縁部14とからなる配線層が形成される。具体的には、算出した空間座標S(X(i),Y(j)、Z(1))と吐出命令とに基づいて、支持基板12上に三次元造形装置1によって導電性材料と絶縁性材料とが吐出される。合わせて、三次元造形装置1は、導電性材料と絶縁性材料とを吐出毎に硬化装置5で硬化させる。ここで、Z座標Z(1)は、第1回目の吐出時のZ座標を表す。これにより、多層配線基板は、支持基板12上に導電性材料と絶縁性材料とが堆積厚Dだけ堆積された導電部13と絶縁部14とからなる配線膜が形成される。ここで、支持基板12は平坦な平面を有するものであれば、材質として、金属、ガラス、プラスチック等を用いる事が出来る。更に、支持基板12の表面上に配線層に対して離型性を有する剥離層が形成されていることが好ましく、剥離層の配線層に対する離型性が光照射や薬液によって発現するものであっても良い。 As shown in FIG. 5A, in the wiring layer forming step, the conductive part 13 is insulated from the support substrate 12 serving as a base material disposed on the modeling table 8 of the three-dimensional modeling apparatus 1 by the three-dimensional modeling apparatus 1. A wiring layer composed of the portion 14 is formed. Specifically, based on the calculated spatial coordinates S (X (i), Y (j), Z (1)) and the discharge command, the conductive material is insulated from the conductive material by the three-dimensional modeling apparatus 1 on the support substrate 12. Material is discharged. In addition, the three-dimensional modeling apparatus 1 cures the conductive material and the insulating material with the curing device 5 for each discharge. Here, the Z coordinate Z (1) represents the Z coordinate at the time of the first discharge. Thereby, in the multilayer wiring board, a wiring film composed of the conductive portion 13 and the insulating portion 14 in which the conductive material and the insulating material are deposited on the support substrate 12 by the deposition thickness D is formed. Here, as long as the support substrate 12 has a flat plane, a material such as metal, glass, plastic, or the like can be used. Further, it is preferable that a release layer having releasability with respect to the wiring layer is formed on the surface of the support substrate 12, and the releasability of the release layer with respect to the wiring layer is expressed by light irradiation or a chemical solution. May be.
 さらに、図5(b)のように、算出した空間座標S(X(i),Y(j)、Z(k))と吐出命令とに基づいて、造形台8の支持基板12上に形成されている導電部13上に三次元造形装置1によって導電性材料が吐出される。同様にして、多層配線基板は、造形台8の支持基板12上に形成されている絶縁部14上に三次元造形装置1によって絶縁性材料が吐出される。これにより、多層配線基板には、導電部13上に導電性材料が堆積厚Dだけ堆積された導電部13が形成され、絶縁部14上に絶縁性材料が堆積厚Dだけ堆積された絶縁部14が形成される。このようにして、多層配線基板は、堆積厚が各階層の所定の厚さである配線層厚さThn(図5(c)におけるTh1)になるまで三次元造形装置1による導電性材料と絶縁性材料との吐出が繰り返されることで多層配線基板を構成する第一階層の配線層が形成される。 Further, as shown in FIG. 5 (b), it is formed on the support substrate 12 of the modeling table 8 based on the calculated spatial coordinates S (X (i), Y (j), Z (k)) and the ejection command. A conductive material is discharged by the three-dimensional modeling apparatus 1 onto the conductive portion 13 that has been formed. Similarly, in the multilayer wiring board, the insulating material is discharged by the three-dimensional modeling apparatus 1 onto the insulating portion 14 formed on the support substrate 12 of the modeling table 8. Thereby, in the multilayer wiring board, the conductive portion 13 in which the conductive material is deposited by the deposition thickness D is formed on the conductive portion 13, and the insulating portion in which the insulating material is deposited by the deposition thickness D on the insulating portion 14. 14 is formed. In this way, the multilayer wiring board is insulated from the conductive material by the three-dimensional modeling apparatus 1 until the deposition thickness reaches the wiring layer thickness Thn (Th1 in FIG. 5C) which is a predetermined thickness of each layer. By repeating the discharge with the conductive material, the first level wiring layer constituting the multilayer wiring board is formed.
 図5(d)および図5(e)に示すように、配線層積層工程において、多層配線基板は、造形台8上に形成された多層配線基板の第一階層の配線層上に三次元造形装置1によって導電部13と絶縁部14とが更に形成される。具体的には、形成された多層配線基板の第一階層の配線層上に各階層の配線層厚さThn(図5(d)におけるTh2)になるまで導電性材料と絶縁性材料とが堆積厚Dずつ吐出されていく配線層形成工程とを繰り返すことによって導電部13と絶縁部14とが更に形成される。これにより、多層配線基板は、配線層積層工程において、多層配線基板の二層目以降を構成する導電部13と絶縁部14とが形成される。 As shown in FIG. 5D and FIG. 5E, in the wiring layer stacking step, the multilayer wiring board is three-dimensionally formed on the wiring layer of the first layer of the multilayer wiring board formed on the modeling table 8. The device 1 further forms a conductive portion 13 and an insulating portion 14. Specifically, the conductive material and the insulating material are deposited on the wiring layer of the first layer of the formed multilayer wiring board until the wiring layer thickness Thn of each layer reaches Thn (Th2 in FIG. 5D). The conductive portion 13 and the insulating portion 14 are further formed by repeating the wiring layer forming process in which the thickness D is discharged. As a result, in the multilayer wiring substrate, the conductive portion 13 and the insulating portion 14 constituting the second and subsequent layers of the multilayer wiring substrate are formed in the wiring layer stacking step.
 図5(f)に示すように、一側端子形成工程において、所定の階層の配線層が形成されると多層配線基板の一側表面(最終階層の配線層の表面)上の所定の位置に三次元造形装置1によって導電性材料からなる接続端子15が形成される。具体的には、多層配線基板は、終階層の配線層上の所定の位置に三次元造形装置1によって導電性材料が堆積厚Dずつ所定の堆積厚になるまで吐出される。これにより、多層配線基板は、最終階層の配線層上の所定の位置に導電性材料が所定の堆積厚に堆積された導電部13が接続端子15として形成される。 As shown in FIG. 5 (f), when a wiring layer of a predetermined level is formed in the one-side terminal formation step, it is placed at a predetermined position on one side surface of the multilayer wiring board (the surface of the wiring layer of the final layer) A connection terminal 15 made of a conductive material is formed by the three-dimensional modeling apparatus 1. Specifically, the multilayer wiring board is discharged to a predetermined position on the final wiring layer by the three-dimensional modeling apparatus 1 until the conductive material reaches a predetermined deposition thickness by a deposition thickness D. As a result, in the multilayer wiring board, the conductive portion 13 in which the conductive material is deposited at a predetermined deposition thickness is formed as a connection terminal 15 at a predetermined position on the wiring layer of the final layer.
