WO2015030023A1 - ヒューズエレメント、ヒューズ素子 - Google Patents
ヒューズエレメント、ヒューズ素子 Download PDFInfo
- Publication number
- WO2015030023A1 WO2015030023A1 PCT/JP2014/072351 JP2014072351W WO2015030023A1 WO 2015030023 A1 WO2015030023 A1 WO 2015030023A1 JP 2014072351 W JP2014072351 W JP 2014072351W WO 2015030023 A1 WO2015030023 A1 WO 2015030023A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuse element
- element according
- fusing
- protrusion
- wall surface
- Prior art date
Links
- 239000002184 metal Substances 0.000 claims description 78
- 229910052751 metal Inorganic materials 0.000 claims description 78
- 238000002844 melting Methods 0.000 claims description 77
- 230000008018 melting Effects 0.000 claims description 76
- 239000004020 conductor Substances 0.000 claims description 41
- 239000000463 material Substances 0.000 claims description 20
- 238000003860 storage Methods 0.000 claims description 18
- 238000009413 insulation Methods 0.000 abstract description 5
- 239000010410 layer Substances 0.000 description 76
- 239000011888 foil Substances 0.000 description 13
- 229910000679 solder Inorganic materials 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 8
- 238000007747 plating Methods 0.000 description 7
- 239000003870 refractory metal Substances 0.000 description 7
- 238000005452 bending Methods 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000003825 pressing Methods 0.000 description 4
- 239000010408 film Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000004080 punching Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011796 hollow space material Substances 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H85/00—Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
- H01H85/02—Details
- H01H85/20—Bases for supporting the fuse; Separate parts thereof
- H01H85/2045—Mounting means or insulating parts of the base, e.g. covers, casings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H85/00—Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
- H01H85/02—Details
- H01H85/04—Fuses, i.e. expendable parts of the protective device, e.g. cartridges
- H01H85/05—Component parts thereof
- H01H85/055—Fusible members
- H01H85/08—Fusible members characterised by the shape or form of the fusible member
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H85/00—Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
- H01H85/02—Details
- H01H85/04—Fuses, i.e. expendable parts of the protective device, e.g. cartridges
- H01H85/05—Component parts thereof
- H01H85/143—Electrical contacts; Fastening fusible members to such contacts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H85/00—Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
- H01H85/02—Details
- H01H85/20—Bases for supporting the fuse; Separate parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H85/00—Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
- H01H85/0013—Means for preventing damage, e.g. by ambient influences to the fuse
- H01H85/0021—Means for preventing damage, e.g. by ambient influences to the fuse water or dustproof devices
- H01H2085/0034—Means for preventing damage, e.g. by ambient influences to the fuse water or dustproof devices with molded casings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H85/00—Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
- H01H85/02—Details
- H01H85/04—Fuses, i.e. expendable parts of the protective device, e.g. cartridges
- H01H85/041—Fuses, i.e. expendable parts of the protective device, e.g. cartridges characterised by the type
- H01H85/0411—Miniature fuses
- H01H2085/0414—Surface mounted fuses
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H85/00—Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
- H01H85/02—Details
- H01H85/04—Fuses, i.e. expendable parts of the protective device, e.g. cartridges
- H01H85/05—Component parts thereof
- H01H85/055—Fusible members
- H01H85/06—Fusible members characterised by the fusible material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H85/00—Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
- H01H85/02—Details
- H01H85/04—Fuses, i.e. expendable parts of the protective device, e.g. cartridges
- H01H85/05—Component parts thereof
- H01H85/165—Casings
- H01H85/175—Casings characterised by the casing shape or form
Definitions
- the present invention relates to a fuse element and a fuse element that are mounted on a current path and blown by self-heating when a current exceeding the rating flows, and cuts off the current path.
- the present invention relates to a fuse element excellent in insulation.
- This application includes Japanese Patent Application No. 2013-177071 filed on August 28, 2013 in Japan, and Japanese Patent Application No. 2014-165154 filed on August 14, 2014 in Japan. On the basis of priority, and these applications are incorporated herein by reference.
- a fuse element that melts by self-heating when a current exceeding the rating flows and interrupts the current path.
- the fuse element for example, a holder-fixed fuse in which solder is enclosed in a glass tube, a chip fuse in which an Ag electrode is printed on the surface of a ceramic substrate, or a screw fixing in which a part of a copper electrode is thinned and incorporated in a plastic case or Plug-in fuses are often used.
- current fuse elements for high voltage include those in which an arc extinguishing material is packed in a hollow case and those in which a fuse element is spirally wound around a heat radiating material to generate a time lag.
- the current rating is required to be improved with the increase in capacity and rating of electronic devices and batteries to be mounted.
- the fuse element is similarly required to be miniaturized with the miniaturization of electronic devices and batteries to be mounted.
- a fuse element includes a fuse element, a storage space in which the fuse element is stored, and outlets through which both ends of the fuse element are led out.
- the fuse element includes a case that supports the fuse element in a hollow state, and a shielding portion that shields an inner wall surface reaching the lead-out port from fusing and scattered matter of the fuse element is provided in the storage space.
- the fuse element according to the present invention is supported in a hollow space in the housing space in the case, and in the fuse element in which both ends are led out from the lead-out port of the case, the inner wall surface reaching the lead-out port of the case is blown
- the protrusion part which shields from a scattered material is provided.
- the shielding portion is provided so as to block the inner wall surface reaching the outlet port that supports the fuse element in a hollow state, the molten conductor continues to the inner wall surface reaching the outlet port. Adhesion can be prevented. Therefore, according to the present invention, it is possible to prevent a situation where both ends of the fused fuse element are short-circuited due to the molten conductor of the fuse element continuously adhering to the inner wall surface reaching the outlet.
- FIG. 1 is an external perspective view of a fuse element to which the present invention is applied.
