[go: up one dir, main page]

WO2015002184A1 - Biosensor - Google Patents

Biosensor Download PDF

Info

Publication number
WO2015002184A1
WO2015002184A1 PCT/JP2014/067510 JP2014067510W WO2015002184A1 WO 2015002184 A1 WO2015002184 A1 WO 2015002184A1 JP 2014067510 W JP2014067510 W JP 2014067510W WO 2015002184 A1 WO2015002184 A1 WO 2015002184A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
group
mediator
enzyme
hydrophilic polymer
Prior art date
Application number
PCT/JP2014/067510
Other languages
French (fr)
Japanese (ja)
Inventor
純 ▲高▼木
勝重 小谷
功二 田中
淳典 平塚
典子 佐々木
一道 小澤
憲二 横山
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2015002184A1 publication Critical patent/WO2015002184A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels

Definitions

  • the present invention relates to a biosensor using an electrochemical method.
  • An electrochemical biosensor for example, a glucose sensor such as a blood glucose level sensor
  • a slit 41 for forming a cavity on an electrode layer including a working electrode 21 and a counter electrode 22 formed on an insulating substrate 1.
  • a reagent enzyme, mediator, etc.
  • the cover layer 5 is formed on the spacer 4. It has a bonded structure (see FIG. 1).
  • the operating principle of the biosensor is as follows. First, a sample (blood or the like) is introduced into a groove (slit 41) formed in the spacer 4. A component (such as glucose) contained in the specimen reduces the mediator through the enzyme. Here, when a predetermined voltage is applied between the working electrode 21 and the counter electrode 22, the reduced mediator is reversely oxidized by an electrochemical reaction. By measuring the oxidation current generated at this time, the amount of the component of interest can be detected.
  • Patent Document 1 JP-A-1-134242
  • Patent Document 2 JP-A 2002-207022
  • Patent Document 3 JP-A 2009-244012
  • Sectional schematic diagrams of the reagent structure are shown in FIGS. 15 (a) to 15 (c), respectively.
  • the CMC layer has a function of filtering blood cells and preventing adsorption of proteins to the electrode surface.
  • a layer containing an enzyme and an electron acceptor (mediator) is formed on the CMC layer via a porous film or the like (not shown).
  • the biosensor disclosed in Patent Document 2 has a one-layer structure in which a reagent layer containing an enzyme, an electron carrier (mediator) and a hydrophilic polymer (such as CMC) is formed on an electrode layer. is there.
  • a first reaction layer containing an electron carrier (mediator) and a hydrophilic polymer (such as CMC) is formed on an electrode layer
  • a second reaction layer containing an enzyme and a hydrophilic polymer (such as CMC) is formed on the upper side (electrode layer side) separated from the first reaction layer.
  • the hydrophilic polymer functions to filter blood cells and prevent adsorption of proteins to the electrode surface.
  • the hydrophilic polymer immobilizes mediators. It functions as an agent.
  • the enzyme and the mediator are separated by providing a space between them, so that it is considered that the above reduction is suppressed.
  • the hydrophilic polymer such as CMC also has an action of reducing the mediator, and the CMC reduces the mediator in the first reaction layer on the electrode layer side. Turned out to increase. Note that this phenomenon is thought to be due to the nucleophilic attack of the functional group containing oxygen with a double bond on the mediator and electron donation.
  • the current value detected by the blood glucose meter during actual measurement is larger than the actual value (only for the enzyme reaction).
  • the reduction of the mediator proceeds greatly and the increase in background current becomes significant.
  • the background current is corrected, the fluctuation of the background current increases due to the increase of the background current, so that the measurement accuracy is lowered.
  • the present invention has been made in view of the above problems, and provides a biosensor capable of suppressing an increase in background current due to reduction of a mediator before use in a storage state or the like and suppressing a decrease in measurement accuracy. The purpose is to do.
  • an insulating substrate An electrode layer including a working electrode and a counter electrode provided on one surface of the insulating substrate; A spacer layer that has a slit, and is laminated on the surface of the electrode layer opposite to the insulating substrate so that the slit is located on at least a part of the surface of the working electrode and the counter electrode; A cover layer laminated on the surface of the spacer layer opposite to the electrode layer; A cavity for supplying a sample formed by the electrode layer, the slit and the cover layer; An enzyme layer that contains an enzyme that reacts with the substance to be measured and does not contain a mediator; A biosensor comprising a mediator layer that includes a mediator, does not include an enzyme, and does not include a hydrophilic polymer having a double-bonded oxygen atom, One of the enzyme layer and the mediator layer is provided on at least a part of the cavity-side surface of the working electrode and the counter electrode exposed to the cavity, and the other of the cover layer exposed to the cavity. Provided on at least part of the surface, A bio
  • the enzyme layer is provided on at least a part of the cavity-side surface of the working electrode and the counter electrode exposed to the cavity,
  • the hydrophilic polymer having no double-bonded oxygen atom is a carboxyl group, carbonyl group, acyl group, aldehyde group, sulfo group, sulfonyl group, sulfoxide group, tosyl group, nitro group, nitroso group, ester.
  • the biosensor according to (3) which does not have a group, a keto group, or a ketene group.
  • the hydrophilic polymer having no double-bonded oxygen atom contains at least one of hydroxypropylmethylcellulose, hydroxypropylcellulose, methylcellulose, hydroxyethylcellulose, hydroxyethylmethylcellulose, polyvinyl alcohol, and polyethylene glycol.
  • the enzyme layer includes a hydrophilic polymer
  • the biosensor according to (2) further comprising a polymer layer containing a hydrophilic polymer between the enzyme layer and the electrode layer so as to be in contact with both.
  • the hydrophilic polymer having a double-bonded oxygen atom is a carboxyl group, a carbonyl group, an acyl group, an aldehyde group, a sulfo group, a sulfonyl group, a sulfoxide group, a tosyl group, a nitro group, a nitroso group, or an ester group.
  • the biosensor according to (8) which has at least one selected from the group consisting of a keto group and a ketene group.
  • an enzyme layer that contains an enzyme that reacts with the substance to be measured and does not contain a mediator a mediator layer that contains a mediator, does not contain an enzyme, and does not contain a hydrophilic polymer having a double-bonded oxygen atom;
  • FIG. 2 is a schematic cross-sectional view showing a reagent configuration of Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view showing a reagent configuration of Embodiment 2.
  • FIG. 6 is a schematic cross-sectional view showing a reagent configuration of Embodiment 3.
  • FIG. 6 is a schematic cross-sectional view showing a reagent configuration of Embodiment 4.
  • FIG. 6 is a schematic cross-sectional view showing a reagent configuration of Embodiment 5.
  • FIG. 10 is a schematic cross-sectional view showing a reagent configuration of Embodiment 6.
  • FIG. It is a perspective view for demonstrating an example of the manufacturing process of a biosensor.
  • the biosensor of the present invention is An insulating substrate; An electrode layer including a working electrode and a counter electrode provided on one surface of the insulating substrate; A spacer having a slit and laminated on the surface of the electrode layer opposite to the insulating substrate so that the slit is positioned on at least a part of the surface of the working electrode and the counter electrode; And a cover layer laminated on a surface opposite to the electrode layer of the spacer.
  • a cavity for supplying a sample is formed by such an electrode layer, a spacer slit, and a cover layer.
  • One of the enzyme layer and the mediator layer is provided on at least a part of the cavity-side surface of the working electrode and the counter electrode exposed to the cavity, and the other is exposed to the cavity. It is provided on at least a part of the surface of the layer, and both are separated by having a space between the enzyme layer and the mediator layer.
  • the enzyme layer contains an enzyme that reacts with the substance to be measured and does not contain a mediator.
  • the mediator layer contains a mediator, does not contain an enzyme, and does not contain a hydrophilic polymer having a double-bonded oxygen atom (hereinafter abbreviated as “double-bonded oxygen”).
  • the mediator is reduced by the enzyme before use in a storage state or the like, and the hydrophilic polymer having double bond oxygen Can reduce the reduction of mediators.
  • the enzyme layer is provided on at least a part of the cavity-side surface of the working electrode and the counter electrode exposed in the cavity, and the mediator layer is provided on at least a part of the surface of the cover layer exposed in the cavity.
  • the mediator is a compound (electron carrier) that mediates electron transfer between the working electrode and the counter electrode, and is preferably a substance that itself undergoes a redox reaction.
  • the mediator for example, potassium ferricyanide, ferrocene, ferrocene derivatives, benzoquinone, quinone derivatives, osmium complexes, ruthenium complexes and the like can be used.
  • the mediator layer preferably contains a hydrophilic polymer having no double-bonded oxygen atom. It is possible to easily fix the mediator layer to the surface of the cover layer or the electrode layer while suppressing reduction of the mediator by the hydrophilic polymer having double bond oxygen before use in a storage state or the like.
  • hydrophilic polymer having no double-bonded oxygen atom examples include a carboxyl group, a carbonyl group, an acyl group, an aldehyde group, a sulfo group, a sulfonyl group, a sulfoxide group, a tosyl group, and a nitro group.
  • hydrophilic polymers having no group, nitroso group, ester group, keto group and ketene group include hydroxypropylmethylcellulose, hydroxypropylcellulose, methylcellulose, hydroxyethylcellulose, hydroxyethylmethylcellulose, polyvinyl alcohol, and polyethylene glycol.
  • Examples of the enzyme include glucose oxidase, glucose dehydrogenase, alcohol oxidase, alcohol dehydrogenase, lactate oxidase, lactate dehydrogenase, cholesterol esterase, cholesterol oxidase, sarcosine oxidase, fructosylamine oxidase, pyruvate oxidase, hydroxybutyrate dehydrogenase, creatininase , Creatinase and DNA polymerase.
  • biosensors can be produced by selecting these enzymes according to the substance to be detected (glucose, alcohol, lactic acid, cholesterol, sarcosine, fructosylamine, pyruvic acid, hydroxybutyric acid, etc.).
  • glucose oxidase or glucose dehydrogenase can be used to produce a glucose sensor that detects glucose in a blood sample
  • alcohol oxidase or alcohol dehydrogenase can be used to produce an alcohol sensor that detects ethanol in a blood sample.
  • a lactic acid sensor for detecting lactic acid in a blood sample can be produced, and a total cholesterol sensor can be produced by using a mixture of cholesterol esterase and cholesterol oxidase.
  • the enzyme layer preferably contains a hydrophilic polymer.
  • the enzyme layer can be easily immobilized on the surface of the cover layer or the electrode layer.
  • a polymer layer containing a hydrophilic polymer is further provided between the enzyme layer and the electrode layer so as to be in contact with both. Thereby, it can suppress more effectively that the obstruction substance in a sample (the blood cell etc. in a blood sample) contacts an electrode, and a measurement precision improves.
  • the hydrophilic polymer constituting the polymer layer formed on the electrode preferably includes a hydrophilic polymer having a double-bonded oxygen atom (double-bonded oxygen). This is because a hydrophilic polymer having a double bond oxygen generally has a higher effect of preventing the movement of blood cells and the like than a hydrophilic polymer having no double bond oxygen.
  • hydrophilic polymer having a double-bonded oxygen atom examples include, for example, carboxyl group, carbonyl group, acyl group, aldehyde group, sulfo group, sulfonyl group, sulfoxide group, tosyl group, nitro group, Examples include hydrophilic polymers having a nitroso group, an ester group, a keto group, and a ketene group, and a hydrophilic polymer having a carboxyl group is preferred. Examples of the hydrophilic polymer having a carboxyl group include carboxymethyl cellulose and carboxymethyl ethyl cellulose, and carboxymethyl cellulose (CMC) is preferable.
  • the hydrophilic polymer having double bond oxygen and the hydrophilic polymer having no double bond oxygen may be used in combination of two or more.
  • the hydrophilic polymer in the present invention includes an amphiphilic polymer.
  • FIG. 2 shows a schematic cross-sectional view of the reagent configuration in the biosensor of this embodiment.
  • the cover layer side includes a “mediator layer” that includes a mediator, includes a hydrophilic polymer that does not have double bond oxygen, and does not include an enzyme.
  • an “enzyme layer” containing an enzyme, a hydrophilic polymer having no double bond oxygen, and no mediator is provided.
  • the mediator can be reduced even when stored in a high temperature environment and a high humidity environment. While suppressing, peeling of the mediator can be suppressed and the characteristic value is stabilized. As a result, it is possible to provide a biosensor having high heat resistance and moisture resistance, accurate and reliable.
  • the mobility of the enzyme is smaller than that of the mediator, forming the enzyme layer on the electrode layer side and the mediator layer on the cover layer side increases the amount of enzyme and mediator in the vicinity of the electrode, and the sensor response. And measurement accuracy are improved.
  • FIG. 3 shows a schematic cross-sectional view of the reagent configuration in the biosensor of this embodiment.
  • the mediator layer on the cover layer side is the same as that in the first embodiment, except that a hydrophilic polymer having double bond oxygen is used in the enzyme layer on the electrode layer side. Different from Form 1.
  • a hydrophilic polymer having double bond oxygen has a higher effect of blocking the movement of blood cells and the like than a hydrophilic polymer having no double bond oxygen.
  • the enzyme layer provided on the electrode layer contains a hydrophilic polymer having double-bonded oxygen, for example, when a blood sample is supplied to the cavity of the biosensor.
  • FIG. 4 shows a schematic cross-sectional view of the reagent configuration in the biosensor of this embodiment.
  • the mediator layer and the enzyme layer are the same as in Embodiment 1, but further include a hydrophilic polymer having double bond oxygen between the enzyme layer and the electrode layer, It differs from Embodiment 1 in having a “polymer layer” that does not include a mediator.
  • FIG. 5 shows a schematic cross-sectional view of the reagent configuration in the biosensor of this embodiment.
  • the mediator layer and the enzyme layer are the same as in Embodiment 2, but further include a hydrophilic polymer having double-bonded oxygen between the enzyme layer and the electrode layer, It differs from Embodiment 2 in having a “polymer layer” that does not include a mediator.
  • the movement of blood cells contained in the blood sample is more effectively prevented, and the influence on the measurement accuracy due to the difference in the hematocrit value of the blood sample can be further reduced. .
  • Embodiments 3 and 4 the arrangement of the enzyme layer and the polymer layer may be reversed.
  • the hydrophilic polymer having double bond oxygen added to each layer or the hydrophilic polymer having no double bond oxygen the same type or different types may be used.
  • FIG. 6 shows a schematic cross-sectional view of the reagent configuration in the biosensor of this embodiment.
  • the present embodiment is different from the third embodiment in that the hydrophilic polymer constituting the “polymer layer” does not have double bond oxygen, but other points are implemented. The same as in the third mode.
  • the movement of blood cells contained in the blood sample is more effectively prevented, and the influence on the measurement accuracy due to the difference in the hematocrit value of the blood sample can be further reduced. .
  • FIG. 7 shows a schematic cross-sectional view of the reagent configuration in the biosensor of this embodiment.
  • the present embodiment is different from the fourth embodiment in that the hydrophilic polymer constituting the “polymer layer” does not have double bond oxygen, but other points are implemented. This is the same as in the fourth mode.
  • the movement of blood cells contained in the blood sample is more effectively prevented, and the influence on the measurement accuracy due to the difference in the hematocrit value of the blood sample can be further reduced. .
  • Embodiments 5 and 6 the arrangement of the enzyme layer and the polymer layer may be reversed.
  • the hydrophilic polymer having double bond oxygen added to each layer or the hydrophilic polymer having no double bond oxygen the same type or different types may be used.
  • FIG. 1 is a perspective view illustrating an example of a basic configuration aspect of a biosensor.
  • FIGS. 8 to 12 are diagrams for explaining an example of the manufacturing process of the biosensor, and show different processes.
  • a spacer 4 having a slit 41 for forming a cavity is bonded to an electrode layer including a working electrode 21 and a counter electrode 22 formed on an insulating substrate 1.
  • a reagent layer is formed in a cavity surrounded by the bottom surface 3 (surface of the electrode layer), the inner wall surface of the slit 41, and the surface (lower surface) of the cover layer 5, and the cover layer 5 is bonded onto the spacer 4 (See FIG. 1).
  • the reagent layer includes the above-described enzyme layer, mediator layer, polymer layer, and the like.
  • the enzyme layer is provided on at least a part of the cavity-side surface of the working electrode and the counter electrode exposed in the cavity, and the mediator layer is at least on the surface of the cover layer exposed in the cavity. It is provided in a part.
  • This biosensor is used by being mounted on a measuring instrument. That is, a sample (blood or the like) is supplied to the cavity of the biosensor mounted on the measuring instrument, and a reducing substance is generated by the reaction of the substance to be measured (such as glucose) in the sample with the enzyme and mediator. A voltage is applied between the working electrode 21 and the counter electrode 22 by a measuring device electrically connected to the working electrode 21 and the counter electrode 22 of the biosensor, and an oxidation current obtained by oxidizing this reducing substance is obtained. By measuring, the measurement target substance contained in the sample is quantified.
  • a sample blood or the like
  • a reducing substance is generated by the reaction of the substance to be measured (such as glucose) in the sample with the enzyme and mediator.
  • a voltage is applied between the working electrode 21 and the counter electrode 22 by a measuring device electrically connected to the working electrode 21 and the counter electrode 22 of the biosensor, and an oxidation current obtained by oxidizing this reducing substance is obtained.
  • the material of the insulating substrate 1 is not particularly limited as long as it has insulating properties, and examples thereof include plastic such as PET film, paper, glass, ceramic, and biodegradable material.
  • the electrode layer may include a reference electrode serving as a potential reference when measuring the electrode potential, and a detection electrode for detecting that the sample has been supplied to the cavity.
  • electrodes As materials for these electrodes (working electrode, counter electrode, reference electrode, detection electrode, etc.), noble metals such as platinum, gold, palladium, carbon, copper, aluminum, titanium, ITO (Indium Tin Oxide), ZnO (zinc oxide) etc. are mentioned.
  • the electrode layer is formed, for example, by forming a conductive layer made of the above material on one surface of the insulating substrate using screen printing or sputtering vapor deposition, and further patterning using laser processing, photolithography, etc. Can be produced.
  • the working electrode 21 and the counter electrode 22 are arranged so that their respective distal end sides are exposed to cavities formed by the slits 41 and the like.
  • the spacer 4 is laminated on the electrode layer formed as described above.
  • the spacer 4 is formed of a substrate made of an insulating material, and a slit 41 for forming a cavity is formed at substantially the center of the front edge portion of the substrate. Then, the spacer 4 is laminated so as to partially cover one surface of the electrode layer so that the slit 41 is disposed on the tip side of the working electrode 21 and the counter electrode 22.
  • the insulating material constituting the spacer 4 include plastic (such as PET film), paper, glass, ceramic, and biodegradable material.
  • the above-described enzyme layer or polymer layer is formed on the surface of the electrode layer in the cavity formed as described above. Specifically, a predetermined amount of a hydrophilic polymer solution such as CMC is dropped from a dropping device so as to cover the electrode layer, and dried to form a polymer layer (polymer layer forming step).
  • a hydrophilic polymer solution such as CMC
  • a predetermined amount of a reagent containing an enzyme and a hydrophilic polymer having double-bonded oxygen is dropped into the cavity from the dropping device and dried to form an enzyme layer (enzyme layer forming step).
  • the material of the cover layer 5 is preferably an insulating material, and for example, plastic such as PET film, paper, glass, ceramic, and biodegradable material can be used.
  • the cover layer 5 is preferably formed with an air hole 51 that communicates with the cavity when stacked on the spacer 4. In the biosensor configured as described above, by bringing a sample such as blood into contact with the opening of the cavity, the sample is sucked toward the air hole 51 by capillary action, so that the sample can be easily introduced into the cavity. Because it becomes.
  • the above-mentioned mediator layer is formed on at least a part of the surface exposed to the cavity of the cover layer 5 (the surface on the spacer 4 side).
  • the biosensor is formed by laminating the cover layer 5 having the mediator layer on the spacer 4 so that the mediator layer is located in the cavity (in the slit 41).
  • a reagent such as a hydrophilizing agent for promoting the introduction of the specimen (sample) may be blended as necessary.
  • a surfactant such as Triton X100 (manufactured by Sigma Aldrich), Tween 20 (manufactured by Tokyo Chemical Industry Co., Ltd.), sodium bis (2-ethylhexyl) sulfosuccinate, or a phospholipid such as lecithin can be used.
  • a buffering agent such as phosphoric acid may be blended in order to reduce the variation in ion concentration contained in the sample.
  • blood is brought into contact with the tip of the cavity, and the blood is introduced into the cavity using capillary action.
  • the applied voltage is, for example, 0.3V.
  • measure the current value after a certain period of time has elapsed since voltage application For example, the current value after 3 to 5 seconds is measured.
  • the analyte concentration can be determined from a calibration curve obtained in advance.
  • the analyte in the blood reduces the mediator via the enzyme.
  • the current that flows when a voltage is applied between the working electrode and the counter electrode correlates with the reductant concentration of the mediator, that is, the analyte concentration.
  • an electrode layer was formed on an insulating substrate made of an insulating material such as polyethylene terephthalate. Specifically, a conductive layer made of a noble metal such as platinum, gold, or palladium, or a conductive material such as carbon, copper, aluminum, titanium, ITO, or ZnO is formed on one surface of the insulating substrate that forms the electrode layer. It was formed by screen printing or sputtering deposition. The conductive layer formed on one surface of the insulating substrate was subjected to pattern formation by laser processing or photolithography (FIG. 8).
  • a conductive layer made of a noble metal such as platinum, gold, or palladium, or a conductive material such as carbon, copper, aluminum, titanium, ITO, or ZnO is formed on one surface of the insulating substrate that forms the electrode layer. It was formed by screen printing or sputtering deposition. The conductive layer formed on one surface of the insulating substrate was subjected to pattern formation by laser processing or photolithography (FIG. 8
  • spacers 4 made of polyethylene terephthalate or the like having slits (cuts) 41 were bonded together (FIG. 9).
  • a polymer layer was formed by dropping a solution of CMC (blood cell filter agent) on an electrode (working electrode, counter electrode) for measuring the analyte concentration and drying it (FIG. 10).
  • a liquid mixture of mediator and hydroxypropylmethylcellulose as a hydrophilic polymer is dropped into a portion exposed in the cavity on one surface of the cover layer 5 made of an insulating material such as polyethylene terephthalate and dried.
  • a mediator layer was formed.
  • the cover layer 5 having a mediator layer was bonded onto the spacer 4 so that the mediator layer was positioned in the slit 41 (in the cavity) (FIG. 11).
  • the cover layer 5 is provided with an air hole 51 for letting air escape.
  • the biosensor was obtained by cutting the laminate so that a part of the cavity formed by the spacer 4 and the like was exposed (FIG. 12).
  • Heat resistance test A heat resistance test was performed on the biosensor obtained in Example 1 and the conventional biosensor (configuration described in Patent Document 3: FIG. 15C). Specifically, it is stored in a constant temperature bath at a temperature of 50 ° C., and a voltage of 0.3 V is applied between the working electrode and the counter electrode with respect to the biosensor after a predetermined time (200, 400, 700, 900 hours). Applied and measured the value of the background current. The measurement results are shown in FIG.
  • the conventional biosensor when stored in a high humidity environment of 90%, the conventional biosensor has a significant increase in background current, whereas the biosensor of Example 1 has a measured current from the initial value. It can be seen that the increase in the background current is suppressed without changing.
  • Insulating substrate 21 working electrode, 22 counter electrode, 3 bottom of cavity, 4 spacer, 41 slit, 5 cover layer, 51 air hole.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

