WO2015033786A1 - Fuel supply system for gas turbine engine - Google Patents
Fuel supply system for gas turbine engine Download PDFInfo
- Publication number
- WO2015033786A1 WO2015033786A1 PCT/JP2014/071841 JP2014071841W WO2015033786A1 WO 2015033786 A1 WO2015033786 A1 WO 2015033786A1 JP 2014071841 W JP2014071841 W JP 2014071841W WO 2015033786 A1 WO2015033786 A1 WO 2015033786A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pump
- fuel
- fuel supply
- electric motor
- passage
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 77
- 238000002485 combustion reaction Methods 0.000 claims abstract description 30
- 238000007599 discharging Methods 0.000 claims abstract 4
- 238000001514 detection method Methods 0.000 description 14
- 238000006073 displacement reaction Methods 0.000 description 8
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 230000002265 prevention Effects 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 239000002828 fuel tank Substances 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23K—FEEDING FUEL TO COMBUSTION APPARATUS
- F23K5/00—Feeding or distributing other fuel to combustion apparatus
- F23K5/02—Liquid fuel
- F23K5/06—Liquid fuel from a central source to a plurality of burners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/22—Fuel supply systems
- F02C7/236—Fuel delivery systems comprising two or more pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23K—FEEDING FUEL TO COMBUSTION APPARATUS
- F23K5/00—Feeding or distributing other fuel to combustion apparatus
- F23K5/02—Liquid fuel
- F23K5/04—Feeding or distributing systems using pumps
Definitions
- the present invention relates to a fuel supply system that supplies fuel to a gas turbine engine.
- Patent Document 1 discloses a fuel supply system for a gas turbine engine.
- the fuel supply system includes a positive displacement pump directly connected to the engine.
- the positive displacement pump is driven by the power of the engine, thereby supplying fuel to the combustion chamber.
- a boost pump is provided upstream of this positive displacement pump.
- This boost pump boosts the fuel stored in the tank and guides it to the positive displacement pump.
- the positive displacement pump can reliably discharge the fuel.
- This boost pump also uses an engine as a drive source, like the positive displacement pump. Therefore, when the engine is driven, both pumps are operated and fuel is supplied to the combustion chamber.
- the boost pump when the discharge amount from the positive displacement pump is small, such as when the engine is started, that is, when the engine shaft rotates at a low speed, the boost pump also operates at a low speed. Therefore, the boosting action by the boost pump becomes insufficient, and there is a possibility that fuel cannot be discharged normally from the positive displacement pump. In addition, when each pump is operating in the low rotation region, oil film formation on the sliding surface between the pump shaft and the bearing becomes insufficient, and the bearing may be worn or deteriorated.
- An object of the present invention is to provide a fuel supply system for a gas turbine engine that can more reliably supply fuel in a low rotation region such as when the engine is started and can reduce wear and deterioration of each component. .
- One aspect of the present invention is a fuel supply system for a gas turbine engine that supplies fuel to a combustion chamber of an engine, the fuel supply passage being connected to a combustion nozzle that supplies fuel to the combustion chamber, and a fuel supply passage.
- a first pump that discharges fuel into the combustion chamber, a first drive source that drives the first pump, and a fuel supply passage that discharges fuel into the combustion chamber, which has a larger capacity than the first pump.
- the second pump, a second drive source for driving the second pump, and the first pump and the second pump are connected to boost the fuel stored in the tank to the suction side of the first pump and the second pump.
- a boost pump to be supplied, the boost pump being driven by a first drive source.
- either one or both of the first drive source and the second drive source may be an electric motor.
- the present invention it is possible to more reliably supply fuel in a low rotation region such as when the engine is started, and to reduce wear and deterioration of each component.
- FIG. 1 is a schematic cross-sectional view of a turbofan engine.
- FIG. 2 is a diagram illustrating a fuel supply system.
- FIG. 3 is a flowchart for explaining the control at the time of starting the turbofan engine.
- FIG. 4 is a flowchart for explaining over-rotation prevention control.
- FIG. 5 is a flowchart for explaining a modification of the overspeed prevention control.
- FIG. 1 is a schematic cross-sectional view of a turbofan engine.
- the turbofan engine 1 includes an outer cowl 3a provided with a fan 2 and an inner cowl 3b located in the outer cowl 3a.
- the inner cowl 3 b includes a compressor 4 that compresses the intake air sucked by the fan 2, a combustion chamber 5 that burns the compressed air compressed by the compressor 4, and an exhaust gas generated in the combustion process of the combustion chamber 5.
- a high-pressure turbine 6a and a low-pressure turbine 6b that convert the jet power of the jet into rotational energy are provided.
- Rotational energy converted by the high-pressure turbine 6a is transmitted to the rotor 8 of the compressor 4 through the shaft 7a, and the rotor 8 rotates.
- the compressor 4 is operated by the rotation of the rotor 8.
- the rotational energy converted by the low-pressure turbine 6b is transmitted to the fan 2 via the shaft 7b provided in the shaft 7a, and the fan 2 is activated.
- the compressor 4 includes an annular flow path 9 formed by an interval between the inner cowl 3 b and the rotor 8.
- the annular flow path 9 is gradually narrowed from the upstream side where air is sucked toward the downstream side connected to the combustion chamber 5.
- the intake air sucked into the compressor 4 is gradually increased in pressure as it is led from the upstream side to the downstream side of the annular flow path 9.
- the combustion chamber 5 is supplied with fuel from the combustion nozzle 11 in order to burn the compressed air whose pressure has been increased by the compressor 4.
- the fuel supply system which supplies a fuel to the combustion chamber 5 is demonstrated.
- FIG. 2 is a diagram illustrating the fuel supply system 10 in the present embodiment.
- the fuel tank T stores fuel.
- the suction side of the boost pump 13 is connected to the fuel tank T via the suction passage 12.
- the boost pump 13 is constituted by an impeller pump, and a supply passage 14 is connected to the discharge side thereof. Thereby, the fuel stored in the fuel tank T is boosted by the boost pump 13 and guided to the supply passage 14.
- the first pump P1 and the second pump P2 are connected to the supply passage 14 in parallel.
- the first pump P1 is a gear pump.
- the capacity of the second pump P2 is larger than that of the first pump P1. More specifically, the suction passage of the first pump P1 and the suction side of the second pump P2 are connected to the supply passage 14, and the fuel boosted by the boost pump 13 is guided to both pumps P1 and P2. It is burned.
- the first passage 15 is connected to the discharge side of the first pump P1, and the second passage 16 is connected to the discharge side of the second pump P2. These passages 15 and 16 are provided with check valves 17 and 18, respectively. Both the passages 15 and 16 join a joining passage 19 connected to the combustion nozzle 11 on the downstream side of both check valves 17 and 18.
- a pressurizing valve 20 is provided in the merge passage 19. The fuel discharged from the first pump P1 or the second pump P2 is pressurized to a set pressure or higher by the pressurizing valve 20 and guided to the combustion nozzle 11.
- the first passage 15, the second passage 16 and the merging passage 19 constitute a fuel supply passage.
- a reflux passage 21 is connected to the junction passage 19.
- One end of the reflux passage 21 is connected to the merging passage 19 upstream of the pressurizing valve 20, and the other end is connected to the supply passage 14.
- the reflux passage 21 is provided with a first shut-off valve 22.
- the first shut-off valve 22 is an electromagnetic valve that communicates the junction passage 19 and the supply passage 14 or shuts off the communication.
- the first shut-off valve 22 is normally maintained in a closed state that blocks communication between the merging passage 19 and the supply passage 14, and is displaced from the closed state to the opened state only when energization is controlled. 19 communicates with the supply passage 14.
- a second shut-off valve 23 is provided between the pressurizing valve 20 and the combustion nozzle 11 in the merge passage 19.
- the second shut-off valve 23 is composed of an electromagnetic valve.
