[go: up one dir, main page]

WO2015024422A1 - 一种车用太阳能动力系统及其控制方法 - Google Patents

一种车用太阳能动力系统及其控制方法 Download PDF

Info

Publication number
WO2015024422A1
WO2015024422A1 PCT/CN2014/082384 CN2014082384W WO2015024422A1 WO 2015024422 A1 WO2015024422 A1 WO 2015024422A1 CN 2014082384 W CN2014082384 W CN 2014082384W WO 2015024422 A1 WO2015024422 A1 WO 2015024422A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar panel
battery
vehicle
current
motor
Prior art date
Application number
PCT/CN2014/082384
Other languages
English (en)
French (fr)
Inventor
袁文爽
Original Assignee
奇瑞汽车股份有限公司
芜湖普威技研有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奇瑞汽车股份有限公司, 芜湖普威技研有限公司 filed Critical 奇瑞汽车股份有限公司
Publication of WO2015024422A1 publication Critical patent/WO2015024422A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • B60L8/003Converting light into electric energy, e.g. by using photo-voltaic systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by AC motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other DC sources, e.g. providing buffering with light sensitive cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other DC sources, e.g. providing buffering using capacitors as storage or buffering devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the invention relates to the field of solar energy, and in particular to a solar power system for a vehicle and a control method thereof. Background technique
  • the existing solar power system for a vehicle includes a solar panel, a battery, and a controller for controlling charging and discharging of the battery, and the controller is respectively connected to the solar control panel and the battery.
  • the solar radiation intensity is high, part of the electric energy converted by the solar panel is used to drive the vehicle, and the other part is used for charging the battery; when the solar radiation intensity is low, all the electric energy converted by the solar panel is used to drive the vehicle, and the battery is also discharged.
  • Driving the vehicle when there is no solar radiation, the vehicle is driven by the battery discharge.
  • the embodiment of the invention provides a solar power system for a vehicle and a control method thereof.
  • the technical solution is as follows:
  • an embodiment of the present invention provides a solar power system for a vehicle, the system including a solar panel and a battery, and the system further includes a super capacitor and a control circuit;
  • the control circuit is configured to control the solar panel to charge the super capacitor; when the vehicle state is accelerating, control the battery and the super capacitor to simultaneously discharge to the motor, and the discharge current of the battery is equal to The rated current of the battery; controlling the battery to discharge to the motor when the vehicle state is normal running.
  • the control circuit is further configured to:
  • the motor is controlled to charge the supercapacitor when the vehicle state is a brake.
  • control circuit when the vehicle state is normal driving, the control circuit is further configured to:
  • the solar panel When the output power of the solar panel is less than or equal to the predetermined power, the solar panel is controlled to charge the super capacitor with the output power of the solar panel.
  • the system further includes a voltage conversion module for converting the output voltage of the solar panel and a voltage conversion control circuit for controlling the output voltage of the voltage conversion module to be a set value,
  • the voltage conversion module is connected in series between the solar panel and the control circuit, and the voltage conversion control circuit is connected to the voltage conversion module.
  • the voltage conversion control circuit includes:
  • a first voltage clamping unit configured to collect an input voltage of the voltage conversion module
  • a first current collecting unit configured to collect an input current of the voltage conversion module
  • a second voltage clamping unit configured to collect an output voltage of the voltage conversion module
  • a second current collecting unit for collecting an output current of the voltage conversion module; and a control chip for adjusting the input voltage, the input current, the output voltage, and the output current according to the voltage conversion module The ratio of the output voltage of the voltage conversion module to the input voltage.
  • system further includes an inverter circuit for converting the direct current supplied to the motor to alternating current.
  • an embodiment of the present invention provides a method for controlling a solar power system for a vehicle, the method comprising:
  • the battery is controlled to discharge to the motor when the vehicle state is normal running.
  • the method further includes: The motor is controlled to charge the supercapacitor when the vehicle state is a brake.
  • the method when the vehicle state is normal driving, the method further includes:
  • the solar panel When the output power of the solar panel is less than or equal to the predetermined power, the solar panel is controlled to charge the super capacitor with the output power of the solar panel.
  • FIG. 1 is a schematic structural view of a solar power system for a vehicle according to a first embodiment of the present invention
  • FIG. 2 is a schematic structural view of a solar power system for a vehicle according to a second embodiment of the present invention
  • FIG. 4 is a flow chart showing a control method of a solar power system for a vehicle according to a third embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for controlling a solar power system for a vehicle according to Embodiment 4 of the present invention. detailed description
  • Embodiments of the present invention provide a solar power system for a vehicle.
  • the system includes a solar panel 1, a battery 2, a super capacitor 3, and a control circuit 4.
  • the control circuit 4 is connected to the solar panel 1 and the super capacitor 3, respectively, and the super capacitor 3 and the battery 2 are respectively connected to the motor 5.
  • the electric energy converted by the pool plate has a long cycle life, it can avoid the problem that the battery is limited in charge and discharge due to the limited number of cycles of charging and discharging of the battery in the prior art, and frequent charging and discharging may result in shortening the battery life.
  • the super capacitor and the battery are simultaneously discharged to drive the vehicle to run, avoiding damage to the battery caused by excessive discharge current of the battery, further prolonging the life of the battery.