A biosensor which is provided with: an insulating substrate; an electrode layer that contains a working electrode and a counter electrode; a spacer layer that has a slit; a cover layer that is laminated on a surface of the spacer layer, said surface being on the reverse side of the electrode layer-side surface; a cavity that is formed by the electrode layer, the slit and the cover layer; an enzyme layer that contains an enzyme, which reacts with a substance to be measured, but does not contain a mediator; and a mediator layer that contains a mediator but does not contain an enzyme, while containing no hydrophilic polymer that has a double-bonded oxygen atom. One of the enzyme layer and the mediator layer is provided on at least a part of respective cavity-side surfaces of the working electrode and the counter electrode, which are exposed to the cavity, and the other one is provided on at least a part of the surface of the cover layer which is exposed to the cavity. The enzyme layer and the mediator layer are separated from each other by having a space therebetween.

Description

バイオセンサBiosensor
 本発明は、電気化学法を用いたバイオセンサに関する。 The present invention relates to a biosensor using an electrochemical method.
 電気化学方式のバイオセンサ(例えば、血糖値センサなどのグルコースセンサ)は、絶縁性基板1上に形成された作用極21および対極22を含む電極層上に、キャビティを形成するためのスリット41を有するスペーサ4を貼り合わせた後に、キャビティの底面(キャビティに露出した電極層の表面)3上に試薬(酵素、メディエータなど)を滴下して試薬層を形成し、スペーサ4上にカバー層5を貼り合わせた構造を有している(図1参照)。 An electrochemical biosensor (for example, a glucose sensor such as a blood glucose level sensor) has a slit 41 for forming a cavity on an electrode layer including a working electrode 21 and a counter electrode 22 formed on an insulating substrate 1. After the spacer 4 is bonded, a reagent (enzyme, mediator, etc.) is dropped on the bottom surface (surface of the electrode layer exposed in the cavity) 3 to form a reagent layer, and the cover layer 5 is formed on the spacer 4. It has a bonded structure (see FIG. 1).
 バイオセンサの動作原理は次のとおりである。まず、スペーサ4に形成された溝(スリット41)に、検体(血液など)を導入する。検体に含まれる成分(グルコースなど)が、酵素を介してメディエータを還元する。ここで、作用極21と対極22の間に所定の電圧を印加すると、電気化学反応により、還元されたメディエータが逆に酸化される。このとき発生する酸化電流を測定することで、着目する成分の量を検出できる。 The operating principle of the biosensor is as follows. First, a sample (blood or the like) is introduced into a groove (slit 41) formed in the spacer 4. A component (such as glucose) contained in the specimen reduces the mediator through the enzyme. Here, when a predetermined voltage is applied between the working electrode 21 and the counter electrode 22, the reduced mediator is reversely oxidized by an electrochemical reaction. By measuring the oxidation current generated at this time, the amount of the component of interest can be detected.
 特許文献1(特開平1-134242号公報)、特許文献2(特開2002-207022号公報)、特許文献3(特開2009-244012号公報)に開示される従来のバイオセンサの代表的な試薬構造の断面概略図を、それぞれ図15の(a)~(c)に示す。 Representative of conventional biosensors disclosed in Patent Document 1 (JP-A-1-134242), Patent Document 2 (JP-A 2002-207022), and Patent Document 3 (JP-A 2009-244012) Sectional schematic diagrams of the reagent structure are shown in FIGS. 15 (a) to 15 (c), respectively.
 特許文献1のバイオセンサ(図15(a))では、電極層の上に、親水性高分子であるカルボキシメチルセルロース(CMC)の層が形成されている。なお、該CMC層は、血球をろ過し、タンパク質の電極表面への吸着を防ぐ機能を有している。さらに、CMC層の上に、多孔体膜等(図示せず)を介して酵素および電子受容体(メディエータ)を含む層が形成されている。 In the biosensor disclosed in Patent Document 1 (FIG. 15A), a layer of carboxymethyl cellulose (CMC), which is a hydrophilic polymer, is formed on an electrode layer. The CMC layer has a function of filtering blood cells and preventing adsorption of proteins to the electrode surface. Further, a layer containing an enzyme and an electron acceptor (mediator) is formed on the CMC layer via a porous film or the like (not shown).
 特許文献2のバイオセンサ(図15(b))は、電極層の上に、酵素、電子伝達体(メディエータ)および親水性高分子(CMCなど)を含む試薬層が形成された1層構造である。 The biosensor disclosed in Patent Document 2 (FIG. 15B) has a one-layer structure in which a reagent layer containing an enzyme, an electron carrier (mediator) and a hydrophilic polymer (such as CMC) is formed on an electrode layer. is there.
 特許文献3のバイオセンサ(図15(c))では、電極層の上に、電子伝達体(メディエータ)と親水性高分子(CMCなど)を含む第一の反応層が形成され、カバー層の上(電極層側)に第一の反応層と分離されて、酵素および親水性高分子(CMCなど)を含む第二の反応層が形成されている。なお、第一の反応層において、親水性高分子は血球をろ過し、タンパク質の電極表面への吸着を防ぐ機能を有しており、第二の反応層において、親水性高分子はメディエータの固定化剤として機能している。 In the biosensor of Patent Document 3 (FIG. 15C), a first reaction layer containing an electron carrier (mediator) and a hydrophilic polymer (such as CMC) is formed on an electrode layer, A second reaction layer containing an enzyme and a hydrophilic polymer (such as CMC) is formed on the upper side (electrode layer side) separated from the first reaction layer. In the first reaction layer, the hydrophilic polymer functions to filter blood cells and prevent adsorption of proteins to the electrode surface. In the second reaction layer, the hydrophilic polymer immobilizes mediators. It functions as an agent.
特開平1-134242号公報JP-A-1-134242 特開2002-207022号公報JP 2002-207022 A 特開2009-244012号公報JP 2009-244012 A
 特許文献1および2のバイオセンサでは、酵素とメディエータが接触しているが、酵素はメディエータを還元する作用があるため、酵素がメディエータと接触しているとバックグラウンド電流を増加させてしまう。 In the biosensors of Patent Documents 1 and 2, the enzyme and the mediator are in contact with each other. However, since the enzyme has an action of reducing the mediator, if the enzyme is in contact with the mediator, the background current is increased.
 また、特許文献3のバイオセンサでは、酵素とメディエータとが、その間に空間を設けて分離されているため、上記の還元は抑制されると考えられる。しかしながら、本発明者らの検討により、CMC等の親水性高分子にもメディエータを還元する作用があり、電極層側の第1の反応層中でCMCがメディエータを還元することで、バックグラウンド電流が増加してしまうことが判明した。なお、この現象は、二重結合した酸素を含む官能基がメディエータに対して求核攻撃し、電子供与するためと考えられる。 Moreover, in the biosensor of Patent Document 3, the enzyme and the mediator are separated by providing a space between them, so that it is considered that the above reduction is suppressed. However, according to the study by the present inventors, the hydrophilic polymer such as CMC also has an action of reducing the mediator, and the CMC reduces the mediator in the first reaction layer on the electrode layer side. Turned out to increase. Note that this phenomenon is thought to be due to the nucleophilic attack of the functional group containing oxygen with a double bond on the mediator and electron donation.
 そのため、上記先行技術のいずれのセンサにおいても、実測定の際に血糖値計で検出する電流値が実際(酵素反応分のみ)より大きくなるという問題があった。特に、室温(30℃)を超える高温環境下や高湿環境下で、これらの血糖値センサを保管すると、メディエータの還元が大きく進み、バックグラウンド電流の増加が顕著となる。なお、バックグラウンド電流を補正したとても、バックグラウンド電流の増加によりバックグラウンド電流の変動も増大するため、測定精度は低下してしまう。
本発明は、上記課題に鑑みてなされたものであり、保管状態等の使用前におけるメディエータの還元に伴うバックグラウンド電流の増加を抑制し、測定精度の低下を抑制することのできるバイオセンサを提供することを目的とする。
Therefore, in any of the above prior art sensors, there is a problem that the current value detected by the blood glucose meter during actual measurement is larger than the actual value (only for the enzyme reaction). In particular, when these blood glucose level sensors are stored in a high-temperature environment or a high-humidity environment exceeding room temperature (30 ° C.), the reduction of the mediator proceeds greatly and the increase in background current becomes significant. It should be noted that, since the background current is corrected, the fluctuation of the background current increases due to the increase of the background current, so that the measurement accuracy is lowered.
The present invention has been made in view of the above problems, and provides a biosensor capable of suppressing an increase in background current due to reduction of a mediator before use in a storage state or the like and suppressing a decrease in measurement accuracy. The purpose is to do.
 (1) 絶縁性基板と、
 前記絶縁性基板の一方の面に設けられた作用極および対極を含む電極層と、
 スリットを有し、前記スリットが前記作用極および前記対極の少なくとも一部の表面上に位置するように、前記電極層の前記絶縁性基板と反対側の面に積層されたスペーサ層と、
 前記スペーサ層の前記電極層と反対側の面に積層されたカバー層と、
 前記電極層、前記スリットおよび前記カバー層により形成された、試料を供給するためのキャビティと、
 測定対象物質と反応する酵素を含み、メディエータを含まない酵素層と、
 メディエータを含み、酵素を含まず、二重結合した酸素原子を有する親水性高分子を含まないメディエータ層と
 を備えるバイオセンサであって、
 前記酵素層と前記メディエータ層のうち、一方が、前記キャビティに露出する前記作用極および前記対極の前記キャビティ側の表面の少なくとも一部に設けられ、他方が、前記キャビティに露出する前記カバー層の表面の少なくとも一部に設けられており、
 前記酵素層と前記メディエータ層との間に空間を有することで、両者が分離されていることを特徴とする、バイオセンサ。
(1) an insulating substrate;
An electrode layer including a working electrode and a counter electrode provided on one surface of the insulating substrate;
A spacer layer that has a slit, and is laminated on the surface of the electrode layer opposite to the insulating substrate so that the slit is located on at least a part of the surface of the working electrode and the counter electrode;
A cover layer laminated on the surface of the spacer layer opposite to the electrode layer;
A cavity for supplying a sample formed by the electrode layer, the slit and the cover layer;
An enzyme layer that contains an enzyme that reacts with the substance to be measured and does not contain a mediator;
A biosensor comprising a mediator layer that includes a mediator, does not include an enzyme, and does not include a hydrophilic polymer having a double-bonded oxygen atom,
One of the enzyme layer and the mediator layer is provided on at least a part of the cavity-side surface of the working electrode and the counter electrode exposed to the cavity, and the other of the cover layer exposed to the cavity. Provided on at least part of the surface,
A biosensor characterized in that a space is provided between the enzyme layer and the mediator layer to separate them.
 (2) 前記酵素層が、前記キャビティに露出する前記作用極および前記対極の前記キャビティ側の表面の少なくとも一部に設けられ、
 前記メディエータ層が、前記キャビティに露出する前記カバー層の表面の少なくとも一部に設けられている、上記(1)に記載のバイオセンサ。
(2) The enzyme layer is provided on at least a part of the cavity-side surface of the working electrode and the counter electrode exposed to the cavity,
The biosensor according to (1), wherein the mediator layer is provided on at least a part of the surface of the cover layer exposed to the cavity.
