[go: up one dir, main page]

WO2015004751A1 - 多翼送風機 - Google Patents

多翼送風機 Download PDF

Info

Publication number
WO2015004751A1
WO2015004751A1 PCT/JP2013/068872 JP2013068872W WO2015004751A1 WO 2015004751 A1 WO2015004751 A1 WO 2015004751A1 JP 2013068872 W JP2013068872 W JP 2013068872W WO 2015004751 A1 WO2015004751 A1 WO 2015004751A1
Authority
WO
WIPO (PCT)
Prior art keywords
intermediate support
impeller
blade
centrifugal
suction port
Prior art date
Application number
PCT/JP2013/068872
Other languages
English (en)
French (fr)
Inventor
加藤 康明
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2013/068872 priority Critical patent/WO2015004751A1/ja
Priority to JP2015526063A priority patent/JP6038321B2/ja
Priority to EP13889271.6A priority patent/EP3020978B1/en
Publication of WO2015004751A1 publication Critical patent/WO2015004751A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • F04D29/282Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • F04D29/282Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis
    • F04D29/283Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis rotors of the squirrel-cage type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/663Sound attenuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/666Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by means of rotor construction or layout, e.g. unequal distribution of blades or vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/301Cross-sectional characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a multiblade fan.
  • a multiblade blower is a blower designed to obtain a large flow rate based on a centrifugal blower.
  • the inner / outer diameter ratio of the blade is relatively large. Since the inner / outer diameter ratio is large, the length of the blade viewed in a cross section horizontal to the rotating shaft is shortened, so the number of blades is increased to prevent separation.
  • the impeller provided in the multiblade blower has a plurality of elongated blades arranged in the circumferential direction, and becomes a cylindrical shape as a whole when viewed from the rotation trajectory.
  • the circular end surface region on one side or both sides of the cylinder serves as a suction port, and the airflow from the suction port passes between the blades and flows out from the cylindrical side region called a columnar shape.
  • Non-Patent Document 1 In order to obtain a larger flow rate at a predetermined impeller diameter and rotation speed, it is necessary to increase the dimension in the direction of the rotation axis. When the dimension in the direction of the rotation axis is increased, there arises a problem that a sufficient flow rate is not supplied to a region of the blade far from the suction port. Therefore, in the technical document of Non-Patent Document 1, it is considered that the dimensional ratio in the direction of the rotation axis with respect to the outer diameter of the impeller is around 0.5.
  • an axial fan is provided inside an impeller of a multiblade blower as a device for supplying a flow to a blade away from the suction port in the rotation axis direction.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a multiblade fan capable of obtaining a high flow rate while suppressing noise.
  • a multiblade fan of the present invention includes a casing having a suction port and an impeller rotatably provided in the casing, and the impeller is fixed to a drive shaft.
  • the blade inlet angle in the region downstream of the intermediate support in the centrifugal blades is larger than the blade inlet angle in the region upstream of the intermediate support in the plurality of centrifugal blades.
  • the intermediate support has a plurality of connecting portions, and the plurality of connecting portions extend radially outward from the drive shaft, and the plurality of connecting portions have an axial flow. It has a fan blade shape.
  • the distance from the suction port side end of the impeller to the connection position of the intermediate support is about 0.5 to 1.0 times the outer diameter of the impeller.
  • the dimension of the impeller in the rotation axis direction is 1.0 to 1.5 times the outer diameter of the impeller.
  • the multiblade fan of the present invention a high flow rate can be obtained while suppressing noise.
  • FIG. 3 is a view showing a cross section taken along line III-III in FIG. 2.
  • FIG. 4 is a view showing a cross section taken along line IV-IV in FIG. 2.
  • FIG. 6 is a view showing a cross section taken along line VI-VI in FIG. 5.
  • FIG. 6 is a view showing a cross section taken along line VII-VII in FIG. 5.
  • FIG. 1 is an external view of a multiblade blower according to Embodiment 1 of the present invention, and shows a state when a suction port, which will be described later, is a paper surface side and is viewed toward the suction port.
  • FIG. 2 is a cross-sectional view of the multiblade blower taken along line II-II in FIG.
  • the multiblade blower 1 is a blower used for, for example, an air conditioner or a ventilation fan, and includes a casing 2, an impeller 3, and a drive motor 4 as a drive source.
  • the drive motor 4 and the impeller 3 share the rotation shaft 5.
  • a direction parallel to the rotation axis 5 is referred to as a rotation axis direction