- the second shut-off valve 23 is normally maintained in an open state that allows the merge passage 19 and the combustion nozzle 11 to communicate with each other, and is displaced from the open state to the closed state only when energization is controlled. The communication with the nozzle 11 is blocked.
- a return passage 24 is connected to the second shutoff valve 23. When the second shutoff valve 23 is displaced to the closed state, the fuel guided to the merge passage 19 returns to the supply passage 14 via the return passage 24.
- reference numeral 25 denotes a differential pressure gauge for detecting the differential pressure before and after the pressurizing valve 20
- reference numeral 26 denotes a relief valve.
- a first electric motor M1 is provided as a drive source for the first pump P1.
- a second electric motor M2 is provided as a drive source for the second pump P2.
- a boost pump 13 is connected to the output shaft of the first electric motor M1 coaxially with the first pump P1. That is, the first electric motor M1 functions as a drive source for the two pumps, the first pump P1 and the boost pump 13. By driving the first electric motor M1, both the boost pump 13 and the first pump P1 operate simultaneously.
- the first electric motor M1 is controlled by the controller C1.
- the second electric motor M2 is controlled by the controller C2.
- General digital engine control (Full Authority Digital Engine Control, hereinafter referred to as “FADEC”) outputs control signals to both controllers C1 and C2.
- FADEC Full Authority Digital Engine Control
- Various detection signals and operation signals related to the turbofan engine 1 including the differential pressure before and after the pressurization valve 20 detected by the differential pressure gauge 25 are input to the FADEC.
- the FADEC controls the electric motors M1 and M2 and the second shut-off valve 23 based on various input signals to control the supply flow rate to the combustion nozzle 11.
- the fuel supply system 10 of this embodiment includes a rotational speed detection sensor 27 that detects the rotational speed of the shaft 7a in the turbofan engine 1.
- a detection signal detected by the rotation speed detection sensor 27 is input to an over speed limiter (hereinafter referred to as “OSL”).
- OSL is an electronic control system independent of FADEC. The OSL monitors whether or not the rotational speed of the shaft 7a exceeds a predetermined threshold value, and when it is determined that the shaft number exceeds the threshold value, the OSL controls the energization of the first shutoff valve 22 to displace it.
- a control signal for shutting off the power supply of the second electric motor M2 is output to the controller C2, and control is performed to stop the driving of the second electric motor M2.
- FIG. 3 is a flowchart illustrating control at the time of starting the turbofan engine 1 by FADEC.
- Step S1 First, when an operation signal for starting the turbofan engine 1 is input, the FADEC outputs a signal for driving the first electric motor M1 to the controller C1.
- Step S2 the FADEC monitors whether the rotational speed of the shaft 7a input from the rotational speed detection sensor 27 has reached a predetermined number or more.
- Step S3 If it is determined in step S2 that the rotational speed of the shaft 7a has reached a predetermined number or more, FADEC outputs a signal for driving the second electric motor M2.
- the turbofan engine 1 when the turbofan engine 1 is started, first, the first electric motor M1 is driven, and the boost pump 13 and the first pump P1 operate simultaneously.
- the first pump P1 has a capacity that can secure a flow rate required at the time of starting the turbofan engine 1 during rated rotation.
- the 1st electric motor M1 drives the 1st pump P1 from which the rated rotation speed of the 1st pump P1 is ensured from the time of the start of the turbofan engine 1.
- the boost pump 13 is designed so as to ensure a rotation speed capable of sufficiently boosting the fuel by driving the first electric motor M1 at this time.
- the fuel sufficiently boosted by the boost pump 13 is guided to the suction side of the first pump P1, and the fuel is surely supplied from the first pump P1 to the first passage 15. Is supplied.
- the first pump P1 ensures a rated rotational speed. Therefore, a sufficient oil film is formed on the sliding surface between the pump shaft and the bearing, and there is no possibility that the bearing is worn or deteriorated. In other words, even when the turbofan engine 1 is started, the first pump P1 does not continuously operate in the low rotation region. That is, the trouble which arises by the action
- the second pump P2 operates when the rotational speed of the shaft 7a exceeds a predetermined number. At this time, the first electric motor M1 is still driven. Therefore, the fuel sufficiently boosted by the boost pump 13 is also guided to the suction side of the second pump P2, and the fuel can be reliably discharged from the second pump P2.
- FADEC controls the supply flow rate based on various detection signals and operation signals.
- FADEC can perform optimal fuel supply by appropriately controlling the rotational speeds of both electric motors M1 and M2. Therefore, unlike the prior art, a metering valve for metering the fuel to be supplied to the combustion chamber 5 becomes unnecessary.
- FIG. 4 is a flowchart for explaining over-rotation prevention control by OSL.
- Step S11 When the turbofan engine 1 is started, the OSL constantly monitors whether or not the rotational speed of the shaft 7a input from the rotational speed detection sensor 27 has become a threshold value or more.
- Step S12 In step S11, when it is determined that the rotational speed of the shaft 7a input from the rotational speed detection sensor 27 has become equal to or greater than the threshold value, the OSL controls the energization of the first shutoff valve 22 to open it.
- Step S13 the OSL outputs a signal for shutting off the power supply of the second electric motor M2 to the controller C2.
- the second shutoff valve 23 is controlled to be closed by FADEC. Yes.
- the turbofan engine 1 when the turbofan engine 1 is in an overspeed state, only the second electric motor M2 is controlled to stop, and the first electric motor M1 is continuously driven.
- the power source of the first electric motor M1 may be shut off by FADEC or OSL.
- the first pump P1 since the first pump P1 has a smaller capacity than the second pump P2, even if fuel is supplied from the first pump P1 during the slight operation delay time generated in the first shutoff valve 22, the second electric motor It does not diminish the effect of stopping the driving of the motor M2.
- the OSL when the turbofan engine 1 is in an overspeed state, the OSL always cuts off the power supply of the second electric motor M2.
- the OSL may perform the following control.
- FIG. 5 is a flowchart for explaining a modification of the overspeed prevention control by OSL. Note that the processing by the OSL is repeatedly performed every predetermined time (for example, several milliseconds).
- Step S21 When the turbofan engine 1 is started, the OSL determines whether or not the rotational speed of the shaft 7a input from the rotational speed detection sensor 27 has become equal to or higher than the first threshold value. If it is determined that the rotational speed is not equal to or greater than the first threshold, the OSL ends the process.
- Step S22 If it is determined in step S21 that the rotational speed of the shaft 7a input from the rotational speed detection sensor 27 has become equal to or higher than the first threshold value, the OSL controls the energization of the first shutoff valve 22 to open it. .
- Step S23 the OSL determines whether or not the rotational speed of the shaft 7a input from the rotational speed detection sensor 27 is equal to or higher than a second threshold value that is higher than the rotational speed set as the first threshold value. judge. As a result, when it is determined that the rotation speed of the shaft 7a input from the rotation speed detection sensor 27 is equal to or greater than the second threshold value, the process proceeds to step S24, and when it is determined that the rotation speed is not equal to or greater than the second threshold value. The process ends.
- Step S24 If it is determined in step S23 that the rotational speed of the shaft 7a input from the rotational speed detection sensor 27 has become equal to or greater than the second threshold, the OSL shuts off the power supply of the second electric motor M2.
- the first shut-off valve 22 is controlled to be opened.
- the power supply of the second electric motor M2 is cut off only when the second threshold value is exceeded. According to this process, when the urgency to stop the fuel supply is low, or when it is considered that the overspeed state is avoided and the normal control is restored in a relatively short time (the second threshold is exceeded and the second threshold is exceeded). In the case of less than the threshold), the driving of the second electric motor M2 is continued. Therefore, when the normal control is restored, the fuel supply can be restarted immediately.
- the urgency is high, the power supply of the second electric motor M2 is cut off at the same time. That is, the fuel supply can be stopped instantaneously, and the overspeed state can be avoided earlier.