- 2A and 2B are external perspective views showing a fuse element, in which FIG. 2A shows a low melting point metal layer laminated with a high melting point metal layer, and FIG. 2B shows a low melting point metal layer covered with a high melting point metal layer. Show things.
- FIG. 3 is a cross-sectional view showing a fuse element provided with a shielding portion made of a protrusion provided on the inner wall surface of the case. 4 is a perspective view showing the inside of the case housing of the fuse element shown in FIG.
- FIG. 5 is a cross-sectional view showing a state where the fuse element is melted in the fuse element shown in FIG. FIG.
- FIG. 11 is a cross-sectional view showing a state where the fuse element is melted in the fuse element shown in FIG.
- FIG. 12 is a perspective view showing another configuration of the fuse element to which the present invention is applied.
- 13 is a cross-sectional view showing a fuse element using the fuse element shown in FIG.
- FIG. 14 is a cross-sectional view showing a fuse element according to a reference example.
- FIG. 15 is a cross-sectional view showing a fuse element using a fuse element in which a plurality of bent portions are formed in a connection portion.
- FIG. 16 is a cross-sectional view showing a fuse element using a fuse element whose end face is closed.
- FIG. 17 is a perspective view showing a fuse element having a plurality of fusing parts.
- FIGS. 19A and 19B are cross-sectional views showing a conventional fuse element, where FIG. 19A shows a fusible conductor before melting and FIG. 19B shows a fusible conductor after blowing.
- the fuse element 1 to which the present invention is applied has a fuse element 2 and a case 3 in which the fuse element 2 is accommodated, as shown in FIG.
- both ends of the fuse element 2 are led out from the lead-out port 7 of the case 3 and connected to a terminal of a circuit in which the fuse element 1 is incorporated, thereby constituting a part of a current path of the circuit.
- the fuse element 2 is blown by self-heating (Joule heat) when a current exceeding the rating is applied, and interrupts the current path of the circuit in which the fuse element 1 is incorporated.
- the fuse element 2 can use any metal that is quickly melted by self-heating.
- a low melting point metal such as Pb-free solder containing Sn as a main component can be preferably used.
- the low melting point metal layer 2a is preferably a metal mainly composed of Sn, and is a material generally called “Pb-free solder”.
- the melting point of the low melting point metal layer 2a is not necessarily higher than the temperature of the reflow furnace, and may be melted at about 200 ° C.
- the high melting point metal layer 2b is a metal layer laminated on the surface of the low melting point metal layer 2a, and is, for example, Ag or Cu, or a metal mainly composed of either of them, and the fuse element 1 is replaced with a reflow furnace. Even when mounted, it has a high melting point that does not melt.
- the fuse element 2 2 is not blown out, and the outflow of the low melting point metal can be suppressed and the shape of the fuse element 2 can be maintained. Therefore, the fuse element 1 can be efficiently mounted by reflow.
- the fuse element 2 is configured by laminating the high melting point metal layer 2b on the low melting point metal layer 2a serving as the inner layer, the fusing temperature is significantly reduced compared to a conventional chip fuse made of a high melting point metal. be able to. Therefore, the fuse element 2 can have a larger cross-sectional area and can greatly improve the current rating as compared with a chip fuse of the same size. In addition, it can be made smaller and thinner than conventional chip fuses having the same current rating, and is excellent in quick fusing.
- the fuse element 2 can improve resistance to a surge (pulse resistance) in which an abnormally high voltage is instantaneously applied to the electrical system in which the fuse element 1 is incorporated. That is, the fuse element 2 must not be blown until, for example, a current of 100 A flows for several milliseconds.
- the fuse element 2 since a large current flowing in a very short time flows in the surface layer of the conductor (skin effect), the fuse element 2 is provided with a refractory metal layer 2b such as Ag plating having a low resistance value as an outer layer. It is easy to flow the current applied by the surge, and it is possible to prevent fusing due to self-heating. Therefore, the fuse element 2 can greatly improve the resistance to surge as compared with a fuse made of a conventional solder alloy.
- the fuse element 2 can be manufactured by forming a high melting point metal 2b on the surface of the low melting point metal layer 2a by using a plating technique.
- the fuse element 2 can be efficiently manufactured by, for example, applying Ag plating to the surface of a long solder foil, and can be easily used by cutting according to the size at the time of use.
- the fuse element 2 may be manufactured by bonding a low melting point metal foil and a high melting point metal foil.
- the fuse element 2 can be manufactured, for example, by pressing a rolled solder foil between two rolled Cu foils or an Ag foil.
- the low melting point metal foil it is preferable to select a softer material than the high melting point metal foil.
- variation in thickness can be absorbed and a low melting metal foil and a high melting metal foil can be stuck without gap.
- the film thickness of the low melting point metal foil is reduced by pressing, it is preferable to make it thick beforehand.
- the low-melting-point metal foil protrudes from the end face of the fuse element by pressing, it is preferable to trim off and adjust the shape.
- the fuse element 2 may be formed by alternately forming a plurality of low melting point metal layers 2a and high melting point metal layers 2b.
- the outermost layer may be either the low melting point metal layer 2a or the high melting point metal layer 2b.
- the fuse element 2 may further form an antioxidant film on the surface of the outermost refractory metal layer 2b.
- the fuse element 2 further prevents the oxidation of Cu even when, for example, Cu plating or Cu foil is formed as the refractory metal layer 2b by covering the outermost refractory metal layer 2b with an antioxidant film. be able to. Therefore, the fuse element 2 can prevent a situation where the fusing time is prolonged due to oxidation of Cu, and can be blown in a short time.
- the case 3 in which the fuse element 2 is housed includes a housing 5 whose upper surface is opened and a lid body 6 that covers the upper surface of the housing 5.