  • a linear radial direction having the rotation axis 5 as an end point on a plane having the rotation axis 5 as a perpendicular is referred to as a radial direction.
  • the side closer to is the inner peripheral side, and the far side is the outer peripheral side.
  • the casing 2 is, for example, a scroll-type casing, and has a suction port 6, a scroll wall 7, and a blowout port 8.
  • the scroll wall 7 forms a scroll shape that becomes an enlarged air passage in a cross section perpendicular to the rotation shaft 5.
  • the suction port 6 is an opening formed by a bell mouth-like annular portion.
  • the suction port 6 is on one side surface of the casing 2, and the rotating shaft 5 extends so as to pass through the center of the opening.
  • the outlet 8 is formed on the scroll-shaped surface of the casing 2 in the turning direction.
  • the drive motor 4 is disposed outside the side surface of the casing 2 opposite to the suction port 6.
  • a motor shaft 9 of the drive motor 4 extends through the casing 2 and along the rotary shaft 5 in the casing 2.
  • the motor shaft 9 that is a drive shaft protrudes toward the suction port 6.
  • the impeller 3 is a centrifugal fan such as a sirocco fan, and has a plurality of centrifugal blades 11 and a substantially disk-shaped main plate 10 and is accommodated in the casing 2.
  • the main plate 10 is fixed to the motor shaft 9 in the vicinity of the inner wall surface of the casing 2 opposite to the suction port 6.
  • the plurality of centrifugal blades 11 are elongated along the direction of the rotation axis 5 and are positioned so as to form a cylindrical shape.
  • the plurality of centrifugal blades 11 are arranged along the periphery of the main plate 10 and are arranged so as to form an annular shape with an equal angular interval.
  • An annular member 12 for reinforcement is fitted to the end of the plurality of centrifugal blades 11 on the suction port 6 side. Since the outer ring 15 covers the outer periphery of the centrifugal blade 11, the outer diameter of the outer ring 15 is larger than the outer diameter of the centrifugal blade 11.
  • an intermediate support 16 is disposed in the internal space (the radial inner space) of the plurality of centrifugal blades 11 having a cylindrical shape.
  • the intermediate support 16 is positioned between the main plate 10 and the suction port 6 and is supported by the motor shaft 9.
  • the intermediate support 16 includes an annular hub 13, a plurality of connecting portions 14, and an outer peripheral ring 15.
  • the hub 13 is fixed near the tip of the motor shaft 9, and the plurality of connecting portions 14 extend radially from the rotary shaft 5, and more specifically, are provided radially on the outer periphery of the hub 13.
  • the outer peripheral ring 15 is provided so as to connect the radially outer sides of the plurality of connecting portions 14.
  • the centrifugal blade 11 is also held by an intermediate support 16 connected from the motor shaft 9 at a substantially intermediate position in the direction of the rotation shaft 5.
  • FIGS. 3 and 4 are views showing the blade shape related to the centrifugal blade.
  • FIGS. 3 and 4 show cross sections of the centrifugal blades along arrows III and IV, respectively, in FIG.
  • An arrow 17 indicates the direction of rotation.
  • the shape of the centrifugal blade 11 is different between the upstream region (illustrated in FIG. 3) and the downstream region (illustrated in FIG. 4) of the intermediate support 16.
  • the inlet side (inner peripheral side) end point of the centrifugal blade 11 is referred to as a leading edge 18.
  • a straight line 20 that intersects with the straight line 19 passing through the rotating shaft 5 and the front edge 18 at right angles and extends rearward in the rotational direction 17 is considered, the angle formed between the tangent line 21 at the front edge 18 and the straight line 20 described above. Is referred to as blade inlet angle ⁇ b1.
  • the blade inlet angle ⁇ b1 (shown in FIG. 4) in the downstream region of the intermediate support 16 in the centrifugal blade 11 is the upstream region of the intermediate support 16 in the centrifugal blade 11. Is larger than the blade inlet angle ⁇ b1 (shown in FIG. 3).
  • the arrows shown below the front edge 18 (rotation shaft side) of the blade cross section of each blade are speed triangles for explaining the flow state on the inlet side of the centrifugal blade 11.
  • the flow that flows into the impeller 3 from the suction port 6 of the casing 2 and travels along the rotary shaft 5 receives a force in the rotational direction from the connecting portion 14 when passing through the intermediate support 16.
  • the swirl direction component c 1 ⁇ parallel to the inlet peripheral speed u 1 in the absolute flow c 1 flowing into the centrifugal blade 11 is the region upstream of the intermediate support 16.
  • the swirl direction component c1 ⁇ is larger. Therefore, the relative flow w1 flowing into the centrifugal blade 11 is also different, and the centrifugal blade 11 has a smaller inflow angle ⁇ 1 in the region downstream of the intermediate support 16 than in the region upstream of the intermediate support 16. Flow into.
