WO2014208343A1 - 麻酔深度測定法、麻酔深度測定装置及び使用 - Google Patents
麻酔深度測定法、麻酔深度測定装置及び使用 Download PDFInfo
- Publication number
- WO2014208343A1 WO2014208343A1 PCT/JP2014/065545 JP2014065545W WO2014208343A1 WO 2014208343 A1 WO2014208343 A1 WO 2014208343A1 JP 2014065545 W JP2014065545 W JP 2014065545W WO 2014208343 A1 WO2014208343 A1 WO 2014208343A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- anesthesia
- displacement
- depth
- degree
- dispersion
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4821—Determining level or depth of anaesthesia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/369—Electroencephalography [EEG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/369—Electroencephalography [EEG]
- A61B5/372—Analysis of electroencephalograms
- A61B5/374—Detecting the frequency distribution of signals, e.g. detecting delta, theta, alpha, beta or gamma waves
Definitions
- the present invention relates to an anesthesia depth measurement method, an anesthesia depth measurement device, and use for anesthesia depth determination.
- Non-Patent Documents 1 and 2 With the progress of anesthesia, intraoperative awakening has become a social problem, and brain wave-derived anesthesia and sedation monitors such as BIS monitors, Cerebral State Index, and AEP monitors are recommended by guidelines and are used worldwide. Maintaining an appropriate depth of anesthesia is also useful for preventing postoperative cognitive decline, and anesthesia depth monitoring is recommended from the standpoint of preventing such postoperative higher cognitive impairment.
- Non-Patent Documents 3 to 8 Each monitor requires a long time electroencephalogram signal to estimate the depth of anesthesia and takes a long time to analyze, causing a delay, and one of the main causes is that the depth of anesthesia cannot be sensed in real time (Non-Patent Documents 9 to 10). ).
- a BIS monitor has a delay of 60 seconds or more at the shortest.
- Poincare plot is a simple non-linear analysis method in a low-dimensional two-dimensional state space, and has been used for research in heart rate variability analysis and autonomic function analysis using the RR interval of ECG.
- the present invention is a new method different from conventional bispectral, spectral analysis, and auditory evoked potential analysis, and an anesthesia depth measurement method and anesthesia depth measurement device capable of agile calculation even from a non-stationary state or a short-time electroencephalogram signal.
- the purpose is to develop.
- the present invention provides the following anesthesia depth measurement methods, anesthesia depth measurement devices, and uses for anesthetic depth determination.
- An anesthesia depth measurement method including the step of quantifying the sharpness in the major axis direction of the Poincare plot distribution, and the step of evaluating the randomness included in the electroencephalogram based on the sharpness and determining the depth of anesthesia.
- Anesthesia depth measurement method including the following steps: (1) A step of measuring the electroencephalogram of a general anesthesia patient by an electroencephalograph (2) A step of outputting the electroencephalogram time-series signal by subjecting the electroencephalogram to filtering processing and analog / digital conversion ( (However, the order of analog / digital conversion and filtering processing does not matter) (3)
- the brain wave time series signal and the delayed time series signal of the brain wave time series signal are expressed as a pair (Ax, Ay) of a brain wave voltage Ax at a certain time and a brain wave voltage Ay after a certain time from the certain time.
- the displacement L1 is the displacement in the minor axis direction
- the displacement L2 is the displacement in the major axis direction
- the dispersion degree calculating step calculates the displacement L1 and the displacement L2 according to the following formulas: L1 / L2 calculation Item 4.
- Anesthesia depth measurement method according to item 2 or 3 wherein the anesthesia depth is determined based on the ratio of L1 and L2 (L1 / L2 or L2 / L1).
- the displacement L1 is the displacement in the minor axis direction
- the displacement L2 is the displacement in the major axis direction
- the dispersion degree calculating step calculates the displacement L1 and the displacement L2 according to the following formulas: L1 / L2 calculation Process and
- the degree of dispersion V1 and the degree of dispersion V2 are the SD1 or the SD2, respectively.
- Item 4. Anesthetic depth measurement method according to Item 2 or 3, wherein the depth of anesthesia is determined based on SD1 / SD2 or SD2 / SD1.
- Item 6. The method for measuring the depth of anesthesia according to item 5, wherein the depth of anesthesia is determined by combining the SD1 / SD2 or SD2 / SD1 and another means for analyzing anesthesia depth.
- the other anesthetic depth analysis means is the electroencephalogram frequency analysis, bispectral analysis, spectral analysis, entropy analysis, auditory evoked potential analysis means, or a combination of two or more of these analysis means. Described anesthesia depth measurement method. Item 8.
- An electroencephalograph to measure the electroencephalogram of a general anesthesia patient;
- Filtering means for filtering brain waves after A / D conversion or before A / D conversion;
- An electroencephalogram time-series signal obtained by filtering the electroencephalogram and a delayed time-series signal of the electroencephalogram time-series signal are represented by a pair of electroencephalogram voltage Ax at a certain time and electroencephalogram voltage Ay after a certain time delay from the certain time ( Plot on the xy plane with (Ax, Ay) Quantifying the pair (Ax, Ay) of the electroencephalogram voltage Ay plotted on the xy plane by displacement from two orthogonal axes; Based on the respective displacements V1 and V2 of the pair (Ax, Ay) relative to the two orthogonal axes, the amount is related to the distance of the pair (Ax, Ay) relative to the two ortho
- the displacement L1 is the displacement in the minor axis direction
- the displacement L2 is the displacement in the major axis direction
- anesthetic depth determination means for determining the depth of anesthesia The anesthesia depth measuring apparatus of claim
- the other anesthetic depth analysis means is the electroencephalogram frequency analysis, bispectral analysis, spectral analysis, entropy analysis, auditory evoked potential analysis means, or a combination of two or more of these analysis means.
- the anesthesia depth measuring device as described. Item 12.
- the use of the ratio of the degree of dispersion V1 and the degree of dispersion V2 for determining the depth of anesthesia measuring the electroencephalogram of a general anesthesia patient with an electroencephalograph, After analog / digital conversion of the electroencephalogram or before analog / digital conversion, filtering process is performed to output an electroencephalogram time-series signal,
- the brain wave time series signal and the delayed time series signal of the brain wave time series signal are represented on the xy plane by a pair (Ax, Ay) of a brain wave voltage Ax at a certain time and a brain wave voltage Ay after a certain time from the certain time.
- the displacement L1 is the displacement in the minor axis direction
- the displacement L2 is the displacement in the major axis direction
- the dispersion degree V1 and the dispersion degree V2 are the SD1 or the SD2, respectively.
- Item 15. The use according to Item 12, for determining the depth of anesthesia for SD1 / SD2 or SD2 / SD1.
- Item 14. The SD1 / SD2 or SD2 / SD1 is combined with at least one selected from the group consisting of electroencephalogram frequency analysis, bispectral analysis, spectral analysis, entropy analysis, and auditory evoked potential analysis means to determine the depth of anesthesia Item 14.
- Item 15. Item 14. The use according to Item 13, wherein the SD1 / SD2 or SD2 / SD1 is combined with an algorithm for measuring the depth of anesthesia to determine the depth of anesthesia.
- the Poincare plot quantification index (ratio of V1 and V2) of the frontal lead electroencephalogram is useful for measuring the depth of anesthesia.
- This method can be easily realized from a time-series signal of a short time in seconds, and clinical application as real-time anesthesia depth monitoring can be expected.
- the present invention can cope with a sudden change in brain activity by using a new non-linear method for the electroencephalogram depth analysis, and the electroencephalogram signal necessary for the analysis is short and in seconds. Therefore, it reacts quickly.
- anesthesia depth meters incorporating various techniques have been developed and are in clinical use, but are not sufficient to prevent intraoperative awakening and maintain an appropriate depth of anesthesia. Since the brain is a complex system and a nonlinear system, a nonlinear multi-faceted approach to analyze a dynamic signal is useful for measuring the depth of anesthesia to monitor its behavior.
- the Poincare plot is a non-linear method that analyzes a dynamic signal in the framework of a past history by plotting a current time signal and a delay time signal in pairs without requiring a premise or a model.
- the Poincare plot of a random complex signal such as white noise generally shows an egg-shaped distribution, but becomes an elongated distribution as the signal randomness decreases.
- EEGs are disordered and random when awake, but synchronize and become more regular as anesthesia deepens.
- the decrease in the degree of electroencephalogram observed as the depth of anesthesia increases as the sharpness of the electroencephalogram Poincare plot pattern increases.
- the standard deviation (SD2, SD1) and ratio (SD1 / SD2) in the major axis and minor axis direction are typically used, but from the center of the Poincare plot distribution to the major axis and minor axis direction.
- Displacement distance (L2, L1) and its ratio (L1 / L2) can also be used.
- the axis of pattern analysis is not limited to the major axis and minor axis directions, and can be quantified as long as it contains vector components in the major axis and minor axis directions.
- the electroencephalograph is not particularly limited, and a commonly used electroencephalograph can be widely used.
- Analog / digital conversion means is not particularly limited, and A / D conversion that is normally used can be widely used.
- EEG filtering is preferably to block both low and high frequencies.
- a high frequency pass filter or a low frequency pass filter can be used as a means for filtering the electroencephalogram.
- the EEG voltage signal in a certain frequency range after A / D conversion and filtering is output to a computing means such as a personal computer.
- the computing means converts a brain wave time series signal in a two-dimensional state space and a delayed time series signal of the brain wave time series signal into a pair of an electroencephalogram voltage Ax at a certain time and an electroencephalogram voltage Ay after a certain time from the certain time ( Ax, Ay) is plotted on the xy plane (Poincare plot), and the pair (Ax, Ay) of the electroencephalogram voltage Ay plotted on the xy plane is quantified by displacement from two orthogonal axes, Based on the respective displacements V1 and V2 of the pair (Ax, Ay) with respect to two orthogonal axes, an amount related to the distance of the pair (Ax, Ay) with respect to the two orthogonal axes.
- the spread degree is calculated by obtaining the spread degree V1 and the spread degree V2, respectively.
- the displacement L2 is calculated according to the following formula:
- a standard deviation SD1 of the displacement L1 and a standard deviation SD2 of the displacement L2 are obtained, and the scatter degree V1 and the scatter degree V2 are the SD1 or the SD2, respectively.
- the calculation means calculates the standard deviation SD1 of L1 and the standard deviation SD2 of L2, and the SD1 / SD2 ratio or SD2 / SD1 ratio.
- the ratio of SD1 and SD2 can be either SD1 / SD2 or SD2 / SD1, but when SD1 / SD2 is used, the logarithm has a high correlation with the power / spectrum ⁇ / ⁇ ratio.