 (3) 前記メディエータ層は、二重結合した酸素原子を有しない親水性高分子を含む、上記(1)または(2)に記載のバイオセンサ。 (3) The biosensor according to (1) or (2), wherein the mediator layer includes a hydrophilic polymer that does not have a double-bonded oxygen atom.
 (4) 前記二重結合した酸素原子を有しない親水性高分子は、カルボキシル基、カルボニル基、アシル基、アルデヒド基、スルホ基、スルホニル基、スルホキシド基、トシル基、ニトロ基、ニトロソ基、エステル基、ケト基およびケテン基を有さない、上記(3)に記載のバイオセンサ。 (4) The hydrophilic polymer having no double-bonded oxygen atom is a carboxyl group, carbonyl group, acyl group, aldehyde group, sulfo group, sulfonyl group, sulfoxide group, tosyl group, nitro group, nitroso group, ester. The biosensor according to (3), which does not have a group, a keto group, or a ketene group.
 (5) 前記二重結合した酸素原子を有しない親水性高分子として、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシエチルメチルセルロース、ポリビニルアルコール、ポリエチレングリコールのうちの少なくとも1つを含むことを特徴とする上記(3)または(4)に記載のバイオセンサ。 (5) The hydrophilic polymer having no double-bonded oxygen atom contains at least one of hydroxypropylmethylcellulose, hydroxypropylcellulose, methylcellulose, hydroxyethylcellulose, hydroxyethylmethylcellulose, polyvinyl alcohol, and polyethylene glycol. The biosensor as described in (3) or (4) above, wherein
 (6) 前記酵素層は、親水性高分子を含む、上記(1)~(5)のいずれかに記載のバイオセンサ。 (6) The biosensor according to any one of (1) to (5), wherein the enzyme layer includes a hydrophilic polymer.
 (7) 前記酵素層は、親水性高分子を含み、
 前記酵素層と前記電極層との間に、両者に接するように、親水性高分子を含む高分子層をさらに備える、上記(2)に記載のバイオセンサ。
(7) The enzyme layer includes a hydrophilic polymer,
The biosensor according to (2), further comprising a polymer layer containing a hydrophilic polymer between the enzyme layer and the electrode layer so as to be in contact with both.
 (8) 前記高分子層は、二重結合した酸素原子を有する親水性高分子を含む、上記(7)に記載のバイオセンサ。 (8) The biosensor according to (7), wherein the polymer layer includes a hydrophilic polymer having a double-bonded oxygen atom.
 (9) 前記二重結合した酸素原子を有する親水性高分子は、カルボキシル基、カルボニル基、アシル基、アルデヒド基、スルホ基、スルホニル基、スルホキシド基、トシル基、ニトロ基、ニトロソ基、エステル基、ケト基およびケテン基からなる群から選択される少なくとも1種を有する、上記(8)に記載のバイオセンサ。 (9) The hydrophilic polymer having a double-bonded oxygen atom is a carboxyl group, a carbonyl group, an acyl group, an aldehyde group, a sulfo group, a sulfonyl group, a sulfoxide group, a tosyl group, a nitro group, a nitroso group, or an ester group. The biosensor according to (8), which has at least one selected from the group consisting of a keto group and a ketene group.
 (10) 前記二重結合した酸素原子を有する親水性高分子として、少なくともカルボキシメチルセルロースを含む、上記(9)に記載のバイオセンサ。 (10) The biosensor according to (9), wherein the hydrophilic polymer having a double-bonded oxygen atom contains at least carboxymethylcellulose.
 (11) 前記高分子層は、二重結合した酸素原子を有さない親水性高分子を含む、上記(7)に記載のバイオセンサ。 (11) The biosensor according to (7), wherein the polymer layer includes a hydrophilic polymer that does not have a double-bonded oxygen atom.
 (12) 前記メディエータは、それ自体が酸化還元反応を行う物質である、上記(1)~(11)のいずれかに記載のバイオセンサ。 (12) The biosensor according to any one of (1) to (11), wherein the mediator is a substance that itself undergoes a redox reaction.
 本発明においては、測定対象物質と反応する酵素を含み、メディエータを含まない酵素層と、メディエータを含み、酵素を含まず、二重結合した酸素原子を有する親水性高分子を含まないメディエータ層との間に空間を設けて、両者を完全に分離することで、保管状態等の使用前におけるメディエータの還元に伴うバックグラウンド電流の増加を抑制して、測定精度の低下を抑制できるため、従来よりも高精度なバイオセンサを提供することができる。 In the present invention, an enzyme layer that contains an enzyme that reacts with the substance to be measured and does not contain a mediator, a mediator layer that contains a mediator, does not contain an enzyme, and does not contain a hydrophilic polymer having a double-bonded oxygen atom; By providing a space between the two and completely separating them, it is possible to suppress an increase in the background current due to the reduction of the mediator before use such as storage state, etc. Can provide a highly accurate biosensor.
バイオセンサの基本的構成態様の一例を示す斜視図である。It is a perspective view which shows an example of the basic composition aspect of a biosensor. 実施形態1の試薬構成を示す断面概略図である。2 is a schematic cross-sectional view showing a reagent configuration of Embodiment 1. FIG. 実施形態2の試薬構成を示す断面概略図である。6 is a schematic cross-sectional view showing a reagent configuration of Embodiment 2. FIG. 実施形態3の試薬構成を示す断面概略図である。6 is a schematic cross-sectional view showing a reagent configuration of Embodiment 3. FIG. 実施形態4の試薬構成を示す断面概略図である。6 is a schematic cross-sectional view showing a reagent configuration of Embodiment 4. FIG. 実施形態5の試薬構成を示す断面概略図である。6 is a schematic cross-sectional view showing a reagent configuration of Embodiment 5. FIG. 実施形態6の試薬構成を示す断面概略図である。10 is a schematic cross-sectional view showing a reagent configuration of Embodiment 6. FIG. バイオセンサの製造工程の一例を説明するための斜視図である。It is a perspective view for demonstrating an example of the manufacturing process of a biosensor. バイオセンサの製造工程の一例を説明するための別の斜視図である。It is another perspective view for demonstrating an example of the manufacturing process of a biosensor. バイオセンサの製造工程の一例を説明するための別の斜視図である。It is another perspective view for demonstrating an example of the manufacturing process of a biosensor. バイオセンサの製造工程の一例を説明するための別の斜視図である。It is another perspective view for demonstrating an example of the manufacturing process of a biosensor. バイオセンサの製造工程の一例を説明するための別の斜視図である。It is another perspective view for demonstrating an example of the manufacturing process of a biosensor. 実施例1の耐熱性試験の結果を示すグラフである。3 is a graph showing the results of a heat resistance test of Example 1. 実施例1の耐湿性試験の結果を示すグラフである。3 is a graph showing the results of a moisture resistance test of Example 1. 従来のバイオセンサにおける試薬構成を示す断面概略図である。It is the cross-sectional schematic which shows the reagent structure in the conventional biosensor.
 本発明のバイオセンサは、
 絶縁性基板と、
 絶縁性基板の一方の面に設けられた作用極および対極を含む電極層と、
 スリットを有し、スリットが作用極および対極の少なくとも一部の表面上に位置するように、電極層の絶縁性基板と反対側の面に積層されたスペーサと、
 スペーサの電極層と反対側の面に積層されたカバー層とを備える。
The biosensor of the present invention is
An insulating substrate;
An electrode layer including a working electrode and a counter electrode provided on one surface of the insulating substrate;
A spacer having a slit and laminated on the surface of the electrode layer opposite to the insulating substrate so that the slit is positioned on at least a part of the surface of the working electrode and the counter electrode;
And a cover layer laminated on a surface opposite to the electrode layer of the spacer.
 本発明のバイオセンサでは、このような電極層、スペーサのスリットおよびカバー層により、試料を供給するためのキャビティが形成されている。そして、前記酵素層と前記メディエータ層のうち、一方が、前記キャビティに露出する前記作用極および前記対極の前記キャビティ側の表面の少なくとも一部に設けられ、他方が、前記キャビティに露出する前記カバー層の表面の少なくとも一部に設けられており、前記酵素層と前記メディエータ層との間に空間を有することで、両者が分離されている。 In the biosensor of the present invention, a cavity for supplying a sample is formed by such an electrode layer, a spacer slit, and a cover layer. One of the enzyme layer and the mediator layer is provided on at least a part of the cavity-side surface of the working electrode and the counter electrode exposed to the cavity, and the other is exposed to the cavity. It is provided on at least a part of the surface of the layer, and both are separated by having a space between the enzyme layer and the mediator layer.
 ここで、酵素層は、測定対象物質と反応する酵素を含み、メディエータを含まない。また、メディエータ層は、メディエータを含み、酵素を含まず、二重結合した酸素原子(以下、「二重結合酸素」と略す。)を有する親水性高分子を含まない。 Here, the enzyme layer contains an enzyme that reacts with the substance to be measured and does not contain a mediator. The mediator layer contains a mediator, does not contain an enzyme, and does not contain a hydrophilic polymer having a double-bonded oxygen atom (hereinafter abbreviated as “double-bonded oxygen”).
 このように、酵素層とメディエータ層との間に空間を設けて、両者を分離することで、保管状態等の使用前における酵素によるメディエータの還元、および、二重結合酸素を有する親水性高分子によるメディエータの還元を抑制できる。なお、酵素層が、キャビティに露出する作用極および対極のキャビティ側の表面の少なくとも一部に設けられ、メディエータ層が、キャビティに露出するカバー層の表面の少なくとも一部に設けられることが好ましい。 In this way, by providing a space between the enzyme layer and the mediator layer and separating the two, the mediator is reduced by the enzyme before use in a storage state or the like, and the hydrophilic polymer having double bond oxygen Can reduce the reduction of mediators. It is preferable that the enzyme layer is provided on at least a part of the cavity-side surface of the working electrode and the counter electrode exposed in the cavity, and the mediator layer is provided on at least a part of the surface of the cover layer exposed in the cavity.
 メディエータとは、作用極と対極との間の電子伝達を仲介する化合物(電子伝達体)であり、それ自体が酸化還元反応を行う物質であることが好ましい。メディエータとしては、例えば、フェリシアン化カリウム、フェロセン、フェロセン誘導体、ベンゾキノン、キノン誘導体、オスミウム錯体、ルテニウム錯体などを用いることができる。 The mediator is a compound (electron carrier) that mediates electron transfer between the working electrode and the counter electrode, and is preferably a substance that itself undergoes a redox reaction. As the mediator, for example, potassium ferricyanide, ferrocene, ferrocene derivatives, benzoquinone, quinone derivatives, osmium complexes, ruthenium complexes and the like can be used.
 メディエータ層は、二重結合した酸素原子を有しない親水性高分子を含むことが好ましい。保管状態等の使用前における二重結合酸素を有する親水性高分子によるメディエータの還元を抑制しつつ、メディエータ層をカバー層または電極層の表面へ容易に固定化することができる。 The mediator layer preferably contains a hydrophilic polymer having no double-bonded oxygen atom. It is possible to easily fix the mediator layer to the surface of the cover layer or the electrode layer while suppressing reduction of the mediator by the hydrophilic polymer having double bond oxygen before use in a storage state or the like.