  • the blade inlet angle ⁇ b1 in the downstream region of the intermediate support 16 in the centrifugal blade 11 is set to be greater than the blade inlet angle ⁇ b1 in the upstream region of the intermediate support 16 in the centrifugal blade 11. Since it is enlarged, the angle incident on the leading edge 18 of the centrifugal blade 11 can be made appropriate also on the downstream side of the intermediate support 16. As a result, a decrease in the blowing performance due to an inappropriate angle incident on the centrifugal blade 11 is reduced. As a result, it is possible to obtain the multiblade blower 1 with a large flow rate and low noise.
  • FIG. 5 is an external view of the multiblade blower 1 according to the second embodiment, and shows a state in which the suction port 6 is viewed from the paper surface side and viewed toward the suction port.
  • FIG. 6 is a diagram showing the shape of the connecting portion 14 of the intermediate support 16 related to the second embodiment, and shows an arcuate cross section centered on the rotating shaft 5 in a flat shape. 6 corresponds to a cross section taken along the arrow IV in FIG. 6 is the suction port 6 side, the lower side of the paper is the main plate 10 side, and the direction from the right side to the left side (arrow 17) is the rotation direction of the impeller 3.
  • the second embodiment is the same as the first embodiment except for the parts described below.
  • the connecting portion 14 is plate-shaped, and the end portion on the suction side in FIG. 5 is called an upstream end 22, and the end portion on the opposite side to the suction side is called a downstream end 23.
  • the upstream end 22 is located forward of the downstream end 23 in the rotational direction. That is, the blade shape of the axial fan is such that the suction port 6 side above the paper surface is upstream and the paper surface lower side is downstream.
  • the cross section of the connecting portion 14 of the intermediate support 16 has a wing shape, and the connecting portion 14 acts as an axial flow fan.
  • the connecting portion 14 acts as an axial flow fan.
  • an angle formed by a straight line (chord line) 24 passing through the upstream end 22 and the downstream end 23 and a straight line 25 parallel to the rotation axis is referred to as a stagger angle ⁇ . It is desirable to reduce the stagger angle ⁇ when the radius around the rotation axis is small, and increase the stagger angle ⁇ when the radius is large.
  • the peripheral speed of rotation around the rotation axis 5 increases as the distance (radius) from the rotation axis increases.
  • the wind speed of the air traveling in the impeller 3 along the rotational axis direction does not vary greatly depending on the radial position.
  • the stagger angle ⁇ of the connecting portion 14 in accordance with the increase in radius, the angle between the shape of the connecting portion 14 and the relative flow of air viewed from the connecting portion 14 is shifted through the connecting portion 14.
  • the turbulence of the air can be reduced.
  • an increase in noise caused by a turbulent flow downstream of the connecting portion 14 flowing into the centrifugal blade 11 of the impeller 3 can be reduced.
  • FIG. 7 is a diagram for explaining the dimensions of the impeller.
  • the outer diameter of the impeller 3 is D1
  • the dimension of the impeller 3 in the direction of the rotation axis 5 is L1
  • the distance from the end of the impeller 3 on the suction port 6 side to the intermediate support 16 is L2
  • the intermediate support in the impeller 3 The distance from the tool 16 to the main plate 10 is L3.
  • the dimension in the rotational axis direction of a conventional general multiblade fan that does not have the intermediate support 16 functioning as an axial fan is appropriate up to about 0.5 times D1 as described in the technical literature. It is said that.
  • the distance L2 from the end of the impeller 3 on the suction port 6 side to the connection position of the intermediate support 16 is D1.
  • About 0.5 to 1.0 times is reasonable.
  • the distance from the connection position of the intermediate support 16 to the main plate 10 in the impeller 3 is reasonable up to about 0.5 times D1.
  • the dimension L1 in the direction of the impeller 3 rotation shaft 5 is suitably about 1.0 to 1.5 times D1.
  • the size of the impeller 3 in the multi-blade blower 1 in the direction of the rotary shaft 5 can be increased by the action of the impeller 3, but in general, the size in the direction of the rotary shaft is large.
  • the connecting portion 14 connects the motor shaft 9 and the centrifugal blade 11, that is, in addition to the main plate 10, the intermediate plate is spaced apart from the main plate 10.
  • the centrifugal blade 11 can also be held by the tool 16. Therefore, since the connecting portion 14 of the intermediate support 16 that contributes to an increase in flow rate and noise reduction also contributes to the support of the impeller 3, the advantage of being able to suppress the shake during rotation with respect to the above problems. Has also been obtained.
  • 1 multi-blade blower 2 casing, 3 impeller, 5 rotating shaft, 6 suction port, 9 motor shaft (drive shaft), 10 main plate, 11 centrifugal blade, 14 connecting part, 16 intermediate support.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