- the case 3 has a lead-out port 7 through which both ends of the fuse element 2 connected to the electrode of the circuit on which the fuse element 1 is mounted are led out.
- the case 3 is closed except for lead-out ports 7 that lead out both ends of the fuse element 2, and prevents the mounting solder or the like from entering the housing 5.
- the case 3 can be formed using an engineering plastic having insulating properties, heat resistance, and resist properties.
- the case 3 is formed by housing the fuse element 2 from the opened upper surface side of the housing 5 and closing it with the lid 6.
- a lead-out port 7 through which the fuse element 2 is led out is formed by closing the housing 5 with the lid body 6.
- the fuse element 2 is supported hollow in the storage space 8 in the case 3 by being led out from the outlet 7.
- the shielding part 10 according to the first embodiment is a protrusion 11 formed on the inner wall surface 8 a of the case 3 constituting the storage space 8.
- the protrusion 11 is formed on the inner wall surface 8 a of the case 3, which is orthogonal to the direction of current flow of the fuse element 2. That is, the protrusion 11 is erected so as to block the inner wall surface 8 a extending between the pair of outlets 7 and 7 that support the fuse element 2 in a hollow state in the storage space 8.
- the projection 11 is erected so as to block the inner wall surface 8a between the pair of outlets 7 and 7 that support the fuse element 2 in a hollow manner in the storage space 8, the molten conductor 13 is connected to the outlet port. 7 and 7 can be prevented from being continuously attached to the inner wall surface 8a. Therefore, the fuse element 1 prevents a situation where both ends of the fused fuse element 2 are short-circuited when the molten conductor 13 of the fuse element 2 continuously adheres to the inner wall surface 8a extending between the outlets 7 and 7. be able to.
- the protrusion 11 is preferably formed on the inner wall surface 8 a over the entire circumference surrounding the fuse element 2. By being formed over the entire circumference, the protrusions 11 block the inner wall surface 8a between the outlets 7 and 7 even when the molten conductor 13 is scattered in all directions, so that both ends of the fused fuse element 2 are melted. A short circuit can be prevented.
- the protrusion 11 is formed at a position separated from the fusing point 12 of the fuse element 2.
- the projection 11 is formed at a position close to the fusing point 12, the other surface 11b is not sufficiently blocked by the one surface 11a, and the molten conductor 13 scattered from the fusing point 12 may be attached. Since the fuse element 2 is almost always melted at the central portion in the longitudinal direction, the protrusion 11 is preferably formed at a position biased toward the outlet 7 side from the central portion in the longitudinal direction of the fuse element 2.
- the molten conductor 13 scattered by the fusing of the fuse element 2 adheres to the one surface 11a facing the fusing point 12 and does not adhere to the other surface 11b opposite to the one surface 11a.
- the protrusion 11 is provided in the vicinity of the outlet 7, it is possible to reliably prevent the molten conductor 13 from adhering to the other surface 11 b, and the molten conductor 13 is formed on the inner wall surface 8 a extending between the outlets 7 and 7. It is possible to prevent a situation where both ends of the fused fuse element 2 are short-circuited due to continuous adhesion.
- At least one protrusion 11 may be formed, but a plurality of protrusions 11 are preferably formed on the inner wall surface 8a of the case 3 as shown in FIGS.
- the molten conductor 13 can be reliably attached to the other surface 11b of the protrusion 11 even if the molten conductor 13 is scattered widely. Can be prevented. If adhesion of the molten conductor 13 to the other surface 11b is prevented in at least one protrusion 11, the molten conductor 13 is prevented from continuously adhering to the inner wall surface 8a extending between the outlets 7 and 7. Thus, it is possible to prevent a situation where both ends of the fused fuse element 2 are short-circuited.
- the shielding part 10 is a protruding part 16 provided in the fuse element 2.
- the protruding portion 16 protrudes from the fusing point 12 of the fuse element 2 toward the inner wall surface 8 a of the case 3 perpendicular to the direction in which the current flows. That is, the protrusion 16 protrudes from the fusing point 12 of the fuse element 2 in the storage space 8, so that at least a part of the inner wall surface 8 a extending between the outlets 7 and 7 of the case 3 is separated from the fusing point 12. It becomes a shadow of the shielded projection 16.
- the protrusion 16 protrudes from the fusing point 12 of the fuse element 2, so that the inner wall surface 8 a behind it is shaded and shielded from the fusing point 12. Therefore, when the fuse element 2 is melted and the molten conductor 13 scatters on the inner wall surface 8a of the case 3, the fuse element 1 adheres to the protruding portion 16 and the shadowed inner wall surface 8a Does not adhere.
- the protrusion 16 is preferably formed over the entire circumference of the fuse element 2 as shown in FIG. By being formed over the entire circumference, the projecting portion 16 shields the inner wall surface 8a between the outlet ports 7 and 7 even when the molten conductor 13 is scattered in all directions, and both ends of the fused fuse element 2 are blown. Can be prevented.
- the fuse element 2 shown in FIG. 9 is bent up and down to form a first projection 16a in the vertical direction from the fusing point 12 (FIG. 9A), and the center side of the projection 16a is in the width direction.
- the second protrusion 16b that protrudes in the lateral direction from the fusing point 12 is formed by narrowing the width of the fuse element 2 (FIG. 9B), thereby forming the protrusion 16 over the entire circumference of the fuse element 2.
- the central portion narrowed in the width direction has a high resistance and becomes a fusing point 12 when a large current exceeding the rating flows.
- the protruding portion 16 is also formed at a position separated from the fusing point 12 of the fuse element 2, similarly to the protrusion 11.
- the protrusion 16 cannot sufficiently block the inner wall surface 8 a of the case 3 from the fusing point 12, and the outlet 7 is formed by the molten conductor 13 scattered from the fusing point 12. , 7 may be short-circuited.
- the fuse element 2 is melted at the central portion in the longitudinal direction. Therefore, the protrusion 16 is preferably formed at a position biased to the outlet 7 side from the central portion in the longitudinal direction of the fuse element 2. .
- the protruding portion 16 is provided in the vicinity of the outlet port 7, adhesion of the molten conductor 13 to the vicinity of the outlet port 7 can be prevented, and the molten conductor 13 is formed on the inner wall surface 8 a extending between the outlet ports 7 and 7. It is possible to prevent a situation where both ends of the fused fuse element 2 are short-circuited due to continuous adhesion.
- the protrusion 16 forms a plurality of first protrusions 16 a that protrude from the fusing part 12 in the vertical direction of the fuse element 2 and a plurality of second protrusions 16 b that protrude from the fusing part 12 in the width direction of the fuse element 2. May be.
- the plurality of projecting portions 16 it is possible to reliably prevent the molten conductor 13 from adhering to the inner wall surface 8 a that is a shadow of the projecting portion 16 even when the molten conductor 13 is scattered widely. If adhesion of the molten conductor 13 across the outlets 7 and 7 is prevented by at least one projecting portion 16, it is possible to prevent a situation where both ends of the fused fuse element 2 are short-circuited.
- the fuse element 1 may include both the protrusion 11 provided on the inner wall surface 8 a of the case 3 and the protrusion 16 provided on the fuse element 2 as the shielding part 10.
- the shielding part 10 is provided with projections 11 on the lid 6 of the case 3 and is fused at a fusing point 12 by bending both sides in the longitudinal direction of the fuse element 2 toward the outlet 7.
- a projecting portion 16 projecting upward is provided.
- the projection 11 is erected so as to block the inner wall surface 8a on the lid 6 side between the pair of outlets 7 and 7 that support the fuse element 2 in a hollow state.
- One surface 11a of the projection 11 faces the fusing point 12 of the fuse element 2, and the other surface 11b on the opposite side is shaded by the one surface 11a and is shielded from the fusing point 12. Therefore, as shown in FIG. 11, the fuse element 1 is attached to the one surface 11 a side of the protrusion 11 even when the fuse element 2 is melted and the molten conductor 13 is scattered on the inner wall surface 8 a of the case 3.
- the protruding portion 16 protrudes from the fusing point 12 of the fuse element 2 to the outlet port 7 on the upper side of the case 3 orthogonal to the direction in which the current flows. That is, the protrusion 16 protrudes from the fusing point 12 of the fuse element 2 in the storage space 8, so that at least a part of the inner wall surface 8 a of the housing 5 extending between the outlets 7 and 7 of the case 3 is It becomes a shadow of the protrusion 16 shielded from the fusing point 12.
- the protruding portion 16 protrudes from the fusing point 12 of the fuse element 2, and the inner wall surface 8 a of the housing 5 in the back enters the shadow of the protruding portion 16 and is shielded from the fusing point 12. Therefore, even when the fuse element 2 is melted and the molten conductor 13 is scattered on the inner wall surface 8a of the case 3, the molten conductor 13 adheres to the protruding portion 16 and does not adhere to the shadowed inner wall surface 8a.
- the protrusion 16 can prevent the molten conductor 13 from continuously adhering to the inner wall surface 8 a extending between the outlets 7 and 7, and the molten conductor 13 of the fuse element 2 is between the outlets 7 and 7. It is possible to prevent a situation where both ends of the fused fuse element 2 are short-circuited by continuously adhering to the inner wall surface 8a of the casing 5 over the same.
- the fuse element 2 is formed as a laminated structure including an inner layer and an outer layer, and the low melting point metal layer 2a serving as the inner layer is covered with the high melting point metal layer 2b serving as the outer layer. It can be used (FIG. 2B).
- the fuse element 2 can be manufactured by depositing the high melting point metal 2b on the surface of the low melting point metal layer 2a using a plating technique.
- the fuse element 2 can be efficiently manufactured by, for example, applying Ag plating to the surface of the long solder foil.
- the fuse element 2 is cut according to the size, as shown in FIG. 2 (B).
- the low melting point metal layer 2a surrounded by the high melting point metal layer 2b is exposed on the surface.
- the fuse element 2 has an end face 21 where the low melting point metal layer 2a is exposed in a structure in which the low melting point metal layer 2a is covered with the high melting point metal layer 2b.
- the formed end portion is a terminal portion 22 connected to an external circuit.
- the terminal portion 22 is led out from the lead-out port 7.
- the terminal portion 22 has a connection portion 26 connected to a land 24 of the printed board 23 on which the fuse element 1 is mounted via a bonding material 25 such as solder.
- a solder resist layer 27 is formed on the land 24.
- the end surface 21 of the terminal portion 22 protrudes from the connection portion 26.
- the fuse element 2 is prevented from coming into contact with the bonding material 25 on the end surface 21 even when the connecting portion 26 is connected to the land 24. Therefore, when the fuse element 1 is heat-mounted on the printed circuit board 23 by reflow or the like, the low melting point metal layer 2a exposed on the end face 21 is prevented from being drawn in and coming out of contact with the molten bonding material 25. it can.
- the fuse element 2 since the fuse element 2 is formed in a long shape and cut into a predetermined length, the low melting point metal layer 2a serving as an inner layer is exposed on the end face 21. Therefore, since the low melting point metal layer 2a is melted when the fuse element 1 is heated and mounted, as shown in FIG. There is a risk of spilling out of the element 2.
- the fuse element 2 When the low melting point metal layer 2a flows out, the fuse element 2 cannot maintain the shape, the resistance value increases due to the narrowing of the cross-sectional area, the fluctuation of the rating, the fusing characteristics, the deterioration of the insulation characteristics at the time of interruption, etc. There is also a risk of inviting.
- the fuse element 2 causes the low melting point metal layer 2a and the bonding material 25 to come into contact with each other by causing the end face 21 to protrude from the connecting portion 26 connected to the land 24 via the bonding material 25, and the low melting point metal flows out. To prevent. Thereby, the fuse element 2 can prevent a change in shape, and can maintain a predetermined rating, fusing characteristic, and insulating characteristic.
- the fuse element 2 may be protruded by bending the end face 21 of the terminal portion 22 from the connecting portion 26 at least once. By bending the end face 21 from the connecting portion 26 at least once, it is possible to prevent the low melting point metal layer 2a and the bonding material 25 from coming into contact even when the connecting portion 26 is connected to the land 24. Even when the bonding material 25 reaches the end surface 21 through the terminal portion 22, the bent portion 28 can minimize the outflow of the low melting point metal.
- the fuse element 2 may shield the end face 21 from the bonding material 25 by bending the end face 21 of the terminal part 22 a plurality of times from the connecting part 26. For example, as shown in FIG. 15, the fuse element 2 is shielded from the bonding material 25 toward the housing 5 side of the case 3 by bending the end surface 21 twice from the connection portion 26. Thereby, the low melting point metal layer 2a exposed from the end face 21 is prevented from coming into contact with the bonding material 25, and the outflow of the low melting point metal can be prevented.
- the fuse element 2 may block the end face 21 of the terminal portion 22 as shown in FIG.
- the low melting point metal layer 2a constituting the inner layer is closed by the high melting point metal layer 2b constituting the outer layer by, for example, hot pressing the tip of the terminal portion 22.
- the refractory metal layer 2b that closes the end face 21 is integrated by pressing the interface at a predetermined temperature and pressure, so that the elution of the low-melting metal layer 2a can be surely prevented.
- the fuse element 2 is not limited to the hot press as long as the low melting point metal layer 2a exposed on the end face 21 is closed.
- the fuse element 2 may form a fusing part 30 with a narrowed cross section.
- the fusing part 30 has a high resistance by reducing the cross-sectional area. Therefore, the fuse element 2 can set the fusing part to an arbitrary part by forming the fusing part 30.
- the fusing part 30 can be formed by, for example, forming a substantially rectangular plate shape and punching out the central part in the longitudinal direction and removing it by excision or the like. Further, as shown in FIG. 17, a plurality of fusing parts 30 may be formed by punching the inside of the fuse element 2, or only one by punching the outer edge of the fuse element 2 and removing it by excision or the like. It may be formed.
- the fuse element 2 In addition to forming the fuse element 2 in a plate shape, it may be formed in a linear shape as shown in FIG.
- the linear fuse element 2 can be efficiently formed by, for example, performing Ag plating on a thread solder by an electrolytic plating method or the like.
- the elution of the thread solder can be prevented by causing the terminal portion 22 to protrude from the connection portion 26, bending from the connection portion 26, or closing the end face 21. it can.
- the fusing part 30 can be formed by narrowing the cross-sectional area by caulking a part of the linear fuse element 2 or the like.
Landscapes
- Fuses (AREA)
Abstract
Description
ヒューズエレメント2は、定格を超える電流が通電することによって自己発熱(ジュール熱)により溶断し、ヒューズ素子1が組み込まれた回路の電流経路を遮断するものである。ヒューズエレメント2は、自己発熱により速やかに溶断されるいずれの金属を用いることができ、例えば、Snを主成分とするPbフリーハンダ等の低融点金属を好適に用いることができる。
ヒューズエレメント2は、低融点金属層2aの表面に高融点金属2bをメッキ技術を用いて成膜することにより製造できる。ヒューズエレメント2は、例えば、長尺状のハンダ箔の表面にAgメッキを施すことにより効率よく製造でき、使用時には、サイズに応じて切断することで、容易に用いることができる。
ヒューズエレメント2が収納されるケース3は、例えば、図1に示すように、上面が開口された筐体5と、筐体5の上面を覆う蓋体6とからなる。ケース3は、ヒューズ素子1が実装される回路の電極と接続されるヒューズエレメント2の両端を外方へ導出させる導出口7を有する。ケース3は、ヒューズエレメント2の両端を導出する導出口7を除き閉塞され、実装用ハンダ等の筐体5内への浸入を防止する。ケース3は、絶縁性、耐熱性、レジスト性を備えたエンジニアリングプラスチック等を用いて形成することができる。
ヒューズ素子1は、ケース3の収納空間8内に、導出口7に至る内壁面8aをヒューズエレメント2の溶断飛散物から遮蔽する遮蔽部10が設けられている。遮蔽部10は、ケースの内壁面8a又はヒューズエレメント2、あるいはその両方に設けることができる。
第1の形態に係る遮蔽部10は、収納空間8を構成するケース3の内壁面8aに形成された突起11である。図3、図4に示すように、突起11は、ケース3の、ヒューズエレメント2の電流の流れる方向と直交する内壁面8aに形成される。すなわち、突起11は、収納空間8内において、ヒューズエレメント2を中空で支持する一対の導出口7、7間に亘る内壁面8aを遮るように立設される。
第2の形態に係る遮蔽部10は、ヒューズエレメント2に設けられた突出部16である。図6、図7に示すように、突出部16は、ヒューズエレメント2の溶断箇所12から、電流の流れる方向と直交するケース3の内壁面8a側に突出している。すなわち、突出部16は、収納空間8内において、ヒューズエレメント2の溶断箇所12から張り出すことで、ケース3の導出口7、7間に亘る内壁面8aの少なくとも一部が、溶断箇所12から遮蔽された突出部16の影となる。
ヒューズ素子1は、遮蔽部10として、上述したケース3の内壁面8aに設けた突起11、及びヒューズエレメント2に設けた突出部16の両方を備えるものであってもよい。
上述したように、ヒューズ素子1は、ヒューズエレメント2を、内層と外層とからなる積層構造体として形成し、内層となる低融点金属層2aを外層となる高融点金属層2bによって被覆したものを用いることができる(図2(B))。そして、ヒューズエレメント2は、低融点金属層2aの表面に高融点金属2bをメッキ技術を用いて成膜することにより製造できる。ヒューズエレメント2は、例えば、長尺状のハンダ箔の表面にAgメッキを施すことにより効率よく製造でき、使用時には、サイズに応じて切断することで、図2(B)に示すように、切断面には高融点金属層2bに取り囲まれた低融点金属層2aが露出される。
Claims (27)
- ヒューズエレメントと、
上記ヒューズエレメントが収納される収納空間と、上記ヒューズエレメントの両端が導出される導出口を備え、上記収納空間において上記ヒューズエレメントを中空で支持するケースとを有し、
上記収納空間内には、上記導出口に至る内壁面を上記ヒューズエレメントの溶断飛散物から遮蔽する遮蔽部が設けられているヒューズ素子。 - 上記遮蔽部は、上記収納空間の、上記ヒューズエレメントの電流の流れる方向と直交する内壁面に形成された突起であり、
上記突起は、上記ヒューズエレメントの溶断により飛散した上記溶断飛散物が、溶断箇所と対向する一面に付着し、上記一面の反対側の他面には付着しない請求項1記載のヒューズ素子。 - 上記突起は、上記内壁面の、上記ヒューズエレメントを囲む全周にわたって形成されている請求項2記載のヒューズ素子。
- 上記突起は、上記ヒューズエレメントの溶断箇所と離間した位置に形成されている請求項2又は3に記載のヒューズ素子。
- 上記突起は、上記導出口の近傍に設けられる請求項2又は3に記載のヒューズ素子。
- 上記突起は、上記内壁面に複数形成されている請求項2又は3に記載のヒューズ素子。
- 上記遮蔽部は、上記ヒューズエレメントに設けられ、該ヒューズエレメントの溶断箇所から、電流の流れる方向と直交する上記収納空間の内壁面側に突出した突出部であり、
上記突出部は、上記ヒューズエレメントの溶融導体の飛散方向に張り出し、上記内壁面への付着を防止する請求項1記載のヒューズ素子。 - 上記突出部は、上記ヒューズエレメントの全周に亘って形成されている請求項7記載のヒューズ素子。
- 上記突出部は、上記ヒューズエレメントの溶断箇所と離間した位置に形成されている請求項7又は8に記載のヒューズ素子。
- 上記突出部は、上記導出口の近傍に設けられる請求項7又は8に記載のヒューズ素子。
- 上記突出部は、上記ヒューズエレメントに複数形成されている請求項7又は8に記載のヒューズ素子。
- 上記遮蔽部は、上記収納空間の、上記ヒューズエレメントの電流の流れる方向と直交する内壁面に形成された突起、及び、上記ヒューズエレメントに設けられ、該ヒューズエレメントの溶断箇所から、電流の流れる方向と直交する上記収納空間の内壁面側に突出した突出部であり、
上記突起は、上記ヒューズエレメントの溶断により飛散した溶融導体が、上記溶断箇所と対向する一面に付着し、上記一面の反対側の他面には付着せず、
上記突出部は、上記ヒューズエレメントの溶融導体の飛散方向に張り出し、上記内壁面への付着を防止する請求項1記載のヒューズ素子。 - 上記ヒューズエレメントは、内層を低融点金属層とし、外層を高融点金属層とする請求項1,2,3,7,8,12のいずれか1項に記載のヒューズ素子。
- 上記低融点金属層が露出する端面が設けられ、上記端面が設けられた端部を外部回路と接続される端子部とする請求項13記載のヒューズ素子。
- 上記端子部は、外部回路のランドに接続される接続部を有し、上記端面は上記接続部から突出されている請求項14記載のヒューズ素子。
- 上記端面は、上記接続部から少なくとも1回折り曲げられている請求項15記載のヒューズ素子。
- 上記端子部は、外部回路のランドに接続される接続部を有し、上記端面は閉塞されている請求項14記載のヒューズ素子。
- ケース内の収納空間に中空で支持されるとともに、上記ケースの導出口より両端が導出されるヒューズエレメントにおいて、
上記ケースの上記導出口に至る内壁面を溶断飛散物から遮蔽する突出部が設けられているヒューズエレメント。 - 上記突出部は、上記ヒューズエレメントの全周に亘って、連続又は断続的に形成されている請求項18記載のヒューズエレメント。
- 上記突出部は、上記ヒューズエレメントの溶断箇所と離間した位置に形成されている請求項18又は19に記載のヒューズエレメント。
- 上記突出部は、上記導出口の近傍に設けられる請求項18又は19に記載のヒューズエレメント。
- 上記突出部が複数形成されている請求項18又は19に記載のヒューズエレメント。
- 内層を低融点金属層とし、外層を高融点金属層とする請求項18又は19に記載のヒューズエレメント。
- 上記低融点金属層が露出する端面が設けられ、上記端面が設けられた端部を外部回路と接続される端子部とする請求項23記載のヒューズエレメント。
- 上記端子部は、外部回路のランドに接続される接続部を有し、上記端面は上記接続部から突出されている請求項24記載のヒューズエレメント。
- 上記端面は、上記接続部から少なくとも1回折り曲げられている請求項25に記載のヒューズエレメント。
- 上記端子部は、外部回路のランドに接続される接続部を有し、上記端面は閉塞されている請求項24記載のヒューズエレメント。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020167004775A KR102255773B1 (ko) | 2013-08-28 | 2014-08-27 | 퓨즈 엘리먼트, 퓨즈 소자 |
US14/903,542 US10937619B2 (en) | 2013-08-28 | 2014-08-27 | Fuse element and fuse device |
CN201480047548.XA CN105518820B (zh) | 2013-08-28 | 2014-08-27 | 熔丝元件及熔丝单元 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013177071 | 2013-08-28 | ||
JP2013-177071 | 2013-08-28 | ||
JP2014-165154 | 2014-08-14 | ||
JP2014165154A JP6437239B2 (ja) | 2013-08-28 | 2014-08-14 | ヒューズエレメント、ヒューズ素子 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015030023A1 true WO2015030023A1 (ja) | 2015-03-05 |
Family
ID=52586575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/072351 WO2015030023A1 (ja) | 2013-08-28 | 2014-08-27 | ヒューズエレメント、ヒューズ素子 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10937619B2 (ja) |
JP (1) | JP6437239B2 (ja) |
KR (1) | KR102255773B1 (ja) |
CN (1) | CN105518820B (ja) |
TW (1) | TWI631590B (ja) |
WO (1) | WO2015030023A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016143353A1 (ja) * | 2015-03-11 | 2016-09-15 | デクセリアルズ株式会社 | ヒューズエレメント及びヒューズ素子 |
US20160372294A1 (en) * | 2015-02-14 | 2016-12-22 | Nanjing Sart Science & Technology Development Co., Ltd | Protective Element |
WO2017142783A1 (en) * | 2016-02-17 | 2017-08-24 | Littelfuse, Inc. | High current one-piece fuse element and split body |
CN108028158A (zh) * | 2015-10-09 | 2018-05-11 | 迪睿合株式会社 | 熔丝元件 |
US11017972B2 (en) * | 2016-03-25 | 2021-05-25 | Suzhou Littelfuse Ovs Co., Ltd. | Solderless surface mount fuse |
WO2024224931A1 (ja) * | 2023-04-26 | 2024-10-31 | デクセリアルズ株式会社 | 保護素子 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6214318B2 (ja) * | 2013-10-09 | 2017-10-18 | デクセリアルズ株式会社 | 電流ヒューズ |
JP6483987B2 (ja) * | 2014-09-26 | 2019-03-13 | デクセリアルズ株式会社 | ヒューズエレメント、ヒューズ素子、及び発熱体内蔵ヒューズ素子 |
JP6363974B2 (ja) * | 2015-06-24 | 2018-07-25 | 太平洋精工株式会社 | ヒューズ |
WO2017061458A1 (ja) * | 2015-10-09 | 2017-04-13 | デクセリアルズ株式会社 | ヒューズ素子 |
JP6707428B2 (ja) * | 2016-09-16 | 2020-06-10 | デクセリアルズ株式会社 | ヒューズエレメント、ヒューズ素子、保護素子 |
JP7002955B2 (ja) * | 2017-02-28 | 2022-01-20 | デクセリアルズ株式会社 | ヒューズ素子 |
JP7010706B2 (ja) * | 2018-01-10 | 2022-01-26 | デクセリアルズ株式会社 | ヒューズ素子 |
CN108321063B (zh) * | 2018-01-26 | 2024-07-12 | Aem科技(苏州)股份有限公司 | 一种表面贴装熔断器及其生产方法 |
US11417490B2 (en) * | 2018-12-20 | 2022-08-16 | Littelfuse, Inc. | Sealed battery fuse module with energy dissipating cap |
JP7133723B2 (ja) * | 2019-03-12 | 2022-09-08 | シグニファイ ホールディング ビー ヴィ | 電子部品に温度ヒューズをスナップフィットするためのホルダ |
IT201900018947A1 (it) * | 2019-10-16 | 2021-04-16 | Audio Ohm Di Tonani Caterina & C S R L | Fusibile elettrico |
US20230343540A1 (en) * | 2020-01-30 | 2023-10-26 | Schurter Ag | Current-limiting fuse |
US11557451B1 (en) * | 2021-12-07 | 2023-01-17 | Hamilton Sundstrand Corporation | High voltage high current fuse with arc interrupter |
JP7645551B2 (ja) * | 2022-10-12 | 2025-03-14 | 太平洋精工株式会社 | ヒューズ |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009076330A (ja) * | 2007-09-20 | 2009-04-09 | Nippon Seisen Kk | 表面実装型電流ヒューズ |
JP2011009222A (ja) * | 2009-06-26 | 2011-01-13 | Cooper Technologies Co | 表面実装エンドキャップを備え接続性を改善した超小型ヒューズ |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4166267A (en) * | 1978-01-27 | 1979-08-28 | Gould Inc. | Electric fuse having heat retaining means |
JPS6011538Y2 (ja) * | 1982-12-01 | 1985-04-17 | 三王株式会社 | チツプ型ヒユ−ズ |
US4894633A (en) * | 1988-12-12 | 1990-01-16 | American Telephone And Telegraph Company | Fuse Apparatus |
JPH0720828Y2 (ja) * | 1989-06-14 | 1995-05-15 | エス・オー・シー株式会社 | 超小型電流ヒューズ |
JP2717076B2 (ja) * | 1995-08-30 | 1998-02-18 | エス・オー・シー株式会社 | 表面実装超小型電流ヒューズ |
JP3174251B2 (ja) * | 1995-10-13 | 2001-06-11 | 矢崎総業株式会社 | ヒューズエレメント |
JP3562685B2 (ja) * | 1996-12-12 | 2004-09-08 | 矢崎総業株式会社 | ヒューズ及びその製造方法 |
US6642834B1 (en) * | 1999-03-04 | 2003-11-04 | Littelfuse, Inc. | High voltage automotive use |
JP3820143B2 (ja) * | 2001-02-16 | 2006-09-13 | エス・オー・シー株式会社 | 表面実装型小型ヒューズ |
EP1300867A1 (fr) * | 2001-10-03 | 2003-04-09 | Metalor Technologies International S.A. | Element de fusible et son procédé de fabrication |
JP4001757B2 (ja) * | 2002-03-06 | 2007-10-31 | 内橋エステック株式会社 | 合金型温度ヒュ−ズ |
US6872648B2 (en) * | 2002-09-19 | 2005-03-29 | Infineon Technologies Ag | Reduced splattering of unpassivated laser fuses |
DE102004046387A1 (de) * | 2004-09-24 | 2006-04-06 | Amphenol-Tuchel Electronics Gmbh | Schmelzsicherung für Hochstromanwendungen |
US7569907B2 (en) * | 2005-03-28 | 2009-08-04 | Cooper Technologies Company | Hybrid chip fuse assembly having wire leads and fabrication method therefor |
DE102007014334A1 (de) * | 2007-03-26 | 2008-10-02 | Robert Bosch Gmbh | Schmelzlegierungselement, Thermosicherung mit einem Schmelzlegierungselement sowie Verfahren zum Herstellen einer Thermosicherung |
JP2009032489A (ja) * | 2007-07-26 | 2009-02-12 | Soc Corp | ヒューズ |
US8525633B2 (en) * | 2008-04-21 | 2013-09-03 | Littelfuse, Inc. | Fusible substrate |
CN101567283B (zh) * | 2008-04-24 | 2012-04-18 | Aem科技(苏州)股份有限公司 | 表面贴装熔断器及其制造方法 |
CN201282089Y (zh) * | 2008-10-08 | 2009-07-29 | 日本能源服务株式会社 | 高压熔断器用熔丝 |
JP5583991B2 (ja) * | 2010-03-03 | 2014-09-03 | 矢崎総業株式会社 | ヒューズ及びヒューズの製造方法 |
US8629749B2 (en) * | 2010-11-30 | 2014-01-14 | Hung-Chih Chiu | Fuse assembly |
-
2014
- 2014-08-14 JP JP2014165154A patent/JP6437239B2/ja active Active
- 2014-08-27 CN CN201480047548.XA patent/CN105518820B/zh active Active
- 2014-08-27 TW TW103129443A patent/TWI631590B/zh active
- 2014-08-27 US US14/903,542 patent/US10937619B2/en active Active
- 2014-08-27 KR KR1020167004775A patent/KR102255773B1/ko active Active
- 2014-08-27 WO PCT/JP2014/072351 patent/WO2015030023A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009076330A (ja) * | 2007-09-20 | 2009-04-09 | Nippon Seisen Kk | 表面実装型電流ヒューズ |
JP2011009222A (ja) * | 2009-06-26 | 2011-01-13 | Cooper Technologies Co | 表面実装エンドキャップを備え接続性を改善した超小型ヒューズ |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160372294A1 (en) * | 2015-02-14 | 2016-12-22 | Nanjing Sart Science & Technology Development Co., Ltd | Protective Element |
US10388483B2 (en) * | 2015-02-14 | 2019-08-20 | Nanjing Sart Science & Technology Development Co., Ltd | Protective element |
WO2016143353A1 (ja) * | 2015-03-11 | 2016-09-15 | デクセリアルズ株式会社 | ヒューズエレメント及びヒューズ素子 |
JP2016170892A (ja) * | 2015-03-11 | 2016-09-23 | デクセリアルズ株式会社 | ヒューズエレメント及びヒューズ素子 |
CN108028158A (zh) * | 2015-10-09 | 2018-05-11 | 迪睿合株式会社 | 熔丝元件 |
US10727019B2 (en) | 2015-10-09 | 2020-07-28 | Dexerials Corporation | Fuse device |
WO2017142783A1 (en) * | 2016-02-17 | 2017-08-24 | Littelfuse, Inc. | High current one-piece fuse element and split body |
US10141150B2 (en) | 2016-02-17 | 2018-11-27 | Littelfuse, Inc. | High current one-piece fuse element and split body |
US11017972B2 (en) * | 2016-03-25 | 2021-05-25 | Suzhou Littelfuse Ovs Co., Ltd. | Solderless surface mount fuse |
DE112016006648B4 (de) | 2016-03-25 | 2023-08-24 | Suzhou Littelfuse Ovs Ltd. | Lötfreie sicherung zur oberflächenmontage |
WO2024224931A1 (ja) * | 2023-04-26 | 2024-10-31 | デクセリアルズ株式会社 | 保護素子 |
Also Published As
Publication number | Publication date |
---|---|
CN105518820A (zh) | 2016-04-20 |
TW201523681A (zh) | 2015-06-16 |
CN105518820B (zh) | 2018-04-24 |
TWI631590B (zh) | 2018-08-01 |
JP6437239B2 (ja) | 2018-12-12 |
US20160172143A1 (en) | 2016-06-16 |
US10937619B2 (en) | 2021-03-02 |
KR102255773B1 (ko) | 2021-05-26 |
JP2015065156A (ja) | 2015-04-09 |
KR20160046810A (ko) | 2016-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6437239B2 (ja) | ヒューズエレメント、ヒューズ素子 | |
KR102213303B1 (ko) | 퓨즈 엘리먼트, 및 퓨즈 소자 | |
US10170267B2 (en) | Current fuse | |
US10707043B2 (en) | Fuse element, fuse device, and heat-generator-integrated fuse device | |
JP6491431B2 (ja) | ヒューズ素子、及びヒューズエレメント | |
KR102442404B1 (ko) | 퓨즈 소자 | |
TWI731050B (zh) | 保護元件 | |
JP6714943B2 (ja) | ヒューズエレメント及びヒューズ素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14839278 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 14903542 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20167004775 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14839278 Country of ref document: EP Kind code of ref document: A1 |