- the flow rate may be controlled so that the fuel supply to the combustion nozzle 11 is completely shut off when the first shut-off valve 22 is open.
- a throttle may be formed in the open state of the first shutoff valve 22 to control the flow rate so as to ensure a constant flow rate for the combustion nozzle 11.
- a constant flow rate can be secured even when the first shut-off valve 22 is open. Conceivable.
- the fuel supply of some turbofan engines 1 is completely shut off when the first shutoff valve 22 is open.
- the second threshold value is set to the rotation number that is determined as the over-rotation state
- the first threshold value is set to a rotation number that is smaller than the rotation number that is determined as the over-rotation state.
- a constant flow rate is ensured even when the first cutoff valve 22 is open. In this case, it is possible to prevent an overspeed state while maintaining a constant thrust.
- the fuel supply system 10 is not limited to the turbofan engine but can be widely applied to gas turbine engines used for other purposes. It is.
- the first electric motor M1 and the second electric motor M2 are used as drive sources for the first pump P1 and the second pump P2, respectively.
- the drive source of both pumps is not limited to an electric motor. Either one of the drive sources of both pumps P1 and P2 may be an electric motor. Moreover, both drive sources of both pumps P1 and P2 may be configured by a drive device other than the electric motor.
- the boost pump 13 is comprised by the impeller pump, and all of the 1st pump P1 and the 2nd pump P2 are comprised by the gear pump.
- these pump types are not particularly limited to impeller pumps and gear pumps. In addition, these pumps may be volumetric or non-volumetric.
- two pumps for supplying fuel to the combustion nozzle and a boost pump for boosting and guiding the fuel to the suction side of both of these two pumps are provided, and the small capacity of the two pumps
- the pump and the boost pump may be configured to operate with the same drive source.
- the present invention can be used in a fuel supply system that supplies fuel to a gas turbine engine.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Control Of Turbines (AREA)
Abstract
A fuel supply system for a gas turbine engine is provided with: a confluence passage (19) connected to a combustion nozzle (11); a first pump (P1) for discharging fuel into the confluence passage (19); a first electric motor (M1) for driving the first pump (P1); a second pump (P2) for discharging fuel into the confluence passage (19) and having a greater capacity than the first pump (P1); a second electric motor (M2) for driving the second pump (P2); and a boost pump (13) which is connected to both the first pump (P1) and the second pump (P2), increases the pressure of fuel stored in a tank (T), and supplies the fuel to the suction side of both the first pump (P1) and the second pump (P2). The boost pump (13) is driven by the first electric motor (M1).
Description
本発明は、ガスタービンエンジンに燃料を供給する燃料供給システムに関する。
The present invention relates to a fuel supply system that supplies fuel to a gas turbine engine.
特許文献1は、ガスタービンエンジン用の燃料供給システムを開示している。この燃料供給システムは、エンジンに直結された容積式ポンプを備える。エンジンの動力によって容積式ポンプは駆動され、これにより燃焼室に燃料が供給される。
Patent Document 1 discloses a fuel supply system for a gas turbine engine. The fuel supply system includes a positive displacement pump directly connected to the engine. The positive displacement pump is driven by the power of the engine, thereby supplying fuel to the combustion chamber.
また、この容積式ポンプよりも上流側にはブーストポンプが設けられている。このブーストポンプは、タンクに貯留される燃料を昇圧して上記の容積式ポンプに導く。これによって容積式ポンプが確実に燃料を吐出することができる。このブーストポンプも容積式ポンプと同様にエンジンを駆動源として用いている。従って、エンジンが駆動されると、両ポンプが作動して燃焼室に燃料が供給されることとなる。
Also, a boost pump is provided upstream of this positive displacement pump. This boost pump boosts the fuel stored in the tank and guides it to the positive displacement pump. As a result, the positive displacement pump can reliably discharge the fuel. This boost pump also uses an engine as a drive source, like the positive displacement pump. Therefore, when the engine is driven, both pumps are operated and fuel is supplied to the combustion chamber.
上記の燃料供給システムによれば、エンジンの始動時など、容積式ポンプからの吐出量が小さい場合、すなわち、エンジンのシャフトの低回転時においては、ブーストポンプも低回転で作動する。そのため、ブーストポンプによる昇圧作用が不十分となり、容積式ポンプから正常に燃料を吐出することができなくなるおそれがある。また、各ポンプが低回転領域で作動している場合は、ポンプ軸とベアリングとの摺動面における油膜形成が不十分となり、軸受が摩耗、劣化するおそれがある。
According to the above fuel supply system, when the discharge amount from the positive displacement pump is small, such as when the engine is started, that is, when the engine shaft rotates at a low speed, the boost pump also operates at a low speed. Therefore, the boosting action by the boost pump becomes insufficient, and there is a possibility that fuel cannot be discharged normally from the positive displacement pump. In addition, when each pump is operating in the low rotation region, oil film formation on the sliding surface between the pump shaft and the bearing becomes insufficient, and the bearing may be worn or deteriorated.
本発明の目的は、エンジン始動時などの低回転領域における燃料供給をより確実にし、また、各部品の摩耗、劣化を低減することができるガスタービンエンジン用の燃料供給システムを提供することである。
An object of the present invention is to provide a fuel supply system for a gas turbine engine that can more reliably supply fuel in a low rotation region such as when the engine is started and can reduce wear and deterioration of each component. .
本発明の一態様はエンジンの燃焼室に燃料を供給するガスタービンエンジン用の燃料供給システムであって、燃焼室に燃料を供給する燃焼ノズルに接続された燃料供給通路と、燃料供給通路を介して前記燃焼室に燃料を吐出する第1ポンプと、第1ポンプを駆動する第1の駆動源と、燃料供給通路を介して前記燃焼室に燃料を吐出し、第1ポンプよりも大容量の第2ポンプと、第2ポンプを駆動する第2の駆動源と、第1ポンプおよび第2ポンプに接続され、タンクに貯留される燃料を昇圧して第1ポンプおよび第2ポンプの吸入側に供給するブーストポンプと、を備え、ブーストポンプは、第1の駆動源によって駆動されることを要旨とする。
One aspect of the present invention is a fuel supply system for a gas turbine engine that supplies fuel to a combustion chamber of an engine, the fuel supply passage being connected to a combustion nozzle that supplies fuel to the combustion chamber, and a fuel supply passage. A first pump that discharges fuel into the combustion chamber, a first drive source that drives the first pump, and a fuel supply passage that discharges fuel into the combustion chamber, which has a larger capacity than the first pump. The second pump, a second drive source for driving the second pump, and the first pump and the second pump are connected to boost the fuel stored in the tank to the suction side of the first pump and the second pump. A boost pump to be supplied, the boost pump being driven by a first drive source.
また、第1の駆動源および第2の駆動源のいずれか一方または双方が電動モータであってもよい。
Further, either one or both of the first drive source and the second drive source may be an electric motor.
本発明によれば、特に、エンジン始動時などの低回転領域における燃料供給をより確実にし、また、各部品の摩耗、劣化を低減することができる。
According to the present invention, it is possible to more reliably supply fuel in a low rotation region such as when the engine is started, and to reduce wear and deterioration of each component.
以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating the understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do.
ここでは、ガスタービンエンジンであるターボファンエンジンの概略構成について説明した後、当該ターボファンエンジンの燃焼室に燃料を供給するための燃料供給システムについて説明する。
Here, after describing a schematic configuration of a turbofan engine that is a gas turbine engine, a fuel supply system for supplying fuel to a combustion chamber of the turbofan engine will be described.