 一側表面上に接続端子15が形成されると、他側表面(第一階層の配線層の表面)が三次元造形装置1の吐出装置2と対向するように反転される。多層配線基板の反転は、三次元造形装置1に備えられる図示しない反転装置によって行われる。次に、他側表面の基材である支持基板12が剥離される。支持基板12の剥離は、三次元造形装置1に備えられる図示しない基材剥離装置によって行われる。 When the connection terminal 15 is formed on the one-side surface, the other-side surface (the surface of the first layer wiring layer) is inverted so as to face the ejection device 2 of the three-dimensional modeling apparatus 1. The reversal of the multilayer wiring board is performed by a reversing device (not shown) provided in the three-dimensional modeling apparatus 1. Next, the support substrate 12 which is the base material on the other surface is peeled off. Peeling of the support substrate 12 is performed by a base material peeling device (not shown) provided in the three-dimensional modeling apparatus 1.
 図5(g)に示すように、他側端子形成工程において、他側表面(第一階層の配線層の表面)上の所定の位置に三次元造形装置1によって接続端子15が形成される。具体的には、第一階層の配線層上の所定の位置に三次元造形装置1によって導電性材料が堆積厚Dずつ所定の堆積厚になるまで吐出される。これにより、第一階層の配線層上の所定の位置に導電性材料が所定の堆積厚に堆積された導電部13が接続端子15として形成される。なお、基材剥離工程と一側(他側)端子形成工程との順序は、本実施形態における順序に限定されるものでなく基材剥離工程の後に一側(他側)端子形成工程を実施する構成でもよい。 As shown in FIG. 5G, in the other-side terminal forming step, the connection terminal 15 is formed by the three-dimensional modeling apparatus 1 at a predetermined position on the other-side surface (the surface of the first layer wiring layer). Specifically, the conductive material is discharged by a three-dimensional modeling apparatus 1 in a predetermined position on the wiring layer of the first layer until the predetermined deposition thickness is reached by the deposition thickness D. As a result, a conductive portion 13 in which a conductive material is deposited at a predetermined deposition thickness at a predetermined position on the first layer wiring layer is formed as a connection terminal 15. In addition, the order of the base material peeling step and the one side (other side) terminal forming step is not limited to the order in the present embodiment, and the one side (other side) terminal forming step is performed after the base material peeling step. The structure to do may be sufficient.
 また、本発明に係る多層配線基板の製造方法の第一実施形態の別実施形態として、多層配線基板における各階層の配線層が形成されてから硬化させる硬化工程を含める構成にしてもよい。 Further, as another embodiment of the first embodiment of the method for manufacturing a multilayer wiring board according to the present invention, a configuration may be included in which a curing process is performed in which the wiring layers of each layer in the multilayer wiring board are cured after being formed.
 図6に示すように、硬化工程において、多層配線基板は、造形台8上に一の階層の配線層が形成されると紫外線ランプ16によって紫外線光が照射される。具体的には、配線層形成工程または配線層積層工程とによって導電性材料と絶縁性材料とが各階層の配線層厚さThnになるまで堆積されると(図6(a)、図6(b)参照)、紫外線ランプ16によって紫外線光が照射される(図6(c)参照)。なお、硬化工程は、一の階層の配線層毎の硬化に限定されるものではなく、導電性材料および絶縁性材料の吐出毎に紫外線光を照射する構成や、多層配線基板の全階層の配線層が形成された後に紫外線光を照射する構成でもよい。また、加熱によって硬化する熱硬化樹脂を用いて加熱処理により硬化させる構成でもよい。 As shown in FIG. 6, in the curing process, the multilayer wiring board is irradiated with ultraviolet light by an ultraviolet lamp 16 when a wiring layer of one layer is formed on the modeling table 8. Specifically, when the conductive material and the insulating material are deposited until the wiring layer thickness Thn of each layer is reached by the wiring layer formation step or the wiring layer lamination step (FIG. 6A, FIG. b)), and ultraviolet light is irradiated by the ultraviolet lamp 16 (see FIG. 6C). The curing process is not limited to the curing of each wiring layer in one layer, but the configuration in which ultraviolet light is irradiated every time the conductive material and the insulating material are discharged, or the wiring of all layers of the multilayer wiring board A configuration may be employed in which ultraviolet light is irradiated after the layer is formed. Moreover, the structure hardened | cured by heat processing using the thermosetting resin hardened | cured by heating may be sufficient.
 また、本発明に係る多層配線基板の製造方法の第一実施形態の別実施形態として、配線層積層工程とによる第二階層以降の階層の形成時に素子Eを配置する素子埋め込み工程を含める構成にしてもよい。 In addition, as another embodiment of the first embodiment of the method for manufacturing a multilayer wiring board according to the present invention, a structure including an element embedding step of arranging the element E when forming the second and subsequent layers by the wiring layer stacking step is included. May be.
 図7に示すように、素子埋め込み工程において、多層配線基板は、造形台8上に形成された一の階層の配線層上に素子Eが導電性材料と絶縁性材料とによって埋め込まれる。具体的には、配線層形成工程または配線層積層工程とによって形成された一の階層の配線層上に素子E(例えば、抵抗やコンデンサ等)が配置された状態で(図7(a)参照)、導電性材料と絶縁性材料とが吐出される(図7(b)参照)。これにより、配線層積層工程によって素子Eが配置された状態で多層配線基板の二層目以降を構成する導電部13と絶縁部14とからなる配線層が形成される。すなわち、多層配線基板は、一の階層の配線層内部に必要な素子Eが埋め込まれた状態で形成される(図7(c)参照)。 As shown in FIG. 7, in the element embedding process, in the multilayer wiring board, the element E is embedded with a conductive material and an insulating material on the wiring layer of one layer formed on the modeling table 8. Specifically, in a state where the element E (for example, a resistor or a capacitor) is disposed on the wiring layer of one layer formed by the wiring layer forming step or the wiring layer stacking step (see FIG. 7A). ), A conductive material and an insulating material are discharged (see FIG. 7B). As a result, a wiring layer composed of the conductive portion 13 and the insulating portion 14 constituting the second and subsequent layers of the multilayer wiring board is formed in a state where the element E is arranged by the wiring layer stacking step. That is, the multilayer wiring board is formed in a state where necessary elements E are embedded in the wiring layer of one layer (see FIG. 7C).
 以上より、露光・現像およびエッチング等によって回路を形成したり不要な部分を除去したりする工程を経ることなく多層配線基板が形成される。また、素子Eを配置して導電性材料と絶縁性材料とを吐出するだけで埋め込み配線層が形成される。これにより、生産工程を簡易化して生産コストを抑制することができる。 As described above, a multilayer wiring board is formed without going through a process of forming a circuit or removing unnecessary portions by exposure, development, etching, or the like. Further, the embedded wiring layer is formed simply by disposing the element E and discharging the conductive material and the insulating material. Thereby, a production process can be simplified and production cost can be suppressed.