  • the charging and discharging efficiency and energy density of the super capacitor are higher than that of the battery, and the specific power of the super capacitor is large. The travelable distance of the vehicle has increased.
  • Embodiment 2 Embodiment 2
  • Embodiments of the present invention provide a solar power system for a vehicle.
  • the system includes a solar panel 1, a battery 2, a super capacitor 3, and a control circuit 4.
  • the control circuit 4 is connected to the solar panel 1 and the super capacitor 3, respectively, and the super capacitor 3 and the battery 2 are respectively connected to the motor 5.
  • the state of the vehicle is generally divided into three types: acceleration, normal driving, and braking.
  • the state of the vehicle can be judged according to the relationship between the DC bus current and the rated current of the battery 2.
  • the DC bus is the super capacitor 3 and the battery 2.
  • the vehicle state is normal driving; when the DC bus current is less than 0, the vehicle state is brake.
  • the solar panel 1 may include a plurality of solar cell arrays in series or in parallel with solar cells.
  • control circuit 4 can also be used to control the motor 5 to charge the super capacitor 3 when the state of the vehicle is braking, and store excess energy during braking for later use, thereby improving the electric energy.
  • the use efficiency and further reduces the number of times of charge and discharge of the battery.
  • the control circuit 4 when the vehicle state is normal running, can also be configured to control the solar panel 1 at a predetermined power when the output power of the solar panel 1 is greater than a predetermined power.
  • the super capacitor 3 is charged, and the solar panel 1 is controlled to supply power to the motor 5 to drive the vehicle, and the power supplied by the solar panel 1 to the motor 5 is equal to the difference between the output power of the solar panel 1 and the predetermined power, such that It can prevent the super capacitor 3 from being overloaded and prolong the life of the super capacitor 3.
  • the control circuit 4 can also be used to control the solar panel 1 to charge the supercapacitor 3 with the output power of the solar panel 1 when the output power of the solar panel 1 is less than or equal to the predetermined power, and ensure that the solar energy is preferentially used as a super capacitor. 3 Charging, to ensure that the state of the vehicle is accelerating, the super capacitor 3 can discharge to the motor 5.
  • the predetermined power is a set value, which may be set according to the parameters of the super capacitor, or may be set according to the actual situation of the vehicle, and the present invention is not limited thereto.
  • the output power of the solar panel 1 can be obtained based on the output voltage and output current of the solar panel 1.
  • the output voltage of the solar panel 1 can be obtained by a voltage sensor.
  • the output current of the solar panel 1 can be obtained by a current sensor.
  • the voltage sensor and the current sensor can be part of the control circuit 4, or can be separately provided, and the control circuit 4 The connection is not limited by the present invention.
  • the system may further include a voltage conversion module 6 for converting the output voltage of the solar panel 1 between the solar panel 1 and the control circuit 4.
  • system may further include a voltage conversion control circuit 7 for controlling the output voltage of the voltage conversion module 6 to be a set value, and the voltage conversion control circuit 7 is connected to the voltage conversion module 6 to convert the output voltage of the solar panel 1 For the desired set value.
  • the voltage conversion control circuit 7 includes a first voltage clamping unit 71, a first current collecting unit 72, a second voltage collecting unit 73, a second current collecting unit 74, and a control chip 75.
  • the input end of the first voltage collecting unit 71 and the input end of the first current collecting unit 72 are respectively connected to the input end of the voltage converting module 6, the input end of the second voltage collecting unit 73, and the second current collecting unit 74.
  • the input ends are respectively connected to the output end of the voltage conversion module 6, and the output of the control chip 75 and the output end of the first voltage collecting unit 71, the output end of the first current collecting unit 72, and the output of the second voltage collecting unit 73, respectively.
  • the output end of the second current collecting unit 74 and the control end of the voltage converting module 6 are connected.
  • the first voltage clamping unit 71 is configured to collect the input voltage of the voltage conversion module 6.
  • the first current collecting unit 72 is used to collect the input current of the voltage converting module 6.
  • the second voltage clamping unit 73 is used to collect the output voltage of the voltage conversion module 6.
  • the second current collecting unit 74 is for collecting the output current of the voltage conversion module 6.
  • the control chip 75 is for adjusting the ratio of the output voltage of the voltage conversion module 6 to the input voltage in accordance with the input voltage, the input current, the output voltage, and the output current of the voltage conversion module 6.
  • first voltage collecting unit 71, the first current collecting unit 72, the second voltage collecting unit 73, and the second current collecting unit 74 may further include signal processing circuits such as A/D (Analog/A Digital, analog to digital conversion circuit.
  • the system further includes a straight for providing to the motor 5
  • the inverter circuit 8 is converted into an alternating current, and the inverter circuit 8 is connected in series between the super capacitor 3 and the motor 5, and between the battery 2 and the motor 5. It is easy to know that the motor 5 is usually driven by an alternating current. Since the battery 2 and the super capacitor 3 provide direct current, the inverter circuit 8 is required to convert the direct current supplied from the battery 2 and/or the super capacitor 3 into alternating current to drive the motor, which is expanded. The range of motors to which this power system applies.
  • the electric energy converted by the pool plate has a long cycle life, it can avoid the problem that the battery is limited in charge and discharge due to the limited number of cycles of charging and discharging of the battery in the prior art, and frequent charging and discharging may result in shortening the battery life.
  • the super capacitor and the battery are simultaneously discharged to drive the vehicle to run, avoiding damage to the battery caused by excessive discharge current of the battery, further prolonging the life of the battery.
  • the charging and discharging efficiency and energy density of the super capacitor are higher than that of the battery, the specific power of the super capacitor is large, and the travelable distance of the vehicle is increased.
  • the embodiment of the present invention provides a control method for a solar power system for a vehicle, which is applicable to the solar power system for a vehicle provided in the first embodiment.
  • the method includes:
  • Step 301 Control the solar panel to charge the super capacitor.
  • this step 301 is performed in the presence of sunlight.
  • the state of the vehicle is generally divided into three types: acceleration, normal running, and braking.
  • the state of the vehicle can be judged according to the relationship between the DC bus current and the rated current of the battery.
  • the DC bus is a super capacitor and a battery, and the motor The connection between the lines. Specifically, when the DC bus current is greater than the rated current of the battery, the vehicle state is acceleration; when the DC bus current is less than or equal to the rated current of the battery, and the DC bus current is greater than 0 (the current direction when the battery is discharged is positive) The vehicle state is normal driving; when the DC bus current is less than 0, the vehicle state is brake.
  • Step 304 Control the battery to discharge to the motor.
  • the energy converted by the pool plate because the cycle life of the super capacitor is long, it can avoid the prior art due to The number of cycles of charging and discharging the battery is limited, and frequent charging and discharging may cause problems in shortening the life of the battery.
  • the super capacitor and the battery are simultaneously discharged to drive the vehicle to run, avoiding damage to the battery caused by excessive discharge current of the battery, further prolonging the life of the battery.
  • the charging and discharging efficiency and energy density of the super capacitor are higher than that of the battery, the specific power of the super capacitor is large, and the travelable distance of the vehicle is increased.
  • the embodiment of the present invention provides a control method for a solar power system for a vehicle, which is applicable to the solar power system for a vehicle provided in the second embodiment.
  • the method includes:
  • Step 401 Control the solar panel to charge the super capacitor.
  • this step 401 is performed in the presence of sunlight.
  • Step 402 Obtain the vehicle status.
  • step 403 is performed; when the vehicle state is normal driving, step 404 is performed; when the vehicle state is braking, step 405 is performed.
  • the state of the vehicle is generally divided into three types: acceleration, normal running, and braking.
  • the state of the vehicle can be judged according to the relationship between the DC bus current and the rated current of the battery.
  • the DC bus is a super capacitor and a battery, and the motor The connection between the lines. Specifically, when the DC bus current is greater than the rated current of the battery, the vehicle state is acceleration; when the DC bus current is less than or equal to the rated current of the battery, and the DC bus current is greater than 0 (the current direction when the battery is discharged is positive) The vehicle state is normal driving; when the DC bus current is less than 0, the vehicle state is brake.
  • Step 403 Control the battery and the super capacitor to discharge to the motor at the same time, and the discharge current of the battery is equal to the rated current of the battery.
  • Step 404 Control the battery to discharge to the motor.
  • Step 405 Control the motor to charge the super capacitor.
  • the method when the vehicle state is normal driving, may further include the steps of: controlling the solar panel to charge the super capacitor with a predetermined power when the output power of the solar panel is greater than the predetermined power. And controlling the solar panel to supply power to the motor to drive the vehicle, and the power supplied by the solar panel to the motor is equal to the difference between the output power of the solar panel and the predetermined power, so that the super capacitor can be prevented from being overloaded and extended. The life of the super capacitor.
  • the method may further comprise the steps of: controlling the solar panel to charge the super capacitor with the output power of the solar panel when the output power of the solar panel is less than or equal to the predetermined power, ensuring that the solar energy is preferentially used for charging the super capacitor to ensure the vehicle When the state is acceleration, the super capacitor can discharge to the motor.
  • the predetermined power is a set value, which may be set according to the parameters of the super capacitor, or may be set according to the actual situation of the vehicle, and the present invention is not limited thereto.
  • the output power of the solar panel can be obtained based on the output voltage and output current of the solar panel. Since the electric energy converted by the pool plate has a long cycle life, it is possible to avoid the problem that the battery is limited in charge and discharge due to the limited number of cycles of charging and discharging of the battery in the prior art, and frequent charging and discharging may result in shortening the battery life.
  • the super capacitor and the battery are simultaneously discharged to drive the vehicle to avoid damage to the battery caused by excessive discharge current of the battery, further prolonging the life of the battery.
  • the charging and discharging efficiency and energy density of the super capacitor are higher than that of the battery, the specific power of the super capacitor is large, and the travelable distance of the vehicle is increased.
  • the serial numbers of the embodiments of the present invention are merely for the description, and do not represent the advantages and disadvantages of the embodiments.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种车用太阳能动力系统及其控制方法,属于太阳能领域,该系统包括太阳能电池板(1)、蓄电池(2)、超级电容(3)、以及控制电路(4),控制电路(4)用于控制太阳能电池板(1)为超级电容(3)充电,当车辆加速时,控制蓄电池(2)和超级电容(3)同时向电机(5)放电,且蓄电池(2)的放电电流等于蓄电池(2)的额定电流,当车辆正常行驶时,控制蓄电池(2)向电机(5)放电,通过采用超级电容(3)代替蓄电池(2)储存太阳能电池板(1)转化的电能,避免由于蓄电池(2)的循环充放电次数有限,频繁充放电导致缩短蓄电池(2)寿命的问题,当车辆加速时,避免了蓄电池(2)放电电流过大而对蓄电池(2)造成损伤,延长了蓄电池(2)寿命。

Description

说 明 书 一种车用太阳能动力系统及其控制方法 技术领域
本发明涉及太阳能领域, 特别涉及一种车用太阳能动力系统及其控制方 法。 背景技术
燃料能源的有限和燃料燃烧带来的环境污染,促使可利用太阳能充电的电 动车辆的快速发展, 这种发展中的电动车辆釆用车用太阳能动力系统驱动车辆 行驶。
现有的车用太阳能动力系统包括太阳能电池板、 蓄电池、 以及用于控制蓄 电池充放电的控制器, 控制器分别与太阳能控制板和蓄电池连接。 当太阳光辐 射强度高时, 太阳能电池板转化的电能一部分用于驱动车辆, 另一部分用于蓄 电池充电; 当太阳光辐射强度低时, 太阳能电池板转化的电能全部用于驱动车 辆, 蓄电池也放电驱动车辆; 当没有太阳光辐射时, 由蓄电池放电驱动车辆。
在实现本发明的过程中, 发明人发现现有技术至少存在以下问题: 只要太阳光辐射强度高, 就会对蓄电池充电, 只要太阳光辐射强度低, 就 会让蓄电池放电, 蓄电池充放电频繁, 而蓄电池的充放电次数是有限的, 如此 频繁的循环充放电会缩短蓄电池的寿命。 发明内容
为了解决现有技术缩短蓄电池寿命的问题, 本发明实施例提供了一种车用 太阳能动力系统及其控制方法。 所述技术方案如下:
一方面, 本发明实施例提供了一种车用太阳能动力系统, 所述系统包括包 括太阳能电池板和蓄电池, 所述系统还包括超级电容和控制电路;
所述控制电路, 用于控制所述太阳能电池板为所述超级电容充电; 当车辆 状态为加速时, 控制所述蓄电池和所述超级电容同时向电机放电, 且所述蓄电 池的放电电流等于所述蓄电池的额定电流; 当所述车辆状态为正常行驶时, 控 制所述蓄电池向所述电机放电。 在第一种可能的实现方式中, 所述控制电路还用于,
当所述车辆状态为刹车时, 控制所述电机为所述超级电容充电。
在第二种可能的实现方式中, 当所述车辆状态为正常行驶时, 所述控制电 路还用于,
当所述太阳能电池板的输出功率大于预定功率时,控制所述太阳能电池板 以所述预定功率为所述超级电容充电, 并控制所述太阳能电池板为所述电机供 电, 以驱动所述车辆行驶, 且所述太阳能电池板提供给所述电机的功率等于所 述太阳能电池板的输出功率与所述预定功率之间的差值;
当所述太阳能电池板的输出功率小于或等于所述预定功率时,控制所述太 阳能电池板以所述太阳能电池板的输出功率为所述超级电容充电。
在第三种可能的实现方式中, 所述系统还包括用于转换所述太阳能电池板 输出电压的电压转换模块和用于控制所述电压转换模块输出电压为设定值的 电压转换控制电路, 所述电压转换模块串联在所述太阳能电池板和所述控制电 路之间, 所述电压转换控制电路与所述电压转换模块连接。
可选地, 所述电压转换控制电路包括:
第一电压釆集单元, 用于釆集所述电压转换模块的输入电压;
第一电流釆集单元, 用于釆集所述电压转换模块的输入电流;
第二电压釆集单元, 用于釆集所述电压转换模块的输出电压;
第二电流釆集单元, 用于釆集所述电压转换模块的输出电流; 以及 控制芯片,用于才艮据所述电压转换模块的输入电压、输入电流、输出电压、 以及输出电流调节所述电压转换模块输出电压和输入电压的比值。
在第四种可能的实现方式中, 所述系统还包括用于将提供给所述电机的直 流电转换为交流电的逆变电路。
另一方面, 本发明实施例提供了一种车用太阳能动力系统的控制方法, 所 述方法包括:
控制太阳能电池板为超级电容充电;
获取车辆状态;
当所述车辆状态为加速时, 控制蓄电池和所述超级电容同时向电机放电, 且所述蓄电池的放电电流等于所述蓄电池的额定电流;
当所述车辆状态为正常行驶时, 控制所述蓄电池向所述电机放电。
在第一种可能的实现方式中, 所述方法还包括: 当所述车辆状态为刹车时, 控制所述电机为所述超级电容充电。
在第二种可能的实现方式中, 当所述车辆状态为正常行驶时, 所述方法还 包括:
当所述太阳能电池板的输出功率大于预定功率时,控制所述太阳能电池板 以所述预定功率为所述超级电容充电, 并控制所述太阳能电池板为所述电机供 电, 以驱动所述车辆行驶, 且所述太阳能电池板提供给所述电机的功率等于所 述太阳能电池板的输出功率与所述预定功率之间的差值;
当所述太阳能电池板的输出功率小于或等于所述预定功率时,控制所述太 阳能电池板以所述太阳能电池板的输出功率为所述超级电容充电。
本发明实施例提供的技术方案带来的有益效果是:
通过釆用超级电容代替现有技术中的蓄电池储存太阳能电池板转化的电 能, 由于超级电容的循环寿命长, 因此可以避免现有技术中由于蓄电池的循环 充放电次数有限, 频繁充放电会导致缩短蓄电池寿命的问题。 当车辆需要加速 或爬坡时, 釆用超级电容和蓄电池同时放电, 驱动车辆行驶, 避免了蓄电池放 电电流过大而对蓄电池造成损伤, 进一步延长了蓄电池的寿命。 而且超级电容 的充放电效率和能量密度比蓄电池高, 超级电容的比功率较大, 车辆的可行驶 距离增加了。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所 需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明 的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例一提供的一种车用太阳能动力系统的结构示意图; 图 2是本发明实施例二提供的一种车用太阳能动力系统的结构示意图; 图 3是本发明实施例二提供的电压转换控制电路的结构示意图;
图 4是本发明实施例三提供的一种车用太阳能动力系统的控制方法的流程 图;
图 5是本发明实施例四提供的一种车用太阳能动力系统的控制方法的流程 图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明 实施方式作进一步地详细描述。
实施例一
本发明实施例提供了一种车用太阳能动力系统, 参见图 1, 该系统包括太 阳能电池板 1、 蓄电池 2、 超级电容 3、 以及控制电路 4。 控制电路 4分别与太 阳能电池板 1和超级电容 3连接, 超级电容 3和蓄电池 2分别与电机 5连接。
在本实施例中,控制电路 4用于,控制太阳能电池板 1为超级电容 3充电。 控制电路 4还用于, 当车辆状态为加速时, 控制蓄电池 2和超级电容 3同时向 电机 5放电, 且蓄电池 2的放电电流等于蓄电池 2的额定电流; 当车辆状态为 正常行驶时, 控制蓄电池 2向电机 5放电。
在实际应用中, 车辆状态一般分为加速、 正常行驶、 刹车三种, 车辆状态 可以根据直流母线电流与蓄电池 2的额定电流之间的大小关系进行判断, 直流 母线为超级电容 3和蓄电池 2, 与电机 5之间的连接线。 具体地, 当直流母线 电流大于蓄电池 2的额定电流时, 车辆状态为加速; 当直流母线电流小于或等 于蓄电池 2的额定电流, 且直流母线电流大于 0 (规定蓄电池 2放电时的电流 方向为正)时, 车辆状态为正常行驶; 当直流母线电流小于 0时, 车辆状态为 刹车。
下面简单介绍一下本发明提供的车用太阳能动力系统的工作原理: 当有太阳光时,太阳能电池板 1将太阳能转换为电能,为超级电容 2充电。 当车辆行驶时, 如果车辆需要加速(例如启动等)或者爬坡, 即车辆状态为加 速,控制电路 4控制蓄电池 2和超级电容 3同时向电机 5放电,驱动车辆行驶, 且蓄电池 2的放电电流等于蓄电池 2的额定电流。如果车辆按照通常的车速正 常行驶,即车辆状态为正常行驶时,控制电路 4只控制蓄电池 2向电机 5放电, 驱动车辆行驶。 池板转化的电能, 由于超级电容的循环寿命长, 因此可以避免现有技术中由于 蓄电池的循环充放电次数有限, 频繁充放电会导致缩短蓄电池寿命的问题。 当 车辆需要加速或爬坡时, 釆用超级电容和蓄电池同时放电, 驱动车辆行驶, 避 免了蓄电池放电电流过大而对蓄电池造成损伤, 进一步延长了蓄电池的寿命。 而且超级电容的充放电效率和能量密度比蓄电池高, 超级电容的比功率较大, 车辆的可行驶距离增加了。 实施例二
本发明实施例提供了一种车用太阳能动力系统, 参见图 2, 该系统包括太 阳能电池板 1、 蓄电池 2、 超级电容 3、 以及控制电路 4。 控制电路 4分别与太 阳能电池板 1和超级电容 3连接, 超级电容 3和蓄电池 2分别与电机 5连接。
在本实施例中,控制电路 4用于,控制太阳能电池板 1为超级电容 3充电。 控制电路 4还用于, 当车辆状态为加速时, 控制蓄电池 2和超级电容 3同时向 电机 5放电, 且蓄电池 2的放电电流等于蓄电池 2的额定电流; 当车辆状态为 正常行驶时, 控制蓄电池 2向电机 5放电。
在实际应用中, 车辆状态一般分为加速、 正常行驶、 刹车三种, 车辆状态 可以根据直流母线电流与蓄电池 2的额定电流之间的大小关系进行判断, 直流 母线为超级电容 3和蓄电池 2, 与电机 5之间的连接线。 具体地, 当直流母线 电流大于蓄电池 2的额定电流时, 车辆状态为加速; 当直流母线电流小于或等 于蓄电池 2的额定电流, 且直流母线电流大于 0 (规定蓄电池 2放电时的电流 方向为正)时, 车辆状态为正常行驶; 当直流母线电流小于 0时, 车辆状态为 刹车。
可选地, 太阳能电池板 1可以包括若干个太阳能电池串联或并联的太阳能 电池方阵。
在本实施例的一种实现方式中, 控制电路 4还可以用于, 当车辆状态为刹 车时,控制电机 5为超级电容 3充电,储存刹车时多余的能量, 以供以后使用, 提高了电能的使用效率, 并且进一步减小了蓄电池的充放电次数。
在本实施例的另一种实现方式中, 当车辆状态为正常行驶时, 控制电路 4 还可以用于, 当太阳能电池板 1的输出功率大于预定功率时, 控制太阳能电池 板 1以预定功率为超级电容 3充电, 并控制太阳能电池板 1为电机 5供电, 以 驱动车辆行驶,且太阳能电池板 1提供给电机 5的功率等于太阳能电池板 1的 输出功率与预定功率之间的差值, 这样, 可以防止超级电容 3超负荷充电, 延 长超级电容 3的寿命。 控制电路 4还可以用于, 当太阳能电池板 1的输出功率 小于或等于预定功率时,控制太阳能电池板 1以太阳能电池板 1的输出功率为 超级电容 3充电, 保证太阳能优先用于为超级电容 3充电, 以确保车辆状态为 加速时, 超级电容 3可以向电机 5放电。 在本实施例中, 预定功率为设定值, 可以根据超级电容的参数进行设定, 也可以根据车辆的实际情况进行设定, 本发明并不限制于此。
具体地, 太阳能电池板 1的输出功率可以根据太阳能电池板 1的输出电压 和输出电流得到。 太阳能电池板 1的输出电压可以由电压传感器获得, 太阳能 电池板 1的输出电流可以由电流传感器获得, 电压传感器和电流传感器可以是 控制电路 4的一部分, 也可以是单独设置的, 与控制电路 4连接, 本发明对此 不作限制。
在本实施例的又一种实现方式中, 该系统还可以包括用于转换太阳能电池 板 1输出电压的电压转换模块 6, 电压转换模块串联在太阳能电池板 1和控制 电路 4之间。
进一步地, 该系统还可以包括用于控制电压转换模块 6输出电压为设定值 的电压转换控制电路 7, 电压转换控制电路 7与电压转换模块 6连接, 使太阳 能电池板 1的输出电压可以转换为所需的设定值。
具体地, 参见图 3, 电压转换控制电路 7包括第一电压釆集单元 71、 第一 电流釆集单元 72、 第二电压釆集单元 73、 第二电流釆集单元 74、 以及控制芯 片 75。第一电压釆集单元 71的输入端、第一电流釆集单元 72的输入端分别与 电压转换模块 6的输入端连接, 第二电压釆集单元 73的输入端、 第二电流釆 集单元 74的输入端分别与电压转换模块 6的输出端连接,控制芯片 75分别与 第一电压釆集单元 71的输出端、 第一电流釆集单元 72的输出端、 第二电压釆 集单元 73的输出端、 第二电流釆集单元 74的输出端、 电压转换模块 6的控制 端连接。
其中, 第一电压釆集单元 71用于釆集电压转换模块 6的输入电压。 第一 电流釆集单元 72用于釆集电压转换模块 6的输入电流。 第二电压釆集单元 73 用于釆集电压转换模块 6的输出电压。 第二电流釆集单元 74用于釆集电压转 换模块 6的输出电流。 控制芯片 75用于根据电压转换模块 6的输入电压、 输 入电流、 输出电压、 以及输出电流调节电压转换模块 6的输出电压与输入电压 的比值。
容易知道, 第一电压釆集单元 71、 第一电流釆集单元 72、 第二电压釆集 单元 73、 以及第二电流釆集单元 74 均还可以包括信号处理电路, 如 A/D ( Analog/Digital, 模数)转换电路。
在本实施例的又一种实现方式中, 该系统还包括用于将提供给电机 5的直 流电转换为交流电的逆变电路 8,逆变电路 8串联在超级电容 3与电机 5之间、 蓄电池 2与电机 5之间。 容易知道, 电机 5通常使用交流电驱动, 由于蓄电池 2和超级电容 3提供的是直流电, 因此需要逆变电路 8将蓄电池 2和 /或超级电 容 3提供的直流电转换为交流电, 以驱动电机, 扩大了该动力系统所适用的电 机范围。 池板转化的电能, 由于超级电容的循环寿命长, 因此可以避免现有技术中由于 蓄电池的循环充放电次数有限, 频繁充放电会导致缩短蓄电池寿命的问题。 当 车辆需要加速或爬坡时, 釆用超级电容和蓄电池同时放电, 驱动车辆行驶, 避 免了蓄电池放电电流过大而对蓄电池造成损伤, 进一步延长了蓄电池的寿命。 而且超级电容的充放电效率和能量密度比蓄电池高, 超级电容的比功率较大, 车辆的可行驶距离增加了。 实施例三
本发明实施例提供了一种车用太阳能动力系统的控制方法,适用于实施例 一提供的车用太阳能动力系统, 参见图 3, 该方法包括:
步骤 301 : 控制太阳能电池板为超级电容充电。
容易知道, 该步骤 301在有太阳光的情况下执行。
步骤 302: 获取车辆状态。 当车辆状态为加速时, 执行步骤 303; 当车辆 状态为正常行驶时, 执行步骤 304。
需要说明的是, 车辆状态一般分为加速、 正常行驶、 刹车三种, 车辆状态 可以根据直流母线电流与蓄电池的额定电流之间的大小关系进行判断, 直流母 线为超级电容和蓄电池, 与电机之间的连接线。 具体地, 当直流母线电流大于 蓄电池的额定电流时, 车辆状态为加速; 当直流母线电流小于或等于蓄电池的 额定电流, 且直流母线电流大于 0 (规定蓄电池放电时的电流方向为正) 时, 车辆状态为正常行驶; 当直流母线电流小于 0时, 车辆状态为刹车。
步骤 303: 控制蓄电池和超级电容同时向电机放电, 且蓄电池的放电电流 等于蓄电池的额定电流。
步骤 304: 控制蓄电池向电机放电。 池板转化的电能, 由于超级电容的循环寿命长, 因此可以避免现有技术中由于 蓄电池的循环充放电次数有限, 频繁充放电会导致缩短蓄电池寿命的问题。 当 车辆需要加速或爬坡时, 釆用超级电容和蓄电池同时放电, 驱动车辆行驶, 避 免了蓄电池放电电流过大而对蓄电池造成损伤, 进一步延长了蓄电池的寿命。 而且超级电容的充放电效率和能量密度比蓄电池高, 超级电容的比功率较大, 车辆的可行驶距离增加了。 实施例四
本发明实施例提供了一种车用太阳能动力系统的控制方法,适用于实施例 二提供的车用太阳能动力系统, 参见图 4, 该方法包括:
步骤 401 : 控制太阳能电池板为超级电容充电。
容易知道, 该步骤 401在有太阳光的情况下执行。
步骤 402: 获取车辆状态。 当车辆状态为加速时, 执行步骤 403; 当车辆 状态为正常行驶时, 执行步骤 404; 当车辆状态为刹车时, 执行步骤 405。
需要说明的是, 车辆状态一般分为加速、 正常行驶、 刹车三种, 车辆状态 可以根据直流母线电流与蓄电池的额定电流之间的大小关系进行判断, 直流母 线为超级电容和蓄电池, 与电机之间的连接线。 具体地, 当直流母线电流大于 蓄电池的额定电流时, 车辆状态为加速; 当直流母线电流小于或等于蓄电池的 额定电流, 且直流母线电流大于 0 (规定蓄电池放电时的电流方向为正) 时, 车辆状态为正常行驶; 当直流母线电流小于 0时, 车辆状态为刹车。
步骤 403: 控制蓄电池和超级电容同时向电机放电, 且蓄电池的放电电流 等于蓄电池的额定电流。
步骤 404: 控制蓄电池向电机放电。
步骤 405: 控制电机为超级电容充电。
在本实施例的一种实现方式中, 当车辆状态为正常行驶时, 该方法还可以 包括步骤: 当太阳能电池板的输出功率大于预定功率时, 控制太阳能电池板以 预定功率为超级电容充电,并控制太阳能电池板为电机供电,以驱动车辆行驶, 且太阳能电池板提供给电机的功率等于太阳能电池板的输出功率与预定功率 之间的差值, 这样, 可以防止超级电容超负荷充电, 延长超级电容的寿命。 该 方法还可以包括步骤: 当太阳能电池板的输出功率小于或等于预定功率时, 控 制太阳能电池板以太阳能电池板的输出功率为超级电容充电,保证太阳能优先 用于为超级电容充电, 以确保车辆状态为加速时, 超级电容可以向电机放电。 在本实施例中, 预定功率为设定值, 可以根据超级电容的参数进行设定, 也可以根据车辆的实际情况进行设定, 本发明并不限制于此。
具体地, 太阳能电池板的输出功率可以根据太阳能电池板的输出电压和输 出电流得到。 池板转化的电能, 由于超级电容的循环寿命长, 因此可以避免现有技术中由于 蓄电池的循环充放电次数有限, 频繁充放电会导致缩短蓄电池寿命的问题。 当 车辆需要加速或爬坡时, 釆用超级电容和蓄电池同时放电, 驱动车辆行驶, 避 免了蓄电池放电电流过大而对蓄电池造成损伤, 进一步延长了蓄电池的寿命。 而且超级电容的充放电效率和能量密度比蓄电池高, 超级电容的比功率较大, 车辆的可行驶距离增加了。 上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通 过硬件来完成, 也可以通过程序来指令相关的硬件完成, 所述的程序可以存储 于一种计算机可读存储介质中, 上述提到的存储介质可以是只读存储器, 磁盘 或光盘等。
以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的 精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的 保护范围之内。

Claims

权 利 要 求 书
1、 一种车用太阳能动力系统, 所述系统包括太阳能电池板和蓄电池, 其特 征在于, 所述系统还包括超级电容和控制电路;
所述控制电路, 用于控制所述太阳能电池板为所述超级电容充电; 当车辆 状态为加速时, 控制所述蓄电池和所述超级电容同时向电机放电, 且所述蓄电 池的放电电流等于所述蓄电池的额定电流; 当所述车辆状态为正常行驶时, 控 制所述蓄电池向所述电机放电。
2、 根据权利要求 1所述的系统, 其特征在于, 所述控制电路还用于, 当所述车辆状态为刹车时, 控制所述电机为所述超级电容充电。
3、 根据权利要求 1所述的系统, 其特征在于, 当所述车辆状态为正常行驶 时, 所述控制电路还用于,
当所述太阳能电池板的输出功率大于预定功率时, 控制所述太阳能电池板 以所述预定功率为所述超级电容充电, 并控制所述太阳能电池板为所述电机供 电, 以驱动所述车辆行驶, 且所述太阳能电池板提供给所述电机的功率等于所 述太阳能电池板的输出功率与所述预定功率之间的差值;
当所述太阳能电池板的输出功率小于或等于所述预定功率时, 控制所述太 阳能电池板以所述太阳能电池板的输出功率为所述超级电容充电。
4、 根据权利要求 1-3任一项所述的系统, 其特征在于, 所述系统还包括用 于转换所述太阳能电池板输出电压的电压转换模块和用于控制所述电压转换模 块输出电压为设定值的电压转换控制电路, 所述电压转换模块串联在所述太阳 能电池板和所述控制电路之间, 所述电压转换控制电路与所述电压转换模块连 接。
5、根据权利要求 4所述的系统, 其特征在于, 所述电压转换控制电路包括: 第一电压釆集单元, 用于釆集所述电压转换模块的输入电压;
第一电流釆集单元, 用于釆集所述电压转换模块的输入电流;
第二电压釆集单元, 用于釆集所述电压转换模块的输出电压; 第二电流釆集单元, 用于釆集所述电压转换模块的输出电流; 以及 控制芯片, 用于才艮据所述电压转换模块的输入电压、 输入电流、 输出电压、 以及输出电流调节所述电压转换模块输出电压和输入电压的比值。
6、 根据权利要求 1-3任一项所述的系统, 其特征在于, 所述系统还包括用 于将提供给所述电机的直流电转换为交流电的逆变电路。
7、 一种车用太阳能动力系统的控制方法, 其特征在于, 所述方法包括: 控制太阳能电池板为超级电容充电;
获取车辆状态;
当所述车辆状态为加速时, 控制蓄电池和所述超级电容同时向电机放电, 且所述蓄电池的放电电流等于所述蓄电池的额定电流;
当所述车辆状态为正常行驶时, 控制所述蓄电池向所述电机放电。
8、 根据权利要求 7所述的方法, 其特征在于, 所述方法还包括:
当所述车辆状态为刹车时, 控制所述电机为所述超级电容充电。
9、 根据权利要求 7所述的方法, 其特征在于, 当所述车辆状态为正常行驶 时, 所述方法还包括:
当所述太阳能电池板的输出功率大于预定功率时, 控制所述太阳能电池板 以所述预定功率为所述超级电容充电, 并控制所述太阳能电池板为所述电机供 电, 以驱动所述车辆行驶, 且所述太阳能电池板提供给所述电机的功率等于所 述太阳能电池板的输出功率与所述预定功率之间的差值;
当所述太阳能电池板的输出功率小于或等于所述预定功率时, 控制所述太 阳能电池板以所述太阳能电池板的输出功率为所述超级电容充电。
PCT/CN2014/082384 2013-08-21 2014-07-17 一种车用太阳能动力系统及其控制方法 WO2015024422A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310367569.7 2013-08-21
CN201310367569.7A CN103475045B (zh) 2013-08-21 2013-08-21 一种车用太阳能动力系统及其控制方法

Publications (1)

Publication Number Publication Date
WO2015024422A1 true WO2015024422A1 (zh) 2015-02-26

Family

ID=49799788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082384 WO2015024422A1 (zh) 2013-08-21 2014-07-17 一种车用太阳能动力系统及其控制方法

Country Status (2)

Country Link
CN (1) CN103475045B (zh)
WO (1) WO2015024422A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103475045B (zh) * 2013-08-21 2016-03-23 奇瑞新能源汽车技术有限公司 一种车用太阳能动力系统及其控制方法
CN103991387B (zh) * 2014-01-22 2016-06-01 南通大学 一种小功率光氢电混合动力车的能量流控制系统
CN106960107B (zh) * 2017-04-01 2020-07-24 上海图灵信息技术有限公司 一种安全性高的电动汽车设计系统
CN107914586A (zh) * 2017-11-24 2018-04-17 安徽安凯汽车股份有限公司 一种车用多源多充动力系统及多源多充汽车
CN111193316A (zh) * 2020-01-13 2020-05-22 徐晓虹 一种应用于新能源电动汽车的供电系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006129621A (ja) * 2004-10-29 2006-05-18 Hitachi Omron Terminal Solutions Corp 電源装置
CN1949624A (zh) * 2006-11-27 2007-04-18 孙民兴 太阳能电源系统的最大功率追踪方法和太阳能电源装置
CN201128379Y (zh) * 2007-11-23 2008-10-08 吉林市北华航天科技有限公司 车用太阳能-超级电容混合动力电源
CN201450471U (zh) * 2009-08-05 2010-05-05 华南理工大学 复合能源电动车的电源系统
CN201703265U (zh) * 2010-06-11 2011-01-12 高国风 电动车用太阳能电驱动系统
CN201998813U (zh) * 2011-04-15 2011-10-05 吉林大学 插电式风能太阳能电动车
CN103475045A (zh) * 2013-08-21 2013-12-25 奇瑞汽车股份有限公司 一种车用太阳能动力系统及其控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8354818B2 (en) * 2007-10-09 2013-01-15 Ford Global Technologies, Llc Solar charged hybrid power system
CN201792954U (zh) * 2010-09-21 2011-04-13 徐州工程学院 太阳能-蓄电池电动三轮车
CN201914107U (zh) * 2010-12-30 2011-08-03 西安交通大学苏州研究院 一种基于超级电容的电动汽车混合动力控制系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006129621A (ja) * 2004-10-29 2006-05-18 Hitachi Omron Terminal Solutions Corp 電源装置
CN1949624A (zh) * 2006-11-27 2007-04-18 孙民兴 太阳能电源系统的最大功率追踪方法和太阳能电源装置
CN201128379Y (zh) * 2007-11-23 2008-10-08 吉林市北华航天科技有限公司 车用太阳能-超级电容混合动力电源
CN201450471U (zh) * 2009-08-05 2010-05-05 华南理工大学 复合能源电动车的电源系统
CN201703265U (zh) * 2010-06-11 2011-01-12 高国风 电动车用太阳能电驱动系统
CN201998813U (zh) * 2011-04-15 2011-10-05 吉林大学 插电式风能太阳能电动车
CN103475045A (zh) * 2013-08-21 2013-12-25 奇瑞汽车股份有限公司 一种车用太阳能动力系统及其控制方法

Also Published As

Publication number Publication date
CN103475045B (zh) 2016-03-23
CN103475045A (zh) 2013-12-25

Similar Documents

Publication Publication Date Title
JP6672373B2 (ja) 電気駆動システム及びエネルギ管理方法
US8723474B2 (en) Electrical vehicle energy system and operating method thereof
EP3421281A1 (en) Hybrid energy supply system and method for vehicle and hybrid energy vehicle
CN106899029B (zh) 一种有效利用光伏发电混合储能容量的控制方法
CN103171452A (zh) 电动车双电源管理系统及方法
CN101630862A (zh) 复合能源电动车的电源系统
CN1185158C (zh) 电梯控制装置
KR101245647B1 (ko) 태양광발전시스템과의 연계를 통한 배터리 급속 충전 시스템
CN101501602A (zh) 太阳光发电系统、车辆、太阳光发电系统的控制方法以及储存有用于使计算机执行该控制方法的程序的计算机能够读取的存储介质
CN1781756A (zh) 蓄电式馈电线电压补偿装置以及方法
WO2011032500A1 (zh) 对多组蓄电池充电方法和其控制系统
WO2015024422A1 (zh) 一种车用太阳能动力系统及其控制方法
CN112751376B (zh) 一种混合电源系统的能量管理方法
CN101685986A (zh) 使用超级电容的风光互补发电系统
CN1187208C (zh) 电动车超级电容辅助电源系统
US20160288662A1 (en) Charge/discharge system
WO2018184352A1 (zh) 车辆多能源供给系统及方法、太阳能汽车
JP2019103384A (ja) 高電圧電池の動的平衡法
CN201450471U (zh) 复合能源电动车的电源系统
CN106787086B (zh) 一种双pwm永磁电力驱动系统及其控制方法
CN104821610B (zh) 基于双超级电容器模组的三级式高可靠性再生能量控制方法及装置
CN103072488B (zh) 一种复合电源
Carreira et al. Hybrid energy storage system joining batteries and supercapacitors
CN109787340B (zh) 太阳能发电系统
CN105620296B (zh) 电动车制动功率控制方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838734

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14838734

Country of ref document: EP

Kind code of ref document: A1