図1は、ターボファンエンジンの概略断面図である。この図に示すように、ターボファンエンジン1は、ファン2が設けられたアウターカウル3aと、このアウターカウル3a内に位置するインナーカウル3bとを備えている。インナーカウル3bには、ファン2によって吸入された吸入空気を圧縮する圧縮機4と、この圧縮機4によって圧縮された圧縮空気を燃焼する燃焼室5と、この燃焼室5の燃焼工程で生じる排気ジェットの噴出力を回転エネルギーに変換する高圧タービン6aおよび低圧タービン6bと、を備えている。
FIG. 1 is a schematic cross-sectional view of a turbofan engine. As shown in this figure, the turbofan engine 1 includes an outer cowl 3a provided with a fan 2 and an inner cowl 3b located in the outer cowl 3a. The inner cowl 3 b includes a compressor 4 that compresses the intake air sucked by the fan 2, a combustion chamber 5 that burns the compressed air compressed by the compressor 4, and an exhaust gas generated in the combustion process of the combustion chamber 5. A high-pressure turbine 6a and a low-pressure turbine 6b that convert the jet power of the jet into rotational energy are provided.
この高圧タービン6aによって変換された回転エネルギーは、シャフト7aを介して圧縮機4のロータ8に伝達され、ロータ8が回転する。このロータ8の回転によって圧縮機4が作動する。また、低圧タービン6bによって変換された回転エネルギーは、シャフト7a内に設けられたシャフト7bを介してファン2に伝達され、ファン2が作動する。
Rotational energy converted by the high-pressure turbine 6a is transmitted to the rotor 8 of the compressor 4 through the shaft 7a, and the rotor 8 rotates. The compressor 4 is operated by the rotation of the rotor 8. The rotational energy converted by the low-pressure turbine 6b is transmitted to the fan 2 via the shaft 7b provided in the shaft 7a, and the fan 2 is activated.
圧縮機4は、インナーカウル3bとロータ8との間隔によって形成される環状流路9を備えている。この環状流路9は、空気が吸入される上流側から、燃焼室5に接続される下流側に向けて徐々に狭くなっている。圧縮機4に吸入された吸入空気は、環状流路9の上流側から下流側に導かれるにつれて徐々に昇圧される。
The compressor 4 includes an annular flow path 9 formed by an interval between the inner cowl 3 b and the rotor 8. The annular flow path 9 is gradually narrowed from the upstream side where air is sucked toward the downstream side connected to the combustion chamber 5. The intake air sucked into the compressor 4 is gradually increased in pressure as it is led from the upstream side to the downstream side of the annular flow path 9.
上記のように、圧縮機4によって昇圧された圧縮空気を燃焼するために、燃焼室5には、燃焼ノズル11から燃料が供給される。以下では、燃焼室5に燃料を供給する燃料供給システムについて説明する。
As described above, the combustion chamber 5 is supplied with fuel from the combustion nozzle 11 in order to burn the compressed air whose pressure has been increased by the compressor 4. Below, the fuel supply system which supplies a fuel to the combustion chamber 5 is demonstrated.
図2は、本実施形態における燃料供給システム10を説明する図である。燃料タンクTは燃料を貯留する。この図に示すように、燃料タンクTには、吸入通路12を介してブーストポンプ13の吸入側が接続されている。このブーストポンプ13はインペラポンプによって構成されており、その吐出側には供給通路14が接続されている。これにより、燃料タンクTに貯留される燃料は、ブーストポンプ13によって昇圧されて供給通路14に導かれる。
FIG. 2 is a diagram illustrating the fuel supply system 10 in the present embodiment. The fuel tank T stores fuel. As shown in this figure, the suction side of the boost pump 13 is connected to the fuel tank T via the suction passage 12. The boost pump 13 is constituted by an impeller pump, and a supply passage 14 is connected to the discharge side thereof. Thereby, the fuel stored in the fuel tank T is boosted by the boost pump 13 and guided to the supply passage 14.
供給通路14には、第1ポンプP1および第2ポンプP2が並列して接続されている。第1ポンプP1はギヤポンプによって構成される。第2ポンプP2の容量は第1ポンプP1よりも大きい。より詳細には、供給通路14には、第1ポンプP1の吸入側、および、第2ポンプP2の吸入側が接続されており、ブーストポンプ13によって昇圧された燃料は、両ポンプP1、P2に導かれる。
The first pump P1 and the second pump P2 are connected to the supply passage 14 in parallel. The first pump P1 is a gear pump. The capacity of the second pump P2 is larger than that of the first pump P1. More specifically, the suction passage of the first pump P1 and the suction side of the second pump P2 are connected to the supply passage 14, and the fuel boosted by the boost pump 13 is guided to both pumps P1 and P2. It is burned.
第1ポンプP1の吐出側には、第1通路15が接続されており、第2ポンプP2の吐出側には、第2通路16が接続されている。これら両通路15、16には、それぞれチェックバルブ17、18が設けられている。両通路15、16は、両チェックバルブ17、18の下流側において、燃焼ノズル11に接続された合流通路19に合流する。合流通路19には、加圧バルブ20が設けられている。第1ポンプP1または第2ポンプP2から吐出される燃料は、加圧バルブ20によって設定圧以上に加圧されて燃焼ノズル11に導かれる。なお、第1通路15、第2通路16および合流通路19によって、燃料供給通路が構成されている。
The first passage 15 is connected to the discharge side of the first pump P1, and the second passage 16 is connected to the discharge side of the second pump P2. These passages 15 and 16 are provided with check valves 17 and 18, respectively. Both the passages 15 and 16 join a joining passage 19 connected to the combustion nozzle 11 on the downstream side of both check valves 17 and 18. A pressurizing valve 20 is provided in the merge passage 19. The fuel discharged from the first pump P1 or the second pump P2 is pressurized to a set pressure or higher by the pressurizing valve 20 and guided to the combustion nozzle 11. The first passage 15, the second passage 16 and the merging passage 19 constitute a fuel supply passage.
合流通路19には、還流通路21が接続されている。この還流通路21は、一端が加圧バルブ20よりも上流側の合流通路19に接続され、他端が供給通路14に接続されている。そして、この還流通路21には、第1遮断弁22が設けられている。第1遮断弁22は、合流通路19と供給通路14とを連通したり、あるいはその連通を遮断したりする電磁弁からなる。この第1遮断弁22は、通常、合流通路19と供給通路14との連通を遮断する閉状態に維持されており、通電制御された場合にのみ、閉状態から開状態に変位して合流通路19と供給通路14とを連通させる。
A reflux passage 21 is connected to the junction passage 19. One end of the reflux passage 21 is connected to the merging passage 19 upstream of the pressurizing valve 20, and the other end is connected to the supply passage 14. The reflux passage 21 is provided with a first shut-off valve 22. The first shut-off valve 22 is an electromagnetic valve that communicates the junction passage 19 and the supply passage 14 or shuts off the communication. The first shut-off valve 22 is normally maintained in a closed state that blocks communication between the merging passage 19 and the supply passage 14, and is displaced from the closed state to the opened state only when energization is controlled. 19 communicates with the supply passage 14.
また、合流通路19において、加圧バルブ20と燃焼ノズル11との間には、第2遮断弁23が設けられている。この第2遮断弁23は電磁弁からなる。第2遮断弁23は、通常、合流通路19と燃焼ノズル11とを連通させる開状態に維持されており、通電制御された場合にのみ、開状態から閉状態に変位して合流通路19と燃焼ノズル11との連通を遮断する。また、第2遮断弁23には、リターン通路24が接続されている。第2遮断弁23が閉状態に変位した際は、合流通路19に導かれた燃料が、リターン通路24を介して供給通路14に戻る。
Further, a second shut-off valve 23 is provided between the pressurizing valve 20 and the combustion nozzle 11 in the merge passage 19. The second shut-off valve 23 is composed of an electromagnetic valve. The second shut-off valve 23 is normally maintained in an open state that allows the merge passage 19 and the combustion nozzle 11 to communicate with each other, and is displaced from the open state to the closed state only when energization is controlled. The communication with the nozzle 11 is blocked. A return passage 24 is connected to the second shutoff valve 23. When the second shutoff valve 23 is displaced to the closed state, the fuel guided to the merge passage 19 returns to the supply passage 14 via the return passage 24.