 次に、図1、図3および図8を用いて、本発明に係る多層配線基板の製造方法の第二実施形態の制御態様について具体的に説明する。なお、以下の実施形態において、既に説明した実施形態と同様の点に関してはその具体的説明を省略し、相違する部分を中心に説明する。 Next, the control mode of the second embodiment of the method for manufacturing a multilayer wiring board according to the present invention will be specifically described with reference to FIGS. In the following embodiments, the same points as those of the above-described embodiments will not be specifically described, and different portions will be mainly described.
 図1および図3に示すように、三次元造形装置1は、造形材である導電性材料と絶縁性材料とを吐出、堆積、硬化させることで任意の造形物を製造するものである。三次元造形装置1は、研磨装置17を具備している。 As shown in FIGS. 1 and 3, the three-dimensional modeling apparatus 1 manufactures an arbitrary modeled object by discharging, depositing, and curing a conductive material and an insulating material that are modeling materials. The three-dimensional modeling apparatus 1 includes a polishing apparatus 17.
 研磨装置17は、配線層の表面を研磨するものである。研磨装置17は、ローラ型の研磨装置や円盤型の研磨装置から構成されるがこれに限定されるものではない。研磨装置17は、各階層を構成するために吐出された導電性材料と絶縁性材料との堆積厚が配線層厚さThnになるように各階層の配線層の表面を研磨するように構成される。研磨装置17は、吐出装置2と一体的に形成されている。研磨装置17は、吐出装置2の駆動装置6によって造形ステージ7の上方をX方向およびY方向に一体的に移動するように構成されている。なお、本実施形態において研磨装置17は、三次元造形装置1の吐出装置2と一体的に構成されているがこれに限定されるものではなく、吐出装置2または三次元造形装置1と別体とする構成でもよい。 The polishing apparatus 17 is for polishing the surface of the wiring layer. The polishing device 17 includes a roller-type polishing device or a disk-type polishing device, but is not limited thereto. The polishing apparatus 17 is configured to polish the surface of the wiring layer in each layer so that the deposited thickness of the conductive material and the insulating material discharged to form each layer becomes the wiring layer thickness Thn. The The polishing device 17 is formed integrally with the discharge device 2. The polishing device 17 is configured to move integrally above the modeling stage 7 in the X direction and the Y direction by the driving device 6 of the discharge device 2. In the present embodiment, the polishing device 17 is configured integrally with the discharge device 2 of the three-dimensional modeling apparatus 1, but is not limited thereto, and is separate from the discharge device 2 or the three-dimensional modeling device 1. It may be configured as follows.
 制御装置10は、研磨装置17に接続され、駆動装置6のX方向とY方向との位置、および研磨量とをそれぞれ制御することが可能である。このように構成される制御装置10は、空間座標算出プログラムが算出した空間座標S(X(i),Y(j)、Z(k))に基づいて研磨装置17を制御する。 The control device 10 is connected to the polishing device 17 and can control the positions of the driving device 6 in the X and Y directions and the polishing amount. The control device 10 configured as described above controls the polishing device 17 based on the spatial coordinates S (X (i), Y (j), Z (k)) calculated by the spatial coordinate calculation program.
 以下では、図8を用いて、本発明に係る多層配線基板の製造方法の第二実施形態における三次元造形装置1の制御態様について具体的に説明する。 Hereinafter, the control mode of the three-dimensional modeling apparatus 1 in the second embodiment of the method for manufacturing a multilayer wiring board according to the present invention will be specifically described with reference to FIG.
 ステップS360において、制御装置10は、駆動装置6による造形ステージ7の造形台8の階層毎の降下量Lnが各階層の配線層厚さThnよりも大きいか否か判断する。すなわち、制御装置10は、造形台8上に多層配線基板のうち一の階層が配線層厚さThnよりも厚く形成されているか否か判断する。 In step S360, the control device 10 determines whether or not the descent amount Ln for each layer of the modeling stage 8 of the modeling stage 7 by the driving device 6 is larger than the wiring layer thickness Thn of each layer. That is, the control device 10 determines whether or not one layer of the multilayer wiring board is formed on the modeling table 8 to be thicker than the wiring layer thickness Thn.
 その結果、駆動装置6による造形ステージ7の造形台8の階層毎の降下量Lnが各階層の配線層厚さThnよりも大きい、すなわち、造形台8上に多層配線基板のうち一の階層が配線層厚さThnよりも厚く形成されたと判定した場合、制御装置10はステップをステップS370(図10においてはステップS470)に移行する。 As a result, the lowering amount Ln for each layer of the modeling table 8 of the modeling stage 7 by the driving device 6 is larger than the wiring layer thickness Thn of each layer, that is, one layer of the multilayer wiring boards is formed on the modeling table 8. If it is determined that the wiring layer thickness Thn is greater than that of the wiring layer thickness Thn, the control device 10 proceeds to step S370 (step S470 in FIG. 10).
 一方、駆動装置6による造形ステージ7の造形台8の階層毎の降下量Lnが各階層の配線層厚さThnよりも大きくない、すなわち、造形台8上に多層配線基板のうち一の階層が配線層厚さThnよりも厚く形成されていないと判定した場合、制御装置10はステップをステップS270に移行させる。 On the other hand, the lowering amount Ln for each layer of the modeling table 8 of the modeling stage 7 by the driving device 6 is not larger than the wiring layer thickness Thn of each layer, that is, one layer of the multilayer wiring boards is on the modeling table 8. If it is determined that the wiring layer thickness Thn is not greater than the thickness Thn, the control device 10 shifts the step to step S270.
 ステップS370において、制御装置10は、造形ステージ7の造形台8の支持基板12の表面または直前に研磨された一の階層の表面から研磨装置17の研磨位置までの距離が各階層の配線層厚さThnと等しくなる所定位置まで造形台8を上昇させて(図9(a)参照)、ステップをステップS380に移行させる。 In step S370, the control device 10 determines that the distance from the surface of the support substrate 12 of the modeling stage 8 of the modeling stage 7 or the surface of the first layer polished immediately before to the polishing position of the polishing device 17 is the wiring layer thickness of each layer. The modeling table 8 is raised to a predetermined position equal to the length Thn (see FIG. 9A), and the process proceeds to step S380.
 ステップS380において、制御装置10は、研磨装置17によって造形ステージ7の造形台8上に形成された一の階層の表面を研磨して、ステップをステップS390に移行させる。 In step S380, the control device 10 polishes the surface of the first layer formed on the modeling stage 8 of the modeling stage 7 by the polishing device 17, and shifts the step to step S390.
 ステップS390において、制御装置10は、駆動装置6による造形ステージ7の造形台8の全降下量Lが多層配線基板の全厚さTh0と等しいか否か判断する。すなわち、制御装置10は、造形台8上に多層配線基板の全ての階層が形成されているか否か判断する。 In step S390, the control device 10 determines whether or not the total lowering amount L of the modeling stage 8 of the modeling stage 7 by the driving device 6 is equal to the total thickness Th0 of the multilayer wiring board. That is, the control device 10 determines whether or not all layers of the multilayer wiring board are formed on the modeling table 8.
