[go: up one dir, main page]

WO2014200088A1 - Fluid control device, and fluid mixer - Google Patents

Fluid control device, and fluid mixer Download PDF

Info

Publication number
WO2014200088A1
WO2014200088A1 PCT/JP2014/065732 JP2014065732W WO2014200088A1 WO 2014200088 A1 WO2014200088 A1 WO 2014200088A1 JP 2014065732 W JP2014065732 W JP 2014065732W WO 2014200088 A1 WO2014200088 A1 WO 2014200088A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
fluid control
fluid
space
region
Prior art date
Application number
PCT/JP2014/065732
Other languages
French (fr)
Japanese (ja)
Inventor
理 額賀
達也 塩入
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2014200088A1 publication Critical patent/WO2014200088A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/301Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions
    • B01F33/3012Interdigital streams, e.g. lamellae
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00889Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502746Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles

Definitions

  • the present invention relates to a fluid control device that mixes fluid in a minute space, and a fluid mixer.
  • a fluid control device that mixes fluid in a minute space
  • a fluid mixer This application claims priority based on Japanese Patent Application No. 2013-126120 for which it applied on June 14, 2013, and uses the content here.
  • the fluid control device and the fluid mixer described above are preferably used for, for example, a micromixer and ⁇ TAS (also referred to as “Micro-TAS”: Micro Total Analysis Systems).
  • ⁇ TAS is a biochemical analysis device that uses MEMS technology to provide minute flow paths, reaction chambers, and mixing chambers on a chip, and analyzes various liquids and gases including blood and DNA with a single chip or device. means.
  • Microchemical processes that perform chemical processes such as mixing, reaction, extraction, separation, heating, and cooling in minute channels and in minute spaces have been proposed, and research on micromixers that enable highly efficient mixing in minute spaces has been conducted. ing.
  • a micromixer is a device that mixes samples in a minute space of several hundred ⁇ m or less, and the distance between substrates to be mixed can be shortened, so that the mixing efficiency can be greatly improved.
  • a microemulsifier and an emulsification method capable of generating an emulsion without using a surfactant are known (Patent Document 1).
  • a micromixer that forms a liquid mixture by repeatedly dividing and mixing liquid flowing in from a plurality of inlets in a three-dimensional channel formed by a combination of plates with grooves cut by precision processing.
  • a micro mixer of Institut fuer Mikrotechnik Mainz GmbH is known (Patent Document 2).
  • the flow paths are alternately arranged in the mixing section where two flow path groups are mixed, and a slit is provided in the upper part of the micromixer, and fluid flows out of the slit to mix the two liquids.
  • a micromixer has been proposed that includes a flow path group having a plurality of independent flow paths, and has a structure in which the flow path groups are arranged in a staggered pattern in the mixing unit.
  • these micromixers in order to divide the flow into a large number, it is necessary to form a complicated multi-channel using a precision processing technique, and there is a problem that the manufacturing cost increases.
  • the fluid is still laminar in the microchannel formed in a plane, and the fluid is agitated and mixed by diffusion of the fluid. Therefore, there is room for improvement with respect to mixing efficiency. Therefore, when a micromixer with a three-dimensional flow path is created by stacking plates with multi-flow paths, the device configuration becomes complicated, and liquid leaks at the junction interface of the stacked plates. There was a problem that the breakdown voltage could not be increased. Furthermore, the solid matter generated by the substance derived from the fluid gradually accumulates at the intersections of the flow paths at the junction interface of the stacked plates and partially closes the flow paths. There was also a risk that efficiency would be greatly reduced.
  • the present invention has been made in view of the above-described facts, and provides a fluid control device and a fluid mixer that can mix fluid extremely efficiently, have high processing capacity, and have a high pressure resistance. Objective.
  • the fluid control device communicates with the mixing portion through the plurality of first openings and through the first trench structure and the plurality of second openings that communicate with the first inflow portion.
  • a base having an induction space having a second trench structure communicating with the mixing portion and communicating with the second inflow portion, and when viewed from the mixing portion, the first trench structure and the second trench
  • the structure has a substantially rectangular shape, and the first trench structure and the second trench are arranged such that a long side of the first trench structure is separated from a long side of the second trench structure at a predetermined interval.
  • the structures are arranged in parallel.
  • the plurality of first openings and the plurality of second openings may be arranged in a two-dimensional direction on a surface on the base on which the mixing unit is provided.
  • the first opening and the second opening adjacent to each other than the distance between the plurality of first openings adjacent to each other and the distance between the plurality of second openings adjacent to each other. It may be arranged so that the distance of is small.
  • the first trench structure is divided by a first partition wall arranged along a long side direction of the first trench structure
  • the second trench structure may be divided by a second partition wall arranged along the long side direction of the second trench structure.
  • a fluid mixer includes a fluid control device according to the first aspect, a single outflow space communicating with the plurality of first openings and the plurality of second openings, A housing having a first inflow space communicating with the first inflow portion and a second inflow space communicating with the second inflow portion.
  • FIG. 1 is a schematic diagram illustrating a configuration example of a fluid control device 1a (1) according to the present embodiment.
  • FIG. 1A is a perspective view schematically showing the fluid control device 1.
  • FIG. 1B is a schematic cross-sectional view taken along arrow X1-X1.
  • FIG. 1C is a schematic cross-sectional view taken along arrow Y1-Y1.
  • FIG.1 (d) is a top view of arrow Z1 (plan view at the time of observing the fluid control device 1a from the direction of Z1).
  • the fluid control device 1a (1) communicates with the mixing unit (single mixing space) Sa through the plurality of first openings 5b and communicates with the first inflow unit 3a.
  • the first trench structure 3 and the second trench structure 4 have a substantially rectangular shape when viewed from the mixing portion Sa, and the first trench structure 3
  • the first trench structure 3 and the second trench structure 4 are arranged in parallel so that their long sides are separated from the long side of the second trench structure 4 at a predetermined interval.
  • the fluid control device 1 a (1) communicates with the mixing unit (single mixing space) Sa through the plurality of first openings 5 b and communicates with the first inflow unit 3 a.
  • Inductive spaces ⁇ and ⁇ (n) each having a second trench structure 4 that communicates with the mixing portion Sa and communicates with the second inflow portion 4a through one trench structure 3 and a plurality of second openings 6b.
  • the single mixing space (mixing part) in this embodiment is a surface where several opening part 5b, 6b of fluid control device 1a (1) touches, and shows the space on area
  • the trench structure is a groove having a substantially rectangular shape as shown by reference numerals 3 and 4 in FIG. 1 and having a depth. Inside the base body 2, a groove having a substantially rectangular shape like the trench structures 3 and 4 and having a depth is formed.
  • the fluid control device 1a (1) according to the first embodiment shown in FIG. 1 includes two inflow spaces Sb (see FIG. 4, first inflow space) and Sc (see FIG. 4) in the flat substrate 2.
  • the reference (second inflow space) is disposed at a position (region B and region C) close to two side surfaces (surface on which the first inflow portion 3a and the second inflow portion 4a are provided) facing each other in the base 2 Shows the case.
  • the fluid control device 1 a (1) shows a case where the outflow space (mixing space) Sa is arranged at a position (A) close to the upper surface of the base 2 in the flat base 2. .
  • a plurality of trench structures 3 and 4 are formed in a single substrate 2. When viewed from the mixed space Sa, the trench structures 3 and 4 have a substantially rectangular shape.
  • the distal end portion 3 ⁇ / b> P of the first trench structure 3 (that is, the portion farthest from the inflow space Sb)
  • the portion where the concave portion is formed may be linear (a concave portion having a bottom portion substantially parallel to the side surface of the base when the base is viewed from above), or a rounded shape (for example, an arc shape). It may be.
  • the tip portion 4P of the second trench structure 4 also has the same shape as the tip portion 3P of the first trench structure 3.
  • the first trench structure 3 and the second trench structure 4 are adjacent to each other in the plurality of induction spaces in the base 2.
  • the long side of the first trench structure 3 and the long side of the second trench structure 4 are arranged in parallel so as to be spaced apart and have a predetermined interval.
  • a plurality of fine holes 5 and 6 are formed in the base 2 so as to be connected to each of the plurality of trench structures 3 and 4.
  • the first openings 5 b of the plurality of guide spaces are formed from the plurality of first micro holes 5.
  • the second openings 6 b of the plurality of guide spaces are formed from the plurality of second micro holes 6.
  • the third openings of the plurality of guide spaces are provided in the plurality of first trench structures 3, respectively.
  • the fourth openings (second inflow portions) 4a of the plurality of guide spaces have a plurality of second trench structures. 4 is provided.
  • the plurality of first openings 5b of the plurality of first micro holes 5 in the plurality of first trench structures 3 communicate with the first inflow space Sb (the space formed in the region B in FIG. 1A). is doing.
  • the plurality of second openings 6b of the plurality of second micro holes 6 in the plurality of second trench structures 4 are formed as second inflow spaces Sc (inflow spaces formed in the region C in FIG. 1A).
  • the first trench structure 3 and the second trench structure 4 each communicate with different inflow spaces.
  • a guide space group ⁇ (a guide space group formed by the plurality of first trench structures 3) constituting a specific group among the plurality of guide spaces is a region A (surface of the base body 2) on the surface (outer surface) of the base body 2.
  • a plurality of first openings 5b are provided on the upper surface.
  • the guide space group ⁇ includes a plurality of third openings (first inflow portions) 3a in a region B (first side surface of the base 2) on the surface (outer surface) of the base 2.
  • the induction space group ⁇ (1) (induction space group formed by the plurality of second trench structures 4) constituting another specific group of the induction spaces is plural in the region A on the surface (outer surface) of the base 2.
  • the second opening 6b is provided.
  • the guide space group ⁇ (1) has a plurality of fourth openings (second inflow portions) 4a in the region C (second side surface of the base 2). Further, in the base 2, the plurality of first micro holes 5 belonging to the guidance space group ⁇ and the plurality of second micro holes 6 belonging to ⁇ (1) are arranged apart from each other.
  • the plurality of first trench structures 3 and the plurality of first micro holes 5 provided in the single substrate 2 are formed by the substrate. It is formed as a three-dimensional guidance space group ⁇ in which the region A and the region B are communicated with each other on the surface (outer surface). Similar to the guide space group ⁇ , the plurality of second trench structures 4 and the plurality of second micro holes 6 are three-dimensional guide spaces in which the region A and the region C on the surface (outer surface) of the base 2 are communicated with each other. It is formed as a group ⁇ (1).
  • the plurality of first openings 5b in the plurality of first micro holes 5 of the guide space group ⁇ facing the region A and the plurality of second openings of the plurality of second micro holes 6 in the guide space group ⁇ (1). 6b are arranged in a two-dimensional direction on the surface facing the region A as shown in FIG. Further, the openings (the first opening 5b and the second opening 6b) are alternately formed so as to have the most adjacent positions.
  • different materials flow from different inflow spaces.
  • the first material flows in from the inflow space Sb and passes through the plurality of first trench structures 3 and the plurality of first micro holes 5 which are induction spaces.
  • the second material flows in from the inflow space Sc and passes through the plurality of second trench structures 4 and the plurality of second micro holes 6 which are induction spaces. Then, the first material flowing out from the plurality of first micro holes 5 and the second material flowing out from the plurality of second micro holes 6 flow out from a common space, for example, the mixing space Sa.
  • a plurality of micro holes 5 and 6 arranged in connection with the plurality of trench structures 3 and 4 are formed in the base body, so that the induction space formed in the base body is formed only by the trench structure. The flow velocity distribution can be made more uniform than when formed.
  • the fluid control device 1 by forming the plurality of fine holes 5 and 6 in the base body, the pressure loss in the induction space is minimized, and the boundary surface between the two liquids to be mixed is changed to 4. It can be a surface. For this reason, in the fluid control device 1 of the first embodiment, the mixing speed of the two fluids can be increased.
  • the micromixer described in Patent Document 2 there are two boundary surfaces of the two liquids to be mixed.
  • FIG. 2 is a schematic view showing a modified example (hereinafter also referred to as modified example 1A) of the fluid control device 1 according to the present embodiment (first embodiment), and is a plan view taken along the arrow Z2.
  • modified example 1A is a top view at the time of observing a base
  • the substrate 2 can also be arranged on the substrate so as to have a staggered pattern (FIG. 2).
  • a staggered pattern FOG. 2
  • the flow velocity distribution can be adjusted uniformly.
  • the boundary surface of the two liquids to be mixed can be four. For this reason, in this embodiment, the mixing speed of the fluid can be increased.
  • the width and the side length of the plurality of trench structures 3 and 4 are preferably in the order of micrometer to nanometer, for example. Moreover, it is preferable that the distance between the openings of the plurality of trench structures 3 and 4 is, for example, on the order of micrometers or nanometers.
  • the long diameters of the plurality of fine holes 5 and 6 are preferably in the order of micrometer to nanometer, for example. Moreover, it is preferable that the distance between the openings of the plurality of micropores 5 and 6 is, for example, on the order of micrometer or nanometer.
  • mixing means mixing, reacting, or emulsifying a plurality of fluids (forming an emulsion).
  • the number of the trench structures 3 and 4 and the plurality of fine holes 5 and 6 constituting the induction space group ⁇ and the induction space group ⁇ (1) is not particularly limited, and the type of fluid to be controlled, It can be appropriately selected according to the processing capacity. Further, the region B and the region C may be arranged in different regions on the same substrate surface. Further, the region A, the region B, the region C, etc. may all exist on the same surface.
  • FIG. 3 is a schematic diagram showing a modified example (hereinafter also referred to as modified example 1B) of the fluid control device 1 according to the present embodiment (first embodiment).
  • FIG. 3A is a perspective view schematically showing the fluid control device 1c (1).
  • FIG. 3B is a schematic cross-sectional view taken along the arrow X3-X3.
  • FIG. 3C is a schematic cross-sectional view taken along arrow Y3-Y3.
  • FIG. 3D is a plan view of the arrow Z3.
  • “Modification 1B” shown in FIG. 3 is also similar to FIG. 1.
  • the two inflow spaces Sb and Sc are close to the two side surfaces facing the base (position close to the region B, The case where it is arranged at a position close to the region C) is shown. Further, “Modification 1B” shown in FIG. 3 represents a case where the outflow space Sa is arranged at a position close to the upper surface of the substrate (position close to the region A).
  • the plurality of trench structures 3 and 4 are divided into two or more by a plurality of partition walls 31 and 41 arranged along the long side direction of the plurality of trench structures.
  • each of the trench structures 3 is divided into three (3a), and the trench structure 4 is also divided into three (4a). This minimizes the variation in pressure loss in the induction space and enables more uniform fluid mixing.
  • each of the plurality of trench structures 3 and 4 has a substantially rectangular shape when viewed from the mixed space Sa. As shown in the partially enlarged view of FIG.
  • the tip portion 3P of the trench structure 3 (that is, the portion farthest from the inflow space, a recess is formed in the substantially rectangular trench structure 3 as shown in the partial enlarged view of FIG. May be a straight line (a concave portion having a bottom portion substantially parallel to the side surface of the substrate when the substrate is viewed from above), and has a rounded shape (for example, an arc shape). May be.
  • the tip 4P of the trench structure 4 is the same as the tip 3P of the trench structure 3.
  • FIG. 4 is a schematic cross-sectional view showing a configuration example of the fluid mixer 10A (10), in which the fluid control device disclosed in (1-1) is mounted. As shown in FIG. 4A, the fluid mixer 10A (10) has the fluid control device 1 and the fluid control device 1 inside, faces the area A of the fluid control device 1, and the fluid control device 1.
  • a single outflow space (single mixing space) Sa that communicates with the plurality of micropores 5 and 6, a region B of the fluid control device 1, and a communication with the first inflow portion 3 a of the fluid control device 1
  • a single inflow space Sc that faces the region C and communicates with the second inflow portion 4a of the fluid control device 1.
  • a metal such as stainless steel can be used.
  • the fluid mixer 10A (10) shown in FIG. 4A is configured such that the fluid control device 1 (the outer surface) and the housing 20 (the inner surface) are in direct contact with each other.
  • the casing 20A (20) includes an upper casing 20a that forms an outflow space Sa so as to face the surface (outer surface) of the region A of the base 2 constituting the fluid control device 1, and the regions B and C of the base 2.
  • the lower housing 20b that forms the inflow space Sb and the inflow space Sc so as to face the surface (outer surface) of Further, the respective surfaces (outer surfaces) of the regions A, B, and C of the fluid control device 1 and the upper casing 20a and the lower casing 20b are joined via a seal member (not shown) as necessary.
  • the outflow space Sa and the inflow spaces Sb and Sc are formed as independent spaces.
  • An elastic seal member such as an O-ring can be used as the seal member.
  • the first material flows in from the inflow space Sb and passes through the plurality of first trench structures 3 and the plurality of first micro holes 5 which are induction spaces.
  • the second material flows in from Sc and passes through the plurality of second trench structures 4 and the plurality of second micro holes 6 which are induction spaces.
  • the 1st material which flowed out from a plurality of 1st minute holes 5 and the 2nd material which flowed out from a plurality of 2nd minute holes 6 are from common space, for example, outflow space (mixing space) Sa. leak.
  • the fluid control device 1 can be attached and detached by sandwiching and joining the fluid control device 1 between the upper and lower housings 20 a and 20 b. . Therefore, the fluid control device can be appropriately selected or regularly maintained (repaired or replaced) according to the type and nature of the fluid to be mixed.
  • the variation in the pressure loss of the plurality of induction spaces is within ⁇ 10%.
  • the trench structures 3 and 4 and the fine holes 5 and 6 are designed so that the variation in pressure loss of each induction space is within ⁇ 10%. It is preferable.
  • the variation in the pressure loss is larger than ⁇ 10%, depending on the processing speed, there is a possibility that a large variation occurs in the mixing property of the fluid.
  • the plurality of guide spaces have substantially the same length.
  • each of the micro holes 5 and 6 in the plane facing the outflow space (mixed space) Sa The flow velocity of the fluid in the openings 5b and 6b can be made uniform.
  • the flow rate error in the openings 5b and 6b of each fine hole is preferably within an average value ⁇ 100% of the fluid flow rate, and more preferably within an average value ⁇ 50% of the fluid flow rate.
  • each trench structure 3, 4 and each microhole 5, 6 When it can be considered that the width, the length of the short side, or the diameter of each trench structure 3, 4 and each microhole 5, 6 is the same, the length of the long side of each trench structure 3, 4 and each microhole 5, 6 Should be designed to be equal in length. Thereby, the flow velocity of the fluid in each opening 5b, 6b of each micropore 5, 6 can be equalized.
  • the trenches 3 and 4 and the fine holes 5 and 6 have different widths and short side lengths or diameters, by appropriately changing the lengths according to the widths and short side lengths or diameters, The flow velocity of the fluid in the plurality of openings 5b and 6b can be made more uniform.
  • the pitches of the plurality of first openings 5b and the plurality of second openings 6b serving as outlets are adjusted, or the flow is changed.
  • the positions of the plurality of third openings (first inflow portions) 3a and the plurality of fourth openings 4a serving as inlets the lengths of the trench structures 3 and 4 and the fine holes 5 and 6 are adjusted. You can change that.
  • the arrangement of the plurality of openings 5b, 6b of the plurality of micro holes 5, 6 in the plane facing the outflow space Sa faces the outflow space Sa.
  • a plurality of fine holes 5 and 6 may be arranged in the plane so that the pitch is random.
  • the pitch of the plurality of openings 5b, 6b of the plurality of micro holes 5, 6 which are the outlets of the guide space is disturbed, and the plurality of micro holes 5, 6 are randomly arranged.
  • the diffusion length of each fluid passing through the plurality of micropores 5 and 6 differs depending on the location where the plurality of micropores 5 and 6 are provided, and nonuniform (random) mixing can be realized.
  • this fluid control device 1, 1a, 1b is used for the production of nanoparticles, not monodisperse particles with uniform particle size but polydisperse particles with a uniform variation in particle size are stabilized at a time. Can be processed.
  • the plurality of fine holes 5 and 6 may be arranged so that the pitch in the region (first region) and the pitch in the other specific region (second region) are different.
  • region N may differ.
  • the diffusion length of the fluid changes depending on the in-plane region.
  • the pitch of the micropores in the first region M is made small (narrow) and the pitch of the micropores in the second region N is made large (wide)
  • the fluid mixing speed becomes faster in the first region M.
  • the second region N it becomes slower.
  • this fluid control device is used for the production of nanoparticles, it is possible to simultaneously mold particles having a particle size of two levels, not monodispersed particles having a uniform particle size. For example, two different types of products or products with variations can be obtained.
  • the diameter of each micropore is reduced at a position close to the plurality of openings 5b, 6b of the plurality of micropores 5, 6 in the plane with respect to the outflow space Sa. It is good also as the structure (The diameter of the micropore became small).
  • the diameter of each microhole 5, 6 is reduced (designed to reduce the diameter) at a position close to the plurality of openings 5 b, 6 b of the plurality of microholes 5, 6, which is the outlet of the guide space And taper.
  • the flow velocity of the fluid at a position close to the outlet is increased, and a vortex is easily generated.
  • the mixing property of the fluid is improved.
  • only the micropore diameter at a position close to the outlet is small, it is possible to minimize an increase in pressure loss. In FIG. 6, only one hole is shown in order to explain the shape of the fine hole.
  • the ratio ( ⁇ D (d1 ⁇ d2)) of the reduction of the guide space width to the taper distance L / L) is preferably in the range of 0.05 to 2, more preferably in the range of 0.1 to 1.
  • ( ⁇ D / L) is smaller than 0.05, it is difficult to produce a sufficient micropore diameter difference.
  • ( ⁇ D / L) is greater than 2, depending on the type of fluid, stagnation occurs in the induction space, and deposits are easily formed in the induction space.
  • the outlet diameter d1 of the micropore is 23 ⁇ m and the inner diameter d2 is 25 ⁇ m, an increase in flow rate of about 18% can be expected at a position close to the outlet. Therefore, if the difference ⁇ D in the induction space diameter is 1 ⁇ m or less, a sufficient effect can be obtained.
  • the diameter of the micropores is close to the plurality of openings 5b, 6b of the plurality of micropores 5, 6 in the plane facing the outflow space Sa.
  • An expanded structure may be used. It is good also as a structure which expanded the diameter of each micropore 5 and 6 in the position close
  • a coating layer may be provided on the side wall of the guide space.
  • the chemical resistance of the fluid control device can be improved.
  • deposits accumulate on the side walls and clog the holes.
  • the fluororesin coating layer can be applied and formed as a thin film, it can also be formed in the micropores. Therefore, the clogging of the trench structures 3 and 4 and the fine holes 5 and 6 can be suppressed by providing the fluororesin coating layer near the base 2.
  • a temperature adjusting device may be provided inside the base body 2.
  • a separate micro induction space may be provided downstream of the region A, and a temperature adjusting device may be provided so that the temperature of the substance flowing in the induction space can be controlled.
  • the wiring structure which functions as a heater or a heater and a temperature sensor part on the base
  • an insulating layer may be provided on the substrate 2 in order to keep insulation against the solution. Examples of the wiring for the heater or the temperature sensor include nichrome and ITO.
  • microwaves may be used to raise the temperature of the fluid control device 1. For example, as shown in FIG.
  • a substance flowing in the base 2 is provided by providing a conduit or a PWW (post wall waveguide) 90 as a temperature control device on the base 2 and providing a flow path 25 in the base 2. Can be heated.
  • a flow path is provided as a temperature control device on the base 2, and a fluid (liquid or gas) having an appropriate temperature is flowed through the flow path to raise and cool the substance flowing in the base 2. May be.
  • a temperature adjusting device may be provided outside the base body 2.
  • a temperature adjusting device may be provided outside the base 2 (for example, the housing 20 portion).
  • the temperature adjusting device is not particularly limited, and for example, a thermocouple that is a temperature sensor and a micro heater that is a heater can be used. What is necessary is just to provide the insertion port of these temperature control apparatuses in the outer side of the base
  • FIG. Alternatively, the temperature of the substance flowing in the base 2 may be raised and cooled by providing a flow path inside the base 2 and flowing a fluid (liquid or gas) having an appropriate temperature in the flow path.
  • the outlet channel 21 may have a structure in which the diameter is narrowed so that the first outlet is wide and the second outlet is narrow.
  • an outlet provided in the housing 20, one (first outlet) communicating with the outflow space (mixing space) Sa and the other (second outlet) communicating with the surface.
  • the channel 21 may have a structure having a restriction on the other side (second outlet) of the outlet channel 21.
  • the opening area of the base 2 in the region A is larger than the area of the region having the guide space group. Need to have a large area.
  • the outlet guide space in the region A has a restriction.
  • the manufacturing process of the fluid control device 1 according to the first embodiment is a process of forming a plurality of modified portions by condensing and irradiating a laser beam having a pulse width of a picosecond order or less inside the base 2. And a step of removing the modified portion formed inside the substrate 2 by etching to form a guide space (trench structure and fine holes).
  • femtosecond laser light can be used as the light source of the laser light.
  • a femtosecond laser is a laser whose pulse width is on the order of femtoseconds (fs). Because it is an ultra-short pulse of several femtoseconds to several hundred femtoseconds, it has a high peak intensity and induces multiphoton absorption, which is a nonlinear optical phenomenon near the focal point.
  • a fine modified portion can be formed on the substrate 2.
  • a transparent material such as a glass material is preferably used as the substrate 2 which is a material to be processed.
  • the laser beam is applied to the base 2 from a position close to one main surface of the base 2.
  • the condensing portion S of the base is scanned with the laser light so that the guide space to be formed is arranged in at least two layers in the base 2.
  • the condensing portion S of the reforming portion is scanned with laser light so that the guide space is formed in order from a position far from the position of the laser light source.
  • a modified portion that becomes a guide space can be formed three-dimensionally inside the base 2.
  • a modified portion having a desired induction space diameter can be formed.
  • the laser irradiation intensity is preferably a value close to the processing threshold value of the material constituting the substrate 2, or a processing threshold value or more, and ablation threshold value or more. This is to form a modified portion with higher etching selectivity.
  • the processing threshold is defined as the lower limit value of the laser pulse power for forming the modified portion.
  • the ablation threshold is a lower limit value of laser pulse power for generating ablation, and is different from the processing threshold. In general, the processing threshold is smaller than the ablation threshold.
  • quartz glass is used as the substrate 2, and a solution containing hydrofluoric acid (HF) as a main component is used as an etching solution.
  • HF hydrofluoric acid
  • Such an etching process is a method that utilizes a phenomenon in which the modified portion irradiated with the laser beam on the substrate 2 is etched at an etching rate several tens of times higher than that of the non-irradiated region of the substrate 2. Therefore, by controlling the etching time, it is possible to selectively etch and remove only the region where the induction space irradiated with the laser light is to be formed in the substrate 2. By utilizing this etching selectivity, a group of guiding spaces having a fixed structure can be formed in the base 2 in a three-dimensional manner.
  • the etching solution is not particularly limited.
  • a hydrofluoric acid (HF) as a main component
  • a hydrofluoric acid-based mixed acid obtained by adding an appropriate amount of nitric acid or the like to hydrofluoric acid, or an alkali such as KOH can be used.
  • other chemicals can be used depending on the material of the substrate 2.
  • the fluid control device 1 (1a, 1b, 1c) according to the first embodiment (type 1) has a plurality of guide spaces each having an independent trench structure in a single base body 2. Is formed.
  • the plurality of guide spaces are a guide space group ⁇ constituting a specific group and a guide space group ⁇ (n) constituting another specific group, and a region B into which fluid flows on the surface (outer surface) of the base 2 and
  • Each of the region C and the region A through which the fluid flows out has an opening, and is formed as a three-dimensional guide space group that connects the region A, the region B, and the region C.
  • the induction space forms a plurality of fine holes arranged in connection with the trench structure.
  • the openings of the guidance space group ⁇ and the guidance space group ⁇ (n) facing the region A are arranged in a two-dimensional direction within the plane facing the region A.
  • the opening portions of the micro holes constituting each of the guiding space group ⁇ and the guiding space group ⁇ (n) are formed so that the opening portions leading to the region A are alternately adjacent to each other. .
  • the fluid control device 1 (1a, 1b, 1c) according to the present embodiment (type 1), a plurality of types of fluids flowing from the region B and the region C are mixed before flowing out from the region A.
  • the flow of fluid can be controlled independently. For this reason, there is no possibility that a solid substance or the like generated by mixing a plurality of fluids in the guidance space gradually accumulates in the guidance space and the guidance space is partially blocked.
  • the plurality of guide space groups are three-dimensionally stacked in the base body 2, a large number of guide spaces can be provided in comparison with the two-dimensional guide space. Therefore, processing capacity and productivity can be improved.
  • the induction space group in the base body 2 is an integrally formed continuous body, liquid leakage does not occur at the bonding interface, and the pressure resistance performance of the fluid control device can be increased.
  • the flow velocity distribution can be made more uniform by forming a plurality of micro holes arranged by connecting the guide space to the trench structure than when the guide space has only the trench structure. .
  • the pressure loss in the induction space can be minimized, and the boundary surface of the two liquids to be mixed can be four. For this reason, the mixing speed of the fluid can be increased.
  • FIG. 9 is a schematic diagram illustrating a configuration example of the fluid control device 1d (1) according to the present embodiment.
  • FIG. 9A is a perspective view schematically showing the fluid control device 1d (1).
  • FIG. 9B is a schematic cross-sectional view taken along the arrow X9-X9.
  • FIG. 9C is a schematic cross-sectional view taken along arrow Y9-Y9.
  • FIG. 9D is a partial plan view of the arrow Z9a.
  • FIG. 9E is a partial plan view of the arrow Z9b.
  • the fluid control device 1d (1) according to the second embodiment communicates with the mixing unit (single mixing space) Sa through the plurality of first openings 5b and communicates with the first inflow unit 3a.
  • the fluid control device 1d (1) according to the second embodiment has the first trench structure 3 and the second trench as viewed from the mixing portion Sa.
  • the structure 4 has a substantially rectangular shape, and the first trench structure 3 and the first trench structure 3 and the first trench structure 3 and the long side of the second trench structure 4 are spaced apart from each other by a predetermined distance.
  • Second trench structures 4 are arranged in parallel.
  • the fluid control device 1 d (1) according to the second embodiment includes two inflow spaces Sb (see FIG. 4, first inflow space) and Sc (see FIG. 4, second) in the flat base 2.
  • Inflow space) are arranged in different regions (region B where the first inflow portion 3a is provided and region C where the second inflow portion 4a is provided) at different positions close to the lower surface of the base body 2.
  • substrate differs from the fluid control device 1a (1) which concerns on 1st Embodiment.
  • each of the plurality of trench structures 3 and 4 has a substantially rectangular shape.
  • the substantially rectangular shape has a tip portion 3P of the first trench structure 3 (that is, a portion farthest from the inflow space, a portion forming a recess) when viewed from the mixed space Sa.
  • It may be linear (a concave portion having a bottom portion substantially parallel to the side surface of the base 2 when the base 2 is viewed from the top), or may have a rounded shape (for example, an arc).
  • the tip portion 4P of the second trench structure 4 also has the same shape as the tip portion 3P of the first trench structure 3. Further, the first trench structure 3 and the second trench structure 4 are formed so as to have an adjacent positional relationship in the plurality of guide spaces ⁇ and ⁇ (n) in the base body 2. Further, the long side of the first trench structure 3 and the long side of the second trench structure 4 are arranged in parallel so as to be spaced apart and have a predetermined interval.
  • a plurality of fine holes 5 and 6 connected to the plurality of trench structures 3 and 4 are formed in the base 2.
  • the plurality of first openings 5 b of the plurality of guide spaces are formed from the plurality of first micro holes 5.
  • the second openings 6 b of the plurality of guide spaces are formed from the plurality of fine holes 6.
  • the mixing space Sa in the second embodiment indicates a space (outflow space) on the surface A facing the plurality of openings 5b and 6b of the fluid control device 1d (1).
  • the third openings (first inflow portions) 3 a of the plurality of guide spaces are formed in the respective trench structures 3.
  • the fourth openings (second inflow portions) 4 a of the plurality of guide spaces are respectively formed in the openings of the plurality of trench structures 4. Is formed.
  • the first opening 5b of the minute hole 5 in the first trench structure 3 communicates with the first inflow space Sb in the region B near the lower surface of the base.
  • the second opening 6b of the fine hole 6 in the second trench structure 4 communicates with the second inflow space Sc in the region C located near the lower surface of the base.
  • An induction space group ⁇ (induction space group constituted by a plurality of first trench structures 3) constituting a specific group among the plurality of induction spaces is a region A (surface of the base body 2) on the surface (outer surface) of the base body 2.
  • a first opening 5b is provided on the upper surface.
  • the guiding space group ⁇ has third openings (first inflow portions) 3 a in the region B on the surface (outer surface) of the base 2.
  • Inductive space group ⁇ (1) (inductive space group constituted by a plurality of second trench structures 4) constituting another specific group of the inductive spaces is plural in region A on the surface (outer surface) of base 2.
  • the second opening 6b is provided.
  • the guiding space group ⁇ (1) has a plurality of fourth openings (second inflow portions) 4a in the region C. Further, in the base body 2, a plurality of first micro holes 5 belonging to the guidance space group ⁇ and a plurality of second micro holes 6 belonging to ⁇ (1) are arranged apart from each other.
  • the plurality of first trench structures 3 and the plurality of first micro holes 5 provided in the single substrate 2 are formed by the substrate. It is formed as a three-dimensional guidance space group ⁇ in which the region A and the region B are communicated with each other on the surface (outer surface). Similar to the guide space group ⁇ , the plurality of second trench structures 4 and the plurality of second micro holes 6 are three-dimensional guide spaces in which the region A and the region C on the surface (outer surface) of the base 2 are communicated with each other. It is formed as a group ⁇ (1).
  • the plurality of third openings (first inflow portions) 3a of the plurality of first trench structures 3 are shown in FIG.
  • the plurality of fourth openings (second inflow portions) 4a in the plurality of second trench structures 4 also have the same shape and arrangement as the plurality of third openings 3a in the plurality of first trench structures 3. Have.
  • the fluid control device 1d (1) of the second embodiment different materials (fluids) flow from different inflow spaces.
  • the first material first fluid
  • the second material second fluid
  • the first material flowing out from the plurality of first micro holes 5 and the second material flowing out from the plurality of second micro holes 6 flow out from a common space, for example, the mixing space Sa.
  • the fluid control device according to the second embodiment as shown in FIG.
  • the guide space is formed in a substantially rectangular shape reflecting the trench structure, and most of the guide space is formed as a trench structure, so that the guide space is compared with the case where the guide space is formed as a fine hole. Can take in a large amount of fluid and flow a large amount of fluid.
  • a plurality of micro holes 5 and 6 connected to the plurality of trench structures 3 and 4 are formed in the portion immediately before being discharged into the mixed space Sa, so that the induction space is formed only by the trench structure.
  • the flow velocity distribution can be made uniform. Furthermore, the pressure loss in the induction space can be minimized, and the boundary surface of the two liquids to be mixed can be four. For this reason, in the fluid control device of the second embodiment, the mixing speed of the fluid can be increased. In addition, in the micromixer described in Patent Document 2, there are two boundary surfaces of the two liquids to be mixed.
  • the two inflow spaces Sb and Sc have different regions (first inflow) close to the lower surface of the base.
  • the region B is provided in the region B where the portion 3a is provided and the region C where the second inflow portion 4a is provided, and the point where the outflow space Sa is located near the top surface of the substrate (region A).
  • the fluid control device 1d (1) according to the second embodiment (type 2) is different from the first embodiment (type 1) described above in other points (6a) to (6c) as described below. It is the same.
  • the first trench structure 3 and the second trench structure 4 When viewed from the mixing portion Sa, the first trench structure 3 and the second trench structure 4 have a substantially rectangular shape, and the long side of the first trench structure 3 is the second trench. The first trench structure 3 and the second trench structure 4 are arranged in parallel so as to be separated from the long side of the structure 4 at a predetermined interval. (6b) A plurality of trench structures 3 and 4 are formed in a single substrate 2. As viewed from the mixed space Sa, the plurality of trench structures 3 and 4 have a substantially rectangular shape.
  • the substantially rectangular trench structure 3 is not clearly shown in the drawing, but when viewed from the mixed space Sa, the tip 3P of the first trench structure 3 (that is, the part farthest from the inflow space, the part forming the recess) ) May be linear (a concave portion having a bottom portion substantially parallel to the side surface of the substrate 2 when the substrate 2 is viewed from above), or may have a rounded shape (for example, an arc shape). .
  • the tip portion 4P of the second trench structure 4 also has the same shape as the tip portion 3P of the first trench structure 3. (6c)
  • the first trench structure 3 and the second trench structure 4 are formed so as to have an adjacent positional relationship in the plurality of guide spaces ⁇ , ⁇ (n) in the base 2. Further, the long side of the first trench structure 3 and the long side of the second trench structure 4 are arranged in parallel so as to be spaced apart and have a predetermined interval.
  • a plurality of first micro holes 5 and 6 connected to each of the plurality of trench structures 3 and 4 are formed.
  • the plurality of first openings 5b of the plurality of guide spaces ⁇ , ⁇ (n) are formed from the plurality of first micro holes 5.
  • the plurality of second openings 6 b of the plurality of guide spaces ⁇ and ⁇ (n) are formed from the plurality of micro holes 6.
  • the third openings (first inflow portions) 3a of the plurality of guide spaces ⁇ and ⁇ (n) are formed of a plurality of trenches. Each of the structures 3 is formed. Further, when viewed from the second inflow space Sc (region C located on the lower surface of the base 2), the fourth openings (second inflow portions) 4 a of the plurality of guide spaces are respectively provided in the plurality of trench structures 4. Is formed.
  • the first opening 5b of the minute hole 5 in the first trench structure 3 communicates with the first inflow space Sb in the region B near the lower surface of the base. Further, the second opening 6b of the fine hole 6 in the second trench structure 4 communicates with the second inflow space Sc in the region C located near the lower surface of the base.
  • the region B and the region C at positions close to the lower surface of the base body 2 communicate with two different inflow spaces Sb and Sc, respectively.
  • Opening portions (inflow portions) 3a and 4a are formed so as to form one (single) substantially rectangular shape for each trench structure [FIG. 9 (e)]. Therefore, the fluid control device according to the second embodiment (type 2) shown in FIG. 9 can cope with a large inflow amount as compared with the configuration [FIG. 15] communicating with the inflow space by the openings of the plurality of micro holes. . Furthermore, it is possible to reduce pressure loss.
  • inflow spaces Sb and Sc are arranged at different positions close to the lower surface of the substrate in a flat substrate.
  • the inflow space Sb communicates with the first inflow portion 3a provided in the region B
  • the inflow space Sc communicates with the second inflow portion 4a provided in the region C.
  • the mixing part (outflow space Sa) is disposed at a position close to the upper surface of the base body and communicates with the region A.
  • the fluid control device according to the second embodiment (type 2) is not limited to the configuration example of FIG.
  • one or both of the region B and the region C may be provided at a position close to the upper surface of the substrate as the region A. Absent.
  • the fluid control device according to the second embodiment type 2
  • the above-described high pressure resistance performance can be realized only by arranging the casing so as to sandwich the base from both the upper and lower surfaces of the base.
  • FIG. 10 is a schematic diagram showing a modified example (hereinafter also referred to as modified example 2A) of the fluid control device according to the present embodiment (second embodiment).
  • FIG. 10A is a perspective view schematically showing the fluid control device 1e (1).
  • FIG. 10B is a schematic cross-sectional view taken along the arrow X10-X10.
  • FIG. 10C is a schematic cross-sectional view taken along arrow Y10-Y10.
  • FIG. 10D is a plan view of the arrow Z10a.
  • FIG. 10E is a plan view of the arrow Z10b.
  • the fluid control device 1e (1) of Modification 2A is similar to the fluid control device 1d (1) according to the second embodiment described above, with a mixing unit (single mixing space) via a plurality of first openings 5b. ) In communication with the first inflow portion 3a, the first trench structure 3 that communicates with the first inflow portion 3a, and the plurality of second openings 6b, and the second inflow portion 4a that communicates with the mixing portion Sa.
  • a base body 2 having induction spaces ⁇ and ⁇ (n) including two trench structures 4 is provided.
  • the plurality of guidance spaces having the trench structure are arranged separately from each other.
  • the two inflow spaces Sb and Sc are provided in different regions close to the lower surface of the base body (the first inflow portion 3a is provided).
  • the point where the region B and the region C in which the second inflow portion 4a is provided, and the point where the mixing portion (outflow space) Sa is disposed near the upper surface of the substrate (region A) are also described above. This is the same as in the second embodiment (type 2).
  • a plurality of guide spaces having a trench structure are configured such that a portion ⁇ where each of the plurality of guide spaces communicates with two inflow spaces Sb and Sc is divided into a plurality of fine holes 3a and 4a. This is different from the fluid control device 1d (1) according to the second embodiment (type 2) described above [FIG. 10 (e)].
  • the fluid control device enters the fluid control device from the two inflow spaces Sb and Sc.
  • the fluid passes through the plurality of micro holes 3a and 4a and is then introduced into the trench structure. Therefore, according to the fluid control device of Modification 2A, high pressure resistance performance can be realized as in the second embodiment (type 2) described above.
  • the plurality of fine holes 3a and 4a the number of fine holes provided per unit area, the fine hole opening diameter, the fine hole opening shape, the fine hole inner wall surface shape, and the fine hole length (depth distance)
  • the plurality of fine holes 3a and 4a function as a filter, thereby eliminating the possibility of foreign matter entering the trench structure together with the fluid.
  • FIG. 11 is a schematic diagram illustrating another modification (hereinafter, also referred to as modification 2B) of the fluid control device 1 according to the present embodiment (second embodiment).
  • FIG. 11A is a perspective view schematically showing the fluid control device 1f (1).
  • FIG. 11B is a schematic cross-sectional view taken along the arrow X11-X11.
  • FIG. 11C is a schematic cross-sectional view taken along arrow Y11-Y11.
  • FIG. 11D is a plan view of the arrow Z11a.
  • FIG. 11E is a plan view of the arrow Z11b.
  • the fluid control device 1f (1) according to the modified example 2B is similar to the fluid control device 1d (1) according to the second embodiment described above, with a mixing unit (single mixing space) via the plurality of first openings 5b. ) In communication with the first inflow portion 3a, the first trench structure 3 that communicates with the first inflow portion 3a, and the plurality of second openings 6b, and the second inflow portion 4b. A base body 2 having induction spaces ⁇ and ⁇ (n) including two trench structures 4 is provided. Further, in the fluid control device 1f (1) of Modification 2B, in the base having a flat plate shape, the two inflow spaces Sb and Sc are arranged in different regions (region B and region C) at positions close to the lower surface of the base. The point and the outflow space Sa are also the same as in the second embodiment (type 2) described above in that the outflow space Sa is disposed at a position (region A) close to the upper surface of the base body.
  • a plurality of induction spaces having a trench structure are connected to the trench structures 3 and 4 as viewed from the mixed space Sa even though they belong to the same induction space group.
  • the guide spaces are spaced apart from each other.
  • all or a part of the other portions (second portions) 3a, 3b, 4a, 4b of the trench structures 3, 4 belong to the same induction space group. They differ from the second embodiment (type 2) described above in that one large trench structure is formed.
  • the fluid enters the fluid control device from the two inflow spaces Sb and Sc.
  • the fluid to flow can travel inside one large trench structure. Therefore, according to the fluid control device 1f (1) of the modified example 2B, high pressure resistance performance can be realized as in the fluid control device 1d (1) of the second embodiment (type 2) described above. Furthermore, it is possible to reduce the influence of pressure loss compared to the fluid control device 1d (1) of the second embodiment (type 2).
  • volume ratio of the “large one trench structure” of the “other parts (second parts) 3a, 3b, 4a, 4b” By appropriately adjusting the volume ratio of the “large one trench structure” of the “other parts (second parts) 3a, 3b, 4a, 4b”, various conditions of the fluid such as viscosity, flow rate, flow velocity, etc. It is also possible to design according to. For example, by changing the cross-sectional area or cross-sectional shape of the “large one trench structure” in the fluid traveling direction, the eddy current that is generated in the fluid and impedes the ease of fluid flow is eliminated, or It can also be reduced.
  • FIG. 12 is a schematic cross-sectional view showing another configuration example of the fluid mixer 10B (10), and the fluid control device of the second embodiment (type 2) disclosed in (6-1) above is a fluid mixer. It is a case where it mounts in.
  • the fluid mixer 10B (10) according to the second embodiment will be described with reference to the drawings.
  • the fluid mixer 10 ⁇ / b> B 10 has the fluid control device 1 and the fluid control device 1 inside, faces the region A of the fluid control device 1, and is inside the fluid control device 1.
  • a single outflow space (mixing space) Sa that communicates
  • a single inflow space Sb that faces the region B of the fluid control device 1 and communicates with the inside of the fluid control device 1, and a fluid control that faces the region C It is comprised from the housing
  • casing 20B (20) provided with the single inflow space Sc connected to the inside of the device 1.
  • a fluid mixer 10B (10) shown in FIG. 12 is provided with a seal member to be described later between the fluid control device 1 (outer surface) and the housing 20B (20) (inner surface). The outer surface and the inner surface of the housing 20B (20) are configured to contact each other via a seal member.
  • the housing 20B (20) includes an upper housing 20a that forms an outflow space (mixing space) Sa so as to face the surface (outer surface) of the region A of the base 2 constituting the fluid control device 1, and the region of the base 2
  • the lower housing 20b that forms the inflow spaces Sb and Sc so as to face the surfaces (outer surfaces) of B and C. Further, the respective surfaces (outer surfaces) of the regions A, B, and C of the fluid control device 1 are joined to the upper housing 20a and the lower housing 20b through a seal member R.
  • the outflow space Sa is formed as a space independent of the inflow spaces Sb and Sc.
  • the sealing member R By providing the sealing member R between the surface (outer surface) of the fluid control device 1 and the housing 20B (20), the adhesion between the fluid mixer 10B (10) and the housing 20B (20) is improved. Since it increases, the flexibility corresponding to the pressure, flow rate, and flow velocity of the fluid can be improved.
  • an elastic seal member such as an O-ring can be used as the seal member R.
  • the fluid control device 1 can be attached and detached by sandwiching and joining the fluid control device 1 between upper and lower housings 20a and 20b. It is. With the configuration in which the sealing member R is provided between the fluid mixer 10B (10) and the housing 20B (20), the fluid mixer 10B (10) can be appropriately used as a fluid control device depending on the type and nature of the fluid to be mixed. It is superior to the above-described fluid mixer 10A (10) in the function of selecting and the function of performing regular maintenance (repair and replacement). Therefore, it is possible to improve multi-function and long-term reliability.
  • FIG. 13 is a schematic diagram for explaining the configuration of a fluid mixer including a detachable fluid control device.
  • the fluid mixer 10 ⁇ / b> B (10) is configured such that the fluid control device 1 is joined by sandwiching the fluid control device 1 between upper and lower housings (upper housing 20 a and lower housing 20 b).
  • the control device 1 is detachable. Therefore, the fluid control device can be appropriately selected according to the type and nature of the fluid to be mixed.
  • FIG. 15 is a schematic diagram illustrating a configuration example of the fluid control device 101 according to Comparative Example 1.
  • FIG. 15A is a perspective view schematically showing the fluid control device 101.
  • FIG. 15B is a schematic cross-sectional view taken along arrow X101-X101.
  • FIG. 15C is a schematic cross-sectional view taken along arrow Y101-Y101.
  • FIG. 15D is a plan view of the arrow Z101.
  • the fluid control device 101 according to the comparative example 1 will be described with reference to the drawings.
  • the fluid control device according to Comparative Example 1 is described as follows: “In the base body 102, a plurality of micro holes 103 and 104 belonging to the respective flow path groups ⁇ and ⁇ (1) are arranged apart from each other. It is the difference between the fluid control device according to the first embodiment and the second embodiment and the comparative example.
  • the fluid control device 101 has a plurality of fine holes 103 and 104 formed in a single substrate 102.
  • the flow path group ⁇ constituting a specific group among the plurality of micropores 103 and 104 has a plurality of openings 103a and 103b in the region A and the region B on the surface (outer surface) of the base 2, respectively.
  • the flow path group ⁇ (1) constituting another specific group of the fine holes has a plurality of openings 104a and 104b in the region A and the region C on the surface (outer surface) of the base 2, respectively.
  • the micro holes 103 and 104 belonging to the respective flow path groups ⁇ and ⁇ (1) are arranged apart from each other.
  • the outflow space Sa is formed so as to face the surface (outer surface) of the region A of the base body 2 constituting the fluid control device 1.
  • Inflow spaces Sb and Sc are formed so as to face the surfaces (outer surfaces) of the regions B and C of the base 2.
  • Region A is disposed on the upper surface of the substrate 2.
  • the region B is disposed on the first side surface of the base body 102.
  • the region C is disposed on a side surface (second side surface) different from the region B of the base body 102.
  • the region A is disposed on the upper surface of the base body 102.
  • the region B is disposed on a part of the lower surface of the base. Further, the region C is arranged at a location different from the region B on the lower surface of the base.
  • the above configuration (not shown) can be mentioned.
  • the other points are the same as the configuration example (Comparative Example 1) shown in FIG.
  • the plurality of micro holes 103 provided in the single base 102 are formed by a region A and a region B on the surface (outer surface) of the base 102. Are formed as a three-dimensional flow path group ⁇ .
  • the plurality of fine holes 104 are formed as a three-dimensional flow path group ⁇ (1) in which the region A and the region C on the surface (outer surface) of the base 102 are communicated.
  • the openings 103b and 104b of the channel group ⁇ and the channel group ⁇ (1) facing the region A are arranged in a two-dimensional direction on the surface facing the region A as shown in FIG. Has been. Further, the openings are alternately formed so as to be the most adjacent positions.
  • the symbol S is “space”, which means the distance between the outer peripheral ends of the adjacent opening 3b and the opening 4b.
  • the symbol L is “pitch”, which is the distance between the center (black circle) of the adjacent opening 3b and the center (black circle) of the opening 4b.
  • E Pressure resistance means the total performance of the strength of the flow path with respect to the fluid pressure and the strength of the seal between the base and the casing.
  • the processing capacity means the total performance of the amount of the mixed liquid produced per unit time and the seal strength between the substrate and the casing.
  • T1 The processing capability of the fluid control device is high.
  • T2 The processing capability of the fluid control device is high.
  • the fluid control device has a plurality of openings in a staggered pattern, the fluid mixing speed can be improved.
  • the fluid control device has a plurality of openings in a staggered pattern, the fluid flow velocity distribution can be made uniform.
  • the boundary surface of the two liquids to be mixed can be four.
  • T3 The processing capability of the fluid control device can be secured while increasing the pressure resistance of the fluid control device.
  • T4 A fluid control device with the best balance of performance can be obtained.
  • the E4 fluid mixer has a configuration in which a housing is disposed so as to sandwich the substrate from both the upper and lower surfaces of the substrate. Further, the E4 fluid control device and the fluid mixer can improve the throughput because the substrate can cope with a large inflow amount. In addition, according to the fluid control device and the fluid mixer of E4, the pressure loss of the substrate can be reduced.
  • T5 The fluid control device and fluid mixer of E5 have the functions and characteristics of the fluid control device and fluid mixer of E4, and the filter function can be added to the fluid control device and fluid mixer, so it has excellent long-term stability. .
  • T6 Compared to E1-E5 fluid control devices and fluid mixers, E6 fluid mixers have the highest throughput.
  • the combination of the micropores and the trench structure is the minimum part (mixing space Sa) of the induction space.
  • (E6) is effective in that it is limited only to a portion located at a position close to (E6). Since the E6 fluid mixer has the highest processing capacity compared to the E1 to E5 fluid mixers, the pressure resistance of the fluid control device needs to be devised. Therefore, the first embodiment and the second embodiment contribute to the provision of a fluid control device and a fluid mixer that enable extremely efficient fluid mixing and have high processing capability and high pressure resistance.
  • FIG. 14 is a schematic diagram showing a configuration example of the ⁇ TAS chip 100 according to the third embodiment on which the fluid control device 1 (1a and 1b) as described above is mounted.
  • FIG. 14A is a plan view of the ⁇ TAS chip 100.
  • FIG. 14B is an enlarged plan view of the fluid control device portion.
  • FIG. 14C is an enlarged cross-sectional view of the fluid control device portion.
  • the ⁇ TAS chip 100 shown in FIG. 14 includes at least a base body 110 that functions as a ⁇ TAS chip body and a fluid control device 1 (1a, 1b) provided so as to be integrated with the base body 110.
  • the ⁇ TAS chip 100 further includes a reactor 120, a separator 130, and a detector 140 downstream of the fluid control device 1 (1a, 1b).
  • this is a configuration example of the ⁇ TAS chip, and the present invention is not limited thereto. Is not to be done.
  • the reactor 120, the separator 130, and the detector 140 may be configured separately from the ⁇ TAS chip 100.
  • the fluid to be analyzed (liquid or gas) and the selected carrier pass from the inflow spaces Sb and Sc through the respective filter function units F, and then flow into the induction space of the fluid control device 1 and the outflow space (mixing space). ) Mixed with Sa. Thereafter, the sample reacted in the reactor 120 is separated from the carrier by the separator 130 as necessary, and desired analysis information is taken out by the detector 140 to an external device or the like.
  • ⁇ TAS in addition to a device in which a fluid mixing unit, a reactor, a separator, and the like are integrated on one substrate as in the third embodiment, individual components such as a fluid mixer, a reactor, and a separator are assembled. You can also get a systemized device.
  • Fluid control device 2 substrate, 3rd first trench structure, 4th trench structure, 5th, 6th micropore, 100 ⁇ TAS chip, Sa outflow space (mixed Space), Sb, Sc inflow space, ⁇ , ⁇ (n) induction space group.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Accessories For Mixers (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Micromachines (AREA)