なお、図中、符号25は、加圧バルブ20の前後の差圧を検出する差圧計、符号26はリリーフ弁を示している。
In the figure, reference numeral 25 denotes a differential pressure gauge for detecting the differential pressure before and after the pressurizing valve 20, and reference numeral 26 denotes a relief valve.
本実施形態においては、第1ポンプP1の駆動源として第1電動モータM1が設けられている。第2ポンプP2の駆動源として第2電動モータM2が設けられている。また、第1電動モータM1の出力軸には、第1ポンプP1と同軸上にブーストポンプ13が接続されている。つまり、第1電動モータM1は、第1ポンプP1およびブーストポンプ13の2つのポンプの駆動源として機能する。第1電動モータM1を駆動することにより、ブーストポンプ13と第1ポンプP1との双方が同時に作動する。
In the present embodiment, a first electric motor M1 is provided as a drive source for the first pump P1. A second electric motor M2 is provided as a drive source for the second pump P2. A boost pump 13 is connected to the output shaft of the first electric motor M1 coaxially with the first pump P1. That is, the first electric motor M1 functions as a drive source for the two pumps, the first pump P1 and the boost pump 13. By driving the first electric motor M1, both the boost pump 13 and the first pump P1 operate simultaneously.
第1電動モータM1は、コントローラC1によって制御される。第2電動モータM2は、コントローラC2によって制御される。全般デジタルエンジン制御(Full Authority Digital Engine Control、以下「FADEC」という)は、これら両コントローラC1、C2に制御信号を出力する。このFADECには、上記した差圧計25によって検出される加圧バルブ20前後の差圧をはじめとするターボファンエンジン1に係る各種の検出信号や操作信号等が入力される。FADECは、各種の入力信号に基づいて、両電動モータM1、M2や、第2遮断弁23を制御して、燃焼ノズル11への供給流量を制御する。
The first electric motor M1 is controlled by the controller C1. The second electric motor M2 is controlled by the controller C2. General digital engine control (Full Authority Digital Engine Control, hereinafter referred to as “FADEC”) outputs control signals to both controllers C1 and C2. Various detection signals and operation signals related to the turbofan engine 1 including the differential pressure before and after the pressurization valve 20 detected by the differential pressure gauge 25 are input to the FADEC. The FADEC controls the electric motors M1 and M2 and the second shut-off valve 23 based on various input signals to control the supply flow rate to the combustion nozzle 11.
図1および図2に示すように、本実施形態の燃料供給システム10は、ターボファンエンジン1におけるシャフト7aの回転数を検出する回転数検出センサ27を備えている。この回転数検出センサ27によって検出される検出信号は、オーバー・スピード・リミッタ(以下「OSL」という)に入力される。OSLは、FADECとは独立した電子制御システムである。OSLは、シャフト7aの回転数が所定の閾値を上回ったか否かを監視しており、閾値を上回ったと判定した際に、第1遮断弁22を通電制御して開状態に変位させる。また、これと同時に、第2電動モータM2の電源を遮断する制御信号をコントローラC2に出力し、第2電動モータM2の駆動を停止させるように制御を行う。
As shown in FIGS. 1 and 2, the fuel supply system 10 of this embodiment includes a rotational speed detection sensor 27 that detects the rotational speed of the shaft 7a in the turbofan engine 1. A detection signal detected by the rotation speed detection sensor 27 is input to an over speed limiter (hereinafter referred to as “OSL”). OSL is an electronic control system independent of FADEC. The OSL monitors whether or not the rotational speed of the shaft 7a exceeds a predetermined threshold value, and when it is determined that the shaft number exceeds the threshold value, the OSL controls the energization of the first shutoff valve 22 to displace it. At the same time, a control signal for shutting off the power supply of the second electric motor M2 is output to the controller C2, and control is performed to stop the driving of the second electric motor M2.
次に、上記の構成からなる燃料供給システム10の作用について説明する。図3は、FADECによるターボファンエンジン1の始動時の制御を説明するフローチャートである。
Next, the operation of the fuel supply system 10 having the above configuration will be described. FIG. 3 is a flowchart illustrating control at the time of starting the turbofan engine 1 by FADEC.
(ステップS1)まず、ターボファンエンジン1を始動する操作信号が入力されると、FADECは、コントローラC1に対して第1電動モータM1を駆動する信号を出力する。
(Step S1) First, when an operation signal for starting the turbofan engine 1 is input, the FADEC outputs a signal for driving the first electric motor M1 to the controller C1.
(ステップS2)次に、FADECは、回転数検出センサ27から入力されるシャフト7aの回転数が所定数以上になったかを監視する。
(Step S2) Next, the FADEC monitors whether the rotational speed of the shaft 7a input from the rotational speed detection sensor 27 has reached a predetermined number or more.
(ステップS3)上記ステップS2において、シャフト7aの回転数が所定数以上になったと判定した場合には、FADECは、第2電動モータM2を駆動する信号を出力する。
(Step S3) If it is determined in step S2 that the rotational speed of the shaft 7a has reached a predetermined number or more, FADEC outputs a signal for driving the second electric motor M2.
上記のように、ターボファンエンジン1の始動時には、まず、第1電動モータM1が駆動され、ブーストポンプ13と第1ポンプP1とが同時に作動する。第1ポンプP1は、ターボファンエンジン1の始動時に必要となる流量を、定格回転時に確保することができる程度の容量をもつ。そして、第1電動モータM1は、ターボファンエンジン1の始動時から、第1ポンプP1の定格回転数が確保される第1ポンプP1を駆動する。ブーストポンプ13は、このときの第1電動モータM1の駆動によって、燃料を十分に昇圧可能な回転数を確保するように設計されている。
As described above, when the turbofan engine 1 is started, first, the first electric motor M1 is driven, and the boost pump 13 and the first pump P1 operate simultaneously. The first pump P1 has a capacity that can secure a flow rate required at the time of starting the turbofan engine 1 during rated rotation. And the 1st electric motor M1 drives the 1st pump P1 from which the rated rotation speed of the 1st pump P1 is ensured from the time of the start of the turbofan engine 1. The boost pump 13 is designed so as to ensure a rotation speed capable of sufficiently boosting the fuel by driving the first electric motor M1 at this time.
これにより、ターボファンエンジン1の始動時において、第1ポンプP1の吸入側には、ブーストポンプ13によって十分に昇圧された燃料が導かれるとともに、第1ポンプP1から第1通路15に確実に燃料が供給される。一方、第1ポンプP1は、定格回転数を確保する。従って、ポンプ軸とベアリングとの摺動面において十分な油膜形成がなされ、軸受が摩耗、劣化するおそれがなくなる。換言すれば、ターボファンエンジン1の始動時においても、第1ポンプP1が低回転領域で連続作動することがない。つまり、低回転領域でのポンプの作動によって生じる不具合を解消することができる。
Thus, when the turbofan engine 1 is started, the fuel sufficiently boosted by the boost pump 13 is guided to the suction side of the first pump P1, and the fuel is surely supplied from the first pump P1 to the first passage 15. Is supplied. On the other hand, the first pump P1 ensures a rated rotational speed. Therefore, a sufficient oil film is formed on the sliding surface between the pump shaft and the bearing, and there is no possibility that the bearing is worn or deteriorated. In other words, even when the turbofan engine 1 is started, the first pump P1 does not continuously operate in the low rotation region. That is, the trouble which arises by the action | operation of the pump in a low rotation area | region can be eliminated.