 その結果、駆動装置6による造形ステージ7の造形台8の全降下量Lが多層配線基板の全厚さTh0と等しい、すなわち、造形台8上に多層配線基板の全ての階層が形成されていると判定した場合、制御装置10はステップを終了する。 As a result, the total lowering amount L of the modeling table 8 of the modeling stage 7 by the driving device 6 is equal to the total thickness Th0 of the multilayer wiring board, that is, all the layers of the multilayer wiring board are formed on the modeling table 8. If determined to be, the control device 10 ends the step.
 一方、駆動装置6による造形ステージ7の造形台8の全降下量Lが多層配線基板の全厚さTh0と等しくない、すなわち、造形台8上に多層配線基板の全ての階層が形成されていないと判定した場合、制御装置10はステップをステップS270に移行させる。 On the other hand, the total lowering amount L of the modeling stage 8 of the modeling stage 7 by the driving device 6 is not equal to the total thickness Th0 of the multilayer wiring board, that is, not all the layers of the multilayer wiring board are formed on the modeling table 8. If determined to be, the control device 10 shifts the step to step S270.
 このように構成することで、三次元造形装置1は、多層配線基板の構成データから算出された空間座標S(X(i),Y(j)、Z(k))毎に導電性材料と絶縁性材料とを所定の位置に吐出、硬化させ、多層配線基板の階層毎に研磨装置17によって配線層の表面が研磨される。これにより、三次元造形装置1は、配線層の表面の平滑化および各階層の配線層厚さThnの堆積精度を向上させることができる。 By configuring in this way, the three-dimensional modeling apparatus 1 is configured so that the conductive material and the spatial coordinate S (X (i), Y (j), Z (k)) calculated from the configuration data of the multilayer wiring board The insulating material is discharged and cured at a predetermined position, and the surface of the wiring layer is polished by the polishing device 17 for each layer of the multilayer wiring board. Thereby, the 3D modeling apparatus 1 can improve the smoothness of the surface of the wiring layer and the deposition accuracy of the wiring layer thickness Thn of each layer.
 次に、図9を用いて、本発明に係る多層配線基板の製造方法の第二実施形態について具体的に説明する。本発明に係る配線層の製造方法は、研磨工程を含む。 Next, a second embodiment of the method for manufacturing a multilayer wiring board according to the present invention will be specifically described with reference to FIG. The method for manufacturing a wiring layer according to the present invention includes a polishing step.
 図9に示すように、研磨工程において、多層配線基板は、各階層の形成毎に階層の表面が三次元造形装置1によって研磨される。具体的には、多層配線基板は、配線層形成工程とによる第一階層の形成が終了した後、および配線層積層工程とによる第二階層以降の階層の形成が終了する毎に、支持基板12の表面または直前に研磨された階層の表面から研磨装置17の研磨位置までの各階層の配線層厚さThnと等しくなる所定位置まで造形台8によって上昇される(図9(a)参照)。そして、多層配線基板は、研磨装置17によって一の階層の表面が研磨される(図9(b)参照)。これにより、多層配線基板は、各階層の堆積厚が所定の範囲内に保持されるとともに各階層の表面粗さが所定の範囲内に保持される(図9(c)参照)。 As shown in FIG. 9, in the polishing step, the surface of the multilayer wiring board is polished by the three-dimensional modeling apparatus 1 every time each layer is formed. Specifically, in the multilayer wiring board, the support substrate 12 is formed after the formation of the first layer by the wiring layer formation step and every time the formation of the second and subsequent layers by the wiring layer lamination step is completed. Is raised by the modeling table 8 to a predetermined position equal to the wiring layer thickness Thn of each layer from the surface of the layer polished immediately before or to the polishing position of the polishing apparatus 17 (see FIG. 9A). Then, the surface of the first layer of the multilayer wiring board is polished by the polishing apparatus 17 (see FIG. 9B). Thereby, in the multilayer wiring board, the deposition thickness of each layer is maintained within a predetermined range, and the surface roughness of each layer is maintained within a predetermined range (see FIG. 9C).
 以上より、多層配線基板は、また、導電性材料と絶縁性材料との各階層の配線層厚さThnの精度が向上するので複数の配線層を積層させても多層配線基板の全厚さThが所定の範囲内に保持される。これにより、生産工程を簡易化して生産コストを抑制することができる。 As described above, since the accuracy of the wiring layer thickness Thn of each layer of the conductive material and the insulating material is improved in the multilayer wiring board, the total thickness Th of the multilayer wiring board can be obtained even if a plurality of wiring layers are stacked. Is maintained within a predetermined range. Thereby, a production process can be simplified and production cost can be suppressed.
 次に、図3、図10および図11を用いて、本発明に係る多層配線基板の製造方法の第三実施形態の制御態様について具体的に説明する。なお、以下の実施形態において、既に説明した実施形態と同様の点に関してはその具体的説明を省略し、相違する部分を中心に説明する。 Next, the control mode of the third embodiment of the method for manufacturing a multilayer wiring board according to the present invention will be specifically described with reference to FIGS. In the following embodiments, the same points as those of the above-described embodiments will not be specifically described, and different portions will be mainly described.
 図3および図11に示すように、三次元造形装置1は、造形材である導電性材料と絶縁性材料とを吐出、堆積、硬化させることで任意の造形物を製造するものである。三次元造形装置1は、塗布装置18を具備している。 As shown in FIGS. 3 and 11, the three-dimensional modeling apparatus 1 manufactures an arbitrary modeled object by discharging, depositing, and curing a conductive material and an insulating material that are modeling materials. The three-dimensional modeling apparatus 1 includes a coating device 18.
 塗布装置18は、造形材である導電性材料または絶縁性材料を塗布するものである。塗布装置18は、三次元造形装置1で形成された多層配線基板のうち一の階層の配線層上を移動しつつ導電性材料または絶縁性材料を塗布するように構成されている。塗布装置18は、吐出装置2と一体的に形成さる。塗布装置18は、吐出装置2の駆動装置6によって造形ステージ7の上方をX方向またはY方向に一体的に移動するように構成されている。なお、本実施形態において塗布装置18は、三次元造形装置1の吐出装置2と一体的に構成されているがこれに限定されるものではなく、吐出装置2または三次元造形装置1と別体とする構成でもよい。 The coating device 18 applies a conductive material or an insulating material that is a modeling material. The coating device 18 is configured to apply a conductive material or an insulating material while moving on the wiring layer in one layer of the multilayer wiring board formed by the three-dimensional modeling apparatus 1. The coating device 18 is formed integrally with the discharge device 2. The coating device 18 is configured to move integrally above the modeling stage 7 in the X direction or the Y direction by the driving device 6 of the discharge device 2. In the present embodiment, the coating device 18 is configured integrally with the discharge device 2 of the three-dimensional modeling apparatus 1, but is not limited thereto, and is separate from the discharge device 2 or the three-dimensional modeling device 1. It may be configured as follows.