Abstract

This fluid control device is provided with a base body (2) which has a guide space (α, β(n)) provided with first trench structures (3) which communicate with a mixing area (Sa) through multiple first openings (5b) and communicate with a first inflow unit (3a), and with second trench structures (4) which communicate with the aforementioned mixing area (Sa) through multiple second openings (6b) and communicate with a second inflow unit (4a). Seen from the mixing area (Sa), the first trench structures (3) and the second trench structures (4) are substantially rectangular in shape, and the first trench structures (3) and the second trench structures (4) are arranged in parallel such that the long side of the first trench structures (3) is separated by a prescribed interval from the long side of the second trench structures (4).

Description

流体制御デバイス、及び流体混合器Fluid control device and fluid mixer
 本発明は、微小な空間において流体を混ぜる流体制御デバイス、及び流体混合器に関する。
 本願は、2013年6月14日に出願された特願2013-126120号に基づき優先権を主張し、その内容をここに援用する。
 上述の流体制御デバイス、及び流体混合器は、たとえば、マイクロミキサおよびμTAS(「Micro-TAS」とも呼ぶ:Micro Total Analysis Systems)に好適に用いられる。
 μTASは、MEMS技術を用いて、チップ上に微小な流路、反応室、および混合室を設け、一つのチップもしくはデバイスで血液やDNAをはじめ様々な液体および気体を分析する生化学分析デバイスを意味する。
The present invention relates to a fluid control device that mixes fluid in a minute space, and a fluid mixer.
This application claims priority based on Japanese Patent Application No. 2013-126120 for which it applied on June 14, 2013, and uses the content here.
The fluid control device and the fluid mixer described above are preferably used for, for example, a micromixer and μTAS (also referred to as “Micro-TAS”: Micro Total Analysis Systems).
μTAS is a biochemical analysis device that uses MEMS technology to provide minute flow paths, reaction chambers, and mixing chambers on a chip, and analyzes various liquids and gases including blood and DNA with a single chip or device. means.
 混合、反応、抽出、分離、加熱、冷却などの化学プロセスを微細な流路および微小な空間において行うマイクロ化学プロセスが提案され、微小空間での高効率な混合が可能なマイクロミキサの研究がなされている。 Microchemical processes that perform chemical processes such as mixing, reaction, extraction, separation, heating, and cooling in minute channels and in minute spaces have been proposed, and research on micromixers that enable highly efficient mixing in minute spaces has been conducted. ing.
 マイクロミキサは、数百μm以下の微小な空間で試料の混合を行うデバイスであり、混合される基質間の距離を短くできるため、混合効率を大きく向上させることができる。一例として、界面活性剤を用いることなく、エマルジョンを生成することができるマイクロ乳化器及び乳化方法が知られている(特許文献1)。
 また、複数の流入口から流入した液体を、精密加工で溝を刻んだプレートの組合せにより形成された三次元的な流路で、分割および混合を繰り返して混合液を形成するマイクロミキサが知られている(非特許文献1)。
A micromixer is a device that mixes samples in a minute space of several hundred μm or less, and the distance between substrates to be mixed can be shortened, so that the mixing efficiency can be greatly improved. As an example, a microemulsifier and an emulsification method capable of generating an emulsion without using a surfactant are known (Patent Document 1).
Also known is a micromixer that forms a liquid mixture by repeatedly dividing and mixing liquid flowing in from a plurality of inlets in a three-dimensional channel formed by a combination of plates with grooves cut by precision processing. (Non-Patent Document 1).
 また、インスティトゥートフュアミクロテヒニクマインツGmbH(Institut fuer Mikrotechnik Mainz GmbH)のマイクロミキサが知られている(特許文献2)。このマイクロミキサは、二つの流路群が混合する混合部では流路がそれぞれ互い違いに配置されており、マイクロミキサの上部にスリットを設け、スリットから流体が出てくることで、2液を混合する。
 また、各々独立した複数の流路を持つ流路群を備え、混合部では流路群が千鳥格子状に配置する構造を有するマイクロミキサが提案されている。
 しかしながら、これらのマイクロミキサでは、流れを多数に分割するために、精密加工技術を用いて複雑なマルチ流路を形成する必要があり、製造コストが増加するという問題があった。
Further, a micro mixer of Institut fuer Mikrotechnik Mainz GmbH is known (Patent Document 2). In this micromixer, the flow paths are alternately arranged in the mixing section where two flow path groups are mixed, and a slit is provided in the upper part of the micromixer, and fluid flows out of the slit to mix the two liquids. To do.
Further, a micromixer has been proposed that includes a flow path group having a plurality of independent flow paths, and has a structure in which the flow path groups are arranged in a staggered pattern in the mixing unit.
However, in these micromixers, in order to divide the flow into a large number, it is necessary to form a complicated multi-channel using a precision processing technique, and there is a problem that the manufacturing cost increases.
 また、マルチ流路を用いた場合であっても、平面的に形成された微小流路では、流体は依然として層流であり、流体の撹拌および混合は、流体の拡散によって行われる。そのため、混合効率に関して改良の余地があった。そのために、マルチ流路が形成されたプレートを積層することにより、三次元的な流路を形成したマイクロミキサを作成した場合、装置構成が複雑となり、積層されたプレートの接合界面で液漏れし、耐圧も高くすることができないという問題があった。
 更に、流体に由来する物質により生成された固形物が、積層されたプレートの接合界面の流路の交差部分などに徐々に堆積して流路を部分的に閉塞し、このため、液体の混合効率が大きく低下する虞もあった。
Even in the case of using a multi-channel, the fluid is still laminar in the microchannel formed in a plane, and the fluid is agitated and mixed by diffusion of the fluid. Therefore, there is room for improvement with respect to mixing efficiency. Therefore, when a micromixer with a three-dimensional flow path is created by stacking plates with multi-flow paths, the device configuration becomes complicated, and liquid leaks at the junction interface of the stacked plates. There was a problem that the breakdown voltage could not be increased.
Furthermore, the solid matter generated by the substance derived from the fluid gradually accumulates at the intersections of the flow paths at the junction interface of the stacked plates and partially closes the flow paths. There was also a risk that efficiency would be greatly reduced.
 また、特許文献2に記載されているマイクロミキサでは、混合される2液の境界面が、2面であるため、流体の混合性能を極限まで高めることができない。 Further, in the micromixer described in Patent Document 2, since the boundary surface of the two liquids to be mixed is two, the fluid mixing performance cannot be enhanced to the limit.
日本国特開2004-81924号公報Japanese Unexamined Patent Publication No. 2004-81924 日本国特表2003-500202号公報Japanese National Table 2003-500202
 本発明は、前述した事実に鑑みてなされたものであって、極めて効率的に流体を混ぜることができ、処理能力が高く、高耐圧を有する流体制御デバイス、及び流体混合器を提供することを目的とする。 The present invention has been made in view of the above-described facts, and provides a fluid control device and a fluid mixer that can mix fluid extremely efficiently, have high processing capacity, and have a high pressure resistance. Objective.
 本発明の第一態様に係る流体制御デバイスは、複数の第1開口部を介して混合部に連通するとともに第1の流入部に連通する第1のトレンチ構造および複数の第2開口部を介して前記混合部に連通するとともに第2の流入部に連通する第2のトレンチ構造を備える誘導空間を有する基体を備え、前記混合部から見て、前記第1のトレンチ構造および前記第2のトレンチ構造は略長方形状を有し、前記第1のトレンチ構造の長辺が前記第2のトレンチ構造の長辺から所定の間隔で離間するように、前記第1のトレンチ構造および前記第2のトレンチ構造が並列に配置されている。 The fluid control device according to the first aspect of the present invention communicates with the mixing portion through the plurality of first openings and through the first trench structure and the plurality of second openings that communicate with the first inflow portion. And a base having an induction space having a second trench structure communicating with the mixing portion and communicating with the second inflow portion, and when viewed from the mixing portion, the first trench structure and the second trench The structure has a substantially rectangular shape, and the first trench structure and the second trench are arranged such that a long side of the first trench structure is separated from a long side of the second trench structure at a predetermined interval. The structures are arranged in parallel.
 前記流体制御デバイスにおいては、前記複数の第1開口部及び前記複数の第2開口部は、前記混合部が設けられている前記基体上の面において二次元方向に配置されていてもよい。 In the fluid control device, the plurality of first openings and the plurality of second openings may be arranged in a two-dimensional direction on a surface on the base on which the mixing unit is provided.
 前記流体制御デバイスにおいては、互いに隣接する前記複数の第1開口部の距離、及び、互いに隣接する前記複数の第2開口部の距離よりも、互いに隣接する第1開口部と第2開口部との距離が小さくなるように配置されていてもよい。 In the fluid control device, the first opening and the second opening adjacent to each other than the distance between the plurality of first openings adjacent to each other and the distance between the plurality of second openings adjacent to each other. It may be arranged so that the distance of is small.
 前記流体制御デバイスにおいては、前記第1のトレンチ構造は、前記第1のトレンチ構造の長辺方向に沿って配置された第1の隔壁によって分割されており、
 前記第2のトレンチ構造は、前記第2のトレンチ構造の長辺方向に沿って配置された第2の隔壁によって分割されていてもよい。
In the fluid control device, the first trench structure is divided by a first partition wall arranged along a long side direction of the first trench structure,
The second trench structure may be divided by a second partition wall arranged along the long side direction of the second trench structure.
 本発明の第二態様に係る流体混合器は、上記第一態様に記載の流体制御デバイスと、前記複数の第1開口部と前記複数の第2開口部に連通する単一の流出空間、前記第1の流入部に連通する第1流入空間、および前記第2の流入部に連通する第2流入空間を有する筐体と、を備える。 A fluid mixer according to a second aspect of the present invention includes a fluid control device according to the first aspect, a single outflow space communicating with the plurality of first openings and the plurality of second openings, A housing having a first inflow space communicating with the first inflow portion and a second inflow space communicating with the second inflow portion.
 本発明によれば、極めて効率的な混合を可能にすると共に、処理能力が高く、高耐圧を有する流体制御デバイス、及び流体混合器を提供することができる。 According to the present invention, it is possible to provide a fluid control device and a fluid mixer that enable extremely efficient mixing, have high processing capability, and have high pressure resistance.
第1実施形態(タイプ1)に係る流体制御デバイスの一例を示す模式図である。It is a schematic diagram which shows an example of the fluid control device which concerns on 1st Embodiment (type 1). 第1実施形態の変形例1Aに係る流体制御デバイスを示す模式図である。It is a mimetic diagram showing a fluid control device concerning modification 1A of a 1st embodiment. 第1実施形態の変形例1Bに係る流体制御デバイスを示す模式図である。It is a mimetic diagram showing a fluid control device concerning modification 1B of a 1st embodiment. 第1実施形態の流体制御デバイスを備えた流体混合器の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the fluid mixer provided with the fluid control device of 1st Embodiment. 流体制御デバイスにおける流出空間に対する流路の開口部配置を示す平面図である。It is a top view which shows arrangement | positioning of the opening part of the flow path with respect to the outflow space in a fluid control device. 流体制御デバイスにおける微細孔の形状を示す断面模式図である。It is a cross-sectional schematic diagram which shows the shape of the micropore in a fluid control device. 温度制御装置を備えた流体制御デバイスを模式的に示した斜視図である。It is the perspective view which showed typically the fluid control device provided with the temperature control apparatus. 第1実施形態の流体制御デバイスを備えた流体混合器の他の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows another example of the fluid mixer provided with the fluid control device of 1st Embodiment. 第2実施形態(タイプ2)に係る流体制御デバイスの一例を示す模式図である。It is a schematic diagram which shows an example of the fluid control device which concerns on 2nd Embodiment (type 2). 第2実施形態の変形例2Aに係る流体制御デバイスを示す模式図である。It is a mimetic diagram showing a fluid control device concerning modification 2A of a 2nd embodiment. 第2実施形態の変形例2Bに係る流体制御デバイスを示す模式図である。It is a mimetic diagram showing a fluid control device concerning modification 2B of a 2nd embodiment. 第2実施形態の流体制御デバイスを備えた流体混合器の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the fluid mixer provided with the fluid control device of 2nd Embodiment. 着脱可能な流体制御デバイスを備えた流体混合器の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of the fluid mixer provided with the fluid control device which can be attached or detached. 流体制御デバイスを搭載したμTASチップの一構成例を示す模式図である。It is a schematic diagram which shows one structural example of (mu) TAS chip | tip carrying a fluid control device. 比較例に係る流体制御デバイスの一構成例を示す模式図である。It is a schematic diagram which shows one structural example of the fluid control device which concerns on a comparative example.
 次に図面を参照しながら、以下に実施形態及び具体例を挙げ、本発明を更に詳細に説明するが、本発明はこれらの実施形態及び実施例に限定されるものではない。
 また、以下の図面を使用した説明において、図面は模式的なものであり、各々の部材の長さの比率等は現実のものとは異なることに留意すべきであり、理解の容易のために説明に必要な部材以外の図示は適宜省略されている。
Next, the present invention will be described in more detail with reference to the drawings with reference to embodiments and specific examples. However, the present invention is not limited to these embodiments and examples.
In the following description using the drawings, it should be noted that the drawings are schematic, and the ratio of the length of each member is different from the actual one, for ease of understanding. Illustrations other than those necessary for the explanation are omitted as appropriate.
(1)流体制御デバイスの構成(タイプ1)
(1-1)第1実施形態(No.E1)
 図1は、本実施形態に係る流体制御デバイス1a(1)の一構成例を示す模式図である。図1(a)は、流体制御デバイス1を模式的に示した斜視図である。図1(b)は、矢視X1-X1の断面模式図である。図1(c)は、矢視Y1-Y1の断面模式図である。図1(d)は、矢視Z1の平面図(Z1の方向から流体制御デバイス1aを観察した場合の平面図)である。
 以下、本発明の第1実施形態を、図面を参照しながら説明する。
(1) Configuration of fluid control device (Type 1)
(1-1) First Embodiment (No. E1)
FIG. 1 is a schematic diagram illustrating a configuration example of a fluid control device 1a (1) according to the present embodiment. FIG. 1A is a perspective view schematically showing the fluid control device 1. FIG. 1B is a schematic cross-sectional view taken along arrow X1-X1. FIG. 1C is a schematic cross-sectional view taken along arrow Y1-Y1. FIG.1 (d) is a top view of arrow Z1 (plan view at the time of observing the fluid control device 1a from the direction of Z1).
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
 本実施形態に係る流体制御デバイス1a(1)は、複数の第1開口部5bを介して混合部(単一の混合空間)Saに連通するとともに第1の流入部3aに連通する第1のトレンチ構造3および複数の第2開口部6bを介して混合部Saに連通するとともに第2の流入部4aに連通する第2のトレンチ構造4を備える誘導空間α、β(n)を有する基体を備える。
 本実施形態に係る流体制御デバイス1a(1)においては、混合部Saから見て、第1のトレンチ構造3および第2のトレンチ構造4は略長方形状を有し、前記第1のトレンチ構造3の長辺が前記第2のトレンチ構造4の長辺から所定の間隔で離間するように、前記第1のトレンチ構造3および前記第2のトレンチ構造4が並列に配置されている。
The fluid control device 1a (1) according to the present embodiment communicates with the mixing unit (single mixing space) Sa through the plurality of first openings 5b and communicates with the first inflow unit 3a. A base body having guide spaces α and β (n) including the second trench structure 4 communicating with the second inflow portion 4a while communicating with the mixing portion Sa via the trench structure 3 and the plurality of second openings 6b. Prepare.
In the fluid control device 1a (1) according to the present embodiment, the first trench structure 3 and the second trench structure 4 have a substantially rectangular shape when viewed from the mixing portion Sa, and the first trench structure 3 The first trench structure 3 and the second trench structure 4 are arranged in parallel so that their long sides are separated from the long side of the second trench structure 4 at a predetermined interval.
 図1に示すように、流体制御デバイス1a(1)は、複数の第1開口部5bを介して混合部(単一の混合空間)Saに連通するとともに第1の流入部3aに連通する第1のトレンチ構造3および複数の第2開口部6bを介して前記混合部Saに連通するとともに第2の流入部4aに連通する第2のトレンチ構造4を備える誘導空間α、β(n)を有する基体を備える。
 なお、本実施形態における単一の混合空間(混合部)とは、流体制御デバイス1a(1)の複数の開口部5b、6bが接する面であり領域A上の空間(流出空間Sa)を示している。
 トレンチ構造は、図1の符号3および4に示すような略長方形状を有するとともに、深さを有する溝である。基体2の内部には、トレンチ構造3および4のような略長方形状を有するとともに、深さを有する溝が形成されている。
 特に、図1に示した第1実施形態に係る流体制御デバイス1a(1)は、平板状の基体2において、2つの流入空間Sb(図4参照、第1の流入空間)およびSc(図4参照、第2の流入空間)が基体2において対向する2つの側面(第1の流入部3aおよび第2の流入部4aが設けられた面)に近い位置(領域B、および領域C)に配置された場合を示している。また、本実施形態に係る流体制御デバイス1a(1)は、平板状の基体2において、流出空間(混合空間)Saが基体2の上面に近い位置(A)に配置された場合を示している。
 単一の基体2内に、複数のトレンチ構造3、4が形成されている。混合空間Saから見て、トレンチ構造3、4は、略長方形状を有する。略長方形状のトレンチ構造3について、図1(c)の部分拡大図に示すように、混合空間Saから見て、第1のトレンチ構造3の先端部3P(すなわち、流入空間Sbから最も遠い部位、凹部を形成している部位)が、直線状(基体を上面視した際に、基体の側面に略平行な底部を有する凹部)であってもよく、丸みを帯びた形状(たとえば円弧状)であってもよい。第2のトレンチ構造4の先端部4Pも第1のトレンチ構造3の先端部3Pと同様の形状を有する。
 また、基体2内の複数の誘導空間において、第1のトレンチ構造3と第2のトレンチ構造4とが互いに隣接している。また、第1のトレンチ構造3の長辺と、第2のトレンチ構造4の長辺とは、離間して所定の間隔を有するように並列に配されている。
As shown in FIG. 1, the fluid control device 1 a (1) communicates with the mixing unit (single mixing space) Sa through the plurality of first openings 5 b and communicates with the first inflow unit 3 a. Inductive spaces α and β (n) each having a second trench structure 4 that communicates with the mixing portion Sa and communicates with the second inflow portion 4a through one trench structure 3 and a plurality of second openings 6b. Having a substrate.
In addition, the single mixing space (mixing part) in this embodiment is a surface where several opening part 5b, 6b of fluid control device 1a (1) touches, and shows the space on area | region A (outflow space Sa). ing.
The trench structure is a groove having a substantially rectangular shape as shown by reference numerals 3 and 4 in FIG. 1 and having a depth. Inside the base body 2, a groove having a substantially rectangular shape like the trench structures 3 and 4 and having a depth is formed.
In particular, the fluid control device 1a (1) according to the first embodiment shown in FIG. 1 includes two inflow spaces Sb (see FIG. 4, first inflow space) and Sc (see FIG. 4) in the flat substrate 2. The reference (second inflow space) is disposed at a position (region B and region C) close to two side surfaces (surface on which the first inflow portion 3a and the second inflow portion 4a are provided) facing each other in the base 2 Shows the case. In addition, the fluid control device 1 a (1) according to the present embodiment shows a case where the outflow space (mixing space) Sa is arranged at a position (A) close to the upper surface of the base 2 in the flat base 2. .
A plurality of trench structures 3 and 4 are formed in a single substrate 2. When viewed from the mixed space Sa, the trench structures 3 and 4 have a substantially rectangular shape. As shown in the partially enlarged view of the substantially rectangular trench structure 3, when viewed from the mixed space Sa, the distal end portion 3 </ b> P of the first trench structure 3 (that is, the portion farthest from the inflow space Sb) The portion where the concave portion is formed may be linear (a concave portion having a bottom portion substantially parallel to the side surface of the base when the base is viewed from above), or a rounded shape (for example, an arc shape). It may be. The tip portion 4P of the second trench structure 4 also has the same shape as the tip portion 3P of the first trench structure 3.
Further, the first trench structure 3 and the second trench structure 4 are adjacent to each other in the plurality of induction spaces in the base 2. Further, the long side of the first trench structure 3 and the long side of the second trench structure 4 are arranged in parallel so as to be spaced apart and have a predetermined interval.
 基体2には、複数のトレンチ構造3、4のそれぞれに接続するように複数の微細孔5、6が形成されている。
 混合空間Saから見て、複数の誘導空間の第1開口部5bは、複数の第1の微細孔5から形成される。また、混合空間Saから見て、複数の誘導空間の第2開口部6bは、複数の第2の微細孔6から形成される。
 第1の流入空間Sb(基体2の側面に位置する領域B)から見て、複数の誘導空間の第3の開口部は、複数の第1のトレンチ構造3のそれぞれに設けられている。また、第2の流入空間Sc(基体2の側面に位置する領域C)から見て、複数の誘導空間の第4の開口部(第2の流入部)4aは、複数の第2のトレンチ構造4のそれぞれに設けられている。
 複数の第1のトレンチ構造3における複数の第1の微細孔5の複数の第1開口部5bは、第1の流入空間Sb(図1(a)における領域Bに形成された空間)へ連通している。また、複数の第2のトレンチ構造4における複数の第2の微細孔6の複数の第2開口部6bは、第2の流入空間Sc(図1(a)における領域Cに形成された流入空間)へ連通している。第1のトレンチ構造3と第2のトレンチ構造4とは、各々、異なる流入空間へ連通している。
A plurality of fine holes 5 and 6 are formed in the base 2 so as to be connected to each of the plurality of trench structures 3 and 4.
When viewed from the mixing space Sa, the first openings 5 b of the plurality of guide spaces are formed from the plurality of first micro holes 5. Further, as viewed from the mixing space Sa, the second openings 6 b of the plurality of guide spaces are formed from the plurality of second micro holes 6.
When viewed from the first inflow space Sb (region B located on the side surface of the base body 2), the third openings of the plurality of guide spaces are provided in the plurality of first trench structures 3, respectively. In addition, when viewed from the second inflow space Sc (region C located on the side surface of the base 2), the fourth openings (second inflow portions) 4a of the plurality of guide spaces have a plurality of second trench structures. 4 is provided.
The plurality of first openings 5b of the plurality of first micro holes 5 in the plurality of first trench structures 3 communicate with the first inflow space Sb (the space formed in the region B in FIG. 1A). is doing. Further, the plurality of second openings 6b of the plurality of second micro holes 6 in the plurality of second trench structures 4 are formed as second inflow spaces Sc (inflow spaces formed in the region C in FIG. 1A). ). The first trench structure 3 and the second trench structure 4 each communicate with different inflow spaces.
 これら複数の誘導空間のうち特定の一群を構成する誘導空間群α(複数の第1のトレンチ構造3により形成された誘導空間群)は、基体2の表面(外面)における領域A(基体2の上面)に複数の第1開口部5bを有する。また、誘導空間群αは、基体2の表面(外面)における領域B(基体2の第1の側面)に複数の第3の開口部(第1の流入部)3aを有する。
 誘導空間のうち他の特定の一群を構成する誘導空間群β(1)(複数の第2のトレンチ構造4により形成された誘導空間群)は、基体2の表面(外面)における領域Aに複数の第2開口部6bを有している。また、誘導空間群β(1)は、領域C(基体2の第2の側面)に複数の第4の開口部(第2の流入部)4aを有している。
 また、基体2内において、誘導空間群αに属する複数の第1の微細孔5と、β(1)に属する複数の第2の微細孔6とは、互いに離間して配されている。
A guide space group α (a guide space group formed by the plurality of first trench structures 3) constituting a specific group among the plurality of guide spaces is a region A (surface of the base body 2) on the surface (outer surface) of the base body 2. A plurality of first openings 5b are provided on the upper surface. The guide space group α includes a plurality of third openings (first inflow portions) 3a in a region B (first side surface of the base 2) on the surface (outer surface) of the base 2.
The induction space group β (1) (induction space group formed by the plurality of second trench structures 4) constituting another specific group of the induction spaces is plural in the region A on the surface (outer surface) of the base 2. The second opening 6b is provided. The guide space group β (1) has a plurality of fourth openings (second inflow portions) 4a in the region C (second side surface of the base 2).
Further, in the base 2, the plurality of first micro holes 5 belonging to the guidance space group α and the plurality of second micro holes 6 belonging to β (1) are arranged apart from each other.
 図1(b)および図1(c)の断面模式図に示すように、単一の基体2内に設けられた複数の第1のトレンチ構造3及び複数の第1の微細孔5は、基体2の表面(外面)における領域Aと領域Bとを連通した3次元的な誘導空間群αとして形成されている。誘導空間群αと同様に、複数の第2のトレンチ構造4及び複数の第2の微細孔6は、基体2の表面(外面)における領域Aと領域Cとを連通した三次元的な誘導空間群β(1)として形成されている。 As shown in the schematic cross-sectional views of FIG. 1B and FIG. 1C, the plurality of first trench structures 3 and the plurality of first micro holes 5 provided in the single substrate 2 are formed by the substrate. It is formed as a three-dimensional guidance space group α in which the region A and the region B are communicated with each other on the surface (outer surface). Similar to the guide space group α, the plurality of second trench structures 4 and the plurality of second micro holes 6 are three-dimensional guide spaces in which the region A and the region C on the surface (outer surface) of the base 2 are communicated with each other. It is formed as a group β (1).
 領域Aに面した誘導空間群αの複数の第1の微細孔5における複数の第1開口部5b及び誘導空間群β(1)の複数の第2の微細孔6の複数の第2開口部6bは、図1(d)に示すように、領域Aに面する面において、二次元方向に配列されている。また、開口部同士(第1開口部5bと第2開口部6b)が、互い違いに、最も隣接した位置を有するように形成されている。
 本実施形態の流体制御デバイス1では、異なる材料(流体)が、それぞれ異なる流入空間から流入する。例えば、第1の材料(第1の流体)が流入空間Sbから流入し、誘導空間である複数の第1のトレンチ構造3及び複数の第1の微細孔5を通る。また、第2の材料(第2の流体)が流入空間Scから流入し、誘導空間である複数の第2のトレンチ構造4及び複数の第2の微細孔6を通る。そして、複数の第1の微細孔5から流出した第1の材料と、複数の第2の微細孔6から流出した第2の材料とが、共通する空間、例えば混合空間Saから流出する。
 本実施形態の流体制御デバイス1では、複数のトレンチ構造3、4に接続して配される複数の微細孔5、6を基体に形成することで、基体に形成する誘導空間をトレンチ構造のみで形成した場合よりも流速分布を均一にすることができる。さらに、第1実施形態の流体制御デバイス1では、複数の微細孔5、6を基体に形成することで、誘導空間内の圧力損失を最小限に抑え、混合される2液の境界面を4面とすることができる。このため、第1実施形態の流体制御デバイス1では、2つの流体の混合速度を速めることができる。
 なお、特許文献2に記載されているマイクロミキサでは、混合される2液の境界面は2面である。