 多翼送風機における羽根車3は、複数の遠心翼11を有し、遠心翼の内部空間には、主板10と吸込み口6との間に位置して、駆動軸に支持された中間支持具16が配置されており、複数の遠心翼は、主板によって保持されていることに加え、中間支持具によっても保持されており、複数の遠心翼における中間支持具の下流側の領域の翼入口角は、該複数の遠心翼における該中間支持具の上流側の領域の翼入口角よりも大きい。

Description

多翼送風機
 本発明は、多翼送風機に関するものである。
 多翼送風機は、遠心送風機を基に多くの流量を得ようとして工夫された送風機である。吸込み口径を大きくするために翼の内外径比が、比較的大きい。内外径比が大きいために回転軸に水平な断面で見た翼の長さが短くなるので、剥離を防ぐために翼枚数を多くしている。また一定周速で有効ヘッドを大きくするために、前向き羽根を採用して、出口絶対速度を高め、高い動圧を静圧に変化するためにスクロールケーシングを備えるのが一般的である。構造が簡単で製作費が低いため、一般産業用、空調用などに広く使用されている。
 多翼送風機に設けられた羽根車は、複数の細長い翼を周方向に配列し、回転軌跡でみると全体として円柱状となる。円柱の片側または両側の円形状の端面領域が吸込み口となり、吸込み口からの気流が翼間を通り円柱状でいう円筒状の側面領域から流出する。
 所定の羽根車径、回転数でより多くの流量を得るためには回転軸方向の寸法を大きくする必要がある。回転軸方向の寸法を大きくした場合に、翼における吸込み口から遠い領域に十分な流量が供給されない問題が生ずる。そのため、非特許文献1の技術文献においては、羽根車の外径に対する回転軸方向の寸法比は、0.5前後が妥当とされている。
 また、従来の多翼送風機では、モータを羽根車の内部に挿入した形状において、モータが流れを阻害してしまう問題に対応したものがある。特許文献1には、吸込み口から回転軸方向に離れた翼に対し流れを供給するための工夫として、多翼送風機の羽根車の内部に軸流ファンを設けている。
特開2007-231863号公報(第2頁、第3図)
生井武文の著作、株式会社コロナ社出版による「ターボ送風機と圧縮機」、昭和63年8月25日、P295
 上記の先行技術を応用し、回転軸方向の寸法の大きい多翼送風機の中に軸流ファンを備えることによって、翼における吸込み口から遠い領域への供給流量の増加を図ることは可能である。
 しかしながら、軸流ファンを通過する流れは、軸流ファンから旋回成分を付与されるため、軸流ファンの前後で流れのベクトルが異なる。そのため、軸流ファンの上流側において、翼への流入と翼形状とが適切であっても、軸流ファンの下流側では、翼への流入と翼形状とが適切にならず、多翼送風機の回転軸方向の寸法に応じた流量が得られないという課題が生じる。さらに、翼への流入と翼形状とが適切でないために、翼入口部での剥離が大きくなり騒音が大きくなるという課題も生じる。
 本発明は、上記のような課題を解決するためになされたもので、騒音を抑えつつ高い流量を得ることができる、多翼送風機を提供することを目的とする。
 上述した目的を達成するため、本発明の多翼送風機は、吸込み口を有するケーシングと、前記ケーシング内に回転可能に設けられた羽根車とを備え、前記羽根車は、駆動軸に固定された主板と、円筒状をなすように位置した複数の遠心翼とを有し、前記複数の遠心翼の内部空間には、中間支持具が配置されており、前記中間支持具は、前記主板と前記吸込み口との間に位置して、前記駆動軸に支持されており、前記複数の遠心翼は、前記主板によって保持されていることに加え、前記中間支持具によっても保持されており、前記複数の遠心翼における前記中間支持具の下流側の領域の翼入口角は、該複数の遠心翼における該中間支持具の上流側の領域の翼入口角よりも大きい。
 好適には、前記中間支持具は、複数の繋ぎ部を有しており、前記複数の繋ぎ部は、前記駆動軸から径方向外側に放射状に延びており、前記複数の繋ぎ部は、軸流ファンの翼形状を有する。
 好適には、前記羽根車における吸込み口側の端部から前記中間支持具の接続位置までの距離は、該羽根車の外径の約0.5から1.0倍である。
 好適には、前記羽根車の回転軸方向の寸法は、該羽根車の外径の1.0倍から1.5倍である。
 本発明の多翼送風機によれば、騒音を抑えつつ高い流量を得ることができる。
本発明の実施の形態1に係る多翼送風機の外観図である。 図1のII-II線による断面を示す図である。 図2のIII-III線による断面を示す図である。 図2のIV-IV線による断面を示す図である。 本発明の実施の形態2に係る多翼送風機の外観図である。 図5のVI-VI線による断面を示す図である。 図5のVII-VII線による断面を示す図である。
 以下、本発明に係る多翼送風機の実施の形態について添付図面に基づいて説明する。なお、図中、同一符号は同一又は対応部分を示すものとする。
 実施の形態1.
 図1は、本発明の実施の形態1に係る多翼送風機の外観図であり、後述する吸込み口を紙面表面側とし吸込み口に向かって見た状態を示している。図2は、かかる図1のII-II線による多翼送風機の断面を示す図である。