 二重結合した酸素原子(二重結合酸素)を有さない親水性高分子としては、例えば、カルボキシル基、カルボニル基、アシル基、アルデヒド基、スルホ基、スルホニル基、スルホキシド基、トシル基、ニトロ基、ニトロソ基、エステル基、ケト基およびケテン基を有さない親水性高分子が挙げられる。具体的には、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシエチルメチルセルロース、ポリビニルアルコール、ポリエチレングリコールなどが挙げられる。 Examples of the hydrophilic polymer having no double-bonded oxygen atom (double-bonded oxygen) include a carboxyl group, a carbonyl group, an acyl group, an aldehyde group, a sulfo group, a sulfonyl group, a sulfoxide group, a tosyl group, and a nitro group. And hydrophilic polymers having no group, nitroso group, ester group, keto group and ketene group. Specific examples include hydroxypropylmethylcellulose, hydroxypropylcellulose, methylcellulose, hydroxyethylcellulose, hydroxyethylmethylcellulose, polyvinyl alcohol, and polyethylene glycol.
 酵素としては、例えば、グルコースオキシダーゼ、グルコースデヒドロゲナーゼ、アルコールオキシダーゼ、アルコールデヒドロゲナーゼ、乳酸オキシダーゼ、乳酸デヒドロゲナーゼ、コレステロールエステラーゼ、コレステロールオキシダーゼ、ザルコシンオキシダーゼ、フルクトシルアミンオキシダーゼ、ピルビン酸オキシダーゼ、ヒドロキシ酪酸デヒドロゲナーゼ、クレアチニナーゼ、クレアチナーゼ、DNAポリメラーゼが挙げられる。これらの酵素を検出したい測定対象物質(グルコース、アルコール、乳酸、コレステロール、ザルコシン、フルクトシルアミン、ピルビン酸、ヒドロキシ酪酸など)に応じて選択することで種々のバイオセンサを作製することができる。 Examples of the enzyme include glucose oxidase, glucose dehydrogenase, alcohol oxidase, alcohol dehydrogenase, lactate oxidase, lactate dehydrogenase, cholesterol esterase, cholesterol oxidase, sarcosine oxidase, fructosylamine oxidase, pyruvate oxidase, hydroxybutyrate dehydrogenase, creatininase , Creatinase and DNA polymerase. Various biosensors can be produced by selecting these enzymes according to the substance to be detected (glucose, alcohol, lactic acid, cholesterol, sarcosine, fructosylamine, pyruvic acid, hydroxybutyric acid, etc.).
 例えば、グルコースオキシダーゼまたはグルコースデヒドロゲナーゼを用いれば血液試料中のグルコースを検出するグルコースセンサを作製でき、アルコールオキシダーゼまたはアルコールデヒドロゲナーゼを用いれば血液試料中のエタノールを検出するアルコールセンサを作製でき、乳酸オキシダーゼを用いれば血液試料中の乳酸を検出する乳酸センサを作製でき、コレステロールエステラーゼとコレステロールオキシダーゼとの混合物を用いれば総コレステロールセンサを作製できる。 For example, glucose oxidase or glucose dehydrogenase can be used to produce a glucose sensor that detects glucose in a blood sample, and alcohol oxidase or alcohol dehydrogenase can be used to produce an alcohol sensor that detects ethanol in a blood sample. For example, a lactic acid sensor for detecting lactic acid in a blood sample can be produced, and a total cholesterol sensor can be produced by using a mixture of cholesterol esterase and cholesterol oxidase.
 酵素層は、親水性高分子を含むことが好ましい。この場合、酵素層をカバー層または電極層の表面へ容易に固定化することができる。 The enzyme layer preferably contains a hydrophilic polymer. In this case, the enzyme layer can be easily immobilized on the surface of the cover layer or the electrode layer.
 酵素層と電極層との間に、両者に接するように、親水性高分子を含む高分子層をさらに備えることが好ましい。これにより、試料中の妨害物質(血液試料中の血球など)が電極に接触することをより効果的に抑制することができ、測定精度が上がる。 It is preferable that a polymer layer containing a hydrophilic polymer is further provided between the enzyme layer and the electrode layer so as to be in contact with both. Thereby, it can suppress more effectively that the obstruction substance in a sample (the blood cell etc. in a blood sample) contacts an electrode, and a measurement precision improves.
 ここで、電極上に形成される高分子層を構成する親水性高分子は、二重結合した酸素原子(二重結合酸素)を有する親水性高分子を含むことが好ましい。一般的に、二重結合酸素を有する親水性高分子は、二重結合酸素を有さない親水性高分子よりも血球等の移動を阻止する効果が高いからである。 Here, the hydrophilic polymer constituting the polymer layer formed on the electrode preferably includes a hydrophilic polymer having a double-bonded oxygen atom (double-bonded oxygen). This is because a hydrophilic polymer having a double bond oxygen generally has a higher effect of preventing the movement of blood cells and the like than a hydrophilic polymer having no double bond oxygen.
 二重結合した酸素原子(二重結合酸素)を有する親水性高分子としては、例えば、カルボキシル基、カルボニル基、アシル基、アルデヒド基、スルホ基、スルホニル基、スルホキシド基、トシル基、ニトロ基、ニトロソ基、エステル基、ケト基、ケテン基を有する親水性高分子が挙げられ、好ましくはカルボキシル基を有する親水性高分子である。カルボキシル基を有する親水性高分子としては、例えば、カルボキシメチルセルロース、カルボキシメチルエチルセルロースが挙げられ、好ましくはカルボキシメチルセルロース(CMC)である。 Examples of the hydrophilic polymer having a double-bonded oxygen atom (double-bonded oxygen) include, for example, carboxyl group, carbonyl group, acyl group, aldehyde group, sulfo group, sulfonyl group, sulfoxide group, tosyl group, nitro group, Examples include hydrophilic polymers having a nitroso group, an ester group, a keto group, and a ketene group, and a hydrophilic polymer having a carboxyl group is preferred. Examples of the hydrophilic polymer having a carboxyl group include carboxymethyl cellulose and carboxymethyl ethyl cellulose, and carboxymethyl cellulose (CMC) is preferable.
 なお、上述の二重結合酸素を有する親水性高分子、および、二重結合酸素を有さない親水性高分子は、それぞれ、2種類以上を組み合わせて用いてもよい。また、本発明における親水性高分子には、両親媒性高分子も含まれる。 The hydrophilic polymer having double bond oxygen and the hydrophilic polymer having no double bond oxygen may be used in combination of two or more. In addition, the hydrophilic polymer in the present invention includes an amphiphilic polymer.
 以下、本発明のバイオセンサにおける試薬構成の実施形態について、図面を参照して説明する。 Hereinafter, an embodiment of a reagent configuration in the biosensor of the present invention will be described with reference to the drawings.
 (実施形態1)
 図2に、本実施形態のバイオセンサにおける試薬構成の断面概略図を示す。図2に示されるように、カバー層側には、メディエータを含み、二重結合酸素を有さない親水性高分子を含み、酵素を含まない「メディエータ層」を備える。電極層側には、酵素を含み、二重結合酸素を有さない親水性高分子を含み、メディエータを含まない「酵素層」を備える。
(Embodiment 1)
FIG. 2 shows a schematic cross-sectional view of the reagent configuration in the biosensor of this embodiment. As shown in FIG. 2, the cover layer side includes a “mediator layer” that includes a mediator, includes a hydrophilic polymer that does not have double bond oxygen, and does not include an enzyme. On the electrode layer side, an “enzyme layer” containing an enzyme, a hydrophilic polymer having no double bond oxygen, and no mediator is provided.
 本実施形態によれば、酵素と、メディエータが完全に分離され、かつメディエータが還元作用の小さい高分子で固定化されるため、高温環境下および高湿環境下で保管してもメディエータの還元を抑制しつつ、メディエータの剥離を抑制でき、特性値が安定化する。結果として、耐熱性および耐湿性が高く、正確で、信頼性の高いバイオセンサが提供可能となる。 According to this embodiment, since the enzyme and the mediator are completely separated and the mediator is immobilized with a polymer having a small reducing action, the mediator can be reduced even when stored in a high temperature environment and a high humidity environment. While suppressing, peeling of the mediator can be suppressed and the characteristic value is stabilized. As a result, it is possible to provide a biosensor having high heat resistance and moisture resistance, accurate and reliable.
 なお、酵素の移動度はメディエータより小さいので、電極層側に酵素層を形成し、カバー層側にメディエータ層を形成することにより、電極近傍での酵素およびメディエータの量が多くなり、センサの応答性と測定精度が向上する。 Since the mobility of the enzyme is smaller than that of the mediator, forming the enzyme layer on the electrode layer side and the mediator layer on the cover layer side increases the amount of enzyme and mediator in the vicinity of the electrode, and the sensor response. And measurement accuracy are improved.
 (実施形態2)
 図3に、本実施形態のバイオセンサにおける試薬構成の断面概略図を示す。図3に示されるように、カバー層側のメディエータ層は実施形態1と同様であるが、電極層側の酵素層において、二重結合酸素を有する親水性高分子を用いている点で、実施形態1とは異なる。
(Embodiment 2)
FIG. 3 shows a schematic cross-sectional view of the reagent configuration in the biosensor of this embodiment. As shown in FIG. 3, the mediator layer on the cover layer side is the same as that in the first embodiment, except that a hydrophilic polymer having double bond oxygen is used in the enzyme layer on the electrode layer side. Different from Form 1.
 一般的に、二重結合酸素を有する親水性高分子は、二重結合酸素を有さない親水性高分子よりも血球等の移動を阻止する効果が高い。このため、本実施形態においては、電極層上に設けられた酵素層に、二重結合酸素を有する親水性高分子が含まれているため、バイオセンサのキャビティに例えば血液試料が供給された場合に、親水性高分子により血球が効率よく濾過されて血液試料に含まれる血球の移動が阻止されるので、血液試料のヘマトクリット値の差異に伴う測定精度への影響を低減することができる。 Generally, a hydrophilic polymer having double bond oxygen has a higher effect of blocking the movement of blood cells and the like than a hydrophilic polymer having no double bond oxygen. For this reason, in the present embodiment, when the enzyme layer provided on the electrode layer contains a hydrophilic polymer having double-bonded oxygen, for example, when a blood sample is supplied to the cavity of the biosensor In addition, since blood cells are efficiently filtered by the hydrophilic polymer and movement of blood cells contained in the blood sample is prevented, the influence on measurement accuracy due to the difference in hematocrit values of the blood sample can be reduced.
 (実施形態3)
 図4に、本実施形態のバイオセンサにおける試薬構成の断面概略図を示す。図4に示されるように、メディエータ層と酵素層は実施形態1と同様であるが、さらに、酵素層と電極層との間に、二重結合酸素を有する親水性高分子を含み、酵素およびメディエータを含まない「高分子層」を有する点で、実施形態1とは異なる。
(Embodiment 3)
FIG. 4 shows a schematic cross-sectional view of the reagent configuration in the biosensor of this embodiment. As shown in FIG. 4, the mediator layer and the enzyme layer are the same as in Embodiment 1, but further include a hydrophilic polymer having double bond oxygen between the enzyme layer and the electrode layer, It differs from Embodiment 1 in having a “polymer layer” that does not include a mediator.
 本実施形態においては、二重結合酸素を有する親水性高分子の層が別途設けられているため、血液試料に含まれる血球の移動がより効果的に阻止されるので、血液試料のヘマトクリット値の差異に伴う測定精度への影響をより低減することができる。 In this embodiment, since a hydrophilic polymer layer having double bond oxygen is separately provided, movement of blood cells contained in the blood sample is more effectively prevented, so that the hematocrit value of the blood sample is reduced. The influence on the measurement accuracy due to the difference can be further reduced.
 (実施形態4)
 図5に、本実施形態のバイオセンサにおける試薬構成の断面概略図を示す。図5に示されるように、メディエータ層と酵素層は実施形態2と同様であるが、さらに、酵素層と電極層との間に、二重結合酸素を有する親水性高分子を含み、酵素およびメディエータを含まない「高分子層」を有する点で、実施形態2とは異なる。
(Embodiment 4)
FIG. 5 shows a schematic cross-sectional view of the reagent configuration in the biosensor of this embodiment. As shown in FIG. 5, the mediator layer and the enzyme layer are the same as in Embodiment 2, but further include a hydrophilic polymer having double-bonded oxygen between the enzyme layer and the electrode layer, It differs from Embodiment 2 in having a “polymer layer” that does not include a mediator.
 本実施形態においても、実施形態3と同様に、血液試料に含まれる血球の移動がより効果的に阻止され、血液試料のヘマトクリット値の差異に伴う測定精度への影響をより低減することができる。 Also in the present embodiment, as in the third embodiment, the movement of blood cells contained in the blood sample is more effectively prevented, and the influence on the measurement accuracy due to the difference in the hematocrit value of the blood sample can be further reduced. .
 なお、実施形態3、4(図4、5)において、酵素層と高分子層の配置が逆転していてもよい。また、各層に加える二重結合酸素を有する親水性高分子または二重結合酸素を有しない親水性高分子としては、同種のものを使用してもよく、異種のものを使用してもよい。 In Embodiments 3 and 4 (FIGS. 4 and 5), the arrangement of the enzyme layer and the polymer layer may be reversed. In addition, as the hydrophilic polymer having double bond oxygen added to each layer or the hydrophilic polymer having no double bond oxygen, the same type or different types may be used.
 (実施形態5)
 図6に、本実施形態のバイオセンサにおける試薬構成の断面概略図を示す。図6に示されるように、本実施形態は、「高分子層」を構成する親水性高分子が、二重結合酸素を有さない点で実施形態3と異なるが、それ以外の点は実施形態3と同様である。
(Embodiment 5)
FIG. 6 shows a schematic cross-sectional view of the reagent configuration in the biosensor of this embodiment. As shown in FIG. 6, the present embodiment is different from the third embodiment in that the hydrophilic polymer constituting the “polymer layer” does not have double bond oxygen, but other points are implemented. The same as in the third mode.
 本実施形態においても、実施形態3と同様に、血液試料に含まれる血球の移動がより効果的に阻止され、血液試料のヘマトクリット値の差異に伴う測定精度への影響をより低減することができる。 Also in the present embodiment, as in the third embodiment, the movement of blood cells contained in the blood sample is more effectively prevented, and the influence on the measurement accuracy due to the difference in the hematocrit value of the blood sample can be further reduced. .
 (実施形態6)
 図7に、本実施形態のバイオセンサにおける試薬構成の断面概略図を示す。図7に示されるように、本実施形態は、「高分子層」を構成する親水性高分子が、二重結合酸素を有さない点で実施形態4と異なるが、それ以外の点は実施形態4と同様である。
(Embodiment 6)
FIG. 7 shows a schematic cross-sectional view of the reagent configuration in the biosensor of this embodiment. As shown in FIG. 7, the present embodiment is different from the fourth embodiment in that the hydrophilic polymer constituting the “polymer layer” does not have double bond oxygen, but other points are implemented. This is the same as in the fourth mode.
 本実施形態においても、実施形態3と同様に、血液試料に含まれる血球の移動がより効果的に阻止され、血液試料のヘマトクリット値の差異に伴う測定精度への影響をより低減することができる。 Also in the present embodiment, as in the third embodiment, the movement of blood cells contained in the blood sample is more effectively prevented, and the influence on the measurement accuracy due to the difference in the hematocrit value of the blood sample can be further reduced. .
 なお、実施形態5、6(図6、7)において、酵素層と高分子層の配置が逆転していてもよい。また、各層に加える二重結合酸素を有する親水性高分子または二重結合酸素を有しない親水性高分子としては、同種のものを使用してもよく、異種のものを使用してもよい。 In Embodiments 5 and 6 (FIGS. 6 and 7), the arrangement of the enzyme layer and the polymer layer may be reversed. In addition, as the hydrophilic polymer having double bond oxygen added to each layer or the hydrophilic polymer having no double bond oxygen, the same type or different types may be used.
 <バイオセンサの構成および製造方法>
 以下、バイオセンサ全体の基本的構成態様の一例、および、このバイオセンサの製造方法の一例について、図1、図8~図12を参照して説明する。図1は、バイオセンサの基本的構成態様の一例を示す斜視図である。図8~図12は、このバイオセンサの製造工程の一例を説明するための図であって、それぞれ異なる工程を示している。
<Configuration and manufacturing method of biosensor>
Hereinafter, an example of a basic configuration aspect of the entire biosensor and an example of a method for manufacturing the biosensor will be described with reference to FIGS. 1 and 8 to 12. FIG. 1 is a perspective view illustrating an example of a basic configuration aspect of a biosensor. FIGS. 8 to 12 are diagrams for explaining an example of the manufacturing process of the biosensor, and show different processes.
 図1に示すバイオセンサは、絶縁性基板1上に形成された作用極21および対極22を含む電極層上に、キャビティを形成するためのスリット41を有するスペーサ4を貼り合わせた後に、キャビティの底面3(電極層の表面)、スリット41の内壁面およびカバー層5の表面(下面)により囲まれた領域であるキャビティ内に、試薬層を形成し、スペーサ4上にカバー層5を貼り合わせた構造を有している(図1参照)。なお、試薬層は、上述の酵素層、メディエータ層、高分子層などから構成される。 In the biosensor shown in FIG. 1, a spacer 4 having a slit 41 for forming a cavity is bonded to an electrode layer including a working electrode 21 and a counter electrode 22 formed on an insulating substrate 1. A reagent layer is formed in a cavity surrounded by the bottom surface 3 (surface of the electrode layer), the inner wall surface of the slit 41, and the surface (lower surface) of the cover layer 5, and the cover layer 5 is bonded onto the spacer 4 (See FIG. 1). The reagent layer includes the above-described enzyme layer, mediator layer, polymer layer, and the like.
 本発明のバイオセンサは、上記酵素層が、キャビティに露出する作用極および対極のキャビティ側の表面の少なくとも一部に設けられ、上記メディエータ層が、前記キャビティに露出する前記カバー層の表面の少なくとも一部に設けられていることを特徴とする。 In the biosensor of the present invention, the enzyme layer is provided on at least a part of the cavity-side surface of the working electrode and the counter electrode exposed in the cavity, and the mediator layer is at least on the surface of the cover layer exposed in the cavity. It is provided in a part.
 このバイオセンサは、測定器に装着されて使用されるものである。すなわち、測定器に装着されたバイオセンサのキャビティに試料(血液など)を供給し、試料中の測定対象物質(グルコースなど)と酵素およびメディエータとが反応することで還元物質が生成する。そして、バイオセンサの作用極21および対極22と電気的に接続された測定器により、作用極21と対極22との間に電圧を印加し、この還元物質を酸化することにより得られる酸化電流を計測することで、試料に含まれる測定対象物質の定量が行われる。 This biosensor is used by being mounted on a measuring instrument. That is, a sample (blood or the like) is supplied to the cavity of the biosensor mounted on the measuring instrument, and a reducing substance is generated by the reaction of the substance to be measured (such as glucose) in the sample with the enzyme and mediator. A voltage is applied between the working electrode 21 and the counter electrode 22 by a measuring device electrically connected to the working electrode 21 and the counter electrode 22 of the biosensor, and an oxidation current obtained by oxidizing this reducing substance is obtained. By measuring, the measurement target substance contained in the sample is quantified.
 絶縁性基板1の材料としては、絶縁性を有するものであれば特に限定されないが、例えば、PETフィルムなどプラスチック、紙、ガラス、セラミック、生分解性材料が挙げられる。 The material of the insulating substrate 1 is not particularly limited as long as it has insulating properties, and examples thereof include plastic such as PET film, paper, glass, ceramic, and biodegradable material.
 上記電極層は、作用極および対極以外に、電極電位の測定時に電位の基準となる参照電極や、キャビティに試料が供給されたことを検知するための検知用電極を含んでいてもよい。 In addition to the working electrode and the counter electrode, the electrode layer may include a reference electrode serving as a potential reference when measuring the electrode potential, and a detection electrode for detecting that the sample has been supplied to the cavity.
 これらの電極(作用電極、対極、参照極、検知用電極など)の材料としては、白金、金、パラジウムなどの貴金属やカーボン、銅、アルミニウム、チタン、ITO(Indium Tin Oxide:酸化インジウム錫)、ZnO(酸化亜鉛)などが挙げられる。電極層は、例えば、スクリーン印刷やスパッタリング蒸着法を用いて絶縁性基板の一方の面に上記材料からなる導電層を形成し、さらに、レーザー加工、フォトリソグラフィーなどを用いてパターン形成することにより、作製することができる。また、作用極21および対極22は、それぞれの先端側が、スリット41等により形成されるキャビティに露出するように配置される。 As materials for these electrodes (working electrode, counter electrode, reference electrode, detection electrode, etc.), noble metals such as platinum, gold, palladium, carbon, copper, aluminum, titanium, ITO (Indium Tin Oxide), ZnO (zinc oxide) etc. are mentioned. The electrode layer is formed, for example, by forming a conductive layer made of the above material on one surface of the insulating substrate using screen printing or sputtering vapor deposition, and further patterning using laser processing, photolithography, etc. Can be produced. In addition, the working electrode 21 and the counter electrode 22 are arranged so that their respective distal end sides are exposed to cavities formed by the slits 41 and the like.
 次に、上記の電極表面をプラズマにより洗浄処理する。なお、プラズマ洗浄工程において使用されるプラズマとしては、プラズマによる金属活性化処理において使用される種々のプラズマを使用することができ、例えば、酸素プラズマ、窒素プラズマ、アルゴンプラズマが挙げられる。また、プラズマは、減圧プラズマであっても大気圧プラズマであってもよい。
上記したようにして形成された電極層にスペーサ4が積層される。スペーサ4は、絶縁性材料からなる基板により形成され、基板の先端縁部のほぼ中央にキャビティを形成するためのスリット41が形成されている。そして、スリット41が作用極21および対極22の先端側に配置されるように、スペーサ4が電極層の一方面を部分的に被覆して積層される。スペーサ4を構成する絶縁性材料としては、例えば、プラスチック(PETフィルムなど)、紙、ガラス、セラミック、生分解性材料が挙げられる。
Next, the electrode surface is cleaned with plasma. Note that as the plasma used in the plasma cleaning step, various plasmas used in metal activation treatment by plasma can be used, and examples thereof include oxygen plasma, nitrogen plasma, and argon plasma. Further, the plasma may be a low pressure plasma or an atmospheric pressure plasma.
The spacer 4 is laminated on the electrode layer formed as described above. The spacer 4 is formed of a substrate made of an insulating material, and a slit 41 for forming a cavity is formed at substantially the center of the front edge portion of the substrate. Then, the spacer 4 is laminated so as to partially cover one surface of the electrode layer so that the slit 41 is disposed on the tip side of the working electrode 21 and the counter electrode 22. Examples of the insulating material constituting the spacer 4 include plastic (such as PET film), paper, glass, ceramic, and biodegradable material.
 次に、上記のように形成されたキャビティ内の電極層の表面に上述の酵素層や高分子層を形成する。具体的には、CMC等の親水性高分子溶液が、滴下装置から電極層を覆うように所定量滴下され、乾燥することにより高分子層を形成する(高分子層形成工程)。 Next, the above-described enzyme layer or polymer layer is formed on the surface of the electrode layer in the cavity formed as described above. Specifically, a predetermined amount of a hydrophilic polymer solution such as CMC is dropped from a dropping device so as to cover the electrode layer, and dried to form a polymer layer (polymer layer forming step).
 次に、酵素および二重結合酸素を有する親水性高分子を含有する試薬が、滴下装置からキャビティに所定量滴下され、乾燥することにより酵素層が形成される(酵素層形成工程)。 Next, a predetermined amount of a reagent containing an enzyme and a hydrophilic polymer having double-bonded oxygen is dropped into the cavity from the dropping device and dried to form an enzyme layer (enzyme layer forming step).
 カバー層5の材料は、絶縁性材料であることが好ましく、例えば、PETフィルムなどプラスチック、紙、ガラス、セラミック、生分解性材料を用いることができる。なお、カバー層5には、スペーサ4に積層されたときにキャビティと連通する空気穴51が形成されていることが好ましい。このように構成されたバイオセンサでは、キャビティの開口部に血液等の試料を接触させることにより、毛細管現象により試料が空気穴51に向かって吸引されて、キャビティ内への試料の導入が容易になるからである。 The material of the cover layer 5 is preferably an insulating material, and for example, plastic such as PET film, paper, glass, ceramic, and biodegradable material can be used. The cover layer 5 is preferably formed with an air hole 51 that communicates with the cavity when stacked on the spacer 4. In the biosensor configured as described above, by bringing a sample such as blood into contact with the opening of the cavity, the sample is sucked toward the air hole 51 by capillary action, so that the sample can be easily introduced into the cavity. Because it becomes.
 このようなカバー層5のキャビティに露出する表面(スペーサ4側の面)の少なくとも一部に、上述のメディエータ層が形成される。 The above-mentioned mediator layer is formed on at least a part of the surface exposed to the cavity of the cover layer 5 (the surface on the spacer 4 side).
 次に、該メディエータ層を有するカバー層5が、メディエータ層がキャビティ内(スリット41内)に位置するようにスペーサ4上に積層されることで、バイオセンサが形成される。 Next, the biosensor is formed by laminating the cover layer 5 having the mediator layer on the spacer 4 so that the mediator layer is located in the cavity (in the slit 41).
 なお、試薬層(酵素層、メディエータ層、高分子層など)を構成する材料として、必要に応じて、検体(試料)導入を促進するための親水化剤などの試薬を配合してもよい。親水化剤としては、TritonX100(シグマアルドリッチ社製)、Tween20(東京化成工業社製)、ビス(2-エチルヘキシル)スルホコハク酸ナトリウムなどの界面活性剤、レシチンなどリン脂質を用いることができる。また、試料に含まれるイオン濃度のばらつきを低減するために、リン酸などの緩衝剤を配合してもよい。これらの親水化剤や緩衝剤等は、酵素層、メディエータ層および高分子層などを形成する前に、あらかじめキャビティの内壁面に塗布してもよい。 In addition, as a material constituting the reagent layer (enzyme layer, mediator layer, polymer layer, etc.), a reagent such as a hydrophilizing agent for promoting the introduction of the specimen (sample) may be blended as necessary. As the hydrophilizing agent, a surfactant such as Triton X100 (manufactured by Sigma Aldrich), Tween 20 (manufactured by Tokyo Chemical Industry Co., Ltd.), sodium bis (2-ethylhexyl) sulfosuccinate, or a phospholipid such as lecithin can be used. Further, a buffering agent such as phosphoric acid may be blended in order to reduce the variation in ion concentration contained in the sample. These hydrophilizing agents and buffering agents may be applied in advance to the inner wall surface of the cavity before forming the enzyme layer, mediator layer, polymer layer and the like.
 <バイオセンサの使用方法>
 以下、本発明のバイオセンサの使用方法の一例について説明する。
<How to use the biosensor>
Hereinafter, an example of a method for using the biosensor of the present invention will be described.
 まず、キャビティの先端部分に血液を接触させ、血液を、毛細管現象を利用してキャビティ内部に導入する。 First, blood is brought into contact with the tip of the cavity, and the blood is introduced into the cavity using capillary action.
 次に、作用極と対極間に電圧を印加し、一定のタイミングで電流値を測定する。印加電圧は、例えば0.3Vとする。 Next, a voltage is applied between the working electrode and the counter electrode, and the current value is measured at a constant timing. The applied voltage is, for example, 0.3V.
 次に、電圧印加から一定時間経過後の電流値を測定する。例えば、3~5秒後の電流値を測定する。この電流値を用いて、あらかじめ求めておいた検量線から分析対象物濃度を決定することができる。 Next, measure the current value after a certain period of time has elapsed since voltage application. For example, the current value after 3 to 5 seconds is measured. Using this current value, the analyte concentration can be determined from a calibration curve obtained in advance.
 キャビティ内に血液が導入されると、血中の分析対象物が酵素を介してメディエータを還元する。作用極と対極の間に電圧を印加した際に流れる電流は、メディエータの還元体濃度、すなわち分析対象物濃度と相関がある。 When blood is introduced into the cavity, the analyte in the blood reduces the mediator via the enzyme. The current that flows when a voltage is applied between the working electrode and the counter electrode correlates with the reductant concentration of the mediator, that is, the analyte concentration.
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 (実施例1)
 まず、電極層を、ポリエチレンテレフタレートなどの絶縁性材料から成る絶縁性基板上に形成した。具体的には、電極層を形成する絶縁性基板の一方の面に、白金、金、パラジウムなどの貴金属やカーボン、銅、アルミニウム、チタン、ITO、ZnOなどの導電性物質から成る導電層を、スクリーン印刷やスパッタリング蒸着法により形成した。そして、絶縁性基板の一方面に形成された導電層に、レーザー加工やフォトリソグラフィーによるパターン形成施した(図8)。
Example 1
First, an electrode layer was formed on an insulating substrate made of an insulating material such as polyethylene terephthalate. Specifically, a conductive layer made of a noble metal such as platinum, gold, or palladium, or a conductive material such as carbon, copper, aluminum, titanium, ITO, or ZnO is formed on one surface of the insulating substrate that forms the electrode layer. It was formed by screen printing or sputtering deposition. The conductive layer formed on one surface of the insulating substrate was subjected to pattern formation by laser processing or photolithography (FIG. 8).
 次に、スリット(切り込み)41を有するスペーサ4(ポリエチレンテレフタレートなどから成る)を貼り合わせた(図9)。次に、分析対象物濃度測定用の電極(作用極、対極)上に、CMC(血球ろ過剤)の溶液を滴下し、乾燥させることで、高分子層を形成した(図10)。 Next, spacers 4 (made of polyethylene terephthalate or the like) having slits (cuts) 41 were bonded together (FIG. 9). Next, a polymer layer was formed by dropping a solution of CMC (blood cell filter agent) on an electrode (working electrode, counter electrode) for measuring the analyte concentration and drying it (FIG. 10).
 次に、該高分子層上に、CMCと酵素の混合液を滴下し、乾燥させることで、酵素層を形成した。 Next, a mixed solution of CMC and enzyme was dropped on the polymer layer and dried to form an enzyme layer.
 別途、ポリエチレンテレフタレートなどの絶縁性材料から構成されるカバー層5の一方の面のキャビティに露出される部分に、メディエータと親水性高分子としてのヒドロキシプロピルメチルセルロースの混合液を滴下し、乾燥させることで、メディエータ層を形成した。 Separately, a liquid mixture of mediator and hydroxypropylmethylcellulose as a hydrophilic polymer is dropped into a portion exposed in the cavity on one surface of the cover layer 5 made of an insulating material such as polyethylene terephthalate and dried. Thus, a mediator layer was formed.
 次に、メディエータ層を有するカバー層5を、メディエータ層がスリット41内(キャビティ内)に位置するように、スペーサ4上に貼り合わせた(図11)。なお、カバー層5には空気を逃がすための空気穴51を設けられている。 Next, the cover layer 5 having a mediator layer was bonded onto the spacer 4 so that the mediator layer was positioned in the slit 41 (in the cavity) (FIG. 11). The cover layer 5 is provided with an air hole 51 for letting air escape.
 次に、スペーサ4等によって形成されるキャビティの一部が露出するように、積層体をカットすることで、バイオセンサを得た(図12)。 Next, the biosensor was obtained by cutting the laminate so that a part of the cavity formed by the spacer 4 and the like was exposed (FIG. 12).
 [耐熱性試験]
 実施例1で得られたバイオセンサ、および、従来のバイオセンサ(特許文献3記載の構成:図15(c))について、耐熱性試験を行った。具体的には、温度50℃の恒温槽中で保存し、所定時間(200、400、700、900時間)経過後のバイオセンサに対して、作用極と対極の間に0.3Vの電圧を印加し、バックグラウンド電流の値を測定した。測定結果を図13に示す。
[Heat resistance test]
A heat resistance test was performed on the biosensor obtained in Example 1 and the conventional biosensor (configuration described in Patent Document 3: FIG. 15C). Specifically, it is stored in a constant temperature bath at a temperature of 50 ° C., and a voltage of 0.3 V is applied between the working electrode and the counter electrode with respect to the biosensor after a predetermined time (200, 400, 700, 900 hours). Applied and measured the value of the background current. The measurement results are shown in FIG.
 図13に示されるように、50℃の高温環境で保管すると、従来のバイオセンサはバックグラウンド電流の増加が顕著であるのに対して、実施例1のバイオセンサは計測電流が初期値から変化せず、バックグラウンド電流の増加が抑制されていることがわかる。 As shown in FIG. 13, when stored in a high temperature environment of 50 ° C., the increase in background current is significant in the conventional biosensor, whereas in the biosensor of Example 1, the measurement current changes from the initial value. Without increasing the background current.
 [耐湿性試験]
 実施例1で得られたバイオセンサ、および、従来のバイオセンサ(特許文献3記載の構成:図15(c))について、耐湿性試験を行った。具体的には、相対湿度(RH)90%、温度30℃に設定された恒湿恒温槽中で保存し、所定時間経過後のバイオセンサに対して、作用極と対極の間に0.3Vの電圧を印加し、バックグラウンド電流の値を測定した。測定結果を図14に示す。
[Moisture resistance test]
The moisture resistance test was performed on the biosensor obtained in Example 1 and the conventional biosensor (configuration described in Patent Document 3: FIG. 15 (c)). Specifically, it is stored in a thermo-hygrostat set at 90% relative humidity (RH) and a temperature of 30 ° C., and 0.3 V between the working electrode and the counter electrode with respect to the biosensor after a predetermined time has elapsed. Then, the background current value was measured. The measurement results are shown in FIG.
 図14に示されるように、90%の高湿環境で保管すると、従来のバイオセンサはバックグラウンド電流の増加が顕著であるのに対して、実施例1のバイオセンサは計測電流が初期値から変化せず、バックグラウンド電流の増加が抑制されていることがわかる。 As shown in FIG. 14, when stored in a high humidity environment of 90%, the conventional biosensor has a significant increase in background current, whereas the biosensor of Example 1 has a measured current from the initial value. It can be seen that the increase in the background current is suppressed without changing.
 この原因は、酵素およびCMCを電極側に、メディエータをカバー側に形成して、酵素およびCMCとメディエータが完全に分離され、かつメディエータ層に加える増粘剤に二重結合酸素を持たず、メディエータが還元作用の小さい高分子で固定化することで、メディエータの還元の抑制と、メディエータの剥離による特性劣化の抑制を両立できたためと考えられる。結果として、本発明により、耐熱性および耐湿性が高く、正確で、信頼性の高い血糖値を検出するセンサが提供可能であることが分かる。 This is because the enzyme and CMC are formed on the electrode side and the mediator is formed on the cover side, and the enzyme, CMC and mediator are completely separated, and the thickener added to the mediator layer does not have double bond oxygen. This is considered to be because, by immobilizing with a polymer having a small reducing action, it was possible to achieve both suppression of reduction of the mediator and suppression of property deterioration due to peeling of the mediator. As a result, it can be seen that according to the present invention, it is possible to provide a sensor for detecting a blood glucose level that has high heat resistance and high humidity resistance, is accurate, and has high reliability.
 1 絶縁性基板、21 作用極、22 対極、3 キャビティの底面、4 スペーサ、41 スリット、5 カバー層、51 空気穴。 1 Insulating substrate, 21 working electrode, 22 counter electrode, 3 bottom of cavity, 4 spacer, 41 slit, 5 cover layer, 51 air hole.