The plurality of first openings 5b in the plurality of first micro holes 5 of the guide space group α facing the region A and the plurality of second openings of the plurality of second micro holes 6 in the guide space group β (1). 6b are arranged in a two-dimensional direction on the surface facing the region A as shown in FIG. Further, the openings (the first opening 5b and the second opening 6b) are alternately formed so as to have the most adjacent positions.
In the fluid control device 1 of the present embodiment, different materials (fluids) flow from different inflow spaces. For example, the first material (first fluid) flows in from the inflow space Sb and passes through the plurality of first trench structures 3 and the plurality of first micro holes 5 which are induction spaces. Further, the second material (second fluid) flows in from the inflow space Sc and passes through the plurality of second trench structures 4 and the plurality of second micro holes 6 which are induction spaces. Then, the first material flowing out from the plurality of first micro holes 5 and the second material flowing out from the plurality of second micro holes 6 flow out from a common space, for example, the mixing space Sa.
In the fluid control device 1 of the present embodiment, a plurality of micro holes 5 and 6 arranged in connection with the plurality of trench structures 3 and 4 are formed in the base body, so that the induction space formed in the base body is formed only by the trench structure. The flow velocity distribution can be made more uniform than when formed. Furthermore, in the fluid control device 1 according to the first embodiment, by forming the plurality of fine holes 5 and 6 in the base body, the pressure loss in the induction space is minimized, and the boundary surface between the two liquids to be mixed is changed to 4. It can be a surface. For this reason, in the fluid control device 1 of the first embodiment, the mixing speed of the two fluids can be increased.
In addition, in the micromixer described in Patent Document 2, there are two boundary surfaces of the two liquids to be mixed.
(1-2)変形例1A(No.E2)
 図2は、本実施形態(第1実施形態)に係る流体制御デバイス1の一変形例(以下、変形例1Aとも呼ぶ)を示す模式図であり、矢視Z2の平面図である。なお、矢視Z2は、図1における矢視Z1と同様に、基体を上面から観察した際の平面図である。
 図1に示したトレンチ構造及び微細孔の三次元的なレイアウトを適宜変更することによって、誘導空間群αおよび誘導空間群β(1)の微細孔の、領域Aに面する開口部を、図2に示した流体制御デバイス1b(1)のように、千鳥格子状を有するように基体に配置することもできる(図2)。
 複数のトレンチ構造3、4に接続して配される複数の微細孔5、6の複数の開口部5b、6bを千鳥格子状に配することで、流速分布を均一に調整することができる。さらに、混合される2液の境界面を4面とすることができる。このため、本実施形態では、流体の混合速度を速めることができる。
(1-2) Modification 1A (No. E2)
FIG. 2 is a schematic view showing a modified example (hereinafter also referred to as modified example 1A) of the fluid control device 1 according to the present embodiment (first embodiment), and is a plan view taken along the arrow Z2. In addition, arrow Z2 is a top view at the time of observing a base | substrate from the upper surface similarly to arrow Z1 in FIG.
By appropriately changing the three-dimensional layout of the trench structure and the microscopic holes shown in FIG. 1, the openings facing the region A of the microscopic holes of the guiding space group α and the guiding space group β (1) are shown in FIG. Like the fluid control device 1b (1) shown in FIG. 2, it can also be arranged on the substrate so as to have a staggered pattern (FIG. 2).
By arranging the plurality of openings 5b and 6b of the plurality of fine holes 5 and 6 connected to the plurality of trench structures 3 and 4 in a staggered pattern, the flow velocity distribution can be adjusted uniformly. . Furthermore, the boundary surface of the two liquids to be mixed can be four. For this reason, in this embodiment, the mixing speed of the fluid can be increased.
 複数のトレンチ構造3、4の幅及び辺の長さは、領域Aにおいては、例えば、マイクロ・メーターのオーダー乃至ナノ・メーターのオーダーであることが好適である。
 また、複数のトレンチ構造3、4の開口部間の距離は、例えば、マイクロ・メーターのオーダー乃至ナノ・メーターのオーダーであることが好適である。複数種類の流体を、複数のトレンチ構造3、4を通じて領域Aの外側(混合空間Sa)へ噴出させ、それぞれの流体を混ぜる場合に、複数種類の流体を混合する際の処理能力が高くなるからである。
In the region A, the width and the side length of the plurality of trench structures 3 and 4 are preferably in the order of micrometer to nanometer, for example.
Moreover, it is preferable that the distance between the openings of the plurality of trench structures 3 and 4 is, for example, on the order of micrometers or nanometers. When a plurality of types of fluids are ejected to the outside of the region A (mixing space Sa) through the plurality of trench structures 3 and 4 and the respective fluids are mixed, the processing capability when mixing the plurality of types of fluids increases. It is.
 複数の微細孔5、6の長径は、領域Aにおいては、例えば、マイクロ・メーターのオーダー乃至ナノ・メーターのオーダーであることが好適である。また、複数の微細孔5、6の開口部間の距離は、例えば、マイクロ・メーターのオーダー乃至ナノ・メーターのオーダーであることが好適である。複数種類の流体を、複数の微細孔5、6を通じて領域Aの外側(混合空間Sa)へ噴出させ、それぞれの流体を混ぜる場合に、複数種類の流体を混合する際の処理能力が高くなるからである。
 なお、本実施形態(たとえば、本実施形態に係る流体制御デバイス1b(1)の説明)において、「混ぜる」とは、複数の流体を混合させ、反応させ、あるいは、乳化させる(エマルジョンを形成する)ことをいう(以下、μTASの説明においても、同様の意味で使用する)。
 誘導空間群α及び誘導空間群β(1)を構成する複数のトレンチ構造3、4および複数の微細孔5、6の数としては、特に限定されるものではなく、制御される流体の種類、処理能力に応じて、適宜選択することができる。また、領域Bと領域Cは、同一の基板面における異なる領域に配置されていてもよい。さらに、領域A、領域B、領域C等が全て同一の面に存在していてもよい。
In the region A, the long diameters of the plurality of fine holes 5 and 6 are preferably in the order of micrometer to nanometer, for example. Moreover, it is preferable that the distance between the openings of the plurality of micropores 5 and 6 is, for example, on the order of micrometer or nanometer. When a plurality of types of fluids are ejected to the outside of the region A (mixing space Sa) through the plurality of fine holes 5 and 6 and the respective fluids are mixed, the processing capability when mixing the plurality of types of fluids increases. It is.
In this embodiment (for example, description of the fluid control device 1b (1) according to this embodiment), “mixing” means mixing, reacting, or emulsifying a plurality of fluids (forming an emulsion). (Hereinafter, the same meaning is used in the description of μTAS).
The number of the trench structures 3 and 4 and the plurality of fine holes 5 and 6 constituting the induction space group α and the induction space group β (1) is not particularly limited, and the type of fluid to be controlled, It can be appropriately selected according to the processing capacity. Further, the region B and the region C may be arranged in different regions on the same substrate surface. Further, the region A, the region B, the region C, etc. may all exist on the same surface.
(1-3)変形例1B(No.E3)
 図3は、本実施形態(第1実施形態)に係る流体制御デバイス1の一変形例(以下、変形例1Bとも呼ぶ)を示す模式図である。図3(a)は、流体制御デバイス1c(1)を模式的に示した斜視図である。図3(b)は、矢視X3-X3の断面模式図である。図3(c)は、矢視Y3-Y3の断面模式図である。図3(d)は、矢視Z3の平面図である。図3に示した「変形例1B」も、図1と同様に、平板状を成す基体において、2つの流入空間SbおよびScが基体において対向する2つの側面に近い位置(領域Bに近い位置、領域Cに近い位置)に配置された場合を表している。また、図3に示した「変形例1B」は、流出空間Saが基体の上面に近い位置(領域Aに近い位置)に配置された場合を表している。
(1-3) Modification 1B (No. E3)
FIG. 3 is a schematic diagram showing a modified example (hereinafter also referred to as modified example 1B) of the fluid control device 1 according to the present embodiment (first embodiment). FIG. 3A is a perspective view schematically showing the fluid control device 1c (1). FIG. 3B is a schematic cross-sectional view taken along the arrow X3-X3. FIG. 3C is a schematic cross-sectional view taken along arrow Y3-Y3. FIG. 3D is a plan view of the arrow Z3. Similarly to FIG. 1, “Modification 1B” shown in FIG. 3 is also similar to FIG. 1. In the base having a flat plate shape, the two inflow spaces Sb and Sc are close to the two side surfaces facing the base (position close to the region B, The case where it is arranged at a position close to the region C) is shown. Further, “Modification 1B” shown in FIG. 3 represents a case where the outflow space Sa is arranged at a position close to the upper surface of the substrate (position close to the region A).
 流体制御デバイス1c(1)において、複数のトレンチ構造3、4は、複数のトレンチ構造の長辺方向に沿って配された複数の隔壁31、41によって、2つ以上に分割されている。図3の場合は、トレンチ構造3が各々3つ(3a)に分割され、トレンチ構造4も各々3つ(4a)に分割された構成例を表している。これにより誘導空間内の圧力損失のばらつきを最小限に抑え、より均一な流体の混合が可能となる。
 なお、図3の構成例においても、混合空間Saから見て、複数のトレンチ構造3、4のそれぞれは、略長方形状を有する。略長方形状のトレンチ構造3について、図3(c)の部分拡大図に示すように、混合空間Saから見て、トレンチ構造3の先端部3P(すなわち、流入空間から最も遠い部位、凹部を形成している部位)が、直線状(基体を上面視した際に、基体の側面に略平行な底部を有する凹部)であってもよく、丸みを帯びた形状(たとえば円弧状)を有していてもよい。トレンチ構造4の先端部4Pもトレンチ構造3の先端部3Pと同様である。
In the fluid control device 1c (1), the plurality of trench structures 3 and 4 are divided into two or more by a plurality of partition walls 31 and 41 arranged along the long side direction of the plurality of trench structures. In the case of FIG. 3, each of the trench structures 3 is divided into three (3a), and the trench structure 4 is also divided into three (4a). This minimizes the variation in pressure loss in the induction space and enables more uniform fluid mixing.
In the configuration example of FIG. 3 as well, each of the plurality of trench structures 3 and 4 has a substantially rectangular shape when viewed from the mixed space Sa. As shown in the partially enlarged view of FIG. 3C, the tip portion 3P of the trench structure 3 (that is, the portion farthest from the inflow space, a recess is formed in the substantially rectangular trench structure 3 as shown in the partial enlarged view of FIG. May be a straight line (a concave portion having a bottom portion substantially parallel to the side surface of the substrate when the substrate is viewed from above), and has a rounded shape (for example, an arc shape). May be. The tip 4P of the trench structure 4 is the same as the tip 3P of the trench structure 3.
 上述した第1実施形態に係る流体制御デバイス1(1a、1b、1c)は、筐体20内に配されることにより、流体混合器10を構成することもできる。
(2)流体混合器の構成(タイプ1)
 図4は、流体混合器10A(10)の一構成例を示す断面模式図であり、上記(1-1)に開示した流体制御デバイスを搭載した場合である。
 図4(a)に示すように、流体混合器10A(10)は、流体制御デバイス1と、流体制御デバイス1を内部に有し、流体制御デバイス1の領域Aに面するとともに流体制御デバイス1の複数の微細孔5、6に連通する単一の流出空間(単一の混合空間)Saと、流体制御デバイス1の領域Bに面するとともに流体制御デバイス1の第1の流入部3aと連通する単一の流入空間Sbと、領域Cに面するとともに流体制御デバイス1の第2の流入部4aと連通する単一の流入空間Scと、を備えた筐体20から構成されている。筐体20としては、例えば、ステンレス等の金属類を用いることができる。図4(a)に示す流体混合器10A(10)では、流体制御デバイス1(の外面)と筐体20(の内面)とが互いに直接的に接触するように構成されている。
The fluid control device 1 (1a, 1b, 1c) according to the first embodiment described above can be configured in the fluid mixer 10 by being arranged in the housing 20.
(2) Configuration of fluid mixer (Type 1)
FIG. 4 is a schematic cross-sectional view showing a configuration example of the fluid mixer 10A (10), in which the fluid control device disclosed in (1-1) is mounted.
As shown in FIG. 4A, the fluid mixer 10A (10) has the fluid control device 1 and the fluid control device 1 inside, faces the area A of the fluid control device 1, and the fluid control device 1. A single outflow space (single mixing space) Sa that communicates with the plurality of micropores 5 and 6, a region B of the fluid control device 1, and a communication with the first inflow portion 3 a of the fluid control device 1 And a single inflow space Sc that faces the region C and communicates with the second inflow portion 4a of the fluid control device 1. As the case 20, for example, a metal such as stainless steel can be used. The fluid mixer 10A (10) shown in FIG. 4A is configured such that the fluid control device 1 (the outer surface) and the housing 20 (the inner surface) are in direct contact with each other.
 筐体20A(20)は、流体制御デバイス1を構成する基体2の領域Aの表面(外面)に対向するように流出空間Saを形成する上部筐体20aと、基体2の領域Bおよび領域Cの表面(外面)に対向するように流入空間Sb及び流入空間Scを形成する下部筐体20bと、から形成される。また、流体制御デバイス1の領域A、B、Cのそれぞれの表面(外面)と、上部筐体20a及び下部筐体20bとは、必要に応じてシール部材(図示略)を介して接合される。そして、流出空間Saと流入空間SbおよびScとは独立した空間として形成されている。シール部材としては、Oリング等の弾性シール部材を用いることができる。
 流体混合器10A(10)では、異なる材料(流体)が、それぞれ異なる空間から流入する。例えば、第1の材料(第1の流体)が流入空間Sbから流入し、誘導空間である複数の第1のトレンチ構造3および複数の第1の微細孔5を通る。また、第2の材料(第2の流体)がScから流入し、誘導空間である複数の第2のトレンチ構造4及び複数の第2の微細孔6を通る。そして、複数の第1の微細孔5から流出した第1の材料と、複数の第2の微細孔6から流出した第2の材料とが、共通する空間、例えば流出空間(混合空間)Saから流出する。
The casing 20A (20) includes an upper casing 20a that forms an outflow space Sa so as to face the surface (outer surface) of the region A of the base 2 constituting the fluid control device 1, and the regions B and C of the base 2. The lower housing 20b that forms the inflow space Sb and the inflow space Sc so as to face the surface (outer surface) of Further, the respective surfaces (outer surfaces) of the regions A, B, and C of the fluid control device 1 and the upper casing 20a and the lower casing 20b are joined via a seal member (not shown) as necessary. . The outflow space Sa and the inflow spaces Sb and Sc are formed as independent spaces. An elastic seal member such as an O-ring can be used as the seal member.
In the fluid mixer 10A (10), different materials (fluids) flow from different spaces. For example, the first material (first fluid) flows in from the inflow space Sb and passes through the plurality of first trench structures 3 and the plurality of first micro holes 5 which are induction spaces. Further, the second material (second fluid) flows in from Sc and passes through the plurality of second trench structures 4 and the plurality of second micro holes 6 which are induction spaces. And the 1st material which flowed out from a plurality of 1st minute holes 5 and the 2nd material which flowed out from a plurality of 2nd minute holes 6 are from common space, for example, outflow space (mixing space) Sa. leak.
 図4に示すように、流体混合器10A(10)においては、流体制御デバイス1を、上下に分割した筐体20a、20bで挟持して接合することによって、流体制御デバイス1が着脱可能である。従って、混ぜられる流体の種類、性質に応じて、流体制御デバイスを適宜選択し、あるいは、定期的にメンテナンス(修理、交換)することができる。 As shown in FIG. 4, in the fluid mixer 10 </ b> A (10), the fluid control device 1 can be attached and detached by sandwiching and joining the fluid control device 1 between the upper and lower housings 20 a and 20 b. . Therefore, the fluid control device can be appropriately selected or regularly maintained (repaired or replaced) according to the type and nature of the fluid to be mixed.
(3)流体制御デバイスの他の応用例
 (a)このような流体制御デバイス1(1a、1b、1c)において、複数の誘導空間の圧力損失のばらつきが、±10%以内であることが好ましい。
 複数の誘導空間に、等速で流体を流せると仮定した場合、各誘導空間の圧力損失のばらつきが±10%以内に収まるように、各トレンチ構造3、4及び微細孔5、6を設計することが好ましい。圧力損失のばら付きが±10%よりも大きくなると、処理速度によっては、流体の混合性に大きなばらつきが生じる可能性がある。
(3) Other application examples of the fluid control device (a) In such a fluid control device 1 (1a, 1b, 1c), it is preferable that the variation in the pressure loss of the plurality of induction spaces is within ± 10%. .
When it is assumed that a fluid can flow in a plurality of induction spaces at a constant speed, the trench structures 3 and 4 and the fine holes 5 and 6 are designed so that the variation in pressure loss of each induction space is within ± 10%. It is preferable. When the variation in the pressure loss is larger than ± 10%, depending on the processing speed, there is a possibility that a large variation occurs in the mixing property of the fluid.
 (b)流体制御デバイス1(1a、1b、1c)において、複数の誘導空間が、略同じ長さを有することが好ましい。
 誘導空間として機能する複数のトレンチ構造3、4及び複数の微細孔5、6の長さを統一することにより、流出空間(混合空間)Saに面する面内における各微細孔5、6の各開口部5b、6bにおける、流体の流速を均一化することができる。それぞれの誘導空間の流出口である、複数の微細孔5、6の複数の開口部5b、6bにおける流体の流速を揃えることで、均一に流体が流出し、流体をより均一に混合することができる。各微細孔の開口部5b、6bにおける流速誤差は、流体の流速の平均値±100%以内であることが好ましく、流体の流速の平均値±50%以内であることがより好ましい。
(B) In the fluid control device 1 (1a, 1b, 1c), it is preferable that the plurality of guide spaces have substantially the same length.
By unifying the lengths of the plurality of trench structures 3 and 4 and the plurality of micro holes 5 and 6 that function as guide spaces, each of the micro holes 5 and 6 in the plane facing the outflow space (mixed space) Sa The flow velocity of the fluid in the openings 5b and 6b can be made uniform. By aligning the flow velocity of the fluid in the plurality of openings 5b and 6b of the plurality of micro holes 5 and 6, which are the outlets of the respective induction spaces, the fluid can flow out uniformly and the fluid can be mixed more uniformly. it can. The flow rate error in the openings 5b and 6b of each fine hole is preferably within an average value ± 100% of the fluid flow rate, and more preferably within an average value ± 50% of the fluid flow rate.
 各トレンチ構造3、4及び各微細孔5、6の幅、短辺の長さ或いは径が同じであるとみなせるとき、各トレンチ構造3、4の長辺の長さ及び各微細孔5、6の長さが等しくなるように設計すればよい。これにより、各微細孔5、6の各開口部5b、6bにおける、流体の流速を均一化することができる。一方、各トレンチ構造3、4及び各微細孔5、6の幅、短辺の長さ或いは径が異なる場合、幅、短辺の長さ或いは径に応じて、長さを適宜変えることにより、複数の開口部5b、6bにおける流体の流速を、より均一にすることができる。各トレンチ構造3、4及び各微細孔5、6の長さを変える場合には、流出口となる複数の第1の開口部5bおよび複数の第2開口部6bのピッチを調整する、あるいは流入口となる複数の第3の開口部(第1の流入部)3aおよび複数の第4の開口部4aの位置を調整することで、各トレンチ構造3、4及び各微細孔5、6の長さを変えることができる。 When it can be considered that the width, the length of the short side, or the diameter of each trench structure 3, 4 and each microhole 5, 6 is the same, the length of the long side of each trench structure 3, 4 and each microhole 5, 6 Should be designed to be equal in length. Thereby, the flow velocity of the fluid in each opening 5b, 6b of each micropore 5, 6 can be equalized. On the other hand, when the trenches 3 and 4 and the fine holes 5 and 6 have different widths and short side lengths or diameters, by appropriately changing the lengths according to the widths and short side lengths or diameters, The flow velocity of the fluid in the plurality of openings 5b and 6b can be made more uniform. When changing the lengths of the trench structures 3 and 4 and the fine holes 5 and 6, the pitches of the plurality of first openings 5b and the plurality of second openings 6b serving as outlets are adjusted, or the flow is changed. By adjusting the positions of the plurality of third openings (first inflow portions) 3a and the plurality of fourth openings 4a serving as inlets, the lengths of the trench structures 3 and 4 and the fine holes 5 and 6 are adjusted. You can change that.
 (c)流体制御デバイス1(1a、1b、1c)において、流出空間Saに面する面内における複数の微細孔5、6の複数の開口部5b、6bの配置について、流出空間Saに面する面内において、ピッチがランダムになるように複数の微細孔5、6を配置してもよい。
 誘導空間の流出口である、複数の微細孔5、6の複数の開口部5b、6bのピッチを乱し、ランダムに複数の微細孔5、6を配置する。これにより、複数の微細孔5、6が設けられた場所によって、複数の微細孔5、6を通るそれぞれの流体の拡散長が異なることとなり、均一ではない(ランダムな)混合を実現できる。その結果、ランダムな生成物を得ることができる。例えば、この流体制御デバイス1、1a、1bをナノ粒子製造に用いる場合、粒径の揃った単分散の粒子ではなく、粒径が一定のばらつきを持った、多分散の粒子を一度に安定して加工することができる。
(C) In the fluid control device 1 (1a, 1b, 1c), the arrangement of the plurality of openings 5b, 6b of the plurality of micro holes 5, 6 in the plane facing the outflow space Sa faces the outflow space Sa. A plurality of fine holes 5 and 6 may be arranged in the plane so that the pitch is random.
The pitch of the plurality of openings 5b, 6b of the plurality of micro holes 5, 6 which are the outlets of the guide space is disturbed, and the plurality of micro holes 5, 6 are randomly arranged. Thereby, the diffusion length of each fluid passing through the plurality of micropores 5 and 6 differs depending on the location where the plurality of micropores 5 and 6 are provided, and nonuniform (random) mixing can be realized. As a result, a random product can be obtained. For example, when this fluid control device 1, 1a, 1b is used for the production of nanoparticles, not monodisperse particles with uniform particle size but polydisperse particles with a uniform variation in particle size are stabilized at a time. Can be processed.
 (d)流体制御デバイス1(1a、1b、1c)において、流出空間(混合空間)Saに対する面内における複数の微細孔5、6の複数の開口部5b、6bの配置について、面内における特定の領域(第1の領域)におけるピッチと、他の特定の領域(第2の領域)におけるピッチとが、異なるように複数の微細孔5、6を配置してもよい。
 例えば図5に示すように、誘導空間の流出口である、複数の微細孔5、6の複数の開口部5b、6bのピッチについて、面内の第一の領域Mのピッチと、第二の領域Nのピッチとが、異なるように配置する。これにより、流体の拡散長が面内の領域によって変化する。例えば第一の領域Mにおける微細孔のピッチを小さく(狭く)し、第二の領域Nにおける微細孔のピッチを大きく(広く)した場合、流体の混合速度が、第一の領域Mでは早くなり、第二の領域Nでは遅くなる。これにより、例えば、この流体制御デバイスをナノ粒子製造に用いる場合、粒径の揃った単分散の粒子ではなく、粒径2水準を有する粒子を同時に成形することができる。例えば、異なる2種の生成物或いはばらつきを持った生成物を得ることができる。
(D) In the fluid control device 1 (1a, 1b, 1c), in-plane identification of the arrangement of the plurality of openings 5b, 6b of the plurality of micro holes 5, 6 in the plane with respect to the outflow space (mixing space) Sa The plurality of fine holes 5 and 6 may be arranged so that the pitch in the region (first region) and the pitch in the other specific region (second region) are different.
For example, as shown in FIG. 5, with respect to the pitch of the plurality of openings 5b, 6b of the plurality of micro holes 5, 6 that are the outlets of the guide space, the pitch of the first region M in the plane and the second It arrange | positions so that the pitch of the area | region N may differ. As a result, the diffusion length of the fluid changes depending on the in-plane region. For example, when the pitch of the micropores in the first region M is made small (narrow) and the pitch of the micropores in the second region N is made large (wide), the fluid mixing speed becomes faster in the first region M. In the second region N, it becomes slower. Thereby, for example, when this fluid control device is used for the production of nanoparticles, it is possible to simultaneously mold particles having a particle size of two levels, not monodispersed particles having a uniform particle size. For example, two different types of products or products with variations can be obtained.
 (e)流体制御デバイス1(1a、1b、1c)において、流出空間Saに対する面内における複数の微細孔5、6の複数の開口部5b、6bに近い位置において、各微細孔の径が絞られた(微細孔の径が小さくなった)構造としてもよい。
 図6に示すように、誘導空間の流出口である、複数の微細孔5、6の複数の開口部5b、6bに近い位置において、各微細孔5、6の径を絞り(径を小さく設計し)、テーパー状とする。これにより、流出口に近い位置での流体の流速が上がり、渦流が発生しやすくなる。これにより流体の混合性が向上する。また、流出口に近い位置の微細孔径のみが小さいので、圧力損失の上昇を最小限に抑えることが可能となる。
 なお、図6では、微細孔の形状を説明するために、1つの孔のみを示している。
(E) In the fluid control device 1 (1a, 1b, 1c), the diameter of each micropore is reduced at a position close to the plurality of openings 5b, 6b of the plurality of micropores 5, 6 in the plane with respect to the outflow space Sa. It is good also as the structure (The diameter of the micropore became small).
As shown in FIG. 6, the diameter of each microhole 5, 6 is reduced (designed to reduce the diameter) at a position close to the plurality of openings 5 b, 6 b of the plurality of microholes 5, 6, which is the outlet of the guide space And taper. Thereby, the flow velocity of the fluid at a position close to the outlet is increased, and a vortex is easily generated. Thereby, the mixing property of the fluid is improved. Moreover, since only the micropore diameter at a position close to the outlet is small, it is possible to minimize an increase in pressure loss.
In FIG. 6, only one hole is shown in order to explain the shape of the fine hole.
 テーパー角には好適な角度として、微細孔3、4の流出口径をd1とし、内部径をd2としたとき、テーパー距離Lに対する、誘導空間幅の縮小分ΔD(d1-d2)の比率(ΔD/L)が、0.05~2の範囲が好ましく、0.1~1の範囲がより好ましい。(ΔD/L)が0.05よりも小さい場合、十分な微細孔径差を生み出すことが難しい。一方、(ΔD/L)が2よりも大きい場合、流体の種類によっては、誘導空間内で滞留が起き、誘導空間内に堆積物ができやすくなる。例えば、微細孔の流出口径d1が23μm、内部径d2が25μmである場合、流出口に近い位置では18%程度の流速の増大が期待できる。そのため、誘導空間径の差ΔDは、1μm以下であれば十分な効果が得られる。 As a suitable angle for the taper angle, when the outlet diameter of the micropores 3 and 4 is d1 and the internal diameter is d2, the ratio (ΔD (d1−d2)) of the reduction of the guide space width to the taper distance L / L) is preferably in the range of 0.05 to 2, more preferably in the range of 0.1 to 1. When (ΔD / L) is smaller than 0.05, it is difficult to produce a sufficient micropore diameter difference. On the other hand, when (ΔD / L) is greater than 2, depending on the type of fluid, stagnation occurs in the induction space, and deposits are easily formed in the induction space. For example, when the outlet diameter d1 of the micropore is 23 μm and the inner diameter d2 is 25 μm, an increase in flow rate of about 18% can be expected at a position close to the outlet. Therefore, if the difference ΔD in the induction space diameter is 1 μm or less, a sufficient effect can be obtained.