 多翼送風機1は、例えば空調機や換気扇等に使用される送風機であり、ケーシング2と、羽根車3と、駆動源である駆動モータ4とを備える。駆動モータ4と羽根車3とは、回転軸5を共有する。説明においては、回転軸5と平行な方向を回転軸方向と呼び、回転軸5を垂線とする面において回転軸5を端点とした直線の放射方向を径方向と呼び、径方向の回転軸5に近い側を内周側、遠い方を外周側とする。
 ケーシング2は、例えばスクロール型ケーシングであり、吸込み口6と、スクロール壁7と、吹出し口8とを有している。スクロール壁7は、回転軸5に垂直な断面において拡大風路となるスクロール形状を形成する。吸込み口6は、ベルマウス状の環状部により形成された開口である。吸込み口6は、ケーシング2の一方の側面にあり、その開口の中心を通るように回転軸5が延びている。吹出し口8は、ケーシング2のスクロール形状の旋回方向の面に形成される。
 駆動モータ4は、ケーシング2における吸込み口6と反対側の側面の外に配置されている。駆動モータ4のモータシャフト9は、ケーシング2を貫通して、ケーシング2内を回転軸5に沿って延びている。また、駆動軸であるモータシャフト9は、吸込み口6に向けて突出している。
 羽根車3は、シロッコファン等の遠心式ファンであり、複数の遠心翼11と、略円盤状の主板10とを有しており、ケーシング2に収納されている。主板10は、吸込み口6と反対側のケーシング2の内壁面の近傍において、モータシャフト9に固定されている。
 複数の遠心翼11は、回転軸5方向に沿って細長く延びており、円筒状をなすように位置している。また、複数の遠心翼11は、主板10の周囲に沿って配置されており、等角度間隔で離隔して環状をなすように配列されている。複数の遠心翼11における、吸込み口6側の端部には、補強用の環状部材12が嵌め合わされている。外周リング15が遠心翼11の外周側を覆う形状となっているから、外周リング15の外径は、遠心翼11の外径よりも大きい。
 また、円筒状をなす複数の遠心翼11の内部空間(径方向内側空間)には、中間支持具16が配置されている。中間支持具16は、主板10と、吸込み口6との間に位置しており、さらに、モータシャフト9に支持されている。中間支持具16は、環状のハブ13と、複数の繋ぎ部14と、外周リング15とを有している。ハブ13は、モータシャフト9の先端近傍に固定されており、複数の繋ぎ部14は、回転軸5から放射状に延びており、より詳細には、ハブ13の外周に放射状に設けられている。外周リング15は、複数の繋ぎ部14の径方向外側を接続するように設けられている。遠心翼11は、回転軸5方向の概ね中間位置において、モータシャフト9から繋がる中間支持具16によっても保持されている。
 本実施の形態1の特徴の一つである、遠心翼11の翼形状について図3及び図4を用いて説明する。図3及び図4は遠心翼に関する翼形状を示す図である。より詳細には、図3及び図4はそれぞれ、図2の矢印III及び矢印IVに沿う遠心翼の断面を示す。矢印17は回転方向を示す。
 本実施の形態1に係る多翼送風機では、遠心翼11の形状が、中間支持具16の上流側領域(図3に図示)と下流側領域(図4に図示)とで異なる。
 遠心翼11の入口側(内周側)端点を前縁端18と呼ぶ。回転軸5と前縁端18とを通る直線19と直角に交わり且つ回転方向17の後方側に延びる直線20を観念したとき、前縁端18における接線21と、前述の直線20とが成す角を翼入口角βb1と呼ぶ。
 本実施の形態1の多翼送風機では、遠心翼11における中間支持具16の下流側の領域の翼入口角βb1(図4に図示)を、遠心翼11における中間支持具16の上流側の領域の翼入口角βb1(図3に図示)よりも大きくしている。
 次に多翼送風機1の動作について説明する。
 この多翼送風機では、駆動モータ4が運転されると、モータシャフト9、主板10、ハブ13を介して遠心翼11が回転する。それにより、外部の空気が吸込み口6から羽根車3の内部に吸込まれ、羽根車3の昇圧作用によりケーシング2内に吹出され、ケーシング2のスクロール壁7で形成される拡大風路により減速、静圧回復して、吹出し口8から外部に吹出される。これにより送風が行われる。
 図3及び図4それぞれの翼断面の前縁端18の下方(回転軸側)に図示した矢印は、遠心翼11の入口側の流れ状態を説明するための速度三角形である。ケーシング2の吸込み口6から羽根車3に流入し回転軸5に沿った流れは、中間支持具16を通過する際に、繋ぎ部14から回転方向に力を受ける。その結果、遠心翼11における中間支持具16の下流側の領域では、遠心翼11へ流入する絶対流れc1における入口周速u1と平行な旋回方向成分c1θが、中間支持具16の上流側の領域での、遠心翼11へ流入する絶対流れc1における旋回方向成分c1θよりも大きくなる。そのため、遠心翼11へ流入する相対流れw1も異なり、中間支持具16よりも下流側の領域では、中間支持具16よりも上流側の領域よりも、流入角β1が小さくなる様態で遠心翼11へ流入する。
 このように本実施の形態1では、遠心翼11における中間支持具16の下流側の領域の翼入口角βb1を、遠心翼11における中間支持具16の上流側の領域の翼入口角βb1よりも大きくしているため、中間支持具16の下流側においても、遠心翼11の前縁端18へ入射する角度を適正にすることができる。これによって、遠心翼11へ入射する角度が不適当になることによる送風性能の低下が小さくなる。その結果、流量が大きく確保され、騒音が小さい多翼送風機1を得ることができる。
 実施の形態2.
 次に本実施の形態2について、図5、図6、図7を用いて説明する。図5は実施の形態2における多翼送風機1の外観図であり、吸込み口6を紙面表面側とし、吸込み口に向かって見た状態を示している。図6は、本実施の形態2に関する中間支持具16の繋ぎ部14の形状を示す図であり、回転軸5を中心とした弧状断面を平面状に展開して示している。また、図6は図5の矢印IVに沿う断面に相当する。図6の紙面上方が吸込み口6側、紙面下方が主板10側となり、紙面右側から左側に向かう向き(矢印17)が羽根車3の回転方向である。また、本実施の形態2は、以下に説明する部分を除いては、実施の形態1と同様であるものとする。
 繋ぎ部14は板状であり、図5における吸込み側の端部を上流端22と呼び、吸込み側と反対側の端部を下流端23と呼ぶ。図5において、上流端22は下流端23よりも回転方向前方に位置する。つまり紙面上方の吸込み口6側を上流、紙面下方側を下流とする軸流ファンの翼形状となっている。
 本実施の形態2の多翼送風機では、中間支持具16の繋ぎ部14の断面が翼形状を有しており、繋ぎ部14が軸流ファンとして作用するので、外部の空気を吸込み口6から主板10の側へ搬送する能力が高く、羽根車3の回転軸方向寸法が大きい場合でも、遠心翼11における、主板10の近くの領域にまで空気を供給できる。高風量を得るために回転軸方向寸法を大きくした多翼送風機においても、遠心翼を通過する空気の量を回転軸方向で均一化でき、局所的に流速が高くなることによる騒音増加を小さくすることができる。そのため本実施の形態の送風機によれば、流量が大きく、騒音が小さい多翼送風機を得ることができる。
 軸流ファンとして作用する繋ぎ部14の形状ついて補足する。図6において、上流端22及び下流端23を通る直線(弦線)24と、回転軸と平行な直線25とが成す角を食違角γと呼ぶ。回転軸を中心とした半径が小さい場合に食違角γを小さく、半径が大きい場合に食違角γを大きくすることが望ましい。
 回転軸5を中心とした回転の周速は、回転軸との距離(半径)が大きい位置ほど高くなる。一方、羽根車3の中を回転軸方向に沿って進む空気の風速(図6の紙面上方から下方への風速)は半径位置による変化は大きくない。
 そのため、繋ぎ部14の食違角γを半径の増加に合わせて大きくすることにより、繋ぎ部14の形状と繋ぎ部14から見た空気の相対流れとの角度がずれることによる繋ぎ部14を通過する空気の乱れを小さくすることができる。その結果、繋ぎ部14の後流の乱れた流れが羽根車3の遠心翼11に流入することによる騒音増加を小さくすることができる。
 図7を用いて羽根車3の寸法、位置に関し補足する。図7は、羽根車の寸法を説明する図である。羽根車3の外径をD1、羽根車3の回転軸5方向の寸法をL1、羽根車3における吸込み口6側の端部から中間支持具16までの距離をL2、羽根車3における中間支持具16から主板10までの距離をL3とする。
 軸流ファンとして機能する中間支持具16を有しない従来の一般的な多翼送風機の回転軸方向の寸法は、前述した技術文献にも記載があるようにD1の0.5倍程度までが適正とされている。本実施の形態2の多翼送風機1は、中間支持具16の昇圧能力が加わるため、羽根車3における吸込み口6側の端部から中間支持具16の接続位置までの距離L2は、D1の約0.5から1.0倍までが妥当である。また、羽根車3における中間支持具16の接続位置から主板10までの距離は、D1の約0.5倍までが妥当である。よって羽根車3回転軸5方向の寸法L1は、D1の約1.0倍から1.5倍が適当である。
 また、上記のように、羽根車3の作用により、多翼送風機1における羽根車3の回転軸5方向の寸法を大きくすることができるが、一般的には、回転軸方向の寸法が大きい場合には、回転により翼に生じる遠心力や、羽根車の重心と回転軸とのずれ等により、回転時の羽根車のぶれが大きくなり易いという問題がある。しかしながら、本実施の形態2の多翼送風機1では、繋ぎ部14が、モータシャフト9と遠心翼11とを接続しており、つまり、主板10に加え、主板10と距離をおいて、中間支持具16によっても遠心翼11を保持することができる。よって、流量増加や騒音低減に貢献する中間支持具16の繋ぎ部14が羽根車3の支持にも寄与するため、上記のような問題に対し、回転時のぶれを小さく抑えることができるという利点も得られている。
 以上、好ましい実施の形態を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の改変態様を採り得ることは自明である。
 1 多翼送風機、2 ケーシング、3 羽根車、5 回転軸、6 吸込み口、9 モータシャフト(駆動軸)、10 主板、11 遠心翼、14 繋ぎ部、16 中間支持具。

Claims (4)

  1.  吸込み口を有するケーシングと、
     前記ケーシング内に回転可能に設けられた羽根車とを備え、
     前記羽根車は、駆動軸に固定された主板と、円筒状をなすように位置した複数の遠心翼とを有し、
     前記複数の遠心翼の内部空間には、中間支持具が配置されており、
     前記中間支持具は、前記主板と前記吸込み口との間に位置して、前記駆動軸に支持されており、
     前記複数の遠心翼は、前記主板によって保持されていることに加え、前記中間支持具によっても保持されており、
     前記複数の遠心翼における前記中間支持具の下流側の領域の翼入口角は、該複数の遠心翼における該中間支持具の上流側の領域の翼入口角よりも大きい、
    多翼送風機。
  2.  前記中間支持具は、複数の繋ぎ部を有しており、
     前記複数の繋ぎ部は、前記駆動軸から径方向外側に放射状に延びており、
     前記複数の繋ぎ部は、軸流ファンの翼形状を有する、
    請求項1の多翼送風機。
  3.  前記羽根車における吸込み口側の端部から前記中間支持具の接続位置までの距離は、該羽根車の外径の約0.5から1.0倍である、
    請求項2の多翼送風機。
  4.  前記羽根車の回転軸方向の寸法は、該羽根車の外径の1.0倍から1.5倍である、
    請求項3の多翼送風機。
PCT/JP2013/068872 2013-07-10 2013-07-10 多翼送風機 WO2015004751A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2013/068872 WO2015004751A1 (ja) 2013-07-10 2013-07-10 多翼送風機
JP2015526063A JP6038321B2 (ja) 2013-07-10 2013-07-10 多翼送風機
EP13889271.6A EP3020978B1 (en) 2013-07-10 2013-07-10 Multi-blade fan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/068872 WO2015004751A1 (ja) 2013-07-10 2013-07-10 多翼送風機

