[go: up one dir, main page]

WO2014205588A1 - Tratamiento para aguas residuales de origen domiciliario e industrial - Google Patents

Tratamiento para aguas residuales de origen domiciliario e industrial Download PDF

Info

Publication number
WO2014205588A1
WO2014205588A1 PCT/CL2013/000038 CL2013000038W WO2014205588A1 WO 2014205588 A1 WO2014205588 A1 WO 2014205588A1 CL 2013000038 W CL2013000038 W CL 2013000038W WO 2014205588 A1 WO2014205588 A1 WO 2014205588A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
unit
biological treatment
filtering
station
Prior art date
Application number
PCT/CL2013/000038
Other languages
English (en)
French (fr)
Other versions
WO2014205588A8 (es
Inventor
Matías Carlos SJOGREN RAAB
Alex Manuel Villagra Fuentes
Original Assignee
Ingenieria Y Construccion Biofiltro Limitada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ingenieria Y Construccion Biofiltro Limitada filed Critical Ingenieria Y Construccion Biofiltro Limitada
Priority to US14/392,340 priority Critical patent/US20160176736A1/en
Priority to AU2013397276A priority patent/AU2013397276B2/en
Priority to PCT/CL2013/000038 priority patent/WO2014205588A1/es
Publication of WO2014205588A1 publication Critical patent/WO2014205588A1/es
Publication of WO2014205588A8 publication Critical patent/WO2014205588A8/es
Priority to ZA2016/00235A priority patent/ZA201600235B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/24Separation of coarse particles, e.g. by using sieves or screens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/04Aerobic processes using trickle filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/327Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae characterised by animals and plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • Preliminary water treatment usually involves gravity sedimentation of filtered water to remove suspended solids. Approximately half of the suspended solids in the wastewater are removed by this pretreatment.
  • the second part of the treatment is achieved through a biological process, to remove biodegradable material.
  • This treatment uses microorganisms to consume dissolved and suspended organic matter, producing carbon dioxide and other byproducts.
  • the organic matter benefits the microorganisms providing the necessary nutrients for its viability. When microorganisms feed on organic matter, they increase their density and settle to the bottom separately from clarified water.
  • the system according to the invention has a series of advantages over that described in the state of the art.
  • it allows a continuity of the system over time since it is a system of multiple continuous stages.
  • the system allows a minimum generation of organic waste and an improved efficiency in the removal of contaminants Brief description of the state of the art
  • Chilean patent CL 40.754 describes a process for decontaminating wastewater and industrial liquid waste, by means of a biofilter that uses earthworms of the species Eisenia foetida. Said procedure basically is a process in which the water to be treated goes through 4 stages in series arranged vertically: an initial layer of 25 cm of earthworm humus, a layer of "sawdust", a third of stones and a final stage of disinfection by uv radiation.
  • patent document US 7,540,960 describes a method for the treatment of water by inoculation of bacteria using earthworm humus.
  • the water in this case crosses a first layer of cellulose origin that is inoculated by earthworm humus, a second layer of inert material that can be stones or rocks and a double bottom that provides oxygenation to the bottom to maintain the aerobic condition in the system.
  • the present invention provides a method and a system for the treatment of domestic and industrial wastewater of organic origin.
  • the method according to the invention comprises at least three different treatment stages.
  • the method comprises a treatment stage in which a mechanical or flotation filtering of the water to be treated is carried out (primary treatment). Then, the water already treated is taken to a stage of biological filtration (secondary treatment), where it is contacted with a biological filter medium
  • This unit of biological treatment is composed of units that house different types of microorganisms, worms, fungi, bacteria, among others, which allow the transformation of solid waste into one of the richest organic fertilizers that exist, the earthworm humus, with that it is possible to drastically reduce the generation of polluting sludge.
  • the method according to the invention also optionally comprises a third stage of tertiary treatment) in which the water coming from the biological filter medium is subjected to disinfection with chemical means, where the chemical treatment comprises the application of ozone and / or a halogen disinfectant, where the halogen disinfectant can be selected from chlorine, iodine and bromine.
  • the present invention also provides a system preferably arranged for the operation of the wastewater treatment method described herein.
  • the system according to the invention comprises at least one wastewater collector in charge of receiving the wastewater upstream of the treatment system (1), at least one mechanical filtering station and / or flotation station that is responsible for removing the organic and inorganic solid waste of a characteristic size, at least one transport plant belonging to said filtering station that is responsible for mobilizing the wastewater in said station, at least one biological filtering station that is responsible for removing the remaining organic waste and at least one disinfection station that is responsible for disinfecting the effluent from the treatment system by means of chemical or other disinfectant means.
  • the system of the invention comprises a solids treatment unit (11), in which the organic solid residues removed in the filtration stations are handled.
  • FIG. 1 shows the arrangement of the system according to the invention.
  • FIG. 2 shows the arrangement of the biological treatment unit according to the invention.
  • Wastewater is considered to be liquids that have been used in the daily activities of a city (domestic, commercial, industrial and service). Commonly wastewater is usually classified as:
  • Municipal Residual Waters liquid waste transported by the sewage system of a city or town and treated in a municipal treatment plant.
  • Polluting sludges semisolid waste that is produced, decanted or sedimented during water treatment. They are generated in the septic tanks of homes, shopping centers, offices or industries, or produced in the communal, industrial and commercial water treatment plants.
  • DBQ5 The "biochemical" oxygen demand (BOD), is a parameter that measures the amount of matter that can be consumed or oxidized by biological means that contains a liquid sample, dissolved or in suspension. It is used to measure the degree of contamination. It is usually measured after five days of reaction (DB0 5 ) and is expressed in milligrams of diatomic oxygen per liter (mg0 2 / l). Volatile Solids: Those that volatilize at a temperature of 600 degrees Celsius. If the total solids are subjected to combustion under a temperature of 600 degrees centigrade for 20 minutes, the organic matter is converted to C02 and H20. This weight loss is interpreted in terms of organic or volatile matter. Solids that do not volatilize are called fixed solids.
  • Nitrogen TK Kjeldahl total nitrogen is an indicator used in environmental engineering. It reflects the total amount of nitrogen in the water analyzed, the sum of the organic nitrogen in its various forms (proteins and nucleic acids in various stages of degradation, urea, amines, etc.) and the ammonium ion NH4 +.
  • the present invention provides a method and a system for the treatment of domestic and industrial wastewater of organic origin.
  • the method according to the invention comprises at least three different treatment stages.
  • the method comprises a treatment step in which a filtering is carried out mechanical or by flotation of the water to be treated (primary treatment). Then, the treated water is taken to a stage of biological filtration (secondary treatment), where it is contacted with a biological filter medium.
  • This unit of biological treatment is composed of units that house different types of microorganisms, worms, fungi, bacteria, among others, which allow the transformation of solid waste into one of the richest organic fertilizers that exist, the earthworm humus, with that it is possible to drastically reduce the generation of polluting sludge.
  • the method according to the invention also optionally comprises a third stage of treatment (tertiary treatment) in which the water coming from the biological filter medium is subjected to a disinfection with chemical means, where the chemical treatment comprises the application of ozone and / or a halogen disinfectant, where the halogen disinfectant can be selected from chlorine, iodine and bromine.
  • a third stage of treatment in which the water coming from the biological filter medium is subjected to a disinfection with chemical means, where the chemical treatment comprises the application of ozone and / or a halogen disinfectant, where the halogen disinfectant can be selected from chlorine, iodine and bromine.
  • system of the invention comprises at least one wastewater collector, at least one elevating plant and, optionally, at least one solids treatment unit.
  • the invention provides a method of treatment of wastewater of domiciliary and industrial origin that effectively removes contaminants from water, reducing the generation of organic waste and maintaining continuity in the operation, which comprises the steps of: i. provide waste water in a wastewater collector (1);
  • stage (iv) transporting at least a portion of the water from stage (iv) to the fine solids separation unit (4) or fine filtering station;
  • xi subjecting said portion of water to treatment in said chemical disinfection unit; and xii. optionally collecting the water treated in step (xi) in a container.
  • the method according to the invention comprises at least the following steps: i. provide waste water in a wastewater collector (1);
  • step (iii) collecting at least a part of the water coming from step (iii) preferably by gravitational means in a first transport plant (3), and optionally collecting coarse solids in step (iii) and transporting them to a coarse solids treatment unit ( 9)
  • step (vi) subjecting said portion of water to filtrate in said fine solids separation unit; vii. collecting at least a part of the water coming from step (vi) preferably by gravitational means in a second transport plant (5), and optionally collecting fine solids in step (vi) and transporting them to a fine solids treatment unit ( 10);
  • step (xii) optionally collecting the water treated in step (xi) in a container.
  • a waste water with solids of diameter less than 1 mm, preferably less than between 0.5 to 1 mm is obtained.
  • all solids greater than 0.5 mm are separated at the initial filtering station and are conducted directly to the solids treatment unit which can preferably be located in the vicinity of the unit of biological treatment.
  • the recirculation according to step ix is carried out as many times as necessary until the water has the desired concentration of contaminants. Additionally, said recirculation is optionally carried out at one of the units upstream of the biological treatment unit, preferably to the second transportation plant.
  • the biological treatment unit comprises highly adaptable heterotrophic natural soil bacteria, which possess the ability to convert wastewater contaminants into soluble components of low molecular weight.
  • the optional step of chemical treatment comprises contacting the water to be treated with an effective amount of a chemical agent, which is preferably selected from a halogen-derived compound, wherein the halogen is selected from the group consisting of chlorine, bromine and iodine, in amounts which vary between 1-20 ppm, preferably 1-10 ppm, and more preferably between 1 to 5 ppm.
  • the provision of pretreatment stages to the biological treatment allows the biological treatment unit to be saturated with excesses of solids or fat and therefore lose its permeability, and also that the water it gets stuck and the system is flooded, diminishing its flow.
  • the method provides a greater efficiency in the removal of contaminating parameters from wastewater.
  • the invention also provides a wastewater treatment system of domiciliary and industrial origin that effectively removes contaminants from water, reducing the generation of organic waste and maintaining continuity in the operation, which includes: a. at least one sewage collector located upstream of the system;
  • At least one mechanical and / or flotation filtering station in charge of removing inorganic and / or organic solids of a certain size
  • At least one cleaning station responsible for disinfecting the effluent from the system.
  • the at least one wastewater collector consists of a pond that distributes the wastewater to the mechanical filter station and / or by flotation.
  • each mechanical and / or flotation filtering station is comprised of a filtering medium and a transport medium, where the filtering medium is responsible for removing the solids from the effluent and the transport means to take the effluent to the next one. system station.
  • the at least one filtering station is comprised of a plurality of filtering means and conveying means arranged in series.
  • the at least one filter medium consists of a unit of separation of solids of a particular size and because the at least one means of transport consists of a lifting unit of a particular effluent, where the location according to the particle size and the characteristics of the effluent in the filtration station consists in the removal of the larger particles upstream of said station until the removal of the smaller particles downstream of said station.
  • the solids separation unit located upstream of the filtration station consists of a steel grating chamber that includes bars with a separation of approximately 3 to 8 centimeters.
  • the transport medium located before the biological filtering station acts as a lung tank that feeds the biological treatment unit absorbing fluctuations in the flow.
  • a bacterial flora enhancer is incorporated in the mechanical filtering and / or flotation station located before the biological filtration station, where said enhancer is preferably incorporated in the transport medium of said filtering station.
  • the at least one biological filtering station consists of a unit of Biological treatment composed of layers, which are detailed below. More preferably, the layers of the at least one biological treatment unit consist of an air chamber, a first separating unit, an inorganic layer, a second separating unit and an organic layer.
  • the air chamber consists of an air space located in the lower part of the biological treatment unit, where after the air chamber there is a first separating unit that establishes a separation between the air chamber and the layer of material inorganic, maintaining the integrity of said air chamber.
  • the first separating unit comprises a structure of concrete, cement, plastic and / or cardboard, among others.
  • an inorganic layer composed of at least one inorganic material or a combination of these is located next to the first separating unit.
  • the layers of inorganic material in any material or mixture of inorganic material comprised by particles of size between 5 and 15 cm.
  • the layers of inorganic material preferably consist of a layer of plastic and / or stones.
  • a second separating unit that establishes a separation between the layer of inorganic material and the layer of organic material, preventing microorganisms from crossing from the organic material to the inorganic material.
  • the second separating unit is selected from a preferably plastic membrane with perforations between 0 and 1 mm, or any cover or combination of covers that allows the passage of water towards the lower layer and does not allow the passage of earthworms to this lower layer, it is To say is a mesh of any material that has small perforations that allow the passage of water.
  • an organic layer that It comprises cellulose derivatives, earthworms, bacteria and other microorganisms that allow filtering the contamination in solid and soluble state of the residual water.
  • the organic layer is inoculated with microorganisms and the effluent is sprayed from the previous filtering station to the biological treatment unit.
  • the at least one aeration means that communicates the air chamber with the outside of the biological treatment unit, in order to provide aeration to the different layers of said unit by means of perforations located along said medium.
  • the aeration means correspond to any element that allows fluid communication of the air between the air chamber, the outside of the biological treatment unit and the layers that compose it, such as a perforated duct that vertically crosses said layers.
  • the at least one cleaning station is comprised of a cleaning unit corresponding to a tank designed to add a chemical disinfection agent that remains in contact with the effluent of the system for the appropriate period of time to properly disinfect said effluent.
  • the system may comprise a roof that blocks sunlight and radiation incident on the biological treatment unit.
  • system according to the invention comprises at least the following constituent elements:
  • Wastewater collector (1) unit responsible for receiving the wastewater to arrange its distribution in the treatment system. It is located upstream of the system and must have the capacity to collect the waters to be treated in order to provide a flow of effluent in treatment according to the capabilities of the system.
  • the present unit is comprised of a wastewater distribution pond.
  • Separator of coarse solids (2) unit consisting of one of the filtering media of the mechanical filtration station and / or by flotation system, where larger solids are removed from the effluent being treated.
  • This unit consists of a steel grid chamber that includes bars with a separation of approximately 3 to 8 centimeters, and that allows filtering solids of larger diameters, to said dimensions.
  • First lift plant (3) unit that corresponds to one of the transportation plants, which preferably use pumps as means of transporting the effluent from the previous unit.
  • this first transport unit is responsible for receiving the effluent from the first filtering station to send it to the second filtering station according to the requirements of said station.
  • Fine solids separator (4) unit consisting of one of the filtering media of the mechanical filtration station and / or by flotation system, where the solids of smaller size are removed from the effluent being treated.
  • This unit consists mainly of a team that has a steel mesh with small perforations, through which the water drains gravitationally leaving the solids that are being removed on the mesh.
  • the steel mesh or grid includes perforations of approximately 0.5 to 1 mm, which allows to filter solids of greater diameter to said dimensions.
  • Second lift plant (5) unit that corresponds to one of the transport plants, which preferably use pumps as means of transporting the effluent from the previous unit.
  • this second transport unit is responsible for receiving the effluent from the second filtering station to send it to the biological filtering station according to the requirements of said station.
  • one of its purposes is to accumulate the waters being a lung pond before possible increases of discharges in short periods, since the impulsion from this body to the biological treatment unit (6) is done by means of a constant flow irrigation and with constant stops.
  • Biological treatment unit (6) consists of a biological filter that is responsible for removing the remaining organic waste from the previous stages by means of microorganisms, worms, fungi and bacteria.
  • Disinfection unit (8) consists of an effluent disinfection unit from biological filtration, where the final properties of the effluent that will leave the wastewater treatment system are provided.
  • this unit consists mainly of a pond designed so that the water follows a circulation in which the necessary time will be reached for the water to come into contact with a disinfecting agent so that the final disinfection of the effluent becomes effective.
  • the biological treatment unit (6) comprises, from its lower zone to the upper zone, the following layers:
  • Air chamber (12) lower layer that allows oxygenation to the bottom of the biological filter.
  • the biological treatment unit (6) operates under aerobic conditions, being of utmost importance to maintain a correct oxygenation in all the layers that constitute said unit.
  • the flow that is generated between the camera air and the outside will depend mainly on the temperature differences between these two points, that is, the temperature gradient.
  • First separating unit (13) layer that establishes a separation between the air chamber (12) and the layer of inorganic material (14), where said separating unit can comprise elements based on concrete, cement, plastic, cardboard, among others, so as to maintain the integrity of the air chamber, that is, there is no leakage of air out of the chamber and / or entry of contaminants into the chamber
  • Layer of inorganic material (14) layer composed of an inorganic material or combination of these, where the inorganic material (s) are selected from plastics, stones, etc. (indicate possible additional alternatives). Where in the case of using plastics are considered different shapes that have a size of approximately 5-15 cm in diameter and in the case of stones can be used gravel with diameters also between 5-15 cm in diameter, ie the Inorganic material of this layer has to be comprised of particles of size between 5 and 15 cm. On the other hand, in the layer of organic material (n) there are bacteria that mainly reduce the soluble contamination of water.
  • Second separating unit (15) layer that establishes a separation between the layer of inorganic material (14) and the layer of organic material (16), preventing microorganisms from traversing from the cellulosic organic material (16) to the inorganic material (14). ), wherein said separating unit is selected from a preferably plastic membrane with perforations of between 0 and 1 mm or any cover or combination of covers that allows the passage of water towards the lower layer and does not allow the passage of earthworms to this lower layer, that is, it is a mesh of any material that has small perforations that allow the passage of water.
  • Layer of organic material (16) top layer comprising cellulose derivatives, earthworms, bacteria and other microorganisms that allow to filter the contamination in solid and soluble state of the waste water.
  • Aeration means (19) means arranged from the air chamber (12) towards the surface of the organic material (16), which allow the air chamber (12) to communicate with the outside and allow an air flow to provide oxygen to the bottom of the biological treatment unit (6) and thus maintain the aerobic conditions that the system requires.
  • the biological treatment unit comprises at least one aeration means, which can be a tube, where said aeration means has perforations in its length and therefore will provide oxygenation to the entire column making up the stratum. of the biological treatment unit.
  • the mechanical and / or flotation filtration station can comprise a plurality of filter and transport means in order to improve the removal of the solid particles contained in the effluent being treated.
  • the combination of filter means and means of transport must be such that the means of transport meet the requirements for transporting the effluent from a filter medium upstream thereof to filter media downstream thereof.
  • the filter medium and transport medium located before the biological treatment unit are of particular importance, since they must comply with the feeding requirements of the biological treatment unit.
  • materials can be oils and fats from industrial processes carried out in industries that process dairy products and / or cured, among others. In this way it is possible to leave the waters with the level of solids suitable for them to enter the means of transport in question, unit that feeds the biological treatment unit.
  • this unit In relation to the means of transport in question, this unit must have the capacity to provide the necessary flow characteristics to the effluent of the biological treatment unit.
  • the main characteristic that this medium prints to the effluent of feeding corresponds to the continuity in the feeding, acting as a lung tank before possible increases of discharges in short periods, since the impulsion from this body towards the unit of biological treatment (6) is done by constant flow irrigation and constant stops.
  • the feeding to the biological treatment unit is carried out without generating any kind of waterlogging and / or operation that requires excessive maintenance, in order to opt for the highest efficiency of the system.
  • the fine solids separation unit, or fine filtering medium also allows to retain oils and fats that can waterproof the surface of the biological bed in the biological treatment unit according to the aforementioned.
  • the separador of fine solids allows to separate great part of the surplus of fat, the fat or oils that happen to the unit of biological treatment remain impregnated on the surface of the upper layer of said unit, where they are consumed by earthworms and bacteria that are housed in the biological treatment unit.
  • an initial inoculation of microorganisms is carried out at the time of putting the system into operation in order to provide the required biological load.
  • the microorganisms present in said inoculation will be incorporated into the layer of organic origin (16), thus forming the bacterial flora that contributes to the decontamination and, average of the operation of the system, the bacteria will populate the lower layers , mainly the layer of inorganic material.
  • the initial inoculation comprises providing an amount of 500-10,000 earthworms / m2 and approximately 0.5-5 kg of humus / m2.
  • the objective of said recirculation is to make at least part of the effluent fly to be filtered, either only by the biological treatment unit or by a combination of at least one filtration station with said unit, obtaining an effluent that complies with the requirements established to the system.
  • At least one of the mechanical filtration and / or flotation stations incorporates a bacterial flora enhancer, in particular to the transport medium that is located before the biological treatment unit.
  • a bacterial flora enhancer in particular to the transport medium that is located before the biological treatment unit.
  • Said enhancer can be a mixture of bacteria, yeasts, or any other type of component that allows to increase the bacterial flora in a medium.
  • the bacterial flora enhancer of the invention consists of a mixture of nutrients in an inert state, which is incorporated in amounts of:
  • the bacterial flora enhancer comprises, by weight, approximately 20-50% of carbohydrates, 20-50% of amino acids, 1-20% of lipids, and 1-30% of trace amounts (vitamins and minerals, among others). ).
  • the method and system of the invention possess the following characteristics:
  • the method and system of the present invention were arranged in a treatment plant that treats wastewater from a casino and hotel located in the region of Valpara ⁇ so, Chile.
  • a unit of separation of fine solids (4) consisting of a parabolic filter of 0.5 mm separation, made of a steel mesh (4)
  • Affluent temperature Between 22 and 23 degrees celcius
  • Disinfectant agent chlorine 3 ppm
  • the Biofilter does solve the problem from the perspective of sustainability because it has a direct impact on the 3 pillars that make up sustainability, that is, a low cost and competitive solution (economic impact), odorless, without the generation of sludge and low energy and chemical consumption (environmental impact), and finally a solution that can be operated by the community itself, unlike conventional technologies that require qualified personnel (social impact).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