 (f)流体制御デバイス1(1a、1b、1c)において、流出空間Saに面する面内における複数の微細孔5、6の複数の開口部5b、6bに近い位置において、微細孔の径が広げられた構造としてもよい。
 誘導空間の流出口である、複数の微細孔5、6の複数の開口部5b、6bに近い位置において、各微細孔5および6の径を広げた構造としてもよい。このような構造とすることで、隣りあう複数の微細孔5、6から流出する2種類の流体間に生じる流れの剥離を抑制することができる。これにより乱流及び複数の微細孔5、6から流出した流体の抵抗を抑えることができるため、より大きな圧力で流体を押し出すことが可能となる。その結果、混合物の処理量を増加させることができる。
(F) In the fluid control device 1 (1a, 1b, 1c), the diameter of the micropores is close to the plurality of openings 5b, 6b of the plurality of micropores 5, 6 in the plane facing the outflow space Sa. An expanded structure may be used.
It is good also as a structure which expanded the diameter of each micropore 5 and 6 in the position close | similar to several opening part 5b, 6b of several micropores 5 and 6 which is an outflow port of guidance space. By adopting such a structure, it is possible to suppress the separation of the flow generated between the two kinds of fluids flowing out from the plurality of adjacent fine holes 5 and 6. As a result, it is possible to suppress the turbulent flow and the resistance of the fluid that has flowed out of the plurality of micropores 5 and 6, so that the fluid can be pushed out with a larger pressure. As a result, the throughput of the mixture can be increased.
 (g)流体制御デバイス1(1a、1b、1c)において、誘導空間の側壁に、コーティング層が設けられていてもよい。
 複数のトレンチ構造3、4及び複数の微細孔5、6の側壁に、コーティング層を設けることで、流体制御デバイスの耐薬品性を向上させることができる。しかし、耐薬品性を持たせるためには、コーティング層の厚膜化が必要となる。そのため、基体2に近い位置に厚膜コーティング層を設けることは困難であるが、筺体に近い位置に設けることができる。
 なお、誘導空間に粘着性の高い流体を流すと、側壁に付着物が堆積し、孔が詰まる懸念がある。フッ素樹脂コーティング層は薄膜で塗布形成することができるため、微細孔内にも形成可能である。そのため、基体2に近い位置へのフッ素樹脂コーティング層を設けることで、各トレンチ構造3、4及び各微細孔5、6の詰まりを抑制することができる。
(G) In the fluid control device 1 (1a, 1b, 1c), a coating layer may be provided on the side wall of the guide space.
By providing a coating layer on the side walls of the plurality of trench structures 3 and 4 and the plurality of micro holes 5 and 6, the chemical resistance of the fluid control device can be improved. However, in order to provide chemical resistance, it is necessary to increase the thickness of the coating layer. Therefore, although it is difficult to provide a thick film coating layer at a position close to the substrate 2, it can be provided at a position close to the housing.
In addition, when a highly viscous fluid is allowed to flow through the guide space, there is a concern that deposits accumulate on the side walls and clog the holes. Since the fluororesin coating layer can be applied and formed as a thin film, it can also be formed in the micropores. Therefore, the clogging of the trench structures 3 and 4 and the fine holes 5 and 6 can be suppressed by providing the fluororesin coating layer near the base 2.
 (h)流体制御デバイス1(1a、1b、1c)において、基体2の内部に、温度調整装置が設けられていてもよい。
 領域Aの下流に別途マイクロ誘導空間を設け、誘導空間内を流れる物質の温度をコントロールできるように温度調整装置を設けてもよい。温度調整装置としては特に限定されるものではないが、基体2上に、ヒーター、あるいはヒーター及び温度センサ部として機能する配線構造を形成することができる。この際、溶液に対して絶縁を保つため、基体2上に絶縁層を設けても構わない。ヒーターあるいは温度センサの配線としては、例えば、ニクロム、ITOなどが挙げられる。また、流体制御デバイス1の昇温のためにマイクロ波を使用しても構わない。
 例えば図7に示すように、基体2上に温度制御装置として導管あるいはPWW(ポストウォールウェーブガイド)90などを設けるとともに、基体2の内部に流路25を設けることにより、基体2内を流れる物質を加熱することが可能である。また、基体2上に温度制御装置として流路を設け、この流路内に、適切な温度を有する流体(液体やガス)を流すことにより、基体2内を流れる物質の昇温および冷却を行ってもよい。
(H) In the fluid control device 1 (1a, 1b, 1c), a temperature adjusting device may be provided inside the base body 2.
A separate micro induction space may be provided downstream of the region A, and a temperature adjusting device may be provided so that the temperature of the substance flowing in the induction space can be controlled. Although it does not specifically limit as a temperature control apparatus, The wiring structure which functions as a heater or a heater and a temperature sensor part on the base | substrate 2 can be formed. At this time, an insulating layer may be provided on the substrate 2 in order to keep insulation against the solution. Examples of the wiring for the heater or the temperature sensor include nichrome and ITO. In addition, microwaves may be used to raise the temperature of the fluid control device 1.
For example, as shown in FIG. 7, a substance flowing in the base 2 is provided by providing a conduit or a PWW (post wall waveguide) 90 as a temperature control device on the base 2 and providing a flow path 25 in the base 2. Can be heated. In addition, a flow path is provided as a temperature control device on the base 2, and a fluid (liquid or gas) having an appropriate temperature is flowed through the flow path to raise and cool the substance flowing in the base 2. May be.
 (i)流体制御デバイス1(1a、1b、1c)において、基体2の外側に、温度調整装置が設けられていてもよい。
 基体2の外側(例えば筺体20部分)に、温度調整装置を設けてもよい。温度調整装置としては、特に限定されず、例えば、温度センサである熱電対、ヒーターであるマイクロヒータを用いることができる。これらの温度調整装置の挿入口を、基体2の外側に設ければよい。或いは、基体2内部に流路を設け、この流路内に、適切な温度を有する流体(液体やガス)を流すことにより、基体2内を流れる物質の昇温および冷却を行ってもよい。
(I) In the fluid control device 1 (1a, 1b, 1c), a temperature adjusting device may be provided outside the base body 2.
A temperature adjusting device may be provided outside the base 2 (for example, the housing 20 portion). The temperature adjusting device is not particularly limited, and for example, a thermocouple that is a temperature sensor and a micro heater that is a heater can be used. What is necessary is just to provide the insertion port of these temperature control apparatuses in the outer side of the base | substrate 2. FIG. Alternatively, the temperature of the substance flowing in the base 2 may be raised and cooled by providing a flow path inside the base 2 and flowing a fluid (liquid or gas) having an appropriate temperature in the flow path.
 (j)流体制御デバイス1(1a、1b、1c)において、基体2は、一方(第1の流出口)が流出空間Saに連通し、他方(第2の流出口)が基体2の表面に連通する流出口流路21を有していてもよい。また、流出口流路21は、第1の流出口が広く、第2の流出口が狭くなるように径が絞られた構造としてもよい。
 図8に示すように、筐体20に設けられた、一方(第1の流出口)が流出空間(混合空間)Saに連通し、他方(第2の流出口)が表面に連通する流出口流路21において、流出口流路21の他方(第2の流出口)に絞りを有する構造であってもよい。領域Aでは複数の微細孔5、6が2次元的な配列をとるため(微細孔が平面に配列されるため)、領域Aにおいて基体2の開口面積は、誘導空間群のある領域の面積よりも大きな面積を有する必要がある。一方、複数の微細孔5、6を出た2種類の流体の混合速度を速めるためには、流出口流路の径を小さくし、流体間の拡散距離を小さくすることが好ましい。そのため、領域Aにおける流出口誘導空間に絞りを有する構造とすることが好ましい。
(J) In the fluid control device 1 (1a, 1b, 1c), one of the substrates 2 (first outlet) communicates with the outflow space Sa and the other (second outlet) is on the surface of the substrate 2 You may have the outflow channel 21 connected. Further, the outlet channel 21 may have a structure in which the diameter is narrowed so that the first outlet is wide and the second outlet is narrow.
As shown in FIG. 8, an outlet provided in the housing 20, one (first outlet) communicating with the outflow space (mixing space) Sa and the other (second outlet) communicating with the surface. The channel 21 may have a structure having a restriction on the other side (second outlet) of the outlet channel 21. In the region A, since the plurality of micropores 5 and 6 have a two-dimensional arrangement (because the micropores are arranged in a plane), the opening area of the base 2 in the region A is larger than the area of the region having the guide space group. Need to have a large area. On the other hand, in order to increase the mixing speed of the two types of fluids that have exited the plurality of fine holes 5 and 6, it is preferable to reduce the diameter of the outlet channel and the diffusion distance between the fluids. For this reason, it is preferable that the outlet guide space in the region A has a restriction.
(4)流体制御デバイスの製造方法
 次に、上述した流体制御デバイス1の製造方法を説明する。なお、流体制御デバイス1の変形例に係るそれぞれの流体制御デバイスの製造方法についても、流体制御デバイス1と同様である。
(4) Manufacturing method of fluid control device Next, the manufacturing method of the fluid control device 1 mentioned above is demonstrated. The manufacturing method of each fluid control device according to the modified example of the fluid control device 1 is the same as that of the fluid control device 1.
 第1実施形態に係る流体制御デバイス1の製造工程は、基体2の内部にパルス時間幅がピコ秒オーダー以下のパルス幅を有するレーザ光を集光照射して複数の改質部を形成する工程と、基体2の内部に形成された改質部をエッチングにより除去して、誘導空間(トレンチ構造及び微細孔)を形成する工程と、からなる。 The manufacturing process of the fluid control device 1 according to the first embodiment is a process of forming a plurality of modified portions by condensing and irradiating a laser beam having a pulse width of a picosecond order or less inside the base 2. And a step of removing the modified portion formed inside the substrate 2 by etching to form a guide space (trench structure and fine holes).
(4-1)改質部形成工程
 まず、基体2の誘導空間である領域にレーザ光照射を行う。レーザ光の光源としては、例えば、フェムト秒レーザ光を用いることができる。フェムト秒レーザとは、パルスの時間幅がフェムト秒(fs)オーダーのレーザである。数フェムト秒から数百フェムト秒という超短パルスであるが故に高いピーク強度を有しており、焦点付近で非線形光学現象である多光子吸収を誘起するため、焦点に近い位置で加工対象物である基体2の物性を変化させ、微細な改質部を基体2に形成することができる。その際、被加工材料である基体2としては、たとえばガラス材料などの透明材料が好適に用いられる。
(4-1) Modified Part Formation Step First, laser light irradiation is performed on a region that is a guide space of the base 2. As the light source of the laser light, for example, femtosecond laser light can be used. A femtosecond laser is a laser whose pulse width is on the order of femtoseconds (fs). Because it is an ultra-short pulse of several femtoseconds to several hundred femtoseconds, it has a high peak intensity and induces multiphoton absorption, which is a nonlinear optical phenomenon near the focal point. By changing the physical properties of a certain substrate 2, a fine modified portion can be formed on the substrate 2. At that time, as the substrate 2 which is a material to be processed, a transparent material such as a glass material is preferably used.
 レーザ光は、例えば、基体2の一方の主面に近い位置から基体2に照射される。また、形成される誘導空間が基体2内の少なくとも2層以上に並べて配置されるように、基体の集光部Sがレーザ光で走査される。また、誘導空間となる改質部については、レーザ光源の位置から遠い位置から順に誘導空間が形成されるように、改質部の集光部Sがレーザ光で走査される。その結果、基体2内部に、誘導空間となる改質部を三次元的に形成することができる。
 また、混合させる流体に応じて、照射するレーザ光の出力を適宜調整することにより、所望の誘導空間径を有する改質部を形成することができる。
For example, the laser beam is applied to the base 2 from a position close to one main surface of the base 2. Further, the condensing portion S of the base is scanned with the laser light so that the guide space to be formed is arranged in at least two layers in the base 2. In addition, with respect to the reforming portion serving as the guide space, the condensing portion S of the reforming portion is scanned with laser light so that the guide space is formed in order from a position far from the position of the laser light source. As a result, a modified portion that becomes a guide space can be formed three-dimensionally inside the base 2.
Further, by appropriately adjusting the output of the laser beam to be irradiated according to the fluid to be mixed, a modified portion having a desired induction space diameter can be formed.
 レーザ照射強度は、基体2を構成する材料の加工閾値に近い値または加工閾値以上、且つアブレーション閾値以上であることが好ましい。よりエッチング選択性の高い改質部を形成するためである。
 加工閾値は、改質部を形成するためのレーザーパルスパワーの下限値と定義される。また、アブレーション閾値とは、アブレーションを発生させるためのレーザーパルスパワーの下限値であり、加工閾値とは異なる。一般的に加工閾値はアブレーション閾値よりも小さい。
 なお、基体2に改質部を形成する際、レーザ光を照射する方向としては、基体の一方の主面(第1の主面)または他方の主面(第2の主面)からのみレーザ光を基体に照射しても、基板の両主面から照射してもよい。
The laser irradiation intensity is preferably a value close to the processing threshold value of the material constituting the substrate 2, or a processing threshold value or more, and ablation threshold value or more. This is to form a modified portion with higher etching selectivity.
The processing threshold is defined as the lower limit value of the laser pulse power for forming the modified portion. The ablation threshold is a lower limit value of laser pulse power for generating ablation, and is different from the processing threshold. In general, the processing threshold is smaller than the ablation threshold.
When the modified portion is formed on the substrate 2, the laser beam is irradiated only from one main surface (first main surface) or the other main surface (second main surface) of the substrate. The substrate may be irradiated with light or may be irradiated from both main surfaces of the substrate.
(4-2)誘導空間形成工程
 改質部形成工程を経て、誘導空間となる領域が改質された基体2を、エッチング液(薬液)に浸漬して、改質部をウェットエッチングし、改質部を基板から除去する。改質部が除去された基体2内部には、トレンチ構造及び微細孔から形成される、一群の誘導空間が三次元的に形成される。
(4-2) Guidance space forming step The substrate 2 having a modified guiding region formed through the modified portion forming step is dipped in an etching solution (chemical solution), and the modified portion is wet-etched and modified. The mass is removed from the substrate. In the base body 2 from which the modified portion has been removed, a group of induction spaces formed from a trench structure and fine holes are formed three-dimensionally.
 第1実施形態に係る流体制御デバイス1においては、基体2として石英ガラスを用い、エッチング液としてフッ酸(HF)を主成分とする溶液を用いた。このようなエッチング処理は、基体2におけるレーザ光の未照射領域に比べて、基体2においてレーザ光を照射した改質部が数十倍のエッチング速度でエッチングされる現象を利用する方法である。従って、エッチング時間を制御することにより、基体2においてレーザ光を照射した誘導空間を形成すべき領域のみを選択的にエッチングして除去することができる。このエッチングの選択性を利用して、基体2内に固定構造である一群の誘導空間を三次元的に形成することができる。 In the fluid control device 1 according to the first embodiment, quartz glass is used as the substrate 2, and a solution containing hydrofluoric acid (HF) as a main component is used as an etching solution. Such an etching process is a method that utilizes a phenomenon in which the modified portion irradiated with the laser beam on the substrate 2 is etched at an etching rate several tens of times higher than that of the non-irradiated region of the substrate 2. Therefore, by controlling the etching time, it is possible to selectively etch and remove only the region where the induction space irradiated with the laser light is to be formed in the substrate 2. By utilizing this etching selectivity, a group of guiding spaces having a fixed structure can be formed in the base 2 in a three-dimensional manner.
 エッチング液は特に限定されず、例えば、フッ酸(HF)を主成分とする溶液の他、フッ酸に硝酸等を適量添加したフッ硝酸系の混酸やKOH等のアルカリも用いることができる。また、基体2の材料に応じて、他の薬液を用いることもできる。 The etching solution is not particularly limited. For example, in addition to a solution containing hydrofluoric acid (HF) as a main component, a hydrofluoric acid-based mixed acid obtained by adding an appropriate amount of nitric acid or the like to hydrofluoric acid, or an alkali such as KOH can be used. Also, other chemicals can be used depending on the material of the substrate 2.
(5)作用・効果
 第1実施形態(タイプ1)に係る流体制御デバイス1(1a、1b、1c)は、単一の基体2内に、それぞれが独立したトレンチ構造を有する、複数の誘導空間が形成されている。
 複数の誘導空間は特定の一群を構成する誘導空間群αと、他の特定の一群を構成する誘導空間群β(n)として、基体2の表面(外面)において、流体が流入する領域Bおよび領域Cと、流体が流出する領域Aに各々開口部を有し、領域Aと、領域B及び領域Cとを連通した3次元的な誘導空間群として形成されている。特に、本実施形態では、誘導空間は、トレンチ構造に接続して配される複数の微細孔を形成している。
 領域Aに面した誘導空間群α及び誘導空間群β(n)のそれぞれの開口部は、領域Aに面する面内において、二次元方向に配列されている。また、それぞれの誘導空間群α及び誘導空間群β(n)を構成する微細孔の開口部は、領域Aに通じる開口部同士が、互い違いに、最も隣接した位置を有するように形成されている。
(5) Action / Effect The fluid control device 1 (1a, 1b, 1c) according to the first embodiment (type 1) has a plurality of guide spaces each having an independent trench structure in a single base body 2. Is formed.
The plurality of guide spaces are a guide space group α constituting a specific group and a guide space group β (n) constituting another specific group, and a region B into which fluid flows on the surface (outer surface) of the base 2 and Each of the region C and the region A through which the fluid flows out has an opening, and is formed as a three-dimensional guide space group that connects the region A, the region B, and the region C. In particular, in this embodiment, the induction space forms a plurality of fine holes arranged in connection with the trench structure.
The openings of the guidance space group α and the guidance space group β (n) facing the region A are arranged in a two-dimensional direction within the plane facing the region A. In addition, the opening portions of the micro holes constituting each of the guiding space group α and the guiding space group β (n) are formed so that the opening portions leading to the region A are alternately adjacent to each other. .
 従って、本実施形態(タイプ1)に係る流体制御デバイス1(1a、1b、1c)においては、領域Bおよび領域Cから流入した複数の種類の流体が、領域Aから流出するまでに、混ざることがなく、独立して流体の流れを制御することができる。そのために、複数の流体が誘導空間内で混ざることにより生成される固形物などが誘導空間内に徐々に堆積して、誘導空間が部分的に閉塞するというおそれがない。
 また、基体2内において、複数の誘導空間群が三次元的に積層して形成されているために、二次元的な誘導空間に比べて飛躍的に多数の誘導空間を設けることができる。そのため、処理能力及び生産性を高めることができる。
 更に、基体2内の誘導空間群は、一体形成された連続体であるために接合界面で液漏れすることがなく、流体制御デバイスの耐圧性能を高くすることができる。
 特に、本実施形態では、誘導空間を、トレンチ構造に接続して配される複数の微細孔を形成することで、誘導空間をトレンチ構造のみとした場合よりも流速分布を均一にすることができる。さらに、誘導空間内の圧力損失を最小限に抑え、混合される2液の境界面を4面とすることができる。このため、流体の混合速度を速めることができる。
Therefore, in the fluid control device 1 (1a, 1b, 1c) according to the present embodiment (type 1), a plurality of types of fluids flowing from the region B and the region C are mixed before flowing out from the region A. The flow of fluid can be controlled independently. For this reason, there is no possibility that a solid substance or the like generated by mixing a plurality of fluids in the guidance space gradually accumulates in the guidance space and the guidance space is partially blocked.
In addition, since the plurality of guide space groups are three-dimensionally stacked in the base body 2, a large number of guide spaces can be provided in comparison with the two-dimensional guide space. Therefore, processing capacity and productivity can be improved.
Furthermore, since the induction space group in the base body 2 is an integrally formed continuous body, liquid leakage does not occur at the bonding interface, and the pressure resistance performance of the fluid control device can be increased.
In particular, in this embodiment, the flow velocity distribution can be made more uniform by forming a plurality of micro holes arranged by connecting the guide space to the trench structure than when the guide space has only the trench structure. . Furthermore, the pressure loss in the induction space can be minimized, and the boundary surface of the two liquids to be mixed can be four. For this reason, the mixing speed of the fluid can be increased.
(6)流体制御デバイスの構成(タイプ2)(6-1)第2実施形態(No.E4)
 図9は、本実施形態に係る流体制御デバイス1d(1)の一構成例を示す模式図である。図9(a)は、流体制御デバイス1d(1)を模式的に示した斜視図である。図9(b)は、矢視X9-X9の断面模式図である。図9(c)は、矢視Y9-Y9の断面模式図である。図9(d)は、矢視Z9aの部分平面図である。図9(e)は、矢視Z9bの部分平面図である。
 以下、本発明の第2実施形態を、図面を参照しながら説明する。
(6) Configuration of fluid control device (type 2) (6-1) Second embodiment (No. E4)
FIG. 9 is a schematic diagram illustrating a configuration example of the fluid control device 1d (1) according to the present embodiment. FIG. 9A is a perspective view schematically showing the fluid control device 1d (1). FIG. 9B is a schematic cross-sectional view taken along the arrow X9-X9. FIG. 9C is a schematic cross-sectional view taken along arrow Y9-Y9. FIG. 9D is a partial plan view of the arrow Z9a. FIG. 9E is a partial plan view of the arrow Z9b.
Hereinafter, a second embodiment of the present invention will be described with reference to the drawings.
 第2実施形態に係る流体制御デバイス1d(1)は、複数の第1開口部5bを介して混合部(単一の混合空間)Saに連通するとともに第1の流入部3aに連通する第1のトレンチ構造3および複数の第2開口部6bを介して前記混合部Saに連通するとともに第2の流入部4aに連通する第2のトレンチ構造4を備える誘導空間をα、β(n)と有する基体を備える。
 第2実施形態に係る流体制御デバイス1d(1)は、第1実施形態に係る流体制御デバイス1a(1)と同様に、混合部Saから見て、第1のトレンチ構造3および第2のトレンチ構造4は略長方形状を有し、前記第1のトレンチ構造3の長辺が前記第2のトレンチ構造4の長辺から所定の間隔で離間するように、前記第1のトレンチ構造3および前記第2のトレンチ構造4が並列に配置されている。
 しかし、第2実施形態に係る流体制御デバイス1d(1)は、平板状をなす基体2において、2つの流入空間Sb(図4参照、第1の流入空間)およびSc(図4参照、第2の流入空間)が基体2の下面に近い位置の異なる領域(第1の流入部3aが設けられた領域B、および第2の流入部4aが設けられた領域C)に配置されており、混合部(流出空間)Saが基体の上面に近い位置(領域A)に配置されている点が、第1実施形態に係る流体制御デバイス1a(1)とは異なっている。
The fluid control device 1d (1) according to the second embodiment communicates with the mixing unit (single mixing space) Sa through the plurality of first openings 5b and communicates with the first inflow unit 3a. Α, β (n) and the induction space including the second trench structure 4 communicating with the mixing portion Sa and the second inflow portion 4a through the trench structure 3 and the plurality of second openings 6b. Having a substrate.
Similar to the fluid control device 1a (1) according to the first embodiment, the fluid control device 1d (1) according to the second embodiment has the first trench structure 3 and the second trench as viewed from the mixing portion Sa. The structure 4 has a substantially rectangular shape, and the first trench structure 3 and the first trench structure 3 and the first trench structure 3 and the long side of the second trench structure 4 are spaced apart from each other by a predetermined distance. Second trench structures 4 are arranged in parallel.
However, the fluid control device 1 d (1) according to the second embodiment includes two inflow spaces Sb (see FIG. 4, first inflow space) and Sc (see FIG. 4, second) in the flat base 2. Inflow space) are arranged in different regions (region B where the first inflow portion 3a is provided and region C where the second inflow portion 4a is provided) at different positions close to the lower surface of the base body 2. The point which the part (outflow space) Sa is arrange | positioned in the position (area | region A) near the upper surface of a base | substrate differs from the fluid control device 1a (1) which concerns on 1st Embodiment.
 図9に示すように、流体制御デバイス1d(1)においては、単一の基体2内に、複数のトレンチ構造3、4が形成されている。混合空間Saから見て(基体2の上方から見て)、複数のトレンチ構造3、4のそれぞれは、略長方形状を有している。
 略長方形状は、図1(c)と同様に、混合空間Saから見て、第1のトレンチ構造3の先端部3P(すなわち、流入空間から最も遠い部位、凹部を形成している部位)が、直線状(基体2を上面視した際に、基体2の側面に略平行な底部を有する凹部)であってもよく、丸みを帯びた形状(たとえば円弧状)を有していてもよいことを意味する。
 第2のトレンチ構造4の先端部4Pも第1のトレンチ構造3の先端部3Pと同様の形状を有する。
 また、基体2内の複数の誘導空間α、β(n)において、第1のトレンチ構造3と第2のトレンチ構造4とは隣接する位置関係を有するように形成されている。また、第1のトレンチ構造3の長辺と、第2のトレンチ構造4の長辺とは、離間して所定の間隔を有するように並列に配されている。
As shown in FIG. 9, in the fluid control device 1 d (1), a plurality of trench structures 3 and 4 are formed in a single substrate 2. When viewed from the mixed space Sa (viewed from above the base 2), each of the plurality of trench structures 3 and 4 has a substantially rectangular shape.
As in FIG. 1C, the substantially rectangular shape has a tip portion 3P of the first trench structure 3 (that is, a portion farthest from the inflow space, a portion forming a recess) when viewed from the mixed space Sa. , It may be linear (a concave portion having a bottom portion substantially parallel to the side surface of the base 2 when the base 2 is viewed from the top), or may have a rounded shape (for example, an arc). Means.
The tip portion 4P of the second trench structure 4 also has the same shape as the tip portion 3P of the first trench structure 3.
Further, the first trench structure 3 and the second trench structure 4 are formed so as to have an adjacent positional relationship in the plurality of guide spaces α and β (n) in the base body 2. Further, the long side of the first trench structure 3 and the long side of the second trench structure 4 are arranged in parallel so as to be spaced apart and have a predetermined interval.
 基体2には、複数のトレンチ構造3、4のそれぞれに接続された複数の微細孔5、6が形成されている。混合空間Saから見て、複数の誘導空間の複数の第1開口部5bは、複数の第1の微細孔5から形成される。また、混合空間Saから見て、複数の誘導空間の第2開口部6bは、複数の微細孔6から形成される。
 なお、第2実施形態における混合空間Saとは、流体制御デバイス1d(1)の複数の開口部5b、6bが面する面A上の空間(流出空間)を示している。
 流入空間(基体2の下面に位置する領域B)から見て、複数の誘導空間の第3の開口部(第1の流入部)3aは、複数のトレンチ構造3のそれぞれに形成されている。また、流入空間(基体2の下面に位置する領域C)から見て、複数の誘導空間の第4の開口部(第2の流入部)4aは、複数のトレンチ構造4の開口部のそれぞれに形成されている。
 第1のトレンチ構造3における微細孔5の第1開口部5bは、基体の下面に近い位置の領域Bにおいて、第1の流入空間Sbへ連通している。また、第2のトレンチ構造4における微細孔6の第2開口部6bは、基体の下面に近い位置の領域Cにおいて、第2の流入空間Scへ連通している。
A plurality of fine holes 5 and 6 connected to the plurality of trench structures 3 and 4 are formed in the base 2. When viewed from the mixing space Sa, the plurality of first openings 5 b of the plurality of guide spaces are formed from the plurality of first micro holes 5. Further, when viewed from the mixing space Sa, the second openings 6 b of the plurality of guide spaces are formed from the plurality of fine holes 6.