- An example of the calculation means is a CPU, but is not limited to this, and any calculation means can be used.
- ⁇ A signal of the ratio of V1 and V2, for example, the ratio of SD1 and SD2 is sent to the anesthesia depth determination means to determine the depth of anesthesia.
- the depth of anesthesia may be expressed as a continuous number from awakening (eg, 0) to deepest anesthesia (eg, 100): awakening (1), shallow anesthesia 2 (possible arousal), appropriate anesthesia 3,
- the judgment may be made step by step such as deep anesthesia 4 (there is a side effect or accident due to anesthesia).
- the determination result signal is output to the display means to appropriately display the depth of anesthesia.
- the display means displays the depth of anesthesia visually (character, color, light, etc.) and auditory (sound, warning sound, etc.).
- the visual display means includes a display
- the auditory display means includes a speaker, a sound source chip (for example, a sound source such as a CPU), and the like.
- the calculation means of the present invention quantifies the distribution distribution pattern of Poincare plot (Poincare plot) in two directions.
- the Poincare plot is a simple non-linear analysis method in a low-dimensional two-dimensional state space, which has been used for research in heart rate variability analysis and autonomic function analysis using the RR interval of the electrocardiogram. There is no idea to measure the depth of anesthesia by applying it to the EEG time series signal itself and quantifying and analyzing the distribution variation.
- the anesthetic that can determine the depth of anesthesia in the present invention is not particularly limited, and all anesthetics are applicable.
- currently used anesthetics include sevoflurane, desflurane, isoflurane, propofol, midazolam, diazepam, dexmedetomidine and the like.
- all anesthetics that will be developed in the future are subject to anesthetic depth measurement according to the present invention.
- the depth of anesthesia is determined by the ratio of V1 and V2, preferably the ratio of SD1 and SD2.
- the ratio between V1 and V2, especially the ratio between SD1 and SD2 correlates with the depth of anesthesia regardless of the anesthetic, but the criterion can be determined for each anesthetic.
- anesthesia depth measurement is performed by analyzing a brain wave time-series signal in a two-dimensional state space using a Poincare plot. That is, the anesthesia depth is measured by rendering the electroencephalogram time-series signal as a delayed time-series signal as a Poincare plot in a two-dimensional state space and quantifying the distribution form.
- FIG. 14 is a view showing a flowchart of the anesthetic depth measurement method of the present invention.
- the present invention will be described in more detail using SD1 and SD2 as the dispersion degree V1 and the dispersion degree V2.
- the Poincare plot distribution pattern is quantitatively analyzed using the ratio of the two-dimensional and two-dimensional dispersion of the short axis and long axis of the plot group. That is, the ratio between the standard deviation (SD1: Standard Deviation) of the displacement L1 in the short axis direction and the standard deviation SD2 of the displacement L2 in the long axis direction is quantified as an SD1 / SD2 index (FIG. 2).
- SD1 Standard Deviation
- the following describes one preferred embodiment of the present invention for measuring the frontal brain waves to predict the depth of anesthesia.
- the present invention measures any brain waves such as the occipital region, the top of the head, and the left and right temporal regions. It can also be implemented.
- Electroencephalogram electrodes are attached to the frontal region, frontal induced electroencephalograms are measured, and analog / digital conversion and filtering are performed.
- the EEG time-series signal is Poincare plotted and quantified by calculating SD1 / SD2 of the distribution. Details are described below.
- the electroencephalogram time series signal output by the Poincare quantification analysis of the electroencephalogram output signal is Poincare plotted on a two-dimensional plane with the delayed time series signal. That is, A time-series signal: (a, b, c, d, e, f, g, h, i, j ......... ..) In combination with the delayed time series signal: (a, b, c, d, e, f, g, h, i, j .........) (a, b), (b, c), (c, d), (d, e), (e, f), (f, g)... are sequentially plotted on the xy plane.
- the time used for the delay is selected from 1 to several times the sampling interval.
- (a, b, c, d, e, f, g, h, i, j ..........) (a, b, c, d, e, f, g, h, i, j ......... ..)
- the dispersion of the Poincare distribution is quantified in two directions.
- L2 and L1 are derived by the following calculation formula from the graphic properties of the square and its diagonal, as shown in FIG.
- the Poincare plot distribution pattern can be quantified by SD1 / SD2 as the ratio of the standard deviation (SD1: Standard Deviation) of the displacement L1 in the short axis direction and the standard deviation (SD2) of the displacement L2 in the long axis direction.
- the depth of anesthesia may be determined using only the ratio of SD1 and SD2.
- EEG frequency analysis, bispectral analysis, spectral analysis, entropy analysis, auditory evoked potential analysis means, 2 of these analysis means The anesthesia depth may be determined by further combining species or more with the SD1 / SD2 ratio.
- the BIS monitor is the most popular monitor at present, and by combining the BIS monitor and the analysis means of the present invention based on the SD1 / SD2 ratio, or incorporating it into an algorithm such as BIS, the anesthesia depth can be more accurately determined. Can be measured or determined.
- Example 1 Representative example of evaluation of depth of anesthesia by quantification of electroencephalogram Poincare plot Frontal lead electroencephalogram at different four stages of anesthesia (sevoflurane inhalation anesthesia 0.5%, 1%, 2%, 3%) during general anesthesia (10 sec.) And its Poincare plot example are displayed. As the depth of anesthesia increases, the plot changes from an oval shape to a shape that extends longer, with SD1 / SD2 being 0.133 (0.5%), 0.110 (1%), 0.077 (2%), and 0.048 (3%). Decreased. The results are shown in FIG.
- Example 2 Relationship between EEG Poincare quantification index (SD1 / SD2) and sevoflurane inhalation anesthesia depth
- SD1 / SD2 index EEG Poincare quantification index
- Example 3 Relationship between EEG Poincare quantification index (SD1 / SD2) and power spectrum
- SD1 / SD2 and power spectrum were analyzed at the same time, and the frequency component of the ⁇ region (13-3Hz) and the ⁇ region (0.5 -4Hz) frequency component power ratio was calculated and the relationship with the SD1 / SD2 value was examined.
- a high correlation of r 0.92 was observed, supporting the usefulness of SD1 / SD2 as an anesthetic depth measurement method. (FIG. 7).
- Example 4 Effect of delay time on Poincare plot (SD1 / SD2 index)
- SD1 increases. Oval shape.
- SD1 / SD2 changed almost proportionally at any anesthesia level. Therefore, it can be seen that the influence of the delay time on the change rate of SD1 / SD2 depending on the depth of anesthesia is small. This suggests that the time delay setting has little effect on the quantitative evaluation of the Poincare plot in the range of 1-5 times the sampling time.
- FIG. 8 shows the effect of delay on the SD1 / SD2 value.
- Example 5 BIS monitoring is performed with a BIS dedicated electroencephalogram electrode attached to the forehead. At the same time, the derived electroencephalogram is collected at 128 Hz, then the Poincare plot quantitative analysis is performed, and the electroencephalogram index obtained from the BIS monitor ( A comparative study with BIS, SEF95) was conducted.
- the BIS value is an index artificially applied to values from 0-100 as clinical values correlated with the level of consciousness, based on frequency analysis, bispectrum analysis, etc. . It approaches 100 when awakened, close to 0 during deep anesthesia, and 40-60 under moderately deep anesthesia. However, BIS values are dissociated from sedation depending on the type of anesthetic used (Br J Anaesth 2005; 94: 336-40) and are also known to be affected by various factors other than anesthetics. .
- SEF95 refers to the frequency where 95% of the entire Power Spectrum exists below that frequency. In general, when anesthesia is deepened, the SEF95 value decreases and is used as a physiological parameter reflecting the depth of anesthesia. (Anesth Analg 2004; 98: 1336-40) As a result of comparative study, the following points were suggested from the analysis example. 1. Poincare plot quantitative value (SD1 / SD2) has a strong correlation with spectral edge frequency 95% (SEF95) regardless of the type of anesthetic. 2. Poincare plot quantitative value (SD1 / SD2) responds faster than BIS and SEF95 values by several tens of seconds when changing anesthesia depth. 3. Poincare plot quantitative values (SD1 / SD2) remained stable even in situations where the BIS value did not seem to reflect the true depth of anesthesia. Details are described below.
- the frontal brain waves derived from the BIS monitor are converted from analog to digital (A / D conversion) at 128 Hz sampling, then Artifact is checked and base line drift is corrected, and this preprocessed brain wave time series signal is used for Poincare quantitative analysis. It was.
- These Poincaré quantification analyzes were automatically performed from collected brain waves using MATLAB (The Language of Technical Computing, ver. 7.8.0.347 (R2009a), The MathWorks TM , USA), which is scientific and technical calculation software.
- the Poincare plot quantitative analysis value SD1 / SD2 of Example 5 is different from Examples 1 to 4 in the delay time set in the Poincare plot and the configuration of the derived electroencephalogram, so the SD1 / SD2 measurement of Examples 1 to 4 is the same even at the same anesthesia depth. Indicates a value different from the value.
- This time an electroencephalogram electrode for a BIS monitor is used, and the position of the reference electrode for deriving the electroencephalogram is different, so the properties of the derived electroencephalogram itself are different.
- the sampling frequency of the EEG collected from the BIS monitor this time is 128Hz
- the minimum delay time in the Poincare plot analysis is 1/128 seconds, which is twice the set delay time of Examples 1 to 4, 1/256 seconds. .
- the Poincare plot pattern is close to the swelled egg shape as a whole, and is larger than the SD1 / SD2 measurement value even at the same anesthetic depth.
- FIG. 9 (A) shows an electroencephalogram analysis after about 360 seconds (6 minutes) after the sevoflurane inhalation anesthesia concentration is 3%
- Fig. 9 (B) shows that the sevoflurane inhalation anesthesia concentration is reduced from 3% to 0.5%. showed that.
- the electroencephalogram signal of 4 seconds is drawn in the upper part, and the Poincare plot pattern of the electroencephalogram signal for 4 seconds and the Poincare plot quantitative value: SD1 / SD2 of the electroencephalogram signal for 4 seconds are drawn in the lower left. In the lower right, the change to the current value of the Poincare plot quantitative value (SD1 / SD2) is shown.
- the electroencephalogram signal shows a gentle wave, and its Poincare plot has an elongated linear pattern.
- the time of superanesthetic (0.5%, FIG.
- the electroencephalogram is formed as a fine wave, and its Poincare plot changes to a more swollen elliptical pattern.
- the Poincare plot quantitative value (SD1 / SD2) increases from around 0.12 during deep anesthesia (3%) to nearly 0.3 during shallow anesthesia (0.5%). The progress is observed in seconds on the computer screen.