La presente invención se refiere a un método y sistema para el tratamiento de aguas residuales de origen domiciliario e industrial que remueve en forma eficaz los contaminantes del agua, reduciendo la generación de residuos orgánico, el método comprende las etapas de: proveer agua residual en un colector de aguas residuales (1); transportar al menos una porción de dicha agua residual hacia una unidad de separación de sólidos gruesos (2); someter dicha porción de agua a filtración en dicha unidad; recolectar al menos una parte del agua proveniente de la etapa (iii) en una primera planta de transporte (3); transportar al menos una porción del agua proveniente de la etapa (iv) hacia una unidad de separación de sólidos finos (4); someter dicha porción de agua a filtración en dicha unidad; recolectar al menos una parte del agua proveniente de la etapa (vi) en una segunda planta de transporte (5); transportar al menos una porción del agua proveniente de la segunda planta de transporte (5) hacia la unidad de tratamiento biológico (6) mediante medios bombeantes, distribuir en forma homogénea el agua a tratar sobre dicha unidad de tratamiento biológico (6); someter dicha porción de agua a tratamiento en la unidad de tratamiento biológico (6); recolectar el agua tratada en el fondo de la unidad de tratamiento biológico (6) y opcionalmente transportarla a una unidad de desinfección química (8); someter dicha porción de agua a tratamiento en dicha unidad de desinfección química; y opcionalmente recolectar el agua tratada en la etapa (xi) en un contenedor. +