Note that the mixing space Sa in the second embodiment indicates a space (outflow space) on the surface A facing the plurality of openings 5b and 6b of the fluid control device 1d (1).
As viewed from the inflow space (region B located on the lower surface of the base 2), the third openings (first inflow portions) 3 a of the plurality of guide spaces are formed in the respective trench structures 3. In addition, when viewed from the inflow space (region C located on the lower surface of the base 2), the fourth openings (second inflow portions) 4 a of the plurality of guide spaces are respectively formed in the openings of the plurality of trench structures 4. Is formed.
The first opening 5b of the minute hole 5 in the first trench structure 3 communicates with the first inflow space Sb in the region B near the lower surface of the base. Further, the second opening 6b of the fine hole 6 in the second trench structure 4 communicates with the second inflow space Sc in the region C located near the lower surface of the base.
 これら複数の誘導空間のうち特定の一群を構成する誘導空間群α(複数の第1のトレンチ構造3により構成された誘導空間群)は、基体2の表面(外面)における領域A(基体2の上面)に第1の開口部5bを有する。また、誘導空間群αは、基体2の表面(外面)における領域Bに各々第3の開口部(第1の流入部)3aを有する。
 誘導空間のうち他の特定の一群を構成する誘導空間群β(1)(複数の第2のトレンチ構造4により構成された誘導空間群)は、基体2の表面(外面)における領域Aに複数の第2開口部6bを有している。また、誘導空間群β(1)は、領域Cに複数の第4の開口部(第2の流入部)4aを有している。
 また、基体2内において、誘導空間群αに属する複数の第1の微細孔5と、β(1)に属する複数の第2の微細孔6とが、互いに離間して配されている。
An induction space group α (induction space group constituted by a plurality of first trench structures 3) constituting a specific group among the plurality of induction spaces is a region A (surface of the base body 2) on the surface (outer surface) of the base body 2. A first opening 5b is provided on the upper surface. In addition, the guiding space group α has third openings (first inflow portions) 3 a in the region B on the surface (outer surface) of the base 2.
Inductive space group β (1) (inductive space group constituted by a plurality of second trench structures 4) constituting another specific group of the inductive spaces is plural in region A on the surface (outer surface) of base 2. The second opening 6b is provided. In addition, the guiding space group β (1) has a plurality of fourth openings (second inflow portions) 4a in the region C.
Further, in the base body 2, a plurality of first micro holes 5 belonging to the guidance space group α and a plurality of second micro holes 6 belonging to β (1) are arranged apart from each other.
 図9(b)および図9(c)の断面模式図に示すように、単一の基体2内に設けられた複数の第1のトレンチ構造3及び複数の第1の微細孔5は、基体2の表面(外面)における領域Aと領域Bとを連通した3次元的な誘導空間群αとして形成されている。誘導空間群αと同様に、複数の第2のトレンチ構造4及び複数の第2の微細孔6は、基体2の表面(外面)における領域Aと領域Cとを連通した三次元的な誘導空間群β(1)として形成されている。 As shown in the schematic cross-sectional views of FIGS. 9B and 9C, the plurality of first trench structures 3 and the plurality of first micro holes 5 provided in the single substrate 2 are formed by the substrate. It is formed as a three-dimensional guidance space group α in which the region A and the region B are communicated with each other on the surface (outer surface). Similar to the guide space group α, the plurality of second trench structures 4 and the plurality of second micro holes 6 are three-dimensional guide spaces in which the region A and the region C on the surface (outer surface) of the base 2 are communicated with each other. It is formed as a group β (1).
 領域Aに面した誘導空間群αの複数の第1の微細孔5における複数の第1開口部5b及び誘導空間群β(1)の複数の第2の微細孔6における複数の第2開口部6bは、図9(d)に示すように、領域Aに面する面において、二次元方向に配列されている。また、開口部同士(第1開口部5bと第2開口部6b)が、互い違いに、最も隣接した位置を有するように形成されている。
 これに対して、基体の下面に近い位置の異なる領域(領域B)においては、複数の第1のトレンチ構造3の複数の第3の開口部(第1の流入部)3aは、図9(d)に示すように、トレンチ構造を反映した略長方形の形状を有し、互いに離間して並列に配置されている。複数の第2のトレンチ構造4における複数の第4の開口部(第2の流入部)4aも、複数の第1のトレンチ構造3における複数の第3の開口部3aと同様の形状および配置を有している。
A plurality of first openings 5b in the plurality of first micro holes 5 of the guide space group α facing the region A and a plurality of second openings in the plurality of second micro holes 6 of the guide space group β (1). 6b are arranged in a two-dimensional direction on the surface facing the region A as shown in FIG. Further, the openings (the first opening 5b and the second opening 6b) are alternately formed so as to have the most adjacent positions.
On the other hand, in the region (region B) having a different position near the lower surface of the base, the plurality of third openings (first inflow portions) 3a of the plurality of first trench structures 3 are shown in FIG. As shown in d), it has a substantially rectangular shape reflecting the trench structure, and is arranged in parallel and spaced apart from each other. The plurality of fourth openings (second inflow portions) 4a in the plurality of second trench structures 4 also have the same shape and arrangement as the plurality of third openings 3a in the plurality of first trench structures 3. Have.
 第2実施形態の流体制御デバイス1d(1)においては、異なる材料(流体)が、それぞれ異なる流入空間から流入する。例えば、第1の材料(第1の流体)が流入空間Bから流入し、誘導空間である複数の第1のトレンチ構造3及び複数の第1の微細孔5を通る。また、第2の材料(第2の流体)が流入空間Cから流入し、誘導空間である複数の第2のトレンチ構造4及び複数の第2の微細孔6を通る。そして、複数の第1の微細孔5から流出した第1の材料と、複数の第2の微細孔6から流出した第2の材料とが、共通する空間、例えば混合空間Saから流出する。
 第2実施形態の流体制御デバイスでは、図9(d)に示すように、基体の下面に近い位置の異なる領域(領域B、および領域C)において、複数のトレンチ構造3、4の複数の開口部(流入部)3a、4aが形成されている。このように、トレンチ構造を反映した略長方形の形状に誘導空間を形成するとともに、誘導空間の大部分をトレンチ構造として形成したことにより、誘導空間を微細孔として形成した場合に比べて、誘導空間は多量の流体を取り込み、かつ、多量の流体を流すことができる。
 そして、混合空間Saに放出する直前の部分には、複数のトレンチ構造3、4に接続される複数の微細孔5、6を形成することで、誘導空間をトレンチ構造のみで形成した場合よりも流速分布を均一にすることができる。さらに、誘導空間内の圧力損失を最小限に抑え、混合される2液の境界面を4面とすることができる。このため、第2実施形態の流体制御デバイスでは、流体の混合速度を速めることができる。なお、特許文献2に記載されているマイクロミキサでは、混合される2液の境界面は2面である。
In the fluid control device 1d (1) of the second embodiment, different materials (fluids) flow from different inflow spaces. For example, the first material (first fluid) flows in from the inflow space B and passes through the plurality of first trench structures 3 and the plurality of first micro holes 5 which are guide spaces. Further, the second material (second fluid) flows in from the inflow space C and passes through the plurality of second trench structures 4 and the plurality of second micro holes 6 which are guide spaces. Then, the first material flowing out from the plurality of first micro holes 5 and the second material flowing out from the plurality of second micro holes 6 flow out from a common space, for example, the mixing space Sa.
In the fluid control device according to the second embodiment, as shown in FIG. 9 (d), a plurality of openings of the plurality of trench structures 3 and 4 in different regions (region B and region C) at different positions near the lower surface of the substrate. Portions (inflow portions) 3a and 4a are formed. In this way, the guide space is formed in a substantially rectangular shape reflecting the trench structure, and most of the guide space is formed as a trench structure, so that the guide space is compared with the case where the guide space is formed as a fine hole. Can take in a large amount of fluid and flow a large amount of fluid.
Then, a plurality of micro holes 5 and 6 connected to the plurality of trench structures 3 and 4 are formed in the portion immediately before being discharged into the mixed space Sa, so that the induction space is formed only by the trench structure. The flow velocity distribution can be made uniform. Furthermore, the pressure loss in the induction space can be minimized, and the boundary surface of the two liquids to be mixed can be four. For this reason, in the fluid control device of the second embodiment, the mixing speed of the fluid can be increased. In addition, in the micromixer described in Patent Document 2, there are two boundary surfaces of the two liquids to be mixed.
 つまり、第2実施形態(タイプ2)に係る流体制御デバイス1d(1)は、平板状を有する基体において、2つの流入空間SbおよびScが基体の下面に近い位置の異なる領域(第1の流入部3aが設けられた領域Bおよび第2の流入部4aが設けられた領域C)に配置されている点、流出空間Saが基体の上面に近い位置(領域A)に配置されている点が、第1実施形態に係る流体制御デバイス1a(1)とは異なっている。
 ただし、第2実施形態(タイプ2)に係る流体制御デバイス1d(1)は、以下に示すように、他の点(6a)~(6c)においては、上述した第1実施形態(タイプ1)と同様である。
That is, in the fluid control device 1d (1) according to the second embodiment (type 2), in the base having a flat plate shape, the two inflow spaces Sb and Sc have different regions (first inflow) close to the lower surface of the base. The region B is provided in the region B where the portion 3a is provided and the region C where the second inflow portion 4a is provided, and the point where the outflow space Sa is located near the top surface of the substrate (region A). This is different from the fluid control device 1a (1) according to the first embodiment.
However, the fluid control device 1d (1) according to the second embodiment (type 2) is different from the first embodiment (type 1) described above in other points (6a) to (6c) as described below. It is the same.
(6a)前記混合部Saから見て、前記第1のトレンチ構造3および前記第2のトレンチ構造4は略長方形状を有し、前記第1のトレンチ構造3の長辺が前記第2のトレンチ構造4の長辺から所定の間隔で離間するように、前記第1のトレンチ構造3および前記第2のトレンチ構造4が並列に配置されている。(6b)単一の基体2内に、複数のトレンチ構造3、4が形成されている。混合空間Saから見て、複数のトレンチ構造3、4は、略長方形状を有する。略長方形状のトレンチ構造3について、図には明示しないが、混合空間Saから見て、第1のトレンチ構造3の先端部3P(すなわち、流入空間から最も遠い部位、凹部を形成している部位)が、直線状(基体2を上面視した際に、基体の側面に略平行な底部を有する凹部)であってもよく、丸みを帯びた形状(たとえば円弧状)を有していてもよい。第2のトレンチ構造4の先端部4Pも第1のトレンチ構造3の先端部3Pと同様の形状を有する。(6c)基体2内の複数の誘導空間α、β(n)において、第1のトレンチ構造3と第2のトレンチ構造4とは隣接する位置関係を有するように形成されている。また、第1のトレンチ構造3の長辺と、第2のトレンチ構造4の長辺とが、離間して所定の間隔を有するように並列に配されている。 (6a) When viewed from the mixing portion Sa, the first trench structure 3 and the second trench structure 4 have a substantially rectangular shape, and the long side of the first trench structure 3 is the second trench. The first trench structure 3 and the second trench structure 4 are arranged in parallel so as to be separated from the long side of the structure 4 at a predetermined interval. (6b) A plurality of trench structures 3 and 4 are formed in a single substrate 2. As viewed from the mixed space Sa, the plurality of trench structures 3 and 4 have a substantially rectangular shape. The substantially rectangular trench structure 3 is not clearly shown in the drawing, but when viewed from the mixed space Sa, the tip 3P of the first trench structure 3 (that is, the part farthest from the inflow space, the part forming the recess) ) May be linear (a concave portion having a bottom portion substantially parallel to the side surface of the substrate 2 when the substrate 2 is viewed from above), or may have a rounded shape (for example, an arc shape). . The tip portion 4P of the second trench structure 4 also has the same shape as the tip portion 3P of the first trench structure 3. (6c) The first trench structure 3 and the second trench structure 4 are formed so as to have an adjacent positional relationship in the plurality of guide spaces α, β (n) in the base 2. Further, the long side of the first trench structure 3 and the long side of the second trench structure 4 are arranged in parallel so as to be spaced apart and have a predetermined interval.
 第2実施形態(タイプ2)に係る流体制御デバイスにおいても、複数のトレンチ構造3、4のそれぞれに接続された複数の第1の微細孔5、6が形成されている。混合空間Saから見て、複数の誘導空間α、β(n)の複数の第1の開口部5bは、複数の第1の微細孔5から形成される。また、混合空間Saから見て、複数の誘導空間α、β(n)の複数の第2開口部6bは、複数の微細孔6から形成される。
 第1の流入空間Sb(基体2の下面に位置する領域B)から見て、複数の誘導空間α、β(n)の第3の開口部(第1の流入部)3aは、複数のトレンチ構造3のそれぞれに形成されている。
 また、第2の流入空間Sc(基体2の下面に位置する領域C)から見て、複数の誘導空間の第4の開口部(第2の流入部)4aは、複数のトレンチ構造4のそれぞれに形成されている。
 第1のトレンチ構造3における微細孔5の第1開口部5bは、基体の下面に近い位置の領域Bにおいて、第1の流入空間Sbへ連通している。
 また、第2のトレンチ構造4における微細孔6の第2開口部6bは、基体の下面に近い位置の領域Cにおいて、第2の流入空間Scへ連通している。
Also in the fluid control device according to the second embodiment (type 2), a plurality of first micro holes 5 and 6 connected to each of the plurality of trench structures 3 and 4 are formed. When viewed from the mixing space Sa, the plurality of first openings 5b of the plurality of guide spaces α, β (n) are formed from the plurality of first micro holes 5. In addition, when viewed from the mixing space Sa, the plurality of second openings 6 b of the plurality of guide spaces α and β (n) are formed from the plurality of micro holes 6.
When viewed from the first inflow space Sb (region B located on the lower surface of the base 2), the third openings (first inflow portions) 3a of the plurality of guide spaces α and β (n) are formed of a plurality of trenches. Each of the structures 3 is formed.
Further, when viewed from the second inflow space Sc (region C located on the lower surface of the base 2), the fourth openings (second inflow portions) 4 a of the plurality of guide spaces are respectively provided in the plurality of trench structures 4. Is formed.
The first opening 5b of the minute hole 5 in the first trench structure 3 communicates with the first inflow space Sb in the region B near the lower surface of the base.
Further, the second opening 6b of the fine hole 6 in the second trench structure 4 communicates with the second inflow space Sc in the region C located near the lower surface of the base.
 特に、図9に示した第2実施形態(タイプ2)に係る流体制御デバイスでは、基体2の下面に近い位置における領域Bと領域Cにおいて各々、異なる2つの流入空間SbおよびScへ連通している開口部(流入部)3a、4aが、個々のトレンチ構造ごとに1つ(単一)の略長方形を形成するように構成されている[図9(e)]。ゆえに、図9に示した第2実施形態(タイプ2)に係る流体制御デバイスは、複数の微細孔の開口部によって流入空間へ連通する構成[図15]に比べて、大きな流入量に対応できる。さらに、圧力損失の低減も図ることが可能である。 In particular, in the fluid control device according to the second embodiment (type 2) shown in FIG. 9, the region B and the region C at positions close to the lower surface of the base body 2 communicate with two different inflow spaces Sb and Sc, respectively. Opening portions (inflow portions) 3a and 4a are formed so as to form one (single) substantially rectangular shape for each trench structure [FIG. 9 (e)]. Therefore, the fluid control device according to the second embodiment (type 2) shown in FIG. 9 can cope with a large inflow amount as compared with the configuration [FIG. 15] communicating with the inflow space by the openings of the plurality of micro holes. . Furthermore, it is possible to reduce pressure loss.
 図9に示した流体制御デバイス1は、平板状を有する基体において、2つの流入空間Sb、Scが基体の下面に近い位置の異なる位置に配置されている。また、流入空間Sbは領域Bに設けられた第1の流入部3aに連通しており、流入空間Scは領域Cに設けられた第2の流入部4aに連通している。さらに、混合部(流出空間Sa)が基体の上面に近い位置に配置され、領域Aに連通している。しかしながら、第2実施形態(タイプ2)に係る流体制御デバイスは、図9の構成例に限定されない。たとえば、領域A~Cが重なること無く、個別に配置される条件を満たすなら、領域Bと領域Cの何れか一方、または両方を、領域Aと同じ基体の上面に近い位置に設けても構わない。
 第2実施形態(タイプ2)に係る流体制御デバイスを作成した場合は、基体の上下両面から基体を挟むように筐体を配するだけで、上述した高い耐圧性能を実現できる。
In the fluid control device 1 shown in FIG. 9, two inflow spaces Sb and Sc are arranged at different positions close to the lower surface of the substrate in a flat substrate. The inflow space Sb communicates with the first inflow portion 3a provided in the region B, and the inflow space Sc communicates with the second inflow portion 4a provided in the region C. Furthermore, the mixing part (outflow space Sa) is disposed at a position close to the upper surface of the base body and communicates with the region A. However, the fluid control device according to the second embodiment (type 2) is not limited to the configuration example of FIG. For example, as long as the conditions for individually arranging the regions A to C without overlapping each other, one or both of the region B and the region C may be provided at a position close to the upper surface of the substrate as the region A. Absent.
When the fluid control device according to the second embodiment (type 2) is created, the above-described high pressure resistance performance can be realized only by arranging the casing so as to sandwich the base from both the upper and lower surfaces of the base.
(6-2)変形例2A(No.E5)
 図10は、本実施形態(第2実施形態)に係る流体制御デバイスの一変形例(以下、変形例2Aとも呼ぶ)を示す模式図である。図10(a)は、流体制御デバイス1e(1)を模式的に示した斜視図である。図10(b)は、矢視X10-X10の断面模式図である。図10(c)は、矢視Y10-Y10の断面模式図である。図10(d)は、矢視Z10aの平面図である。図10(e)は、矢視Z10bの平面図である。
(6-2) Modification 2A (No. E5)
FIG. 10 is a schematic diagram showing a modified example (hereinafter also referred to as modified example 2A) of the fluid control device according to the present embodiment (second embodiment). FIG. 10A is a perspective view schematically showing the fluid control device 1e (1). FIG. 10B is a schematic cross-sectional view taken along the arrow X10-X10. FIG. 10C is a schematic cross-sectional view taken along arrow Y10-Y10. FIG. 10D is a plan view of the arrow Z10a. FIG. 10E is a plan view of the arrow Z10b.
 変形例2Aの流体制御デバイス1e(1)は、上述した第2実施形態に係る流体制御デバイス1d(1)と同様に、複数の第1開口部5bを介して混合部(単一の混合空間)Saに連通するとともに第1の流入部3aに連通する第1のトレンチ構造3および複数の第2開口部6bを介して前記混合部Saに連通するとともに第2の流入部4aに連通する第2のトレンチ構造4を備える誘導空間α、β(n)を有する基体2を備える。そして、図10の流体制御デバイス1e(1)においても、同じ誘導空間群に属していても、トレンチ構造を有する複数の誘導空間は、それぞれ離間して配されている。 The fluid control device 1e (1) of Modification 2A is similar to the fluid control device 1d (1) according to the second embodiment described above, with a mixing unit (single mixing space) via a plurality of first openings 5b. ) In communication with the first inflow portion 3a, the first trench structure 3 that communicates with the first inflow portion 3a, and the plurality of second openings 6b, and the second inflow portion 4a that communicates with the mixing portion Sa. A base body 2 having induction spaces α and β (n) including two trench structures 4 is provided. In the fluid control device 1e (1) of FIG. 10 as well, even if belonging to the same guidance space group, the plurality of guidance spaces having the trench structure are arranged separately from each other.
 また、変形例2Aの流体制御デバイス1e(1)は、平板状を有する基体において、2つの流入空間SbおよびScが基体の下面に近い位置の異なる領域(第1の流入部3aが設けられた領域Bおよび第2の流入部4aが設けられた領域C)に配置された点、混合部(流出空間)Saが基体の上面に近い位置(領域A)に配置された点においても、上述した第2実施形態(タイプ2)と同様である。 Further, in the fluid control device 1e (1) of the modified example 2A, in the base body having a flat plate shape, the two inflow spaces Sb and Sc are provided in different regions close to the lower surface of the base body (the first inflow portion 3a is provided). As described above, the point where the region B and the region C in which the second inflow portion 4a is provided, and the point where the mixing portion (outflow space) Sa is disposed near the upper surface of the substrate (region A) are also described above. This is the same as in the second embodiment (type 2).
 しかしながら、変形例2Aの流体制御デバイスは、トレンチ構造を有する複数の誘導空間が各々、2つの流入空間SbおよびScに連通する部位αが、複数の微細孔3a、4aに分かれて構成されている点において、上述した第2実施形態(タイプ2)に係る流体制御デバイス1d(1)と相違している[図10(e)]。 However, in the fluid control device of Modification 2A, a plurality of guide spaces having a trench structure are configured such that a portion α where each of the plurality of guide spaces communicates with two inflow spaces Sb and Sc is divided into a plurality of fine holes 3a and 4a. This is different from the fluid control device 1d (1) according to the second embodiment (type 2) described above [FIG. 10 (e)].
 上述した第2実施形態(タイプ2)と相違する点を備えたことにより、変形例2Aの流体制御デバイス1e(1)においては、2つの流入空間SbおよびScから流体制御デバイスの内部に進入する流体が、複数の微細孔3a、4aを通過してから、トレンチ構造の内部へ導入される。
 ゆえに、変形例2Aの流体制御デバイスによれば、上述した第2実施形態(タイプ2)と同様に高い耐圧性能が実現できる。さらに、複数の微細孔3a、4aに関して、単位面積あたりに設ける微細孔の数や、微細孔の開口径、微細孔の開口形状、微細孔の内壁面形状、微細孔の長さ(奥行き距離)などを適宜調整することにより、複数の微細孔3a、4aがフィルタとして機能するので、トレンチ構造の内部へ流体とともに異物が侵入するおそれが解消される。
By providing the points different from the second embodiment (type 2) described above, in the fluid control device 1e (1) of the modified example 2A, the fluid control device enters the fluid control device from the two inflow spaces Sb and Sc. The fluid passes through the plurality of micro holes 3a and 4a and is then introduced into the trench structure.
Therefore, according to the fluid control device of Modification 2A, high pressure resistance performance can be realized as in the second embodiment (type 2) described above. Further, regarding the plurality of fine holes 3a and 4a, the number of fine holes provided per unit area, the fine hole opening diameter, the fine hole opening shape, the fine hole inner wall surface shape, and the fine hole length (depth distance) By appropriately adjusting the above and the like, the plurality of fine holes 3a and 4a function as a filter, thereby eliminating the possibility of foreign matter entering the trench structure together with the fluid.
(6-3)変形例2B(No.E6)
 図11は、本実施形態(第2実施形態)に係る流体制御デバイス1の他の変形例(以下、変形例2Bとも呼ぶ)を示す模式図である。図11(a)は、流体制御デバイス1f(1)を模式的に示した斜視図である。図11(b)は、矢視X11-X11の断面模式図である。図11(c)は、矢視Y11-Y11の断面模式図である。図11(d)は、矢視Z11aの平面図である。図11(e)は、矢視Z11bの平面図である。
(6-3) Modification 2B (No. E6)
FIG. 11 is a schematic diagram illustrating another modification (hereinafter, also referred to as modification 2B) of the fluid control device 1 according to the present embodiment (second embodiment). FIG. 11A is a perspective view schematically showing the fluid control device 1f (1). FIG. 11B is a schematic cross-sectional view taken along the arrow X11-X11. FIG. 11C is a schematic cross-sectional view taken along arrow Y11-Y11. FIG. 11D is a plan view of the arrow Z11a. FIG. 11E is a plan view of the arrow Z11b.
 変形例2Bの流体制御デバイス1f(1)は、上述した第2実施形態に係る流体制御デバイス1d(1)と同様に、複数の第1開口部5bを介して混合部(単一の混合空間)Saに連通するとともに第1の流入部3aに連通する第1のトレンチ構造3および複数の第2開口部6bを介して前記混合部Saに連通するとともに第2の流入部4bに連通する第2のトレンチ構造4を備える誘導空間α、β(n)を有する基体2を備える。
 また、変形例2Bの流体制御デバイス1f(1)は、平板状を有する基体において、2つの流入空間SbおよびScが基体の下面に近い位置の異なる領域(領域Bおよび領域C)に配置された点、流出空間Saが基体の上面に近い位置(領域A)に配置された点においても、上述した第2実施形態(タイプ2)と同様である。
The fluid control device 1f (1) according to the modified example 2B is similar to the fluid control device 1d (1) according to the second embodiment described above, with a mixing unit (single mixing space) via the plurality of first openings 5b. ) In communication with the first inflow portion 3a, the first trench structure 3 that communicates with the first inflow portion 3a, and the plurality of second openings 6b, and the second inflow portion 4b. A base body 2 having induction spaces α and β (n) including two trench structures 4 is provided.
Further, in the fluid control device 1f (1) of Modification 2B, in the base having a flat plate shape, the two inflow spaces Sb and Sc are arranged in different regions (region B and region C) at positions close to the lower surface of the base. The point and the outflow space Sa are also the same as in the second embodiment (type 2) described above in that the outflow space Sa is disposed at a position (region A) close to the upper surface of the base body.
 変形例2Bの流体制御デバイス1f(1)においては、同じ誘導空間群に属していても、トレンチ構造を有する複数の誘導空間は、混合空間Saから見て、トレンチ構造3、4のそれぞれに接続された複数の微細孔の開口部5b、6bが設けられた部分(第1部分)3c、4cにおいては、誘導空間は互いに離間して配されている。しかしながら、図11(e)に示すように、トレンチ構造3、4のその他の部分(第2部分)3a、3b、4a、4b」においては、全部あるいは一部が、同じ誘導空間群に属するもの同士、大きな1つのトレンチ構造を形成している点において、上述した第2実施形態(タイプ2)と異なっている。 In the fluid control device 1f (1) of the modified example 2B, a plurality of induction spaces having a trench structure are connected to the trench structures 3 and 4 as viewed from the mixed space Sa even though they belong to the same induction space group. In the portions (first portions) 3c and 4c in which the openings 5b and 6b of the plurality of fine holes are provided, the guide spaces are spaced apart from each other. However, as shown in FIG. 11E, all or a part of the other portions (second portions) 3a, 3b, 4a, 4b of the trench structures 3, 4 belong to the same induction space group. They differ from the second embodiment (type 2) described above in that one large trench structure is formed.
 上述した第2実施形態(タイプ2)と異なっている点を備えたことにより、変形例2Bの流体制御デバイス1f(1)においては、2つの流入空間SbおよびScから流体制御デバイスの内部へ進入する流体が、その他の部分(第2部分)3a、3b、4a、4bにおいては、大きな1つのトレンチ構造の内部を進むことができる。