Claims (12)

  1.  絶縁性基板と、
     前記絶縁性基板の一方の面に設けられた作用極および対極を含む電極層と、
     スリットを有し、前記スリットが前記作用極および前記対極の少なくとも一部の表面上に位置するように、前記電極層の前記絶縁性基板と反対側の面に積層されたスペーサ層と、
     前記スペーサ層の前記電極層と反対側の面に積層されたカバー層と、
     前記電極層、前記スリットおよび前記カバー層により形成された、試料を供給するためのキャビティと、
     測定対象物質と反応する酵素を含み、メディエータを含まない酵素層と、
     メディエータを含み、酵素を含まず、二重結合した酸素原子を有する親水性高分子を含まないメディエータ層と
     を備えるバイオセンサであって、
     前記酵素層と前記メディエータ層のうち、一方が、前記キャビティに露出する前記作用極および前記対極の前記キャビティ側の表面の少なくとも一部に設けられ、他方が、前記キャビティに露出する前記カバー層の表面の少なくとも一部に設けられており、
     前記酵素層と前記メディエータ層との間に空間を有することで、両者が分離されていることを特徴とする、バイオセンサ。
    An insulating substrate;
    An electrode layer including a working electrode and a counter electrode provided on one surface of the insulating substrate;
    A spacer layer that has a slit, and is laminated on the surface of the electrode layer opposite to the insulating substrate so that the slit is located on at least a part of the surface of the working electrode and the counter electrode;
    A cover layer laminated on the surface of the spacer layer opposite to the electrode layer;
    A cavity for supplying a sample formed by the electrode layer, the slit and the cover layer;
    An enzyme layer that contains an enzyme that reacts with the substance to be measured and does not contain a mediator;
    A biosensor comprising a mediator layer that includes a mediator, does not include an enzyme, and does not include a hydrophilic polymer having a double-bonded oxygen atom,
    One of the enzyme layer and the mediator layer is provided on at least a part of the cavity-side surface of the working electrode and the counter electrode exposed to the cavity, and the other of the cover layer exposed to the cavity. Provided on at least part of the surface,
    A biosensor characterized in that a space is provided between the enzyme layer and the mediator layer to separate them.
  2.  前記酵素層が、前記キャビティに露出する前記作用極および前記対極の前記キャビティ側の表面の少なくとも一部に設けられ、
     前記メディエータ層が、前記キャビティに露出する前記カバー層の表面の少なくとも一部に設けられている、請求項1に記載のバイオセンサ。
    The enzyme layer is provided on at least a part of the cavity-side surface of the working electrode and the counter electrode exposed in the cavity;
    The biosensor according to claim 1, wherein the mediator layer is provided on at least a part of the surface of the cover layer exposed to the cavity.
  3.  前記メディエータ層は、二重結合した酸素原子を有しない親水性高分子を含む、請求項1または2に記載のバイオセンサ。
     