Description

TRATAMIENTO PARA AGUAS RESIDUALES DE ORIGEN DOMICILIARIO E INDUSTRIAL
MEMORIA DESCRIPTIVA
En la actualidad, las aguas residuales de origen domiciliario e industrial deben ser tratadas antes de ser devueltas al medioambiente, de modo de evitar la generación de graves problemas de contaminación a los causes superficiales, océanos o aguas subterráneas, los que acarrean problemas en la salud de las personas y un importante daño medioambiental.
En el mundo existen cerca de 2,6 billones de personas que no tienen acceso a tratamiento de aguas residuales, concentradas principalmente en países en vías de desarrollo y en especial en zonas semiurbanas y rurales, por lo que las soluciones tradicionales de tratamiento de agua no son aplicables a estas realidades ya que son sistemas de alto costo, que demandan mucha energía y sustancias sintéticas que generan lodos, los que debido a su alta carga contaminante, deben ser transportados hacia un lugar autorizado, requiriendo de personal capacitado para dichos efectos. Lo anterior implica una operación compleja y costosa, por lo que las soluciones convencionales no son sustentables para dar solución al tratamiento de aguas en las zonas semiurbanas y rurales.
Por lo tanto, se mantiene la necesidad de proveer soluciones para el tratamiento de aguas residuales en sectores no urbanizados en su totalidad, que implique un bajo costo operativo energético y que no genere productos contaminantes, pero siendo a la vez una operación simplificada. A la vez, es aún más deseable proveer un sistema que provea subproductos amigables con el medioambiente, como es el abono orgánico (humus de lombriz) y proteínas (excedente de lombrices).
Antecedentes de la invención
Durante mucho tiempo, tanto las aguas residuales de origen domiciliario como las de origen industrial eran descargadas de manera directa hacia los suelos, ríos, lagos, océanos, etc. sin considerar el daflo ambiental que esto generaba. Cuando la sociedad se dio cuenta que esta práctica generaba serios problemas de contaminación de las aguas superficiales y subterráneas, además de problemas de olores, se comenzaron a generar normativas de descargas de aguas tratadas. Hoy, la mayoría de los países tienen sus propias normas de descarga, y cada vez se esfuerzan más para fiscalizar que esta normativa se cumpla, puesto que el recurso hídrico es crecientemente más escaso y se observan altos niveles de contaminación que ponen en riesgo las generaciones futuras.
En la actualidad, la infraestructura asociada al tratamiento de aguas se ha hecho de manera centralizada, es decir, en un determinado territorio se disponen miles de kilómetros de alcantarillados o canalizaciones que conducen las aguas desde el punto de consumo hacia una gran planta de tratamiento centralizada. No obstante, vista la creciente necesidad de contar con alternativas sustentables y "amigables con el medio ambiente", se observa que dichos esquemas centralizados presentan las siguientes desventajas:
1. Al estar el punto de consumo o de descarga de agua contaminada alejado de la planta de tratamiento, se requiere una cantidad considerable de energía para bombear y así transportar el agua a tratar hacia la planta central. Actualmente cerca del 15% de la energía que se consume a nivel mundial se asocia a la conducción de aguas.
2. En una infraestructura de saneamiento central, cerca del 90% de la inversión lo tiene la red de alcantarillado o canalizaciones, lo que lo hace ser inviable en muchos lugares del mundo donde hay escasez de recursos (principalmente países pobres o subdesarrollados).
3. Existe un riesgo asociado a que toda una ciudad dependa de una única planta centralizada, y no contar con alternativas en casos de emergencia.
Actualmente la falta de saneamiento de aguas residuales se da principalmente en localidades semiurbanas o rurales, donde la densidad es baja y por ende las empresas sanitarias no llegan ya que no es rentable una solución centralizada.
A mayor abundamiento, las tecnologías convencionales de tratamiento de aguas, como la de lodos activados, no funcionan bien para esta realidad semiurbana o rural principalmente por:
1. Ser sistemas muy demandantes de energía.
2. Presentar una alta emisión de odor, por lo que su instalación cercana a una población resulta detrimental, afectando la calidad de vida de quienes habitan en las cercanías.
3. Requerir de productos químicos y otros insumos que la hacen ser una solución costosa.
4. Generan lodos, que es un material con una alta carga contaminante que no puede ser dispuesto en el suelo debido al daño medioambiental que genera. Por ende si no se le da un tratamiento in situ, lo que es muy costoso, deben ser transportados hasta un relleno sanitario, siendo estos lugares cada vez más escasos. Muchas veces el lodo no es transportado generando contaminación en el entorno y un gran perjuicio a la comunidad.
5. Requerir de personal calificado para la operación. El escenario más favorable desde el punto de vista de la sustentabilidad es que cada hogar o industria pudiese tratar las aguas que contamina. Para este propósito, existen en el estado de la técnica una serie sistemas que permiten el tratamiento de aguas de residuo a menor escala y con significativas ventajas tanto económicas como medioambientales.
El estado del arte describe metodologías y sistemas para el tratamiento biológico de aguas, los cuales comprenden diversas etapas de tratamiento. El tratamiento preliminar de agua usualmente involucra la sedimentación por gravedad de aguas filtradas para remover sólidos suspendidos. Aproximadamente la mitad de los sólidos suspendidos en las aguas de desecho son removidos mediante este pre-tratamiento.
Luego, la segunda parte del tratamiento se logra mediante un proceso biológico, para remover material biodegradable. Este tratamiento utiliza microorganismos para consumir materia orgánica disuelta y suspendida, produciendo dióxido de carbono y otros subproductos. La materia orgánica beneficia a los microorganismos proveyendo los nutrientes necesarios para su viabilidad. Cuando los microorganismos se alimentan de la materia orgánica, ellos aumentan su densidad y se depositan en el fondo en forma separada del agua clarificada.
Pues bien, este sistema tal como es conocido en el estado del arte presenta una serie de desventajas y dificultades que disminuyen su efectividad.
Por ejemplo, se ha observado que en ciertos sistemas la eficacia se mantiene sólo durante un pequeño periodo de tiempo. Cuando el agua de desecho a ser tratada requiere el uso de una considerable cantidad de masa biológica, se produce el problema de "taponamiento" o "colmatado" de la masa filtrante. Esto es el resultado de que los sólidos de desecho se depositan generalmente sobre la masa filtrante, reduciendo así significativamente la permeabilidad y superficie de contacto entre dicho medio y el agua de desecho a tratar, y en consecuencia, generando al menos los siguientes inconvenientes:
1) Aceleración en la descomposición de los contaminantes por parte de los microorganismos se ve disminuida o anulada.
2) Reducción o incluso suspensión del flujo de agua hacia o en el medio filtrante.
3) Malos olores producto de la acumulación del agua en la superficie y el correspondiente "taponamiento".
Luego, a efectos de subsanar dichas disminuciones, generalmente se deben construir unidades mucho más grandes que amortigüen la disminución en la eficiencia del sistema o realizar acciones paliativas (por ejemplo de agitación sobre el medio filtrante), generando la necesidad de nuevos esfuerzos económicos y operativos.
Por lo tanto, sigue latente la necesidad de proveer métodos alternativos y sistemas que provean un tratamiento de aguas residuales más efectivo, amigable con el medioambiente y económicamente viable.
Por estas razones, el sistema de acuerdo a la invención posee una serie de ventajas por sobre aquello descrito en el estado del arte. En particular, permite una continuidad del sistema a lo largo del tiempo ya que es un sistema de múltiples etapas continuas. Adicionalmente, el sistema permite una mínima generación de residuos orgánicos y una eficiencia mejorada en la remoción de contaminantes Breve descripción del estado del arte
La patente chilena CL 40.754 describe un procedimiento para descontaminar aguas servidas y residuos industriales líquidos, mediante un biofiltro que utiliza lombrices de la especie Eisenia foetida. Dicho procedimiento básicamente es un proceso en el que el agua a tratar atraviesa por 4 etapas en serie dispuestas verticalmente: una capa inicial de 25 cms de humus de lombriz, una capa de "aserrín", una tercera de piedras y una última etapa de desinfección mediante radiación uv.
Según lo descrito en dicho documento, sería posible alcanzar una eficiencia de remoción de: o DB05: 95%
o Sólidos Suspendidos Volátiles: 93%
o Sólidos Volátiles: 70%
o Nitrógeno TK: 70%
o Fósforo: 70%
Por otra parte, el documento de patente US 7.540.960 describe un método para el tratamiento de aguas mediante inoculación de bacterias usando humus de lombriz. El agua en este caso atraviesa una primera capa de origen celulósico que es la cual se inocula mediante humus de lombriz, una segunda capa de material inerte que puede ser piedras o rocas y un doble fondo que provee de oxigenación al fondo para mantener la condición aeróbica en el sistema.
Según lo descrito en dicho documento, sería posible alcanzar una eficiencia de remoción de: DB05: 95%
o Sólidos Suspendidos Volátiles: 93%
o Sólidos Volátiles: 70%
o Nitrógeno TK: 70%
o Fósforo: 70%
Resumen de la invención
La presente invención provee un método y un sistema para el tratamiento de aguas residuales domiciliarias e industriales de origen orgánico.
El método de acuerdo a la invención comprende al menos tres distintas etapas de tratamiento. Primeramente, el método comprende una etapa de tratamiento en el que se realiza un filtrado mecánico o por flotación del agua a tratar (tratamiento primario). Luego, el agua ya tratada es llevada a una etapa de filtración biológica (tratamiento secundario), en donde es contactada con un medio filtrante biológico
Esta unidad de tratamiento biológico está compuesta por unidades que alojan diferentes tipos de microorganismos, lombrices, hongos, bacterias, entre otros, los cuales permiten transformar los residuos sólidos en uno de los abonos orgánicos más ricos que existen, el humus de lombriz, con lo que es posible disminuir drásticamente la generación de lodos contaminantes.
El método de acuerdo a la invención además comprende opcionalmente una tercera etapa de tratamiento terciario) en la cual el agua proveniente del medio filtrante biológico es sometida a una desinfección con medios químicos, en donde el tratamiento químico comprende la aplicación de ozono y/o un desinfectante halógeno, donde el desinfectante halógeno puede seleccionarse de cloro, yodo y bromo.
La presente invención además provee un sistema preferentemente dispuesto para la operación del método de tratamiento de aguas residuales aquí descrito. En este sentido, el sistema de acuerdo a la invención comprende al menos un colector de aguas residuales encargado de recibir las aguas residuales aguas arriba del sistema de tratamiento (1), al menos una estación de filtrado mecánico y/o estación de flotación que se encarga de remover los residuos sólidos orgánicos e inorgánicos de un tamaño característico, al menos una planta de transporte perteneciente a dicha estación de filtrado que se encarga de movilizar el agua residual en dicha estación, al menos una estación de filtrado biológico que se encarga de remover el remanente residuos orgánicos y al menos una estación de desinfección que se encarga de desinfectar por medio de químicos u otro medio desinfectante el efluente del sistema de tratamiento. Opcionalmente, el sistema de la invención comprende una unidad de tratamiento de sólidos (11), en la cual se manejan los residuos sólidos orgánicos retirados en las estaciones de filtrado.