 ゆえに、変形例2Bの流体制御デバイス1f(1)によれば、上述した第2実施形態(タイプ2)の流体制御デバイス1d(1)と同様に高い耐圧性能が実現できる。さらに、第2実施形態(タイプ2)の流体制御デバイス1d(1)に比べて圧力損失による影響を低減することが可能である。「その他の部分(第2部分)3a、3b、4a、4b」が有する「大きな1つのトレンチ構造」の体積比率を適宜調整することにより、流体の各種条件、たとえば粘度や、流量、流速などに応じた設計を行うこともできる。たとえば、流体の進行方向において、「大きな1つのトレンチ構造」の断面積や断面形状を変化させることにより、流体内に発生し、流体の流れやすさを阻害する要因である渦流等を解消、或いは軽減することも可能である。
By providing the points different from the second embodiment (type 2) described above, in the fluid control device 1f (1) of the modified example 2B, the fluid enters the fluid control device from the two inflow spaces Sb and Sc. In the other portions (second portions) 3a, 3b, 4a, and 4b, the fluid to flow can travel inside one large trench structure.
Therefore, according to the fluid control device 1f (1) of the modified example 2B, high pressure resistance performance can be realized as in the fluid control device 1d (1) of the second embodiment (type 2) described above. Furthermore, it is possible to reduce the influence of pressure loss compared to the fluid control device 1d (1) of the second embodiment (type 2). By appropriately adjusting the volume ratio of the “large one trench structure” of the “other parts (second parts) 3a, 3b, 4a, 4b”, various conditions of the fluid such as viscosity, flow rate, flow velocity, etc. It is also possible to design according to. For example, by changing the cross-sectional area or cross-sectional shape of the “large one trench structure” in the fluid traveling direction, the eddy current that is generated in the fluid and impedes the ease of fluid flow is eliminated, or It can also be reduced.
(7)流体混合器の構成(タイプ2)
 図12は、流体混合器10B(10)の他の一構成例を示す断面模式図であり、上記(6-1)に開示した第2実施形態(タイプ2)の流体制御デバイスを流体混合器に搭載した場合である。
 以下、第2実施形態に係る流体混合器10B(10)を、図面を参照しながら説明する。
(7) Configuration of fluid mixer (Type 2)
FIG. 12 is a schematic cross-sectional view showing another configuration example of the fluid mixer 10B (10), and the fluid control device of the second embodiment (type 2) disclosed in (6-1) above is a fluid mixer. It is a case where it mounts in.
Hereinafter, the fluid mixer 10B (10) according to the second embodiment will be described with reference to the drawings.
 図12に示すように、流体混合器10B(10)は、流体制御デバイス1と、流体制御デバイス1を内部に有し、流体制御デバイス1の領域Aに面するとともに流体制御デバイス1の内部に連通する単一の流出空間(混合空間)Saと、流体制御デバイス1の領域Bに面するとともに流体制御デバイス1の内部に連通する単一の流入空間Sbと、領域Cに面するとともに流体制御デバイス1の内部に連通する単一の流入空間Scと、を備えた筐体20B(20)から構成されている。筐体20B(20)としては、ステンレス等の金属類を用いることができる。図12に示す流体混合器10B(10)は、流体制御デバイス1(の外面)と筐体20B(20)(の内面)との間に、後述するシール部材を設けて、流体制御デバイス1の外面と筐体20B(20)の内面とが互いにシール部材を介して接触するように構成されている。 As shown in FIG. 12, the fluid mixer 10 </ b> B (10) has the fluid control device 1 and the fluid control device 1 inside, faces the region A of the fluid control device 1, and is inside the fluid control device 1. A single outflow space (mixing space) Sa that communicates, a single inflow space Sb that faces the region B of the fluid control device 1 and communicates with the inside of the fluid control device 1, and a fluid control that faces the region C It is comprised from the housing | casing 20B (20) provided with the single inflow space Sc connected to the inside of the device 1. FIG. As the housing 20B (20), metals such as stainless steel can be used. A fluid mixer 10B (10) shown in FIG. 12 is provided with a seal member to be described later between the fluid control device 1 (outer surface) and the housing 20B (20) (inner surface). The outer surface and the inner surface of the housing 20B (20) are configured to contact each other via a seal member.
 筐体20B(20)は、流体制御デバイス1を構成する基体2の領域Aの表面(外面)に対向するように流出空間(混合空間)Saを形成する上部筐体20aと、基体2の領域B、Cの表面(外面)に対向するように流入空間Sb、Scを形成する下部筐体20bと、から形成される。また、流体制御デバイス1の領域A、B、Cのそれぞれの表面(外面)と、上部筐体20a及び下部筐体20bとは、シール部材Rを介して接合されている。流出空間Saは、流入空間Sb、Scとは独立した空間として形成されている。流体制御デバイス1の表面(外面)と筐体20B(20)との間に、シール部材Rを備えることにより、流体混合器10B(10)と筐体20B(20)との間の密着性が高まるので、流体の圧力や流量、流速に対応する柔軟性の向上が図れる。シール部材Rとしては、Oリング等の弾性シール部材を用いることができる。 The housing 20B (20) includes an upper housing 20a that forms an outflow space (mixing space) Sa so as to face the surface (outer surface) of the region A of the base 2 constituting the fluid control device 1, and the region of the base 2 The lower housing 20b that forms the inflow spaces Sb and Sc so as to face the surfaces (outer surfaces) of B and C. Further, the respective surfaces (outer surfaces) of the regions A, B, and C of the fluid control device 1 are joined to the upper housing 20a and the lower housing 20b through a seal member R. The outflow space Sa is formed as a space independent of the inflow spaces Sb and Sc. By providing the sealing member R between the surface (outer surface) of the fluid control device 1 and the housing 20B (20), the adhesion between the fluid mixer 10B (10) and the housing 20B (20) is improved. Since it increases, the flexibility corresponding to the pressure, flow rate, and flow velocity of the fluid can be improved. As the seal member R, an elastic seal member such as an O-ring can be used.
 また、図12に示すように、流体混合器10B(10)においては、流体制御デバイス1を、上下に分割した筐体20a、20bで挟持して接合することにより、流体制御デバイス1が着脱可能である。流体混合器10B(10)と筐体20B(20)との間にシール部材Rする構成により、流体混合器10B(10)は、混ぜられる流体の種類、性質に応じて、流体制御デバイスを適宜選択する機能や、定期的にメンテナンス(修理、交換)する機能において、上述した流体混合器10A(10)より優れている。そのため、多機能かつ長期信頼性の向上が図れる。 Also, as shown in FIG. 12, in the fluid mixer 10B (10), the fluid control device 1 can be attached and detached by sandwiching and joining the fluid control device 1 between upper and lower housings 20a and 20b. It is. With the configuration in which the sealing member R is provided between the fluid mixer 10B (10) and the housing 20B (20), the fluid mixer 10B (10) can be appropriately used as a fluid control device depending on the type and nature of the fluid to be mixed. It is superior to the above-described fluid mixer 10A (10) in the function of selecting and the function of performing regular maintenance (repair and replacement). Therefore, it is possible to improve multi-function and long-term reliability.
 図13は、着脱可能な流体制御デバイスを備えた流体混合器の構成を説明するための模式図である。図13に示すように、流体混合器10B(10)は、流体制御デバイス1を、上下に分割した筐体(上部筐体20a、下部筐体20b)で挟時して接合することによって、流体制御デバイス1が着脱可能である。従って、混合される流体の種類、性質に応じて、流体制御デバイスを適宜選択することができる。 FIG. 13 is a schematic diagram for explaining the configuration of a fluid mixer including a detachable fluid control device. As shown in FIG. 13, the fluid mixer 10 </ b> B (10) is configured such that the fluid control device 1 is joined by sandwiching the fluid control device 1 between upper and lower housings (upper housing 20 a and lower housing 20 b). The control device 1 is detachable. Therefore, the fluid control device can be appropriately selected according to the type and nature of the fluid to be mixed.
(8)比較例:流体制御デバイスおよび流体混合器
 図15は、比較例1に係る流体制御デバイス101の構成例を示す模式図である。図15(a)は、流体制御デバイス101を模式的に示した斜視図である。図15(b)は、矢視X101-X101の断面模式図である。図15(c)は、矢視Y101-Y101の断面模式図である。図15(d)は、矢視Z101の平面図である。
 以下、比較例1に係る流体制御デバイス101を、図面を参照しながら説明する。後述するように、比較例1に係る流体制御デバイスは、「基体102内において、それぞれの流路群α、β(1)に属する複数の微細孔103、104が、互いに離間して配されている構成」を備えていることが、第1実施形態および第2実施形態に係る流体制御デバイスと比較例との相違点である。
(8) Comparative Example: Fluid Control Device and Fluid Mixer FIG. 15 is a schematic diagram illustrating a configuration example of the fluid control device 101 according to Comparative Example 1. FIG. 15A is a perspective view schematically showing the fluid control device 101. FIG. 15B is a schematic cross-sectional view taken along arrow X101-X101. FIG. 15C is a schematic cross-sectional view taken along arrow Y101-Y101. FIG. 15D is a plan view of the arrow Z101.
Hereinafter, the fluid control device 101 according to the comparative example 1 will be described with reference to the drawings. As will be described later, the fluid control device according to Comparative Example 1 is described as follows: “In the base body 102, a plurality of micro holes 103 and 104 belonging to the respective flow path groups α and β (1) are arranged apart from each other. It is the difference between the fluid control device according to the first embodiment and the second embodiment and the comparative example.
 図15(a)~図15(d)に示すように、流体制御デバイス101は、単一の基体102内に、複数の微細孔103、104が形成されている。これら複数の微細孔103、104のうち特定の一群を構成する流路群αは、基体2の表面(外面)における領域Aと領域Bに各々複数の開口部103a、103bを有する。、微細孔のうち他の特定の一群を構成する流路群β(1)は、基体2の表面(外面)における領域Aと領域Cに各々複数の開口部104a、104bを有している。
 また、基体2内において、それぞれの流路群α、β(1)に属する微細孔103、104は、互いに離間して配されている。
As shown in FIGS. 15A to 15D, the fluid control device 101 has a plurality of fine holes 103 and 104 formed in a single substrate 102. The flow path group α constituting a specific group among the plurality of micropores 103 and 104 has a plurality of openings 103a and 103b in the region A and the region B on the surface (outer surface) of the base 2, respectively. The flow path group β (1) constituting another specific group of the fine holes has a plurality of openings 104a and 104b in the region A and the region C on the surface (outer surface) of the base 2, respectively.
Further, in the base body 2, the micro holes 103 and 104 belonging to the respective flow path groups α and β (1) are arranged apart from each other.
 特に、図15に示した構成例(比較例1)では、流体制御デバイス1を構成する基体2の領域Aの表面(外面)に対向するように流出空間Saが形成される。また、基体2の領域BおよびCの表面(外面)に対向するように流入空間SbおよびScが形成されている。領域Aが基体2の上面に配置されている。領域Bは基体102の第1の側面に配置されている。領域Cは基体102の領域Bとは異なる側面(第2の側面)に配置されている。
 図15に示した構成例(比較例1)の変形例(比較例2)においては、領域Aが基体102の上面に配置される。また、領域Bが基体の下面の一部分に配置される。さらに、領域Cが基体の下面において領域Bとは異なる箇所に配置される。比較例2においては、上記のような構成(不図示)が挙げられる。他の点は、図15に示した構成例(比較例1)と同一である。
In particular, in the configuration example shown in FIG. 15 (Comparative Example 1), the outflow space Sa is formed so as to face the surface (outer surface) of the region A of the base body 2 constituting the fluid control device 1. Inflow spaces Sb and Sc are formed so as to face the surfaces (outer surfaces) of the regions B and C of the base 2. Region A is disposed on the upper surface of the substrate 2. The region B is disposed on the first side surface of the base body 102. The region C is disposed on a side surface (second side surface) different from the region B of the base body 102.
In the modification (Comparative Example 2) of the configuration example (Comparative Example 1) shown in FIG. 15, the region A is disposed on the upper surface of the base body 102. Further, the region B is disposed on a part of the lower surface of the base. Further, the region C is arranged at a location different from the region B on the lower surface of the base. In the comparative example 2, the above configuration (not shown) can be mentioned. The other points are the same as the configuration example (Comparative Example 1) shown in FIG.
 図15(b)、図15(c)の断面模式図に示すように、単一の基体102内に設けられた複数の微細孔103は、基体102の表面(外面)における領域Aと領域Bとを連通した3次元的な流路群αとして形成されている。同様に、複数の微細孔104は、基体102の表面(外面)における領域Aと領域Cとを連通した三次元的な流路群β(1)として形成されている。 As shown in the schematic cross-sectional views of FIG. 15B and FIG. 15C, the plurality of micro holes 103 provided in the single base 102 are formed by a region A and a region B on the surface (outer surface) of the base 102. Are formed as a three-dimensional flow path group α. Similarly, the plurality of fine holes 104 are formed as a three-dimensional flow path group β (1) in which the region A and the region C on the surface (outer surface) of the base 102 are communicated.
 領域Aに面した流路群α及び流路群β(1)のそれぞれの開口部103b、104bは、図15(d)に示すように、領域Aに面する面において、二次元方向に配列されている。また、開口部同士が、互い違いに、最も隣接した位置となるように形成されている。
 図15(d)において、符号Sは「スペース」であり、隣接する開口部3bと開口部4bの外周端間の距離を意味する。符号Lは「ピッチ」であり、隣接する開口部3bの中心(黒丸)と開口部4bの中心(黒丸)との距離である。
The openings 103b and 104b of the channel group α and the channel group β (1) facing the region A are arranged in a two-dimensional direction on the surface facing the region A as shown in FIG. Has been. Further, the openings are alternately formed so as to be the most adjacent positions.
In FIG. 15D, the symbol S is “space”, which means the distance between the outer peripheral ends of the adjacent opening 3b and the opening 4b. The symbol L is “pitch”, which is the distance between the center (black circle) of the adjacent opening 3b and the center (black circle) of the opening 4b.
(9)第1実施形態および第2実施形態と比較例との機能比較
 上記(1)~(8)を踏まえ、第1実施形態および第2実施形態の課題(混合性、処理能力、耐圧)を中心として、一覧表にまとめた結果を、表1に示す。各項目A~Fは各々、最も優れた構成例を最高評価「5」として5段階で表示している。
 流体制御デバイス(ガラス部)については、次のA~Dを評価した。
 A:混合性とは、2つの流体同士の混ざりやすさを意味する。
 B:処理能力とは、単位時間あたりに生産される混合液の量を意味する。流路の圧力損失が小さいほど、処理能力は高まる。
 C:耐圧性とは、流体圧力に対する流路の強度を意味する。
 D:フィルタ効果とは、異物が基体内部に流入するのを防ぐ能力の高さを意味する。基体の流入空間に近い位置での開口部が小さいほど、フィルタ効果は高まる。
 流体混合器(基体と筐体との関係)については、次のE~Fを評価した。
 E:耐圧性とは、流体圧力に対する流路の強度と、基体と筐体部との間のシール強度との総合性能を意味する。
 F:処理能力とは、単位時間あたりに生産される混合液の量と、基体と筐体部との間のシール強度との総合性能を意味する。
(9) Functional comparison between the first embodiment and the second embodiment and a comparative example Based on the above (1) to (8), the problems of the first embodiment and the second embodiment (mixability, processing capability, withstand voltage) Table 1 shows the results summarized in the list centering on. Each item A to F is displayed in five stages, with the most excellent configuration example as the highest evaluation “5”.
Regarding the fluid control device (glass part), the following A to D were evaluated.
A: Mixability means the ease of mixing of two fluids.
B: A processing capacity means the quantity of the liquid mixture produced per unit time. The smaller the pressure loss in the flow path, the higher the throughput.
C: Pressure resistance means the strength of the flow path with respect to the fluid pressure.
D: The filter effect means a high ability to prevent foreign matter from flowing into the substrate. The smaller the opening at the position near the inflow space of the substrate, the higher the filter effect.
Regarding the fluid mixer (relationship between the substrate and the casing), the following E to F were evaluated.
E: Pressure resistance means the total performance of the strength of the flow path with respect to the fluid pressure and the strength of the seal between the base and the casing.
F: The processing capacity means the total performance of the amount of the mixed liquid produced per unit time and the seal strength between the substrate and the casing.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の特記事項Tに記載した内容は、以下のとおりである。特に、第1実施形態および第2実施形態に係るNo.E1~E6の比較例1(C1)に対する特徴を記す。
  T1:流体制御デバイスの処理能力が高い。
  T2:流体制御デバイスの処理能力が高い。加えて、流体制御デバイスが千鳥格子状の複数の開口部を有することにより、流体の混合速度の向上が図れる。また、流体制御デバイスが千鳥格子状の複数の開口部を有することにより、流体の流速分布を均一にすることができる。さらに、流体制御デバイスが千鳥格子状の複数の開口部を有することにより、混合される2液の境界面を4面にすることができる。
  T3:流体制御デバイスの耐圧性を高めつつ、流体制御デバイスの処理能力を確保できる。
  T4:最も性能のバランスが良い流体制御デバイスが得られる。E4の流体混合器は、基体の上下両面から基体を挟むように筐体を配する構成を有する。さらに、E4の流体制御デバイスおよび流体混合器は、基体が大きな流入量に対応できるため、処理能力を向上させることができる。加えて、E4の流体制御デバイスおよび流体混合器によれば、基体の圧力損失の低減も図れる。
  T5:E5の流体制御デバイスおよび流体混合器は、E4の流体制御デバイスおよび流体混合器の機能および特性を有し、フィルタ機能を流体制御デバイスおよび流体混合器に追加できるので、長期安定性に優れる。
  T6:E1~E5の流体制御デバイスおよび流体混合器と比較して、E6の流体混合器の処理能力が最も高い。
The contents described in the special note T in Table 1 are as follows. In particular, in No. 1 according to the first embodiment and the second embodiment. The characteristics of E1 to E6 with respect to Comparative Example 1 (C1) will be described.
T1: The processing capability of the fluid control device is high.
T2: The processing capability of the fluid control device is high. In addition, since the fluid control device has a plurality of openings in a staggered pattern, the fluid mixing speed can be improved. Further, since the fluid control device has a plurality of openings in a staggered pattern, the fluid flow velocity distribution can be made uniform. Furthermore, since the fluid control device has a plurality of openings in a staggered pattern, the boundary surface of the two liquids to be mixed can be four.
T3: The processing capability of the fluid control device can be secured while increasing the pressure resistance of the fluid control device.
T4: A fluid control device with the best balance of performance can be obtained. The E4 fluid mixer has a configuration in which a housing is disposed so as to sandwich the substrate from both the upper and lower surfaces of the substrate. Further, the E4 fluid control device and the fluid mixer can improve the throughput because the substrate can cope with a large inflow amount. In addition, according to the fluid control device and the fluid mixer of E4, the pressure loss of the substrate can be reduced.
T5: The fluid control device and fluid mixer of E5 have the functions and characteristics of the fluid control device and fluid mixer of E4, and the filter function can be added to the fluid control device and fluid mixer, so it has excellent long-term stability. .
T6: Compared to E1-E5 fluid control devices and fluid mixers, E6 fluid mixers have the highest throughput.
 表1より、以下のことが明らかとなった。
 (1)混合性に関して、第1実施形態および第2実施形態に係る流体制御デバイス(E1~E6)と比較例(C1~C2)とは違いがなく、何れも優れた特性を有する。
 (2)基体の処理能力に関して、第1実施形態および第2実施形態に係る流体制御デバイス(E1~E6)のいずれもが、比較例(C1~C2)と比べて高い。特に、E1、E2、およびE6が優れている。
 (3)耐圧性に関しては、全ての流路が微細孔から構成される比較例が優れている。しかしながら、第1実施形態および第2実施形態に係る流体制御デバイスにおいても、トレンチ構造を分割した構成を備える流体制御デバイスおよび流体混合器(E3)を用いることにより、比較例と同様の耐圧性が確保される。
 (4)流体混合器(基体と筐体との関係)において、優れた耐圧性を得るためには、流体制御デバイスを挟む位置に各々、流入空間と流出空間を設ける構成(E4~E6)が有効である。この構成を採用する場合は、流体制御デバイスと筐体との間に、シール部材を設けて、流体制御デバイスと筐体2とが互いに互いにシール部材を介して接触するように構成することが可能なので、耐圧性がさらに改善される。
 また、E4~E6の流体混合器によれば、流体制御デバイスが着脱可能であり、交換・メンテナンスの点からも有効である。
 (ホ)流体混合器(基体と筐体との関係)において、優れた処理能力を得るためには、誘導空間のうち、微細孔とトレンチ構造との組み合わせは、最小限の部分(混合空間Saのに近い位置に位置する箇所)だけに留める構成が有効である(E6)。E6の流体混合器は、E1~E5の流体混合器と比べて、処理能力が最も高いことから、流体制御デバイスの耐圧性に工夫を要する。
 したがって、第1実施形態および第2実施形態は、極めて効率的な流体の混合を可能にすると共に、処理能力が高く、高耐圧を有する流体制御デバイス、及び流体混合器の提供に寄与する。
From Table 1, the following became clear.
(1) Regarding the mixing property, there is no difference between the fluid control devices (E1 to E6) and the comparative examples (C1 to C2) according to the first and second embodiments, and all have excellent characteristics.
(2) Regarding the substrate processing capability, all of the fluid control devices (E1 to E6) according to the first embodiment and the second embodiment are higher than the comparative examples (C1 to C2). In particular, E1, E2, and E6 are excellent.
(3) Regarding the pressure resistance, a comparative example in which all the flow paths are composed of fine holes is excellent. However, in the fluid control device according to the first embodiment and the second embodiment, the same pressure resistance as in the comparative example can be obtained by using the fluid control device and the fluid mixer (E3) having a configuration in which the trench structure is divided. Secured.
(4) In the fluid mixer (relationship between the substrate and the casing), in order to obtain excellent pressure resistance, a configuration (E4 to E6) in which an inflow space and an outflow space are provided at positions sandwiching the fluid control device, respectively. It is valid. When this configuration is adopted, it is possible to provide a seal member between the fluid control device and the housing so that the fluid control device and the housing 2 are in contact with each other via the seal member. Therefore, pressure resistance is further improved.
Further, according to the fluid mixers E4 to E6, the fluid control device can be attached and detached, which is effective from the viewpoint of replacement and maintenance.
(E) In the fluid mixer (relationship between the substrate and the casing), in order to obtain excellent processing capability, the combination of the micropores and the trench structure is the minimum part (mixing space Sa) of the induction space. (E6) is effective in that it is limited only to a portion located at a position close to (E6). Since the E6 fluid mixer has the highest processing capacity compared to the E1 to E5 fluid mixers, the pressure resistance of the fluid control device needs to be devised.
Therefore, the first embodiment and the second embodiment contribute to the provision of a fluid control device and a fluid mixer that enable extremely efficient fluid mixing and have high processing capability and high pressure resistance.
(10)流体制御デバイスの応用例(第3実施形態)
 図14は、上述したような流体制御デバイス1(1a、および1b)を搭載した第3実施形態に係るμTASチップ100の一構成例を示す模式図である。図14(a)は、μTASチップ100の平面図である。図14(b)は、流体制御デバイス部分の拡大平面図である。図14(c)は、流体制御デバイス部分の拡大断面図である。
(10) Application example of fluid control device (third embodiment)
FIG. 14 is a schematic diagram showing a configuration example of the μTAS chip 100 according to the third embodiment on which the fluid control device 1 (1a and 1b) as described above is mounted. FIG. 14A is a plan view of the μTAS chip 100. FIG. FIG. 14B is an enlarged plan view of the fluid control device portion. FIG. 14C is an enlarged cross-sectional view of the fluid control device portion.
 図14に示したμTASチップ100は、μTASチップ本体として機能する基体110と、この基体110と一体を成すように設けられた流体制御デバイス1(1a,1b)を少なくとも備える。このμTASチップ100は、さらに、流体制御デバイス1(1a、1b)の下流にリアクタ120、セパレータ130、検出器140を備えているが、これはμTASチップの一構成例であって、これに限定されるものではない。たとえば、リアクタ120、セパレータ130、および検出器140は、μTASチップ100と別体を成す構成としてもよい。 The μTAS chip 100 shown in FIG. 14 includes at least a base body 110 that functions as a μTAS chip body and a fluid control device 1 (1a, 1b) provided so as to be integrated with the base body 110. The μTAS chip 100 further includes a reactor 120, a separator 130, and a detector 140 downstream of the fluid control device 1 (1a, 1b). However, this is a configuration example of the μTAS chip, and the present invention is not limited thereto. Is not to be done. For example, the reactor 120, the separator 130, and the detector 140 may be configured separately from the μTAS chip 100.
 分析対象の流体(液体や気体)および選択されたキャリアは、流入空間SbおよびScから、それぞれのフィルタ機能部Fを通った後、流体制御デバイス1の誘導空間へ流入し、流出空間(混合空間)Saで混合される。その後、リアクタ120で反応したサンプルは、必要に応じてセパレータ130で、キャリアと分離され、所望の分析情報が検出器140によって、外部機器等へ取り出される。 The fluid to be analyzed (liquid or gas) and the selected carrier pass from the inflow spaces Sb and Sc through the respective filter function units F, and then flow into the induction space of the fluid control device 1 and the outflow space (mixing space). ) Mixed with Sa. Thereafter, the sample reacted in the reactor 120 is separated from the carrier by the separator 130 as necessary, and desired analysis information is taken out by the detector 140 to an external device or the like.
 なお、μTASの構成としては、第3実施形態のように流体混合部やリアクタ、セパレータ等を一つの基板に集積させたデバイスの他に、流体混合器、リアクタ、セパレータ等の個別部品を組み上げてシステム化したデバイスを得ることもできる。 In addition, as a configuration of μTAS, in addition to a device in which a fluid mixing unit, a reactor, a separator, and the like are integrated on one substrate as in the third embodiment, individual components such as a fluid mixer, a reactor, and a separator are assembled. You can also get a systemized device.
 以上、本発明の実施形態として、具体例を挙げて説明したが、本発明の技術的範囲は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 The embodiments of the present invention have been described with specific examples. However, the technical scope of the present invention is not limited to the above-described embodiments, and various modifications are made without departing from the spirit of the present invention. It is possible.
 1a、1b、1c、1d、1e、1f(1) 流体制御デバイス、2 基体、3 第1のトレンチ構造、4 第2のトレンチ構造、5、6 微細孔、100 μTASチップ、Sa 流出空間(混合空間)、Sb、Sc 流入空間、α、β(n) 誘導空間群。 1a, 1b, 1c, 1d, 1e, 1f (1) Fluid control device, 2 substrate, 3rd first trench structure, 4th trench structure, 5th, 6th micropore, 100μTAS chip, Sa outflow space (mixed Space), Sb, Sc inflow space, α, β (n) induction space group.

Claims (5)

  1.  流体制御デバイスであって、
     複数の第1開口部を介して混合部に連通するとともに第1の流入部に連通する第1のトレンチ構造および複数の第2開口部を介して前記混合部に連通するとともに第2の流入部に連通する第2のトレンチ構造を備える誘導空間を有する基体を備え、
     前記混合部から見て、前記第1のトレンチ構造および前記第2のトレンチ構造は略長方形状を有し、
     前記第1のトレンチ構造の長辺が前記第2のトレンチ構造の長辺から所定の間隔で離間するように、前記第1のトレンチ構造および前記第2のトレンチ構造が並列に配置されている流体制御デバイス。
    A fluid control device comprising:
    A first trench structure that communicates with the mixing portion through the plurality of first openings and communicates with the first inflow portion, and a second inflow portion that communicates with the mixing portion through the plurality of second openings. A substrate having a guide space with a second trench structure communicating with
    As viewed from the mixing portion, the first trench structure and the second trench structure have a substantially rectangular shape,
    Fluid in which the first trench structure and the second trench structure are arranged in parallel so that the long side of the first trench structure is separated from the long side of the second trench structure at a predetermined interval Control device.
  2.  前記複数の第1開口部及び前記複数の第2開口部は、前記混合部が設けられている前記基体上の面において二次元方向に配置されている請求項1に記載の流体制御デバイス。 The fluid control device according to claim 1, wherein the plurality of first openings and the plurality of second openings are arranged in a two-dimensional direction on a surface on the base on which the mixing unit is provided.
  3.  互いに隣接する前記複数の第1開口部の距離、及び、互いに隣接する前記複数の第2開口部の距離よりも、互いに隣接する第1開口部と第2開口部との距離が小さくなるように配置されている請求項2に記載の流体制御デバイス。 The distance between the first opening and the second opening adjacent to each other is smaller than the distance between the plurality of first openings adjacent to each other and the distance between the plurality of second openings adjacent to each other. The fluid control device according to claim 2, which is arranged.
  4.  前記第1のトレンチ構造は、前記第1のトレンチ構造の長辺方向に沿って配置された第1の隔壁によって分割されており、
     前記第2のトレンチ構造は、前記第2のトレンチ構造の長辺方向に沿って配置された第2の隔壁によって分割されている
     請求項1から請求項3のいずれか一項に記載の流体制御デバイス。
    The first trench structure is divided by a first partition arranged along a long side direction of the first trench structure;
    The fluid control according to any one of claims 1 to 3, wherein the second trench structure is divided by a second partition wall arranged along a long side direction of the second trench structure. device.
  5.  請求項1から請求項4のいずれか一項に記載の流体制御デバイスと、
     前記複数の第1開口部と前記複数の第2開口部に連通する単一の流出空間、前記流体制御デバイスの第1の流入部に連通する第1流入空間、および前記流体制御デバイスの第2の流入部に連通する第2流入空間を有する筐体と、
     を備えた流体混合器。
    A fluid control device according to any one of claims 1 to 4,
    A single outflow space communicating with the plurality of first openings and the plurality of second openings, a first inflow space communicating with a first inflow portion of the fluid control device, and a second of the fluid control device A housing having a second inflow space communicating with the inflow portion of
    A fluid mixer equipped with.
PCT/JP2014/065732 2013-06-14 2014-06-13 Fluid control device, and fluid mixer WO2014200088A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-126120 2013-06-14
JP2013126120A JP2015000375A (en) 2013-06-14 2013-06-14 Fluid control device, and fluid mixer

Publications (1)

Publication Number Publication Date
WO2014200088A1 true WO2014200088A1 (en) 2014-12-18

Family

ID=52022373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065732 WO2014200088A1 (en) 2013-06-14 2014-06-13 Fluid control device, and fluid mixer

Country Status (2)

Country Link
JP (1) JP2015000375A (en)
WO (1) WO2014200088A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017127830B3 (en) 2017-11-24 2019-05-09 Arianegroup Gmbh Fluid mixer with staggered Fluidkanalauslass, combustion chamber and aircraft with a fluid mixer
WO2021038977A1 (en) * 2019-08-28 2021-03-04 Nok株式会社 Particle analysis device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7391804B2 (en) * 2020-09-15 2023-12-05 株式会社東芝 Fluid controller and fluid mixer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002292274A (en) * 2001-04-02 2002-10-08 Mitsubishi Chemicals Corp Flow type micro-channel, a reactor and a reaction method
JP2004167607A (en) * 2002-11-15 2004-06-17 Tama Tlo Kk Microfluid element and its manufacturing method
US20090092526A1 (en) * 2007-09-25 2009-04-09 Oregon State University Micro-channels, micro-mixers, and micro-reactors
JP2012170915A (en) * 2011-02-23 2012-09-10 Dic Corp Micromixer
JP5062383B2 (en) * 2010-06-28 2012-10-31 Dic株式会社 Micro mixer
WO2013151126A1 (en) * 2012-04-06 2013-10-10 株式会社フジクラ Fluid control device and fluid mixer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002292274A (en) * 2001-04-02 2002-10-08 Mitsubishi Chemicals Corp Flow type micro-channel, a reactor and a reaction method
JP2004167607A (en) * 2002-11-15 2004-06-17 Tama Tlo Kk Microfluid element and its manufacturing method
US20090092526A1 (en) * 2007-09-25 2009-04-09 Oregon State University Micro-channels, micro-mixers, and micro-reactors
JP5062383B2 (en) * 2010-06-28 2012-10-31 Dic株式会社 Micro mixer
JP2012170915A (en) * 2011-02-23 2012-09-10 Dic Corp Micromixer
WO2013151126A1 (en) * 2012-04-06 2013-10-10 株式会社フジクラ Fluid control device and fluid mixer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017127830B3 (en) 2017-11-24 2019-05-09 Arianegroup Gmbh Fluid mixer with staggered Fluidkanalauslass, combustion chamber and aircraft with a fluid mixer
EP3488916A1 (en) * 2017-11-24 2019-05-29 ArianeGroup GmbH Fluid mixer with offset fluid channel outlet, combustion chamber and aircraft equipped with a fluid mixer
WO2021038977A1 (en) * 2019-08-28 2021-03-04 Nok株式会社 Particle analysis device
JPWO2021038977A1 (en) * 2019-08-28 2021-03-04

Also Published As

Publication number Publication date
JP2015000375A (en) 2015-01-05

Similar Documents

Publication Publication Date Title
JP6674933B2 (en) Process-enhanced microfluidic device
JP5604038B2 (en) Reaction apparatus and reaction plant
JP4466682B2 (en) Fluid mixing device
JP2011504221A (en) Microfluidic self-excited oscillation mixer and apparatus and method of use thereof
JP5963410B2 (en) Flow path device and fluid mixing method
CN207446126U (en) A kind of passive type micro-mixer
CN105056821B (en) Cross micromixer with symmetrical elliptic-arc-shaped baffles
CN107583551A (en) A kind of plane passive type micro-mixer of stepped passageway processing font baffle plate
JP2008093498A (en) Microreactor
WO2014200088A1 (en) Fluid control device, and fluid mixer
JP5651787B2 (en) Fluid control device and fluid mixer
CN112936855A (en) General quick micro mixer based on surface curing 3D printing
CN103285798B (en) Multilayer multistage microreactor
CN106215789A (en) A kind of backflow passive type micro-mixer based on jet current principle
KR102324465B1 (en) Microfluidic mixer and method of mixing fluid using the same
CN105107401A (en) Cross micromixer of symmetrical fan shaped annular baffle
CN116272735B (en) Single-layer stepped mixed reaction channel plate and micro-channel reactor
JP2015013265A (en) Fluid mixer
WO2006030952A1 (en) Fluid mixing device
JP2012170854A (en) Micromixer, and method for manufacturing micromixer
JP4687238B2 (en) Micro channel structure
JP2014231038A (en) Micro mixer
JP2009213983A (en) Micro-mixer
Duša et al. Design and Simulation of Microfluidic Micro-Mixer with Parallelogram Barriers
Chan et al. Development of a micro-channel contactor–separator for immiscible liquids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14810354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14810354

Country of ref document: EP

Kind code of ref document: A1