シャフト7aの回転数が所定数以上になったところで第2ポンプP2が作動する。このとき、第1電動モータM1は駆動したままの状態にある。したがって、第2ポンプP2の吸入側にも、ブーストポンプ13によって十分に昇圧された燃料が導かれ、第2ポンプP2から確実に燃料を吐出することできる。
The second pump P2 operates when the rotational speed of the shaft 7a exceeds a predetermined number. At this time, the first electric motor M1 is still driven. Therefore, the fuel sufficiently boosted by the boost pump 13 is also guided to the suction side of the second pump P2, and the fuel can be reliably discharged from the second pump P2.
FADECは、各種の検出信号や操作信号に基づいて供給流量を制御する。FADECは、両電動モータM1、M2の回転数を適宜制御することで、最適な燃料供給を行うことができる。したがって、従来のように、燃焼室5に供給すべき燃料を計量する計量弁が不要となる。
FADEC controls the supply flow rate based on various detection signals and operation signals. FADEC can perform optimal fuel supply by appropriately controlling the rotational speeds of both electric motors M1 and M2. Therefore, unlike the prior art, a metering valve for metering the fuel to be supplied to the combustion chamber 5 becomes unnecessary.
図4は、OSLによる過回転防止制御を説明するフローチャートである。
FIG. 4 is a flowchart for explaining over-rotation prevention control by OSL.
(ステップS11)
OSLは、ターボファンエンジン1が始動すると、回転数検出センサ27から入力されるシャフト7aの回転数が閾値以上になったか否かを常時監視する。 (Step S11)
When theturbofan engine 1 is started, the OSL constantly monitors whether or not the rotational speed of the shaft 7a input from the rotational speed detection sensor 27 has become a threshold value or more.
OSLは、ターボファンエンジン1が始動すると、回転数検出センサ27から入力されるシャフト7aの回転数が閾値以上になったか否かを常時監視する。 (Step S11)
When the
(ステップS12)
上記ステップS11において、回転数検出センサ27から入力されるシャフト7aの回転数が閾値以上になったと判定した場合には、OSLは、第1遮断弁22を通電制御して開状態にする。 (Step S12)
In step S11, when it is determined that the rotational speed of theshaft 7a input from the rotational speed detection sensor 27 has become equal to or greater than the threshold value, the OSL controls the energization of the first shutoff valve 22 to open it.
上記ステップS11において、回転数検出センサ27から入力されるシャフト7aの回転数が閾値以上になったと判定した場合には、OSLは、第1遮断弁22を通電制御して開状態にする。 (Step S12)
In step S11, when it is determined that the rotational speed of the
(ステップS13)
次に、OSLは、第2電動モータM2の電源を遮断する信号をコントローラC2に出力する。 (Step S13)
Next, the OSL outputs a signal for shutting off the power supply of the second electric motor M2 to the controller C2.
次に、OSLは、第2電動モータM2の電源を遮断する信号をコントローラC2に出力する。 (Step S13)
Next, the OSL outputs a signal for shutting off the power supply of the second electric motor M2 to the controller C2.
これにより、ターボファンエンジン1が過回転状態にある場合には、合流通路19に導かれた燃料が還流通路21を介して供給通路14に還流する。これと同時に、電動モータM2の電源が遮断されて第2ポンプP2が作動を停止する。このとき、第2電動モータM2の電源遮断は瞬時になされるものの、第1遮断弁22が完全に開状態に変位するまでには、僅かながら作動遅れが生じる。
Thereby, when the turbofan engine 1 is in an overspeed state, the fuel guided to the merging passage 19 returns to the supply passage 14 via the recirculation passage 21. At the same time, the power source of the electric motor M2 is cut off and the second pump P2 stops operating. At this time, although the power supply of the second electric motor M2 is instantaneously cut, there is a slight operation delay until the first shutoff valve 22 is completely displaced into the open state.
しかしながら、第1遮断弁22が開状態になるまでの間、第2ポンプP2には逆回転方向に負荷が作用している。この負荷によって、第2電動モータM2の電源が遮断された瞬間に第2ポンプP2の作動が停止され、大容量を有する第2ポンプP2からの燃料供給が瞬時に停止される。このように、第1遮断弁22を開状態にするのと同時に第2電動モータM2の電源を遮断することにより、より早く燃料供給を停止することが可能となる。
However, until the first shut-off valve 22 is opened, a load is acting on the second pump P2 in the reverse rotation direction. Due to this load, the operation of the second pump P2 is stopped at the moment when the power supply of the second electric motor M2 is cut off, and the fuel supply from the second pump P2 having a large capacity is instantaneously stopped. As described above, the fuel supply can be stopped earlier by shutting off the power supply of the second electric motor M2 at the same time when the first shutoff valve 22 is opened.
なお、詳しい説明は省略するが、回転数検出センサ27によって検出されるシャフト7aの回転数が閾値以上になった場合には、FADECにより、第2遮断弁23を閉状態に制御するようにしている。また、本実施形態においては、ターボファンエンジン1が過回転状態となった場合に、第2電動モータM2のみを停止制御することとし、第1電動モータM1は駆動を継続することとしたが、FADECやOSLによって、第1電動モータM1の電源を遮断するようにしてもよい。ただし、第1ポンプP1は第2ポンプP2に比べて小容量であることから、第1遮断弁22に生じる僅かな作動遅れの時間に第1ポンプP1から燃料供給がなされても、第2電動モータM2の駆動を停止することによる効果を減退するものではない。
Although detailed explanation is omitted, when the rotational speed of the shaft 7a detected by the rotational speed detection sensor 27 is equal to or greater than a threshold value, the second shutoff valve 23 is controlled to be closed by FADEC. Yes. In the present embodiment, when the turbofan engine 1 is in an overspeed state, only the second electric motor M2 is controlled to stop, and the first electric motor M1 is continuously driven. The power source of the first electric motor M1 may be shut off by FADEC or OSL. However, since the first pump P1 has a smaller capacity than the second pump P2, even if fuel is supplied from the first pump P1 during the slight operation delay time generated in the first shutoff valve 22, the second electric motor It does not diminish the effect of stopping the driving of the motor M2.
また、本実施形態においては、ターボファンエンジン1が過回転状態になった際に、OSLは、必ず、第2電動モータM2の電源を遮断する。しかしながら、例えば、OSLは、以下のような制御を行ってもよい。
Further, in this embodiment, when the turbofan engine 1 is in an overspeed state, the OSL always cuts off the power supply of the second electric motor M2. However, for example, the OSL may perform the following control.
図5は、OSLによる過回転防止制御の変形例を説明するフローチャートである。なお、このOSLによる処理は、所定時間(例えば数ミリ秒)おきに繰り返し行われる。
FIG. 5 is a flowchart for explaining a modification of the overspeed prevention control by OSL. Note that the processing by the OSL is repeatedly performed every predetermined time (for example, several milliseconds).
(ステップS21)
OSLは、ターボファンエンジン1が始動すると、回転数検出センサ27から入力されるシャフト7aの回転数が第1の閾値以上になったか否かを判定する。この回転数が第1の閾値以上ではないと判定した場合、OSLは当該処理を終了する。 (Step S21)
When theturbofan engine 1 is started, the OSL determines whether or not the rotational speed of the shaft 7a input from the rotational speed detection sensor 27 has become equal to or higher than the first threshold value. If it is determined that the rotational speed is not equal to or greater than the first threshold, the OSL ends the process.
OSLは、ターボファンエンジン1が始動すると、回転数検出センサ27から入力されるシャフト7aの回転数が第1の閾値以上になったか否かを判定する。この回転数が第1の閾値以上ではないと判定した場合、OSLは当該処理を終了する。 (Step S21)
When the
(ステップS22)
ステップS21において、回転数検出センサ27から入力されるシャフト7aの回転数が第1の閾値以上になったと判定した場合には、OSLは、第1遮断弁22を通電制御して開状態にする。 (Step S22)
If it is determined in step S21 that the rotational speed of theshaft 7a input from the rotational speed detection sensor 27 has become equal to or higher than the first threshold value, the OSL controls the energization of the first shutoff valve 22 to open it. .
ステップS21において、回転数検出センサ27から入力されるシャフト7aの回転数が第1の閾値以上になったと判定した場合には、OSLは、第1遮断弁22を通電制御して開状態にする。 (Step S22)
If it is determined in step S21 that the rotational speed of the
(ステップS23)
次に、OSLは、回転数検出センサ27から入力されるシャフト7aの回転数が、第1の閾値として設定される回転数よりも高回転数である第2の閾値以上になったか否かを判定する。その結果、回転数検出センサ27から入力されるシャフト7aの回転数が、第2の閾値以上であると判定した場合にはステップS24に処理を移し、第2の閾値以上ではないと判定した場合には当該処理を終了する。 (Step S23)
Next, the OSL determines whether or not the rotational speed of theshaft 7a input from the rotational speed detection sensor 27 is equal to or higher than a second threshold value that is higher than the rotational speed set as the first threshold value. judge. As a result, when it is determined that the rotation speed of the shaft 7a input from the rotation speed detection sensor 27 is equal to or greater than the second threshold value, the process proceeds to step S24, and when it is determined that the rotation speed is not equal to or greater than the second threshold value. The process ends.
次に、OSLは、回転数検出センサ27から入力されるシャフト7aの回転数が、第1の閾値として設定される回転数よりも高回転数である第2の閾値以上になったか否かを判定する。その結果、回転数検出センサ27から入力されるシャフト7aの回転数が、第2の閾値以上であると判定した場合にはステップS24に処理を移し、第2の閾値以上ではないと判定した場合には当該処理を終了する。 (Step S23)
Next, the OSL determines whether or not the rotational speed of the
(ステップS24)
上記ステップS23において、回転数検出センサ27から入力されるシャフト7aの回転数が第2の閾値以上になったと判定した場合には、OSLは、第2電動モータM2の電源を遮断する。 (Step S24)
If it is determined in step S23 that the rotational speed of theshaft 7a input from the rotational speed detection sensor 27 has become equal to or greater than the second threshold, the OSL shuts off the power supply of the second electric motor M2.
上記ステップS23において、回転数検出センサ27から入力されるシャフト7aの回転数が第2の閾値以上になったと判定した場合には、OSLは、第2電動モータM2の電源を遮断する。 (Step S24)
If it is determined in step S23 that the rotational speed of the
以上のように、第1の閾値と第2の閾値とが設定(定義)され、シャフト7aの回転数が第1の閾値以上になった場合には第1遮断弁22を開状態に制御し、第2の閾値以上になった場合にのみ第2電動モータM2の電源が遮断される。この処理によれば、燃料供給を停止する緊急性が低い場合や、比較的短時間で過回転状態が回避されて通常制御に復帰すると考えられる場合(第1の閾値以上であって第2の閾値未満の場合)には、第2電動モータM2の駆動が継続される。従って、通常制御に復帰した際に、燃料供給を即座に再開することができる。一方で、緊急性が高い場合等には、同時に第2電動モータM2の電源が遮断される。つまり、瞬時に燃料供給を停止して、過回転状態をより早期に回避することができる。
As described above, when the first threshold value and the second threshold value are set (defined) and the rotational speed of the shaft 7a is equal to or higher than the first threshold value, the first shut-off valve 22 is controlled to be opened. The power supply of the second electric motor M2 is cut off only when the second threshold value is exceeded. According to this process, when the urgency to stop the fuel supply is low, or when it is considered that the overspeed state is avoided and the normal control is restored in a relatively short time (the second threshold is exceeded and the second threshold is exceeded). In the case of less than the threshold), the driving of the second electric motor M2 is continued. Therefore, when the normal control is restored, the fuel supply can be restarted immediately. On the other hand, when the urgency is high, the power supply of the second electric motor M2 is cut off at the same time. That is, the fuel supply can be stopped instantaneously, and the overspeed state can be avoided earlier.
なお、上記実施形態や変形例において、第1遮断弁22の開状態において、燃焼ノズル11への燃料供給を完全に遮断するように流量制御してもよい。また、第1遮断弁22の開状態において絞りを形成して、燃焼ノズル11に対して一定流量が確保されるように流量制御してもよい。例えば、上記のターボファンエンジン1を1機のみ備えた航空機において、過回転防止時にも一定の推力保持を優先する場合には、第1遮断弁22の開状態においても一定流量を確保することが考えられる。
In the above-described embodiments and modifications, the flow rate may be controlled so that the fuel supply to the combustion nozzle 11 is completely shut off when the first shut-off valve 22 is open. Alternatively, a throttle may be formed in the open state of the first shutoff valve 22 to control the flow rate so as to ensure a constant flow rate for the combustion nozzle 11. For example, in an aircraft equipped with only one turbofan engine 1 described above, when priority is given to maintaining a constant thrust even when over-rotation is prevented, a constant flow rate can be secured even when the first shut-off valve 22 is open. Conceivable.
一方で、上記のターボファンエンジン1を複数機備えた航空機においては、一部のターボファンエンジン1について、第1遮断弁22の開状態に燃料供給を完全に遮断することが考えられる。そして、例えば、上記変形例において、第2の閾値を、過回転状態と判定する回転数に設定し、第1の閾値を、過回転状態と判定する回転数よりも少ない回転数に設定する。そして、第1遮断弁22の開状態においても一定流量を確保する。この場合は、一定の推力を保持しながら過回転状態を未然に防ぐこともできる。
On the other hand, in an aircraft equipped with a plurality of turbofan engines 1 described above, it is conceivable that the fuel supply of some turbofan engines 1 is completely shut off when the first shutoff valve 22 is open. For example, in the above-described modification, the second threshold value is set to the rotation number that is determined as the over-rotation state, and the first threshold value is set to a rotation number that is smaller than the rotation number that is determined as the over-rotation state. A constant flow rate is ensured even when the first cutoff valve 22 is open. In this case, it is possible to prevent an overspeed state while maintaining a constant thrust.
なお、上記実施形態においては、ターボファンエンジンに燃料を供給する場合について説明したが、上記の燃料供給システム10は、ターボファンエンジンに限らず、他の用途に用いるガスタービンエンジンにも広く適用可能である。
In the above-described embodiment, the case where fuel is supplied to the turbofan engine has been described. However, the fuel supply system 10 is not limited to the turbofan engine but can be widely applied to gas turbine engines used for other purposes. It is.
また、上記実施形態においては、第1ポンプP1および第2ポンプP2の駆動源として、それぞれ第1電動モータM1、第2電動モータM2が使用された。しかしながら、両ポンプの駆動源は電動モータに限られない。両ポンプP1、P2のいずれか一方の駆動源が電動モータであってもよい。また、両ポンプP1、P2の双方の駆動源を電動モータ以外の駆動装置で構成されていてもよい。また、上記実施形態においては、ブーストポンプ13をインペラポンプで構成され、第1ポンプP1および第2ポンプP2の何れもがギヤポンプで構成されている。しかしながら、これらのポンプの種別は特にインペラポンプやギヤポンプに限定されるものではない。また、これらのポンプは容積形であってもよいし非容積形であってもよい。いずれにしても、燃焼ノズルに燃料を供給するための2つのポンプと、これら2つのポンプの双方の吸入側に燃料を昇圧して導くブーストポンプと、を備え、2つのポンプのうちの小容量のポンプと、ブーストポンプとが同一の駆動源によって作動する構成であればよい。
In the above embodiment, the first electric motor M1 and the second electric motor M2 are used as drive sources for the first pump P1 and the second pump P2, respectively. However, the drive source of both pumps is not limited to an electric motor. Either one of the drive sources of both pumps P1 and P2 may be an electric motor. Moreover, both drive sources of both pumps P1 and P2 may be configured by a drive device other than the electric motor. Moreover, in the said embodiment, the boost pump 13 is comprised by the impeller pump, and all of the 1st pump P1 and the 2nd pump P2 are comprised by the gear pump. However, these pump types are not particularly limited to impeller pumps and gear pumps. In addition, these pumps may be volumetric or non-volumetric. In any case, two pumps for supplying fuel to the combustion nozzle and a boost pump for boosting and guiding the fuel to the suction side of both of these two pumps are provided, and the small capacity of the two pumps The pump and the boost pump may be configured to operate with the same drive source.
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such embodiments. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Is done.
本発明は、ガスタービンエンジンに燃料を供給する燃料供給システムに利用することができる。
The present invention can be used in a fuel supply system that supplies fuel to a gas turbine engine.
The present invention can be used in a fuel supply system that supplies fuel to a gas turbine engine.
Claims (2)
- エンジンの燃焼室に燃料を供給するガスタービンエンジン用の燃料供給システムであって、
前記燃焼室に燃料を供給する燃焼ノズルに接続された燃料供給通路と、
前記燃料供給通路を介して前記燃焼室に燃料を吐出する第1ポンプと、
前記第1ポンプを駆動する第1の駆動源と、
前記燃料供給通路を介して前記燃焼室に燃料を吐出し、前記第1ポンプよりも大容量の第2ポンプと、
前記第2ポンプを駆動する第2の駆動源と、
前記第1ポンプおよび第2ポンプに接続され、タンクに貯留される燃料を昇圧して前記第1ポンプおよび第2ポンプの吸入側に供給するブーストポンプと、を備え、
前記ブーストポンプは、前記第1の駆動源によって駆動されることを特徴とするガスタービンエンジン用の燃料供給システム。 A fuel supply system for a gas turbine engine that supplies fuel to a combustion chamber of an engine,
A fuel supply passage connected to a combustion nozzle for supplying fuel to the combustion chamber;
A first pump for discharging fuel into the combustion chamber via the fuel supply passage;
A first drive source for driving the first pump;
Discharging the fuel into the combustion chamber via the fuel supply passage, a second pump having a larger capacity than the first pump;
A second drive source for driving the second pump;
A boost pump connected to the first pump and the second pump, and boosting the fuel stored in the tank and supplying the boosted fuel to the suction side of the first pump and the second pump;
The fuel supply system for a gas turbine engine, wherein the boost pump is driven by the first drive source. - 前記第1の駆動源および第2の駆動源のいずれか一方または双方は電動モータであることを特徴とする請求項1記載のガスタービンエンジン用の燃料供給システム。
The fuel supply system for a gas turbine engine according to claim 1, wherein one or both of the first drive source and the second drive source is an electric motor.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-186575 | 2013-09-09 | ||
JP2013186575A JP2015052315A (en) | 2013-09-09 | 2013-09-09 | Fuel supply system for gas turbine engine |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015033786A1 true WO2015033786A1 (en) | 2015-03-12 |
Family
ID=52628264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/071841 WO2015033786A1 (en) | 2013-09-09 | 2014-08-21 | Fuel supply system for gas turbine engine |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2015052315A (en) |
WO (1) | WO2015033786A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3726034A4 (en) * | 2017-12-14 | 2021-09-01 | Ihi Corporation | FUEL SUPPLY DEVICE |
FR3116083A1 (en) * | 2020-11-06 | 2022-05-13 | Safran Aircraft Engines | PUMPING SYSTEM, AIRCRAFT AND ASSOCIATED PROCESS |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018042703A1 (en) | 2016-09-01 | 2018-03-08 | 株式会社Ihi | Heat exhaust system for on-aircraft electric generator |
JP7095759B2 (en) * | 2019-02-04 | 2022-07-05 | 株式会社Ihi | Fuel supply control device |
JP7623786B2 (en) | 2020-02-14 | 2025-01-29 | 川崎重工業株式会社 | Gas Turbine Engine |
EP4308805A1 (en) * | 2021-03-17 | 2024-01-24 | Safran Helicopter Engines | System for pumping and metering a fluid for a turbine engine and method for controlling such a system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5020314A (en) * | 1989-06-19 | 1991-06-04 | Williams International Corporation | Multiple fluid speed systems |
US20110243772A1 (en) * | 2009-12-07 | 2011-10-06 | Snecma | Fuel supply installation of an aircraft turbojet |
US20120234015A1 (en) * | 2011-03-18 | 2012-09-20 | Hamilton Sundstrand Corporation | Dual pump fuel flow system for a gas turbine engine and method of controlling |
JP2013032707A (en) * | 2011-08-01 | 2013-02-14 | Ihi Corp | Fuel supply system for gas turbine engine |
-
2013
- 2013-09-09 JP JP2013186575A patent/JP2015052315A/en active Pending
-
2014
- 2014-08-21 WO PCT/JP2014/071841 patent/WO2015033786A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5020314A (en) * | 1989-06-19 | 1991-06-04 | Williams International Corporation | Multiple fluid speed systems |
US20110243772A1 (en) * | 2009-12-07 | 2011-10-06 | Snecma | Fuel supply installation of an aircraft turbojet |
US20120234015A1 (en) * | 2011-03-18 | 2012-09-20 | Hamilton Sundstrand Corporation | Dual pump fuel flow system for a gas turbine engine and method of controlling |
JP2013032707A (en) * | 2011-08-01 | 2013-02-14 | Ihi Corp | Fuel supply system for gas turbine engine |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3726034A4 (en) * | 2017-12-14 | 2021-09-01 | Ihi Corporation | FUEL SUPPLY DEVICE |
US11761382B2 (en) | 2017-12-14 | 2023-09-19 | Ihi Corporation | Fuel supply device |
FR3116083A1 (en) * | 2020-11-06 | 2022-05-13 | Safran Aircraft Engines | PUMPING SYSTEM, AIRCRAFT AND ASSOCIATED PROCESS |
Also Published As
Publication number | Publication date |
---|---|
JP2015052315A (en) | 2015-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5799642B2 (en) | Fuel supply system for gas turbine engines | |
WO2015033786A1 (en) | Fuel supply system for gas turbine engine | |
JP5087696B2 (en) | Fuel pump feed system for gas turbine engines | |
US8127548B2 (en) | Hybrid electrical/mechanical turbine engine fuel supply system | |
RU2398124C2 (en) | Gas turbine engine fuel feed device with adjustable fuel flow rate | |
US5159808A (en) | Gas turbine engine fuel and hydraulic fluid pumping system | |
EP2489857B1 (en) | Fuel pumping arrangement | |
US8991148B2 (en) | Fuel feed device for aviation engine | |
EP2521848B1 (en) | Dual-supply fluid distribution system and method of supplying fluid | |
US9382910B2 (en) | Auxiliary power units (APUs) and methods and systems for activation and deactivation of a load compressor therein | |
EP2796688B1 (en) | System for controlling two positive displacement pumps | |
US12018616B2 (en) | Systems and methods for purging a fuel manifold of a gas turbine engine | |
US9453463B2 (en) | High efficiency, high pressure gas turbine engine fuel supply system | |
US9068509B2 (en) | Gas turbine engine fuel control thrust control override system | |
EP3392485B1 (en) | Fuel control system | |
US5245819A (en) | Gas turbine engine fuel and hydraulic fluid pumping system | |
US11078838B2 (en) | Gas turbine engine compressor control method | |
EP3171005B1 (en) | Fuel supply system for use in a gas turbine engine and method of controlling an overspeed event therein | |
EP4209668A1 (en) | Aircraft fuel systems with electric motor driven augmentor pumps | |
US20190178149A1 (en) | Energy supercharger system and method | |
CN113710887B (en) | Turbine fuel supply system for regulating fuel flow | |
JP5180142B2 (en) | Gas turbine engine | |
JP5208859B2 (en) | Gas turbine engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14841720 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14841720 Country of ref document: EP Kind code of ref document: A1 |