 制御装置10は、塗布装置18に接続され、塗布装置18の移動速度および塗布量をそれぞれ制御することが可能である。このように構成される制御装置10は、空間座標算出プログラムが算出した空間座標S(X(i),Y(j)、Z(k))に基づいて塗布装置18を制御する。 The control device 10 is connected to the coating device 18, and can control the moving speed and the coating amount of the coating device 18, respectively. The control device 10 configured as described above controls the coating device 18 based on the spatial coordinates S (X (i), Y (j), Z (k)) calculated by the spatial coordinate calculation program.
 以下では、図10を用いて、本発明に係る多層配線基板の製造方法の第三実施形態における三次元造形装置1の制御態様について具体的に説明する。 Hereinafter, the control mode of the three-dimensional modeling apparatus 1 in the third embodiment of the method for manufacturing a multilayer wiring board according to the present invention will be specifically described with reference to FIG.
 ステップS440において、制御装置10は、算出した各空間座標S(X(i),Y(j)、Z(k))のうちZ座標が同一のZ(a)である各空間座標S(X(i),Y(j)、Z(a))と算出した空間座標S(X(i),Y(j)、Z(a))毎の吐出命令とに基づいて、各空間座標S(X(i),Y(j)、Z(a))に導電性材料または絶縁性材料を吐出し、硬化装置5から紫外線光からなるレーザー光を照射する。すなわち、制御装置10は、同一平面上における所定の位置に導電性材料と絶縁性材料とのうち一方の材料を吐出するとともに紫外線光を照射し、ステップをステップS150に移行させる。 In step S440, the control device 10 determines that each of the calculated spatial coordinates S (X (i), Y (j), Z (k)) has the same Z coordinate Z (a). (I), Y (j), Z (a)) and the calculated spatial coordinates S (X (i), Y (j), Z (a)) and the respective spatial coordinates S ( A conductive material or an insulating material is discharged onto X (i), Y (j), and Z (a)), and laser light composed of ultraviolet light is irradiated from the curing device 5. That is, the control device 10 discharges one of the conductive material and the insulating material to a predetermined position on the same plane and irradiates the ultraviolet light, and the process proceeds to step S150.
 ステップS470において、制御装置10は、塗布装置18によって造形ステージ7の造形台8上に形成された一の階層において、導電性材料と絶縁性材料とのうち一方の材料が塗布された部分以外の部分に導電性材料と絶縁性材料とのうち他方の材料を塗布および硬化し、ステップをステップS390に移行させる。 In step S <b> 470, the control device 10, other than the portion where one material of the conductive material and the insulating material is applied in one layer formed on the modeling table 8 of the modeling stage 7 by the coating device 18. The other material of the conductive material and the insulating material is applied to the portion and cured, and the process proceeds to step S390.
 このように構成することで、三次元造形装置1は、多層配線基板の構成データから算出された空間座標S(X(i),Y(j)、Z(k))毎に導電性材料と絶縁性材料とを所定の位置に吐出または塗布および硬化させる。これにより、三次元造形装置1は、堆積量が多い導電部13または絶縁部14部分を塗布工程により形成することで多層配線基板の製造時間を短縮することができる。 By configuring in this way, the three-dimensional modeling apparatus 1 is configured so that the conductive material and the spatial coordinate S (X (i), Y (j), Z (k)) calculated from the configuration data of the multilayer wiring board An insulating material is discharged or applied to a predetermined position and cured. Thereby, the three-dimensional modeling apparatus 1 can shorten the manufacturing time of a multilayer wiring board by forming the electroconductive part 13 or the insulating part 14 part with much deposition amount by an application | coating process.
 次に、図11を用いて、本発明に係る多層配線基板の製造方法の第三実施形態について具体的に説明する。本発明に係る多層配線基板の製造方法は、吐出工程と塗布工程とを含む。ここで吐出工程とは、上述の配線層形成工程、および配線層積層工程において吐出により導電性材料と絶縁性材料とのうち一方の材料を吐出する工程を言う。 Next, a third embodiment of the method for manufacturing a multilayer wiring board according to the present invention will be specifically described with reference to FIG. The method for manufacturing a multilayer wiring board according to the present invention includes a discharge process and a coating process. Here, the discharging step refers to a step of discharging one of a conductive material and an insulating material by discharging in the wiring layer forming step and the wiring layer stacking step.
 図11に示すように、吐出工程において、多層配線基板は、各階層の導電部13または絶縁部14が三次元造形装置1の吐出装置2によって形成される。具体的には、多層配線基板は、配線層形成工程および配線層積層工程によって導電性材料と絶縁性材料とのうち一方の材料が吐出されて、一の階層の配線層の導電部13と絶縁部14とのうちどちらか一方が形成される(図11(a)参照)。 As shown in FIG. 11, in the discharging process, in the multilayer wiring board, the conductive portion 13 or the insulating portion 14 of each layer is formed by the discharging device 2 of the three-dimensional modeling apparatus 1. Specifically, the multilayer wiring board is insulated from the conductive portion 13 of the wiring layer in one layer by discharging one of the conductive material and the insulating material in the wiring layer forming step and the wiring layer laminating step. Either one of the portions 14 is formed (see FIG. 11A).
 また、吐出工程において、三次元造形装置1では形成できない程度に微細な回路パターンを含む導電部13を形成する必要がある場合、当該部分だけフォトリソグラフ技術で形成してもよい。ここで、導電性材料の基材が感光性を有していれば、感光性レジストの塗布が不要となるので好ましい。 Further, in the ejection step, when it is necessary to form the conductive portion 13 including a circuit pattern that is so fine that it cannot be formed by the three-dimensional modeling apparatus 1, only the portion may be formed by a photolithography technique. Here, it is preferable that the base material of the conductive material has photosensitivity because it is not necessary to apply a photosensitive resist.
 塗布工程において、多層配線基板は、各階層の導電部13または絶縁部14が形成された後に塗布装置18によって絶縁性材料または導電性材料が塗布される。具体的には、多層配線基板は、導電性材料と絶縁性材料とのうち吐出工程において吐出されていない他方の材料が塗布装置18によって一の配線層の堆積層と堆積層との隙間(空間)に塗布される(図11(b)参照)。つまり、多層配線基板は、塗布装置18によって何も吐出されていない一の配線層上の空間に他方の材料が塗布される。これにより、多層配線基板は、各階層の堆積量が多い導電部13または絶縁部14を塗布により形成することで製造時間が短縮される。 In the coating process, the insulating material or the conductive material is applied to the multilayer wiring board by the coating device 18 after the conductive portions 13 or the insulating portions 14 of the respective layers are formed. Specifically, in the multilayer wiring board, the other material of the conductive material and the insulating material that has not been ejected in the ejection process is applied to the gap (space) between the deposited layers of one wiring layer by the coating device 18. ) (See FIG. 11B). That is, in the multilayer wiring board, the other material is applied to a space on one wiring layer where nothing is discharged by the coating device 18. As a result, the multilayer wiring board is manufactured by forming the conductive portion 13 or the insulating portion 14 having a large amount of deposition in each layer by coating, thereby reducing the manufacturing time.
 なお、第三実施形態において、導電部13を焼成する焼成工程を更に含んでもよい。具体的には、吐出工程において導電部13が形成された後、導電部13は、焼成工程において導電性を高めるために焼成される。その後、塗布工程において絶縁性材料が塗布される。 In addition, in 3rd embodiment, you may further include the baking process which bakes the electroconductive part 13. FIG. Specifically, after the conductive portion 13 is formed in the discharge process, the conductive portion 13 is baked to increase conductivity in the baking step. Thereafter, an insulating material is applied in an application process.
 また、第三実施形態において、配線層の表面を研磨する研磨工程を更に含んでもよい。具体的には、多層配線基板は、塗布工程が終了する毎に三次元造形装置1において、支持基板12の表面または直前に研磨された階層の表面から研磨装置17の研磨位置までの各階層の配線層厚さThnと等しくなる所定位置に配置される(図9(a)参照)。そして、多層配線基板は、三次元造形装置1の研磨装置17によって一の階層の表面が研磨される(図9(b)参照)。これにより、多層配線基板は、各階層の堆積厚が所定の範囲内に保持されるとともに各階層の表面粗さが所定の範囲内に保持される(図9(c)参照)。 In the third embodiment, a polishing step for polishing the surface of the wiring layer may be further included. Specifically, each time the coating process is completed, the multilayer wiring board is formed in each layer from the surface of the support substrate 12 or the immediately polished layer to the polishing position of the polishing device 17 in the three-dimensional modeling apparatus 1. The wiring layer is disposed at a predetermined position equal to the thickness Thn (see FIG. 9A). Then, the surface of the first layer of the multilayer wiring board is polished by the polishing apparatus 17 of the three-dimensional modeling apparatus 1 (see FIG. 9B). Thereby, in the multilayer wiring board, the deposition thickness of each layer is maintained within a predetermined range, and the surface roughness of each layer is maintained within a predetermined range (see FIG. 9C).
 以上より、多層配線基板は、導電部13と絶縁部14との形成において吐出工程と塗布工程とのうち最適な工程が選択される。これにより、生産工程を簡易化して生産コストを抑制することができる。また、導電性材料と絶縁性材料との堆積厚の精度が向上するので複数の配線層を積層させた多層配線基板を構成してもその全厚さが所定の範囲内に保持される。これにより、生産工程を簡易化して生産コストを抑制することができる。
また、絶縁性材料として、ポリイミド樹脂やポリエステル系樹脂のように、フィルム状にすると柔軟性を有する樹脂を用いることで、フレキシブルな多層配線基板を容易に得ることが出来る。
As described above, for the multilayer wiring board, an optimum process is selected from the discharge process and the coating process in forming the conductive portion 13 and the insulating portion 14. Thereby, a production process can be simplified and production cost can be suppressed. Further, since the accuracy of the deposited thickness of the conductive material and the insulating material is improved, even if a multilayer wiring board in which a plurality of wiring layers are stacked is configured, the total thickness is maintained within a predetermined range. Thereby, a production process can be simplified and production cost can be suppressed.
Moreover, a flexible multilayer wiring board can be easily obtained by using a resin having flexibility when formed into a film shape, such as a polyimide resin or a polyester resin, as the insulating material.
   1  三次元造形装置
   2  吐出装置
   3  導電性材料吐出ノズル
   4  絶縁性材料吐出ノズル
   5  硬化装置
   6  駆動装置
   7  造形ステージ
  10  制御装置
  12  支持基板
  13  導電部
  14  絶縁部
  17  研磨装置
  18  塗布装置
 Thn  配線層厚さ
 Th0  全厚さ
DESCRIPTION OF SYMBOLS 1 Three-dimensional modeling apparatus 2 Discharge apparatus 3 Conductive material discharge nozzle 4 Insulating material discharge nozzle 5 Curing apparatus 6 Drive apparatus 7 Modeling stage 10 Control apparatus 12 Support substrate 13 Conductive part 14 Insulating part 17 Polishing apparatus 18 Coating apparatus Thn Wiring layer Thickness Th0 Total thickness

Claims (14)

  1.  導電部と絶縁部とからなる配線層を積層した多層配線基板の製造方法であって、
     走査運動を行いながら所定の位置に導電性材料または絶縁性材料のいずれかを吐出し、所定の厚さまで堆積させて配線層を形成する配線層形成工程と、
     走査運動を行いながら配線層の表面の所定の位置に導電性材料または絶縁性材料のいずれかを吐出し、所定の厚さまで堆積させて更に配線層を形成する配線層積層工程と、
     を含む多層配線基板の製造方法。
    A method for manufacturing a multilayer wiring board in which a wiring layer composed of a conductive portion and an insulating portion is laminated,
    A wiring layer forming step of forming a wiring layer by discharging either a conductive material or an insulating material to a predetermined position while performing a scanning motion, and depositing it to a predetermined thickness;
    A wiring layer stacking step in which either a conductive material or an insulating material is discharged to a predetermined position on the surface of the wiring layer while performing a scanning motion, and is further deposited to a predetermined thickness to form a wiring layer;
    A method of manufacturing a multilayer wiring board including:
  2.  前記配線層の表面を研磨する研磨工程を更に含む請求項1に記載の多層配線基板の製造方法。 The method for manufacturing a multilayer wiring board according to claim 1, further comprising a polishing step of polishing the surface of the wiring layer.
  3.  前記配線層に素子を配置した状態で前記配線層積層工程を行う素子埋め込み工程を更に含む請求項1または請求項2に記載の多層配線基板の製造方法。 The method for manufacturing a multilayer wiring board according to claim 1, further comprising an element embedding step of performing the wiring layer stacking step in a state where elements are arranged in the wiring layer.
  4.  導電部と絶縁部とからなる配線層を積層した多層配線基板の製造方法であって、
     走査運動を行いながら所定の位置に導電性材料と絶縁性材料とのうち一方の材料を吐出して堆積させる吐出工程と、
     吐出工程によって堆積されている導電部または絶縁部以外の部分に他方の材料を塗布する塗布工程と、
     を含む多層配線基板の製造方法。
    A method for manufacturing a multilayer wiring board in which a wiring layer composed of a conductive portion and an insulating portion is laminated,
    A discharging step of discharging and depositing one of a conductive material and an insulating material at a predetermined position while performing a scanning motion;
    An application step of applying the other material to a portion other than the conductive portion or the insulating portion deposited by the discharge step;
    A method of manufacturing a multilayer wiring board including:
  5.  前記配線層の表面を研磨する研磨工程を更に含む請求項4に記載の多層配線基板の製造方法。 The method for manufacturing a multilayer wiring board according to claim 4, further comprising a polishing step of polishing the surface of the wiring layer.
  6.  前記配線層形成工程を平坦な平面を有する支持基板上で行うことを特徴とする請求項1~5に記載の多層配線基板の製造方法。 6. The method of manufacturing a multilayer wiring board according to claim 1, wherein the wiring layer forming step is performed on a support substrate having a flat plane.