Publications (1)

Publication Number Publication Date
WO2015004751A1 true WO2015004751A1 (ja) 2015-01-15

Family

ID=52279476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068872 WO2015004751A1 (ja) 2013-07-10 2013-07-10 多翼送風機

Country Status (3)

Country Link
EP (1) EP3020978B1 (ja)
JP (1) JP6038321B2 (ja)
WO (1) WO2015004751A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06129388A (ja) * 1992-10-16 1994-05-10 Matsushita Seiko Co Ltd 送風機
JPH10141296A (ja) * 1996-11-12 1998-05-26 Kubota Corp 送風機
JP2001271791A (ja) * 2000-03-27 2001-10-05 Matsushita Seiko Co Ltd 多翼ファン
JP2007231863A (ja) 2006-03-02 2007-09-13 Toshiaki Nakayama 羽根車の保持リングを軸流ファン構造とするシロッコファン

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE6801835U (de) * 1968-10-11 1969-01-30 Punker Gmbh Radialluefterlaufrad
JPH08135596A (ja) * 1994-11-10 1996-05-28 Daikin Ind Ltd 遠心送風機用羽根車
US6345956B1 (en) * 1998-07-14 2002-02-12 Delta Electronics, Inc. Impeller of a blower having air-guiding ribs with geometrical configurations

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06129388A (ja) * 1992-10-16 1994-05-10 Matsushita Seiko Co Ltd 送風機
JPH10141296A (ja) * 1996-11-12 1998-05-26 Kubota Corp 送風機
JP2001271791A (ja) * 2000-03-27 2001-10-05 Matsushita Seiko Co Ltd 多翼ファン
JP2007231863A (ja) 2006-03-02 2007-09-13 Toshiaki Nakayama 羽根車の保持リングを軸流ファン構造とするシロッコファン

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKEFUMI IKUI: "Turbo Blower and Compressor", 25 August 1988, CORONA PUBLISHING CO., LTD., pages: 295

Also Published As

Publication number Publication date
EP3020978B1 (en) 2019-07-10
JP6038321B2 (ja) 2016-12-07
JPWO2015004751A1 (ja) 2017-02-23
EP3020978A1 (en) 2016-05-18
EP3020978A4 (en) 2017-03-15

Similar Documents

Publication Publication Date Title
JP5230805B2 (ja) 多翼送風機
WO2016068280A1 (ja) 送風装置および掃除機
CN107850083B (zh) 送风机和搭载有该送风机的空调装置
EP3452727B1 (en) Inlet for axial fan
WO2012008238A1 (ja) 多翼遠心ファンおよびそれを用いた空気調和機
JP4830519B2 (ja) 遠心ファン
CN104981365B (zh) 车辆用空调装置的室外冷却单元
JP5879363B2 (ja) 多翼ファン及びこれを備えた空気調和機
JP6250145B2 (ja) 遠心送風機及び電気掃除機
CN102644625A (zh) 空调系统的涡轮风扇
WO2017026143A1 (ja) 送風機および空気調和装置
JP5682751B2 (ja) 多翼送風機
WO2020161850A1 (ja) 遠心送風機及びそれを用いた空気調和機
CN110914553B (zh) 叶轮、送风机及空调装置
JP2008232049A (ja) 遠心羽根車と遠心送風機
JP2019113037A (ja) 多翼遠心ファン
JP2000314394A (ja) 送風機
JP6038320B2 (ja) 多翼送風機
JP6038321B2 (ja) 多翼送風機
JP2019127865A (ja) 遠心ファン
JP2014139412A (ja) 多翼遠心ファン及びこれを備えた多翼遠心送風機
KR20170116754A (ko) 고정압 원심임펠러
JP5022185B2 (ja) 遠心式多翼送風機
CN114008326B (zh) 轴流风扇
JP2023156170A (ja) 遠心ファン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889271

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015526063

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013889271

Country of ref document: EP