Breve descripción de las figuras
La figura 1 muestra la disposición del sistema de acuerdo a la invención.
La figura 2 muestra la disposición de la unidad de tratamiento biológico de acuerdo a la invención.
Descripción detallada de la invención Se entrega a continuación una definición para los siguientes términos y expresiones contenidas en la presente descripción:
Agua residual: Se consideran aguas residuales a los líquidos que han sido utilizados en las actividades diarias de una ciudad (domésticas, comerciales, industriales y de servicios). Comúnmente las aguas residuales suelen clasificarse como:
• Aguas Residuales Municipales: residuos líquidos transportados por el alcantarillado de una ciudad o población y tratados en una planta de tratamiento municipal.
• Aguas Residuales Industriales: Las aguas residuales provenientes de las descargas de industrias de manufactura.
• Lodos contaminantes: residuos semisólidos que se producen, decantan o sedimentan durante el tratamiento de aguas. Son generados en las fosas sépticas de viviendas, centros comerciales, oficinas o industrias, o producidos en las plantas de tratamiento de agua comunal, industrial y comercial.
DBQ5: La demanda "bioquímica" de oxígeno (DBO), es un parámetro que mide la cantidad de materia susceptible de ser consumida u oxidada por medios biológicos que contiene una muestra líquida, disuelta o en suspensión. Se utiliza para medir el grado de contaminación. Normalmente se mide transcurridos cinco días de reacción (DB05) y se expresa en miligramos de oxígeno diatómico por litro (mg02/l). Sólidos Volátiles: Son aquellos que se volatilizan a una temperatura de 600 grados centígrados. Si los sólidos totales se someten a combustión bajo una temperatura de 600 grados centígrados durante 20 minutos, la materia orgánica se convierte a C02 y H20. Esta pérdida de peso se interpreta en términos de materia orgánica o volátil. Los sólidos que no se volatilizan se denominan sólidos fijos.
Nitrógeno TK: El nitrógeno total Kjeldahl es un indicador utilizado en ingeniería ambiental. Refleja la cantidad total de nitrógeno en el agua analizada, suma del nitrógeno orgánico en sus diversas formas (proteínas y ácidos nucleicos en diversos estados de degradación, urea, aminas, etc.) y el ion amonio NH4+.
Filtración Mecánica: es la encargada de retener las partículas sólidas presentes en el agua en su medio filtrante
Filtración Biológica: Mediante un cultivo de bacterias en su medio filtrante es la encargada de metabolizar las sustancias nitrogenadas
La presente invención provee un método y un sistema para el tratamiento de aguas residuales domiciliarias e industriales de origen orgánico.
El método de acuerdo a la invención comprende al menos tres distintas etapas de tratamiento. Primeramente, el método comprende una etapa de tratamiento en el que se realiza un filtrado mecánico o por flotación del agua a tratar (tratamiento primario). Luego, al agua ya tratada es llevada a una etapa de filtrado biológico (tratamiento secundario), en donde es contactada con un medio filtrante biológico.
Esta unidad de tratamiento biológico está compuesta por unidades que alojan diferentes tipos de microorganismos, lombrices, hongos, bacterias, entre otros, los cuales permiten transformar los residuos sólidos en uno de los abonos orgánicos más ricos que existen, el humus de lombriz, con lo que es posible disminuir drásticamente la generación de lodos contaminantes.
El método de acuerdo a la invención además comprende opcionalmente una tercera etapa de tratamiento (tratamiento terciario) en el cual el agua proveniente del medio filtrante biológico, es sometida a una desinfección con medios químicos, en donde el tratamiento químico comprende la aplicación de ozono y/o un desinfectante halógeno, donde el desinfectante halógeno puede seleccionarse de cloro, yodo y bromo.
Adicionalmente, el sistema de la invención comprende al menos un colector de aguas residuales, al menos una planta elevadora y, de manera opcional, al menos una unidad de tratamiento de sólidos.
A continuación se describen con mayor detalle tanto el método de tratamiento como el sistema utilizado para aplicar dicho método.
La invención provee un método de tratamiento de aguas residuales de origen domiciliario e industrial que remueve en forma eficaz los contaminantes del agua, reduciendo la generación de residuos orgánicos y manteniendo continuidad en la operación, que comprende las etapas de: i. proveer agua residual en un colector de aguas residuales (1);
ii. transportar al menos una porción de dicha agua residual hacia una unidad de separación de sólidos gruesos (2) o estación de filtrado grueso,
iii. someter dicha porción de agua a filtrado en dicha unidad de separación de sólidos gruesos;
iv. recolectar al menos una parte del agua proveniente de la etapa (iii) preferentemente por medios gravitacionales en una primera planta de transporte (3); y
v. transportar al menos una porción del agua proveniente de la etapa (iv) hacia la unidad de separación de sólidos finos (4) o estación de filtrado fino;
vi. someter dicha porción de agua a filtrado en dicha unidad de separación de sólidos finos; vii. recolectar al menos una parte del agua proveniente de la etapa (vi) preferentemente por medios gravitacionales en una segunda planta de transporte (5);
viii. transportar al menos una porción del agua proveniente de la segunda planta de transporte (5) hacia una unidad de tratamiento biológico (6) preferentemente mediante medios bombeantes, y distribuir preferentemente en forma homogénea el agua a tratar sobre dicha unidad de tratamiento biológico (6);
ix. someter dicha porción de agua a tratamiento en la unidad de tratamiento biológico (6); x. recolectar el agua tratada en el fondo de la unidad de tratamiento biológico (6) y transportarla a una unidad de desinfección química (8);
xi. someter dicha porción de agua a tratamiento en dicha unidad de desinfección química; y xii. opcionalmente recolectar el agua tratada en la etapa (xi) en un contenedor.
En una realización preferida, el método de acuerdo a la invención comprende al menos las siguientes etapas: i. proveer agua residual en un colector de aguas residuales (1);
ii. transportar al menos una porción de dicha agua residual hacia la unidad de separación de sólidos gruesos (2) o estación de filtrado grueso, donde dicho transporte se realiza mediante ductos por medios gravitacionales y/o medios bombeantes;
iii. someter dicha porción de agua a filtrado en dicha unidad de separación de sólidos gruesos;
iv. recolectar al menos una parte del agua proveniente de la etapa (iii) preferentemente por medios gravitacionales en una primera planta de transporte (3), y opcionalmente recolectar sólidos gruesos en la etapa (iii) y transportarlos hacia una unidad de tratamiento de sólidos gruesos (9)
v. transportar al menos una porción del agua proveniente de la etapa (iv) hacia la unidad de separación de sólidos finos (4) o estación de filtrado fino, donde dicho transporte se realiza opcionalmente mediante medios bombeantes;
vi. someter dicha porción de agua a filtrado en dicha unidad de separación de sólidos finos; vii. recolectar al menos una parte del agua proveniente de la etapa (vi) preferentemente por medios gravitacionales en una segunda planta de transporte (5), y opcionalmente recolectar sólidos finos en la etapa (vi) y transportarlos hacia una unidad de tratamiento de sólidos finos (10);
viii. transportar al menos una porción del agua proveniente de la segunda planta de transporte (5) hacia la unidad de tratamiento biológico (6) preferentemente mediante medios bombeantes, a través de una red de riego y distribuir preferentemente en forma homogénea el agua sobre dicha unidad de tratamiento biológico (6);
ix. someter dicha porción de agua a tratamiento en la unidad de tratamiento biológico (6)
■y preferentemente a una tasa hidráulica de tratamiento de entre 100 y 1.500 lts/m /día, y opcionalmente recolectar el agua tratada en el fondo de dicha unidad de tratamiento biológico luego del tratamiento biológico y someterla a recirculación (7) para llevar a cabo al menos una nueva etapa de tratamiento biológico;
x. recolectar el agua tratada en el fondo de la unidad de tratamiento biológico (6) y mediante medios gravitacionales, transportarla a una unidad de desinfección química (8);
xi. opcionalmente someter dicha porción de agua a tratamiento en dicha unidad de desinfección química; y
xii. opcionalmente recolectar el agua tratada en la etapa (xi) en un contenedor.
En una realización de la invención, luego de la etapa vi, se obtiene un agua residual con sólidos de diámetro menor a 1 mm, preferentemente menores a entre 0,5 a 1 mm.
En particular, en el método de acuerdo a la invención, todos los sólidos mayores a 0,5 mm son separados en la estación de filtrado inicial y se conducen directamente a la unidad de tratamiento de sólidos que preferentemente puede ubicarse en la proximidad de la unidad de tratamiento biológico.
En una realización preferida de la invención, la recirculación de acuerdo a la etapa ix. se lleva a cabo las veces que sean necesarias hasta que el agua posea la concentración de contaminantes deseada. Adicionalmente, dicha recirculación se realiza opcionalmente a una de las unidades aguas arriba de la unidad de tratamiento biológico, preferentemente a la segunda planta de transporte.
La unidad de tratamiento biológico comprende bacterias de suelo natural heterotróficas altamente adaptables, las que poseen la capacidad de convertir contaminantes de aguas residuales en componentes solubles de bajo peso molecular. La etapa opcional de tratamiento químico comprende contactar el agua a tratar con una cantidad efectiva de un agente químico, el cual se selecciona preferentemente de un compuesto derivado de halógeno , donde el halógeno es seleccionado del grupo formado por cloro, bromo y yodo, en cantidades que varían entre 1-20 ppm, preferentemente 1-10 ppm, y más preferentemente entre 1 a 5 ppm.
De acuerdo a la invención, la provisión de etapas de pretratamiento al tratamiento biológico (tratamiento primario), permite evitar que la unidad de tratamiento biológico se sature con excesos de sólidos o grasa y por ende pierda su permeabilidad, y así como también que el agua se apose y el sistema quede anegado, disminuyendo su caudal. Al mismo tiempo, al tener una primera etapa de pre tratamiento de sólidos, el método provee una mayor eficiencia en la remoción de los parámetros contaminantes del agua residual.
La invención además provee un sistema de tratamiento de aguas residuales de origen domiciliario e industrial que remueve en forma eficaz los contaminantes del agua, reduciendo la generación de residuos orgánicos y manteniendo continuidad en la operación, que comprende: a . al menos un colector de aguas residuales ubicado aguas arriba del sistema;
b. al menos una estación de filtrado mecánico y/o por flotación encargada de remover sólidos inorgánicos y/u orgánicos de cierto tamaño;
c. al menos una estación de filtrado biológico encargada de eliminar el remanente de residuos orgánicos ; y
d. al menos una estación de limpieza encargada de desinfectar el efluente del sistema. En una realización, el al menos un colector de aguas residuales consiste en un estanque que distribuye las aguas residuales a la estación de filtrado mecánico y/o por flotación. En otra realización, cada estación de filtrado mecánico y/o por flotación está comprendida por un medio filtrante y un medio de transporte, donde el medio filtrante se encarga de remover los sólidos del efluente y el medio de transporte de llevar el efluente a la siguiente estación del sistema. Preferentemente, la al menos una estación de filtrado está comprendida por una pluralidad de medios de filtrado y medios de transporte dispuestos en serie.
Adicionalmente, el al menos un medio filtrante consiste en una unidad de separación de sólidos de un tamaño en particular y porque él al menos un medio de transporte consiste en una unidad elevadora de un efluente en particular, donde la ubicación de acuerdo al tamaño de partículas y a las características del efluente en la estación de filtrado consiste en la remoción de las partículas de mayor tamaño aguas arriba de dicha estación hasta la remoción de las partículas de menor tamaño aguas debajo de dicha estación.
En otra realización, la unidad separadora de sólidos ubicada aguas arriba de la estación de filtrado consiste en una cámara de rejas de acero que incluye barras con una separación de aproximadamente 3 a 8 centímetros. Preferentemente, el medio de transporte ubicado antes de la estación de filtrado biológico actúa como un estanque pulmón que alimenta la unidad de tratamiento biológico absorbiendo las fluctuaciones en el flujo.
En otra realización, en la estación de filtrado mecánico y/o por flotación ubicada antes de la estación de filtrado biológico se incorpora un potenciador de flora bacteriana, donde de manera preferente dicho potenciador se incorpora en el medio de transporte de dicha estación de filtrado. Preferentemente, la al menos una estación de filtrado biológico consiste en una unidad de tratamiento biológico compuesta por capas, las que se detallan a continuación. Más preferentemente, las capas de la al menos una unidad de tratamiento biológico consisten en una cámara de aire, una primera unidad separadora, una capa inorgánica, una segunda unidad separadora y una capa orgánica.
La cámara de aire consiste en un espacio de aire ubicado en la parte inferior de la unidad de tratamiento biológico, donde a continuación de la cámara de aire se encuentra una primera unidad separadora que establece una separación entre la cámara de aire y la capa de material inorgánico, manteniendo la integridad de dicha cámara de aire. Además, la primera unidad separadora comprende una estructura de concreto, cemento, plástico y/o cartón, entre otros. Adicionalmente, a continuación de la primera unidad separadora se localiza una capa inorgánica compuesta de al menos un material inorgánico o una combinación de estos.
Las capas de material inorgánico en cualquier material o mezcla de material inorgánico comprendido por partículas de tamaño entre 5 y 15 cm. Las capas de material inorgánico consisten preferentemente en una capa de plástico y/o piedras. A continuación de la capa inorgánica se encuentra una segunda unidad separadora que establece una separación entre la capa de material inorgánico y la capa de material orgánico, impidiendo que microorganismos atraviesen desde el material orgánico hacia el material inorgánico.
La segunda unidad separadora se selecciona de una membrana preferentemente plástica con perforaciones de entre 0 y 1 mm, o cualquier cubierta o combinación de cubiertas que permita el paso del agua hacia la capa inferior y no permita el paso de lombrices a esta capa inferior, es decir es una malla de cualquier material que tenga pequeñas perforaciones que permiten el paso del agua. A continuación de la segunda unidad separadora se encuentra una capa orgánica que comprende derivados de celulosa, lombrices, bacterias y otros microorganismos que permiten filtrar la contaminación en estado sólido y soluble del agua residual. Además, sobre la capa orgánica se realiza la inoculación de microorganismos y la aspersión del efluente proveniente de la estación de filtrado anterior a la unidad de tratamiento biológico. Existe al menos un medio de aireación que comunica la cámara de aire con el exterior de la unidad de tratamiento biológico, de manera de proveer aireación a las distintas capas de dicha unidad por medio de perforaciones localizadas a lo largo de dicho medio. Los medios de aireación corresponden a cualquier elemento que permita la comunicación fluida del aire entre la cámara de aire, el exterior de la unidad de tratamiento biológico y las capas que la componen, como un ducto perforado que atraviesa verticalmente dichas capas. La al menos una estación de limpieza está comprendida por una unidad de limpieza que corresponde a un estanque diseñado para agregar un agente químico de desinfección que permanezca en contacto con el efluente del sistema por el período de tiempo adecuado para desinfectar adecuadamente dicho efluente.
En una realización, el sistema puede comprender una techumbre que bloquea la luz solar y radiación incidente sobre la unidad de tratamiento biológico. Opcionalmente, es posible instalar en serie una pluralidad de unidades de tratamiento biológico. Se puede utilizar recirculación de al menos parte del efluente de la unidad de tratamiento biológico hacia una de las estaciones de filtrado ubicadas aguas arriba de dicha unidad.
En una realización preferida, el sistema de acuerdo a la invención comprende al menos los siguientes elementos constitutivos:
• Colector de aguas residuales (1): unidad encargada de recibir las aguas residuales para disponer su distribución en el sistema de tratamiento. Se localiza aguas arriba del sistema y debe tener la capacidad de recolectar las aguas a ser tratadas de manera de proveer un flujo de efluente en tratamiento de acuerdo a las capacidades del sistema. En una modalidad preferente la presente unidad está comprendida por un estanque de distribución de aguas residuales.
• Separador de sólidos gruesos (2): unidad que consiste en uno de los medios filtrantes de la estación de filtrado mecánico y/o por flotación sistema, donde los sólidos de mayor tamaño son removidos del efluente en tratamiento. Esta unidad consiste en una cámara de rejas de acero que incluye barras con una separación de aproximadamente 3 a 8 centímetros, y que permite filtrar sólidos de diámetros mayores, a dichas dimensiones.
• Primera planta elevadora (3): unidad que corresponde a una de las plantas de transporte, las cuales utilizan preferentemente bombas como medios de transporte del efluente proveniente de la unidad anterior. En particular, esta primera unidad de transporte se encarga de recibir el efluente de la primera estación de filtrado para enviarlo a la segunda estación de filtrado de acuerdo a los requerimientos de dicha estación.
• Separador de sólidos finos (4): unidad que consiste en uno de los medios filtrantes de la estación de filtrado mecánico y/o por flotación sistema, donde los sólidos de tamaño menor son removidos del efluente en tratamiento. Esta unidad consiste principalmente en un equipo que posee una malla de acero con pequeñas perforaciones, por las cuales el agua escurre de forma gravitacional quedando sobre la malla los sólidos que se están removiendo. En este caso la malla o rejilla de acero incluye perforaciones de aproximadamente 0,5 a 1 mm, que permite filtrar sólidos de diámetro mayor a dichas dimensiones.
• Segunda planta elevadora (5): unidad que corresponde a una de las plantas de transporte, las cuales utilizan preferentemente bombas como medios de transporte del efluente proveniente de la unidad anterior. En particular, esta segunda unidad de transporte se encarga de recibir el efluente proveniente de la segunda estación de filtrado para enviarlo a la estación de filtrado biológico de acuerdo a los requerimientos de dicha estación. En este contexto, una de sus finalidades es acumular las aguas siendo un estanque pulmón ante posibles aumentos de descargas en períodos cortos, ya que la impulsión desde este cuerpo hacia la unidad de tratamiento biológico (6) se hace mediante un riego de caudal constante y con paradas constantes.
• Unidad de tratamiento biológico (6): consiste en un filtro biológico que se encarga de remover los residuos orgánicos remanentes de las etapas anteriores por medio de microorganismos, lombrices, hongos y bacterias.
• Unidad de desinfección (8): consiste en una unidad de desinfección del efluente proveniente del filtrado biológico, donde se proveen las propiedades finales del efluente que saldrá del sistema de tratamiento de aguas residuales. En este contexto, esta unidad consiste principalmente en un estanque diseñado para que el agua siga una circulación en la cual se alcanzará el tiempo necesario para que el agua entre en contacto con un agente desinfectante de manera que se haga efectiva la desinfección final del efluente.
En una realización aun más preferida, la unidad de tratamiento biológico (6) de acuerdo a la invención, comprende, desde su zona inferior a la superior, las siguientes capas:
• Cámara de aire (12): capa inferior que permite aportar oxigenación al fondo del filtro biológico. En este contexto, la unidad de tratamiento biológico (6) opera en condiciones aeróbicas, siendo de suma importancia mantener una oxigenación correcta en todas las capas que constituyen dicha unidad. En este contexto, existen medios de aireación que conectan la cámara de aire en el fondo de la unidad de tratamiento biológico con el exterior de dicha unidad, lográndose un flujo de aire entre la cámara de aire ubicada en el fondo de la unidad y el exterior, entregándose aire a las capas que conforman la unidad. El flujo que se genera entre la cámara de aire y el exterior dependerá principalmente de las diferencias de temperatura entre estos dos puntos, es decir, del gradiente de temperatura.
• Primera unidad separadora (13): capa que establece una separación entre la cámara de aire (12) y la capa de material inorgánico (14), donde dicha unidad separadora puede comprender elementos a base de concreto, cemento, plástico, cartón, entre otros, de manera que se mantenga la integridad de la cámara de aire, es decir, que no exista fuga de aire hacia fuera de la cámara y/o entrada de contaminantes hacia ésta
• Capa de material inorgánico (14): capa compuesta de un material inorgánico o combinación de éstos, donde el o los materiales inorgánicos se seleccionan de plásticos, piedras, etc (indicar posibles alternativas adicionales). Donde en el caso de utilizar plásticos se consideran distintas formas que tengan un tamaño de aproximado de 5-15 cm de diámetro y en el caso de ser piedras se puede utilizar gravilla con diámetros también entre 5-15 cm de diámetro, es decir, el material inorgánico de esta capa tiene que estar comprendido por partículas de tamaño entre 5 y 15 cm. Por otro lado, en la capa de material orgánico (n) se alojan bacterias que reducen principalmente la contaminación soluble del agua.