    The biosensor according to claim 1, wherein the mediator layer includes a hydrophilic polymer that does not have a double-bonded oxygen atom.
  4.  前記二重結合した酸素原子を有しない親水性高分子は、カルボキシル基、カルボニル基、アシル基、アルデヒド基、スルホ基、スルホニル基、スルホキシド基、トシル基、ニトロ基、ニトロソ基、エステル基、ケト基およびケテン基を有さない、請求項3に記載のバイオセンサ。 The hydrophilic polymer having no double-bonded oxygen atom includes carboxyl group, carbonyl group, acyl group, aldehyde group, sulfo group, sulfonyl group, sulfoxide group, tosyl group, nitro group, nitroso group, ester group, keto group. The biosensor according to claim 3, which has no group and no ketene group.
  5.  前記二重結合した酸素原子を有しない親水性高分子として、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシエチルメチルセルロース、ポリビニルアルコール、ポリエチレングリコールのうちの少なくとも1つを含むことを特徴とする請求項3または4に記載のバイオセンサ。 The hydrophilic polymer having no double-bonded oxygen atom includes at least one of hydroxypropylmethylcellulose, hydroxypropylcellulose, methylcellulose, hydroxyethylcellulose, hydroxyethylmethylcellulose, polyvinyl alcohol, and polyethylene glycol. The biosensor according to claim 3 or 4.
  6.  前記酵素層は、親水性高分子を含む、請求項1~5のいずれか1項に記載のバイオセンサ。 The biosensor according to any one of claims 1 to 5, wherein the enzyme layer contains a hydrophilic polymer.
  7.  前記酵素層は、親水性高分子を含み、
     前記酵素層と前記電極層との間に、両者に接するように、親水性高分子を含む高分子層をさらに備える、請求項2に記載のバイオセンサ。
    The enzyme layer includes a hydrophilic polymer,
    The biosensor according to claim 2, further comprising a polymer layer containing a hydrophilic polymer between the enzyme layer and the electrode layer so as to be in contact with both.
  8.  前記高分子層は、二重結合した酸素原子を有する親水性高分子を含む、請求項7に記載のバイオセンサ。 The biosensor according to claim 7, wherein the polymer layer includes a hydrophilic polymer having a double-bonded oxygen atom.
  9.  前記二重結合した酸素原子を有する親水性高分子は、カルボキシル基、カルボニル基、アシル基、アルデヒド基、スルホ基、スルホニル基、スルホキシド基、トシル基、ニトロ基、ニトロソ基、エステル基、ケト基およびケテン基からなる群から選択される少なくとも1種を有する、請求項8に記載のバイオセンサ。 The hydrophilic polymer having a double-bonded oxygen atom includes a carboxyl group, a carbonyl group, an acyl group, an aldehyde group, a sulfo group, a sulfonyl group, a sulfoxide group, a tosyl group, a nitro group, a nitroso group, an ester group, and a keto group. And at least one selected from the group consisting of ketene groups.
  10.  前記二重結合した酸素原子を有する親水性高分子として、少なくともカルボキシメチルセルロースを含む、請求項9に記載のバイオセンサ。 The biosensor according to claim 9, comprising at least carboxymethylcellulose as the hydrophilic polymer having a double-bonded oxygen atom.
  11.  前記高分子層は、二重結合した酸素原子を有さない親水性高分子を含む、請求項7に記載のバイオセンサ。 The biosensor according to claim 7, wherein the polymer layer includes a hydrophilic polymer having no double-bonded oxygen atom.
  12.  前記メディエータは、それ自体が酸化還元反応を行う物質である、請求項1~11のいずれか1項に記載のバイオセンサ。 The biosensor according to any one of claims 1 to 11, wherein the mediator is a substance that itself undergoes an oxidation-reduction reaction.
PCT/JP2014/067510 2013-07-05 2014-07-01 Biosensor WO2015002184A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013141648 2013-07-05
JP2013-141648 2013-07-05

Publications (1)

Publication Number Publication Date
WO2015002184A1 true WO2015002184A1 (en) 2015-01-08

Family

ID=52143756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067510 WO2015002184A1 (en) 2013-07-05 2014-07-01 Biosensor

Country Status (1)

Country Link
WO (1) WO2015002184A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187574A1 (en) * 2018-03-26 2019-10-03 Phcホールディングス株式会社 Biosensor
CN114286937A (en) * 2019-08-16 2022-04-05 东友精细化工有限公司 Biosensor and method for measuring the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264247A (en) * 2003-03-04 2004-09-24 Matsushita Electric Ind Co Ltd Biosensor
JP2011214839A (en) * 2010-03-31 2011-10-27 Cci Corp Biosensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264247A (en) * 2003-03-04 2004-09-24 Matsushita Electric Ind Co Ltd Biosensor
JP2011214839A (en) * 2010-03-31 2011-10-27 Cci Corp Biosensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187574A1 (en) * 2018-03-26 2019-10-03 Phcホールディングス株式会社 Biosensor
CN114286937A (en) * 2019-08-16 2022-04-05 东友精细化工有限公司 Biosensor and method for measuring the same

Similar Documents

Publication Publication Date Title
EP1742045B1 (en) Method for measuring blood components and biosensor and measuring instrument for use therein
JP5708878B2 (en) Biosensor and manufacturing method thereof
US20130098775A1 (en) Glucose biosensor with improved shelf life
CN104280431A (en) Reagent composition for biosensor and biosensor having the same
KR102119301B1 (en) Method and test element for electrochemically detecting at least one analyte in a sample of a body fluid
JP5655977B2 (en) Biosensor
JP5001240B2 (en) Biosensor, its manufacturing method, and its use
JP6607437B2 (en) Biosensor
WO2015002184A1 (en) Biosensor
WO2014069070A1 (en) Biosensor
JP2014089097A (en) Biosensor
WO2013073073A1 (en) Biosensor and biosensor production method
JP2017009431A (en) Sensor
JP6610025B2 (en) Biosensor
JP2015155841A (en) Biosensor
Takagi et al. BIOSENSOR
JP2013108791A (en) Method for manufacturing biosensor, and biosensor
JP2011149960A (en) Biosensor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14819591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14819591

Country of ref document: EP

Kind code of ref document: A1