  7.  前記支持基板表面上に、前記配線層に対して離型性を有する剥離層が形成されていることを特徴とする請求項6に記載の多層配線基板の製造方法。 The method for producing a multilayer wiring board according to claim 6, wherein a release layer having releasability from the wiring layer is formed on the surface of the support substrate.
  8.  前記絶縁性材料としてフィルム状にすると柔軟性を有する樹脂を用い、フレキシブルな多層配線基板を製造することを特徴とする請求項1~7に記載の多層配線基板の製造方法。 The method for producing a multilayer wiring board according to any one of claims 1 to 7, wherein a flexible multilayer wiring board is produced using a resin having flexibility when formed into a film as the insulating material.
  9.  導電部と絶縁部からなる配線層を積層した多層配線基板を製造するのに用いる三次元造形装置であって、
     造形ステージと、
     導電性材料を吐出する導電性材料吐出ノズルと、
     絶縁性材料を吐出する絶縁性材料吐出ノズルと、
     導電性材料及び絶縁性材料を硬化させる硬化装置と、
     前記導電性材料吐出ノズルと前記絶縁性材料吐出ノズルと前記硬化装置とを駆動する駆動装置と、
     前記造形ステージと前記導電性材料吐出ノズルと前記絶縁性材料吐出ノズルと前記硬化装置と前記駆動装置とを制御する機能を有する、制御装置を備えることを特徴と三次元造形装置。
    A three-dimensional modeling apparatus used to manufacture a multilayer wiring board in which a wiring layer composed of a conductive portion and an insulating portion is laminated,
    Modeling stage,
    A conductive material discharge nozzle for discharging the conductive material;
    An insulating material discharge nozzle for discharging the insulating material;
    A curing device for curing the conductive material and the insulating material;
    A driving device for driving the conductive material discharge nozzle, the insulating material discharge nozzle, and the curing device;
    A three-dimensional modeling apparatus comprising a control device having a function of controlling the modeling stage, the conductive material discharge nozzle, the insulating material discharge nozzle, the curing device, and the driving device.
  10.  前記硬化装置が、光硬化装置と熱硬化装置の2種類の硬化装置の組み合わせからなることを特徴とする請求項9に記載の三次元造形装置。 The three-dimensional modeling apparatus according to claim 9, wherein the curing device is a combination of two types of curing devices, a photocuring device and a thermosetting device.
  11.  前記配線層の表面を研磨する研磨装置を更に備え、前記制御装置が前記研磨装置を制御する機能を有する、請求項9または請求項10に記載の三次元造形装置。 The three-dimensional modeling apparatus according to claim 9 or 10, further comprising a polishing device for polishing a surface of the wiring layer, wherein the control device has a function of controlling the polishing device.
  12.  導電部と絶縁部からなる配線層を積層した多層配線基板を製造するのに用いる三次元造形装置であって、
     造形ステージと、
     導電性材料または絶縁性材料の何れかを吐出するノズルと、
     導電性材料または絶縁性材料の何れかを塗布する塗布装置と、
     導電性材料及び絶縁性材料を硬化させる硬化装置と、
     前記ノズルと前記塗布装置と前記硬化装置とを駆動する駆動装置と、
     前記造形ステージと前記ノズルと前記塗布装置と前記硬化装置と前記駆動装置とを制御する機能を有する、制御装置を備えることを特徴と三次元造形装置。
    A three-dimensional modeling apparatus used to manufacture a multilayer wiring board in which a wiring layer composed of a conductive portion and an insulating portion is laminated,
    Modeling stage,
    A nozzle that discharges either a conductive material or an insulating material;
    An applicator for applying either a conductive material or an insulating material;
    A curing device for curing the conductive material and the insulating material;
    A driving device for driving the nozzle, the coating device, and the curing device;
    A three-dimensional modeling apparatus comprising a control device having a function of controlling the modeling stage, the nozzle, the coating device, the curing device, and the driving device.
  13.  前記硬化装置が、光硬化装置と熱硬化装置の2種類の硬化装置の組み合わせからなることを特徴とする請求項12に記載の三次元造形装置。 The three-dimensional modeling apparatus according to claim 12, wherein the curing device is a combination of two types of curing devices, a photocuring device and a thermosetting device.
  14.  前記配線層の表面を研磨する研磨装置を更に備え、前記制御装置が前記研磨装置を制御する機能を有する、請求項12または請求項13に記載の三次元造形装置。 The three-dimensional modeling apparatus according to claim 12 or 13, further comprising a polishing device for polishing a surface of the wiring layer, wherein the control device has a function of controlling the polishing device.
PCT/JP2014/074338 2013-09-17 2014-09-16 Method for manufacturing multilayer wiring substrate, and three-dimensional modeling device used for same WO2015041189A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-192131 2013-09-17
JP2013192131 2013-09-17

Publications (1)

Publication Number Publication Date
WO2015041189A1 true WO2015041189A1 (en) 2015-03-26

Family

ID=52688839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074338 WO2015041189A1 (en) 2013-09-17 2014-09-16 Method for manufacturing multilayer wiring substrate, and three-dimensional modeling device used for same

Country Status (1)

Country Link
WO (1) WO2015041189A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160329244A1 (en) * 2015-05-08 2016-11-10 Winbond Electronics Corp. Stacked Electronic Device and Method for Fabricating the Same
WO2016199242A1 (en) * 2015-06-10 2016-12-15 富士機械製造株式会社 Circuit pattern forming device
JP2016213464A (en) * 2015-05-08 2016-12-15 華邦電子股▲ふん▼有限公司 Stacked package element and manufacturing method thereof
JP2017143102A (en) * 2016-02-08 2017-08-17 富士機械製造株式会社 Circuit pattern forming apparatus and circuit pattern forming method
WO2019016920A1 (en) * 2017-07-20 2019-01-24 株式会社Fuji Wiring forming method and wiring forming device
WO2019058515A1 (en) * 2017-09-22 2019-03-28 株式会社Fuji Semi-cured layer forming method and semi-cured layer forming device
WO2019123629A1 (en) * 2017-12-22 2019-06-27 株式会社Fuji Method and device for manufacturing additively manufactured electronic device
JP2019527463A (en) * 2016-03-26 2019-09-26 ナノ−ディメンション テクノロジーズ,リミテッド Fabrication of PCBs and FPCs with shielded tracks and / or components using 3D inkjet printing
CN111107718A (en) * 2018-10-26 2020-05-05 康达智株式会社 Multilayer substrate forming method and multilayer substrate forming apparatus
WO2020255258A1 (en) * 2019-06-18 2020-12-24 株式会社Fuji Method for manufacturing circuit board and circuit board manufacturing device
JP2023083262A (en) * 2021-12-03 2023-06-15 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Cold plate with embedded power device, driver circuit, and microcontroller with 3d printed circuit board
JP7491761B2 (en) 2020-07-20 2024-05-28 ローランドディー.ジー.株式会社 Three-dimensional modeling apparatus and charge collecting apparatus for the same
JP7495870B2 (en) 2020-11-17 2024-06-05 株式会社Fuji Molding method and molding device
WO2024227022A1 (en) * 2023-04-26 2024-10-31 Lcp Medical Technologies, Llc Forming a circuit bearing structure with dielectric ink

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051567A (en) * 2001-08-03 2003-02-21 Sony Corp High-frequency module substrate unit therefor and manufacturing method therefor
JP2007158352A (en) * 2005-12-07 2007-06-21 Samsung Electro Mech Co Ltd Method of manufacturing wiring board, and wiring board
JP2007329452A (en) * 2006-05-09 2007-12-20 Canon Inc Wiring module, and manufacturing apparatus and method of wiring module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051567A (en) * 2001-08-03 2003-02-21 Sony Corp High-frequency module substrate unit therefor and manufacturing method therefor
JP2007158352A (en) * 2005-12-07 2007-06-21 Samsung Electro Mech Co Ltd Method of manufacturing wiring board, and wiring board
JP2007329452A (en) * 2006-05-09 2007-12-20 Canon Inc Wiring module, and manufacturing apparatus and method of wiring module

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10483235B2 (en) * 2015-05-08 2019-11-19 Winbond Electronics Corp. Stacked electronic device and method for fabricating the same
JP2016213464A (en) * 2015-05-08 2016-12-15 華邦電子股▲ふん▼有限公司 Stacked package element and manufacturing method thereof
JP2016213465A (en) * 2015-05-08 2016-12-15 華邦電子股▲ふん▼有限公司 Multilayer electronic device and manufacturing method thereof
US20160329244A1 (en) * 2015-05-08 2016-11-10 Winbond Electronics Corp. Stacked Electronic Device and Method for Fabricating the Same
WO2016199242A1 (en) * 2015-06-10 2016-12-15 富士機械製造株式会社 Circuit pattern forming device
JPWO2016199242A1 (en) * 2015-06-10 2018-03-29 富士機械製造株式会社 Circuit pattern forming device
JP2017143102A (en) * 2016-02-08 2017-08-17 富士機械製造株式会社 Circuit pattern forming apparatus and circuit pattern forming method
JP2019527463A (en) * 2016-03-26 2019-09-26 ナノ−ディメンション テクノロジーズ,リミテッド Fabrication of PCBs and FPCs with shielded tracks and / or components using 3D inkjet printing
WO2019016920A1 (en) * 2017-07-20 2019-01-24 株式会社Fuji Wiring forming method and wiring forming device
JPWO2019016920A1 (en) * 2017-07-20 2019-12-12 株式会社Fuji Wiring forming method and wiring forming apparatus
JPWO2019058515A1 (en) * 2017-09-22 2019-12-19 株式会社Fuji Method for forming semi-cured layer and apparatus for forming semi-cured layer
JP7197489B2 (en) 2017-09-22 2022-12-27 株式会社Fuji Structure forming method and structure forming apparatus having hardened layer and metal wiring
WO2019058515A1 (en) * 2017-09-22 2019-03-28 株式会社Fuji Semi-cured layer forming method and semi-cured layer forming device
JP7394626B2 (en) 2017-12-22 2023-12-08 株式会社Fuji Manufacturing method and manufacturing apparatus for three-dimensional laminated electronic device
JPWO2019123629A1 (en) * 2017-12-22 2020-10-22 株式会社Fuji Manufacturing method and manufacturing equipment for 3D stacked electronic devices
WO2019123629A1 (en) * 2017-12-22 2019-06-27 株式会社Fuji Method and device for manufacturing additively manufactured electronic device
CN111107718A (en) * 2018-10-26 2020-05-05 康达智株式会社 Multilayer substrate forming method and multilayer substrate forming apparatus
WO2020255258A1 (en) * 2019-06-18 2020-12-24 株式会社Fuji Method for manufacturing circuit board and circuit board manufacturing device
JPWO2020255258A1 (en) * 2019-06-18 2020-12-24
JP7142781B2 (en) 2019-06-18 2022-09-27 株式会社Fuji Wiring board manufacturing method and wiring board manufacturing apparatus
JP7491761B2 (en) 2020-07-20 2024-05-28 ローランドディー.ジー.株式会社 Three-dimensional modeling apparatus and charge collecting apparatus for the same
JP7495870B2 (en) 2020-11-17 2024-06-05 株式会社Fuji Molding method and molding device
JP2023083262A (en) * 2021-12-03 2023-06-15 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Cold plate with embedded power device, driver circuit, and microcontroller with 3d printed circuit board
JP7640515B2 (en) 2021-12-03 2025-03-05 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Cooling plate having embedded power devices, driver circuits, and a microcontroller with a 3D printed circuit board
WO2024227022A1 (en) * 2023-04-26 2024-10-31 Lcp Medical Technologies, Llc Forming a circuit bearing structure with dielectric ink

Similar Documents

Publication Publication Date Title
WO2015041189A1 (en) Method for manufacturing multilayer wiring substrate, and three-dimensional modeling device used for same
TWI758172B (en) Method and system for additive-ablative fabrication
Zhou et al. Digital material fabrication using mask‐image‐projection‐based stereolithography
Wicker et al. Multi-material, multi-technology stereolithography: This feature article covers a decade of research into tackling one of the major challenges of the stereolithography technique, which is including multiple materials in one construct
JP6947842B2 (en) Manufacturing method of 3D laminated electronic device
CN109952189A (en) Hybrid multi-material 3D printing
JP6491131B2 (en) 3D printing device
US8265445B2 (en) Printed circuit board for optical waveguide and method of manufacturing the same
JP6466479B2 (en) Data conversion apparatus and additive manufacturing system
CN108357089A (en) Three-dimensional printing method
CN110049858B (en) Data conversion device and laminated molding system
TWI599929B (en) Touch substrate manufactured by three-dimension printing and method for manufacturing the same
TW201831337A (en) Three-dimensional printing device and printing method thereof
JP2004022623A (en) Manufacturing method of wiring board
WO2018003000A1 (en) Circuit forming method
WO2019193644A1 (en) Three-dimensional structure formation method and three-dimensional structure formation device
WO2016189577A1 (en) Wiring forming method
US8828247B2 (en) Method of manufacturing printed circuit board having vias and fine circuit and printed circuit board manufactured using the same
KR101894387B1 (en) Printed circuit board and method thereof
JP7394626B2 (en) Manufacturing method and manufacturing apparatus for three-dimensional laminated electronic device
JP6370077B2 (en) Electronic device manufacturing method and manufacturing apparatus
JP6816283B2 (en) Wiring forming method and wiring forming device
Li et al. Micro electronic systems via multifunctional additive manufacturing
JP6582456B2 (en) Additive manufacturing apparatus and additive manufacturing method
JP2020077661A (en) Circuit formation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14845102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14845102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP