[go: up one dir, main page]

WO2015025605A1 - 通信制御装置及び無線通信装置 - Google Patents

通信制御装置及び無線通信装置 Download PDF

Info

Publication number
WO2015025605A1
WO2015025605A1 PCT/JP2014/066410 JP2014066410W WO2015025605A1 WO 2015025605 A1 WO2015025605 A1 WO 2015025605A1 JP 2014066410 W JP2014066410 W JP 2014066410W WO 2015025605 A1 WO2015025605 A1 WO 2015025605A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission power
communication control
secondary systems
margin
change
Prior art date
Application number
PCT/JP2014/066410
Other languages
English (en)
French (fr)
Inventor
匠 古市
亮 澤井
亮太 木村
博允 内山
臼居 隆志
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2015532750A priority Critical patent/JP6361661B2/ja
Priority to US14/895,160 priority patent/US10004044B2/en
Priority to EP14837544.7A priority patent/EP3038400B1/en
Priority to ES14837544T priority patent/ES2879901T3/es
Priority to CN201480044490.3A priority patent/CN105453628B/zh
Priority to MX2016001952A priority patent/MX357526B/es
Priority to RU2016104835A priority patent/RU2676532C9/ru
Priority to SG11201601020XA priority patent/SG11201601020XA/en
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2015025605A1 publication Critical patent/WO2015025605A1/ja
Priority to ZA2015/08811A priority patent/ZA201508811B/en
Priority to US15/978,624 priority patent/US10448341B2/en
Priority to US16/581,766 priority patent/US10917858B2/en
Priority to US17/137,374 priority patent/US11363537B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/04Transmission power control [TPC]
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/373Predicting channel quality or other radio frequency [RF] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/04Transmission power control [TPC]
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/04Transmission power control [TPC]
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • H04W52/244Interferences in heterogeneous networks, e.g. among macro and femto or pico cells or other sector / system interference [OSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/04Transmission power control [TPC]
    • H04W52/30Transmission power control [TPC] using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/343TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading taking into account loading or congestion level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/04Transmission power control [TPC]
    • H04W52/30Transmission power control [TPC] using constraints in the total amount of available transmission power
    • H04W52/36Transmission power control [TPC] using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/362Aspects of the step size
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/04Transmission power control [TPC]
    • H04W52/38TPC being performed in particular situations
    • H04W52/386TPC being performed in particular situations centralized, e.g. when the radio network controller or equivalent takes part in the power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/04Transmission power control [TPC]
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • H04W52/228TPC being performed according to specific parameters taking into account previous information or commands using past power values or information

Definitions

  • the present disclosure relates to a communication control device and a wireless communication device.
  • the secondary use of the frequency means that another system secondary uses a part or all of the frequency channel preferentially assigned to a certain system.
  • a system to which frequency channels are preferentially assigned is called a primary system, and a system that secondary uses the frequency channels is called a secondary system.
  • a typical example of the secondary system is a cognitive radio system.
  • TV white space is an example of a frequency channel for which secondary use is being discussed (see Non-Patent Document 1).
  • the TV white space refers to a channel that is not used by the television broadcasting system according to the region among frequency channels assigned to the television broadcasting system as the primary system. By opening up this TV white space to the secondary system, efficient use of frequency resources can be realized.
  • Non-Patent Document 1 defines technical requirements and operation requirements of a white space device (WSD) using a secondary system.
  • a device that operates the secondary system is also referred to as a master WSD, and a device that participates in the secondary system is also referred to as a slave WSD.
  • Patent Literature 1 and Patent Literature 2 disclose techniques for suppressing the cumulative interference that a plurality of secondary systems give to a primary system to an acceptable level.
  • the calculation cost for evaluating the cumulative interference given to the primary system increases as the number of secondary systems increases. For example, if the number of master WSDs that secondarily use white space for the same primary system is doubled, the calculation cost can be quadrupled. If the calculation for interference evaluation is not completed within the allowable time, the power allocation cannot follow the change in the number of secondary systems, and the effectiveness of the control may be lost.
  • a calculation for calculating a transmission power to be allocated including a reference transmission power and a margin for interference avoidance of one or more secondary systems that secondary use a frequency channel protected for the primary system And a determination unit that determines a change in the number of secondary systems and causes the calculation unit to adjust the margin for interference avoidance based on the determined change.
  • a communication unit that communicates with a master device of one or more secondary systems that secondarily use a frequency channel protected for the primary system, a reference transmission power, and a change amount of the number of secondary systems.
  • a parameter for identifying the allocated transmission power based on information obtained from a data server that calculates the allocated transmission power for the secondary system, including a margin for interference avoidance adjusted based on
  • a control unit that performs signaling to the master device via the communication unit.
  • a wireless communication apparatus that operates a secondary system that secondary uses a frequency channel protected for a primary system, and adjusts based on a change in the number of secondary transmissions and a reference transmission power
  • a communication unit for receiving signaling of a parameter for identifying the allocated transmission power based on information acquired from a data server that calculates an allocated transmission power for the secondary system, including a margin for interference avoidance performed
  • a communication control unit that controls wireless communication between the wireless communication device and one or more terminal devices according to the allocated transmission power specified using the parameter.
  • wireless communication apparatus which concerns on one Embodiment. It is explanatory drawing for demonstrating the other example of a system model. It is a block diagram which shows an example of a schematic structure of GLDB. It is a block diagram which shows an example of schematic structure of eNB. It is a block diagram which shows an example of a schematic structure of a smart phone. It is a block diagram which shows an example of a schematic structure of a car navigation apparatus.
  • FIG. 1 is an explanatory diagram for describing an overview of a communication control system 1 according to an embodiment of the technology according to the present disclosure.
  • the communication control system 1 includes a primary transmission / reception station 10, one or more wireless communication devices 20a, 20b,..., And a communication control device 100.
  • the primary transmitting / receiving station 10 is a transmitting / receiving station installed to operate the primary system on a frequency channel that is legally authorized or authorized to use.
  • the primary transmitting / receiving station 10 transmits a radio signal of the primary system to a primary terminal (not shown) located inside the service area 11.
  • the primary system may be, for example, a television broadcasting system such as a DVB-T (Digital Video Broadcasting-Terrestrial) system.
  • the primary terminal is a receiver (also referred to as an incumbent receiver) having a television antenna and a tuner.
  • the primary system may be a mobile communication system that operates in accordance with a communication scheme such as LTE, LTE-A, GSM, UMTS, W-CDMA, CDMA200, WiMAX, WiMAX2, or IEEE 802.16.
  • the primary system may be another type of wireless communication system such as an aeronautical radio system (for example, ARNS (Aeronautical Radio Navigation Service)).
  • the primary transmitting / receiving station 10 is connected to the core network 15.
  • the core network 15 includes a plurality of control nodes each having roles such as user information management, terminal mobility management, packet transfer, and a gateway.
  • Each of the wireless communication devices 20a, 20b,... Is a master device that operates a secondary system by secondary use of a frequency channel protected for the primary system.
  • the wireless communication apparatuses 20a, 20b,... May be, for example, the master WSD described in Non-Patent Document 1, or other types of devices such as a small cell base station or a wireless access point.
  • Small cells may include femtocells, nanocells, picocells, microcells, and the like.
  • the wireless communication device 20 transmits and receives wireless signals to and from slave devices (not shown) located around the device itself.
  • slave devices not shown
  • the radio signal of the secondary system interferes with the primary terminal.
  • interference observed at the primary terminal can be accumulated.
  • the wireless communication device 20 is connected to a packet data network (PDN) 16 via a backhaul link.
  • the backhaul link may be a wired link or a wireless link.
  • the PDN 16 is connected to the core network 15 via a gateway (not shown).
  • the communication control device 100 is a data server arranged in the PDN 16.
  • the communication control device 100 may be, for example, a GLDB (Geo-location Database) described in Non-Patent Document 1, or may be another type of server.
  • the communication control apparatus 100 may be arranged in the core network 15 without being limited to the example of FIG.
  • a functional entity having a function equivalent to that of the communication control apparatus 100 may be mounted on the primary transmitting / receiving station 10.
  • the communication control apparatus 100 allocates transmission power to each of the secondary systems so that cumulative interference caused by radio signals from one or more secondary systems does not adversely affect the primary system.
  • the wireless communication device 20 that is the master device of each secondary system transmits an activation request to the communication control device 100 via the backhaul link when starting operation of the system.
  • the communication control apparatus 100 calculates transmission power to be allocated to each secondary system. Then, the communication control apparatus 100 notifies the wireless communication apparatus 20 of the transmission power allocation result (and other information such as a list of available channels). Through these procedures, the secondary system can be operated.
  • cumulative interference caused by radio signals from the secondary system is estimated as an interference level at any point (referred to as a reference point) in the service area 11. Then, the communication control apparatus 100 calculates transmission power to be allocated to each secondary system so that the estimated interference level does not exceed the allowable level.
  • the reference point may be, for example, a point on the protection contour of the service area 11 where the distance from each wireless communication device 20 is the smallest. Instead, the reference point may be a point where a primary terminal with the shortest distance from each wireless communication device 20 exists. In the example of FIG. 1, reference points 22 a, 22 b,... Corresponding to the wireless communication devices 20 a, 20 b,.
  • the power distribution method described in Patent Document 1 or the margin minimization method (method using flexible minimized margin) described in Non-Patent Document 2 results in setting the margin for avoiding interference as small as possible.
  • the calculation cost for calculating the allocated transmission power increases as the number of secondary systems increases.
  • the computational cost may increase on the order of the square of the number of secondary systems (the product of the number of reference points and the number of secondary systems). In consideration of the processing for setting the reference point and the signaling overhead, the calculation cost for calculating the allocated transmission power cannot be ignored.
  • FIG. 3 shows a primary transmitting / receiving station 10a that operates a primary system within the service area 11a in the geographic area 3a.
  • the communication control apparatus 100a has an authority to allocate transmission power to one or more secondary systems that secondarily use the frequency channel for the primary transmitting / receiving station 10a in the geographical area 3a.
  • the right half of FIG. 3 shows a primary transmitting / receiving station 10b that operates the primary system within the service area 11b in the geographical area 3b.
  • the communication control device 100b has an authority to allocate transmission power to one or more secondary systems that secondarily use the frequency channel for the primary transmission / reception station 10b in the geographic region 3b.
  • the communication control apparatus 100a needs to consider the interference signal from the secondary system in the geographical area 3b depending on the positional relationship of the devices between the areas or the state of transmission power allocation. Even in such a case, the number of secondary systems to be included in the calculation of power allocation may increase.
  • FIG. 4 is a graph showing an example of the relationship between the number of secondary systems and the calculation cost of allocated transmission power.
  • the horizontal axis of FIG. 4 shows the number of active master WDSs, that is, the number of secondary systems to be included in the power allocation calculation.
  • the vertical axis in FIG. 4 indicates the calculation cost of power allocation estimated according to a certain simulation model. As understood from FIG. 4, the calculation cost increases as the number of master devices of the secondary system increases.
  • FIG. 5 is an explanatory diagram for explaining an example of a delay in power allocation.
  • the calculation of power allocation is periodically executed with a period DCP along the horizontal time axis.
  • the period DCP may be defined in units of subframes, radio frames, milliseconds or seconds, for example.
  • X 0 pieces of secondary system is activated. Transmission power to be assigned to X 0 pieces of secondary system is calculated over the time length D0. Since the time length D0 is shorter than the period D CP, the result of the power allocation is notified to each secondary system in a timely manner.
  • X 1 secondary systems are further activated. Transmission power to be allocated to X 0 + X 1 single secondary system is calculated over the time length D1. Since the time length D1 is shorter than the period D CP, the result of the power allocation is notified to each secondary system in a timely manner.
  • X 2 pieces of the secondary system is further activated.
  • Transmission power to be assigned to X 0 + X 1 + X 2 pieces of secondary system is calculated over the duration D2. Longer than the duration D2 is the period D CP, notification to each secondary system results in power allocation is delayed until after the next calculation period is started at time T 3.
  • X 3 secondary systems are further activated. Transmission power to be assigned to X 0 + X 1 + X 2 + X 3 pieces of the secondary system is calculated over the duration D3. The notification of the result of the power allocation to each secondary system is larger than the previous delay.
  • X 0 pieces of secondary system is deactivated.
  • the transmission power to be allocated to the X 1 + X 2 + X 3 secondary systems is calculated over the time length D4. Although the time length D4 is shorter than the period D CP, since the remaining influence of the delay up to the previous notification to the secondary system for the resulting power allocation until after the next calculation period is started at time T 5 Delay.
  • Such delays include loss of secondary system communication opportunities due to transmission power not being allocated, reduced resource utilization efficiency, and the occurrence of harmful interference due to timely updates of power allocation, etc.
  • Various harmful effects can be caused. Therefore, in the embodiment described later, in order to cope with these adverse effects and to achieve both the prevention of harmful interference and the speed of power allocation, an existing method with a large calculation cost is simplified as an algorithm for power allocation.
  • a mechanism for adaptively switching between the method for estimating the margin is realized. For example, an existing method with a high calculation cost and a power distribution method described in Patent Document 1 or a margin minimization method described in Non-Patent Document 2 may be used.
  • the transmission power allocated to each secondary system is calculated using the reference transmission power of the secondary system and a margin for avoiding interference.
  • the reference transmission power P IB SingleWSD of the secondary system is also called maximum radiated power and can be calculated according to the following equation:
  • the reference point here is a point on the protection boundary closest to the master device (or the position of the nearest primary transmitting / receiving station). When there is no primary transmission / reception station, the reference point may be set to infinity.
  • the calculation formula is expressed in a decibel format in principle.
  • m Z is the minimum reception sensitivity of the primary terminal
  • m G is the path gain
  • r (df) is the protection ratio corresponding to the separation frequency df
  • SM is the shadowing margin.
  • the path gain may depend on the distance between the point where the device is located and the reference point, and the antenna height of the device.
  • the protection ratio can depend on the frequency channel used secondary.
  • the transmission power P IB WSD allocated to each secondary system is calculated by subtracting the interference avoidance margin IM from the reference transmission power so that the cumulative interference level from the plurality of secondary systems is not harmful at the reference point, as shown in the following equation. Calculated by subtraction.
  • the interference avoidance margin IM may in principle be common to all secondary systems.
  • three methods of a fixed margin method, a flexible margin method, and a margin minimization method are known.
  • the interference avoidance margin IM is calculated according to the following equation using the total number N Potential of secondary systems.
  • the interference avoidance margin IM is calculated according to the following equation using the number of active secondary systems N Active (f WSD ) for each channel.
  • the active secondary system in this case may mean a system that is simply activated, or may mean a system that uses transmission power exceeding some reference value in the channel f WSD . .
  • the interference avoidance margin IM is calculated according to the following expression using the total number N Potential of secondary systems and the margin reduction term ⁇ .
  • r (0) is the separation frequency zero, that is, the protection ratio of the same channel (co-channel)
  • I Agg, max represents the accumulated interference amount at the reference point with the largest interference.
  • the accumulated interference amount here may include an interference amount from another system.
  • the margin reduction term ⁇ contributes to increase the throughput of the secondary system and improve the resource utilization efficiency.
  • the margin minimization method in order to derive the cumulative interference amount I Agg, max , it is required to evaluate the cumulative interference level for all reference points.
  • IM ′ is an interference avoidance margin after adjustment
  • IM Base is an interference avoidance margin (adjustment reference value) at the reference time point
  • dM is a margin adjustment amount.
  • the margin adjustment dM is expressed as follows from Equation (5) and Equation (6). can do. Note that the number of secondary systems and their changes may be targeted only for active devices, or may be the total number.
  • dI represents the magnitude of change in the accumulated interference amount I Agg, max corresponding to the change N WSD_VAR in the number of secondary systems (hereinafter referred to as estimated interference change).
  • the estimated interference change dI is simply estimated based on the change N WSD_VAR of the number of secondary systems instead of being strictly calculated.
  • the estimated interference change dI is estimated using a table that defines a mapping between the change N WSD_VAR of the number of secondary systems and the estimated interference change dI.
  • Tables 1 and 2 show examples of mapping tables, respectively.
  • the estimated interference change dI is directly mapped to the change N WSD_VAR of the number of secondary systems.
  • Table 2 the estimated interference change dI is mapped to a range to which the change amount N WSD_VAR of the number of secondary systems belongs.
  • the estimated interference change dI can be derived with a small calculation cost by looking up a predefined mapping table.
  • the estimated interference change dI is estimated based on the assumption that the number of secondary systems is proportional to the cumulative interference amount. Under this assumption, the estimated interference change dI can be expressed as:
  • the margin adjustment dM can be easily calculated using only the secondary system number N WSD and the change N WSD_VAR of the secondary system number at the reference time point.
  • margin adjustment dM may be calculated as shown in the following equation by incorporating the concept of the flexible margin method into equation (7).
  • f m N WSD_VAR ) represents the number of secondary systems to which the mth frequency channel is allocated among the change N WSD_VAR of the number of secondary systems.
  • I TH represents a threshold value that can correspond to the maximum value of cumulative interference allowed by the primary terminal.
  • the number of secondary systems in the power calculation model described in this section may be based on the number of devices of one or both of the master device and the slave device of the secondary system. For example, when the secondary system is operated in a time division manner and the slave device uses transmission power equivalent to (or lower than) the transmission power of the master device, only the number of devices of the master device is counted as the number of secondary systems. Is enough. On the other hand, for example, when the master device and the slave device can transmit signals at the same time, by counting the number of both the master device and the slave device as the number of secondary systems, safe power calculation can be guaranteed.
  • the number of these devices may be calculated by adding a weight depending on the device configuration.
  • the device configuration herein may include, for example, one or more of antenna height, transmit power (which may be maximum or desired, or may be allocated transmit power for existing devices), and available frequency channels. .
  • transmit power which may be maximum or desired, or may be allocated transmit power for existing devices
  • available frequency channels available frequency channels.
  • the higher the antenna of a device the greater the contribution to interference of signals emanating from that device.
  • the risk of harmful interference can be effectively reduced through power recalculation or adjustment.
  • FIG. 6 is a block diagram illustrating an example of a logical configuration of the communication control apparatus 100 according to an embodiment.
  • the communication control apparatus 100 includes a communication unit 110, a storage unit 120, and a control unit 130.
  • the communication unit 110 communicates with the wireless communication device 20 via the backhaul link of the wireless communication device 20. For example, the communication unit 110 receives an activation request from the wireless communication device 20 that has been activated or moved to a geographical area managed by the communication control device 100. The communication unit 110 also receives secondary system information described later from the wireless communication device 20. Then, when calculation for power allocation is executed by control unit 130, communication unit 110 transmits power allocation related information based on the calculation result to radio communication apparatus 20.
  • the communication unit 110 can also communicate with the primary transmitting / receiving station 10 and the control node in the core network 15.
  • the communication unit 110 can communicate with a data server (for example, a GLDB that manages an adjacent area) that has an authority to allocate transmission power in an area around the geographical area managed by the communication control apparatus 100.
  • a data server for example, a GLDB that manages an adjacent area
  • the storage unit 120 stores a program and data for the operation of the communication control apparatus 100 using a storage medium such as a hard disk or a semiconductor memory.
  • the data stored by the storage unit 120 includes, for example, primary system information collected from a primary transmission / reception station 10 or a control node in the core network 15 or stored in advance.
  • the primary system information includes, for example, the position of the primary transmitting / receiving station, the arrangement of the service area, the frequency channel to be protected, the minimum reception sensitivity of the primary terminal, the protection ratio, the shadowing margin, the allowable interference level, the identifier of the radio access technology, and the actual measurement.
  • One or more of the measured interference levels can be used, for example, when specifying the reference point in the above-described power calculation model.
  • the data stored by the storage unit 120 includes secondary system information collected from each of the wireless communication devices 20.
  • Secondary system information includes the master device identifier, location, antenna height, device type, radiation characteristics (eg ACLR (Adjacent Channel Leakage Ratio)), radio access technology identifier, and transmission power information (eg maximum transmission power and (Or desired transmission power).
  • the data stored by the storage unit 120 may include power allocation related information notified to the wireless communication device 20.
  • the power allocation related information may include one or more of a list of available frequency channels, reference transmission power (maximum radiated power), interference avoidance margin, interference avoidance margin adjustment, and information validity period.
  • the data stored by the storage unit 120 includes parameters used for calculation of power allocation.
  • the parameters are, for example, the calculation period of power allocation, the determination threshold compared with the number of secondary systems, the mapping table for deriving the estimated interference change, and the number of secondary systems, accumulated interference amount and interference at the past reference time point.
  • One or more of the avoidance margins may be included.
  • control unit 130 controls the overall operation of the communication control device 100.
  • the control unit 130 includes a determination unit 132, a calculation unit 134, and a signaling unit 136.
  • the determination unit 132 is executed by the calculation unit 134 according to a condition that depends on the number of secondary systems. Switch calculation processing for power allocation. As an example, when the number of secondary systems after the change is less than the determination threshold, the determination unit 132 recalculates the calculation unit 134 to transmit power to be allocated to the secondary system according to the margin minimization method in the power calculation model described above. Let Moreover, the determination part 132 makes the calculation part 134 adjust the transmission power calculated in the past, when the number of secondary systems after a change exceeds a determination threshold value.
  • the determination threshold here is set so that the estimated calculation time depending on the number of secondary systems does not exceed the allowable calculation time.
  • the allowable calculation time may be set in advance according to any conditions such as requirements for operating the secondary system, hardware restrictions of the communication control device 100, rules of the operator operating the communication control device 100, and the like. Good.
  • the determination unit 132 dynamically sets an allowable calculation time according to processing conditions such as a load applied to processing resources (such as a processor and a memory) of the communication control apparatus 100 or the number of available processor cores. It may be set.
  • the allowable calculation time may be equal to the calculation period of the power allocation described above.
  • the allowed calculation time may be equal to such a scheduling period.
  • the determination unit 132 tracks changes in the number of secondary systems by monitoring activation requests and deactivation requests received from the wireless communication device 20.
  • N WSD represents the number of secondary systems at the reference time
  • N WSD_VAR represents the change in the number of secondary systems from the reference time.
  • the determination condition for switching the calculation process in the calculation unit 134 can be expressed as follows.
  • the determination unit 132 causes the calculation unit 134 to adjust the transmission power calculated in the past based on the change N WSD_VAR of the number of secondary systems.
  • the determination threshold value N TH in the conditional expression (12) can be derived as follows.
  • Equation (14) is merely an example.
  • margin determination threshold N TH may be counted.
  • the reference time point may be a time point at which the transmission power is finally recalculated by the calculation unit 134.
  • the determination unit 132 changes the number of secondary systems at time T 1 even if the transmission power is subsequently adjusted at time T 2 .
  • the reference value N WSD where the minute becomes zero is held. In this case, even if the transmission power is roughly adjusted a plurality of times by a simple method, adjustment errors are not accumulated, and the risk of harmful interference due to error accumulation is avoided.
  • the reference time point may be a time point immediately before the transmission power is recalculated or adjusted.
  • the determination unit 132 if the transmission power at time T 2, is adjusted, the number of secondary system at time T 2,, variation is held as a reference value N WSD becomes zero. In this case, since the determination unit 132 only needs to hold the number of secondary systems in the latest and previous calculation periods, the calculation process can be simplified.
  • the method of simply adjusting only the interference avoidance margin based on the change in the number of secondary systems makes it possible to obtain a result with a small calculation cost while sacrificing the optimality of power allocation to some extent.
  • the determination unit 132 further causes the calculation unit 134 to recalculate transmission power or adjust transmission power calculated in the past according to additional determination conditions that depend on factors other than changes in the number of secondary systems. , May be determined.
  • the factor that determines the additional determination condition here may be, for example, at least one of a reference point, a frequency channel that is secondarily used, a device antenna height, and an interference level from another system. . For example, when the degree of change of these factors is large, it is determined that the additional determination condition is satisfied, and the interference avoidance margin can be adjusted.
  • the calculation unit 134 calculates transmission power to be allocated to one or more secondary systems that secondarily use the frequency channel protected for the primary system.
  • the calculation unit 134 recalculates (calculates) the transmission power allocated to each secondary system, for example, according to the above-described margin minimization method, unless the above-described determination condition for switching the calculation process is satisfied.
  • the transmission power of each secondary system can be calculated using the reference transmission power P IB SingleWSD and the interference avoidance margin IM as shown in Expression (2).
  • the calculation unit 134 calculates only the adjustment dM of the interference avoidance margin based on the change N WSD_VAR of the number of secondary systems, as shown in Expression (7) or Expression (9). By calculating, the interference avoidance margin IM is adjusted. Calculation unit 134, for example, by substituting the secondary system number of variation N WSD_VAR, cumulative interference amount I Agg in variation dI and reference point of the interference amount is estimated based on the N WSD_VAR, the max in equation (7) Thus, the adjustment amount dM of the interference avoidance margin may be calculated.
  • the calculation unit 134 may derive the estimated interference change dI using a mapping table that defines the mapping between the change N WSD_VAR of the number of secondary systems and the estimated interference change dI. Also, the calculation unit 134 substitutes the number of secondary systems N WSD and the change N WSD_VAR into the equation (9) based on the assumption that the number of secondary systems and the accumulated interference amount are proportional, for example, thereby obtaining an interference avoidance margin.
  • the adjustment amount dM may be calculated. In either case, a calculation cost that increases in the order of the square of the number of secondary systems is not required. Compared to a method of recalculating the transmission power of the entire system, the calculation of the interference avoidance margin adjustment dM is completed within a shorter time.
  • the calculation unit 134 can calculate the reference transmission power of the secondary system operated by the new wireless communication device 20.
  • the reference transmission power P IB SingleWSD is calculated using parameters included in the primary system information and the secondary system information according to Equation (1).
  • the calculation of the reference transmission power may be delegated to the secondary system. For example, when the load on the calculation unit 134 is higher than a predetermined threshold in a certain calculation period, the calculation unit 134 can delegate the calculation of the reference transmission power to the secondary system. In that case, a parameter for calculating the reference transmission power can be signaled to the radio communication apparatus 20 which is the master device of the secondary system.
  • the signaling unit 136 performs signaling between the primary transmission / reception station 10, the control node in the core network 15, the radio communication device 20, and other data servers via the communication unit 110. For example, whenever the transmission power allocated to each secondary system is recalculated by the calculation unit 134 or the interference avoidance margin is adjusted, the wireless communication device 20 that is the master device of the active secondary system is notified of the power allocation related information. To do.
  • the transmission power P IB WSD allocated to each secondary system includes a reference transmission power P IB SingleWSD and an interference avoidance margin IM. While the reference transmission power P IB SingleWSD varies from system to system, the interference avoidance margin IM is common to a plurality of secondary systems. In the calculation period in which the interference avoidance margin IM is adjusted, that is, in the calculation period in which the number of secondary systems after the change satisfies the conditional expression (12), the reference transmission power P IB SingleWSD is not updated and is shown in the expression (6). Only margin adjustment dM is calculated. In this case, the signaling unit 136 signals only the interference avoidance margin adjustment dM calculated by the calculation unit 134 to the existing secondary system.
  • the signaling unit 136 and the interference avoidance margin IM Base notified to the existing secondary system at the past reference time point and the reference transmission power P IB Signal with SingleWSD .
  • the wireless communication apparatus 20 that is the master device of the secondary system can derive the adjusted interference avoidance margin IM ′ by adding the interference avoidance margin IM Base and the margin adjustment amount dM at the reference time point.
  • the signaling unit 136 may signal the adjusted interference avoidance margin IM ′ to both the existing secondary system and the new secondary system. Further, the signaling unit 136 may signal the allocated transmission power P IB WSD to the secondary system at some timing.
  • the signaling unit 136 When the calculation of the reference transmission power is delegated to the secondary system according to the load of the calculation unit 134, the signaling unit 136 signals a parameter for calculating the reference transmission power to the new secondary system.
  • Parameters for calculating the reference transmission power include, for example, the position of the primary transceiver station, the list of available frequency channels, the minimum reception sensitivity of the primary terminal, the protection ratio, the shadowing margin, and the total number of secondary systems (N WSD + N WSD_VAR ) May be included.
  • the reference transmission power is calculated by the wireless communication device 20 itself that is the master device of the new secondary system.
  • the signaling unit 136 may receive a report of the calculation result of the reference transmission power from the wireless communication device 20 and store the report in the storage unit 120.
  • the reference transmission power P IB SingleWSD may be updated.
  • the interference avoidance margin IM is also recalculated.
  • the signaling unit 136 signals the recalculated reference transmission power P IB SingleWSD and interference avoidance margin IM to the existing secondary system and the new secondary system.
  • the interference avoidance margin IM notified here can be treated as a reference value for the subsequent adjustment of the interference avoidance margin.
  • the signaling message for the signaling unit 136 to notify the wireless communication apparatus 20 of the power allocation related information may include an indicator indicating the type of parameter to be notified.
  • the value of the assigned transmission power parameter type is not limited to the example described above, and may be another value.
  • the communication control system 1 can support various signaling variations, and can select an optimum signaling method from the viewpoint of reducing overhead or implementation complexity. .
  • the communication control apparatus 100 may be a data server having an authority to allocate transmission power to one or more secondary systems in the geographical area 3a, for example.
  • the existence of the secondary system in the adjacent area 3b adjacent to the geographical area 3a should be taken into consideration when the transmission power is allocated.
  • An example of such a situation is a situation where a secondary system using a large or relatively large transmission power is operated near a region boundary.
  • the signaling unit 136 may acquire information indicating the number of secondary systems to be considered in the adjacent area 3b from another data server having the authority to allocate transmission power to the secondary system for the adjacent area 3b.
  • the secondary system number N WSD_A means the reference value N WSD of the secondary system number
  • the secondary system number N WSD_B means the change N WSD_VAR in the spatial direction of the secondary system. Is understood to have
  • the determination unit 132 uses the interference avoidance margin IM included in the transmission power calculated in the past in consideration of only the geographic region 3a to change the number of secondary systems. Based on the minute N WSD_B , the calculation unit 132 is adjusted. Since the secondary system number N WSD_B is positive, the equation (7) can be modified as follows.
  • the communication control apparatus 100 determines only the number of secondary systems that should be considered from an apparatus having authority for the adjacent area. Just get it.
  • the communication control apparatus 100 can quickly give a communication opportunity to the secondary system while appropriately protecting the primary system by adjusting the interference avoidance margin by using the acquired number of secondary systems.
  • the signaling unit 136 may acquire other parameters such as the estimated interference change dI from a device having authority for the adjacent region.
  • the calculation unit 134 calculates the transmission power P Alloc WSD assigned to each secondary system using the signaling reduction margin M int in addition to the reference transmission power P IB SingleWSD and the interference avoidance margin IM as shown in the following equation. To do.
  • the calculation unit 134 uses the adjustment dM of the interference avoidance margin IM in Expression (17) as the change in the number of secondary systems.
  • N Calculate based on WSD_VAR .
  • the following conditional expression (18) is satisfied, no harmful interference occurs even if the secondary system continuously uses the allocated transmission power P Alloc WSD .
  • the right side of conditional expression (18) is equal to the allocated transmission power P Alloc WSD .
  • Conditional expression (18) can be transformed equivalently as follows.
  • the signaling unit 136 converts the margin adjustment dM to the existing secondary system. Do not signal to the system.
  • the calculation unit 134 uses the adjustment dM of the interference avoidance margin IM in Expression (17) as the change in the number of secondary systems. Calculate based on the minute N WSD_VAR . At this time, when the following conditional expression (20) is satisfied, the improvement of the throughput by adjusting the transmission power of the secondary system is small.
  • M TH_Int is a signaling overhead reduction threshold that can be set in advance.
  • M TH_Int is a signaling overhead reduction threshold that can be set in advance.
  • the number of power allocation calculations is reduced by incorporating a kind of hysteresis control instead of strictly tracking the number of secondary systems.
  • the calculation unit 134 sets the change N WSD_VAR of the number of secondary systems to a virtual value N WSD_VAR ′ that is larger than the actual value and calculates the margin adjustment dM as shown in the following equation. To do.
  • the calculation unit 134 adjusts the interference avoidance margin as long as the total number of secondary systems (N WSD + N WSD_VAR ) does not exceed a virtual value (N WSD + N WSD_VAR ′). You don't have to do it. Thereby, the frequency of signaling to each secondary system is reduced.
  • the virtual value N WSD_VAR ′ may be fixedly set in advance or may be set dynamically.
  • the calculation unit 134 holds the maximum number of secondary systems managed by the communication control apparatus 100 for each hour as a communication history, and the virtual secondary system number (N WSD + N WSD_VAR ′) is equal to the maximum number.
  • the virtual value N WSD_VAR ′ may be set so that As a result, the interference avoidance margin is greatly calculated ahead of the increase in the number of secondary systems, so that transmission power can be quickly allocated to a new secondary system without causing harmful interference to the primary system. .
  • An effective period may be set for the virtual value N WSD_VAR ′. In this case, after the validity period has elapsed, the calculation unit 134 adjusts the interference avoidance margin (or recalculates transmission power) regardless of the virtual value N WSD_VAR ′, and the result of power allocation is transferred to the secondary system. Can be signaled.
  • the calculation unit 134 does not have to perform adjustment of the interference avoidance margin.
  • FIG. 7A is a flowchart illustrating a first example of the flow of power distribution processing according to an embodiment.
  • the time when the transmission power is finally recalculated by the calculation unit 134 is treated as the reference time for the change in the number of secondary systems.
  • step S110 the determination unit 132 waits for a change in the number of secondary systems (step S110). If the number of secondary systems has changed, the process proceeds to step S115.
  • the determination unit 132 determines whether the number of secondary systems after the change (N WSD + N WSD_VAR ) exceeds the determination threshold value N TH (step S115). If the number of secondary systems after the change does not exceed the determination threshold, the process proceeds to step S120. On the other hand, when the number of secondary systems after the change exceeds the determination threshold, the process proceeds to step S140.
  • step S120 the calculation unit 134 recalculates the reference transmission power and the margin for avoiding interference according to a technique such as the power distribution method described in Patent Document 1 or the margin minimization method described in Non-Patent Document 2. (Step S120). Then, the signaling unit 136 notifies the recalculated reference transmission power and interference avoidance margin to the wireless communication device 20 that is the master device of each of the existing secondary system and the new secondary system (step S125). Further, the calculation unit 134 updates the reference value N WSD for the number of secondary systems and the maximum accumulated interference amount I Agg, max at the reference time point to the latest values (step S130).
  • step S140 the calculation unit 134 adjusts the interference avoidance margin IM by calculating the interference avoidance margin adjustment dM based on the change N WSD_VAR of the number of secondary systems (step S140). Then, the signaling unit 136 notifies the margin adjustment dM calculated by the calculation unit 134 to the wireless communication device 20 that is each master device of the existing secondary system (step S145).
  • the calculation unit 134 determines whether to calculate the reference transmission power for the new secondary system according to the load at that time (step S150). For example, when the load on the calculation unit 134 is relatively high, the calculation of the reference transmission power is delegated to the secondary system. In this case, the signaling unit 136 notifies the wireless communication device 20 that is each master device of the new secondary system of the parameter for calculating the reference transmission power, the interference avoidance margin, and the adjustment amount thereof (step S155). . On the other hand, when the load on the calculation unit 134 is relatively low, the calculation of the reference transmission power is not delegated to the secondary system. In this case, the calculation unit 134 calculates the reference transmission power for the new secondary system (step S160). Then, the signaling unit 136 notifies the wireless communication device 20 that is each master device of the new secondary system of the reference transmission power, the interference avoidance margin, and the adjustment amount (step S165).
  • step S180 the determination unit 132 monitors the change in the number of secondary systems, and the process returns to step S110 (step S180).
  • FIG. 7B is a flowchart illustrating a second example of the flow of power distribution processing according to an embodiment.
  • the time point at which the transmission power is recalculated or adjusted immediately before is handled as the reference time point for the change in the number of secondary systems.
  • the determination threshold value N TH is dynamically set. Note that the determination threshold value N TH may be dynamically set in the first example, or the determination threshold value N TH may be fixedly set in advance in the second example.
  • the determination unit 132 sets a determination threshold value N TH according to a processing condition such as a load applied to a processing resource of the communication control apparatus 100 or the number of cores of an available processor (Step S1). S105). The determination unit 132 waits for a change in the number of secondary systems (step S110). If the number of secondary systems has changed, the process proceeds to step S115.
  • the determination unit 132 determines whether the number of secondary systems after the change (N WSD + N WSD_VAR ) exceeds the determination threshold value N TH (step S115). If the number of secondary systems after the change does not exceed the determination threshold, the process proceeds to step S120. On the other hand, when the number of secondary systems after the change exceeds the determination threshold, the process proceeds to step S140.
  • step S120 the calculation unit 134 recalculates the reference transmission power and the margin for avoiding interference according to a technique such as the power distribution method described in Patent Document 1 or the margin minimization method described in Non-Patent Document 2. (Step S120). Then, the signaling unit 136 notifies the recalculated reference transmission power and interference avoidance margin to the wireless communication device 20 that is the master device of each of the existing secondary system and the new secondary system (step S125).
  • step S140 the calculation unit 134 adjusts the interference avoidance margin IM by calculating the interference avoidance margin adjustment dM based on the change N WSD_VAR of the number of secondary systems (step S140). Then, the signaling unit 136 notifies the margin adjustment dM calculated by the calculation unit 134 to the wireless communication device 20 that is each master device of the existing secondary system (step S145).
  • the calculation unit 134 determines whether to calculate the reference transmission power for the new secondary system according to the load at that time (step S150). For example, when the load of the calculation unit 134 is relatively high, the signaling unit 136 sets the parameters for calculating the reference transmission power, the interference avoidance margin, and the adjustment amount thereof to each master device of the new secondary system. Is notified to the wireless communication device 20 (step S155). On the other hand, when the load on the calculation unit 134 is relatively low, the calculation unit 134 calculates the reference transmission power for the new secondary system (step S160). Then, the signaling unit 136 notifies the wireless communication device 20 that is each master device of the new secondary system of the reference transmission power, the interference avoidance margin, and the adjustment amount (step S165).
  • the calculation unit 132 updates the reference value N WSD for the number of secondary systems and the maximum accumulated interference amount I Agg, max at the reference time point to the latest values (step S175). Until the next calculation timing comes, the determination unit 132 monitors the change in the number of secondary systems, and the process returns to step S105 (step S180).
  • FIG. 7C is a flowchart illustrating a third example of the flow of power distribution processing according to an embodiment.
  • the time when the transmission power is finally recalculated by the calculation unit 134 is treated as the reference time for the change in the number of secondary systems.
  • the technique for reducing the signaling overhead described as the first modification in the previous section is adopted.
  • step S110 the determination unit 132 waits for a change in the number of secondary systems (step S110). If the number of secondary systems has changed, the process proceeds to step S115.
  • the determination unit 132 determines whether the number of secondary systems after the change exceeds a determination threshold value (step S115). If the number of secondary systems after the change does not exceed the determination threshold, the process proceeds to step S121. On the other hand, when the number of secondary systems after the change exceeds the determination threshold, the process proceeds to step S140.
  • step S121 the calculation unit 134 recalculates the reference transmission power and the margin for avoiding interference according to a technique such as the power distribution method described in Patent Document 1 or the margin minimization method described in Non-Patent Document 2. To do.
  • a signaling reduction margin M Int is also included (step S121).
  • the signaling unit 136 notifies the recalculated reference transmission power and margin to the wireless communication device 20 that is the master device of each of the existing secondary system and the new secondary system (step S126).
  • the calculation unit 132 updates the reference value N WSD for the number of secondary systems and the maximum accumulated interference amount I Agg, max at the reference time point to the latest values (step S130).
  • step S140 the calculation unit 134 adjusts the interference avoidance margin by calculating the adjustment amount of the interference avoidance margin based on the change in the number of secondary systems (step S140). Then, the signaling unit 136 determines whether the margin adjustment calculated by the calculation unit 134 should be signaled (step S144). For example, if the margin adjustment amount dM does not satisfy the above-described conditional expression (19) or (20), the signaling unit 136 may determine that the margin adjustment amount dM should be signaled. When it is determined that the margin adjustment amount dM should be signaled, the signaling unit 136 notifies the margin adjustment amount calculated by the calculation unit 134 to the wireless communication apparatus 20 that is each master device of the existing secondary system. (Step S145).
  • the calculation unit 134 calculates the reference transmission power for the new secondary system (step S160). Then, the signaling unit 136 notifies the wireless communication device 20 that is each master device of the new secondary system of the reference transmission power, the interference avoidance margin, the margin adjustment amount, and the signaling reduction margin (step S166).
  • step S180 the determination unit 132 monitors the change in the number of secondary systems, and the process returns to step S110 (step S180).
  • FIG. 7D is a flowchart illustrating a fourth example of the flow of power distribution processing according to an embodiment.
  • the technique for reducing the signaling overhead described as the second modification in the previous section is adopted.
  • step S110 the determination unit 132 waits for a change in the number of secondary systems (step S110). If the number of secondary systems has changed, the process proceeds to step S115.
  • the determination unit 132 determines whether the number of secondary systems after the change exceeds a determination threshold value (step S115). If the number of secondary systems after the change does not exceed the determination threshold, the process proceeds to step S120. On the other hand, when the number of secondary systems after the change exceeds the determination threshold, the process proceeds to step S135.
  • step S120 the calculation unit 134 recalculates the reference transmission power and the margin for avoiding interference according to a technique such as the power distribution method described in Patent Document 1 or the margin minimization method described in Non-Patent Document 2.
  • Step S120 the signaling unit 136 notifies the recalculated reference transmission power and interference avoidance margin to the wireless communication device 20 that is the master device of each of the existing secondary system and the new secondary system (step S125).
  • the calculation unit 132 updates the reference value N WSD for the number of secondary systems and the maximum accumulated interference amount I Agg, max at the reference time point to the latest values (step S130).
  • step S135 the determination unit 132 further compares the absolute value of the change in the number of secondary systems with a threshold (step S135).
  • the threshold value here may be a virtual change N WSD_VAR ′. Further, different threshold values may be used for the increase case and the decrease case.
  • the calculation unit 134 calculates the interference avoidance margin based on the virtual change in the number of secondary systems, thereby calculating the interference avoidance margin. Adjustment is made (step S139). Then, the signaling unit 136 notifies the margin adjustment calculated by the calculation unit 134 to the wireless communication apparatus 20 that is each master device of the existing secondary system (step S145). If the absolute value of the change in the number of secondary systems does not exceed the threshold, these steps S140 and S145 are skipped.
  • the calculation unit 134 calculates the reference transmission power for the new secondary system (step S160). Then, the signaling unit 136 notifies the wireless communication device 20 that is each master device of the new secondary system of the reference transmission power, the interference avoidance margin, and the adjustment amount (step S165).
  • step S180 the determination unit 132 monitors the change in the number of secondary systems, and the process returns to step S110 (step S180).
  • FIG. 8 is a flowchart showing an example of the flow of margin adjustment processing (corresponding to step S140) that can be executed in the power distribution processing shown in FIGS. 7A to 7C.
  • the calculation unit 134 derives the estimated interference change dI based on the change N WSD_VAR of the number of secondary systems (step S141).
  • the calculating unit 134 acquires the accumulated interference amount I Agg, max at the reference time from the storage unit 120 (step S142).
  • the calculation unit 134 calculates the margin adjustment dM by substituting the change N WSD_VAR of the number of secondary systems, the estimated interference change dI, and the accumulated interference amount I Agg, max into Expression (7) (step S143). .
  • [4-3. Signaling sequence] 9A and 9B show an example of a signaling sequence in the communication control system 1 according to an embodiment.
  • the sequence of FIG. 9A involves the communication control device 100, the wireless communication device 20a that is the master device of the existing secondary system, and the wireless communication device 20h that is the master device of the new secondary system. Note that only the wireless communication devices 20a and 20h are illustrated here for the sake of simplicity of explanation, but actually, the communication control system 1 is assumed to include more wireless communication devices 20.
  • the wireless communication device 20h transmits an activation request to the communication control device 100 (step S10).
  • the communication control apparatus 100 that has received the activation request from the wireless communication apparatus 20h counts up the number of secondary systems.
  • the communication control apparatus 100 executes the power distribution process described with reference to FIGS. 7A to 7D (step S15). As a result, the transmission power to be allocated to the secondary system is recalculated, or the transmission power calculated in the past is adjusted based on the change in the number of secondary systems.
  • the communication control device 100 signals the result of power allocation to the wireless communication device 20h together with the notification that the activation is permitted (step S20). Further, the communication control device 100 signals the result of power allocation or the result of margin adjustment to the wireless communication device 20a (step S20).
  • the wireless communication device 20h calculates the transmission power allocated to the new secondary system using the result of the power allocation notified from the communication control device 100 (step S30). Then, the radio communication device 20h can report the calculated allocated transmission power to the communication control device 100 (step S35).
  • the wireless communication device 20a calculates the recalculated or adjusted allocated transmission power using the result of power allocation or margin adjustment notified from the communication control device 100 (step S40). And the radio
  • the communication control apparatus 100 is signaled the number of secondary systems to be considered from the data server having authority for the adjacent area 3b (step S50).
  • the number of secondary systems signaled here corresponds to the parameter N WSD_B in Equation (15) and Equation (16) described above, and is handled as a change in the number of secondary systems.
  • the communication control apparatus 100 executes the power distribution process using the number of secondary systems WSD_A in the geographic area 3a and the number of secondary systems N WSD_B to be considered in the adjacent area 3b (step S55). As a result, the transmission power to be allocated to the secondary system is recalculated, or the transmission power calculated in the past is adjusted based on N WSD_B .
  • the communication control device 100 signals the result of power allocation or the result of margin adjustment to the wireless communication device 20a and the wireless communication device 20h (steps S60 and S65).
  • the wireless communication device 20h calculates the recalculated or adjusted allocated transmission power using the result of power allocation or margin adjustment notified from the communication control device 100 (step S70). Then, the radio communication device 20h can report the calculated allocated transmission power to the communication control device 100 (step S75).
  • the wireless communication device 20a calculates the recalculated or adjusted allocated transmission power using the result of power allocation or margin adjustment notified from the communication control device 100 (step S80). And the radio
  • FIG. 10 is a block diagram illustrating an example of a logical configuration of the wireless communication device 20 according to an embodiment.
  • the wireless communication device 20 includes a wireless communication unit 210, a network communication unit 220, a storage unit 230, and a communication control unit 240.
  • the wireless communication unit 210 performs wireless communication with a terminal device (slave device of the secondary system) located in the vicinity using the transmission power allocated by the communication control device 100. For example, the wireless communication unit 210 transmits a beacon signal on any available frequency channel notified from the communication control apparatus 100.
  • the slave device that has detected the beacon signal exchanges parameters for the operation of the secondary system with the wireless communication device 20 and starts wireless communication.
  • the parameter exchanged here may include a parameter (for example, a value of transmission power) for controlling the transmission power of the slave device.
  • the network communication unit 220 establishes a backhaul link between the wireless communication device 20 and the communication control device 100. Then, the network communication unit 220 receives various signaling messages transmitted from the communication control apparatus 100 on the backhaul link. In addition, the network communication unit 220 transmits secondary system information about the secondary system operated by the wireless communication device 20 to the communication control device 100. When the backhaul link is a wireless link, the network communication unit 220 may be omitted from the configuration of the wireless communication device 20.
  • the storage unit 230 stores a program and data for the operation of the wireless communication device 20 using a storage medium such as a hard disk or a semiconductor memory.
  • the data stored in the storage unit 230 may include, for example, secondary system information about a secondary system operated by the wireless communication device 20, power allocation related information notified from the communication control device 100, and slave device information.
  • the communication control unit 240 controls communication executed by the wireless communication device 20. For example, the communication control unit 240 transmits an activation request to the communication control apparatus 100 via the backhaul link when the wireless communication apparatus 20 starts operation of the secondary system (or returns from the sleep mode).
  • the operating frequency and transmission power are set in the wireless communication unit 210 in accordance with transmission power allocation by the communication control apparatus 100. Thereby, wireless communication between the wireless communication apparatus 20 as a master device and one or more slave devices is possible.
  • the maximum transmission power that can be used by the wireless communication unit 210 can be calculated by subtracting the interference avoidance margin (and the signaling reduction margin as necessary) from the reference transmission power notified from the communication control apparatus 100.
  • the communication control unit 240 When the communication control unit 240 receives a signaling message for notifying the adjustment amount of the interference avoidance margin from the communication control device 100, the communication control unit 240 adds the margin adjustment amount to the margin included in the set transmission power, thereby The transmission power setting in 210 is updated.
  • the communication control unit 240 transmits a deactivation request to the communication control apparatus 100 via the backhaul link when stopping the operation of the secondary system (or transitioning to the sleep mode). Thereby, the communication control apparatus 100 can recognize the decrease in the secondary system.
  • FIG. 1 shows a system model in which a communication control apparatus 100 that can correspond to GLDB is provided in the communication control system 1, and the communication control apparatus 100 executes calculation of power and signaling with a secondary system.
  • a system model is only an example.
  • the function of the communication control apparatus 100 described above may be realized by two or more entities separated hierarchically.
  • FIG. 11 is an explanatory diagram for explaining another example of the system model.
  • the communication control system 2 includes a GLDB 102, one or more WSDBs (White Space Database) 104a, 104b,..., One or more master WSDs 20a, 20b,.
  • the GLDB 102 mainly has a calculation function for power allocation, and a function of switching between power recalculation and adjustment according to the determination conditions described above.
  • the GLDB 102 also has a function of communicating with other entities that may include the WSDBs 104a, 104b,... (Hereinafter collectively referred to as the WSDB 104).
  • the GLDB 102 recalculates the allocated transmission power for the secondary systems, or based on the change in the number of secondary systems, for interference avoidance. Adjust the margin.
  • the WSDB 104 has a function of acquiring information indicating the calculation result of transmission power from the GLDB 102 and signaling a parameter for specifying the allocated transmission power of each secondary system to the master device of the secondary system.
  • the WSDB 104 also has a function of communicating with other entities that may include the GLDB 102 and a function of communicating with the master WSD 20.
  • the WSDB 104 may directly receive information indicating the calculation result of the transmission power from the GLDB 102, or may acquire the information via another WSDB.
  • the GLDB 102 may be a server operated by a public or public interest organization, while the WSDB may be a server operated by a commercial or non-profit business.
  • the GLDB 102 periodically (or aperiodically) calculates (recalculates / adjusts) transmission power to be allocated to the secondary system based on the primary system information and the secondary system information reported from the WSDB 104. Then, the GLDB 102 transmits the above-described power allocation related information indicating the calculation result to the WSDB 104.
  • the power allocation related information includes at least a parameter that specifies the calculated interference avoidance margin.
  • the parameter type may be any type as described above in connection with the signaling unit 136 of the communication control device 100.
  • the power allocation related information is associated with each secondary system (or master WSD) and may include, for example, a system ID or a device ID.
  • the WSDB 104 may signal information corresponding to the request source ID to the master WSD 20 in a response to the request from the master WSD 20.
  • power allocation related information is associated with a location (and device attributes such as antenna height). For example, a geographical area managed by the GLDB 102 is segmented in a grid shape, and identification information is given to each segment. The power allocation related information is then provided to the WSDB 104 in the form of a table that maps margin values to pairs of segments and device attributes (eg, antenna height).
  • the WSDB 104 may signal the margin value mapped to the segment and attribute pair in which the requesting device is located in response to the request from the master WSD 20.
  • the WSDB 104 may signal the reference transmission power and the interference avoidance margin to the master WSD 20 respectively.
  • the WSDB 104 calculates the allocated transmission power of each master WSD 20 from the reference transmission power and the interference avoidance margin (reference value and adjustment amount) based on the power allocation related information, and calculates the calculated allocated transmission power. Parameters for specifying may be signaled to the individual master WSD 20.
  • the WSDB 104 may signal a parameter for causing the master WSD 20 to calculate the reference transmission power to the master WSD 20.
  • the master WSD 20 corresponds to the wireless communication device 20 described with reference to FIG.
  • the master WSD 20 has a function of communicating with the WSDB 104 that has power allocation related information for specifying allocated transmission power for the secondary system operated by the master WSD 20.
  • the master WSD 20 receives the parameter signaling for specifying the assigned transmission power from the WSDB 104 of the connection destination, and the master WSD 20 and one or more slave WSDs according to the assigned transmission power specified using the received parameter. Control the wireless communication between.
  • the communication control devices 100, 102, and 104 may be realized as any type of data server such as a tower server, a rack server, or a blade server. Further, the communication control devices 100, 102, and 104 may be control modules mounted on a server (for example, an integrated circuit module configured by one die, or a card or a blade inserted into a blade server slot). Good.
  • the radio communication device 20 may be realized as any type of eNB (evolved Node B) such as a macro eNB, a pico eNB, or a home eNB.
  • the wireless communication device 20 may be realized as another type of base station such as a NodeB or a BTS (Base Transceiver Station).
  • the wireless communication device 20 is a smart phone, a tablet PC (Personal Computer), a notebook PC, a portable game terminal, a mobile terminal such as a portable / dongle-type mobile router or a digital camera, or an in-vehicle such as a car navigation device. It may be realized as a terminal. Further, the wireless communication device 20 may be realized as a terminal (also referred to as an MTC (Machine Type Communication) terminal) that performs M2M (Machine To Machine) communication. Further, the wireless communication device 20 may be a wireless communication module (for example, an integrated circuit module configured by one die) mounted on these terminals.
  • MTC Machine Type Communication
  • FIG. 12 is a block diagram illustrating an example of a schematic configuration of a GLDB 700 to which the technology according to the present disclosure can be applied.
  • the GLDB 700 includes a processor 701, a memory 702, a storage 703, a network interface 704, and a bus 706.
  • the processor 701 may be, for example, a CPU (Central Processing Unit) or a DSP (Digital Signal Processor), and controls various functions of the GLDB 700.
  • the memory 702 includes a RAM (Random Access Memory) and a ROM (Read Only Memory), and stores programs and data executed by the processor 701.
  • the storage 703 may include a storage medium such as a semiconductor memory or a hard disk.
  • the network interface 704 is a wired communication interface for connecting the GLDB 700 to the wired communication network 705.
  • the wired communication network 705 may be a core network such as EPC (Evolved Packet Core) or a PDN (Packet Data Network) such as the Internet.
  • EPC Evolved Packet Core
  • PDN Packet Data Network
  • the bus 706 connects the processor 701, the memory 702, the storage 703, and the network interface 704 to each other.
  • the bus 706 may include two or more buses with different speeds (eg, a high speed bus and a low speed bus).
  • the control unit 130 described with reference to FIG. 6 may be implemented in the processor 701.
  • the processor 701 functions as the determination unit 132, the calculation unit 134, and the signaling unit 136, so that harmful interference to the primary system is prevented and the change in the number of secondary systems in the geographical area managed by the GLDB 700 is followed. Thus, transmission power can be quickly allocated to each secondary system.
  • FIG. 13 is a block diagram illustrating an example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
  • the eNB 800 includes one or more antennas 810 and a base station device 820. Each antenna 810 and the base station apparatus 820 can be connected to each other via an RF cable.
  • Each of the antennas 810 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of radio signals by the base station apparatus 820.
  • the eNB 800 includes a plurality of antennas 810 as illustrated in FIG. 13, and the plurality of antennas 810 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example.
  • FIG. 13 illustrates an example in which the eNB 800 includes a plurality of antennas 810, the eNB 800 may include a single antenna 810.
  • the base station apparatus 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 may be a CPU or a DSP, for example, and operates various functions of the upper layer of the base station apparatus 820. For example, the controller 821 generates a data packet from the data in the signal processed by the wireless communication interface 825, and transfers the generated packet via the network interface 823. The controller 821 may generate a bundled packet by bundling data from a plurality of baseband processors, and may transfer the generated bundled packet. In addition, the controller 821 is a logic that executes control such as radio resource control, radio bearer control, mobility management, inflow control, or scheduling. May have a typical function. Moreover, the said control may be performed in cooperation with a surrounding eNB or a core network node.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various control data (for example, terminal list, transmission power data, scheduling data, and the like).
  • the network interface 823 is a communication interface for connecting the base station device 820 to the wired communication network 705.
  • the controller 821 can communicate with the GLDB 700 via the network interface 823.
  • the wireless communication interface 825 supports any cellular communication method such as LTE (Long Term Evolution) or LTE-A (LTE-Advanced), and is a terminal (slave device) located in the cell of the eNB 800 via the antenna 810. ) To provide wireless connectivity.
  • the wireless communication interface 825 may typically include a baseband (BB) processor 826, an RF circuit 827, and the like.
  • the BB processor 826 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and each layer (for example, L1, MAC (Medium Access Control), RLC (Radio Link Control), and PDCP).
  • Various signal processing of Packet Data Convergence Protocol
  • Packet Data Convergence Protocol is executed.
  • the BB processor 826 may have some or all of the logical functions described above instead of the controller 821.
  • the BB processor 826 may be a module that includes a memory that stores a communication control program, a processor that executes the program, and related circuits. The function of the BB processor 826 may be changed by updating the program. Good.
  • the module may be a card or a blade inserted into a slot of the base station apparatus 820, or a chip mounted on the card or the blade.
  • the RF circuit 827 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 810.
  • the wireless communication interface 825 includes a plurality of BB processors 826 as illustrated in FIG. 13, and the plurality of BB processors 826 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. Further, the wireless communication interface 825 includes a plurality of RF circuits 827 as shown in FIG. 13, and the plurality of RF circuits 827 may correspond to, for example, a plurality of antenna elements, respectively.
  • FIG. 13 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 includes a single BB processor 826 or a single RF circuit 827. But you can.
  • the communication control unit 240 described with reference to FIG. 10 may be implemented in the wireless communication interface 825. Further, at least a part of the function may be implemented in the controller 821.
  • the eNB 800 performs wireless communication with the slave device using the transmission power allocated by the communication control apparatus 100, thereby quickly starting the operation of the secondary system while preventing harmful interference to the primary system. can do.
  • FIG. 14 is a block diagram illustrating an example of a schematic configuration of a smartphone 900 to which the technology according to the present disclosure can be applied.
  • the smartphone 900 includes a processor 901, a memory 902, a storage 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more antenna switches 915.
  • One or more antennas 916, a bus 917, a battery 918 and an auxiliary controller 919 are provided.
  • the processor 901 may be, for example, a CPU or a SoC (System on Chip), and controls the functions of the application layer and other layers of the smartphone 900.
  • the memory 902 includes a RAM and a ROM, and stores programs executed by the processor 901 and data.
  • the storage 903 can include a storage medium such as a semiconductor memory or a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card or a USB (Universal Serial Bus) device to the smartphone 900.
  • the camera 906 includes, for example, an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and generates a captured image.
  • the sensor 907 may include a sensor group such as a positioning sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 908 converts sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor that detects a touch on the screen of the display device 910, a keypad, a keyboard, a button, or a switch, and receives an operation or information input from a user.
  • the display device 910 has a screen such as a liquid crystal display (LCD) or an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts an audio signal output from the smartphone 900 into audio.
  • the wireless communication interface 912 supports any cellular communication method such as LTE or LTE-A and performs wireless communication.
  • the wireless communication interface 912 may typically include a BB processor 913, an RF circuit 914, and the like.
  • the BB processor 913 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
  • the RF circuit 914 may include a mixer, a filter, an amplifier, and the like, and transmits and receives radio signals via the antenna 916.
  • the wireless communication interface 912 may be a one-chip module in which the BB processor 913 and the RF circuit 914 are integrated.
  • the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914 as illustrated in FIG. 14 illustrates an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 includes a single BB processor 913 or a single RF circuit 914. But you can.
  • the wireless communication interface 912 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN (Local Area Network) method in addition to the cellular communication method.
  • a BB processor 913 and an RF circuit 914 for each wireless communication method may be included.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits (for example, circuits for different wireless communication systems) included in the wireless communication interface 912.
  • Each of the antennas 916 includes a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 912.
  • the smartphone 900 may include a plurality of antennas 916 as illustrated in FIG. Note that FIG. 14 illustrates an example in which the smartphone 900 includes a plurality of antennas 916, but the smartphone 900 may include a single antenna 916.
  • the smartphone 900 may include an antenna 916 for each wireless communication method.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900.
  • the bus 917 connects the processor 901, the memory 902, the storage 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other.
  • the battery 918 supplies electric power to each block of the smartphone 900 shown in FIG. 14 through a power supply line partially shown by a broken line in the drawing.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode.
  • the smartphone 900 illustrated in FIG. 14 may operate as a master device of the secondary system.
  • the communication control unit 240 described with reference to FIG. 10 may be implemented in the wireless communication interface 912.
  • at least a part of these functions may be implemented in the processor 901 or the auxiliary controller 919.
  • the smart phone 900 performs wireless communication with the slave device using the transmission power allocated by the communication control device 100, thereby quickly operating the secondary system while preventing harmful interference to the primary system. Can start.
  • the smartphone 900 may operate as a slave device of the secondary system.
  • FIG. 15 is a block diagram illustrating an example of a schematic configuration of a car navigation device 920 to which the technology according to the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a GPS (Global Positioning System) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and wireless communication.
  • the interface 933 includes one or more antenna switches 936, one or more antennas 937, and a battery 938.
  • the processor 921 may be a CPU or SoC, for example, and controls the navigation function and other functions of the car navigation device 920.
  • the memory 922 includes RAM and ROM, and stores programs and data executed by the processor 921.
  • the GPS module 924 measures the position (for example, latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
  • the sensor 925 may include a sensor group such as a gyro sensor, a geomagnetic sensor, and an atmospheric pressure sensor.
  • the data interface 926 is connected to the in-vehicle network 941 through a terminal (not shown), for example, and acquires data generated on the vehicle side such as vehicle speed data.
  • the content player 927 reproduces content stored in a storage medium (for example, CD or DVD) inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button, or a switch that detects a touch on the screen of the display device 930, and receives an operation or information input from the user.
  • the display device 930 has a screen such as an LCD or an OLED display, and displays a navigation function or an image of content to be reproduced.
  • the speaker 931 outputs the navigation function or the audio of the content to be played back.
  • the wireless communication interface 933 supports any cellular communication method such as LTE or LTE-A, and performs wireless communication.
  • the wireless communication interface 933 may typically include a BB processor 934, an RF circuit 935, and the like.
  • the BB processor 934 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
  • the RF circuit 935 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 937.
  • the wireless communication interface 933 may be a one-chip module in which the BB processor 934 and the RF circuit 935 are integrated.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935 as shown in FIG. 15 illustrates an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 includes a single BB processor 934 or a single RF circuit 935. But you can.
  • the wireless communication interface 933 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN method in addition to the cellular communication method.
  • a BB processor 934 and an RF circuit 935 may be included for each communication method.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933 (for example, circuits for different wireless communication systems).
  • Each of the antennas 937 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 933.
  • the car navigation device 920 may include a plurality of antennas 937 as shown in FIG. 15 illustrates an example in which the car navigation apparatus 920 includes a plurality of antennas 937, the car navigation apparatus 920 may include a single antenna 937.
  • the car navigation device 920 may include an antenna 937 for each wireless communication method.
  • the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
  • the battery 938 supplies power to each block of the car navigation device 920 shown in FIG. 15 through a power supply line partially shown by a broken line in the drawing. Further, the battery 938 stores electric power supplied from the vehicle side.
  • the car navigation device 920 shown in FIG. 15 may operate as a master device of the secondary system.
  • the communication control unit 240 described with reference to FIG. 10 may be implemented in the wireless communication interface 933. Further, at least a part of these functions may be implemented in the processor 921.
  • the car navigation device 920 performs wireless communication with the slave device using the transmission power allocated by the communication control device 100, thereby preventing harmful interference to the primary system and quickly Operation can be started. Further, the car navigation apparatus 920 may operate as a slave device of the secondary system.
  • the technology according to the present disclosure may be realized as an in-vehicle system (or vehicle) 940 including one or more blocks of the car navigation device 920 described above, an in-vehicle network 941, and a vehicle side module 942.
  • vehicle-side module 942 generates vehicle-side data such as vehicle speed, engine speed, or failure information, and outputs the generated data to the in-vehicle network 941.
  • the technology according to the present disclosure is not limited to such an example.
  • the transmission power may be adjusted with a small calculation cost according to the technique according to the present disclosure.
  • the transmission power is recalculated.
  • the number of secondary systems after the change exceeds the threshold, adjustment of transmission power calculated in the past is executed. Therefore, when there are a large number of secondary systems and there is a possibility that the calculation of power allocation will not be completed within an allowable time, only adjustment of transmission power with a simple algorithm is executed. Thereby, loss of the communication opportunity of the secondary system due to a delay in transmission power allocation can be prevented while maintaining protection of the primary system.
  • the transmission power allocated to each secondary system is calculated using the reference transmission power of the secondary system and the interference avoidance margin.
  • the transmission power is adjusted by adjusting the interference avoidance margin based on the change in the number of secondary systems. Therefore, it is possible to adjust the transmission power with a small calculation cost only by monitoring the change in the number of secondary systems.
  • a series of control processing by each device described in this specification may be realized using any of software, hardware, and a combination of software and hardware.
  • the program constituting the software is stored in advance in a storage medium (non-transitory medium) provided inside or outside each device.
  • Each program is read into a RAM at the time of execution, for example, and executed by a processor such as a CPU.
  • processing described using the flowchart in this specification does not necessarily have to be executed in the order shown in the flowchart. Some processing steps may be performed in parallel. Further, additional processing steps may be employed, and some processing steps may be omitted.
  • a calculator for calculating transmit power to be allocated to one or more secondary systems that secondary use frequency channels protected for the primary system When the number of secondary systems changes, the calculation unit recalculates the transmission power according to a condition depending on the number of secondary systems, or the transmission power calculated in the past is based on the change in the number of secondary systems.
  • a determination unit for determining whether to adjust A communication control device comprising: (2) The determination unit causes the calculation unit to recalculate the transmission power when the number of secondary systems after change is less than a threshold value, and causes the calculation unit to calculate when the number of secondary systems after change exceeds the threshold value.
  • the communication control apparatus according to (1), wherein the transmission power calculated in the past is adjusted.
  • the transmission power allocated to each secondary system includes the reference transmission power of the secondary system and a margin for avoiding interference
  • the calculation unit adjusts the transmission power by adjusting the margin for interference avoidance based on the change in the number of secondary systems.
  • the communication control apparatus according to any one of (1) to (6).
  • the calculation unit calculates an adjustment amount of a margin for interference avoidance by estimating a change amount of an interference amount based on the change amount of the number of secondary systems. .
  • the calculation unit according to (8), wherein the change amount of the interference amount is estimated using a table that defines a mapping between the change amount of the secondary system number and the change amount of the interference amount. Communication control device.
  • the communication control apparatus includes: A signaling unit for signaling an adjustment amount of the interference avoidance margin calculated by the calculation unit to an existing secondary system; The communication control device according to any one of (7) to (10), further including: (12) The communication control apparatus according to (11), wherein the signaling unit signals a reference value of the interference avoidance margin and the adjustment amount to a new secondary system. (13) The signaling according to (12), wherein the signaling unit causes the secondary system itself to calculate the reference transmission power by signaling a calculation parameter to the new secondary system according to a load of the calculation unit. Control device.
  • the communication control device has authority to allocate transmission power to the one or more secondary systems in a first geographic region;
  • the calculation unit determines the authority for the second geographic region when the transmission power allocation should consider the presence of a secondary system in a second geographic region adjacent to the first geographic region.
  • the transmission power allocated to each secondary system further includes a margin for reducing signaling overhead, The signaling unit, when the adjustment of the margin for avoiding interference falls below the margin for reducing signaling overhead included in the allocated transmission power, the adjustment of the margin for avoiding interference is the existing adjustment No signaling to secondary system
  • the communication control device according to any one of (11) to (13).
  • the calculation unit reduces the frequency of signaling to each secondary system by adjusting the transmission power by setting the change in the number of secondary systems to a virtual value larger than the actual value, (1)
  • the communication control device according to any one of (15) to (15).
  • (17) Calculating, in a processor, transmit power to be allocated to one or more secondary systems that secondary utilize frequency channels protected for the primary system; When the number of secondary systems changes, the processor recalculates the transmission power according to a condition that depends on the number of secondary systems, or the transmission power calculated in the past is based on the change in the number of secondary systems. Determining whether to adjust, Including a communication control method.
  • a wireless communication device When the number of secondary systems operated by secondary use of the frequency channel protected for the primary system changes, the transmission power to be allocated to each secondary system according to the conditions depending on the number of secondary systems
  • a communication unit that communicates with the communication control device that recalculates or adjusts the transmission power calculated in the past based on a change in the number of the secondary systems, and
  • a communication control unit for controlling wireless communication between the wireless communication device and one or more terminal devices according to transmission power allocation notified from the communication control device via the communication unit;
  • a wireless communication device comprising:
  • a communication control device comprising: (2) The determination unit causes the calculation unit to recalculate the transmission power according to a condition depending on the number of secondary systems, or the transmission power calculated in the past is used for the interference avoidance based on the change.
  • the communication control device according to (1), wherein it is determined whether to adjust the margin.
  • the determination unit causes the calculation unit to recalculate the transmission power when the number of secondary systems after change is less than a threshold value, and causes the calculation unit to calculate when the number of secondary systems after change exceeds the threshold value.
  • the communication control apparatus according to (2) wherein the transmission power calculated in the past is adjusted.
  • the threshold value is set in advance so as not to exceed an allowable calculation time depending on the number of secondary systems.
  • the threshold value is dynamically set so that an estimated calculation time depending on the number of secondary systems does not exceed an allowable calculation time.
  • the determination unit further transmits the transmission power to the calculation unit according to a condition that depends on at least one of a reference point, a frequency channel to be secondarily used, an antenna height of a device, and an interference level from another system.
  • the communication control device according to any one of (2) to (7), wherein it is determined whether to recalculate or to adjust the transmission power calculated in the past.
  • the calculation unit calculates an adjustment amount of the interference avoidance margin by estimating a change amount of the interference amount based on the change amount of the number of secondary systems, and any one of (1) to (10) The communication control apparatus according to claim 1.
  • Communication control device The communication control device according to (11), wherein the calculation unit estimates the change amount of the interference amount based on an assumption that the number of secondary systems is proportional to the interference amount.
  • the communication control device has authority to allocate transmission power to the one or more secondary systems in a first geographic region; The calculation unit determines the authority for the second geographic region when the transmission power allocation should consider the presence of a secondary system in a second geographic region adjacent to the first geographic region.
  • the calculation unit adjusts the interference avoidance margin by setting the change in the number of secondary systems to a virtual value larger than actual.
  • the communication control device includes: A signaling unit for signaling the adjustment amount of the interference avoidance margin calculated by the calculation unit for the secondary system; The communication control device according to any one of (1) to (15), further including: (17) The allocated transmit power for each secondary system further includes a margin for reducing signaling overhead, The signaling unit does not signal the adjustment of the interference avoidance margin when the adjustment of the interference avoidance margin is lower than the signaling overhead reduction margin included in the allocated transmission power. , The communication control device according to (16) above.
  • a communication unit communicating with a master device of one or more secondary systems that secondary use frequency channels protected for the primary system; Based on information acquired from a data server that calculates an allocated transmission power for the secondary system, including a reference transmission power and a margin for interference avoidance that is adjusted based on a change in the number of secondary systems, A controller for signaling a parameter for identifying the allocated transmission power to the master device via the communication unit; A communication control device comprising: (20) The control unit calculates the assigned transmission power for each master device from the reference transmission power and a reference value and adjustment amount of the interference avoidance margin, and sets the parameter for specifying the calculated assigned transmission power.
  • the communication control apparatus according to (19), wherein signaling is performed to a master device.
  • the communication control device according to (19), wherein the parameter includes a parameter for calculating the reference transmission power.
  • a communication control method in a communication control apparatus that communicates with a master device of one or more secondary systems that secondary use frequency channels protected for a primary system, Based on information acquired from a data server that calculates an allocated transmission power for the secondary system, including a reference transmission power and a margin for interference avoidance that is adjusted based on a change in the number of secondary systems, Signaling a parameter for identifying the allocated transmission power to the master device; Including a communication control method.
  • a wireless communication device that operates a secondary system that secondary uses a frequency channel protected for a primary system, The allocation transmission based on information acquired from a data server that calculates an allocation transmission power for the secondary system, including a reference transmission power and a margin for interference avoidance adjusted based on a change in the number of secondary systems
  • a communication unit that receives signaling of a parameter for specifying power
  • a communication control unit that controls wireless communication between the wireless communication device and one or more terminal devices according to the allocated transmission power specified using the parameter
  • a wireless communication device comprising: (24) A communication control method in a wireless communication device that operates a secondary system that secondary uses a frequency channel protected for a primary system, The allocation transmission based on information acquired from a data server that calculates an allocation transmission power for the secondary system, including a reference transmission power and a margin for interference avoidance adjusted based on a change in the number of secondary systems Receiving signaling of parameters for identifying power; Controlling wireless communication between the wireless communication device and one or more terminal devices according to the allocated transmission power specified using the parameter
  • Communication control system 10 Primary transmission / reception station 100 Communication control device (GLDB) 102 Communication controller (GLDB) 104 Communication control device (WSDB) DESCRIPTION OF SYMBOLS 110 Communication part 120 Storage part 130 Control part 132 Judgment part 134 Calculation part 136 Signaling part 20 Wireless communication apparatus (master WSD) 210 Wireless communication unit 220 Network communication unit 230 Storage unit 240 Communication control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)

Abstract

【課題】複数のセカンダリシステムが運用され得る状況下で、有害な干渉の防止と電力割当ての迅速さとを両立すること。 【解決手段】プライマリシステムのために保護される周波数チャネルを二次利用する1つ以上のセカンダリシステムの、基準送信電力と干渉回避用のマージンとを含む割当てられるべき送信電力を計算する計算部と、セカンダリシステム数の変化を判定し、判定した変化分に基づいて前記計算部に前記干渉回避用のマージンを調整させる判定部と、を備える通信制御装置を提供する。

Description

通信制御装置及び無線通信装置
 本開示は、通信制御装置及び無線通信装置に関する。
 将来の周波数リソースの枯渇を緩和するための対策の1つとして、周波数の二次利用についての議論が進められている。周波数の二次利用とは、あるシステムに優先的に割当てられている周波数チャネルの一部又は全部を、他のシステムが二次的に利用することをいう。一般的に、周波数チャネルが優先的に割当てられているシステムをプライマリシステム(Primary System)、当該周波数チャネルを二次利用するシステムをセカンダリシステム(Secondary System)という。セカンダリシステムの典型的な一例は、認知無線システム(Cognitive Radio System)である。
 TVホワイトスペースは、二次利用が議論されている周波数チャネルの一例である(非特許文献1参照)。TVホワイトスペースは、プライマリシステムとしてのテレビジョン放送システムに割当てられている周波数チャネルのうち、地域に応じて当該テレビジョン放送システムにより利用されていないチャネルを指す。このTVホワイトスペースをセカンダリシステムに開放することで、周波数リソースの効率的な活用が実現され得る。非特許文献1は、セカンダリシステムを利用するホワイトスペースデバイス(WSD)の技術的要件及び動作要件を定義している。セカンダリシステムを運用するデバイスをマスタWSD、セカンダリシステムに参加するデバイスをスレーブWSDともいう。
 周波数帯の二次利用に際して、通常、セカンダリシステムには、プライマリシステムに有害な干渉(harmful interference)を与えることのないような運用が求められる。そのための重要な技術の1つが、送信電力制御である。例えば、特許文献1及び特許文献2は、複数のセカンダリシステムがプライマリシステムに与える累積的な干渉(aggregated interference)を許容されるレベルに抑制するための技術を開示している。
特開2012-151815号公報 特開2013-78096号公報
ECC(Electronic Communications Committee), "Technical and operational requirements for the operation of white space devices under geo-location approach",ECC REPORT 186, January 2013
 しかしながら、プライマリシステムに与える累積的な干渉を評価するための計算コストは、セカンダリシステムが多くなるほど増加する。例えば、同じプライマリシステムについてホワイトスペースを二次利用するマスタWSDの数が2倍になれば、計算コストは4倍になり得る。許容される時間内に干渉評価のための計算が終了しなければ、セカンダリシステム数の変動に電力の割当てが追随することができず、制御の有効性が失われる可能性がある。
 従って、複数のセカンダリシステムが運用され得る状況下で、有害な干渉の防止と電力割当ての迅速さとを両立することのできる仕組みを実現することが望ましい。
 本開示によれば、プライマリシステムのために保護される周波数チャネルを二次利用する1つ以上のセカンダリシステムの、基準送信電力と干渉回避用のマージンとを含む割当てられるべき送信電力を計算する計算部と、セカンダリシステム数の変化を判定し、判定した変化分に基づいて前記計算部に前記干渉回避用のマージンを調整させる判定部と、を備える通信制御装置が提供される。
 また、本開示によれば、プライマリシステムのために保護される周波数チャネルを二次利用する1つ以上のセカンダリシステムのマスタデバイスと通信する通信部と、基準送信電力と、セカンダリシステム数の変化分に基づいて調整される干渉回避用のマージンと、を含む前記セカンダリシステムのための割当て送信電力を計算するデータサーバ、から取得される情報に基づいて、前記割当て送信電力を特定するためのパラメータを、前記通信部を介して前記マスタデバイスへシグナリングする制御部と、を備える通信制御装置が提供される。
 また、本開示によれば、プライマリシステムのために保護される周波数チャネルを二次利用するセカンダリシステムを運用する無線通信装置であって、基準送信電力と、セカンダリシステム数の変化分に基づいて調整される干渉回避用のマージンと、を含む前記セカンダリシステムのための割当て送信電力を計算するデータサーバから取得される情報に基づく前記割当て送信電力を特定するためのパラメータ、のシグナリングを受信する通信部と、前記パラメータを用いて特定される前記割当て送信電力に従って、前記無線通信装置と1つ以上の端末装置との間の無線通信を制御する通信制御部と、を備える無線通信装置が提供される。
 本開示に係る技術によれば、複数のセカンダリシステムが運用され得る状況下で、有害な干渉の防止と電力割当ての迅速さとを両立することができる。
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果と共に、又は上記の効果に代えて、本明細書に示されたいずれかの効果、又は本明細書から把握され得る他の効果が奏されてもよい。
一実施形態に係る通信制御システムの概要について説明するための説明図である。 セカンダリシステムが増加するシナリオの一例について説明するための説明図である。 セカンダリシステムが増加するシナリオの他の例について説明するための説明図である。 セカンダリシステム数と割当て送信電力の計算コストとの関係の一例を示すグラフである。 電力割当ての遅延の一例について説明するための説明図である。 一実施形態に係る通信制御装置の論理的な構成の一例を示すブロック図である。 一実施形態に係る電力配分処理の流れの第1の例を示すフローチャートである。 一実施形態に係る電力配分処理の流れの第2の例を示すフローチャートである。 一実施形態に係る電力配分処理の流れの第3の例を示すフローチャートである。 一実施形態に係る電力配分処理の流れの第4の例を示すフローチャートである。 図7A~図7Cに示した電力配分処理において実行され得るマージン調整処理の流れの一例を示すフローチャートである。 一実施形態に係るシステム内のシグナリングシーケンスの一例を示す第1のシーケンス図である。 一実施形態に係るシステム内のシグナリングシーケンスの一例を示す第2のシーケンス図である。 一実施形態に係る無線通信装置の論理的な構成の一例を示すブロック図である。 システムモデルの他の例について説明するための説明図である。 GLDBの概略的な構成の一例を示すブロック図である。 eNBの概略的な構成の一例を示すブロック図である。 スマートフォンの概略的な構成の一例を示すブロック図である。 カーナビゲーション装置の概略的な構成の一例を示すブロック図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 また、以下の順序で説明を行う。
  1.システムの概要
   1-1.GLDBを用いるシステムモデル
   1-2.セカンダリシステム数の変化
   1-3.電力割当ての遅延
  2.電力計算モデルの例
   2-1.既存の手法
   2-2.より簡易な手法
  3.通信制御装置の構成例
   3-1.各部の構成
   3-2.変形例
  4.処理の流れ
   4-1.電力配分処理
   4-2.マージン調整処理
   4-3.シグナリングシーケンス
  5.無線通信装置の構成例
  6.システムモデルの他の例
  7.応用例
   7-1.通信制御装置に関する応用例
   7-2.無線通信装置に関する応用例
  8.まとめ
 <1.システムの概要>
  [1-1.GLDBを用いるシステムモデル]
 図1は、本開示に係る技術の一実施形態に係る通信制御システム1の概要について説明するための説明図である。通信制御システム1は、プライマリ送受信局10、1つ以上の無線通信装置20a、20b、…、及び通信制御装置100を含む。
 プライマリ送受信局10は、法的に認可され又は使用権限を与えられた周波数チャネル上でプライマリシステムを運用するために設置される送受信局である。プライマリ送受信局10は、サービスエリア11の内部に位置するプライマリ端末(図示せず)へ、プライマリシステムの無線信号を送信する。プライマリシステムは、例えば、DVB-T(Digital Video Broadcasting-Terrestrial)システムのようなテレビジョン放送システムであってもよい。その場合には、プライマリ端末は、テレビジョンアンテナ及びチューナを有する受信機(incumbent receiverともいう)である。また、プライマリシステムは、LTE、LTE-A、GSM、UMTS、W-CDMA、CDMA200、WiMAX、WiMAX2又はIEEE802.16などの通信方式に従って動作する移動体通信システムであってもよい。また、プライマリシステムは、航空無線システム(例えば、ARNS(Aeronautical Radio Navigation Service))などの他の種類の無線通信システムであってもよい。
 プライマリ送受信局10は、コアネットワーク15に接続される。コアネットワーク15は、ユーザ情報の管理、端末の移動性の管理、パケットの転送及びゲートウェイなどの役割をそれぞれ有する複数の制御ノードを含む。
 無線通信装置20a、20b、…は、それぞれ、プライマリシステムのために保護される周波数チャネルを二次利用することによりセカンダリシステムを運用するマスタデバイスである。無線通信装置20a、20b、…は、例えば、非特許文献1において説明されているマスタWSDであってもよく、又はスモールセル基地局若しくは無線アクセスポンとなどのその他の種類のデバイスであってもよい。スモールセルは、フェムトセル、ナノセル、ピコセル及びマイクロセルなどを含み得る。
 なお、本明細書において、無線通信装置20a、20b、…を互いに区別する必要がない場合には、符号の末尾のアルファベットを省略することにより、これらを無線通信装置20と総称する。他の構成要素についても同様とする。
 無線通信装置20は、自装置の周囲に位置するスレーブデバイス(図示せず)との間で、無線信号を送信し及び受信する。セカンダリシステムがサービスエリア11の近傍に存在する場合、セカンダリシステムの無線信号は、プライマリ端末に干渉を与える。図1の例のように複数のセカンダリシステムが存在する場合には、プライマリ端末において観測される干渉は、累積され得る。
 無線通信装置20は、バックホールリンクを介して、パケットデータネットワーク(PDN)16に接続する。バックホールリンクは、有線リンクであってもよく、又は無線リンクであってもよい。PDN16は、ゲートウェイ(図示せず)を介してコアネットワーク15に接続する。
 通信制御装置100は、PDN16に配置されるデータサーバである。通信制御装置100は、例えば、非特許文献1において説明されているGLDB(Geo-location Database)であってもよく、又はその他の種類のサーバであってもよい。図1の例に限定されず、通信制御装置100は、コアネットワーク15に配置されてもよい。また、通信制御装置100と同等の機能を有する機能エンティティが、プライマリ送受信局10上で実装されてもよい。通信制御装置100は、1つ以上のセカンダリシステムからの無線信号に起因する累積的な干渉がプライマリシステムに有害な影響を与えないように、セカンダリシステムの各々に送信電力を割当てる。例えば、各セカンダリシステムのマスタデバイスである無線通信装置20は、システムの運用を開始する際にバックホールリンクを介して通信制御装置100へアクティブ化リクエストを送信する。通信制御装置100は、アクティブ化リクエストの受信に応じて、各セカンダリシステムに割当てられるべき送信電力を計算する。そして、通信制御装置100は、送信電力の割当て結果(及び利用可能チャネルのリストなどのその他の情報)を、無線通信装置20へ通知する。こうした手続を通じて、セカンダリシステムの運用が可能となる。
 典型的には、セカンダリシステムからの無線信号に起因する累積的な干渉は、サービスエリア11内のいずれかの地点(リファレンスポイントという)における干渉レベルとして推定される。そして、通信制御装置100は、推定される干渉レベルが許容されるレベルを上回らないように、各セカンダリシステムに割当てるべき送信電力を計算する。リファレンスポイントは、例えば、各無線通信装置20からの距離が最も小さい、サービスエリア11の保護境界(protection contour)上の地点であってもよい。その代わりに、リファレンスポイントは、各無線通信装置20からの距離が最も小さいプライマリ端末が存在する地点であってもよい。図1の例では、無線通信装置20a、20b、…にそれぞれ対応するリファレンスポイント22a、22b、…が、サービスエリア11の保護境界上に設定されている。
 例えば、特許文献1に記載された電力配分法、又は非特許文献2に記載されたマージン最小化法(flexible minimized marginを用いる手法)は、干渉回避用のマージンが可能な限り小さく設定される結果として、より大きい送信電力をセカンダリシステムに割当ててセカンダリシステムのスループットを高めることができるという利点を有する。しかし、これら手法では、全てのリファレンスポイントにおいて累積的な干渉が評価されるため、セカンダリシステムの数が増加するほど割当て送信電力の計算のための計算コストが増加する。最も単純な例では、計算コストは、セカンダリシステムの数の2乗(リファレンスポイントの数とセカンダリシステムの数との積)のオーダで増加し得る。そして、リファレンスポイントの設定のための処理及びシグナリングオーバヘッドなども考慮すると、割当て送信電力の計算のための計算コストは無視できないものとなる。
  [1-2.セカンダリシステム数の変化]
 セカンダリシステム数の変化は、様々な要因で発生し得る。例えば、図1との対比において図2を参照すると、新たに無線通信装置20h、20i及び20jが通信制御システム1に含まれている。無線通信装置20h、20i及び20jもまた、それぞれ、セカンダリシステムを運用するマスタデバイスである。結果的に、セカンダリシステム数は、6個から9個へ増加している。無線通信装置20h、20i及び20jは、他の場所からサービスエリア11の近傍へ移動してきたデバイスであってもよく、又はスリープモードからアクティブモードへ復帰したデバイスであってもよい。モバイルデバイスが広く普及し、省電力化のために精細なスリープ制御が望まれることの多い近年のモバイル環境では、こうしたセカンダリシステム数の変化の頻度は高い。よって、セカンダリシステムへの送信電力の割当ても、セカンダリシステム数の変化に十分に追随できることが望ましい。
 図3の左半分には、地理的領域3aにおいて、サービスエリア11aの内部でプライマリシステムを運用するプライマリ送受信局10aが示されている。通信制御装置100aは、地理的領域3a内でプライマリ送受信局10aのための周波数チャネルを二次利用する1つ以上のセカンダリシステムに送信電力を割当てる権限を有する。図3の右半分には、地理的領域3bにおいて、サービスエリア11bの内部でプライマリシステムを運用するプライマリ送受信局10bが示されている。通信制御装置100bは、地理的領域3b内でプライマリ送受信局10bのための周波数チャネルを二次利用する1つ以上のセカンダリシステムに送信電力を割当てる権限を有する。ここで、領域間のデバイスの位置関係又は送信電力の割当ての状況に応じて、地理的領域3b内のセカンダリシステムからの干渉信号を通信制御装置100aが考慮する必要性が生じる可能性がある。そうした場合にも、電力割当ての計算に算入すべきセカンダリシステムの数は増加し得る。
 図4は、セカンダリシステム数と割当て送信電力の計算コストとの関係の一例を示すグラフである。図4の横軸は、アクティブなマスタWDSの数、即ち電力割当ての計算に算入すべきセカンダリシステムの数を示している。図4の縦軸は、あるシミュレーションモデルに従って推定される電力割当ての計算コストを示している。図4からも理解されるように、セカンダリシステムのマスタデバイスの数が大きくなるほど、計算コストは増大する。
  [1-3.電力割当ての遅延]
 上述したように、セカンダリシステムへの送信電力の割当ては、セカンダリシステム数の変化に十分に追随できることが望ましい。しかし、計算コストが多大になれば、電力割当ての計算が所定の計算期間(Calculation Period)内で終了せず、送信電力の割当てが遅延するリスクが発生する。
 図5は、電力割当ての遅延の一例について説明するための説明図である。図5の例において、電力割当ての計算は、水平方向の時間軸に沿って、周期DCPで周期的に実行される。周期DCPは、例えば、サブフレーム、無線フレーム、ミリ秒又は秒などを単位として定義されてよい。
 時刻Tにおいて、X個のセカンダリシステムがアクティブ化される。X個のセカンダリシステムに割当てるべき送信電力は、時間長D0にわたって計算される。時間長D0は周期DCPよりも短いため、電力割当ての結果は、タイムリーに各セカンダリシステムへ通知される。時刻T(=T+DCP)において、X個のセカンダリシステムがさらにアクティブ化される。X+X個のセカンダリシステムに割当てるべき送信電力は、時間長D1にわたって計算される。時間長D1は周期DCPよりも短いため、電力割当ての結果は、タイムリーに各セカンダリシステムへ通知される。時刻Tにおいて、X個のセカンダリシステムがさらにアクティブ化される。X+X+X個のセカンダリシステムに割当てるべき送信電力は、時間長D2にわたって計算される。時間長D2は周期DCPよりも長いため、電力割当ての結果の各セカンダリシステムへの通知は、次の計算期間が時刻Tにおいて開始した後にまで遅延する。時刻Tにおいて、X個のセカンダリシステムがさらにアクティブ化される。X+X+X+X個のセカンダリシステムに割当てるべき送信電力は、時間長D3にわたって計算される。電力割当ての結果の各セカンダリシステムへの通知は、前回の遅延よりもさらに大きくなる。時刻Tにおいて、X個のセカンダリシステムが非アクティブ化される。X+X+X個のセカンダリシステムに割当てるべき送信電力は、時間長D4にわたって計算される。時間長D4は周期DCPよりも短いものの、前回までの遅延の影響が残っているため、電力割当ての結果の各セカンダリシステムへの通知は、次の計算期間が時刻Tにおいて開始した後にまで遅延する。
 こうした遅延は、送信電力が割当てられないことに起因するセカンダリシステムの通信機会の喪失、リソースの利用効率の低下、及びタイムリーに電力割当てが更新されないことに起因する有害な干渉の発生などといった、様々な弊害を招来し得る。そこで、後述する実施形態では、これら弊害に対処し、有害な干渉の防止と電力割当ての迅速さとを両立するために、電力割当てのためのアルゴリズムとして、計算コストの大きい既存の手法と、より簡易にマージンを推定する手法とを適応的に切り替える仕組みを実現する。計算コストの大きい既存の手法と、例えば、特許文献1に記載された電力配分法、又は非特許文献2に記載されたマージン最小化法であってよい。
 <2.電力計算モデルの例>
  [2-1.既存の手法]
 ここでは、非特許文献2において説明されているモデルに類似する電力計算モデルについて簡単に説明する。
 本電力計算モデルにおいて、各セカンダリシステムに割当てられる送信電力は、当該セカンダリシステムの基準送信電力と、干渉回避用のマージンとを用いて計算される。セカンダリシステムの基準送信電力PIB SingleWSDは、最大放射電力(maximum radiated power)とも呼ばれ、次式に従って計算され得る。ここでのリファレンスポイントは、マスタデバイスから最も近い保護境界上の地点(又は最も近いプライマリ送受信局の位置)である。プライマリ送受信局が存在しない場合には、リファレンスポイントは、無限遠に設定されてもよい。なお、本明細書では、原則としてデシベル形式で計算式を表現する。
Figure JPOXMLDOC01-appb-M000001
 式(1)において、mはプライマリ端末の最小受信感度、mはパスゲイン、r(df)は離隔周波数dfに対応する保護比率(protection ratio)、SMはシャドウイングマージンを表す。パスゲインは、デバイスが存在する地点とリファレンスポイントとの間の距離、及びデバイスのアンテナ高さに依存し得る。保護比率は、二次利用される周波数チャネルに依存し得る。各セカンダリシステムに割当てられる送信電力PIB WSDは、複数のセカンダリシステムからの累積的な干渉のレベルがリファレンスポイントにおいて有害とならないように、次式の通り、基準送信電力から干渉回避用マージンIMを減算することにより計算される。
Figure JPOXMLDOC01-appb-M000002
 基準送信電力PIB SingleWSDはセカンダリシステムごとに異なる一方、干渉回避用マージンIMは原則的に全てのセカンダリシステムについて共通的であってよい。干渉回避用マージンIMを計算するために、固定マージン法、フレキシブルマージン法及びマージン最小化法という3通りの手法が知られている。
 固定マージン法において、干渉回避用マージンIMは、セカンダリシステムの総数NPotentialを用いて、次式に従って計算される。
Figure JPOXMLDOC01-appb-M000003
 フレキシブルマージン法において、干渉回避用マージンIMは、チャネル別のアクティブなセカンダリシステムの数NActive(fWSD)を用いて、次式に従って計算される。なお、ここでのアクティブなセカンダリシステムとは、単純にアクティブ化されたシステムを意味してもよく、又はチャネルfWSDにおいて何らかの基準値を上回る送信電力を使用しているシステムを意味してもよい。
Figure JPOXMLDOC01-appb-M000004
 マージン最小化法において、干渉回避用マージンIMは、セカンダリシステムの総数NPotential及びマージン低減項αを用いて、次式に従って計算される。
Figure JPOXMLDOC01-appb-M000005
 ここで、r(0)は離隔周波数ゼロ、即ち同一チャネル(co-channel)の保護比率、IAgg,maxは最も干渉の大きいリファレンスポイントにおける累積干渉量を表す。ここでの累積干渉量は、他システムからの干渉量を含んでもよい。固定マージン法及びフレキシブルマージン法ではプライマリシステムが慎重に保護されるのに対し、マージン最小化法では、マージン低減項αの寄与によってセカンダリシステムのスループットを高め、リソースの利用効率を向上させることができる。但し、マージン最小化法では、累積干渉量IAgg,maxを導出するために、全てのリファレンスポイントについて累積的な干渉のレベルを評価することが求められる。
  [2-2.より簡易な手法]
   (1)セカンダリシステム数とマージン調整分との関係
 ある実施形態によれば、上述した電力計算モデルに従ってセカンダリシステムへ送信電力が割当てられた後、セカンダリシステム数が変化した場合に、セカンダリシステム数の変化分に基づいて、過去に計算した送信電力が調整され得る。送信電力の調整は、セカンダリシステム数の変化分に基づいて干渉回避用マージンIMを調整することにより、簡易的に行われる。過去の基準時点において(例えばマージン最小化法に従って)計算された割当て済みの干渉回避用マージン、調整後の干渉回避用マージン及びマージン調整分(margin adjustment)の間には、次の関係式が成立する。
Figure JPOXMLDOC01-appb-M000006
 ここで、IM´は調整後の干渉回避用マージン、IMBaseは基準時点における干渉回避用マージン(調整の基準値)、dMはマージン調整分である。
 ここで、基準時点におけるセカンダリシステム数をNWSD、基準時点からのセカンダリシステム数の変化分をNWSD_VARとすると、式(5)及び式(6)から、マージン調整分dMを次のように表現することができる。なお、セカンダリシステム数及びその変化分は、アクティブなデバイスのみを対象としてもよく、又は総数であってもよい。
Figure JPOXMLDOC01-appb-M000007
 式(7)において、dIは、セカンダリシステム数の変化分NWSD_VARに対応する累積干渉量IAgg,maxの変化分の大きさ(以下、推定干渉変化という)を表す。計算コストを低減するために、推定干渉変化dIは、厳密に計算される代わりに、セカンダリシステム数の変化分NWSD_VARに基づいて簡易的に推定される。推定干渉変化dIを計算するためのいくつかの手法について、以下に説明する。
   (2-1)推定干渉変化の計算(第1の手法)
 第1の手法において、推定干渉変化dIは、セカンダリシステム数の変化分NWSD_VARと推定干渉変化dIとのマッピングを定義するテーブルを用いて推定される。表1及び表2は、マッピングテーブルの例をそれぞれ示している。表1においては、セカンダリシステム数の変化分NWSD_VARに対して推定干渉変化dIが直接的にマッピングされる。一方、表2においては、セカンダリシステム数の変化分NWSD_VARが属する範囲に対して推定干渉変化dIがマッピングされる。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 第1の手法によれば、予め定義されるマッピングテーブルをルックアップすることにより、少ない計算コストで推定干渉変化dIを導出することができる。
   (2-2)推定干渉変化の計算(第2の手法)
 第2の手法において、推定干渉変化dIは、セカンダリシステム数と累積干渉量とが比例するとの仮定に基づいて推定される。この仮定の下では、推定干渉変化dIは、次式のように表現され得る。
Figure JPOXMLDOC01-appb-M000010
 式(8)を式(7)に代入すると、セカンダリシステム数とマージン調整分との間の関係式は、次のように変形され得る。
Figure JPOXMLDOC01-appb-M000011
 従って、この場合、基準時点におけるセカンダリシステム数NWSD及びセカンダリシステム数の変化分NWSD_VARのみを用いて、マージン調整分dMを簡易に算出することができる。
 なお、フレキシブルマージン法の考え方を式(7)に取り入れることにより、次式のようにマージン調整分dMが算出されてもよい。
Figure JPOXMLDOC01-appb-M000012
 式(10)において、f(NWSD_VAR)はセカンダリシステム数の変化分NWSD_VARのうちのm番目の周波数チャネルを割当てられているセカンダリシステムの数を表す。
   (2-3)推定干渉変化の計算(第3の手法)
 第3の手法において、推定干渉変化dIは、最悪ケースとして、次式に従って推定される。
Figure JPOXMLDOC01-appb-M000013
 式(11)において、ITHは、プライマリ端末が許容する累積的干渉の最大値に相当し得る閾値を表す。
   (3)セカンダリシステム数のカウント手法
 本節で説明した電力計算モデルにおけるセカンダリシステム数は、セカンダリシステムのマスタデバイス及びスレーブデバイスの一方又は双方のデバイス数に基づいてよい。例えば、セカンダリシステムが時間分割方式で運用され、スレーブデバイスがマスタデバイスの送信電力と同等の(又はより低い)送信電力を使用する場合、セカンダリシステム数として、マスタデバイスのデバイス数のみをカウントすることで十分である。一方、例えばマスタデバイス及びスレーブデバイスが同時に信号を送信し得る場合には、セカンダリシステム数としてマスタデバイス及びスレーブデバイスの双方のデバイス数をカウントすることで、安全な電力の計算が保証され得る。
 これらデバイスの数は、デバイスの構成に依存する重みを算入することにより計算されてもよい。ここでのデバイスの構成とは、例えば、アンテナ高さ、送信電力(最大若しくは所望、又は既存のデバイスについては割当て送信電力であってもよい)及び利用周波数チャネルのうちの1つ以上を含み得る。一例として、デバイスのアンテナがより高いほど、そのデバイスから発せられる信号の干渉への寄与はより大きい。そこで、アンテナ高さのデバイス間の比を重みとして用いてデバイス数をカウントする(重み付け加算する)ことで、電力の再計算又は調整を通じて有害な干渉のリスクを効果的に低減することができる。
 本節で説明した電力計算モデルを用いてセカンダリシステムにタイムリーに送信電力を割当てる仕組みについて、次節以降で説明する。
 <3.通信制御装置の構成例>
  [3-1.各部の構成]
 図6は、一実施形態に係る通信制御装置100の論理的な構成の一例を示すブロック図である。図6を参照すると、通信制御装置100は、通信部110、記憶部120及び制御部130を含む。
   (1)通信部
 通信部110は、無線通信装置20のバックホールリンクを介して、無線通信装置20と通信する。例えば、通信部110は、アクティブ化され又は通信制御装置100が管理する地理的領域へ移動してきた無線通信装置20から、アクティブ化リクエストを受信する。通信部110は、当該無線通信装置20から、後述するセカンダリシステム情報をも受信する。そして、通信部110は、制御部130により電力割当てのための計算が実行されると、その計算結果に基づく電力割当て関連情報を無線通信装置20へ送信する。
 通信部110は、プライマリ送受信局10及びコアネットワーク15内の制御ノードとも通信し得る。また、通信部110は、通信制御装置100が管理する地理的領域の周辺の領域において送信電力の割当ての権限を有するデータサーバ(例えば、隣接領域を管理するGLDB)とも通信し得る。
   (2)記憶部
 記憶部120は、ハードディスク又は半導体メモリなどの記憶媒体を用いて、通信制御装置100の動作のためのプログラム及びデータを記憶する。記憶部120により記憶されるデータは、例えば、プライマリ送受信局10若しくはコアネットワーク15内の制御ノードから収集され又は予め記憶されるプライマリシステム情報を含む。プライマリシステム情報は、例えば、プライマリ送受信局の位置、サービスエリアの配置、保護される周波数チャネル、プライマリ端末の最小受信感度、保護比率、シャドウイングマージン、許容干渉レベル、無線アクセス技術の識別子、及び実測された干渉レベル、のうちの1つ以上を含み得る。プライマリ送受信局の位置及びサービスエリアの配置は、例えば、上述した電力計算モデルにおいてリファレンスポイントを特定する際に使用され得る。
 また、記憶部120により記憶されるデータは、無線通信装置20の各々から収集されるセカンダリシステム情報を含む。セカンダリシステム情報は、マスタデバイスの識別子、位置、アンテナ高さ、デバイスタイプ、放射特性(例えば、ACLR(Adjacent Channel Leakage Ratio))、無線アクセス技術の識別子、並びに送信電力情報(例えば、最大送信電力及び/又は所望送信電力)のうちの1つ以上を含み得る。
 また、記憶部120により記憶されるデータは、無線通信装置20へ通知される電力割当て関連情報を含み得る。電力割当て関連情報は、利用可能な周波数チャネルのリスト、基準送信電力(最大放射電力)、干渉回避用マージン、干渉回避用マージンの調整分及び情報の有効期間のうちの1つ以上を含み得る。
 また、記憶部120により記憶されるデータは、電力割当ての計算のために使用されるパラメータを含む。ここでのパラメータは、例えば、電力割当ての計算周期、セカンダリシステム数と比較される判定閾値、推定干渉変化を導出するためのマッピングテーブル、並びに過去の基準時点におけるセカンダリシステム数、累積干渉量及び干渉回避用マージンのうちの1つ以上を含み得る。
   (3)制御部
 制御部130は、通信制御装置100の動作全般を制御する。本実施形態において、制御部130は、判定部132、計算部134及びシグナリング部136を含む。
   (3-1)判定部
 判定部132は、通信制御装置100により管理される地理的領域内のセカンダリシステム数が変化した場合に、当該セカンダリシステム数に依存する条件に従って、計算部134により実行される電力割当てのための計算処理を切り替える。一例として、判定部132は、変化後のセカンダリシステム数が判定閾値を下回る場合に、上述した電力計算モデルにおけるマージン最小化法に従って、セカンダリシステムに割当てられるべき送信電力を、計算部134に再計算させる。また、判定部132は、変化後のセカンダリシステム数が判定閾値を上回る場合に、計算部134に過去に計算した送信電力を調整させる。ここでの判定閾値は、セカンダリシステム数に依存する推定計算時間が許容される計算時間を上回らないように設定される。
 許容される計算時間は、例えば、セカンダリシステムの運用上の要件、通信制御装置100のハードウェア上の制約、通信制御装置100を運用する事業者のルールなどといった、いかなる条件に従って予め設定されてもよい。また、判定部132は、通信制御装置100の処理リソース(プロセッサ及びメモリなど)に掛かっている負荷又は利用可能なプロセッサのコア数などの処理条件に応じて、許容される計算時間を動的に設定してもよい。許容される計算時間は、上述した電力割当ての計算周期と等しくてもよい。一例として、3GPPにより仕様化されたLTE方式の標準仕様では、eNodeBにおけるスケジューリング周期は、実装依存とされており、1サブフレーム(=1ms)又は1無線フレーム(=10msec)などの様々な値に設定され得る。許容される計算時間は、こうしたスケジューリング周期と等しくてもよい。
 例えば、判定部132は、無線通信装置20から受信されるアクティブ化リクエスト及び非アクティブ化リクエストを監視することにより、セカンダリシステム数の変化を追跡する。NWSDは基準時点におけるセカンダリシステム数を表し、NWSD_VARは当該基準時点からのセカンダリシステム数の変化分を表す。そして、計算部134における計算処理を切り替えるための判定条件は、次のように表現され得る。
Figure JPOXMLDOC01-appb-M000014
 条件式(12)が満たされる場合、判定部132は、計算部134にセカンダリシステム数の変化分NWSD_VARに基づいて過去に計算した送信電力を調整させる。
 上述したマージン最小化法において、プライマリシステムのために保護される周波数チャネルの数をNChannelとすると、全てのリファレンスポイントについて累積的干渉を計算する際に実行される個別の干渉量の演算の回数NCalcは、次式で表される。
Figure JPOXMLDOC01-appb-M000015
 さらに、プロセッサのクロック周波数をfclock、1クロック当たりの計算可能な干渉量の個数をNCalcPerClock、許容される計算時間をDTHとすると、計算時間DTHにおいて計算可能な干渉量の最大数は、DTH、fclock及びNCalcPerClockの積に等しい。従って、条件式(12)における判定閾値NTHは、次のように導出され得る。
Figure JPOXMLDOC01-appb-M000016
 なお、式(14)は一例に過ぎない。例えば、判定閾値NTHにマージンが算入されてもよい。
 ある実施例において、基準時点とは、計算部134により最後に送信電力が再計算された時点であってよい。この実施例において、判定部132は、例えば時刻Tにおいて最後に送信電力が再計算されたとすると、その後時刻Tにおいて送信電力が調整されたとしても、時刻Tにおけるセカンダリシステム数を、変化分がゼロとなる基準値NWSDとして保持する。この場合、簡易な手法で送信電力が複数回にわたって粗く調整されたとしても、調整の誤差が蓄積されず、誤差の蓄積に起因して有害な干渉が生じるリスクが回避される。
 他の実施例において、基準時点とは、直前に送信電力が再計算され又は調整された時点であってよい。この実施例において、判定部132は、時刻Tにおいて送信電力が調整されたとすれば、時刻Tにおけるセカンダリシステム数を、変化分がゼロとなる基準値NWSDとして保持する。この場合、判定部132は、最新の及び直前の計算期間のセカンダリシステム数のみを保持すればよいため、計算処理の実装が単純化され得る。
 なお、セカンダリシステム数の変化分に基づいて干渉回避用マージンのみを簡易的に調整する手法は、電力割当ての最適性をある程度犠牲にしながら、少ない計算コストで結果を得ることを可能とする。しかし、セカンダリシステム数の変化以外にも干渉のリスクを変動させる要因は存在する。そこで、判定部132は、さらに、セカンダリシステム数の変化以外の要因に依存する追加的な判定条件に従って、計算部134に送信電力を再計算させるか、又は過去に計算した送信電力を調整させるか、を判定してもよい。ここでの追加的な判定条件を左右する要因は、例えば、リファレンスポイント、二次利用される周波数チャネル、デバイスのアンテナ高さ、及び他システムからの干渉レベル、のうち少なくとも1つであってよい。例えば、これら要因の変化の度合いが大きい場合には、追加的な判定条件が満たされたと判定され、干渉回避用マージンが調整され得る。
   (3-2)計算部
 計算部134は、プライマリシステムのために保護される周波数チャネルを二次利用する1つ以上のセカンダリシステムに割当てられるべき送信電力を計算する。本実施形態において、計算部134は、計算処理を切り替えるための上述した判定条件が満たされない限り、各セカンダリシステムに割当てられる送信電力を、例えば上述したマージン最小化法に従って再計算(計算)する。この場合、各セカンダリシステムの送信電力は、式(2)に示したように、基準送信電力PIB SingleWSDと干渉回避用マージンIMとを用いて計算され得る。
 上述した判定条件が満たされる場合、計算部134は、式(7)又は式(9)に示したように、セカンダリシステム数の変化分NWSD_VARに基づいて干渉回避用マージンの調整分dMのみを計算することにより、干渉回避用マージンIMを調整する。計算部134は、例えば、セカンダリシステム数の変化分NWSD_VAR、NWSD_VARに基づいて推定される干渉量の変化分dI及び基準時点における累積干渉量IAgg,maxを式(7)に代入することにより、干渉回避用マージンの調整分dMを計算してもよい。その際、計算部134は、セカンダリシステム数の変化分NWSD_VARと推定干渉変化dIとのマッピングを定義するマッピングテーブルを用いて、推定干渉変化dIを導出してもよい。また、計算部134は、例えば、セカンダリシステム数と累積干渉量とが比例するとの仮定に基づく式(9)にセカンダリシステム数NWSD及びその変化分NWSD_VARを代入することにより、干渉回避用マージンの調整分dMを計算してもよい。いずれのケースでも、セカンダリシステム数の2乗のオーダで増加するような計算コストは必要とされない。システム全体として送信電力を再計算するような手法と比較すると、干渉回避用マージンの調整分dMの計算は、より短い時間内に完了する。
 セカンダリシステム数が増加する場合、即ちアクティブな無線通信装置20が新たに発生する場合、計算部134は、新たな無線通信装置20により運用されるセカンダリシステムの基準送信電力を計算し得る。基準送信電力PIB SingleWSDは、式(1)に従い、プライマリシステム情報及びセカンダリシステム情報に含まれるパラメータを用いて計算される。計算部134の負荷に応じて、基準送信電力の計算は、セカンダリシステムへ委任されてもよい。例えば、ある計算期間において計算部134の負荷が所定の閾値よりも高い場合、計算部134は、基準送信電力の計算をセカンダリシステムへ委任し得る。その場合には、基準送信電力の計算のためのパラメータが当該セカンダリシステムのマスタデバイスである無線通信装置20へシグナリングされ得る。
   (3-3)シグナリング部
 シグナリング部136は、通信部110を介して、プライマリ送受信局10、コアネットワーク15内の制御ノード、無線通信装置20及び他のデータサーバとの間のシグナリングを実行する。例えば、計算部134により各セカンダリシステムに割当てられる送信電力が再計算され又は干渉回避用マージンが調整される都度、アクティブなセカンダリシステムのマスタデバイスである無線通信装置20へ、電力割当て関連情報を通知する。
 一例として、式(2)によれば、各セカンダリシステムに割当てられる送信電力PIB WSDは、基準送信電力PIB SingleWSDと干渉回避用マージンIMとを含む。基準送信電力PIB SingleWSDはシステムごとに異なる一方、干渉回避用マージンIMは、複数のセカンダリシステムについて共通である。干渉回避用マージンIMが調整される計算期間、即ち変化後のセカンダリシステム数が条件式(12)を満たす計算期間においては、基準送信電力PIB SingleWSDは更新されず、式(6)に示したマージン調整分dMのみが計算される。この場合、シグナリング部136は、計算部134により計算される干渉回避用マージンの調整分dMのみを、既存のセカンダリシステムへシグナリングする。それにより、シグナリングオーバヘッドは低減される。新たなセカンダリシステムには、シグナリング部136は、干渉回避用マージンの調整分dMに加えて、過去の基準時点において既存のセカンダリシステムへ通知された干渉回避用マージンIMBaseと、基準送信電力PIB SingleWSDとをシグナリングする。セカンダリシステムのマスタデバイスである無線通信装置20は、基準時点における干渉回避用マージンIMBaseとマージン調整分dMとを加算することにより、調整後の干渉回避用マージンIM´を導出することができる。なお、シグナリング部136は、既存のセカンダリシステム及び新たなセカンダリシステムの双方へ、調整後の干渉回避用マージンIM´をシグナリングしてもよい。また、シグナリング部136は、割当て送信電力PIB WSDを何らかのタイミングでセカンダリシステムへシグナリングしてもよい。
 シグナリング部136は、計算部134の負荷に応じて基準送信電力の計算がセカンダリシステムへ委任される場合には、基準送信電力の計算のためのパラメータを新たなセカンダリシステムにシグナリングする。基準送信電力の計算のためのパラメータは、例えば、プライマリ送受信局の位置、利用可能な周波数チャネルのリスト、プライマリ端末の最小受信感度、保護比率、シャドウイングマージン及び総セカンダリシステム数(NWSD+NWSD_VAR)のうちの1つ以上を含み得る。この場合、新たなセカンダリシステムのマスタデバイスである無線通信装置20自身によって、基準送信電力が計算される。シグナリング部136は、基準送信電力の計算結果のレポートを無線通信装置20から受け取り、記憶部120に記憶させてもよい。
 送信電力が再計算される計算期間、即ち変化後のセカンダリシステム数が条件式(12)を満たさない計算期間においては、基準送信電力PIB SingleWSDが更新される可能性がある。また、干渉回避用マージンIMも再計算される。シグナリング部136は、再計算された基準送信電力PIB SingleWSD及び干渉回避用マージンIMを、既存のセカンダリシステム及び新たなセカンダリシステムへシグナリングする。ここで通知される干渉回避用マージンIMは、その後の干渉回避用マージンの調整の基準値として扱われ得る。既存のセカンダリシステムについて、基準送信電力が更新されなかった場合、既存のセカンダリシステムへの基準送信電力のシグナリングは省略されてもよい。また、既存のセカンダリシステムへのシグナリングは、差分のみを伝送することにより行われてもよい。
 シグナリング部136が無線通信装置20へ電力割当て関連情報を通知するためのシグナリングメッセージは、通知されるパラメータのタイプを示す標識を含んでもよい。例えば、パラメータタイプは、以下のように定義され得る。
  0:干渉回避用マージン(IM) ※基準値IMBaseとしても使用され得る
  1:マージン調整分(dM)
  2:干渉回避用マージン及びマージン調整分(IM,dM)
  3:調整後マージン(IM´=IMBase+dM)
  4:割当て送信電力
パラメータタイプの値は、上述した例に限定されず、他の値であってもよい。こうした標識をシグナリングメッセージに取り入れることで、通信制御システム1が様々なシグナリングのバリエーションをサポートし、オーバヘッドの削減又は実装の複雑さの低減などの観点で最適なシグナリグ手法を選択することが可能となる。
 図3を用いて説明したように、通信制御装置100は、例えば地理的領域内3aの1つ以上のセカンダリシステムに送信電力を割当てる権限を有するデータサーバであってよい。但し、送信電力の割当てに際して、地理的領域3aに隣接する隣接領域3b内のセカンダリシステムの存在を考慮すべき状況も存在し得る。そうした状況の一例は、領域境界の近くで、多数の又は比較的大きい送信電力を使用するセカンダリシステムが運用されるような状況である。その場合、シグナリング部136は、隣接領域3bについてセカンダリシステムに送信電力を割当てる権限を有する他のデータサーバから、隣接領域3b内の考慮すべきセカンダリシステム数を示す情報を取得し得る。ここで、地理的領域3a内のセカンダリシステム数をNWSD_A、他のデータサーバから取得される考慮すべきセカンダリシステム数をNWSD_Bとする。これらの値が次の条件式(15)を満たす場合、計算部134により送信電力を再計算するために想定される計算時間が、許容される計算時間を超えてしまう。
Figure JPOXMLDOC01-appb-M000017
 条件式(12)と条件式(15)との対比から、セカンダリシステム数NWSD_Aはセカンダリシステム数の基準値NWSD、セカンダリシステム数NWSD_Bはセカンダリシステムの空間方向での変化分NWSD_VARという意味を持つと理解される。判定部132は、条件式(15)の判定条件が満たされる場合には、地理的領域3aのみを考慮して過去に計算した送信電力に含まれる干渉回避用マージンIMを、セカンダリシステム数の変化分NWSD_Bに基づいて計算部132に調整させる。セカンダリシステム数NWSD_Bは正であることから、式(7)は次のように変形され得る。
Figure JPOXMLDOC01-appb-M000018
 このように、本実施形態によれば、隣接領域内のセカンダリシステムの存在を考慮すべき状況においても、通信制御装置100は、当該隣接領域について権限を有する装置から、考慮すべきセカンダリシステム数のみを取得するだけでよい。通信制御装置100は、取得したセカンダリシステム数を用いて干渉回避用マージンを調整することによりプライマリシステムを適切に保護しつつ、セカンダリシステムに迅速に通信機会を与えることができる。なお、シグナリング部136は、隣接領域について権限を有する装置から、推定干渉変化dIなどの他のパラメータを取得してもよい。
  [3-2.変形例]
 セカンダリシステム数の変化分NWSD_VARが小さい場合には、マージン調整分dMも小さい。そのような場合に、セカンダリシステム数が変化する都度マージン調整分dMがシグナリングされるとすれば、通信制御システム1内のシグナリングオーバヘッドが多大となり、リソース利用効率を低下させかねない。そこで、本項では、上述した実施形態の変形例として、電力割当てのシグナリングのオーバヘッドを削減するための手法について説明する。
   (1)第1の変形例
 第1の変形例では、特許文献2において提案されたシグナリングオーバヘッド削減用のマージンが取り入れられる。計算部134は、各セカンダリシステムに割当てられる送信電力PAlloc WSDを、次式のように、基準送信電力PIB SingleWSD、干渉回避用マージンIMに加えて、シグナリング削減用マージンMintを用いて計算する。
Figure JPOXMLDOC01-appb-M000019
 セカンダリシステム数が増加する場合において、総セカンダリシステム数が判定閾値NTHを上回るときは、計算部134は、式(17)における干渉回避用マージンIMの調整分dMを、セカンダリシステム数の変化分NWSD_VARに基づいて計算する。このとき、次の条件式(18)が満たされる場合には、セカンダリシステムが割当て済みの送信電力PAlloc WSDを継続的に使用しても、有害な干渉は生じない。なお、条件式(18)の右辺は、割当て済みの送信電力PAlloc WSDに等しい。
Figure JPOXMLDOC01-appb-M000020
 条件式(18)は、次のように等価的に変形され得る。
Figure JPOXMLDOC01-appb-M000021
 そこで、シグナリング部136は、既存のセカンダリシステムについて干渉回避用マージンの調整分dMが割当て済みの送信電力に含まれるシグナリング削減用マージンMIntを下回る場合には、マージン調整分dMを当該既存のセカンダリシステムへシグナリングしない。
 セカンダリシステム数が減少する場合においても、総セカンダリシステム数が判定閾値NTHを上回るときは、計算部134は、式(17)における干渉回避用マージンIMの調整分dMを、セカンダリシステム数の変化分NWSD_VARに基づいて計算する。このとき、次の条件式(20)が満たされる場合には、セカンダリシステムの送信電力を調整することによるスループットの向上は小さい。
Figure JPOXMLDOC01-appb-M000022
 ここで、MTH_Intは、予め設定され得るシグナリングオーバヘッド削減用閾値である。シグナリング部136は、既存のセカンダリシステムについて干渉回避用マージンの調整分dMの絶対値がシグナリングオーバヘッド削減用閾値MTH_Intを下回る場合には、マージン調整分dMを当該既存のセカンダリシステムへシグナリングしない。
   (2)第2の変形例
 第2の変形例では、セカンダリシステム数の厳密な追跡を行う代わりに、一種のヒステリシス制御を取り入れることにより、電力割当ての計算の回数が低減される。計算部134は、送信電力を調整する際に、次式のように、セカンダリシステム数の変化分NWSD_VARを実際よりも多い仮想的な値NWSD_VAR´に設定して、マージン調整分dMを計算する。
Figure JPOXMLDOC01-appb-M000023
 その後、セカンダリシステム数が増加しても、総セカンダリシステム数(NWSD+NWSD_VAR)が仮想的な値(NWSD+NWSD_VAR´)を上回らない限り、計算部134は、干渉回避用マージンの調整を実行しなくてよい。それにより、各セカンダリシステムへのシグナリングの頻度は低減される。仮想値NWSD_VAR´は、予め固定的に設定されてもよく、又は動的に設定されてもよい。例えば、計算部134は、通信制御装置100により管理されるセカンダリシステムの時間別の最大数を通信の履歴として保持し、仮想的なセカンダリシステム数(NWSD+NWSD_VAR´)が当該最大数に等しくなるように、仮想値NWSD_VAR´を設定してもよい。それにより、干渉回避用マージンがセカンダリシステム数の増加に先立って先回りして大きく計算されるため、プライマリシステムに有害な干渉を与えることなく、新たなセカンダリシステムに迅速に送信電力を割当てることができる。仮想値NWSD_VAR´について、有効期間が設定されてもよい。その場合、有効期間が経過した後には、計算部134は、仮想値NWSD_VAR´に関わらず干渉回避用マージンの調整(又は送信電力の再計算)を実行し、電力割当ての結果がセカンダリシステムへシグナリングされ得る。
 セカンダリシステム数が減少するケースでも、セカンダリシステム数の変化分の絶対値|NWSD_VAR|が所定の閾値を上回らない限り、計算部134は、干渉回避用マージンの調整を実行しなくてもよい。
 <4.処理の流れ>
 本節では、上述した実施形態に係る通信制御装置100により実行され得る処理の流れのいくつかの例を説明する。
  [4-1.電力配分処理]
    (1)第1の例
 図7Aは、一実施形態に係る電力配分処理の流れの第1の例を示すフローチャートである。第1の例では、計算部134により最後に送信電力が再計算された時点が、セカンダリシステム数の変化の基準時点として扱われる。
 図7Aを参照すると、まず、判定部132は、セカンダリシステム数の変化を待ち受ける(ステップS110)。そして、セカンダリシステム数が変化した場合には、処理はステップS115へ進む。
 次に、判定部132は、変化後のセカンダリシステム数(NWSD+NWSD_VAR)が判定閾値NTHを上回るかを判定する(ステップS115)。変化後のセカンダリシステム数が判定閾値を上回らない場合、処理はステップS120へ進む。一方、変化後のセカンダリシステム数が判定閾値を上回る場合、処理はステップS140へ進む。
 ステップS120において、計算部134は、特許文献1に記載された電力配分法、又は非特許文献2に記載されたマージン最小化法などの手法に従って、基準送信電力及び干渉回避用のマージンを再計算する(ステップS120)。そして、シグナリング部136は、再計算された基準送信電力及び干渉回避用マージンを、既存のセカンダリシステム及び新たなセカンダリシステムの各々のマスタデバイスである無線通信装置20へ通知する(ステップS125)。また、計算部134は、セカンダリシステム数の基準値NWSD及び基準時点における最大の累積干渉量IAgg,maxを最新の値に更新する(ステップS130)。
 ステップS140において、計算部134は、セカンダリシステム数の変化分NWSD_VARに基づいて干渉回避用マージンの調整分dMを計算することにより、干渉回避用マージンIMを調整する(ステップS140)。そして、シグナリング部136は、計算部134により計算されたマージン調整分dMを、既存のセカンダリシステムの各々のマスタデバイスである無線通信装置20へ通知する(ステップS145)。
 さらに、計算部134は、新たなセカンダリシステムのために基準送信電力を計算するかを、その時点の負荷に応じて判定する(ステップS150)。例えば、計算部134の負荷が相対的に高い場合には、基準送信電力の計算は、セカンダリシステムへ委任される。この場合、シグナリング部136は、基準送信電力の計算のためのパラメータ、干渉回避用マージン及びその調整分を、新たなセカンダリシステムの各々のマスタデバイスである無線通信装置20へ通知する(ステップS155)。一方、計算部134の負荷が相対的に低い場合には、基準送信電力の計算は、セカンダリシステムへ委任されない。この場合、計算部134は、新たなセカンダリシステムのための基準送信電力を計算する(ステップS160)。そして、シグナリング部136は、基準送信電力、干渉回避用マージン及びその調整分を、新たなセカンダリシステムの各々のマスタデバイスである無線通信装置20へ通知する(ステップS165)。
 その後、次の計算タイミングが到来するまでの間、判定部132によりセカンダリシステム数の変化が監視され、処理はステップS110へ戻る(ステップS180)。
    (2)第2の例
 図7Bは、一実施形態に係る電力配分処理の流れの第2の例を示すフローチャートである。第2の例では、直前に送信電力が再計算され又は調整された時点が、セカンダリシステム数の変化の基準時点として扱われる。また、判定閾値NTHが動的に設定される。なお、かかる例に限定されず、第1の例において判定閾値NTHが動的に設定されてもよく、又は第2の例において判定閾値NTHが予め固定的に設定されてもよい。
 図7Bを参照すると、まず、判定部132は、通信制御装置100の処理リソースに掛かっている負荷又は利用可能なプロセッサのコア数などの処理条件に応じて、判定閾値NTHを設定する(ステップS105)。また、判定部132は、セカンダリシステム数の変化を待ち受ける(ステップS110)。そして、セカンダリシステム数が変化した場合には、処理はステップS115へ進む。
 次に、判定部132は、変化後のセカンダリシステム数(NWSD+NWSD_VAR)が判定閾値NTHを上回るかを判定する(ステップS115)。変化後のセカンダリシステム数が判定閾値を上回らない場合、処理はステップS120へ進む。一方、変化後のセカンダリシステム数が判定閾値を上回る場合、処理はステップS140へ進む。
 ステップS120において、計算部134は、特許文献1に記載された電力配分法、又は非特許文献2に記載されたマージン最小化法などの手法に従って、基準送信電力及び干渉回避用のマージンを再計算する(ステップS120)。そして、シグナリング部136は、再計算された基準送信電力及び干渉回避用マージンを、既存のセカンダリシステム及び新たなセカンダリシステムの各々のマスタデバイスである無線通信装置20へ通知する(ステップS125)。
 ステップS140において、計算部134は、セカンダリシステム数の変化分NWSD_VARに基づいて干渉回避用マージンの調整分dMを計算することにより、干渉回避用マージンIMを調整する(ステップS140)。そして、シグナリング部136は、計算部134により計算されたマージン調整分dMを、既存のセカンダリシステムの各々のマスタデバイスである無線通信装置20へ通知する(ステップS145)。
 さらに、計算部134は、新たなセカンダリシステムのために基準送信電力を計算するかを、その時点の負荷に応じて判定する(ステップS150)。例えば、計算部134の負荷が相対的に高い場合には、シグナリング部136は、基準送信電力の計算のためのパラメータ、干渉回避用マージン及びその調整分を、新たなセカンダリシステムの各々のマスタデバイスである無線通信装置20へ通知する(ステップS155)。一方、計算部134の負荷が相対的に低い場合には、計算部134は、新たなセカンダリシステムのための基準送信電力を計算する(ステップS160)。そして、シグナリング部136は、基準送信電力、干渉回避用マージン及びその調整分を、新たなセカンダリシステムの各々のマスタデバイスである無線通信装置20へ通知する(ステップS165)。
 その後、計算部132は、セカンダリシステム数の基準値NWSD及び基準時点における最大の累積干渉量IAgg,maxを最新の値に更新する(ステップS175)。そして、次の計算タイミングが到来するまでの間、判定部132によりセカンダリシステム数の変化が監視され、処理はステップS105へ戻る(ステップS180)。
    (3)第3の例
 図7Cは、一実施形態に係る電力配分処理の流れの第3の例を示すフローチャートである。第3の例では、第1の例と同様、計算部134により最後に送信電力が再計算された時点が、セカンダリシステム数の変化の基準時点として扱われる。第3の例では、前節において第1の変形例として説明したシグナリングのオーバヘッドを削減する手法が取り入れられる。
 図7Cを参照すると、まず、判定部132は、セカンダリシステム数の変化を待ち受ける(ステップS110)。そして、セカンダリシステム数が変化した場合には、処理はステップS115へ進む。
 次に、判定部132は、変化後のセカンダリシステム数が判定閾値を上回るかを判定する(ステップS115)。変化後のセカンダリシステム数が判定閾値を上回らない場合、処理はステップS121へ進む。一方、変化後のセカンダリシステム数が判定閾値を上回る場合、処理はステップS140へ進む。
 ステップS121において、計算部134は、特許文献1に記載された電力配分法、又は非特許文献2に記載されたマージン最小化法などの手法に従って、基準送信電力及び干渉回避用のマージンを再計算する。再計算には、シグナリング削減用マージンMIntも算入される(ステップS121)。そして、シグナリング部136は、再計算された基準送信電力及びマージンを、既存のセカンダリシステム及び新たなセカンダリシステムの各々のマスタデバイスである無線通信装置20へ通知する(ステップS126)。また、計算部132は、セカンダリシステム数の基準値NWSD及び基準時点における最大の累積干渉量IAgg,maxを最新の値に更新する(ステップS130)。
 ステップS140において、計算部134は、セカンダリシステム数の変化分に基づいて干渉回避用マージンの調整分を計算することにより、干渉回避用マージンを調整する(ステップS140)。そして、シグナリング部136は、計算部134により計算されたマージン調整分をシグナリングすべきかを判定する(ステップS144)。例えば、マージン調整分dMが上述した条件式(19)又は条件式(20)を満たさない場合、シグナリング部136はマージン調整分dMをシグナリングすべきであると判定し得る。マージン調整分dMをシグナリングすべきであると判定された場合、シグナリング部136は、計算部134により計算されたマージン調整分を、既存のセカンダリシステムの各々のマスタデバイスである無線通信装置20へ通知する(ステップS145)。
 さらに、計算部134は、新たなセカンダリシステムのための基準送信電力を計算する(ステップS160)。そして、シグナリング部136は、基準送信電力、干渉回避用マージン、マージン調整分及びシグナリング削減用マージンを、新たなセカンダリシステムの各々のマスタデバイスである無線通信装置20へ通知する(ステップS166)。
 その後、次の計算タイミングが到来するまでの間、判定部132によりセカンダリシステム数の変化が監視され、処理はステップS110へ戻る(ステップS180)。
    (4)第4の例
 図7Dは、一実施形態に係る電力配分処理の流れの第4の例を示すフローチャートである。第4の例では、前節において第2の変形例として説明したシグナリングのオーバヘッドを削減する手法が取り入れられる。
 図7Dを参照すると、まず、判定部132は、セカンダリシステム数の変化を待ち受ける(ステップS110)。そして、セカンダリシステム数が変化した場合には、処理はステップS115へ進む。
 次に、判定部132は、変化後のセカンダリシステム数が判定閾値を上回るかを判定する(ステップS115)。変化後のセカンダリシステム数が判定閾値を上回らない場合、処理はステップS120へ進む。一方、変化後のセカンダリシステム数が判定閾値を上回る場合、処理はステップS135へ進む。
 ステップS120において、計算部134は、特許文献1に記載された電力配分法、又は非特許文献2に記載されたマージン最小化法などの手法に従って、基準送信電力及び干渉回避用のマージンを再計算する(ステップS120)。そして、シグナリング部136は、再計算された基準送信電力及び干渉回避用マージンを、既存のセカンダリシステム及び新たなセカンダリシステムの各々のマスタデバイスである無線通信装置20へ通知する(ステップS125)。また、計算部132は、セカンダリシステム数の基準値NWSD及び基準時点における最大の累積干渉量IAgg,maxを最新の値に更新する(ステップS130)。
 ステップS135において、判定部132は、さらに、セカンダリシステム数の変化分の絶対値を閾値と比較する(ステップS135)。ここでの閾値は、仮想的な変化分NWSD_VAR´であってもよい。また、増加のケースと減少のケースとで異なる閾値が使用されてもよい。セカンダリシステム数の変化分の絶対値が閾値を上回る場合、計算部134は、セカンダリシステム数の仮想的な変化分に基づいて干渉回避用マージンの調整分を計算することにより、干渉回避用マージンを調整する(ステップS139)。そして、シグナリング部136は、計算部134により計算されたマージン調整分を、既存のセカンダリシステムの各々のマスタデバイスである無線通信装置20へ通知する(ステップS145)。セカンダリシステム数の変化分の絶対値が閾値を上回らない場合、これらステップS140及びS145はスキップされる。
 さらに、計算部134は、新たなセカンダリシステムのための基準送信電力を計算する(ステップS160)。そして、シグナリング部136は、基準送信電力、干渉回避用マージン及びその調整分を、新たなセカンダリシステムの各々のマスタデバイスである無線通信装置20へ通知する(ステップS165)。
 その後、次の計算タイミングが到来するまでの間、判定部132によりセカンダリシステム数の変化が監視され、処理はステップS110へ戻る(ステップS180)。
  [4-2.マージン調整処理]
 図8は、図7A~図7Cに示した電力配分処理において実行され得るマージン調整処理(ステップS140に相当)の流れの一例を示すフローチャートである。
 図8を参照すると、まず、計算部134は、セカンダリシステム数の変化分NWSD_VARに基づいて、推定干渉変化dIを導出する(ステップS141)。次に、計算部134は、基準時点における累積干渉量IAgg,maxを記憶部120から取得する(ステップS142)。そして、計算部134は、セカンダリシステム数の変化分NWSD_VAR、推定干渉変化dI及び累積干渉量IAgg,maxを式(7)に代入することにより、マージン調整分dMを計算する(ステップS143)。
 なお、セカンダリシステム数と累積干渉量とが比例するとの仮定に基づく式(9)が使用される場合には、推定干渉変化dIの導出及びdIの計算式への代入は省略されてよい。
  [4-3.シグナリングシーケンス]
 図9A及び図9Bは、一実施形態に係る通信制御システム1内のシグナリングシーケンスの一例を示している。図9Aのシーケンスには、通信制御装置100、既存のセカンダリシステムのマスタデバイスである無線通信装置20a、及び新たなセカンダリシステムのマスタデバイスである無線通信装置20hが関与する。なお、ここでは説明の簡明さのために無線通信装置20a及び20hのみを図示しているが、実際には、通信制御システム1はより多くの無線通信装置20を含むものとする。
 図9Aを参照すると、まず、無線通信装置20hは、通信制御装置100へアクティブ化リクエストを送信する(ステップS10)。無線通信装置20hからのアクティブ化リクエストを受信した通信制御装置100は、セカンダリシステム数をカウントアップする。
 周期的な計算タイミングが到来すると、通信制御装置100は、図7A~図7Dを用いて説明した電力配分処理を実行する(ステップS15)。その結果、セカンダリシステムに割当てられるべき送信電力が再計算され、又は過去に計算された送信電力がセカンダリシステム数の変化分に基づいて調整される。
 通信制御装置100は、アクティブ化を許可する旨の通知と共に、電力割当ての結果を無線通信装置20hへシグナリングする(ステップS20)。また、通信制御装置100は、電力割当ての結果又はマージン調整の結果を、無線通信装置20aへシグナリングする(ステップS20)。
 無線通信装置20hは、新たなセカンダリシステムに割当てられた送信電力を、通信制御装置100から通知された電力割当ての結果を用いて計算する(ステップS30)。そして、無線通信装置20hは、計算した割当て送信電力を、通信制御装置100へレポートし得る(ステップS35)。
 無線通信装置20aは、再計算され又は調整された割当て送信電力を、通信制御装置100から通知された電力割当ての結果又はマージン調整の結果を用いて計算する(ステップS40)。そして、無線通信装置20aは、計算した割当て送信電力を、通信制御装置100へレポートし得る(ステップS45)。
 図9Bを参照すると、通信制御装置100、無線通信装置20a及び無線通信装置20hを含む地理的領域3aに隣接する隣接領域3bについて送信電力の割当ての権限を有するデータサーバと、隣接領域3b内の無線通信装置とが示されている。
 隣接領域3b内のセカンダリシステムの存在を考慮すべき状況において、通信制御装置100は、隣接領域3bについて権限を有するデータサーバから、考慮すべきセカンダリシステム数をシグナリグされる(ステップS50)。ここでシグナリングされるセカンダリシステム数は、上述した式(15)及び式(16)におけるパラメータNWSD_Bに相当し、セカンダリシステム数の変化分として扱われる。
 通信制御装置100は、地理的領域3a内のセカンダリシステム数WSD_A及び隣接領域3b内の考慮すべきセカンダリシステム数NWSD_Bを用いて、電力配分処理を実行する(ステップS55)。その結果、セカンダリシステムに割当てられるべき送信電力が再計算され、又は過去に計算された送信電力がNWSD_Bに基づいて調整される。
 通信制御装置100は、電力割当ての結果又はマージン調整の結果を、無線通信装置20a及び無線通信装置20hへシグナリングする(ステップS60、S65)。
 無線通信装置20hは、再計算され又は調整された割当て送信電力を、通信制御装置100から通知された電力割当ての結果又はマージン調整の結果を用いて計算する(ステップS70)。そして、無線通信装置20hは、計算した割当て送信電力を、通信制御装置100へレポートし得る(ステップS75)。
 無線通信装置20aも同様に、再計算され又は調整された割当て送信電力を、通信制御装置100から通知された電力割当ての結果又はマージン調整の結果を用いて計算する(ステップS80)。そして、無線通信装置20aは、計算した割当て送信電力を、通信制御装置100へレポートし得る(ステップS85)。
 <5.無線通信装置の構成例>
 図10は、一実施形態に係る無線通信装置20の論理的な構成の一例を示すブロック図である。図10を参照すると、無線通信装置20は、無線通信部210、ネットワーク通信部220、記憶部230及び通信制御部240を含む。
   (1)無線通信部
 無線通信部210は、近傍に位置する端末装置(セカンダリシステムのスレーブデバイス)との間で、通信制御装置100により割当てられた送信電力を用いて、無線通信を実行する。例えば、無線通信部210は、通信制御装置100から通知されるいずれかの利用可能な周波数チャネル上でビーコン信号を送信する。ビーコン信号を検知したスレーブデバイスは、無線通信装置20との間でセカンダリシステムの運用のためのパラメータを交換し、無線通信を開始する。ここで交換されるパラメータは、スレーブデバイスの送信電力を制御するためのパラメータ(例えば、送信電力の値)を含み得る。
   (2)ネットワーク通信部
 ネットワーク通信部220は、無線通信装置20と通信制御装置100との間のバックホールリンクを確立する。そして、ネットワーク通信部220は、通信制御装置100から送信される様々なシグナリングメッセージをバックホールリンク上で受信する。また、ネットワーク通信部220は、無線通信装置20により運用されるセカンダリシステムについてのセカンダリシステム情報を、通信制御装置100へ送信する。なお、バックホールリンクが無線リンクである場合には、無線通信装置20の構成からネットワーク通信部220が省略されてもよい。
   (3)記憶部
 記憶部230は、ハードディスク又は半導体メモリなどの記憶媒体を用いて、無線通信装置20の動作のためのプログラム及びデータを記憶する。記憶部230により記憶されるデータは、例えば、無線通信装置20により運用されるセカンダリシステムについてのセカンダリシステム情報、通信制御装置100から通知される電力割当て関連情報、及びスレーブデバイス情報を含み得る。
   (4)通信制御部
 通信制御部240は、無線通信装置20により実行される通信を制御する。例えば、通信制御部240は、無線通信装置20がセカンダリシステムの運用を開始する(又はスリープモードから復帰する)場合に、バックホールリンクを介して通信制御装置100へアクティブ化リクエストを送信する。そして、通信制御装置100から電力割当て関連情報が受信されると、通信制御装置100による送信電力の割当てに従って、無線通信部210に動作周波数及び送信電力を設定する。それにより、マスタデバイスである無線通信装置20と1つ以上のスレーブデバイスとの間の無線通信が可能となる。無線通信部210が使用可能な最大送信電力は、通信制御装置100から通知される基準送信電力から干渉回避用マージン(及び、必要に応じてシグナリング削減用マージン)を減算することにより計算され得る。通信制御部240は、通信制御装置100から干渉回避用マージンの調整分を通知するシグナリングメッセージが受信されると、設定済みの送信電力に含まれるマージンにマージン調整分を加えることにより、無線通信部210における送信電力の設定を更新する。通信制御部240は、セカンダリシステムの運用を停止する(又はスリープモードへ遷移する)場合には、バックホールリンクを介して通信制御装置100へ非アクティブ化リクエストを送信する。それにより、通信制御装置100は、セカンダリシステムの減少を認識することができる。
 <6.システムモデルの他の例>
 図1には、通信制御システム1にGLDBに相当し得る通信制御装置100が配備され、通信制御装置100が電力の計算及びセカンダリシステムとの間のシグナリングを実行するシステムモデルが示されている。しかしながら、そうしたシステムモデルは一例に過ぎない。例えば、上述した通信制御装置100の機能は、階層的に分離される2つ以上のエンティティにより実現されてもよい。
 図11は、システムモデルの他の例について説明するための説明図である。図11を参照すると、通信制御システム2は、GLDB102、1つ以上のWSDB(White Space Database)104a、104b、…、1つ以上のマスタWSD20a、20b、…及び1つ以上のスレーブWSDを含む。GLDB102は、上述した通信制御装置100の機能のうち、主に電力割当てのための計算機能、及び電力の再計算と調整とを上述した判定条件に従って切り替える機能を有する。また、GLDB102は、WSDB104a、104b、…(以下、WSDB104と総称する)を含み得る他のエンティティと通信する機能をも有する。GLDB102は、自身が管理する地理的領域内のセカンダリシステム数が変化した場合には、セカンダリシステムのための割当て送信電力を再計算し、又は、セカンダリシステム数の変化分に基づいて干渉回避用のマージンを調整する。
 WSDB104は、GLDB102から送信電力の計算結果を示す情報を取得し、各セカンダリシステムの割当て送信電力を特定するためのパラメータを、当該セカンダリシステムのマスタデバイスへシグナリングする機能を有する。また、WSDB104は、GLDB102を含み得る他のエンティティと通信する機能、及びマスタWSD20と通信する機能をも有する。WSDB104は、送信電力の計算結果を示す情報をGLDB102から直接的に受信してもよく、又は他のWSDBを介して取得してもよい。一例として、GLDB102は公的な又は公益的な機関により運営されるサーバであってよく、一方でWSDBは営利の又は非営利の事業者により運営されるサーバであってよい。
 GLDB102は、プライマリシステム情報、及びWSDB104から報告されるセカンダリシステム情報に基づいて、セカンダリシステムに割当てるべき送信電力を周期的に(又は非周期的に)計算(再計算/調整)する。そして、GLDB102は、計算結果を示す上述した電力割当て関連情報を、WSDB104へ送信する。電力割当て関連情報は、少なくとも、計算された干渉回避用マージンを特定するパラメータを含む。当該パラメータのタイプは、通信制御装置100のシグナリング部136に関連して上で説明したような任意のタイプであってよい。
 第1の例において、電力割当て関連情報は、個々のセカンダリシステム(又はマスタWSD)に関連付けられ、例えばシステムID又はデバイスIDを含み得る。この場合、WSDB104は、マスタWSD20からの要求への応答において、要求元のIDに対応する情報をマスタWSD20へシグナリングし得る。第2の例において、電力割当て関連情報は、ロケーション(及びアンテナ高さなどのデバイス属性)に関連付けられる。例えば、GLDB102により管理される地理的領域はグリッド状にセグメント化され、個々のセグメントに識別情報が付与される。そして、電力割当て関連情報は、セグメントとデバイス属性(例えば、アンテナ高さ)とのペアにマージン値をマッピングするテーブルの形式で、WSDB104に提供される。この場合、WSDB104は、マスタWSD20からの要求への応答において、要求元のデバイスが位置するセグメント及び属性のペアにマッピングされているマージン値をシグナリングし得る。いずれの例においても、WSDB104は、基準送信電力と干渉回避用マージンとをそれぞれマスタWSD20へシグナリングしてもよい。その代わりに、WSDB104は、電力割当て関連情報に基づいて、基準送信電力、並びに干渉回避用マージン(基準値及び調整分)から個々のマスタWSD20の割当て送信電力を計算し、計算した割当て送信電力を特定するためのパラメータを個々のマスタWSD20へシグナリングしてもよい。また、WSDB104は、基準送信電力をマスタWSD20に計算させるためのパラメータをマスタWSD20へシグナリングしてもよい。
 マスタWSD20は、図10を用いて説明した無線通信装置20に相当する。マスタWSD20は、自らが運用するセカンダリシステムのための割当て送信電力を特定する電力割当て関連情報を有しているWSDB104と通信する機能を有する。マスタWSD20は、接続先のWSDB104から、割当て送信電力を特定するためのパラメータのシグナリングを受信し、受信したパラメータを用いて特定される割当て送信電力に従って、マスタWSD20と1つ以上のスレーブWSDとの間の無線通信を制御する。
 <7.応用例>
 本開示に係る技術は、様々な製品へ応用可能である。例えば、通信制御装置100、102及び104は、タワーサーバ、ラックサーバ、又はブレードサーバなどのいずれかの種類のデータサーバとして実現されてもよい。また、通信制御装置100、102及び104は、サーバに搭載される制御モジュール(例えば、1つのダイで構成される集積回路モジュール、又はブレードサーバのスロットに挿入されるカード若しくはブレード)であってもよい。
 また、例えば、無線通信装置20は、マクロeNB、ピコeNB、又はホームeNBなどのいずれかの種類のeNB(evolved Node B)として実現されてもよい。その代わりに、無線通信装置20は、NodeB又はBTS(Base Transceiver Station)などの他の種類の基地局として実現されてもよい。
 また、例えば、無線通信装置20は、スマートフォン、タブレットPC(Personal Computer)、ノートPC、携帯型ゲーム端末、携帯型/ドングル型のモバイルルータ若しくはデジタルカメラなどのモバイル端末、又はカーナビゲーション装置などの車載端末として実現されてもよい。また、無線通信装置20は、M2M(Machine To Machine)通信を行う端末(MTC(Machine Type Communication)端末ともいう)として実現されてもよい。さらに、無線通信装置20は、これら端末に搭載される無線通信モジュール(例えば、1つのダイで構成される集積回路モジュール)であってもよい。
  [7-1.通信制御装置に関する応用例]
 図12は、本開示に係る技術が適用され得るGLDB700の概略的な構成の一例を示すブロック図である。GLDB700は、プロセッサ701、メモリ702、ストレージ703、ネットワークインタフェース704及びバス706を備える。
 プロセッサ701は、例えばCPU(Central Processing Unit)又はDSP(Digital Signal Processor)であってよく、GLDB700の各種機能を制御する。メモリ702は、RAM(Random Access Memory)及びROM(Read Only Memory)を含み、プロセッサ701により実行されるプログラム及びデータを記憶する。ストレージ703は、半導体メモリ又はハードディスクなどの記憶媒体を含み得る。
 ネットワークインタフェース704は、GLDB700が有線通信ネットワーク705に接続するための有線通信インタフェースである。有線通信ネットワーク705は、EPC(Evolved Packet Core)などのコアネットワークであってもよく、又はインターネットなどのPDN(Packet Data Network)であってもよい。
 バス706は、プロセッサ701、メモリ702、ストレージ703及びネットワークインタフェース704を互いに接続する。バス706は、速度の異なる2つ以上のバス(例えば、高速バス及び低速バス)を含んでもよい。
 図12に示したGLDB700において、図6を用いて説明した制御部130は、プロセッサ701において実装されてもよい。例えば、プロセッサ701が判定部132、計算部134及びシグナリング部136として機能することにより、プライマリシステムへの有害な干渉を防止しつつ、GLDB700が管理する地理的領域内のセカンダリシステム数の変動に追随して迅速に各セカンダリシステムに送信電力を割当てることができる。
  [7-2.無線通信装置に関する応用例]
   (第1の応用例)
 図13は、本開示に係る技術が適用され得るeNBの概略的な構成の一例を示すブロック図である。eNB800は、1つ以上のアンテナ810、及び基地局装置820を有する。各アンテナ810及び基地局装置820は、RFケーブルを介して互いに接続され得る。
 アンテナ810の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、基地局装置820による無線信号の送受信のために使用される。eNB800は、図13に示したように複数のアンテナ810を有し、複数のアンテナ810は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図13にはeNB800が複数のアンテナ810を有する例を示したが、eNB800は単一のアンテナ810を有してもよい。
 基地局装置820は、コントローラ821、メモリ822、ネットワークインタフェース823及び無線通信インタフェース825を備える。
 コントローラ821は、例えばCPU又はDSPであってよく、基地局装置820の上位レイヤの様々な機能を動作させる。例えば、コントローラ821は、無線通信インタフェース825により処理された信号内のデータからデータパケットを生成し、生成したパケットをネットワークインタフェース823を介して転送する。コントローラ821は、複数のベースバンドプロセッサからのデータをバンドリングすることによりバンドルドパケットを生成し、生成したバンドルドパケットを転送してもよい。また、コントローラ821は、無線リソース管理(Radio Resource Control)、無線ベアラ制御(Radio Bearer Control)、移動性管理(Mobility Management)、流入制御(Admission Control)又はスケジューリング(Scheduling)などの制御を実行する論理的な機能を有してもよい。また、当該制御は、周辺のeNB又はコアネットワークノードと連携して実行されてもよい。メモリ822は、RAM及びROMを含み、コントローラ821により実行されるプログラム、及び様々な制御データ(例えば、端末リスト、送信電力データ及びスケジューリングデータなど)を記憶する。
 ネットワークインタフェース823は、基地局装置820を有線通信ネットワーク705に接続するための通信インタフェースである。コントローラ821は、ネットワークインタフェース823を介して、GLDB700と通信し得る。
 無線通信インタフェース825は、LTE(Long Term Evolution)又はLTE-A(LTE-Advanced)などのいずれかのセルラー通信方式をサポートし、アンテナ810を介して、eNB800のセル内に位置する端末(スレーブデバイス)に無線接続を提供する。無線通信インタフェース825は、典型的には、ベースバンド(BB)プロセッサ826及びRF回路827などを含み得る。BBプロセッサ826は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、各レイヤ(例えば、L1、MAC(Medium Access Control)、RLC(Radio Link Control)及びPDCP(Packet Data Convergence Protocol))の様々な信号処理を実行する。BBプロセッサ826は、コントローラ821の代わりに、上述した論理的な機能の一部又は全部を有してもよい。BBプロセッサ826は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を含むモジュールであってもよく、BBプロセッサ826の機能は、上記プログラムのアップデートにより変更可能であってもよい。また、上記モジュールは、基地局装置820のスロットに挿入されるカード若しくはブレードであってもよく、又は上記カード若しくは上記ブレードに搭載されるチップであってもよい。一方、RF回路827は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ810を介して無線信号を送受信する。
 無線通信インタフェース825は、図13に示したように複数のBBプロセッサ826を含み、複数のBBプロセッサ826は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。また、無線通信インタフェース825は、図13に示したように複数のRF回路827を含み、複数のRF回路827は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図13には無線通信インタフェース825が複数のBBプロセッサ826及び複数のRF回路827を含む例を示したが、無線通信インタフェース825は単一のBBプロセッサ826又は単一のRF回路827を含んでもよい。
 図13に示したeNB800において、図10を用いて説明した通信制御部240は、無線通信インタフェース825において実装されてもよい。また、その機能の少なくとも一部は、コントローラ821において実装されてもよい。例えば、eNB800が通信制御装置100により割当てられる送信電力を用いてスレーブデバイスとの間で無線通信を実行することにより、プライマリシステムへの有害な干渉を防止しつつ、迅速にセカンダリシステムの運用を開始することができる。