• Segunda unidad separadora (15): capa que establece una separación entre la capa de material inorgánico (14) y la capa de material orgánico (16), impidiendo que microorganismos atraviesen desde el material orgánico celulósico (16) hacia el material inorgánico (14), donde dicha unidad separadora se selecciona de una membrana preferentemente plástica con perforaciones de entre 0 y 1 mm o cualquier cubierta o combinación de cubiertas que permita el paso del agua hacia la capa inferior y no permita el paso de lombrices a esta capa inferior, es decir es una malla de cualquier material que tenga pequeñas perforaciones que permiten el paso del agua. • Capa de material orgánico (16): capa superior que comprende derivados de celulosa, lombrices, bacterias y otros microorganismos que permiten filtrar la contaminación en estado sólido y soluble del agua residual.
• Medios de aireación (19): medios dispuestos desde la cámara de aire (12) hacia sobre la superficie del material orgánico (16), los que permiten comunicar la cámara de aire (12) con el exterior y permitir un flujo de aire para proveer oxigeno al fondo de la unidad de tratamiento biológico (6) y así mantener las condiciones aeróbicas que el sistema requiere. En este contexto, la unidad de tratamiento biológico comprende al menos un medio de aireación, el que puede ser un tubo, donde dicho medio de aireación posee perforaciones en su largo y por ende va a proveer de oxigenación a toda la columna que compone el estrato de la unidad de tratamiento biológico. Por otro lado, es posible agregar en la cámara del fondo aireación forzada a través de ventiladores u otros mecanismos que fuercen la oxigenación de manera que suba por la columna y alimente una mayor cantidad de oxígeno en las capas inferiores de la unidad de tratamiento biológico, que son las que poseen una más pobre concentración de oxígeno.
En una modalidad de la invención la estación de filtración mecánica y/o por flotación puede comprender una pluralidad de medios filtrantes y de transporte de manera de perfeccionar la remoción de las partículas solidas que contiene el efluente en tratamiento. En este contexto, la combinación de medios filtrantes y medios de transporte debe ser tal que los medios de transporte cumplan los requerimientos para transportar el efluente desde un medio filtrante aguas arriba de éstos a medios filtrante aguas debajo de éstos. Al respecto, el medio filtrante y medio de transporte ubicados antes de la unidad de tratamiento biológico son de particular importancia, ya que deben cumplir con los requerimientos de alimentación de la unidad de tratamiento biológico. materias pueden ser aceites y grasas provenientes de procesos industriales llevados a cabo en industrias que procesan lácteos y/o cecinas, entre otros. De esta manera se logra dejar las aguas con el nivel de sólidos adecuados para que ingresen al medio de transporte en cuestión, unidad que alimenta la unidad de tratamiento biológico.
En relación al medio de transporte en cuestión, esta unidad debe tener la capacidad de proveer las características de flujo necesarias al efluente de alimentación de la unidad de tratamiento biológico. En este contexto, la principal característica que imprime este medio al efluente de alimentación corresponde a la continuidad en la alimentación, actuando como un estanque pulmón ante posibles aumentos de descargas en períodos cortos, ya que la impulsión desde este cuerpo hacia la unidad de tratamiento biológico (6) se hace mediante un riego de caudal constante y con paradas constantes.
Luego, la alimentación a la unidad de tratamiento biológico se realiza sin generar ningún tipo de anegamiento y/u operación que requiera mantención excesiva, de manera de optar a la mayor eficiencia del sistema. En este contexto, es relevante destacar que la unidad de separación de sólidos finos, o medio de filtrado fino, igualmente permite retener aceites y grasas que puedan impermeabilizar la superficie del lecho biológico en la unidad de tratamiento biológico de acuerdo a lo mencionado anteriormente. Luego, si bien el separador de sólidos finos permite separar gran parte del excedente de grasa, la grasa o aceites que pasan a la unidad de tratamiento biológico quedan impregnados sobre la superficie de la capa superior de dicha unidad, donde son consumidas por lombrices y bacterias que se albergan en la unidad de tratamiento biológico. En relación a la unidad de tratamiento biológico de acuerdo a la invención, se realiza una inoculación inicial de microorganismos al momento de poner en operación el sistema a efectos de proveer la carga biológica requerida. Mediante un proceso natural, los microorganismos presentes en dicha inoculación se incorporarán a la capa de origen orgánico (16), formando así la flora bacteriana que contribuye a la descontaminación y, promedio de la operación del sistema, las bacterias pasarán a poblar las capas inferiores, principalmente la capa de material inorgánico. Preferentemente, la inoculación inicial comprende proveer una cantidad de 500-10.000 lombrices/m2 y aproximadamente 0,5-5 kg de humus/m2.
Adicionalmente, sobre la unidad de tratamiento biológico (6) es posible implementar una techumbre, ya que los microorganismos que conviven al interior de esta unidad (6) prefieren ambientes sombríos y húmedos, por lo cual no es recomendable el exponer la superficie de la unidad de tratamiento biológico (6) de forma directa a la radiación solar.
Por otra parte, también existe la posibilidad de instalar otra unidad biológica en serie, o las unidades biológicas que sean necesarias. De esta manera, el 100% del agua atraviesa la primera unidad, después el 100% del efluente de la primera unidad pasa por una segunda unidad y así sucesivamente, hasta lograr una calidad del efluente de acuerdo a los requerimientos que se deseen del sistema. En este contexto, también es posible añadir una estación de recirculación a la salida de la unidad de tratamiento biológico, de manera que al menos parte del efluente de dicha unidad vuelva a estaciones previas a la unidad de tratamiento biológico, en particular a alguna de las estaciones de filtrado, más en particular a la estación de filtrado que se encuentra antes de la unidad biológica, ya sea al medio de filtrado o al medio de transporte. Luego, el objetivo de dicha recirculación es hacer que al menos parte del efluente vuela a ser filtrado, ya sea únicamente por la unidad de tratamiento biológico o por una combinación de al menos una estación de filtrado con dicha unidad, obteniéndose un efluente que cumpla con los requerimientos establecidos al sistema. La principal diferencia entre proveer recirculación y unidades de tratamiento biológico en serio consiste en que al usar unidades de tratamiento biológico en serie éstas pueden ser mejor adaptadas para tratar efluentes de distintas características de acuerdo a la etapa en la cual se encuentra dicho efluente, mientras que al usar únicamente recirculación el efluente que recircula entra a la misma unidad que se utilizó con el efluente inicial, pudiendo resultar en desmedro de las características del efluente que recircula, pero no en desmedro de las características del efluente final.
Adicionalmente, en al menos una de las estaciones de filtrado mecánico y/o por flotación se incorpora un potenciador de flora bacteriana, en particular al medio de transporte que se ubica antes de la unidad de tratamiento biológico. De esta manera, se busca potenciar la flora bacteriana en la unidad biológica para aumentar su concentración y así tener un mayor porcentaje de remoción de sólidos orgánicos. Dicho potenciador puede ser una mezcla de bacterias, levaduras, u cualquier otro tipo de componente que permita aumentar la flora bacteriana en un medio.
En una realización, el potenciador de la flora bacteriana de la invención consiste en una mezcla de nutrientes en estado inerte, el cual se incorpora en cantidades de:
Entre 100 a 2000 grs, en la etapa de puesta en marcha por cada m3/día de capacidad instalada de tratamiento de agua.
Entre 5 a 1000 grs, en la etapa de operación en régimen por cada m3 de agua tratada. Preferentemente, el potenciador de la flora bacteriana comprende, en peso, de aproximadamente 20-50% de carbohidratos, 20-50 % de aminoácidos, 1-20 % de lípidos, y 1-30% de trazas (vitaminas y minerales, entre otros).
Mediante el método y sistemas aquí descritos, es posible proveer un tratamiento de aguas residuales, donde el agua tratada puede ser utilizada en diversas aplicaciones, como por ejemplo, riego, lavado y otros procesos industriales.
Ventajosamente, el método y sistema de la invención poseen las siguientes características:
Baja generación de olores
Generación de residuos orgánicos despreciable
Bajo consumo energético, entre 0,05 - 1 Kwh/m3 de agua tratada
Bajo consumo de agentes químicos desinfectantes.
El siguiente ejemplo describe la invención con una mayor particularidad, y se pretende que sea una manera de ilustrar, pero no limitar la invención
Ejemplo de realización
El método y sistema de la presente invención fueron dispuestos en una planta de tratamiento que trata las aguas residuales de un casino y hotel ubicando en la región de Valparaíso, Chile.
Se llevaron a cabo una serie de tratamientos utilizando el método y sistemas aquí descritos. El sistema cuenta con todos los elementos que se describen en la sección "descripción detallada de la invención". En particular, comprende:
Una unidad de separación de sólidos gruesos (2)
Planta elevadora (3)
Una unidad de separación de sólidos finos (4) consistente en un filtro parabólico de 0,5 mm de separación, fabricado de una malla de acero (4)
Segunda planta elevadora (5)
Unidad de tratamiento biológico (6)
Unidad de Desinfección (8)
Unidad de tratamiento de sólidos gruesos (9)
Unidad de tratamiento de sólidos finos (10)
A continuación se presentan los resultados de 2 análisis de aguas del efluente y afluente de la planta de tratamiento.
Análisis 1 - Planta de Tratamiento 1 - Octubre 2012
Figure imgf000029_0001
Fósforo (mg/1) 43 7 84%
Aceites y Grasa 239 4 98% (mg/1)
Coliformes Fecales < 2 100% (NMP/100 mi)
pH [afuente]: entre 6,0 -8,5
Temperatura: Entre 23,5 y 26 grados celcius
Caudal promedio: 3,1 litros/seg (Máximo: 4,5 , Mínimo: 1,4)
Superficie unidad biológica: 400 m2
Retiro de sólidos estimados: 50 kilos/día
Desinfectante: 3 ppm de cloro
Recirculación por unidad de tratamiento biológico: No
Análisis 2 - Planta de Tratamiento 2 - Junio 2012 -
Figure imgf000030_0001
Nitrógeno (mg/1) 52 9 83%
Fósforo (mg/1) 8 3 63%
Aceites y Grasas 78 4 95% (mg/1)
Coliformes Fecales < 2 100% (NMP/100 mi)
pH [afuente]: Entre 7,5 -7,6
Temperatura de afluente: Entre 22 y 23 grados celcius
Caudal promedio de afluente: 1,3 litros/seg (Máximo: 2,3 - Mínimo: 0,2)
Superficie unidad de tratamiento biológico: 400 m2
Retiro de sólidos estimados: 40 kilos/día
Agente desinfectante: cloro 3 ppm
Recirculación por unidad de tratamiento biológico: No
Resultados de remoción de contaminantes. o DB05: 70% - 100%
o SST (Sólidos Suspendidos Totales): 70% - 100%
o Nitrógeno TK: 50% - 90%
o Fósforo: 50% - 80% o Aceites y Grasas: 70% - 100%
o Coliformes fecales: 90% - 100%
De acuerdo a lo explicado recientemente se desprende que las tecnologías convencionales no entregan una solución sustentable al problema. El Biofíltro sí resuelve el problema desde la perspectiva de la sustentabilidad ya que posee un impacto directo sobre los 3 pilares que conforman la sustentabilidad, es decir, una solución de bajo costo y competitiva (impacto económico), inodora, sin la generación de lodos y de bajo consumo energético y químico (impacto medioambiental), y finalmente una solución que puede ser operada por la misma comunidad a diferencia de tecnologías convencionales que requieren de personal calificado (impacto social).

Claims

REIVINDICACIONES
1. Un método de tratamiento de aguas residuales de origen domiciliario e industrial que remueve en forma eficaz los contaminantes del agua, reduciendo la generación de residuos orgánicos y manteniendo continuidad en la operación, CARACTERIZADO porque comprende las etapas de: i. proveer agua residual en un colector de aguas residuales (1);
ii. transportar al menos una porción de dicha agua residual hacia una unidad de separación de sólidos gruesos (2) o estación de filtrado grueso,
iii. someter dicha porción de agua a filtración en dicha unidad de separación de sólidos gruesos;
iv. recolectar al menos una parte del agua proveniente de la etapa (iii) preferentemente por medios gravitacionales en una primera planta de transporte (3); y
v. transportar al menos una porción del agua proveniente de la etapa (iv) hacia la unidad de separación de sólidos finos (4) o estación de filtrado fino;
vi. someter dicha porción de agua a filtración en dicha unidad de separación de sólidos finos;
vii. recolectar al menos una parte del agua proveniente de la etapa (vi) preferentemente por medios gravitacionales en una segunda planta de transporte (5);
viii. transportar al menos una porción del agua proveniente de la segunda planta de transporte (5) hacia la unidad de tratamiento biológico (6) preferentemente mediante medios bombeantes, distribuir preferentemente en forma homogénea el agua a tratar sobre dicha unidad de tratamiento biológico (6); ix. someter dicha porción de agua a tratamiento en la unidad de tratamiento biológico (6); x. recolectar el agua tratada en el fondo de la unidad de tratamiento biológico (6) y opcionalmente transportarla a una unidad de desinfección química (8);
xi. opcionalmente someter dicha porción de agua a tratamiento en dicha unidad de desinfección química; y
xii. opcionalmente recolectar el agua tratada en la etapa (xi) en un contenedor.
2. El método de acuerdo a la reivindicación 1, CARACTERIZADO porque el transporte en la etapa de tratamiento de filtración grueso se realiza mediante ductos por medios gravitacionales y/o medios bombeantes.
3. El método de acuerdo a las reivindicaciones 1 ó 2, CARACTERIZADO porque la etapa iv opcionalmente comprende recolectar los sólidos gruesos de la etapa (iii) y transportarlos hacia una unidad de tratamiento de sólidos gruesos (9).
4. El método de acuerdo a cualquiera de las reivindicaciones precedentes, CARACTERIZADO porque el transporte en la etapa de tratamiento de filtrado fino se realiza mediante ductos por medios bombeantes.
5. El método de acuerdo a cualquiera de las reivindicaciones precedentes, CARACTERIZADO porque la etapa vii opcionalmente comprende recolectar los sólidos finos (4) de la etapa vi y transportarlos hacia una unidad de tratamiento de sólidos (10).
6. El método de acuerdo a cualquiera de las reivindicaciones precedentes, CARACTERIZADO porque en la etapa viii la distribución del agua a tratar sobre la unidad de tratamiento biológico se realiza mediante una red de riego.
7. El método de acuerdo a cualquiera de las reivindicaciones precedentes, CARACTERIZADO porque en la etapa ix se provee una tasa hidráulica de tratamiento comprendida entre 100 y 1.500 L/m2/día.
8. El método de acuerdo a cualquiera de las reivindicaciones precedentes, CARACTERIZADO porque la etapa ix además comprende recolectar el agua tratada en el fondo de dicha unidad de tratamiento biológico luego del tratamiento biológico y se someter dicha agua a recirculación para llevar a cabo al menos una nueva etapa de tratamiento biológico.
9. El método de acuerdo a cualquiera de las reivindicaciones precedentes, CARACTERIZADO porque en la etapa x se realiza el transporte del agua tratada mediante medios gravitacionales
10. El método de acuerdo a cualquiera de las reivindicaciones precedentes, CARACTERIZADO porque la etapa opcional de desinfección química comprende contactar el agua a tratar con una cantidad efectiva de un agente químico, el cual se selecciona preferentemente de un compuesto derivado de halógeno seleccionado del grupo formado por cloro, bromo y yodo, en cantidades que varían entre 1-20 ppm, preferentemente 1-10 ppm, y más preferentemente entre 1 a 5 ppm.
11. Un sistema de tratamiento de aguas residuales de origen domiciliario e industrial que remueve en forma eficaz los contaminantes del agua, reduciendo la generación de residuos orgánicos y manteniendo continuidad en la operación, CARACTERIZADO porque comprende: a. al menos un colector de aguas residuales ubicado aguas arriba del sistema;
b. al menos una estación de filtrado mecánico y/o por flotación encargada de remover sólidos inorgánicos y/u orgánicos de cierto tamaño;
c. al menos una estación de filtrado biológico encargada de eliminar el remanente de residuos orgánicos ; y
d. al menos una estación de limpieza encargada de desinfectar el efluente del sistema.
12. El sistema de acuerdo a la reivindicación 1, CARACTERIZADO porque él al menos un colector de aguas residuales consiste en un estanque que distribuye las aguas residuales a la estación de filtrado mecánico y/o por flotación.
13. El sistema de acuerdo a cualquiera de las reivindicaciones anteriores, CARACTERIZADO porque cada estación de filtrado mecánico y/o por flotación está comprendida por un medio filtrante y un medio de transporte, donde el medio filtrante se encarga de remover los sólidos del efluente y el medio de transporte de llevar el efluente a la siguiente etapa del sistema.
14. El sistema de acuerdo a la reivindicación 3, CARACTERIZADO porque la al menos una estación de filtrado está comprendida por una pluralidad de medios de filtrado y medios de transporte dispuestos en serie.
15. El sistema de acuerdo a las reivindicaciones 3 y 4, CARACTERIZADO porque él al menos un medio filtrante consiste en una unidad de separación de sólidos y porque él al menos un medio de transporte consiste en una unidad elevadora de un efluente en particular, donde la ubicación de acuerdo al tamaño de partículas y a las características del efluente en la etapa de filtrado consiste en la remoción de las partículas de mayor tamaño aguas arriba de dicha etapa hasta la remoción de las partículas de menor tamaño aguas debajo de dicha etapa.
16. El sistema de acuerdo a la reivindicación 5, CARACTERIZADO porque la unidad separadora de sólidos ubicada aguas arriba de la estación de filtrado consiste en una cámara de rejas de acero que incluye barras con una separación de aproximadamente 3 a 8 centímetros.
17. El sistema de acuerdo a cualquiera de las reivindicaciones anteriores, CARACTERIZADO porque el medio de transporte ubicado antes de la estación de filtrado biológico actúa como un estanque pulmón que alimenta la unidad de tratamiento biológico absorbiendo las fluctuaciones en el flujo.
18. El sistema de acuerdo a cualquiera de las reivindicaciones anteriores, CARACTERIZADO porque en la estación de filtrado mecánico y/o por flotación ubicada antes de la estación de filtrado biológico se incorpora un potenciador de flora bacteriana, donde de manera preferente dicho potenciador se incorpora en el medio de transporte de dicha etapa de filtrado.
19. El sistema de acuerdo a cualquiera de las reivindicaciones anteriores, CARACTERIZADO porque la al menos una estación de filtrado biológico consiste en una unidad de tratamiento biológico compuesta por capas.
20. El sistema de acuerdo a la reivindicación 9, CARACTERIZADO porque las capas de la al menos una unidad de tratamiento biológico consisten en una cámara de aire, una primera unidad separadora, una capa inorgánica, una segunda unidad separadora y una capa orgánica.
21. El sistema de acuerdo a la reivindicación 10, CARACTERIZADO porque la cámara de aire consiste en un espacio de aire ubicado en la parte inferior de la unidad de tratamiento biológico.
22. El sistema de acuerdo a cualquiera de las reivindicaciones 10 y 11, CARACTERIZADO porque a continuación de la cámara de aire se encuentra una primera unidad separadora que establece una separación entre la cámara de aire y la capa de material inorgánico, manteniendo la integridad de dicha cámara de aire.
23. El sistema de acuerdo a la reivindicación 12, CARACTERIZADO porque que la primera unidad separadora comprende una estructura de concreto, cemento, plástico y/o cartón, entre otros.
24. El sistema de acuerdo a cualquiera de las reivindicaciones 10 a 13, CARACTERIZADO porque a continuación de la primera unidad separadora se localiza una capa inorgánica compuesta de al menos un material inorgánico o una combinación de estos.
25. El sistema de acuerdo a la reivindicación 14, CARACTERIZADO porque las capas de material inorgánico en cualquier material o mezcla de material inorgánico comprendido por partículas de tamaño entre 5 y 15 cm.
26. El sistema de acuerdo a las reivindicaciones 14 y 15, CARACTERIZADO porque las capas de material inorgánico consiste preferentemente en una capa de plástico y/o piedras.
27. El sistema de acuerdo a cualquiera de las reivindicaciones 10 a 16, CARACTERIZADO porque a continuación de la capa inorgánica se encuentra una segunda unidad separadora que establece una separación entre la capa de material inorgánico y la capa de material orgánico, impidiendo que microorganismos atraviesen desde el material orgánico hacia el material inorgánico.
28. El sistema de acuerdo a la reivindicación 17, CARACTERIZADO porque la segunda unidad separadora se selecciona de una membrana preferentemente plástica con perforaciones de entre 0 y 1 mm, o cualquier cubierta o combinación de cubiertas que permita el paso del agua hacia la capa inferior y no permita el paso de lombrices a esta capa inferior, es decir es una malla de cualquier material que tenga pequeñas perforaciones que permiten el paso del agua.
29. El sistema de acuerdo a cualquiera de las reivindicaciones 10 a 18, CARACTERIZADO porque a continuación de la segunda unidad separadora se encuentra una capa orgánica que comprende derivados de celulosa, lombrices, bacterias y otros microorganismos que permiten filtrar la contaminación en estado sólido y soluble del agua residual.
30. El sistema de acuerdo a cualquiera de las reivindicaciones 10 a 18, CARACTERIZADO porque a continuación de la segunda unidad separadora se encuentra una capa orgánica que comprende derivados de celulosa, lombrices, bacterias y otros microorganismos que permiten filtrar la contaminación en estado sólido y soluble del agua residual.
31. El sistema de acuerdo a la reivindicación 19, CARACTERIZADO porque sobre la capa orgánica se realiza la inoculación de microorganismos y la aspersión del efluente proveniente de la estación de filtrado anterior a la unidad de tratamiento biológico.
32. El sistema de acuerdo a la reivindicación 31, CARACTERIZADO porque se realiza una única inoculación inicial de microorganismos.
33. El sistema de acuerdo a cualquiera de las reivindicaciones 10 a 20, CARACTERIZADO porque existe al menos un medio de aireación que comunica la cámara de aire con el exterior de la unidad de tratamiento biológico, de manera de proveer aireación a las distintas capas de dicha unidad por medio de perforaciones localizadas a lo largo de dicho medio.
34. El sistema de acuerdo a la reivindicación 21, CARACTERIZADO porque los medios de aireación corresponden a cualquier elemento que permita la comunicación fluida del aire entre la cámara de aire, el exterior de la unidad de tratamiento biológico y las capas que la componen, como un ducto perforado que atraviesa verticalmente dichas capas.
35. El sistema de acuerdo a cualquiera de las reivindicaciones 11 a 34, CARACTERIZADO porque la al menos una estación de limpieza está comprendida por una unidad de limpieza que corresponde a un estanque diseñado para agregar una gente químico de desinfección que permanezca en contacto con el efluente del sistema por el período de tiempo adecuado para desinfectar adecuadamente dicho efluente.
36. El sistema de acuerdo a cualquiera de las reivindicaciones 11 a 35, CARACTERIZADO porque el sistema comprende una techumbre que bloquea la luz y radiación solar incidentes sobre la unidad de tratamiento biológico.
37. El sistema de acuerdo a cualquiera de las reivindicaciones 11 a 36, CARACTERIZADO porque consiste de una pluralidad de unidades de tratamiento biológico instaladas en serie.
38. El sistema de acuerdo a cualquiera de las reivindicaciones 11 a 37, CARACTERIZADO porque se utiliza recirculación de al menos parte del efluente de la unidad de tratamiento biológico hacia una de las etapas de filtrado ubicadas aguas arriba de dicha unidad.
PCT/CL2013/000038 2013-06-24 2013-06-24 Tratamiento para aguas residuales de origen domiciliario e industrial WO2014205588A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/392,340 US20160176736A1 (en) 2013-06-24 2013-06-24 Treatment for domestic and industrial waste water
AU2013397276A AU2013397276B2 (en) 2013-06-24 2013-06-24 Treatment for domestic and industrial waste water
PCT/CL2013/000038 WO2014205588A1 (es) 2013-06-24 2013-06-24 Tratamiento para aguas residuales de origen domiciliario e industrial
ZA2016/00235A ZA201600235B (en) 2013-06-24 2016-01-12 Treatment for domestic and industrial waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2013/000038 WO2014205588A1 (es) 2013-06-24 2013-06-24 Tratamiento para aguas residuales de origen domiciliario e industrial

Publications (2)

Publication Number Publication Date
WO2014205588A1 true WO2014205588A1 (es) 2014-12-31
WO2014205588A8 WO2014205588A8 (es) 2015-03-19

Family

ID=52140725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2013/000038 WO2014205588A1 (es) 2013-06-24 2013-06-24 Tratamiento para aguas residuales de origen domiciliario e industrial

Country Status (4)

Country Link
US (1) US20160176736A1 (es)
AU (1) AU2013397276B2 (es)
WO (1) WO2014205588A1 (es)
ZA (1) ZA201600235B (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104944699A (zh) * 2015-06-15 2015-09-30 扬州大学 一种油脂厂废水恶臭气味物质的去除方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110078257A (zh) * 2019-05-14 2019-08-02 上海斐晟企业管理有限公司 一种大型封闭静态景观水体处理方法和系统
CN112209522A (zh) * 2019-07-09 2021-01-12 西藏城发水务建设有限责任公司 一种水处理用具有回收储存结构的生活污水处理设备
CN111943289A (zh) * 2020-07-04 2020-11-17 仝宝雄 一种厂区固废液废循环综合利用装置及使用方法
EP4380900A4 (en) * 2022-04-28 2025-01-15 Biofiltro Usa Inc SYSTEM AND METHOD FOR MONITORING AND CONTROLLING WASTEWATER BIOFILTRATION

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0999194A2 (en) * 1998-11-02 2000-05-10 Glas Anois Teo Waste treatment system
WO2003091160A2 (en) * 2002-04-26 2003-11-06 The Indian Institute Of Technology, Bombay Process for treatment of organic wastes
EP1887078A1 (en) * 2006-08-11 2008-02-13 Alex Manuel Villagra Fuentes Bacteria inoculation system with earthworm humus, used as a treatment of contaminated water (inoculom)
FR2921651A1 (fr) * 2007-09-27 2009-04-03 Patricio Soto Procede et dispositif de traitement d'eaux organiquement polluees.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5445740A (en) * 1994-01-13 1995-08-29 Malone; Ronald F. Floating media biofilter
US20040060862A1 (en) * 2001-03-14 2004-04-01 Savage E. Stuart Process for direct filtration of wastewater
US20060283795A1 (en) * 2001-04-13 2006-12-21 Nurse Harry L Jr System And Method For Treating Wastewater Using Coir Filter
GB0910685D0 (en) * 2009-06-20 2009-08-05 Webb Colin G E Apparatus and method for disposal and treatment of waste water, sewage and/or effluent
US8813686B2 (en) * 2010-06-01 2014-08-26 AquaManf Aquaculture Technologies, Ltd. Modular aquaculture system and method of use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0999194A2 (en) * 1998-11-02 2000-05-10 Glas Anois Teo Waste treatment system
WO2003091160A2 (en) * 2002-04-26 2003-11-06 The Indian Institute Of Technology, Bombay Process for treatment of organic wastes
EP1887078A1 (en) * 2006-08-11 2008-02-13 Alex Manuel Villagra Fuentes Bacteria inoculation system with earthworm humus, used as a treatment of contaminated water (inoculom)
FR2921651A1 (fr) * 2007-09-27 2009-04-03 Patricio Soto Procede et dispositif de traitement d'eaux organiquement polluees.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104944699A (zh) * 2015-06-15 2015-09-30 扬州大学 一种油脂厂废水恶臭气味物质的去除方法

Also Published As

Publication number Publication date
AU2013397276B2 (en) 2018-12-06
AU2013397276A1 (en) 2016-01-28
ZA201600235B (en) 2017-04-26
WO2014205588A8 (es) 2015-03-19
US20160176736A1 (en) 2016-06-23

Similar Documents

Publication Publication Date Title
CN102775025B (zh) 高效低能耗城镇生活污水处理系统
CN204125300U (zh) 一种用于处理分散型生活污水的净化槽
CN202898159U (zh) 一种污水处理装置
CN106554129A (zh) 一体化同步硝化反硝化污水处理装置
CN106554130A (zh) 一体化生物过滤污水处理装置
CN102557350A (zh) 一种微污染原水净化系统及其净化方法
JP6775850B2 (ja) 汚水処理装置および排出雨水取込型汚水集水処理システム
Zapater-Pereyra et al. Evaluation of the performance and space requirement by three different hybrid constructed wetlands in a stack arrangement
CN204569669U (zh) 一体化小型微动力污水处理设备
RU2624709C1 (ru) Технический резервуар комплекса очистки сточных вод и способ его транспортировки, а также комплекс и способ очистки сточных вод аппаратного типа
WO2014205588A1 (es) Tratamiento para aguas residuales de origen domiciliario e industrial
CN107207298A (zh) 包括对饱和下部层通风的主动通风系统的竖直渗漏式植物过滤类型的废水处理设备
CN203768188U (zh) 风电互补一体化污水处理系统
CN203269716U (zh) 一种用于工业园区污水处理的人工快速渗滤系统
CN208454743U (zh) 一种引流生物膜污水一体化处理工艺
CN212269810U (zh) 农村生活污水复合式生态净化系统
RU2464239C1 (ru) Биологическое сооружение для очистки бытовых сточных вод
CN111792798A (zh) 农村生活污水复合式生态净化系统
WO2020041906A1 (en) Wastewater treatment method and system for removal of phosphorus, nitrogen and coliforms
CN206318832U (zh) 生活污水处理装置
CN211111596U (zh) 地上集成式一体化污水处理设备
CN202945124U (zh) 一种高效低能耗城镇生活污水处理系统
CN202492434U (zh) 一种微污染原水净化系统
CN102001768B (zh) 一体化低能耗污水处理装置及其处理方法
CN105084660A (zh) 一种接触氧化污水处理装置及其处理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14392340

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013397276

Country of ref document: AU

Date of ref document: 20130624

Kind code of ref document: A