- CASE1 Shows the transition for about 27 minutes when the inhaled sevoflurane concentration is reduced from 3% (deep anesthesia) to 0.5% (shallow anesthesia) and back to 3%.
- the scale of the time axis is 2 minutes, and the measured values are shown as a moving average of 5 points.
- SD1 / SD2 is about 30-40 seconds faster than BIS and SSEF95, and it is clear that there is a tendency to respond quickly to changes in the depth of anesthesia (FIG. 10).
- the relationship between the SD1 / SD2 value, the SEF95 value after 30 seconds and the BIS value in the same case is shown as data every 10 seconds for 27 minutes (FIG. 11).
- the Poincare plot quantitative value (SD1 / SD2) has a good correlation with BIS and SEF95 values.
- SD1 / SD2 shows a strong correlation with SEF95 30 seconds ahead, suggesting that the transition of SEF95 precedes.
- FIG. 12 shows the transition of about 20 minutes when the inhaled sevoflurane concentration is increased from 0.5% to 3% and then returned to 0.5% again. Again, SD1 / SD2 reacts tens of seconds faster than BIS and SEF95.
- SEF95 SEF95 derived from BIS monitor
- Example 7 Examination on stability and fluctuation of analysis value of this method Using the method of the present invention, the fluctuation of the measurement value when measuring the depth of anesthesia from the electroencephalogram for 5 seconds was examined from the coefficient of variation for two cases. .
- the upper part of each figure is SD1 / SD2 (light blue) and SEF95 (light brown) every 5 seconds.
- the moving average of 10 points (1 minute) is shown in dark blue (SD1 / SD2) and dark brown (SEF95), respectively.
- the bottom row shows the coefficient of variation of 6 points (30 seconds) for SD1 / SD2 (blue) and SEF95 (light brown).
- the coefficient of variation of SD1 / SD2 is smaller than that of SEF95, suggesting that the calculation of SD1 / SD2 is more stable than the calculation of SEF95 based on spectrum analysis and is possible even from short-term EEGs. It is a finding.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Psychiatry (AREA)
- Psychology (AREA)
- Anesthesiology (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
本発明は、ポワンカレプロット分布の長軸方向への先鋭度を定量化する工程、前記先鋭度に基づき脳波に含まれる乱雑性を評価して麻酔深度を判定する工程を含む、麻酔深度測定法を提供する。
Description
本発明は、麻酔深度測定法、麻酔深度測定装置及び麻酔深度判定のための使用に関する。
麻酔法の進歩に伴い術中覚醒が社会的問題となり、BISモニター、Cerebral State Index、AEPモニターなどの脳波由来の麻酔鎮静モニターがガイドライン等で推奨され世界で使用されている。また、的確な麻酔深度を維持することは、術後の認知機能低下を防ぐ上でも有用であり、麻酔深度モニタリングはこのような術後の高次認知機能障害を予防する立場からも推奨される(非特許文献1,2)。
一方で、これらのモニターは術中覚醒を防ぐには十分でなく、また有用性に懐疑的な報告が多くある(非特許文献3~8)。いずれのモニターも麻酔深度推定に長時間の脳波信号を要し解析に時間がかかるため遅延が生じ、リアルタイムに麻酔深度を感知できないことが主要な原因の一つである(非特許文献9~10)。例えばBISモニターは最短でも60秒以上の遅延が生じる。
臨床では、麻酔薬濃度が一定に維持されているにもかかわらず、術操作に伴う侵害刺激が加わることで、突如、麻酔深度が相対的に浅くなる状況に多々遭遇する。このような術侵襲に伴う急激な麻酔深度の変化には、現存の麻酔モニターでは直ちに追随できず、これが術中覚醒の主要な原因の一つである。一方で術中覚醒がおきても30秒以上持続しなければ記憶に残らない(非特許文献4)ことが知られる。従って麻酔深度変化を遅延なく感知できれば、このような術中覚醒の問題の多くは回避できるはずである。今後の麻酔深度モニターは、深度変化に俊敏に遅延なく反応できる性能が求められる。
Poincare plot(ポアンカレプロット)は、低次元の2次元状態空間での簡易な非線形解析法であり、従来心電図のRR間隔を用いた心拍変動解析、自律神経機能解析での研究には用いられている(特許文献1)
J Clin Monit Comput, 2009; 23; 369-90
PLoS One.2012;7(6):e37410)
Br J Anaesth 2009; 103: 394-9
Anesthesiology 2006; 104: 488-94
Anesthesiology 2013; 118: 1113-22
N Engl J Med 2008;358:1097-108
N Engl J Med 2011: 365: 591-600
Anesth Analg 2008; 107: 117-24
Br J Anaesth 2009;103:394-9
Anesth Analg. 2012; 115: 315-9
本発明は、従来のバイスペクトラル、スペクトラル解析や、聴覚誘発電位の解析とは異なる新しい方法で、非定常な状態や、短時間脳波信号からでも俊敏に算定できる麻酔深度測定法及び麻酔深度測定装置を開発することを目的とする。
本発明は、以下の麻酔深度測定法、麻酔深度測定装置及び麻酔深度判定のための使用を提供するものである。
項1. ポワンカレプロット分布の長軸方向への先鋭度を定量化する工程、前記先鋭度に基づき脳波に含まれる乱雑性を評価して麻酔深度を判定する工程を含む、麻酔深度測定法。
項2. 以下の工程を含む、麻酔深度測定法
(1)脳波計により全身麻酔患者の脳波を測定する工程
(2)前記脳波をフィルタリング処理とアナログ/デジタル変換して、脳波時系列信号を出力する工程(但し、アナログ/デジタル変換及びフィルタリング処理の順序は問わない)
(3)前記脳波時系列信号と前記脳波時系列信号の遅延時系列信号を、ある時間での脳波電圧Axと前記ある時間から所定時間の遅延後の脳波電圧Ayのペア(Ax, Ay)でxy平面上にプロットする工程、
(4)前記xy平面上にプロットされた前記脳波電圧Ayの前記ペア(Ax, Ay)を2つの直交する軸からの変位で定量化し、前記2つの直交する軸に対する前記ペア(Ax, Ay)のそれぞれの変位L1、変位L2に基づいて、前記ペア(Ax, Ay)の前記2つの直交する軸に対する距離に関係づけられた量であるちらばり度V1、ちらばり度V2をそれぞれ求めるちらばり度算出工程、
(5)前記ちらばり度V1と前記ちらばり度V2との比に基づき、麻酔深度を判定する工程。
項3. 前記直交する軸は、前記xy平面上のそれぞれ長軸(式y=xで表される軸)と短軸(式y=xで表される軸に直交する軸)とである、項2に記載の麻酔深度測定法。
項4. 前記変位L1を前記短軸方向の変位とし、前記変位L2を前記長軸方向の変位とし、前記ちらばり度算出工程は、前記変位L1と前記変位L2を以下の式に従い算出するL1・L2算出工程を含み、L1とL2の比(L1/L2もしくはL2/L1)に基づいて麻酔深度を判定する、項2又は3に記載の麻酔深度測定法
項1. ポワンカレプロット分布の長軸方向への先鋭度を定量化する工程、前記先鋭度に基づき脳波に含まれる乱雑性を評価して麻酔深度を判定する工程を含む、麻酔深度測定法。
項2. 以下の工程を含む、麻酔深度測定法
(1)脳波計により全身麻酔患者の脳波を測定する工程
(2)前記脳波をフィルタリング処理とアナログ/デジタル変換して、脳波時系列信号を出力する工程(但し、アナログ/デジタル変換及びフィルタリング処理の順序は問わない)
(3)前記脳波時系列信号と前記脳波時系列信号の遅延時系列信号を、ある時間での脳波電圧Axと前記ある時間から所定時間の遅延後の脳波電圧Ayのペア(Ax, Ay)でxy平面上にプロットする工程、
(4)前記xy平面上にプロットされた前記脳波電圧Ayの前記ペア(Ax, Ay)を2つの直交する軸からの変位で定量化し、前記2つの直交する軸に対する前記ペア(Ax, Ay)のそれぞれの変位L1、変位L2に基づいて、前記ペア(Ax, Ay)の前記2つの直交する軸に対する距離に関係づけられた量であるちらばり度V1、ちらばり度V2をそれぞれ求めるちらばり度算出工程、
(5)前記ちらばり度V1と前記ちらばり度V2との比に基づき、麻酔深度を判定する工程。
項3. 前記直交する軸は、前記xy平面上のそれぞれ長軸(式y=xで表される軸)と短軸(式y=xで表される軸に直交する軸)とである、項2に記載の麻酔深度測定法。
項4. 前記変位L1を前記短軸方向の変位とし、前記変位L2を前記長軸方向の変位とし、前記ちらばり度算出工程は、前記変位L1と前記変位L2を以下の式に従い算出するL1・L2算出工程を含み、L1とL2の比(L1/L2もしくはL2/L1)に基づいて麻酔深度を判定する、項2又は3に記載の麻酔深度測定法
項5. 前記変位L1を前記短軸方向の変位とし、前記変位L2を前記長軸方向の変位とし、前記ちらばり度算出工程は、前記変位L1と前記変位L2を以下の式に従い算出するL1・L2算出工程と
前記変位L1の標準偏差SD1と前記変位L2の標準偏差SD2とを求めるSD1・SD2算出工程とを含み、
前記ちらばり度V1、前記ちらばり度V2は、それぞれ前記SD1または前記SD2であり、
SD1/SD2またはSD2/SD1に基づいて、麻酔深度を判定する、項2又は3に記載の麻酔深度測定法。
項6. 前記SD1/SD2または前記SD2/SD1と他の麻酔深度の解析手段を組み合わせて前記麻酔深度を判定する、項5に記載の麻酔深度測定法。
項7. 前記他の麻酔深度の解析手段が、前記脳波の周波数解析、バイスペクトラル解析、スペクトラル解析、エントロピー解析、聴覚誘発電位による解析手段、又はこれらの解析手段の2種以上の組み合わせである、項6に記載の麻酔深度測定法。
項8. 全身麻酔患者の脳波を測定する脳波計と、
前記脳波のアナログ/デジタル(A/D)変換手段と、
A/D変換後、またはA/D変換前の脳波をフィルタリング処理するフィルタリング手段と、
前記脳波をフィルタリング処理して得られる脳波時系列信号と前記脳波時系列信号の遅延時系列信号を、ある時間での脳波電圧Axと前記ある時間から所定時間の遅延後の脳波電圧Ayのペア(Ax, Ay)でxy平面上にプロットし、
前記xy平面上にプロットされた前記脳波電圧Ayの前記ペア(Ax, Ay)を2つの直交する軸からの変位で定量化し、
前記2つの直交する軸に対する前記ペア(Ax, Ay)のそれぞれの変位V1、変位V2に基づいて、前記ペア(Ax, Ay)の前記2つの直交する軸に対する距離に関係づけられた量であるちらばり度V1、ちらばり度V2をそれぞれ求めてちらばり度を算出する演算手段と、
前記ちらばり度V1と前記ちらばり度V2との比に基づき、麻酔深度を判定する麻酔深度判定手段と、
前記判定結果を表示する表示手段と、
を備えた麻酔深度測定装置。
項9. 前記直交する軸は、前記xy平面上のそれぞれ長軸(式y=xで表される軸)と短軸(式y=xで表される軸に直交する軸)とであって、
前記変位L1を前記短軸方向の変位とし、前記変位L2を前記長軸方向の変位とし、
前記変位L1と前記変位L2を以下の式に従い算出し、
前記ちらばり度V1、前記ちらばり度V2は、それぞれ前記SD1または前記SD2であり、
SD1/SD2またはSD2/SD1に基づいて、麻酔深度を判定する、項2又は3に記載の麻酔深度測定法。
項6. 前記SD1/SD2または前記SD2/SD1と他の麻酔深度の解析手段を組み合わせて前記麻酔深度を判定する、項5に記載の麻酔深度測定法。
項7. 前記他の麻酔深度の解析手段が、前記脳波の周波数解析、バイスペクトラル解析、スペクトラル解析、エントロピー解析、聴覚誘発電位による解析手段、又はこれらの解析手段の2種以上の組み合わせである、項6に記載の麻酔深度測定法。
項8. 全身麻酔患者の脳波を測定する脳波計と、
前記脳波のアナログ/デジタル(A/D)変換手段と、
A/D変換後、またはA/D変換前の脳波をフィルタリング処理するフィルタリング手段と、
前記脳波をフィルタリング処理して得られる脳波時系列信号と前記脳波時系列信号の遅延時系列信号を、ある時間での脳波電圧Axと前記ある時間から所定時間の遅延後の脳波電圧Ayのペア(Ax, Ay)でxy平面上にプロットし、
前記xy平面上にプロットされた前記脳波電圧Ayの前記ペア(Ax, Ay)を2つの直交する軸からの変位で定量化し、
前記2つの直交する軸に対する前記ペア(Ax, Ay)のそれぞれの変位V1、変位V2に基づいて、前記ペア(Ax, Ay)の前記2つの直交する軸に対する距離に関係づけられた量であるちらばり度V1、ちらばり度V2をそれぞれ求めてちらばり度を算出する演算手段と、
前記ちらばり度V1と前記ちらばり度V2との比に基づき、麻酔深度を判定する麻酔深度判定手段と、
前記判定結果を表示する表示手段と、
を備えた麻酔深度測定装置。
項9. 前記直交する軸は、前記xy平面上のそれぞれ長軸(式y=xで表される軸)と短軸(式y=xで表される軸に直交する軸)とであって、
前記変位L1を前記短軸方向の変位とし、前記変位L2を前記長軸方向の変位とし、
前記変位L1と前記変位L2を以下の式に従い算出し、
前記変位L1の標準偏差SD1と前記変位L2の標準偏差SD2とを求め、
前記ちらばり度V1、前記ちらばり度V2は、それぞれ前記SD1または前記SD2であり、
SD1/SD2またはSD2/SD1に基づいて、麻酔深度を判定する麻酔深度判定手段と、
を備えた項8に記載の麻酔深度測定装置。
項10. 前記麻酔深度判定手段が、前記SD1/SD2または前記SD2/SD1と他の麻酔深度の解析手段を組み合わせて前記麻酔深度を判定する手段である、項9に記載の麻酔深度測定装置。
項11. 前記他の麻酔深度の解析手段が、前記脳波の周波数解析、バイスペクトラル解析、スペクトラル解析、エントロピー解析、聴覚誘発電位による解析手段、又はこれらの解析手段の2種以上の組み合わせである、項10に記載の麻酔深度測定装置。
項12. ちらばり度V1と前記ちらばり度V2との比の麻酔深度判定のための使用であって、脳波計により全身麻酔患者の脳波を測定し、
前記脳波をアナログ/デジタル変換後、またはアナログ/デジタル変換前に、フィルタリング処理して脳波時系列信号を出力し、
前記脳波時系列信号と前記脳波時系列信号の遅延時系列信号を、ある時間での脳波電圧Axと前記ある時間から所定時間の遅延後の脳波電圧Ayのペア(Ax, Ay)でxy平面上にプロットし、
前記xy平面上にプロットされた前記脳波電圧Ayの前記ペア(Ax, Ay)を2つの直交する軸からの変位で定量化し、
前記2つの直交する軸に対する前記ペア(Ax, Ay)のそれぞれの変位L1、変位L2に基づいて、前記ペア(Ax, Ay)の前記2つの直交する軸に対する距離に関係づけられた量であるちらばり度V1、ちらばり度V2をそれぞれ求めてちらばり度V1と前記ちらばり度V2との比を算出することを含む、使用。
項13. 前記直交する軸は、前記xy平面上のそれぞれ長軸(式y=xで表される軸)と短軸(式y=xで表される軸に直交する軸とであって、
前記変位L1を前記短軸方向の変位とし、前記変位L2を前記長軸方向の変位とし、
前記変位L1と前記変位L2を以下の式に従い算出し、
前記ちらばり度V1、前記ちらばり度V2は、それぞれ前記SD1または前記SD2であり、
SD1/SD2またはSD2/SD1に基づいて、麻酔深度を判定する麻酔深度判定手段と、
を備えた項8に記載の麻酔深度測定装置。
項10. 前記麻酔深度判定手段が、前記SD1/SD2または前記SD2/SD1と他の麻酔深度の解析手段を組み合わせて前記麻酔深度を判定する手段である、項9に記載の麻酔深度測定装置。
項11. 前記他の麻酔深度の解析手段が、前記脳波の周波数解析、バイスペクトラル解析、スペクトラル解析、エントロピー解析、聴覚誘発電位による解析手段、又はこれらの解析手段の2種以上の組み合わせである、項10に記載の麻酔深度測定装置。
項12. ちらばり度V1と前記ちらばり度V2との比の麻酔深度判定のための使用であって、脳波計により全身麻酔患者の脳波を測定し、
前記脳波をアナログ/デジタル変換後、またはアナログ/デジタル変換前に、フィルタリング処理して脳波時系列信号を出力し、
前記脳波時系列信号と前記脳波時系列信号の遅延時系列信号を、ある時間での脳波電圧Axと前記ある時間から所定時間の遅延後の脳波電圧Ayのペア(Ax, Ay)でxy平面上にプロットし、
前記xy平面上にプロットされた前記脳波電圧Ayの前記ペア(Ax, Ay)を2つの直交する軸からの変位で定量化し、
前記2つの直交する軸に対する前記ペア(Ax, Ay)のそれぞれの変位L1、変位L2に基づいて、前記ペア(Ax, Ay)の前記2つの直交する軸に対する距離に関係づけられた量であるちらばり度V1、ちらばり度V2をそれぞれ求めてちらばり度V1と前記ちらばり度V2との比を算出することを含む、使用。
項13. 前記直交する軸は、前記xy平面上のそれぞれ長軸(式y=xで表される軸)と短軸(式y=xで表される軸に直交する軸とであって、
前記変位L1を前記短軸方向の変位とし、前記変位L2を前記長軸方向の変位とし、
前記変位L1と前記変位L2を以下の式に従い算出し、
前記変位L1の標準偏差SD1と前記変位L2の標準偏差SD2とを求め、
前記ちらばり度V1、前記ちらばり度V2は、それぞれ前記SD1または前記SD2である、
SD1/SD2またはSD2/SD1の麻酔深度判定のための項12に記載の使用。
項14. 前記SD1/SD2または前記SD2/SD1を、脳波の周波数解析、バイスペクトラル解析、スペクトラル解析、エントロピー解析、聴覚誘発電位による解析手段からなる群から選ばれる少なくとも1種と組み合わせて麻酔深度の判定を行う、項13に記載の使用。
項15. 前記SD1/SD2または前記SD2/SD1を麻酔深度の測定のためのアルゴリズムと組み合わせて麻酔深度の判定を行う、項13に記載の使用。
前記ちらばり度V1、前記ちらばり度V2は、それぞれ前記SD1または前記SD2である、
SD1/SD2またはSD2/SD1の麻酔深度判定のための項12に記載の使用。
項14. 前記SD1/SD2または前記SD2/SD1を、脳波の周波数解析、バイスペクトラル解析、スペクトラル解析、エントロピー解析、聴覚誘発電位による解析手段からなる群から選ばれる少なくとも1種と組み合わせて麻酔深度の判定を行う、項13に記載の使用。
項15. 前記SD1/SD2または前記SD2/SD1を麻酔深度の測定のためのアルゴリズムと組み合わせて麻酔深度の判定を行う、項13に記載の使用。
脳波信号(4 sec. 及び10 sec.)のポワンカレプロットの描出パターンをちらばり度V1とちらばり度V2の比で定量化したところ、いずれも吸入麻酔薬濃度に応じた変化を示すことがわかった。更に、ちらばり度V1とちらばり度V2の比は、脳波のパワースペクトル解析におけるδ帯域低周波成分とβ帯域高周波成分の比率(δ/β)とも高い相関をもつことも明らかになった。麻酔深度が深まると、脳波上δ帯域低周波成分が増大しβ帯域高周波成分が減少することが知られている。これらより、前頭誘導脳波のポワンカレプロット定量化指標(V1とV2の比)が麻酔深度測定に有用であることがわかる。本法は、秒単位の短時間の時系列信号から容易に実現できる方法であり、リアルタイム麻酔深度モニタリングとしての臨床応用が期待できる。
本発明は、新しい非線形法を脳波深度解析に用いることで、脳活動の急な変化にも対応でき、また解析に必要な脳波信号も短く秒単位である。従って、迅速に反応する。
現在、さまざまな手法を取り入れた麻酔深度計が開発され臨床使用されているが、術中覚醒を予防し適度な麻酔深度を維持する上で充分ではない。脳は複雑系、非線形システムであるので、その挙動をモニターする麻酔深度測定には、ダイナミックな信号を解析する非線形的多面的アプローチが有用である。ポワンカレプロットは、前提やモデルを必要とせずに、現時間信号と遅延時間信号とを対でプロットすることで、ダイナミックな信号を過去の履歴の枠組みの中で分析する非線形手法である。
図1に示すように、ホワイトノイズなどのランダムな複雑な信号のポワンカレプロットは一般に卵丸状の分布を示すが、信号の乱雑度が低下するにつれて、細長い分布になる。脳波は覚醒時には無秩序でランダムであるが、麻酔を深めるに従って同期化して規則性を増す。このような麻酔深度を増すにつれて観察される脳波の乱雑度の低下は、脳波ポワンカレプロットパターンの先鋭度の増加として現れる。
本発明の好ましい実施形態においては、ポワンカレプロット分布の長軸(y=x軸)方向への先鋭度を定量化することで脳波に含まれる乱雑性を評価し、麻酔深度を測定する。好ましい実施形態において、定量化は、ポワンカレプロット分布の長軸(y=x軸)方向のちらばり度をv2、短軸方向のちらばり度をv1、並びにその比(V1/V2)を用いる。ちらばり度は、長軸、短軸方向の標準偏差(SD2,SD1)、並びにその比(SD1/SD2)を用いるのが典型的であるが、ポワンカレプロット分布の中心から長軸、短軸方向への変位距離(L2, L1)、並びにその比(L1/L2)を用いることもできる。また、パターン分析の軸は、長軸、短軸方向に限らず、長軸、短軸方向のベクトル成分を含有するものなら定量化が可能である。例えば、X軸方向、Y軸方向のベクトルを用いて、(短軸, X軸方向), (長軸, X軸方向), (短軸, Y軸方向), (長軸, Y軸方向), ( X軸方向, Y軸方向) 等の変位の組み合わせ、並びにそれらの標準偏差の組み合わせ等を用いることもできる。
このようにして、脳波ポワンカレプロット分布の長軸(y=x軸)方向への先鋭度をちらばり度として定量化することで、脳波信号の乱雑度の低下と線形度を計測し、麻酔深度を測定する。
本発明において、脳波計は特に限定されず、通常使用されている脳波計を広く使用することができる。
アナログ/デジタル変換(A/D変換)手段は特に限定されず、通常使用されているA/D変換を広く使用することができる。
脳波のフィルタリングは、低周波と高周波の両方を遮断するのが好ましい。
脳波のフィルタリング手段としては、高周波数通過フィルター、低周波数通過フィルターを使用することができる。
A/D変換及びフィルタリング後の一定の周波数範囲の脳波電圧の信号は、パーソナルコンピュータ等の演算手段に出力される。演算手段は、2次元状態空間における脳波時系列信号と前記脳波時系列信号の遅延時系列信号を、ある時間での脳波電圧Axと前記ある時間から所定時間の遅延後の脳波電圧Ayのペア(Ax, Ay)でxy平面上にプロットし(ポアンカレプロット)、前記xy平面上にプロットされた前記脳波電圧Ayの前記ペア(Ax, Ay)を2つの直交する軸からの変位で定量化し、前記2つの直交する軸に対する前記ペア(Ax, Ay)のそれぞれの変位V1、変位V2に基づいて、前記ペア(Ax, Ay)の前記2つの直交する軸に対する距離に関係づけられた量であるちらばり度V1、ちらばり度V2をそれぞれ求めてちらばり度を算出する。ちらばり度V1、V2は、例えば以下のSD1、SD2として求めることができる。すなわち、前記xy平面上にプロットされた前記脳波電圧Ayの前記ペア(Ax, Ay)の2つの直交する軸は、前記xy平面上のそれぞれ長軸(式y=xで表される軸)と短軸(式y=xで表される軸に直交する軸)とであって、前記変位L1を前記短軸方向の変位とし、前記変位L2を前記長軸方向の変位とし、前記変位L1と前記変位L2を以下の式に従い算出し、
前記変位L1の標準偏差SD1と前記変位L2の標準偏差SD2とを求め、前記ちらばり度V1、前記ちらばり度V2は、それぞれ前記SD1または前記SD2である。
さらに前記演算手段は、L1の標準偏差SD1とL2の標準偏差SD2、並びに、SD1/SD2比またはSD2/SD1比を算出する。SD1とSD2の比は、SD1/SD2とSD2/SD1のいずれを使用してもよいが、SD1/SD2を用いるとその対数がpower spectrumのβ/δ比と高い相関関係をもつので、解釈が便利である。演算手段としては、CPUが挙げられるが、これに限定されず任意の演算手段を用いることができる。
V1とV2の比、例えばSD1とSD2の比の信号は麻酔深度判定手段に送られて、麻酔の深度を判定する。麻酔の深度は覚醒(例えば0)から最も深い麻酔(例えば100)までを連続的な数値で表してもよく、覚醒(1)、浅い麻酔2(覚醒の可能性有り)、適切な麻酔3、深い麻酔4(麻酔による副作用もしくは事故の可能性有り)などのように段階的に判定してもよい。判定結果の信号は表示手段に出力されて適切に麻酔深度を表示する。
表示手段は麻酔の深度を視覚的(文字、色、光など)、聴覚的(音声、警告音など)に表示する。視覚的表示手段としてはディスプレイが挙げられ、聴覚的表示手段としてはスピーカー、音源チップ(例えばCPUなどの音源)などが挙げられる。
本発明の演算手段は、Poincare plot(ポアンカレプロット)の分布分散パターンを2方向で定量化する。ポアンカレプロットは、低次元の2次元状態空間での簡易な非線形解析法であり、従来心電図のRR間隔を用いた心拍変動解析、自律神経機能解析での研究には用いられているが、これを脳波の時系列信号そのものに応用しその分布変動を定量化解析することで麻酔深度を測定する発想は現在にいたるまでない。
本発明で麻酔深度が判定可能な麻酔薬は特に限定されず、全ての麻酔薬が適用対象である。例えば現在使用されている麻酔薬としては、セボフルラン、デスフルラン、イソフルラン、プロポフォール、ミダゾラム、ジアゼパム、デクスメデトミジンなどが挙げられる。これらの他に、今後開発される麻酔薬は全て本発明の麻酔深度の測定対象となる。
本発明は、V1とV2の比、好ましくはSD1とSD2の比により麻酔深度を判定する。V1とV2の比、特にSD1とSD2の比は麻酔薬にかかわらず麻酔深度と相関するが、麻酔薬ごとに判定基準を決定しておくこともできる。
全身麻酔中の脳内電気的活動は、状態空間内で周期性・準周期性の軌道をとることが予想され、より低次元空間での解析が有用と本発明者は考えた。そこで、ポワンカレプロットを用いて2次元状態空間で脳波時系列信号を解析し、麻酔深度測定を行う。即ち、脳波時系列信号をその遅延時系列信号とで、2次元状態空間にポワンカレプロットとして描出して、その分布形態を定量化することで、麻酔深度を測定する。
図14は、本発明の麻酔深度測定法のフローチャートを示す図である。
以下、ちらばり度V1、ちらばり度V2としてSD1とSD2を使用して本発明をより詳細に説明する。
以下、ちらばり度V1、ちらばり度V2としてSD1とSD2を使用して本発明をより詳細に説明する。
ポワンカレプロット分布パターンは、プロット集団の短軸、長軸の2次元2方向のちらばりの比率を用いて定量的に解析する。即ち、短軸方向の変位L1の標準偏差(SD1:Standard Deviation)と長軸方向の変位L2の標準偏差SD2の比率を、SD1/SD2指標として定量化する(図2)。
以下に、前頭部の脳波を測定して麻酔深度を予測する本発明の1つの好ましい実施形態について説明するが、本発明は後頭部、頭頂部、左右の側頭部など、任意の脳波を測定して実施することもできる。
前頭部に脳波電極を装着して前頭誘導脳波を測定し、アナログ/デジタル変換、及びフィルタリング処置する。その脳波時系列信号をポアンカレプロットして、分布のSD1/SD2を算出することで定量化する。詳細を以下に記載する。
1.脳波時系列信号の計測
前頭導出脳波を用いる場合の解析例を以下に述べる。脳波測定の電極配置の基準である国際10-20法に基づき、前頭誘導脳波を導出する。ここで、(Fp1:frontal montage), Cz:reference)とし、更に neutral electrode をFpzに装着する。脳波計により導出した前頭誘導脳波は、256Hzサンプリングしてアナログデジタル変換(A/D変換)後、0.5Hz以下の低周波成分と30Hz以上の高周波成分を高周波数通過フィルター、及び低周波数通過フィルターをもちいて除去し、0.5Hz-30Hz成分を抽出する。この脳波時系列信号を、ポワンカレ定量化解析に用いる(図3)。
前頭導出脳波を用いる場合の解析例を以下に述べる。脳波測定の電極配置の基準である国際10-20法に基づき、前頭誘導脳波を導出する。ここで、(Fp1:frontal montage), Cz:reference)とし、更に neutral electrode をFpzに装着する。脳波計により導出した前頭誘導脳波は、256Hzサンプリングしてアナログデジタル変換(A/D変換)後、0.5Hz以下の低周波成分と30Hz以上の高周波成分を高周波数通過フィルター、及び低周波数通過フィルターをもちいて除去し、0.5Hz-30Hz成分を抽出する。この脳波時系列信号を、ポワンカレ定量化解析に用いる(図3)。
2.脳波出力信号のポワンカレ定量化解析
出力された脳波時系列信号を、その遅延時系列信号とで、2次元平面にポアンカレプロットする。即ち、
ある時系列信号: ( a, b, c, d, e, f, g, h, i, j……….. ) と、
その遅延時系列信号: ( a, b, c, d, e, f, g, h, i, j…….) との対で、
( a, b )、( b, c )、( c, d )、( d, e )、( e, f )、( f, g )….を順次、x-y平面上にプロットする。
遅延に用いる時間は、サンプリング間隔の1倍から数倍を選択する。2段階遅延させて解析する場合には、
( a, b, c, d, e, f, g, h, i, j……….. ) の時系列信号に対して
( a, b, c, d, e, f, g, h, i, j……….. )
の遅延時系列信号が得られ、この場合は ( a, c )、( b, d )、( c, e )、( d, f )、( e, g )、( f, h )….のペアを順次x-y平面上にプロットすることになる。
出力された脳波時系列信号を、その遅延時系列信号とで、2次元平面にポアンカレプロットする。即ち、
ある時系列信号: ( a, b, c, d, e, f, g, h, i, j……….. ) と、
その遅延時系列信号: ( a, b, c, d, e, f, g, h, i, j…….) との対で、
( a, b )、( b, c )、( c, d )、( d, e )、( e, f )、( f, g )….を順次、x-y平面上にプロットする。
遅延に用いる時間は、サンプリング間隔の1倍から数倍を選択する。2段階遅延させて解析する場合には、
( a, b, c, d, e, f, g, h, i, j……….. ) の時系列信号に対して
( a, b, c, d, e, f, g, h, i, j……….. )
の遅延時系列信号が得られ、この場合は ( a, c )、( b, d )、( c, e )、( d, f )、( e, g )、( f, h )….のペアを順次x-y平面上にプロットすることになる。
このようにして、得られたポワンカレプロット分布パターンを定量的に解析するため、2方向でポワンカレ分布のちらばりを定量化する。定量化は、x軸とy軸との双方に45°の角度の直線(y=x)方向のちらばり(SD2)とそれに直角に交わる方向(SD1)の2方向で計測する。
ポアンカレプロットは時間遅れをサンプリング間隔として設定した場合、ある時間での脳波電圧がAxであるなら、そのサンプリングの1点先(遅延後)の脳波電圧Ay とのペアで(Ax, Ay)でxy平面上にプロットされることになる。このようにして得た集団のx軸の平均(すなわち平均脳波電圧)をMxとすれば、ある点A(Ax, Ay)の集団内のちらばり具合は、長軸(式y=xで表される軸)、及び点M (Mx, Mx)を通り短軸(式y=xで表される軸に直交する軸)の2方向の変位として、距離L2及びL1で表される。
L2、L1は、図4に表したように、正方形とその対角線の図形的性質から、以下の算出式で導かれる。
ポワンカレプロット分布パターンは、このちらばりの短軸方向の変位L1の標準偏差(SD1:Standard Deviation)と長軸方向の変位L2の標準偏差(SD2)の比率として、SD1/SD2で定量化できる。
本発明は、SD1とSD2の比のみを用いて麻酔深度判定を行ってもよく、脳波の周波数解析、バイスペクトラル解析、スペクトラル解析、エントロピー解析、聴覚誘発電位による解析手段、これらの解析手段の2種以上をSD1/SD2比とさらに組み合わせて麻酔深度の判定を行ってもよい。例えばBISモニターは現在最も普及しているモニターであり、BISモニターとSD1/SD2比に基づく本発明の解析手段を組み合わせることで、または、BIS等のアルゴリズムに組み込むことで、より正確に麻酔深度を測定又は判定することができる。
以下、本発明を図面を用いてより詳細に説明するが、本発明がこれら実施例に限定されないことは言うまでもない。
実施例1:脳波ポアンカレプロット定量化による麻酔深度評価の代表例
全身麻酔中の37歳女性の異なる4段階の麻酔深度(セボフルラン吸入麻酔0.5%, 1%, 2%, 3%)における前頭誘導脳波(10 sec.) とそのポワンカレプロット例を表示する。麻酔深度を増すにつれて、プロットは卵円型から長く伸びる形状に変化し、SD1/SD2は、0.133 (0.5%)、 0.110(1%)、0.077(2%)、0.048(3%)と、段階的に減少した。結果を図5に示す。
全身麻酔中の37歳女性の異なる4段階の麻酔深度(セボフルラン吸入麻酔0.5%, 1%, 2%, 3%)における前頭誘導脳波(10 sec.) とそのポワンカレプロット例を表示する。麻酔深度を増すにつれて、プロットは卵円型から長く伸びる形状に変化し、SD1/SD2は、0.133 (0.5%)、 0.110(1%)、0.077(2%)、0.048(3%)と、段階的に減少した。結果を図5に示す。
実施例2:脳波ポワンカレ定量化指標(SD1/SD2)とセボフルラン吸入麻酔深度の関係
20名において、セボフルラン吸入麻酔濃度(0.5%, 1%, 2%, 3%)変化による4段階の麻酔深度を設定し、そのポワンカレプロットをSD1/SD2指標により定量化した。
20名において、セボフルラン吸入麻酔濃度(0.5%, 1%, 2%, 3%)変化による4段階の麻酔深度を設定し、そのポワンカレプロットをSD1/SD2指標により定量化した。
Repeated measures analysis of variance (ANOVA) , 及び Tukey multiple-comparison testにより、各麻酔深度変化に追従したSD1/SD2指標の有意な変化が認められている(図6、表1)。
実施例3:脳波ポワンカレ定量化指標(SD1/SD2)とパワースペクトルの関係
20名の4段階麻酔深度(セボフルラン0.5%, 1%, 2%, 3%)において、SD1/SD2とパワースペクトルを同時に解析し、そのβ領域(13-3Hz)の周波数成分とδ領域(0.5-4Hz)の周波数成分のパワー比率を算出し、SD1/SD2値との関係を調べたところ、r=0.92の高い相関が認められ、SD1/SD2の麻酔深度測定法としての有用性が支持された(図7)。
20名の4段階麻酔深度(セボフルラン0.5%, 1%, 2%, 3%)において、SD1/SD2とパワースペクトルを同時に解析し、そのβ領域(13-3Hz)の周波数成分とδ領域(0.5-4Hz)の周波数成分のパワー比率を算出し、SD1/SD2値との関係を調べたところ、r=0.92の高い相関が認められ、SD1/SD2の麻酔深度測定法としての有用性が支持された(図7)。
実施例4:遅延時間がポワンカレプロット(SD1/SD2指標)に及ぼす影響について
各麻酔レベルにおいて、ポワンカレプロットにおける時間遅れ座標の遅延時間をサンプリング時間の1~5倍まで変化させると、SD1が上昇し卵円状になる。しかし、遅延時間を5段階に変化させた時、どの麻酔レベルにおいてもSD1/SD2はほぼ比例的に変化した。従って、遅延時間が麻酔深度に依存するSD1/SD2の変化率に及ぼす影響が小さいことがわかる。このことから、時間遅れの設定はサンプリング時間の1-5倍の範囲ではポワンカレプロットの定量的評価にほとんど影響しないことが示唆された。図8は遅延がSD1/SD2値に及ぼす影響を示す。
(実施例1~4をまとめた論文: Kazuko Hayashi, Nobuhiro Mukai, Teiji Sawa. Poincare analysis of the electroencephalogram during sevoflurane anesthesia. Clinical NeuroPhysiology, 2014, in press、DOI information: 10.1016/j.clinph.2014.04.019.)
各麻酔レベルにおいて、ポワンカレプロットにおける時間遅れ座標の遅延時間をサンプリング時間の1~5倍まで変化させると、SD1が上昇し卵円状になる。しかし、遅延時間を5段階に変化させた時、どの麻酔レベルにおいてもSD1/SD2はほぼ比例的に変化した。従って、遅延時間が麻酔深度に依存するSD1/SD2の変化率に及ぼす影響が小さいことがわかる。このことから、時間遅れの設定はサンプリング時間の1-5倍の範囲ではポワンカレプロットの定量的評価にほとんど影響しないことが示唆された。図8は遅延がSD1/SD2値に及ぼす影響を示す。
(実施例1~4をまとめた論文: Kazuko Hayashi, Nobuhiro Mukai, Teiji Sawa. Poincare analysis of the electroencephalogram during sevoflurane anesthesia. Clinical NeuroPhysiology, 2014, in press、DOI information: 10.1016/j.clinph.2014.04.019.)
実施例5
本実施例では、BIS専用の脳波電極を前額に装着してBISモニタリングを行うと同時に、導出される脳波を128Hzで収集後、ポアンカレプロット定量解析を施行し、BISモニターから得られる脳波指標(BIS, SEF95)との比較検討を施行した。
本実施例では、BIS専用の脳波電極を前額に装着してBISモニタリングを行うと同時に、導出される脳波を128Hzで収集後、ポアンカレプロット定量解析を施行し、BISモニターから得られる脳波指標(BIS, SEF95)との比較検討を施行した。
BIS値は、脳波の周波数解析、バイスペクトル解析等を基に算出した値を、意識レベルに相関する臨床値として0-100までの数値に経験的統計的アルゴリズムにより人為的に当てはめた指標である。覚醒時には100に、深麻酔時には0に近づき、適度な深度の麻酔状態では、40-60とされる。しかし、BIS値は使用する麻酔薬の種類により鎮静度との解離がみられ(Br J Anaesth 2005; 94: 336-40)、また麻酔薬以外のさまざまな因子にも影響を受けることが知られる。
SEF95は、全体のPower Spectrumの内、95% がその周波数以下に存在する周波数を指す。一般に麻酔が深くなると、SEF95値は小さくなり、麻酔深度を反映する生理的パラメータとして重用される。(Anesth Analg 2004; 98: 1336-40)
比較検討の結果、解析例より下記の点が示唆された。
1. ポアンカレプロット定量値(SD1/SD2)は、麻酔薬の種別に依らず、spectral edge frequency 95% (SEF95) と強い相関をもつ。
2. ポアンカレプロット定量値(SD1/SD2)は、麻酔深度変化に際して、BIS値やSEF95値より、数十秒、より早く反応する。
3. ポアンカレプロット定量値(SD1/SD2)は、BIS値が真の麻酔深度を反映していないと思える状況においても、安定して推移した。
以下に詳細を記述する。
比較検討の結果、解析例より下記の点が示唆された。
1. ポアンカレプロット定量値(SD1/SD2)は、麻酔薬の種別に依らず、spectral edge frequency 95% (SEF95) と強い相関をもつ。
2. ポアンカレプロット定量値(SD1/SD2)は、麻酔深度変化に際して、BIS値やSEF95値より、数十秒、より早く反応する。
3. ポアンカレプロット定量値(SD1/SD2)は、BIS値が真の麻酔深度を反映していないと思える状況においても、安定して推移した。
以下に詳細を記述する。
(方法)
現在汎用される麻酔深度計(BISモニター)を用いて全身麻酔中にBISモニタリングと同時に脳波を収集しポワンカレプロット解析を行い、ポワンカレプロット定量値(SD1/SD2)とBIS値等の脳波深度指標との関係を調べた。
現在汎用される麻酔深度計(BISモニター)を用いて全身麻酔中にBISモニタリングと同時に脳波を収集しポワンカレプロット解析を行い、ポワンカレプロット定量値(SD1/SD2)とBIS値等の脳波深度指標との関係を調べた。
BISモニターより導出した前頭誘導脳波を128Hzサンプリングでアナログデジタル変換(A/D変換)後、Artifactのチェックとbase line driftに対する補正を行い、この前処理脳波時系列信号を、ポワンカレ定量化解析に用いた。これらのポワンカレ定量化解析は、科学技術計算ソフトであるMATLAB ( The Language of Technical Computing, ver. 7.8.0.347 (R2009a) , The MathWorks TM, USA )を用い、収集脳波から自動的に施行した。
実施例5のポワンカレプロット定量解析値SD1/SD2は、ポワンカレプロットの設定遅延時間と、導出脳波の構成が実施例1~4と異なるため、同じ麻酔深度でも実施例1~4のSD1/SD2計測値と異なる値を示す。今回はBISモニター用の脳波電極を用いており、脳波導出の基準電極の位置が異なるため、導出脳波自身の性状が異なる。また、今回BISモニターより収集した脳波のサンプリング周波数は128Hzであり、ポワンカレプロット解析における最少遅延時間は1/128秒となり、実施例1~4の設定遅延時間の1/256秒の2倍である。このため、ポワンカレプロットパターンは全体的により膨らんだ卵型に近い性状に近づき、同じ麻酔深度でもSD1/SD2計測値より大きい値となっている。
1.自動解析の提示
以下にポワンカレプロットの自動解析例を示す。
提示例は、セボフルラン吸入麻酔濃度を3%から0.5%へ低下させた時の脳波変化のコンピュータ上の自動解析画面である。図9(A)は、セボフルラン吸入麻酔濃度が3%時の、図9(B)はセボフルラン吸入麻酔濃度の設定を3%から0.5%に低下後、約360秒(6分) 後の脳波解析を示した。それぞれ、上段に4秒の脳波信号が、左下にその4秒間の脳波信号のポワンカレプロットパターンと4秒間の脳波信号のポワンカレプロット定量値:SD1/SD2が描出されている。右下には、そのポワンカレプロット定量値(SD1/SD2)の現在値までの推移が示される。深麻酔時(3%、図9(A))には、脳波信号はゆるやかな波を示し、そのポワンカレプロットは、細長い線状パターンとなる。浅麻酔時(0.5%、図9(B))には、脳波は細かな波で形成され、そのポワンカレプロットは、より膨らんだ楕円状のパターンに変化している。ポワンカレプロット定量値(SD1/SD2)は、深麻酔時(3%)の0.12前後から浅麻酔時(0.5% )には0.3近くまで上昇する。その経過が、パソコンの画面上に秒単位で観察される。
以下にポワンカレプロットの自動解析例を示す。
提示例は、セボフルラン吸入麻酔濃度を3%から0.5%へ低下させた時の脳波変化のコンピュータ上の自動解析画面である。図9(A)は、セボフルラン吸入麻酔濃度が3%時の、図9(B)はセボフルラン吸入麻酔濃度の設定を3%から0.5%に低下後、約360秒(6分) 後の脳波解析を示した。それぞれ、上段に4秒の脳波信号が、左下にその4秒間の脳波信号のポワンカレプロットパターンと4秒間の脳波信号のポワンカレプロット定量値:SD1/SD2が描出されている。右下には、そのポワンカレプロット定量値(SD1/SD2)の現在値までの推移が示される。深麻酔時(3%、図9(A))には、脳波信号はゆるやかな波を示し、そのポワンカレプロットは、細長い線状パターンとなる。浅麻酔時(0.5%、図9(B))には、脳波は細かな波で形成され、そのポワンカレプロットは、より膨らんだ楕円状のパターンに変化している。ポワンカレプロット定量値(SD1/SD2)は、深麻酔時(3%)の0.12前後から浅麻酔時(0.5% )には0.3近くまで上昇する。その経過が、パソコンの画面上に秒単位で観察される。
2. ポワンカレプロット定量値(SD1/SD2)と麻酔深度指標(BIS, SEF95)との比較
<Sevoflurane吸入麻酔> セボフルラン全身麻酔時のBIS値とspectral edge frequency 95% (SEF95) の経時間的推移をポワンカレプロット定量値(SD1/SD2)の推移と共に2症例において提示する。SD1/SD2値は5秒毎の計測値の2点の平均として過去10秒の脳波から10秒毎に算出し、BISモニターにおいて10秒間隔で更新されるBIS及びSEF95値と同じタイミングで比較した。
<Sevoflurane吸入麻酔> セボフルラン全身麻酔時のBIS値とspectral edge frequency 95% (SEF95) の経時間的推移をポワンカレプロット定量値(SD1/SD2)の推移と共に2症例において提示する。SD1/SD2値は5秒毎の計測値の2点の平均として過去10秒の脳波から10秒毎に算出し、BISモニターにおいて10秒間隔で更新されるBIS及びSEF95値と同じタイミングで比較した。
(CASE1)吸入セボフルラン濃度を3%(深麻酔)から0.5%(浅麻酔)に低下させ、再度3%に戻した時の約27分間の推移を示す。時間軸の一目盛は2分間、計測値はともに5点の移動平均として示した。SD1/SD2は、BISやSSEF95よりも30-40秒程度早く推移し、麻酔深度変化に対して迅速に反応する傾向が明らかである(図10)。
同症例におけるSD1/SD2値と30秒後のSEF95値、BIS値との関係を、この27分間の10秒毎のデータで示す(図11)。ポワンカレプロット定量値(SD1/SD2)は、BIS及びSEF95値と良好な相関が認められる。特にSD1/SD2は、30秒先のSEF95と強い相関を示し、SEF95の推移を先行することが示唆される。
(CASE2)吸入セボフルラン濃度を0.5%から3%に上げて、再度0.5%に戻した時の約20分間の推移を図12に示す。ここでもSD1/SD2がBISやSEF95よりも数十秒早く反応している。
<Propofol静脈麻酔>
(Case3) 麻酔をプロポフォール静脈麻酔薬で維持した時の麻酔覚醒前60分間の推移を図13に示す。覚醒の約50分前と約20分前にBIS値が一過性に上昇する期間が認められるが、SD1/SD2値は安定して推移した。一方、SD1/SD2はSEF95とは強い相関関係を認め、またより早期に反応する傾向を認めた(図13)。本症例は、SD1/SD2がBISよりも真の麻酔深度を反映する上で有用であることを証明するものではないが、脳波由来の生理的パラメータであるSEF95とは連動して推移しており、BISの欠陥を補うものとしての有用性も期待できる。
(Case3) 麻酔をプロポフォール静脈麻酔薬で維持した時の麻酔覚醒前60分間の推移を図13に示す。覚醒の約50分前と約20分前にBIS値が一過性に上昇する期間が認められるが、SD1/SD2値は安定して推移した。一方、SD1/SD2はSEF95とは強い相関関係を認め、またより早期に反応する傾向を認めた(図13)。本症例は、SD1/SD2がBISよりも真の麻酔深度を反映する上で有用であることを証明するものではないが、脳波由来の生理的パラメータであるSEF95とは連動して推移しており、BISの欠陥を補うものとしての有用性も期待できる。
実施例6:本発明の方法を用いたセボフルラン、デスフルラン、プロポフォール麻酔深度解析所見
本発明が特定の麻酔薬に限らず、吸入麻酔薬、静脈麻酔薬を含む複数の麻酔薬において適応できることを確認するため、3種の麻酔薬(計51症例、32351ポイント、吸入麻酔薬:セボフルラン:n=16、デスフルラン:n=22、及び静脈麻酔薬:プロポフォール:n=13)に関して、麻酔中のSD1/SD2と麻酔深度指標の一つであるSEF95(BISモニター由来のSEF95)との関係を回帰分析した。その結果、手術麻酔レベルでは浅麻酔から深麻酔に渡る広い範囲でR2=0.904の強い相関を認めた(図15)。(線形回帰式:eSEF95=61.9*SD1/SD2+1.3, R2=0.904, RMSE=0.899, p<0.0001)得られた線形回帰式を用いてSD1/SD2から推定した推定SEF95値(eSEF95)とSEF95のBland-Altman plot は、バイアスのない均一なパターンで、系統誤差を認めなかった(図16)。また各麻酔薬におけるSD1/SD2とSEF95の関係は、セボフルラン:R2=0.916, デスフルラン:R2=0.903, プロポフォール:R2=0.899といずれも高い相関を示した(図17、表2)。これらから、本法が特定の麻酔薬に限らず複数の麻酔薬において、手術麻酔深度に応じた脳波の周波数変化を反映することが明らかとなった。より汎用性を有する麻酔深度モニタリングが可能であることを示唆する所見である。
本発明が特定の麻酔薬に限らず、吸入麻酔薬、静脈麻酔薬を含む複数の麻酔薬において適応できることを確認するため、3種の麻酔薬(計51症例、32351ポイント、吸入麻酔薬:セボフルラン:n=16、デスフルラン:n=22、及び静脈麻酔薬:プロポフォール:n=13)に関して、麻酔中のSD1/SD2と麻酔深度指標の一つであるSEF95(BISモニター由来のSEF95)との関係を回帰分析した。その結果、手術麻酔レベルでは浅麻酔から深麻酔に渡る広い範囲でR2=0.904の強い相関を認めた(図15)。(線形回帰式:eSEF95=61.9*SD1/SD2+1.3, R2=0.904, RMSE=0.899, p<0.0001)得られた線形回帰式を用いてSD1/SD2から推定した推定SEF95値(eSEF95)とSEF95のBland-Altman plot は、バイアスのない均一なパターンで、系統誤差を認めなかった(図16)。また各麻酔薬におけるSD1/SD2とSEF95の関係は、セボフルラン:R2=0.916, デスフルラン:R2=0.903, プロポフォール:R2=0.899といずれも高い相関を示した(図17、表2)。これらから、本法が特定の麻酔薬に限らず複数の麻酔薬において、手術麻酔深度に応じた脳波の周波数変化を反映することが明らかとなった。より汎用性を有する麻酔深度モニタリングが可能であることを示唆する所見である。
実施例7:本法解析値の安定性と変動に関しての検討
本発明の方法を用いて、5秒間の脳波から麻酔深度を測定する際の測定値の変動を、2症例に関して変動係数から検討した。
本発明の方法を用いて、5秒間の脳波から麻酔深度を測定する際の測定値の変動を、2症例に関して変動係数から検討した。
麻酔中、5秒毎に5秒脳波から連続的にSD1/SD2(青色)とSEF95(茶色)を算出し、それらの30秒間の変動係数(CV:標準偏差/平均)を比較した。脳波は、0.5Hz未満、30Hz以上をフィルタリング除去して前処理したものを両者の検討に用いた。SEF95は、Hammingウインドウを適用したWelch 法によるクロスパワースペクトル密度から求めた(図18,図19)。
各図の上段は、5秒毎のSD1/SD2(薄青色)、SEF95(薄茶色)である。10点(1分)の移動平均をそれぞれ濃青色(SD1/SD2)、濃茶色(SEF95)で示した。下段に、SD1/SD2(青色)とSEF95(薄茶)の6点(30秒)の変動係数を示した。全体的にSD1/SD2の変動係数はSEF95の変動係数より小さく、SD1/SD2の算出がスペクトラム解析に基づくSEF95の算出にくらべて安定しており、短時間脳波からでも可能であることを示唆する所見である。
Claims (15)
- ポワンカレプロット分布の長軸方向への先鋭度を定量化する工程、前記先鋭度に基づき脳波に含まれる乱雑性を評価して麻酔深度を判定する工程を含む、麻酔深度測定法。
- 以下の工程を含む、麻酔深度測定法
(1)脳波計により全身麻酔患者の脳波を測定する工程
(2)前記脳波をフィルタリング処理とアナログ/デジタル変換して、脳波時系列信号を出力する工程(但し、アナログ/デジタル変換及びフィルタリング処理の順序は問わない)
(3)前記脳波時系列信号と前記脳波時系列信号の遅延時系列信号を、ある時間での脳波電圧Axと前記ある時間から所定時間の遅延後の脳波電圧Ayのペア(Ax, Ay)でxy平面上にプロットする工程、
(4)前記xy平面上にプロットされた前記脳波電圧Ayの前記ペア(Ax, Ay)を2つの直交する軸からの変位で定量化し、前記2つの直交する軸に対する前記ペア(Ax, Ay)のそれぞれの変位L1、変位L2に基づいて、前記ペア(Ax, Ay)の前記2つの直交する軸に対する距離に関係づけられた量であるちらばり度V1、ちらばり度V2をそれぞれ求めるちらばり度算出工程、
(5)前記ちらばり度V1と前記ちらばり度V2との比に基づき、麻酔深度を判定する工程。 - 前記直交する軸は、前記xy平面上のそれぞれ長軸(式y=xで表される軸)と短軸(式y=xで表される軸に直交する軸)とである、請求項2に記載の麻酔深度測定法。
- 前記SD1/SD2または前記SD2/SD1と他の麻酔深度の解析手段を組み合わせて前記麻酔深度を判定する、請求項5に記載の麻酔深度測定法。
- 前記他の麻酔深度の解析手段が、前記脳波の周波数解析、バイスペクトラル解析、スペクトラル解析、エントロピー解析、聴覚誘発電位による解析手段、又はこれらの解析手段の2種以上の組み合わせである、請求項6に記載の麻酔深度測定法。
- 全身麻酔患者の脳波を測定する脳波計と、
前記脳波のアナログ/デジタル(A/D)変換手段と、
A/D変換後、またはA/D変換前の脳波をフィルタリング処理するフィルタリング手段と、
前記脳波をフィルタリング処理して得られる脳波時系列信号と前記脳波時系列信号の遅延時系列信号を、ある時間での脳波電圧Axと前記ある時間から所定時間の遅延後の脳波電圧Ayのペア(Ax, Ay)でxy平面上にプロットし、
前記xy平面上にプロットされた前記脳波電圧Ayの前記ペア(Ax, Ay)を2つの直交する軸からの変位で定量化し、
前記2つの直交する軸に対する前記ペア(Ax, Ay)のそれぞれの変位V1、変位V2に基づいて、前記ペア(Ax, Ay)の前記2つの直交する軸に対する距離に関係づけられた量であるちらばり度V1、ちらばり度V2をそれぞれ求めてちらばり度を算出する演算手段と、
前記ちらばり度V1と前記ちらばり度V2との比に基づき、麻酔深度を判定する麻酔深度判定手段と、
前記判定結果を表示する表示手段と、
を備えた麻酔深度測定装置。 - 前記麻酔深度判定手段が、前記SD1/SD2または前記SD2/SD1と他の麻酔深度の解析手段を組み合わせて前記麻酔深度を判定する手段である、請求項9に記載の麻酔深度測定装置。
- 前記他の麻酔深度の解析手段が、前記脳波の周波数解析、バイスペクトラル解析、スペクトラル解析、エントロピー解析、聴覚誘発電位による解析手段、又はこれらの解析手段の2種以上の組み合わせである、請求項10に記載の麻酔深度測定装置。
- ちらばり度V1と前記ちらばり度V2との比の麻酔深度判定のための使用であって、脳波計により全身麻酔患者の脳波を測定し、
前記脳波をアナログ/デジタル変換後フィルタリング処理して脳波時系列信号を出力し、
前記脳波時系列信号と前記脳波時系列信号の遅延時系列信号を、ある時間での脳波電圧Axと前記ある時間から所定時間の遅延後の脳波電圧Ayのペア(Ax, Ay)でxy平面上にプロットし、
前記xy平面上にプロットされた前記脳波電圧Ayの前記ペア(Ax, Ay)を2つの直交する軸からの変位で定量化し、
前記2つの直交する軸に対応する前記ペア(Ax, Ay)のそれぞれの変位L1、変位L2に基づいて、前記ペア(Ax, Ay)の前記2つの直交する軸に対する距離に関係づけられた量であるちらばり度V1、ちらばり度V2をそれぞれ求めてちらばり度V1と前記ちらばり度V2との比を算出することを含む、使用。 - 前記SD1/SD2または前記SD2/SD1を、脳波の周波数解析、バイスペクトラル解析、スペクトラル解析、エントロピー解析、聴覚誘発電位による解析手段からなる群から選ばれる少なくとも1種と組み合わせて麻酔深度の判定を行う、請求項13に記載の使用。
- 前記SD1/SD2または前記SD2/SD1を麻酔深度の測定のためのアルゴリズムと組み合わせて麻酔深度の判定を行う、請求項13に記載の使用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015523969A JPWO2014208343A1 (ja) | 2013-06-26 | 2014-06-12 | 麻酔深度測定法、麻酔深度測定装置及び使用 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-133871 | 2013-06-26 | ||
JP2013133871 | 2013-06-26 | ||
JP2013199987 | 2013-09-26 | ||
JP2013-199987 | 2013-09-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014208343A1 true WO2014208343A1 (ja) | 2014-12-31 |
Family
ID=52141687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/065545 WO2014208343A1 (ja) | 2013-06-26 | 2014-06-12 | 麻酔深度測定法、麻酔深度測定装置及び使用 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2014208343A1 (ja) |
WO (1) | WO2014208343A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9849241B2 (en) | 2013-04-24 | 2017-12-26 | Fresenius Kabi Deutschland Gmbh | Method of operating a control device for controlling an infusion device |
WO2019198691A1 (ja) * | 2018-04-11 | 2019-10-17 | シャープ株式会社 | 情報処理装置、およびウェアラブル端末 |
WO2022014446A1 (ja) * | 2020-07-15 | 2022-01-20 | 京都府公立大学法人 | 麻酔深度のモニタリング方法、モニタリング装置、及びモニタリングプログラム |
CN114177415A (zh) * | 2022-01-12 | 2022-03-15 | 深圳市威浩康医疗器械有限公司 | 一种基于脑电信号监测老人麻醉靶控智能化方法及系统 |
CN115530845A (zh) * | 2022-10-17 | 2022-12-30 | 常州瑞神安医疗器械有限公司 | 一种检测癫痫脑电信号中异常放电的方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010154998A (ja) * | 2008-12-30 | 2010-07-15 | Suwa Trust:Kk | 時系列データの解析装置及び時系列データの解析プログラムを記録したコンピュータ読み取り可能な記録媒体 |
-
2014
- 2014-06-12 WO PCT/JP2014/065545 patent/WO2014208343A1/ja active Application Filing
- 2014-06-12 JP JP2015523969A patent/JPWO2014208343A1/ja active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010154998A (ja) * | 2008-12-30 | 2010-07-15 | Suwa Trust:Kk | 時系列データの解析装置及び時系列データの解析プログラムを記録したコンピュータ読み取り可能な記録媒体 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9849241B2 (en) | 2013-04-24 | 2017-12-26 | Fresenius Kabi Deutschland Gmbh | Method of operating a control device for controlling an infusion device |
WO2019198691A1 (ja) * | 2018-04-11 | 2019-10-17 | シャープ株式会社 | 情報処理装置、およびウェアラブル端末 |
JPWO2019198691A1 (ja) * | 2018-04-11 | 2021-03-11 | シャープ株式会社 | 情報処理装置、およびウェアラブル端末 |
WO2022014446A1 (ja) * | 2020-07-15 | 2022-01-20 | 京都府公立大学法人 | 麻酔深度のモニタリング方法、モニタリング装置、及びモニタリングプログラム |
CN114177415A (zh) * | 2022-01-12 | 2022-03-15 | 深圳市威浩康医疗器械有限公司 | 一种基于脑电信号监测老人麻醉靶控智能化方法及系统 |
CN115530845A (zh) * | 2022-10-17 | 2022-12-30 | 常州瑞神安医疗器械有限公司 | 一种检测癫痫脑电信号中异常放电的方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014208343A1 (ja) | 2017-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fahy et al. | The technology of processed electroencephalogram monitoring devices for assessment of depth of anesthesia | |
Mäkinen et al. | Auditory event-related responses are generated independently of ongoing brain activity | |
Zarjam et al. | Characterizing working memory load using EEG delta activity | |
US7373198B2 (en) | Method and apparatus for the estimation of anesthetic depth using wavelet analysis of the electroencephalogram | |
US8538705B2 (en) | System and method of assessing analgesic adequacy using biopotential variability | |
EP2962634B1 (en) | Method and apparatus for measuring anesthetic depth | |
Kreuzer et al. | Non-stationarity of EEG during wakefulness and anaesthesia: advantages of EEG permutation entropy monitoring | |
US10786198B2 (en) | Non-stationary feature relationship parameters for awareness monitoring | |
WO2014208343A1 (ja) | 麻酔深度測定法、麻酔深度測定装置及び使用 | |
RU2655133C2 (ru) | Способ автоматической оценки ээг абсанса, компьютерная программа и устройство оценки для этого | |
US20030055355A1 (en) | Method and apparatus for determining the cerebral state of a patient with fast response | |
US7625340B2 (en) | Identification of a dominant signal component in a biosignal | |
Hayashi et al. | Poincaré analysis of the electroencephalogram during sevoflurane anesthesia | |
Berthouze et al. | Human EEG shows long-range temporal correlations of oscillation amplitude in Theta, Alpha and Beta bands across a wide age range | |
JP2008212745A (ja) | パルスオキシメトリー信号のウェーブレットに基づく解析 | |
US20130317383A1 (en) | Method and system for monitoring and displaying physiological conditions | |
Zoughi et al. | A wavelet-based estimating depth of anesthesia | |
Hsu et al. | Extraction of high-frequency SSVEP for BCI control using iterative filtering based empirical mode decomposition | |
Finotello et al. | EEG signal features extraction based on fractal dimension | |
Eagleman et al. | Nonlinear dynamics captures brain states at different levels of consciousness in patients anesthetized with propofol | |
EP2191772A1 (en) | Measurement of responsiveness of a subject | |
Kochs et al. | Wavelet analysis of middle latency auditory evoked responses: calculation of an index for detection of awareness during propofol administration | |
JP2006255134A (ja) | 脳波計測表示方法及び装置 | |
US8401631B2 (en) | Method and system for monitoring physiological conditions | |
CN116327218A (zh) | 基于脑电信号的精神疲劳程度测试方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14817246 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015523969 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14817246 Country of ref document: EP Kind code of ref document: A1 |