   (第2の応用例)
 図14は、本開示に係る技術が適用され得るスマートフォン900の概略的な構成の一例を示すブロック図である。スマートフォン900は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912、1つ以上のアンテナスイッチ915、1つ以上のアンテナ916、バス917、バッテリー918及び補助コントローラ919を備える。
 プロセッサ901は、例えばCPU又はSoC(System on Chip)であってよく、スマートフォン900のアプリケーションレイヤ及びその他のレイヤの機能を制御する。メモリ902は、RAM及びROMを含み、プロセッサ901により実行されるプログラム及びデータを記憶する。ストレージ903は、半導体メモリ又はハードディスクなどの記憶媒体を含み得る。外部接続インタフェース904は、メモリーカード又はUSB(Universal Serial Bus)デバイスなどの外付けデバイスをスマートフォン900へ接続するためのインタフェースである。
 カメラ906は、例えば、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子を有し、撮像画像を生成する。センサ907は、例えば、測位センサ、ジャイロセンサ、地磁気センサ及び加速度センサなどのセンサ群を含み得る。マイクロフォン908は、スマートフォン900へ入力される音声を音声信号へ変換する。入力デバイス909は、例えば、表示デバイス910の画面上へのタッチを検出するタッチセンサ、キーパッド、キーボード、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス910は、液晶ディスプレイ(LCD)又は有機発光ダイオード(OLED)ディスプレイなどの画面を有し、スマートフォン900の出力画像を表示する。スピーカ911は、スマートフォン900から出力される音声信号を音声に変換する。
 無線通信インタフェース912は、LTE又はLTE-Aなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース912は、典型的には、BBプロセッサ913及びRF回路914などを含み得る。BBプロセッサ913は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路914は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ916を介して無線信号を送受信する。無線通信インタフェース912は、BBプロセッサ913及びRF回路914を集積したワンチップのモジュールであってもよい。無線通信インタフェース912は、図14に示したように複数のBBプロセッサ913及び複数のRF回路914を含んでもよい。なお、図14には無線通信インタフェース912が複数のBBプロセッサ913及び複数のRF回路914を含む例を示したが、無線通信インタフェース912は単一のBBプロセッサ913又は単一のRF回路914を含んでもよい。
 さらに、無線通信インタフェース912は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN(Local Area Network)方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ913及びRF回路914を含んでもよい。
 アンテナスイッチ915の各々は、無線通信インタフェース912に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ916の接続先を切り替える。
 アンテナ916の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース912による無線信号の送受信のために使用される。スマートフォン900は、図14に示したように複数のアンテナ916を有してもよい。なお、図14にはスマートフォン900が複数のアンテナ916を有する例を示したが、スマートフォン900は単一のアンテナ916を有してもよい。
 さらに、スマートフォン900は、無線通信方式ごとにアンテナ916を備えてもよい。その場合に、アンテナスイッチ915は、スマートフォン900の構成から省略されてもよい。
 バス917は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912及び補助コントローラ919を互いに接続する。バッテリー918は、図中に破線で部分的に示した給電ラインを介して、図14に示したスマートフォン900の各ブロックへ電力を供給する。補助コントローラ919は、例えば、スリープモードにおいて、スマートフォン900の必要最低限の機能を動作させる。
 図14に示したスマートフォン900は、セカンダリシステムのマスタデバイスとして動作してもよい。その際、図10を用いて説明した通信制御部240は、無線通信インタフェース912において実装されてもよい。また、これら機能の少なくとも一部は、プロセッサ901又は補助コントローラ919において実装されてもよい。例えば、スマートフォン900が通信制御装置100により割当てられる送信電力を用いてスレーブデバイスとの間で無線通信を実行することにより、プライマリシステムへの有害な干渉を防止しつつ、迅速にセカンダリシステムの運用を開始することができる。また、スマートフォン900は、セカンダリシステムのスレーブデバイスとして動作してもよい。
   (第3の応用例)
 図15は、本開示に係る技術が適用され得るカーナビゲーション装置920の概略的な構成の一例を示すブロック図である。カーナビゲーション装置920は、プロセッサ921、メモリ922、GPS(Global Positioning System)モジュール924、センサ925、データインタフェース926、コンテンツプレーヤ927、記憶媒体インタフェース928、入力デバイス929、表示デバイス930、スピーカ931、無線通信インタフェース933、1つ以上のアンテナスイッチ936、1つ以上のアンテナ937及びバッテリー938を備える。
 プロセッサ921は、例えばCPU又はSoCであってよく、カーナビゲーション装置920のナビゲーション機能及びその他の機能を制御する。メモリ922は、RAM及びROMを含み、プロセッサ921により実行されるプログラム及びデータを記憶する。
 GPSモジュール924は、GPS衛星から受信されるGPS信号を用いて、カーナビゲーション装置920の位置(例えば、緯度、経度及び高度)を測定する。センサ925は、例えば、ジャイロセンサ、地磁気センサ及び気圧センサなどのセンサ群を含み得る。データインタフェース926は、例えば、図示しない端子を介して車載ネットワーク941に接続され、車速データなどの車両側で生成されるデータを取得する。
 コンテンツプレーヤ927は、記憶媒体インタフェース928に挿入される記憶媒体(例えば、CD又はDVD)に記憶されているコンテンツを再生する。入力デバイス929は、例えば、表示デバイス930の画面上へのタッチを検出するタッチセンサ、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス930は、LCD又はOLEDディスプレイなどの画面を有し、ナビゲーション機能又は再生されるコンテンツの画像を表示する。スピーカ931は、ナビゲーション機能又は再生されるコンテンツの音声を出力する。
 無線通信インタフェース933は、LTE又はLTE-Aなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース933は、典型的には、BBプロセッサ934及びRF回路935などを含み得る。BBプロセッサ934は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路935は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ937を介して無線信号を送受信する。無線通信インタフェース933は、BBプロセッサ934及びRF回路935を集積したワンチップのモジュールであってもよい。無線通信インタフェース933は、図15に示したように複数のBBプロセッサ934及び複数のRF回路935を含んでもよい。なお、図15には無線通信インタフェース933が複数のBBプロセッサ934及び複数のRF回路935を含む例を示したが、無線通信インタフェース933は単一のBBプロセッサ934又は単一のRF回路935を含んでもよい。
 さらに、無線通信インタフェース933は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ934及びRF回路935を含んでもよい。
 アンテナスイッチ936の各々は、無線通信インタフェース933に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ937の接続先を切り替える。
 アンテナ937の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース933による無線信号の送受信のために使用される。カーナビゲーション装置920は、図15に示したように複数のアンテナ937を有してもよい。なお、図15にはカーナビゲーション装置920が複数のアンテナ937を有する例を示したが、カーナビゲーション装置920は単一のアンテナ937を有してもよい。
 さらに、カーナビゲーション装置920は、無線通信方式ごとにアンテナ937を備えてもよい。その場合に、アンテナスイッチ936は、カーナビゲーション装置920の構成から省略されてもよい。
 バッテリー938は、図中に破線で部分的に示した給電ラインを介して、図15に示したカーナビゲーション装置920の各ブロックへ電力を供給する。また、バッテリー938は、車両側から給電される電力を蓄積する。
 図15に示したカーナビゲーション装置920は、セカンダリシステムのマスタデバイスとして動作してもよい。その際、図10を用いて説明した通信制御部240は、無線通信インタフェース933において実装されてもよい。また、これら機能の少なくとも一部は、プロセッサ921において実装されてもよい。例えば、カーナビゲーション装置920が通信制御装置100により割当てられる送信電力を用いてスレーブデバイスとの間で無線通信を実行することにより、プライマリシステムへの有害な干渉を防止しつつ、迅速にセカンダリシステムの運用を開始することができる。また、カーナビゲーション装置920は、セカンダリシステムのスレーブデバイスとして動作してもよい。
 また、本開示に係る技術は、上述したカーナビゲーション装置920の1つ以上のブロックと、車載ネットワーク941と、車両側モジュール942とを含む車載システム(又は車両)940として実現されてもよい。車両側モジュール942は、車速、エンジン回転数又は故障情報などの車両側データを生成し、生成したデータを車載ネットワーク941へ出力する。
 <8.まとめ>
 ここまで、図1~図15を用いて、本開示に係る技術のいくつかの実施形態について詳細に説明した。上述した実施形態によれば、プライマリシステムのために保護される周波数チャネルを二次利用する1つ以上のセカンダリシステムに割当てられるべき送信電力を計算する装置において、セカンダリシステム数が変化した場合に、送信電力を再計算するか、又は過去に計算した送信電力をセカンダリシステム数の変化分に基づいて調整するか、がセカンダリシステム数に依存する条件に従って動的に判定される。従って、有害な干渉の防止と電力割当ての迅速さとを両立することができる。また、タイムリーに電力割当てが更新されないことに起因する有害な干渉の発生などといった弊害を解消することができる。それにより、無線リソースの利用効率が向上される。なお、本明細書では主に送信電力の再計算又は調整が周期的に行われる例を説明したが、本開示に係る技術は、かかる例に限定されない。例えば、プライマリシステム若しくはセカンダリシステムからのリクエスト、又は何らかの入力条件の変化などのトリガが検出された際に、本開示に係る技術に従って少ない計算コストで送信電力が調整されてもよい。
 例えば、変化後のセカンダリシステム数が閾値を下回る場合には送信電力が再計算される。一方、変化後のセカンダリシステム数が閾値を上回る場合には過去に計算した送信電力の調整が実行される。従って、セカンダリシステムが多数存在し、許容される時間内に電力割当ての計算が終了しない可能性がある場合には、簡易なアルゴリズムでの送信電力の調整のみが実行される。それにより、プライマリシステムの保護を維持しつつ、送信電力の割当ての遅延に起因するセカンダリシステムの通信機会の喪失を防止することができる。
 一例としての電力計算モデルによれば、各セカンダリシステムに割当てられる送信電力は、当該セカンダリシステムの基準送信電力と、干渉回避用マージンとを用いて計算される。このモデルにおいて、送信電力の調整は、セカンダリシステム数の変化分に基づいて干渉回避用マージンを調整することにより実行される。従って、セカンダリシステム数の変化を監視するだけで、少ない計算コストで送信電力を調整することができる。
 なお、本明細書において説明した各装置による一連の制御処理は、ソフトウェア、ハードウェア、及びソフトウェアとハードウェアとの組合せのいずれを用いて実現されてもよい。ソフトウェアを構成するプログラムは、例えば、各装置の内部又は外部に設けられる記憶媒体(非一時的な媒体:non-transitory media)に予め格納される。そして、各プログラムは、例えば、実行時にRAMに読み込まれ、CPUなどのプロセッサにより実行される。
 また、本明細書においてフローチャートを用いて説明した処理は、必ずしもフローチャートに示された順序で実行されなくてもよい。いくつかの処理ステップは、並列的に実行されてもよい。また、追加的な処理ステップが採用されてもよく、一部の処理ステップが省略されてもよい。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 また、本明細書に記載された効果は、あくまで説明的又は例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果と共に、又は上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏し得る。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 プライマリシステムのために保護される周波数チャネルを二次利用する1つ以上のセカンダリシステムに割当てられるべき送信電力を計算する計算部と、
 セカンダリシステム数が変化した場合に、前記セカンダリシステム数に依存する条件に従って、前記計算部に前記送信電力を再計算させるか、又は過去に計算した前記送信電力を前記セカンダリシステム数の変化分に基づいて調整させるか、を判定する判定部と、
 を備える通信制御装置。
(2)
 前記判定部は、変化後の前記セカンダリシステム数が閾値を下回る場合に、前記計算部に前記送信電力を再計算させ、変化後の前記セカンダリシステム数が前記閾値を上回る場合に、前記計算部に過去に計算した前記送信電力を調整させる、前記(1)に記載の通信制御装置。
(3)
 前記閾値は、前記セカンダリシステム数に依存する推定計算時間が許容される計算時間を上回らないように予め設定される、前記(2)に記載の通信制御装置。
(4)
 前記閾値は、前記セカンダリシステム数に依存する推定計算時間が許容される計算時間を上回らないように動的に設定される、前記(2)に記載の通信制御装置。
(5)
 前記セカンダリシステム数の前記変化分は、最後に前記送信電力が再計算された時点のセカンダリシステム数に基づいて計算される、前記(1)~(4)のいずれか1項に記載の通信制御装置。
(6)
 前記セカンダリシステム数の前記変化分は、直前に前記送信電力が再計算され又は調整された時点のセカンダリシステム数に基づいて計算される、前記(1)~(4)のいずれか1項に記載の通信制御装置。
(7)
 各セカンダリシステムに割当てられる送信電力は、当該セカンダリシステムの基準送信電力と、干渉回避用のマージンとを含み、
 前記計算部は、前記セカンダリシステム数の前記変化分に基づいて前記干渉回避用のマージンを調整することにより、前記送信電力を調整する、
 前記(1)~(6)のいずれか1項に記載の通信制御装置。
(8)
 前記計算部は、前記セカンダリシステム数の前記変化分に基づいて干渉量の変化分を推定することにより、前記干渉回避用のマージンの調整分を計算する、前記(7)に記載の通信制御装置。
(9)
 前記計算部は、前記セカンダリシステム数の前記変化分と前記干渉量の前記変化分とのマッピングを定義するテーブルを用いて、前記干渉量の前記変化分を推定する、前記(8)に記載の通信制御装置。
(10)
 前記計算部は、前記セカンダリシステム数と前記干渉量とが比例するとの仮定に基づいて、前記干渉量の前記変化分を推定する、前記(8)に記載の通信制御装置。
(11)
 前記通信制御装置は、
 前記計算部により計算される前記干渉回避用のマージンの調整分を既存のセカンダリシステムへシグナリングするシグナリング部、
 をさらに備える、前記(7)~(10)のいずれか1項に記載の通信制御装置。
(12)
 前記シグナリング部は、新たなセカンダリシステムへ、前記干渉回避用のマージンの基準値と前記調整分とをシグナリングする、前記(11)に記載の通信制御装置。
(13)
 前記シグナリング部は、前記計算部の負荷に応じて、計算用パラメータを前記新たなセカンダリシステムへシグナリングすることにより、当該セカンダリシステム自身に前記基準送信電力を計算させる、前記(12)に記載の通信制御装置。
(14)
 前記通信制御装置は、第1の地理的領域内の前記1つ以上のセカンダリシステムに送信電力を割当てる権限を有し、
 前記計算部は、送信電力の割当てに際して前記第1の地理的領域に隣接する第2の地理的領域内のセカンダリシステムの存在を考慮すべきである場合に、前記第2の地理的領域について権限を有する他の装置から、考慮すべき前記第2の地理的領域内のセカンダリシステム数を示す情報を取得する、
 前記(1)~(13)のいずれか1項に記載の通信制御装置。
(15)
 各セカンダリシステムに割当てられる送信電力は、シグナリングオーバヘッド削減用のマージンをさらに含み、
 前記シグナリング部は、前記干渉回避用のマージンの前記調整分が割当て済みの送信電力に含まれる前記シグナリングオーバヘッド削減用のマージンを下回る場合には、前記干渉回避用のマージンの前記調整分を前記既存のセカンダリシステムへシグナリングしない、
 前記(11)~(13)のいずれか1項に記載の通信制御装置。
(16)
 前記計算部は、前記セカンダリシステム数の前記変化分を実際よりも多い仮想的な値に設定して送信電力を調整することにより、各セカンダリシステムへのシグナリングの頻度を低減する、前記(1)~(15)のいずれか1項に記載の通信制御装置。
(17)
 プロセッサにおいて、プライマリシステムのために保護される周波数チャネルを二次利用する1つ以上のセカンダリシステムに割当てられるべき送信電力を計算することと、
 セカンダリシステム数が変化した場合に、前記セカンダリシステム数に依存する条件に従って、前記プロセッサに前記送信電力を再計算させるか、又は過去に計算した前記送信電力を前記セカンダリシステム数の変化分に基づいて調整させるか、を判定することと、
 を含む通信制御方法。
(18)
 無線通信装置であって、
 プライマリシステムのために保護される周波数チャネルを二次利用することにより運用されるセカンダリシステムの数が変化した場合に、前記セカンダリシステムの数に依存する条件に従って、各セカンダリシステムに割当てられるべき送信電力を再計算し又は過去に計算した前記送信電力を前記セカンダリシステムの数の変化分に基づいて調整する通信制御装置、との間で通信する通信部と、
 前記通信部を介して前記通信制御装置から通知される送信電力の割当てに従って、前記無線通信装置と1つ以上の端末装置との間の無線通信を制御する通信制御部と、
 を備える無線通信装置。
 また、以下のような構成も本開示の技術的範囲に属する。
(1)
 プライマリシステムのために保護される周波数チャネルを二次利用する1つ以上のセカンダリシステムの、基準送信電力と干渉回避用のマージンとを含む割当てられるべき送信電力を計算する計算部と、
 セカンダリシステム数の変化を判定し、判定した変化分に基づいて前記計算部に前記干渉回避用のマージンを調整させる判定部と、
 を備える通信制御装置。
(2)
 前記判定部は、前記セカンダリシステム数に依存する条件に従って、前記計算部に前記送信電力を再計算させるか、又は、過去に計算した前記送信電力を、前記変化分に基づいて前記干渉回避用のマージンを調整することにより調整させるか、を判定する、前記(1)に記載の通信制御装置。
(3)
 前記判定部は、変化後の前記セカンダリシステム数が閾値を下回る場合に、前記計算部に前記送信電力を再計算させ、変化後の前記セカンダリシステム数が前記閾値を上回る場合に、前記計算部に過去に計算した前記送信電力を調整させる、前記(2)に記載の通信制御装置。
(4)
 前記閾値は、前記セカンダリシステム数に依存する推定計算時間が許容される計算時間を上回らないように予め設定される、前記(3)に記載の通信制御装置。
(5)
 前記閾値は、前記セカンダリシステム数に依存する推定計算時間が許容される計算時間を上回らないように動的に設定される、前記(3)に記載の通信制御装置。
(6)
 前記セカンダリシステム数の前記変化分は、最後に前記送信電力が再計算された時点のセカンダリシステム数に基づいて計算される、前記(2)~(5)のいずれか1項に記載の通信制御装置。
(7)
 前記セカンダリシステム数の前記変化分は、直前に前記送信電力が再計算され又は調整された時点のセカンダリシステム数に基づいて計算される、前記(2)~(5)のいずれか1項に記載の通信制御装置。
(8)
 前記セカンダリシステム数は、セカンダリシステムのマスタデバイス及びスレーブデバイスの一方又は双方のデバイス数に基づく、前記(1)~(7)のいずれか1項に記載の通信制御装置。
(9)
 前記デバイス数は、デバイスの構成に依存する重みを算入することにより計算される、前記(8)に記載の通信制御装置。
(10)
 前記判定部は、さらに、リファレンスポイント、二次利用される周波数チャネル、デバイスのアンテナ高さ、及び他システムからの干渉レベル、のうち少なくとも1つに依存する条件に従って、前記計算部に前記送信電力を再計算させるか、又は過去に計算した前記送信電力を調整させるか、を判定する、前記(2)~(7)のいずれか1項に記載の通信制御装置。
(11)
 前記計算部は、前記セカンダリシステム数の前記変化分に基づいて干渉量の変化分を推定することにより、前記干渉回避用のマージンの調整分を計算する、前記(1)~(10)のいずれか1項に記載の通信制御装置。
(12)
 前記計算部は、前記セカンダリシステム数の前記変化分と前記干渉量の前記変化分とのマッピングを定義するテーブルを用いて、前記干渉量の前記変化分を推定する、前記(11)に記載の通信制御装置。
(13)
 前記計算部は、前記セカンダリシステム数と前記干渉量とが比例するとの仮定に基づいて、前記干渉量の前記変化分を推定する、前記(11)に記載の通信制御装置。
(14)
 前記通信制御装置は、第1の地理的領域内の前記1つ以上のセカンダリシステムに送信電力を割当てる権限を有し、
 前記計算部は、送信電力の割当てに際して前記第1の地理的領域に隣接する第2の地理的領域内のセカンダリシステムの存在を考慮すべきである場合に、前記第2の地理的領域について権限を有する他の装置から、考慮すべき前記第2の地理的領域内のセカンダリシステム数を示す情報を取得する、
 前記(1)~(13)のいずれか1項に記載の通信制御装置。
(15)
 前記計算部は、前記セカンダリシステム数の前記変化分を実際よりも多い仮想的な値に設定して前記干渉回避用のマージンを調整する、前記(1)~(14)のいずれか1項に記載の通信制御装置。
(16)
 前記通信制御装置は、
 前記計算部により計算される前記干渉回避用のマージンの調整分を前記セカンダリシステムのためにシグナリングするシグナリング部、
 をさらに備える、前記(1)~(15)のいずれか1項に記載の通信制御装置。
(17)
 各セカンダリシステムのための前記割当て送信電力は、シグナリングオーバヘッド削減用のマージンをさらに含み、
 前記シグナリング部は、前記干渉回避用のマージンの前記調整分が割当て済みの送信電力に含まれる前記シグナリングオーバヘッド削減用のマージンを下回る場合には、前記干渉回避用のマージンの前記調整分をシグナリングしない、
 前記(16)に記載の通信制御装置。
(18)
 プロセッサにおいて、プライマリシステムのために保護される周波数チャネルを二次利用する1つ以上のセカンダリシステムの、基準送信電力と干渉回避用のマージンとを含む割当てられるべき送信電力を計算することと、
 セカンダリシステム数の変化を判定し、判定した変化分に基づいて前記プロセッサに前記干渉回避用のマージンを調整させることと、
 を含む通信制御方法。
(19)
 プライマリシステムのために保護される周波数チャネルを二次利用する1つ以上のセカンダリシステムのマスタデバイスと通信する通信部と、
 基準送信電力と、セカンダリシステム数の変化分に基づいて調整される干渉回避用のマージンと、を含む前記セカンダリシステムのための割当て送信電力を計算するデータサーバ、から取得される情報に基づいて、前記割当て送信電力を特定するためのパラメータを、前記通信部を介して前記マスタデバイスへシグナリングする制御部と、
 を備える通信制御装置。
(20)
 前記制御部は、前記基準送信電力、並びに前記干渉回避用のマージンの基準値及び調整分から各マスタデバイスについて前記割当て送信電力を計算し、計算した前記割当て送信電力を特定するための前記パラメータを前記マスタデバイスへシグナリングする、前記(19)に記載の通信制御装置。
(21)
 前記パラメータは、前記基準送信電力を計算するためのパラメータを含む、前記(19)に記載の通信制御装置。
(22)
 プライマリシステムのために保護される周波数チャネルを二次利用する1つ以上のセカンダリシステムのマスタデバイスと通信する通信制御装置における通信制御方法であって、
 基準送信電力と、セカンダリシステム数の変化分に基づいて調整される干渉回避用のマージンと、を含む前記セカンダリシステムのための割当て送信電力を計算するデータサーバ、から取得される情報に基づいて、前記割当て送信電力を特定するためのパラメータを、前記マスタデバイスへシグナリングすること、
 を含む通信制御方法。
(23)
 プライマリシステムのために保護される周波数チャネルを二次利用するセカンダリシステムを運用する無線通信装置であって、
 基準送信電力と、セカンダリシステム数の変化分に基づいて調整される干渉回避用のマージンと、を含む前記セカンダリシステムのための割当て送信電力を計算するデータサーバから取得される情報に基づく前記割当て送信電力を特定するためのパラメータ、のシグナリングを受信する通信部と、
 前記パラメータを用いて特定される前記割当て送信電力に従って、前記無線通信装置と1つ以上の端末装置との間の無線通信を制御する通信制御部と、
 を備える無線通信装置。
(24)
 プライマリシステムのために保護される周波数チャネルを二次利用するセカンダリシステムを運用する無線通信装置における通信制御方法であって、
 基準送信電力と、セカンダリシステム数の変化分に基づいて調整される干渉回避用のマージンと、を含む前記セカンダリシステムのための割当て送信電力を計算するデータサーバから取得される情報に基づく前記割当て送信電力を特定するためのパラメータ、のシグナリングを受信することと、
 前記パラメータを用いて特定される前記割当て送信電力に従って、前記無線通信装置と1つ以上の端末装置との間の無線通信を制御することと、
 を含む通信制御方法。
 1,2  通信制御システム
 10   プライマリ送受信局
 100  通信制御装置(GLDB)
 102  通信制御装置(GLDB)
 104  通信制御装置(WSDB)
 110  通信部
 120  記憶部
 130  制御部
 132  判定部
 134  計算部
 136  シグナリング部
 20   無線通信装置(マスタWSD)
 210  無線通信部
 220  ネットワーク通信部
 230  記憶部
 240  通信制御部

Claims (20)

  1.  プライマリシステムのために保護される周波数チャネルを二次利用する1つ以上のセカンダリシステムの、基準送信電力と干渉回避用のマージンとを含む割当てられるべき送信電力を計算する計算部と、
     セカンダリシステム数の変化を判定し、判定した変化分に基づいて前記計算部に前記干渉回避用のマージンを調整させる判定部と、
     を備える通信制御装置。
  2.  前記判定部は、前記セカンダリシステム数に依存する条件に従って、前記計算部に前記送信電力を再計算させるか、又は、過去に計算した前記送信電力を、前記変化分に基づいて前記干渉回避用のマージンを調整することにより調整させるか、を判定する、請求項1に記載の通信制御装置。
  3.  前記判定部は、変化後の前記セカンダリシステム数が閾値を下回る場合に、前記計算部に前記送信電力を再計算させ、変化後の前記セカンダリシステム数が前記閾値を上回る場合に、前記計算部に過去に計算した前記送信電力を調整させる、請求項2に記載の通信制御装置。
  4.  前記閾値は、前記セカンダリシステム数に依存する推定計算時間が許容される計算時間を上回らないように予め設定される、請求項3に記載の通信制御装置。
  5.  前記閾値は、前記セカンダリシステム数に依存する推定計算時間が許容される計算時間を上回らないように動的に設定される、請求項3に記載の通信制御装置。
  6.  前記セカンダリシステム数の前記変化分は、最後に前記送信電力が再計算された時点のセカンダリシステム数に基づいて計算される、請求項2に記載の通信制御装置。
  7.  前記セカンダリシステム数の前記変化分は、直前に前記送信電力が再計算され又は調整された時点のセカンダリシステム数に基づいて計算される、請求項2に記載の通信制御装置。
  8.  前記セカンダリシステム数は、セカンダリシステムのマスタデバイス及びスレーブデバイスの一方又は双方のデバイス数に基づく、請求項1に記載の通信制御装置。
  9.  前記デバイス数は、デバイスの構成に依存する重みを算入することにより計算される、請求項8に記載の通信制御装置。
  10.  前記判定部は、さらに、リファレンスポイント、二次利用される周波数チャネル、デバイスのアンテナ高さ、及び他システムからの干渉レベル、のうち少なくとも1つに依存する条件に従って、前記計算部に前記送信電力を再計算させるか、又は過去に計算した前記送信電力を調整させるか、を判定する、請求項2に記載の通信制御装置。
  11.  前記計算部は、前記セカンダリシステム数の前記変化分に基づいて干渉量の変化分を推定することにより、前記干渉回避用のマージンの調整分を計算する、請求項1に記載の通信制御装置。
  12.  前記計算部は、前記セカンダリシステム数の前記変化分と前記干渉量の前記変化分とのマッピングを定義するテーブルを用いて、前記干渉量の前記変化分を推定する、請求項11に記載の通信制御装置。
  13.  前記計算部は、前記セカンダリシステム数と前記干渉量とが比例するとの仮定に基づいて、前記干渉量の前記変化分を推定する、請求項11に記載の通信制御装置。
  14.  前記通信制御装置は、第1の地理的領域内の前記1つ以上のセカンダリシステムに送信電力を割当てる権限を有し、
     前記計算部は、送信電力の割当てに際して前記第1の地理的領域に隣接する第2の地理的領域内のセカンダリシステムの存在を考慮すべきである場合に、前記第2の地理的領域について権限を有する他の装置から、考慮すべき前記第2の地理的領域内のセカンダリシステム数を示す情報を取得する、
     請求項1に記載の通信制御装置。
  15.  前記計算部は、前記セカンダリシステム数の前記変化分を実際よりも多い仮想的な値に設定して前記干渉回避用のマージンを調整する、請求項1に記載の通信制御装置。
  16.  前記通信制御装置は、
     前記計算部により計算される前記干渉回避用のマージンの調整分を前記セカンダリシステムのためにシグナリングするシグナリング部、
     をさらに備える、請求項1に記載の通信制御装置。
  17.  各セカンダリシステムのための前記割当て送信電力は、シグナリングオーバヘッド削減用のマージンをさらに含み、
     前記シグナリング部は、前記干渉回避用のマージンの前記調整分が割当て済みの送信電力に含まれる前記シグナリングオーバヘッド削減用のマージンを下回る場合には、前記干渉回避用のマージンの前記調整分をシグナリングしない、
     請求項16に記載の通信制御装置。
  18.  プライマリシステムのために保護される周波数チャネルを二次利用する1つ以上のセカンダリシステムのマスタデバイスと通信する通信部と、
     基準送信電力と、セカンダリシステム数の変化分に基づいて調整される干渉回避用のマージンと、を含む前記セカンダリシステムのための割当て送信電力を計算するデータサーバ、から取得される情報に基づいて、前記割当て送信電力を特定するためのパラメータを、前記通信部を介して前記マスタデバイスへシグナリングする制御部と、
     を備える通信制御装置。
  19.  前記制御部は、前記基準送信電力、並びに前記干渉回避用のマージンの基準値及び調整分から各マスタデバイスについて前記割当て送信電力を計算し、計算した前記割当て送信電力を特定するための前記パラメータを前記マスタデバイスへシグナリングする、請求項18に記載の通信制御装置。
  20.  プライマリシステムのために保護される周波数チャネルを二次利用するセカンダリシステムを運用する無線通信装置であって、
     基準送信電力と、セカンダリシステム数の変化分に基づいて調整される干渉回避用のマージンと、を含む前記セカンダリシステムのための割当て送信電力を計算するデータサーバから取得される情報に基づく前記割当て送信電力を特定するためのパラメータ、のシグナリングを受信する通信部と、
     前記パラメータを用いて特定される前記割当て送信電力に従って、前記無線通信装置と1つ以上の端末装置との間の無線通信を制御する通信制御部と、
     を備える無線通信装置。
PCT/JP2014/066410 2013-08-21 2014-06-20 通信制御装置及び無線通信装置 WO2015025605A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
SG11201601020XA SG11201601020XA (en) 2013-08-21 2014-06-20 Communication control apparatus and wireless communication apparatus
EP14837544.7A EP3038400B1 (en) 2013-08-21 2014-06-20 Communication control apparatus and wireless communication apparatus
ES14837544T ES2879901T3 (es) 2013-08-21 2014-06-20 Aparato de control de la comunicación y aparato de comunicación inalámbrica
CN201480044490.3A CN105453628B (zh) 2013-08-21 2014-06-20 通信控制装置和无线通信装置
MX2016001952A MX357526B (es) 2013-08-21 2014-06-20 Aparato para el control de la comunicación y aparato inalámbrico de comunicación.
JP2015532750A JP6361661B2 (ja) 2013-08-21 2014-06-20 通信制御装置及び無線通信装置
US14/895,160 US10004044B2 (en) 2013-08-21 2014-06-20 Communication control apparatus and wireless communication apparatus
RU2016104835A RU2676532C9 (ru) 2013-08-21 2014-06-20 Устройство управления связью и устройство беспроводной связи
ZA2015/08811A ZA201508811B (en) 2013-08-21 2015-12-02 Communication control apparatus and wireless communication apparatus
US15/978,624 US10448341B2 (en) 2013-08-21 2018-05-14 Communication control apparatus and wireless communication apparatus
US16/581,766 US10917858B2 (en) 2013-08-21 2019-09-25 Communication control apparatus and wireless communication apparatus
US17/137,374 US11363537B2 (en) 2013-08-21 2020-12-30 Communication control apparatus and wireless communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013171018 2013-08-21
JP2013-171018 2013-08-21

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/895,160 A-371-Of-International US10004044B2 (en) 2013-08-21 2014-06-20 Communication control apparatus and wireless communication apparatus
US15/978,624 Continuation US10448341B2 (en) 2013-08-21 2018-05-14 Communication control apparatus and wireless communication apparatus

Publications (1)

Publication Number Publication Date
WO2015025605A1 true WO2015025605A1 (ja) 2015-02-26

Family

ID=52483390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066410 WO2015025605A1 (ja) 2013-08-21 2014-06-20 通信制御装置及び無線通信装置

Country Status (11)

Country Link
US (4) US10004044B2 (ja)
EP (1) EP3038400B1 (ja)
JP (1) JP6361661B2 (ja)
CN (1) CN105453628B (ja)
ES (1) ES2879901T3 (ja)
MX (1) MX357526B (ja)
RU (1) RU2676532C9 (ja)
SG (1) SG11201601020XA (ja)
TW (1) TWI657703B (ja)
WO (1) WO2015025605A1 (ja)
ZA (1) ZA201508811B (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199548A1 (ja) * 2015-06-09 2016-12-15 ソニー株式会社 サーバ装置、通信装置、方法及びコンピュータプログラム
WO2019150857A1 (ja) * 2018-01-30 2019-08-08 ソニー株式会社 通信制御装置、通信制御方法およびコンピュータプログラム
JP2019186885A (ja) * 2018-04-17 2019-10-24 矢崎総業株式会社 無線制御装置、無線端末装置およびインパルス無線通信システム
WO2020008800A1 (ja) * 2018-07-06 2020-01-09 ソニー株式会社 通信制御装置、及び通信制御方法
WO2020066712A1 (ja) * 2018-09-28 2020-04-02 ソニー株式会社 情報処理装置、及び情報処理方法
JPWO2020189022A1 (ja) * 2019-03-15 2020-09-24
US10863446B2 (en) 2016-10-20 2020-12-08 Sony Corporation Communication control device and communication control method
JPWO2019130922A1 (ja) * 2017-12-28 2020-12-17 ソニー株式会社 通信制御装置、通信制御方法およびコンピュータプログラム
RU2750574C1 (ru) * 2018-03-15 2021-06-29 Телефонактиеболагет Лм Эрикссон (Пабл) Способ введения узла в беспроводной связи в режим ожидания и соответствующий узел
JPWO2019230671A1 (ja) * 2018-06-01 2021-07-15 ソニーグループ株式会社 無線装置、端末、方法およびコンピュータプログラム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201708608YA (en) * 2015-04-20 2017-11-29 Agency Science Tech & Res Method and apparatus for broadcast geo-location database (gldb) for television white space (tvws) spectrum access
US10349422B2 (en) * 2015-12-14 2019-07-09 Higher Ground Llc Server participation in avoidance of interference in wireless communications
US10033625B2 (en) * 2016-12-07 2018-07-24 Mediatek Singapore Pte. Ltd. Loop avoidance in repeater networks
EP3780692B1 (en) * 2018-03-26 2023-09-06 Sony Group Corporation Communication control device and communication control method
WO2019216627A1 (ko) * 2018-05-09 2019-11-14 엘지전자 주식회사 Nr v2x에서 사이드링크 단말이 전송 파라미터를 조정하는 방법 및 장치
US11516679B2 (en) 2018-05-30 2022-11-29 Sony Corporation Communication control device, communication control method, and computer program
WO2020045131A1 (ja) * 2018-08-28 2020-03-05 ソニー株式会社 通信制御装置、及び通信制御方法
US11706635B2 (en) * 2019-12-09 2023-07-18 Amazon Technologies, Inc. Scalable network architecture

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012151815A (ja) 2010-10-29 2012-08-09 Sony Corp 通信制御装置、通信制御方法、通信装置、通信方法及び通信システム
WO2012125088A1 (en) * 2011-03-11 2012-09-20 Telefonaktiebolaget L M Ericsson (Publ) Method for determining white space interference margin
JP2013078096A (ja) 2011-09-16 2013-04-25 Sony Corp 通信制御装置、通信制御方法及び通信制御システム

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6952591B2 (en) * 2001-11-20 2005-10-04 Lucent Technologies Inc. Uplink power control algorithm
US7340267B2 (en) * 2002-04-17 2008-03-04 Lucent Technologies Inc. Uplink power control algorithm
US7453861B2 (en) * 2002-08-02 2008-11-18 At&T Corp System and method for estimating interference in a packet-based wireless network
JP4216694B2 (ja) * 2003-11-07 2009-01-28 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムにおける基地局及び送信電力設定方法
JP5014727B2 (ja) * 2006-10-03 2012-08-29 株式会社エヌ・ティ・ティ・ドコモ 送信電力制御方法及びユーザ端末
US9019985B2 (en) * 2008-03-12 2015-04-28 Broadcom Corporation Method and system for scheduling multiple concurrent transmissions during a contention access period in a wireless communications network
FR2931327A1 (fr) * 2008-05-16 2009-11-20 France Telecom Technique d'emission par un noeud d'un reseau de communication
US7848221B2 (en) * 2008-07-14 2010-12-07 Motorola Mobility, Inc. Method and system for detecting adjacent channel interference from OFDM/OFDMA based broadband wireless access
US8805427B2 (en) * 2008-11-14 2014-08-12 Microsoft Corporation Channel reuse with cognitive low interference signals
KR101522645B1 (ko) * 2009-02-25 2015-05-22 삼성전자주식회사 무선통신 시스템에서 스케줄링 장치 및 방법
US8213874B2 (en) * 2009-04-06 2012-07-03 Progeny Lms, Llc System and method for dynamic frequency assignment
JP4907700B2 (ja) * 2009-07-10 2012-04-04 株式会社エヌ・ティ・ティ・ドコモ 無線局、送信局及び周波数帯共用方法
JP5609252B2 (ja) * 2009-07-31 2014-10-22 ソニー株式会社 送信電力割当て方法、通信装置及びプログラム
JP5531767B2 (ja) * 2009-07-31 2014-06-25 ソニー株式会社 送信電力制御方法、通信装置及びプログラム
JP5565082B2 (ja) * 2009-07-31 2014-08-06 ソニー株式会社 送信電力決定方法、通信装置及びプログラム
JP5429036B2 (ja) * 2009-08-06 2014-02-26 ソニー株式会社 通信装置、送信電力制御方法、及びプログラム
JP5353812B2 (ja) * 2009-08-12 2013-11-27 ソニー株式会社 通信制御方法、通信装置、及びプログラム
US9301265B2 (en) * 2010-09-24 2016-03-29 Qualcomm Incorporated Access point transmit power control
US20120099450A1 (en) * 2010-09-27 2012-04-26 Qualcomm Incorporated Spatial reuse in a wireless network
WO2012113937A1 (en) * 2011-02-24 2012-08-30 Aalto-Korkeakoulusäätiö A method and a system for controlling the aggregate interference in cognitive radio networks
JP5772057B2 (ja) * 2011-02-24 2015-09-02 ソニー株式会社 通信制御装置、通信制御方法、プログラム及び通信システム
WO2012158077A1 (en) * 2011-05-16 2012-11-22 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement related to interference between systems
US9800353B2 (en) * 2011-08-31 2017-10-24 Telefonaktiebolaget Lm Ericsson (Publ) Method for controlling interference from white space units
US9338807B2 (en) * 2012-03-19 2016-05-10 Futurewei Technologies, Inc. System and method for direct mobile communications power control
BR112014032842A2 (pt) * 2012-07-05 2017-06-27 Sony Corp dispositivo, método e sistema de controle de comunicação, e, programa.
WO2014054985A1 (en) * 2012-10-02 2014-04-10 Telefonaktiebolaget L M Ericsson (Publ) Network node and method for handling spectrum bands in a mobile radio communication system
US9629099B2 (en) * 2013-01-24 2017-04-18 Panasonic Intellectual Property Management Co., Ltd. Radio communication apparatus and transmission power control method
US9955355B2 (en) * 2013-01-28 2018-04-24 Sony Corporation Apparatus and method for wireless communication system
WO2014129035A1 (ja) * 2013-02-22 2014-08-28 ソニー株式会社 通信制御装置、通信制御方法及び無線通信装置
RU2643488C2 (ru) * 2013-04-29 2018-02-01 Нокиа Текнолоджиз Ой Обнаружение баз данных о свободной полосе частот
SG11201508962WA (en) * 2013-05-08 2015-11-27 Sony Corp Communication control device, communication control method and information processing apparatus
US9451558B2 (en) * 2013-08-20 2016-09-20 Qualcomm Incorporated Adaptive transmit power control in a communication network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012151815A (ja) 2010-10-29 2012-08-09 Sony Corp 通信制御装置、通信制御方法、通信装置、通信方法及び通信システム
WO2012125088A1 (en) * 2011-03-11 2012-09-20 Telefonaktiebolaget L M Ericsson (Publ) Method for determining white space interference margin
JP2013078096A (ja) 2011-09-16 2013-04-25 Sony Corp 通信制御装置、通信制御方法及び通信制御システム

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Technical and operational requirements for the operation of white space devices under geo-location approach", ECC REPORT, vol. 186, January 2013 (2013-01-01)
N. SATO ET AL.: "TV White Spaces as part of the future Spectrum Landscape for Wireless Communications", ETSI RECONFIGURABLE RADIO SYSTEMS WORKSHOP, XP055318082, Retrieved from the Internet <URL:http://docbox.etsi.org/workshop/2012/ 201212_RRS/PAPERS/ABSTRACT_SATO.pdf> [retrieved on 20140821] *
See also references of EP3038400A4

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107637112A (zh) * 2015-06-09 2018-01-26 索尼公司 服务器装置、通信设备、方法和计算机程序
JPWO2016199548A1 (ja) * 2015-06-09 2018-03-29 ソニー株式会社 サーバ装置、通信装置、方法及びコンピュータプログラム
TWI743036B (zh) * 2015-06-09 2021-10-21 日商新力股份有限公司 伺服器裝置、通訊方法及電腦程式
WO2016199548A1 (ja) * 2015-06-09 2016-12-15 ソニー株式会社 サーバ装置、通信装置、方法及びコンピュータプログラム
CN107637112B (zh) * 2015-06-09 2022-02-22 索尼公司 服务器装置、通信设备和方法
US10863446B2 (en) 2016-10-20 2020-12-08 Sony Corporation Communication control device and communication control method
JPWO2019130922A1 (ja) * 2017-12-28 2020-12-17 ソニー株式会社 通信制御装置、通信制御方法およびコンピュータプログラム
JP7409533B2 (ja) 2017-12-28 2024-01-09 ソニーグループ株式会社 通信制御装置、通信制御方法およびコンピュータプログラム
JP7222358B2 (ja) 2017-12-28 2023-02-15 ソニーグループ株式会社 通信制御装置、通信制御方法およびコンピュータプログラム
JP2023071661A (ja) * 2017-12-28 2023-05-23 ソニーグループ株式会社 通信制御装置、通信制御方法およびコンピュータプログラム
WO2019150857A1 (ja) * 2018-01-30 2019-08-08 ソニー株式会社 通信制御装置、通信制御方法およびコンピュータプログラム
JPWO2019150857A1 (ja) * 2018-01-30 2021-01-14 ソニー株式会社 通信制御装置、通信制御方法およびコンピュータプログラム
JP7272279B2 (ja) 2018-01-30 2023-05-12 ソニーグループ株式会社 通信制御装置、通信制御方法およびコンピュータプログラム
US11290892B2 (en) 2018-01-30 2022-03-29 Sony Corporation Communication control device, method and computer program product with interference margin acceptance control
RU2750574C1 (ru) * 2018-03-15 2021-06-29 Телефонактиеболагет Лм Эрикссон (Пабл) Способ введения узла в беспроводной связи в режим ожидания и соответствующий узел
JP7064933B2 (ja) 2018-04-17 2022-05-11 矢崎総業株式会社 無線制御装置、無線端末装置およびインパルス無線通信システム
JP2019186885A (ja) * 2018-04-17 2019-10-24 矢崎総業株式会社 無線制御装置、無線端末装置およびインパルス無線通信システム
JPWO2019230671A1 (ja) * 2018-06-01 2021-07-15 ソニーグループ株式会社 無線装置、端末、方法およびコンピュータプログラム
JP7409303B2 (ja) 2018-06-01 2024-01-09 ソニーグループ株式会社 無線装置、端末、方法およびコンピュータプログラム
US11388611B2 (en) 2018-07-06 2022-07-12 Sony Corporation Communication control apparatus and communication control method
JPWO2020008800A1 (ja) * 2018-07-06 2021-07-08 ソニーグループ株式会社 通信制御装置、及び通信制御方法
JP7268680B2 (ja) 2018-07-06 2023-05-08 ソニーグループ株式会社 通信制御装置、及び通信制御方法
WO2020008800A1 (ja) * 2018-07-06 2020-01-09 ソニー株式会社 通信制御装置、及び通信制御方法
WO2020066712A1 (ja) * 2018-09-28 2020-04-02 ソニー株式会社 情報処理装置、及び情報処理方法
US12342175B2 (en) 2018-09-28 2025-06-24 Sony Corporation Information processing device and information processing method
US20220158810A1 (en) * 2019-03-15 2022-05-19 Sony Group Corporation Information processing device, information processing method, and communication device
EP3941102A4 (en) * 2019-03-15 2022-04-20 Sony Group Corporation Information processing device, information processing method, and communication device
WO2020189022A1 (ja) * 2019-03-15 2020-09-24 ソニー株式会社 情報処理装置、情報処理方法、及び通信装置
JPWO2020189022A1 (ja) * 2019-03-15 2020-09-24
JP7528924B2 (ja) 2019-03-15 2024-08-06 ソニーグループ株式会社 情報処理装置、及び情報処理方法
US12137067B2 (en) * 2019-03-15 2024-11-05 Sony Group Corporation Information processing device, information processing method, and communication device

Also Published As

Publication number Publication date
CN105453628B (zh) 2020-09-04
EP3038400A1 (en) 2016-06-29
JPWO2015025605A1 (ja) 2017-03-02
US10448341B2 (en) 2019-10-15
RU2016104835A (ru) 2017-08-17
US20210120502A1 (en) 2021-04-22
MX2016001952A (es) 2016-06-02
RU2676532C2 (ru) 2019-01-09
US11363537B2 (en) 2022-06-14
ZA201508811B (en) 2016-07-27
EP3038400A4 (en) 2017-04-12
US20160128000A1 (en) 2016-05-05
MX357526B (es) 2018-07-13
JP6361661B2 (ja) 2018-07-25
RU2676532C9 (ru) 2019-02-08
RU2016104835A3 (ja) 2018-03-21
EP3038400B1 (en) 2021-06-02
US10004044B2 (en) 2018-06-19
TWI657703B (zh) 2019-04-21
US20180270764A1 (en) 2018-09-20
TW201509202A (zh) 2015-03-01
SG11201601020XA (en) 2016-03-30
US10917858B2 (en) 2021-02-09
US20200022092A1 (en) 2020-01-16
ES2879901T3 (es) 2021-11-23
CN105453628A (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
JP6361661B2 (ja) 通信制御装置及び無線通信装置
US10687217B2 (en) Spectrum management apparatus and method, apparatus and method for base station side and user device side
JP6406242B2 (ja) 通信制御装置、通信制御方法及び無線通信装置
US20190012923A1 (en) Aerial radio frequency (rf) management
JP2019009784A (ja) 非セルラーワイヤレスアクセスのためのシステムおよび方法
US12256224B2 (en) Apparatus and method for spectrum management, apparatus and method for base station side and user equipment side
WO2017012397A1 (zh) 无线通信系统中的电子设备和无线通信方法
US10667139B2 (en) Frequency spectrum management device, electronic device, and method executed thereby
JP2019071694A (ja) 装置
CN113411889A (zh) 电子设备、无线通信方法和计算机可读存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480044490.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14837544

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015532750

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14895160

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016104835

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/001952

Country of ref document: MX

Ref document number: 2014837544

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE