WO2015016039A1 - イオンミリング装置、及びイオンミリング装置を用いた加工方法 - Google Patents
イオンミリング装置、及びイオンミリング装置を用いた加工方法 Download PDFInfo
- Publication number
- WO2015016039A1 WO2015016039A1 PCT/JP2014/068527 JP2014068527W WO2015016039A1 WO 2015016039 A1 WO2015016039 A1 WO 2015016039A1 JP 2014068527 W JP2014068527 W JP 2014068527W WO 2015016039 A1 WO2015016039 A1 WO 2015016039A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vacuum chamber
- ion milling
- sample
- gas
- pressure
- Prior art date
Links
- 238000000992 sputter etching Methods 0.000 title claims abstract description 56
- 238000003672 processing method Methods 0.000 title claims description 12
- 238000010438 heat treatment Methods 0.000 claims abstract description 46
- 238000010884 ion-beam technique Methods 0.000 claims description 23
- 238000012545 processing Methods 0.000 claims description 14
- 238000001816 cooling Methods 0.000 abstract description 22
- 238000009833 condensation Methods 0.000 abstract description 13
- 230000005494 condensation Effects 0.000 abstract description 13
- 239000007789 gas Substances 0.000 description 54
- 238000000034 method Methods 0.000 description 14
- 238000012546 transfer Methods 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 229910052754 neon Inorganic materials 0.000 description 3
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000001073 sample cooling Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000009954 braiding Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/08—Ion sources; Ion guns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/16—Vessels; Containers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/18—Vacuum locks ; Means for obtaining or maintaining the desired pressure within the vessel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/20—Means for supporting or positioning the object or the material; Means for adjusting diaphragms or lenses associated with the support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/30—Electron-beam or ion-beam tubes for localised treatment of objects
- H01J37/305—Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching
- H01J37/3053—Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching for evaporating or etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/006—Details of gas supplies, e.g. in an ion source, to a beam line, to a specimen or to a workpiece
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/06—Sources
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/06—Sources
- H01J2237/08—Ion sources
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/18—Vacuum control means
- H01J2237/182—Obtaining or maintaining desired pressure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/18—Vacuum control means
- H01J2237/182—Obtaining or maintaining desired pressure
- H01J2237/1825—Evacuating means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/18—Vacuum control means
- H01J2237/184—Vacuum locks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/20—Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
- H01J2237/2001—Maintaining constant desired temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/20—Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
- H01J2237/2002—Controlling environment of sample
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/30—Electron or ion beam tubes for processing objects
- H01J2237/317—Processing objects on a microscale
- H01J2237/31749—Focused ion beam
Definitions
- the present invention relates to an ion milling device, and more particularly to an ion milling device provided with a temperature control mechanism.
- An ion milling device is a device that performs thin film processing and cross-sectional processing of a sample to be observed by a scanning electron microscope or transmission electron microscope, and irradiates a sample of metal, glass, ceramic, etc. with a beam such as an argon ion beam. To process the sample. Such processing is performed in a vacuum chamber.
- the sample temperature rises by ion beam irradiation. If the sample temperature rises excessively, the sample may be damaged.
- a cooling source such as a Peltier element and the sample stage and cooling the sample.
- Techniques for preventing damage are known. Further, in Patent Document 1, in order to suppress frost and condensation generated when the vacuum chamber of the ion milling apparatus is opened to the atmosphere while the sample is cooled, the supply current to the Peltier element is reversed, and the sample is removed. A method of heating is disclosed.
- the heating from the Peltier element or the like of Patent Document 1 as a heating source requires a heat transfer medium for transferring heat.
- An apparatus that performs beam irradiation while changing the ion beam irradiation angle on the sample such as an ion milling apparatus, is provided with an inclined stage, etc.
- a material that easily bends, such as a knitted wire, must be used, and the heat conduction efficiency cannot be increased.
- the portion other than the portion in contact with the heat transfer medium is indirectly heated from the portion in contact with the heat transfer medium, a considerable amount of time is required for the heating.
- the degree of vacuum in the sample chamber vacuum chamber
- heat conduction from the atmosphere in the sample chamber is small, and heating while suppressing the output of the heater is necessary. This is because it is necessary to suppress the output of the heater in order to suppress damage to the sample by the heater during heating.
- an ion milling apparatus comprising: a heating device that heats the vacuum chamber; a gas source that introduces gas into the vacuum chamber; and a control device that controls the gas source, the control device heating by the heating device
- a heating device that heats the vacuum chamber
- a gas source that introduces gas into the vacuum chamber
- a control device that controls the gas source, the control device heating by the heating device
- an ion milling apparatus is proposed that controls the gas source so that the pressure in the vacuum chamber is in a predetermined state.
- the pressure in the vacuum chamber of the ion milling apparatus is lower than the atmosphere and higher than that during ion beam processing by the ion milling apparatus. In this state, a processing method using an ion milling device that heats the vacuum chamber is proposed.
- an ion milling apparatus including a vacuum chamber, an exhaust device that evacuates the vacuum chamber, and a sample stage that supports a sample irradiated with an ion beam in the vacuum chamber, heating that heats the vacuum chamber
- a gas source for introducing a gas into the vacuum chamber
- a control device for controlling the gas source, the control device being configured so that the pressure in the vacuum chamber is in a predetermined state when heated by the heating device. Disclose the control of the source.
- control device controls the gas source and the exhaust device so that the pressure in the vacuum chamber is in a predetermined state.
- the embodiment discloses that the gas introduced from the gas source into the vacuum chamber is a monoatomic molecule rare gas.
- the ion milling device includes a measuring device that measures the pressure in the vacuum chamber, and the control device controls the gas source so that the output of the measuring device becomes a predetermined condition.
- the ion milling device includes a thermometer that measures the temperature in the vacuum chamber, and the control device controls the gas source until the output of the thermometer reaches a predetermined condition.
- control device controls the gas source so that the pressure in the vacuum chamber is changed from 10E0 Pa to 10E-1 Pa while heating by the heating device.
- the vacuum chamber is heated in a state where the pressure in the vacuum chamber of the ion milling apparatus is lower than the atmosphere and higher than that during ion beam processing by the ion milling apparatus.
- a processing method using an ion milling device is disclosed.
- the embodiment discloses that gas is introduced into the vacuum chamber and the pressure in the vacuum chamber during heating in the vacuum chamber is set to a predetermined state.
- the embodiment discloses that the vacuum chamber is evacuated and the pressure in the vacuum chamber during heating in the vacuum chamber is set to a predetermined state.
- the embodiment discloses that gas is introduced into the vacuum chamber, the vacuum chamber is evacuated, and the pressure in the vacuum chamber during heating in the vacuum chamber is set to a predetermined state.
- a rare gas of monoatomic molecules is introduced into the vacuum chamber during heating in the vacuum chamber.
- the embodiment discloses that the pressure in the vacuum chamber is kept in a predetermined state until the temperature in the vacuum chamber reaches a predetermined condition.
- the following description relates to an ion milling apparatus equipped with a sample cooling function, and in particular, a sample to be irradiated with an ion beam, a sample stage for mounting a sample, a sample holder for installing the sample stage, or
- the present invention relates to a charged particle beam irradiation apparatus provided with a cooling mechanism for indirectly cooling a sample from a cooling source via a driving mechanism for driving a sample holder.
- the temperature of the sample due to ion beam irradiation exceeds the melting point of the sample composition, the temperature of the sample surface rises and melts and the shape deforms (hereinafter simply referred to as beam damage).
- a method of cooling the sample indirectly via the sample stage using liquid nitrogen as a cooling source and utilizing heat conduction such as metal braiding for the purpose of preventing or reducing the temperature rise of the sample that is susceptible to There are a method of pouring liquid nitrogen into the sample stage and cooling, or a method of cooling the sample with a Peltier element.
- the cooling transmission means in order to prevent dew condensation (frosting) on the sample and the cooling transmission means when the sample cooled after the ion milling process, that is, after the ion beam irradiation process is taken out from the vacuum chamber during the ion beam irradiation.
- heating means such as a heater or an independent heating means in the cooling transmission means so as to heat the dew point or higher.
- the sample chamber (vacuum chamber) is operated by continuously operating the main exhaust device (generally composed of a roughing pump such as a dry scroll pump, a rotary pump, or a diaphragm pump and a turbo molecular pump). ) Is about 10 ⁇ 2 Pa to 10 ⁇ 4 Pa (10E ⁇ 2 Pa to 10E ⁇ 4 Pa).
- a roughing pump such as a dry scroll pump, a rotary pump, or a diaphragm pump and a turbo molecular pump.
- the ion milling apparatus since the ion beam irradiation angle to the sample is constantly changed, it is necessary to continuously invert the sample (sample stage) within about ⁇ 40 degrees at a predetermined angle.
- a bendable copper braid (mesh wire) or the like is used. Since this braided wire has low heat transfer efficiency, for example, when liquid nitrogen is used as a cooling source, it takes about 1 hour to cool the sample to a predetermined temperature (about ⁇ 100 ° C.). Further, when the sample is taken out after the ion milling process is completed, it is necessary to raise the temperature of the sample, the sample stage, the shielding plate, and the cooling means to prevent condensation (frost). The temperature is approximately ⁇ 7 ° C. or more from room temperature, and it takes 1 to 2 hours or more to raise the temperature.
- a method and an apparatus for heating a sample in a short time while suppressing condensation (frost) generated when the cooled sample is taken out from the vacuum chamber after the ion beam irradiation process is completed To do.
- the vacuum pressure in the vacuum chamber during ion beam irradiation is 10 ⁇ 2 Pa to 10 ⁇ in order to heat the sample or the sample holder in a relatively simple configuration to a temperature at which condensation (frost) does not occur.
- the vacuum exhaust system exhaust means
- the vacuum exhaust system is controlled so that the pressure is about 4 Pa (10E-2Pa to 10E-4Pa) or less, and when taking out the sample, the main exhaust means is stopped and the pressure is higher than that during ion beam irradiation.
- the sub exhaust means is controlled so as to maintain, for example, 10 ⁇ 0 Pa to 10 ⁇ 1 Pa (10E0 Pa to 10E ⁇ 1 Pa).
- a dry monoatomic molecular gas from which high purity or moisture has been removed specifically, a rare gas such as argon gas, neon gas, or helium gas is used in a vacuum container. Introduce into (vacuum chamber).
- the gas molecules freely move in the vacuum chamber and collide with the walls of the vacuum chamber and the like, so that the colliding gas molecules become a heat medium.
- the efficiency of heat radiation (heat conduction) from the surface of the sample to be heated or the sample holder is 10 ⁇ 3 Pa to 10 ⁇ 4 Pa (10E ⁇ 3 Pa).
- a vacuum atmosphere of about 10E-4 Pa Compared with a vacuum atmosphere of about 10E-4 Pa), it becomes significantly larger.
- the temperature inside the vacuum chamber can be controlled, resulting in dramatically reduced time to reach the desired temperature. It becomes possible to do.
- single atoms (monoatomic molecules) rare gases such as argon gas, neon gas, and helium gas are injected into the vacuum chamber, and these high-purity gases are used as the heat transfer medium of the heater, so that Since heating is possible and the object to be heated can be heated evenly, the temperature of the sample, the sample stage, the shielding plate and the cooling means is raised to a temperature at which condensation or frost does not occur, that is, approximately room temperature ⁇ 7 ° C. or higher. Can be shortened.
- FIG. 1 is a diagram showing an outline of an ion milling apparatus.
- An ion milling apparatus illustrated in FIG. 1 is equipped with an exhaust means 101 (vacuum pump, leak valve, etc.) for evacuating or opening the vacuum chamber 105, and a sample 102, and a sample stage 103 for performing an ion milling process.
- a cooling mechanism 104 for cooling the sample a gas supply mechanism 106 (gas source) for injecting gas into the vacuum chamber 105, a heater 107 serving as a heat source, and a measurement for measuring the vacuum pressure in the vacuum chamber 105
- a container 108 is provided.
- thermometer 109 for measuring the temperature in the vacuum chamber 105
- control device 110 for controlling each component of the ion milling device based on the measurement results by the measuring instrument 108 and the thermometer 109 are provided. .
- sample cooling is performed by the cooling mechanism 104 in order to suppress damage to the sample 102
- temperature rise control inside the vacuum chamber 105 is performed after the ion beam irradiation and before opening to the atmosphere. More specifically, after the ion beam irradiation, monoatomic molecules of rare gases such as argon gas, neon gas, and helium gas are injected from the gas supply mechanism 106 installed in the vacuum chamber 105. At this time, the heater 107 is controlled while controlling the gas supply mechanism 106 and / or the exhaust mechanism 101 so that the pressure in the vacuum chamber 105 is 10 ⁇ 0 Pa to 10 ⁇ 1 Pa (10E0 Pa to 10E-1 Pa).
- the inside of the vacuum chamber 105 is heated by the (heating device). Since the supplied gas molecules exist in the vacuum chamber 105, the heat of the heater 107 is transmitted through the gas molecules to each component (sample, sample stage, shielding plate, cooling mechanism, etc.) of the ion milling device in the vacuum vessel 105. ) Can be heated. In addition, since a certain degree of vacuum is ensured, the temperature can be raised to a temperature at which ⁇ 7 ° C. or more condensation does not occur from room temperature in a state where no condensation occurs in the vacuum container 105.
- FIG. 2 is a flowchart showing steps from sample introduction to the ion milling device to sample removal after processing.
- the sample 102 to be processed by the ion milling apparatus is introduced into the vacuum chamber 105 (step 201).
- the control device 110 controls the exhaust mechanism 101 and performs evacuation while monitoring the output of the measuring instrument 108 until the atmosphere in the vacuum chamber 105 reaches a predetermined pressure (step 202).
- the sample 102 in the vacuum chamber 105 at a predetermined pressure is cooled using the cooling mechanism 104 (step 203).
- sample processing is performed by ion beam irradiation.
- ion beam irradiation is terminated (steps 202 and 203).
- the control device 110 executes a sample heating process for suppressing condensation when the atmosphere is released.
- the heater 107 is turned on to start heating (step 206).
- a heat transfer medium is supplied into the vacuum chamber 105.
- the main vacuum exhaust is stopped and the sub exhaust device is operated (steps 207 and 208).
- the main evacuation and sub-evacuation for example, two evacuation systems having different capacities may be prepared and used by switching them, or one evacuation system may be used.
- the vacuum state may be switched by this control.
- the vacuum chamber 105 is evacuated so that the pressure is higher than the pressure during main evacuation.
- a gas serving as a heat transfer medium is introduced from the gas supply mechanism 106 (step 209). In such a state, gas molecules are interposed between the object (sample, shielding plate, etc.) cooled by the cooling mechanism 104 and the heater 107, thereby accelerating the heating of the sample. Is possible.
- the control device 110 performs the heating control in this way, and stops the heating when the result of the temperature monitoring by the thermometer 109 (step 210) reaches a predetermined temperature (for example, ⁇ 7 ° C. from room temperature) (step 211). To do. Note that heating may be stopped when the inside of the vacuum chamber 105 is in an atmospheric state. When the inside of the vacuum chamber 105 becomes the atmosphere, the vacuum chamber 105 is opened to the atmosphere (step 212), and the sample is carried out (step 213).
- a predetermined temperature for example, ⁇ 7 ° C. from room temperature
- the control device 110 continues heating by the heater 107 and monitors the pressure in the vacuum chamber 105 by the measuring instrument 108 (step 214).
- the pressure P falls below a predetermined value (Th)
- control is performed so that gas is reintroduced (step 215).
- Such processing is continued until a predetermined temperature condition is reached.
- the inside of the vacuum chamber 105 is controlled to a predetermined pressure by the control of the gas supply mechanism 106 which is a gas source.
- the inside of the vacuum chamber 105 may be controlled to have a predetermined pressure during heating. For example, when the pressure in the vacuum chamber 105 exceeds a predetermined value (Thh), the sub-exhaust device performs vacuum evacuation, and the pressure in the vacuum chamber 105 falls below a predetermined value (Thl ( ⁇ Thh)).
- the gas may be controlled to be introduced.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Sampling And Sample Adjustment (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
102 試料
103 試料ステージ
104 冷却機構
105 真空室
106 ガス供給機構
107 ヒーター
108 測定器
109 温度計
110 制御装置
Claims (12)
- 真空室と、当該真空室内の真空排気を行う排気装置と、前記真空室内にてイオンビームが照射される試料を支持する試料台を備えたイオンミリング装置において、
前記真空室内を加熱する加熱装置と、前記真空室内にガスを導入するガス源と、当該ガス源を制御する制御装置を備え、当該制御装置は、前記加熱装置による加熱時に、前記真空室内の圧力が所定の状態となるように、前記ガス源を制御するイオンミリング装置。 - 請求項1において、
前記制御装置は、前記真空室内の圧力が所定の状態となるように前記ガス源と前記排気装置を制御することを特徴とするイオンミリング装置。 - 請求項1において、
前記ガス源から前記真空室内に導入されるガスは、単原子分子の希ガス類であることを特徴とするイオンミリング装置。 - 請求項1において、
前記真空室内の圧力を計測する測定器を備え、前記制御装置は、前記測定器の出力が所定の条件となるように前記ガス源を制御することを特徴とするイオンミリング装置。 - 請求項1において、
前記真空室内の温度を計測する温度計を備え、前記制御装置は、前記温度計の出力が所定の条件となるまで、前記ガス源の制御を行うことを特徴とするイオンミリング装置。 - 請求項1において、
前記制御装置は、前記加熱装置による加熱を行っている間、前記真空室内の圧力が10E0Paから10E-1Paとなるように前記ガス源を制御することを特徴とするイオンミリング装置。 - イオンミリング装置を用いた加工方法であって、イオンミリング装置による加工終了後、イオンミリング装置の真空室内の圧力を、大気より低く、且つイオンミリング装置によるイオンビーム加工時と比較して高くした状態で、前記真空室内を加熱することを特徴とするイオンミリング装置を用いた加工方法。
- 請求項7において、
前記真空室内にガスを導入し、前記真空室内の加熱時における前記真空室内の圧力を所定の状態とすることを特徴とするイオンミリング装置を用いた加工方法。 - 請求項7において、
前記真空室内の真空排気を行い、前記真空室内の加熱時における前記真空室内の圧力を所定の状態とすることを特徴とするイオンミリング装置を用いた加工方法。 - 請求項7において、
前記真空室内にガスを導入し、および前記真空室内の真空排気を行い、前記真空室内の加熱時における前記真空室内の圧力を所定の状態とすることを特徴とするイオンミリング装置を用いた加工方法。 - 請求項7において、
前記真空室内の加熱時に、前記真空室に単原子分子の希ガス類を導入することを特徴とするイオンミリング装置を用いた加工方法。 - 請求項7において、
前記真空室内の温度が所定の条件となるまで、前記真空室内の圧力を所定の状態とすることを特徴とするイオンミリング装置を用いた加工方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112014002868.1T DE112014002868B4 (de) | 2013-07-29 | 2014-07-11 | lonenätzvorrichtung und Bearbeitungsverfahren unter Verwendung der lonenätzvorrichtung |
US14/901,506 US10515777B2 (en) | 2013-07-29 | 2014-07-11 | Ion milling device and processing method using the ion milling device |
CN201480035014.5A CN105340050B (zh) | 2013-07-29 | 2014-07-11 | 离子铣削装置以及使用离子铣削装置的加工方法 |
JP2015529495A JP6078646B2 (ja) | 2013-07-29 | 2014-07-11 | イオンミリング装置、及びイオンミリング装置を用いた加工方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013156256 | 2013-07-29 | ||
JP2013-156256 | 2013-07-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015016039A1 true WO2015016039A1 (ja) | 2015-02-05 |
Family
ID=52431579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/068527 WO2015016039A1 (ja) | 2013-07-29 | 2014-07-11 | イオンミリング装置、及びイオンミリング装置を用いた加工方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10515777B2 (ja) |
JP (1) | JP6078646B2 (ja) |
CN (1) | CN105340050B (ja) |
DE (1) | DE112014002868B4 (ja) |
TW (1) | TWI524370B (ja) |
WO (1) | WO2015016039A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3664120A1 (en) | 2018-12-07 | 2020-06-10 | Jeol Ltd. | Vacuum cooling apparatus and ion milling apparatus |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107479330B (zh) * | 2016-06-08 | 2019-02-05 | 清华大学 | 一种采用电子束的光刻方法 |
CN107481913B (zh) * | 2016-06-08 | 2019-04-02 | 清华大学 | 一种电子束加工系统 |
CN116544088A (zh) * | 2018-02-28 | 2023-08-04 | 株式会社日立高新技术 | 离子铣削装置及离子铣削装置的离子源调整方法 |
US11227741B2 (en) | 2018-05-03 | 2022-01-18 | Plasma-Therm Nes Llc | Scanning ion beam etch |
US12176178B2 (en) | 2018-05-03 | 2024-12-24 | Plasma-Therm Nes Llc | Scanning ion beam deposition and etch |
CN112313770B (zh) * | 2018-06-22 | 2024-03-15 | 株式会社日立高新技术 | 离子铣削装置 |
WO2021038650A1 (ja) * | 2019-08-23 | 2021-03-04 | 株式会社日立ハイテク | イオンミリング装置及びそれを用いたミリング加工方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58136776A (ja) * | 1982-02-04 | 1983-08-13 | Fujitsu Ltd | 真空処理装置 |
JPH04216619A (ja) * | 1990-12-18 | 1992-08-06 | Fujitsu Ltd | 半導体製造装置 |
JPH0528943A (ja) * | 1991-07-17 | 1993-02-05 | Canon Inc | 真空装置 |
JP2010257856A (ja) * | 2009-04-28 | 2010-11-11 | Hitachi High-Technologies Corp | 加工装置、及び試料加工方法 |
JP2012033335A (ja) * | 2010-07-29 | 2012-02-16 | Hitachi High-Technologies Corp | イオンミリング装置 |
JP2012068227A (ja) * | 2010-08-25 | 2012-04-05 | Sumitomo Electric Ind Ltd | イオンミリング装置及びイオンミリング方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6828566B2 (en) | 1997-07-22 | 2004-12-07 | Hitachi Ltd | Method and apparatus for specimen fabrication |
US6238582B1 (en) * | 1999-03-30 | 2001-05-29 | Veeco Instruments, Inc. | Reactive ion beam etching method and a thin film head fabricated using the method |
JP2001284267A (ja) | 2000-04-03 | 2001-10-12 | Canon Inc | 排気処理方法、プラズマ処理方法及びプラズマ処理装置 |
US20040060899A1 (en) * | 2002-10-01 | 2004-04-01 | Applied Materials, Inc. | Apparatuses and methods for treating a silicon film |
US7791047B2 (en) * | 2003-12-12 | 2010-09-07 | Semequip, Inc. | Method and apparatus for extracting ions from an ion source for use in ion implantation |
US7789962B2 (en) * | 2005-03-31 | 2010-09-07 | Tokyo Electron Limited | Device and method for controlling temperature of a mounting table, a program therefor, and a processing apparatus including same |
WO2008098084A1 (en) * | 2007-02-06 | 2008-08-14 | Fei Company | High pressure charged particle beam system |
US20100301236A1 (en) * | 2009-05-26 | 2010-12-02 | Shih-Yung Shieh | Shorten Temperature Recovery Time of Low Temperature Ion Implantation |
JP5851951B2 (ja) | 2011-09-21 | 2016-02-03 | 東京エレクトロン株式会社 | エッチング方法、エッチング装置、および記憶媒体 |
US20140311581A1 (en) * | 2013-04-19 | 2014-10-23 | Applied Materials, Inc. | Pressure controller configuration for semiconductor processing applications |
-
2014
- 2014-07-11 US US14/901,506 patent/US10515777B2/en not_active Expired - Fee Related
- 2014-07-11 CN CN201480035014.5A patent/CN105340050B/zh active Active
- 2014-07-11 DE DE112014002868.1T patent/DE112014002868B4/de not_active Expired - Fee Related
- 2014-07-11 JP JP2015529495A patent/JP6078646B2/ja active Active
- 2014-07-11 WO PCT/JP2014/068527 patent/WO2015016039A1/ja active Application Filing
- 2014-07-18 TW TW103124759A patent/TWI524370B/zh not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58136776A (ja) * | 1982-02-04 | 1983-08-13 | Fujitsu Ltd | 真空処理装置 |
JPH04216619A (ja) * | 1990-12-18 | 1992-08-06 | Fujitsu Ltd | 半導体製造装置 |
JPH0528943A (ja) * | 1991-07-17 | 1993-02-05 | Canon Inc | 真空装置 |
JP2010257856A (ja) * | 2009-04-28 | 2010-11-11 | Hitachi High-Technologies Corp | 加工装置、及び試料加工方法 |
JP2012033335A (ja) * | 2010-07-29 | 2012-02-16 | Hitachi High-Technologies Corp | イオンミリング装置 |
JP2012068227A (ja) * | 2010-08-25 | 2012-04-05 | Sumitomo Electric Ind Ltd | イオンミリング装置及びイオンミリング方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3664120A1 (en) | 2018-12-07 | 2020-06-10 | Jeol Ltd. | Vacuum cooling apparatus and ion milling apparatus |
JP2020092053A (ja) * | 2018-12-07 | 2020-06-11 | 日本電子株式会社 | 真空冷却装置及びイオンミリング装置 |
US11043355B2 (en) | 2018-12-07 | 2021-06-22 | Jeol Ltd. | Vacuum cooling apparatus and ion milling apparatus |
Also Published As
Publication number | Publication date |
---|---|
DE112014002868B4 (de) | 2019-02-28 |
TWI524370B (zh) | 2016-03-01 |
US20160155602A1 (en) | 2016-06-02 |
JP6078646B2 (ja) | 2017-02-08 |
JPWO2015016039A1 (ja) | 2017-03-02 |
CN105340050A (zh) | 2016-02-17 |
CN105340050B (zh) | 2017-06-06 |
DE112014002868T5 (de) | 2016-03-03 |
US10515777B2 (en) | 2019-12-24 |
TW201517109A (zh) | 2015-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6078646B2 (ja) | イオンミリング装置、及びイオンミリング装置を用いた加工方法 | |
KR0165898B1 (ko) | 진공처리방법 및 장치 | |
JP4580943B2 (ja) | インシトゥーゲッターポンプ装置及び方法 | |
JP5899209B2 (ja) | ワークピース上の結露を防ぐためのアクティブ露点検出およびロードロック通気 | |
JP6313753B2 (ja) | 不活性気圧の前冷却および後加熱 | |
US10425990B2 (en) | Vacuum processing device | |
JP6267201B2 (ja) | 真空下での高速前冷却および後加熱ステーション | |
JP6590820B2 (ja) | 広温度範囲チャックに対する複数流体冷却システム | |
JP2014036142A (ja) | マイクロ波処理装置の洗浄方法 | |
JP5543601B2 (ja) | 基板加熱処理装置、基板加熱処理装置の温度制御方法、半導体デバイスの製造方法、基板加熱処理装置の温度制御プログラム及び記録媒体 | |
JP2017506828A5 (ja) | ||
JP2013089538A (ja) | 荷電粒子線装置、及び脱ガス方法 | |
JP4048837B2 (ja) | イオン源の運転方法およびイオン源装置 | |
US20230249306A1 (en) | Method and apparatus for processing substrate | |
JP2023088160A (ja) | 基板処理装置及び基板処理方法 | |
JP2005072468A (ja) | 半導体ウエハの熱処理装置 | |
JP2005083853A (ja) | 走査形プローブ顕微鏡 | |
JP2012059872A (ja) | 熱処理装置 | |
JP3949304B2 (ja) | スパッタリング処理方法と装置 | |
JPH0715352B2 (ja) | 真空加熱装置 | |
JP2005129511A (ja) | 加熱処理装置、加熱処理方法、および画像表示装置の製造方法 | |
JP2005167107A (ja) | 半導体製造装置及び半導体装置の製造方法 | |
WO2021039218A1 (ja) | 基板を処理する方法および装置 | |
JP2022119452A (ja) | 処理装置 | |
JP2009295793A (ja) | 基板処理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480035014.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14832324 Country of ref document: EP Kind code of ref document: A1 |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2015529495 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14901506 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112014002868 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14832324 Country of ref document: EP Kind code of ref document: A1 |