WO2014192904A1 - Method for growing gallium nitride crystal, composite substrate, method for manufacturing light emitting element, and dissolution preventing jig - Google Patents
Method for growing gallium nitride crystal, composite substrate, method for manufacturing light emitting element, and dissolution preventing jig Download PDFInfo
- Publication number
- WO2014192904A1 WO2014192904A1 PCT/JP2014/064373 JP2014064373W WO2014192904A1 WO 2014192904 A1 WO2014192904 A1 WO 2014192904A1 JP 2014064373 W JP2014064373 W JP 2014064373W WO 2014192904 A1 WO2014192904 A1 WO 2014192904A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alkali metal
- substrate
- molten alkali
- support substrate
- gallium nitride
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 176
- 239000013078 crystal Substances 0.000 title claims abstract description 143
- 229910002601 GaN Inorganic materials 0.000 title claims abstract description 101
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 title claims abstract description 97
- 238000000034 method Methods 0.000 title claims description 53
- 238000004090 dissolution Methods 0.000 title claims description 31
- 239000002131 composite material Substances 0.000 title claims description 20
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 57
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 57
- 239000000463 material Substances 0.000 claims abstract description 40
- 238000007716 flux method Methods 0.000 claims abstract description 37
- 229910052795 boron group element Inorganic materials 0.000 claims abstract description 27
- 150000004767 nitrides Chemical class 0.000 claims abstract description 22
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 99
- 239000011787 zinc oxide Substances 0.000 claims description 49
- 239000000155 melt Substances 0.000 claims description 32
- 239000000126 substance Substances 0.000 claims description 19
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- 230000001681 protective effect Effects 0.000 claims description 9
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 8
- 229910052733 gallium Inorganic materials 0.000 claims description 8
- 239000003870 refractory metal Substances 0.000 claims description 7
- 238000001451 molecular beam epitaxy Methods 0.000 claims description 6
- 239000000919 ceramic Substances 0.000 claims description 5
- 238000002844 melting Methods 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 5
- 239000002994 raw material Substances 0.000 claims description 5
- 238000005260 corrosion Methods 0.000 claims description 4
- 230000007797 corrosion Effects 0.000 claims description 4
- 238000000927 vapour-phase epitaxy Methods 0.000 claims description 2
- 230000007547 defect Effects 0.000 abstract description 6
- 239000010408 film Substances 0.000 description 63
- 239000010410 layer Substances 0.000 description 55
- 239000004065 semiconductor Substances 0.000 description 20
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 17
- 239000002245 particle Substances 0.000 description 16
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 12
- 239000002585 base Substances 0.000 description 10
- 239000012299 nitrogen atmosphere Substances 0.000 description 9
- 239000002346 layers by function Substances 0.000 description 8
- 239000012535 impurity Substances 0.000 description 7
- 239000011734 sodium Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000011109 contamination Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 229910052594 sapphire Inorganic materials 0.000 description 6
- 239000010980 sapphire Substances 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000002265 prevention Effects 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 238000001947 vapour-phase growth Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910052984 zinc sulfide Inorganic materials 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000006061 abrasive grain Substances 0.000 description 2
- 238000001994 activation Methods 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000001513 hot isostatic pressing Methods 0.000 description 2
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000005477 sputtering target Methods 0.000 description 2
- 238000005092 sublimation method Methods 0.000 description 2
- 229910052716 thallium Inorganic materials 0.000 description 2
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 2
- RGGPNXQUMRMPRA-UHFFFAOYSA-N triethylgallium Chemical compound CC[Ga](CC)CC RGGPNXQUMRMPRA-UHFFFAOYSA-N 0.000 description 2
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- AEQDJSLRWYMAQI-UHFFFAOYSA-N 2,3,9,10-tetramethoxy-6,8,13,13a-tetrahydro-5H-isoquinolino[2,1-b]isoquinoline Chemical compound C1CN2CC(C(=C(OC)C=C3)OC)=C3CC2C2=C1C=C(OC)C(OC)=C2 AEQDJSLRWYMAQI-UHFFFAOYSA-N 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 235000005811 Viola adunca Nutrition 0.000 description 1
- 240000009038 Viola odorata Species 0.000 description 1
- 235000013487 Viola odorata Nutrition 0.000 description 1
- 235000002254 Viola papilionacea Nutrition 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910007709 ZnTe Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- -1 alkyl metal compounds Chemical class 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 235000012207 sodium gluconate Nutrition 0.000 description 1
- 239000000176 sodium gluconate Substances 0.000 description 1
- 229940005574 sodium gluconate Drugs 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- IEXRMSFAVATTJX-UHFFFAOYSA-N tetrachlorogermane Chemical compound Cl[Ge](Cl)(Cl)Cl IEXRMSFAVATTJX-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- RZLVQBNCHSJZPX-UHFFFAOYSA-L zinc sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Zn+2].[O-]S([O-])(=O)=O RZLVQBNCHSJZPX-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
- H10H20/825—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
- C30B29/406—Gallium nitride
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B9/00—Single-crystal growth from melt solutions using molten solvents
- C30B9/04—Single-crystal growth from melt solutions using molten solvents by cooling of the solution
- C30B9/08—Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
- C30B9/10—Metal solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02623—Liquid deposition
- H01L21/02628—Liquid deposition using solutions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02636—Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
- H01L21/02639—Preparation of substrate for selective deposition
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B7/00—Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
- C30B7/14—Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0137—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials the light-emitting regions comprising nitride materials
Definitions
- the present invention relates to a method for growing a gallium nitride crystal, a composite substrate, a method for manufacturing a light emitting element, and a dissolution preventing jig.
- White LEDs are being used for various light sources.
- Low-brightness LEDs such as backlights and light bulbs are already in widespread use, and in recent years, studies on application to high-brightness LEDs such as projectors and headlights have become active.
- the mainstream white LEDs are formed by forming a light emitting layer made of a group 13 element nitride on a sapphire base substrate by metal organic chemical vapor deposition (MOCVD: Metal-Organic-Chemical-Vapor-Deposition) method.
- MOCVD Metal-Organic-Chemical-Vapor-Deposition
- White LEDs fabricated on the current mainstream sapphire base substrate have a large difference in material properties between sapphire, which is the base substrate, and gallium nitride, which is the light-emitting layer. ⁇ It is difficult to achieve high efficiency.
- HVPE method hydride vapor phase epitaxy
- Zinc oxide (ZnO) is a safe and inexpensive compound semiconductor, and is known as a material that is chemically stable and excellent in transparency. It is mainly used in the form of sintered bodies and powders, and is used for sputtering targets, varistors, additives to rubber, cosmetics and the like.
- the zinc oxide substrate which has the same hexagonal wurtzite crystal structure as gallium nitride and has a lattice constant and thermal expansion coefficient close to that of gallium nitride, is expected to improve the LED performance by reducing defects in the light emitting layer. As a research and development.
- Patent Document 1 discloses a crystal-oriented zinc oxide sintered body having a (101) crystal orientation ratio within a predetermined range as a sputtering target.
- Patent Document 2 discloses a (110) crystal-oriented zinc oxide sintered body.
- Si which has a large-diameter substrate exceeding 8 inches, in various semiconductor applications.
- the lattice constant and thermal expansion coefficient of zinc oxide are close to those of gallium nitride, so that defects in the light emitting layer are reduced, and LED performance is expected to be improved.
- impurities derived from zinc oxide are taken into the functional layer, so that carrier control is difficult and a high-performance LED cannot be manufactured.
- the zinc oxide substrate currently produced is based on the hydrothermal method, but its diameter and cost have not been reduced.
- Non-Patent Document 1 In order to suppress defects inside the light emitting layer, it is effective to increase the thickness of the n-type nitride layer between the light emitting layer and the stress relaxation layer (Non-Patent Document 1). Is slow and productivity is significantly reduced.
- the present invention uses a seed substrate comprising a support substrate made of a substance that dissolves in a molten alkali metal and a seed crystal film made of a group 13 element nitride formed on the outer surface of the support substrate. A region of the outer surface that is not covered with the seed crystal film is covered with a material insoluble in the molten alkali metal, and then a gallium nitride crystal is grown on the seed crystal film by a flux method, The present invention relates to a method for growing a gallium nitride crystal.
- the present invention also provides a support substrate made of a substance that dissolves in a molten alkali metal, A seed crystal film made of a group 13 element nitride formed on the outer surface of the support substrate; A protective film made of a material insoluble in the molten alkali metal that covers a region of the outer surface of the support substrate that is not covered with the group 13 element nitride film, and formed on the seed crystal film by a flux method.
- the present invention relates to a composite substrate comprising a gallium nitride crystal.
- the present invention also relates to a light emitting device having the light emitting layer formed on the composite substrate and the gallium nitride layer.
- the present invention also relates to a method for manufacturing a light-emitting element, in which a light-emitting layer is formed on the composite substrate by metal organic vapor phase epitaxy or molecular beam epitaxy.
- the present invention also provides a seed substrate comprising a support substrate made of a substance that dissolves in a molten alkali metal and a seed crystal film made of a group 13 element nitride formed on the outer surface of the support substrate for the flux method.
- a melting prevention jig for The dissolution preventing jig is in close contact with a region of the outer surface of the support substrate that is not covered with the seed crystal film, and prevents the support substrate from coming into direct contact with the molten alkali metal.
- a seed crystal film made of a group 13 element nitride is formed on the outer surface of a support substrate made of a substance that dissolves in a molten alkali metal, and the seed crystal film is coated on the outer surface of the support substrate.
- a region not formed is covered with a material insoluble in molten alkali metal, and a gallium nitride crystal is grown on the seed crystal film by a flux method.
- (A) is sectional drawing which shows the support substrate 1 typically
- (b) is sectional drawing which shows the state which formed the seed crystal film 2 on the support substrate 1
- (c) is support substrate 1
- (D) is the state which formed the gallium nitride crystal 5 on the seed crystal film 2. It is sectional drawing shown.
- FIG. 1 is sectional drawing which shows the state which grind-processed the gallium nitride crystal 5 of FIG.1 (d), and formed the gallium nitride crystal 5A
- (b) shows the light emitting layer 7 on the gallium nitride crystal 5A.
- It is sectional drawing which shows the formed state.
- (A) is sectional drawing which shows the support substrate 1 typically
- (b) is sectional drawing which shows the state which formed the seed crystal film 2 on the support substrate 1
- (c) is a seed crystal film 2 is a cross-sectional view showing a state in which a gallium nitride crystal 5 is formed on 2.
- FIG. 3A is a cross-sectional view showing a state in which the gallium nitride crystal 5A of FIG. 3C is polished to form a gallium nitride crystal 5A
- FIG. 3B is a cross-sectional view of the light emitting layer 7 on the gallium nitride crystal 5A.
- It is sectional drawing which shows the formed state.
- (A) is sectional drawing which shows typically the state which set the seed substrate to the dissolution prevention jig
- (b) is a top view which shows the state which set the seed substrate to the dissolution prevention jig
- FIG. 6 is a schematic diagram showing a state where the seed substrate and the dissolution preventing jig of FIG. 5 are immersed in the melt 16.
- the support substrate 1 which consists of a substance which melt
- the outer surface of the support substrate 1 includes a first main surface 1a, a second main surface 1b opposite to the main surface 1a, and a side surface 1c formed between the main surfaces 1a and 1b.
- the planar form of the substrate 1 is not illustrated, it is not particularly limited, and may have any form such as a wafer shape, a polygonal shape, and a circular shape.
- a seed crystal film 2 made of a group 13 element nitride is formed on the first main surface 1a.
- the seed crystal film 2 is preferably formed over the entire main surface 1a, but the seed crystal film 2 may not be formed on the outer edge of the main surface 1a, and the main surface of the support substrate may be exposed.
- a protective film made of a material insoluble in molten alkali metal is formed on the second main surface 1b and the side surface 1c of the support substrate 1 that are not covered with the seed crystal film 2. 3A and 3B are coated. As a result, the outer surface of the support substrate 1 is not directly exposed, and the seed substrate 4 is obtained.
- the seed substrate 4 is immersed in the melt, and a gallium nitride crystal 5 is grown as shown in FIG. 1 (d) by a flux method.
- a gallium nitride crystal 5 is grown as shown in FIG. 1 (d) by a flux method.
- the support substrate 1 does not come into contact with the melt, dissolution thereof is prevented, so that the growth of the gallium nitride crystal is not inhibited and no contamination occurs.
- the polished gallium nitride crystal 5A can be formed by polishing the surface of the gallium nitride crystal, as shown in FIG. In this way, the warpage of the composite substrate 6 can be adjusted and the flatness of the surface of the gallium nitride crystal can be improved.
- a light emitting element is obtained by forming the light emitting layer 7 on the polished gallium nitride crystal 5A as shown in FIG. 2B.
- a region of the outer surface of the support substrate that is not covered with the seed crystal film is covered with a dissolution preventing jig made of a material insoluble in the molten alkali metal, so that the support substrate is melted. To prevent contact.
- a region of the outer surface of the support substrate that is not covered with the seed crystal film it is not necessary to cover a region of the outer surface of the support substrate that is not covered with the seed crystal film with a protective film made of a material insoluble in molten alkali metal, and the outer surface of the support substrate is exposed.
- the effect of the present invention can be obtained.
- a support substrate 1 made of a substance that dissolves in a molten alkali metal is prepared.
- a seed crystal film 2 made of a group 13 element nitride is formed on the first main surface 1a.
- the second main surface 1b and the side surface 1c of the support substrate are exposed.
- the seed substrate of FIG. 3B is immersed in the melt, and the gallium nitride crystal 5 is grown by the flux method as shown in FIG. 3C.
- the outer surface of the support substrate is exposed.
- the second main surface 1b and the side surface 1c of the support substrate are dissolved in the molten alkali metal in the melt to inhibit the growth of the gallium nitride crystal. Since contamination occurs, when this type of substrate is used, a dissolution preventing jig is used.
- a light emitting layer can be formed thereon.
- a polished gallium nitride crystal 5A can be formed and a composite substrate 9 can be obtained.
- the light emitting element is obtained by forming the light emitting layer 7 on the polished gallium nitride crystal 5A.
- the dissolution preventing jig 11 has a main surface covering portion 12 that covers the second main surface, a side surface covering portion 13 a that covers the side surface, and an outer edge covering portion 13 b that covers the outer edge of the seed crystal film 2.
- the main surface covering portion 12 is a separate member separated from the side surface covering portion 13a, and the side surface covering portion 13a and the outer edge covering portion 13b constitute an integral member.
- the dissolution preventing jig and the seed substrate of FIG. 5 are immersed in the melt 16 in the crucible 15.
- the melt 16 enters the gap 14.
- the entire outer surface of the support substrate 1 is covered with the dissolution preventing jig 11 and the seed crystal film 2, the contact of the support substrate with the melt can be prevented.
- the outer edge covering portion 13b is not always necessary.
- the dissolution preventing jig 11A shown in FIG. 7 includes a main surface covering portion 17a that covers the second main surface, a side surface covering portion 17b that covers the side surface, and an outer edge covering portion that covers the outer edge of the seed crystal film 2. 18.
- the main surface covering portion 17a and the side surface covering portion 17b constitute an integral member, and the outer edge covering portion 18 is a separate member.
- a crucible for containing the melt functions as a dissolution preventing jig. This eliminates the need to provide a separate jig from the crucible.
- the melt 16 is accommodated in the crucible 20.
- the second main surface 1b of the support substrate 1 is placed on the bottom 20c of the crucible 20, and the second main surface 1b is in contact with the bottom surface 20a.
- the seed substrate is accommodated inside the substrate accommodating portion 20d of the crucible 20, and the inner wall surface 20b of the substrate accommodating portion 20d is in contact with the side surface of the seed substrate.
- the melt accommodating part 20f is provided on the board
- the melt 16 exists on the seed crystal film 2, and a gallium nitride crystal is grown on the seed crystal film.
- the second main surface 1b of the support substrate 1 is in contact with the bottom surface 20a of the crucible, and the side surface 1b of the support substrate 1 is in contact with the inner wall surface 20b of the substrate housing portion. Is prevented from touching.
- a step surface 20e is formed between the substrate housing portion 20d and the melt housing portion 20f, and an outer edge covering portion 21 is provided on the step surface 20e.
- the outer edge covering portion 21 covers the outer edge of the seed crystal film 2, thereby increasing the creeping distance of the melt to the side surface of the support substrate, and more reliably preventing the melt from contacting the support substrate.
- the material that dissolves in the molten alkali metal is a material that dissolves in the molten alkali metal constituting the melt used in the flux method.
- the alkali metal is an alkali metal specified in the periodic table, and sodium is particularly preferable.
- dissolving in a molten alkali metal means the following.
- molten alkali metal molten alkali metal used for growing a gallium nitride crystal
- a flux method When the surface is eroded by molten alkali metal at a rate of 12 ⁇ m / hour or more, the substance is determined to be dissolved in molten alkali metal used as a flux.
- the substance that dissolves in the molten alkali metal is particularly preferably zinc oxide or Si.
- the support substrate is composed of an oriented polycrystalline zinc oxide sintered body.
- the zinc oxide crystal has a hexagonal wurtzite structure
- the oriented polycrystalline zinc oxide sintered body is a solid formed by bonding innumerable zinc oxide crystal particles to each other by sintering.
- Zinc oxide crystal particles are particles composed of zinc oxide, and may contain dopants and inevitable impurities as other elements, or may be composed of zinc oxide and inevitable impurities. Such other elements may be substituted with hexagonal wurtzite structure Zn sites or O sites, may be included as additive elements that do not constitute a crystal structure, or exist at grain boundaries. It may be a thing.
- the zinc oxide sintered body may also contain other phases or other elements as described above in addition to the zinc oxide crystal particles, but preferably comprises zinc oxide crystal particles and inevitable impurities.
- the oriented polycrystalline zinc oxide sintered body may be composed of ZnO mixed with at least one crystal selected from the group consisting of MgO, CdO, ZnS, ZnSe, and ZnTe.
- a hot isostatic pressing method (HIP) or a hot press method (HP) can be used.
- the average particle diameter of the zinc oxide single crystal particles constituting the oriented polycrystalline zinc oxide sintered body is preferably 1 to 100 ⁇ m, more preferably 10 to 80 ⁇ m, and still more preferably 20 to 50 ⁇ m. Within these ranges, the light emission efficiency, mechanical strength, light scattering properties, reflectivity, etc. are excellent.
- the average particle size of the sintered particles in the present invention is measured by the following method. That is, a sample of an appropriate size is cut out from the plate-shaped sintered body, the surface perpendicular to the plate surface is polished, etched with nitric acid having a concentration of 0.3 M for 10 seconds, and then an image is obtained with a scanning electron microscope. Take a picture.
- the visual field range is a visual field range in which straight lines intersecting 10 to 30 particles can be drawn when straight lines parallel and perpendicular to the plate surface are drawn.
- the value obtained by multiplying the average of the lengths of the inner line segments of each particle by 1.5 for all particles intersecting with the straight line is defined as a1.
- a value obtained by multiplying the average length of the line segments inside the individual particles by 1.5 for all the particles intersecting the straight lines is a2.
- (A1 + a2) / 2 is the average particle size.
- the orientation plane orientation of the oriented polycrystalline zinc oxide sintered body is not particularly limited, and may be a (002) plane, a (100) plane, or a (110) plane. Alternatively, it may be the (101) plane or another plane.
- the degree of orientation for example, the degree of orientation on the substrate surface is preferably 50% or more, more preferably 65% or more, and further preferably 75% or more. This degree of orientation was measured using an XRD apparatus (for example, product name “RINT-TTR III” manufactured by Rigaku Corporation) and measuring the XRD profile when the surface of the plate-like zinc oxide was irradiated with X-rays. In the case of evaluating a sintered body oriented other than the (110) plane, it can be obtained by calculation according to the following formula.
- the above formula is an equation assuming that the (110) plane need not be considered. However, when the (110) plane needs to be considered, that is, the sintered body oriented in the (110) plane is evaluated. In this case, I0 (110) and Is (110) corresponding to the diffraction intensity of the (110) plane may be added to the denominators of the second and third expressions, respectively. That is, I0 (110) is ICDDNo. This is the diffraction intensity (integrated value) of the (110) plane in 361451, and Is (110) is the diffraction intensity (integrated value) of the (110) plane in the sample.
- a large-diameter gallium nitride substrate was realized by producing a gallium nitride (GaN) crystal on a highly oriented zinc oxide substrate by a flux method.
- GaN gallium nitride
- gallium nitride Compared to sapphire, zinc oxide has a lattice constant and thermal expansion coefficient close to that of gallium nitride, so that the crystallinity of gallium nitride is improved and the defect density is reduced. Since the growth temperature of gallium nitride crystals by the flux method (for example, about 850 ° C) is lower than the gallium nitride film formation temperature of 1000 ° C or more by the MOCVD method, contamination of gallium nitride due to decomposition of zinc oxide is suppressed. . By using this large-diameter gallium nitride substrate as a base and forming a light-emitting layer by MOCVD, it becomes possible to fabricate high-brightness and high-efficiency LEDs.
- a large reduction in the cost of the gallium nitride substrate can be expected by using Si, which has a large-diameter substrate exceeding 8 inches in various semiconductor applications, as the base substrate.
- a low-defect gallium nitride film can be formed at high speed. Since Si is easily dissolved in molten Na used for the flux method, it could not be applied to the flux method. However, according to the present invention, the flux method can be applied to the formation of the gallium nitride film on the Si single crystal substrate, and a low-defect gallium nitride film can be formed.
- a seed substrate is obtained by providing a seed crystal film made of a group 13 element nitride on the outer surface of the support substrate.
- the seed crystal film may be a single layer, or may include a buffer layer on the support substrate side.
- the group 13 element is a group 13 element according to the periodic table established by IUPAC.
- the group 13 element is specifically gallium, aluminum, indium, thallium, or the like.
- the group 13 element nitride is particularly preferably GaN, AlN, InN, or GaAlN.
- the additive include carbon, low melting point metals (tin, bismuth, silver, gold) and high melting point metals (transition metals such as iron, manganese, titanium, and chromium).
- the method for forming the seed crystal film is preferably a vapor phase growth method, but examples include a MOCVD method, a hydride vapor phase growth (HVPE) method, a pulsed excitation deposition (PXD) method, a molecular beam epitaxy (MBE) method, and a sublimation method. Metalorganic chemical vapor deposition is particularly preferred.
- the growth temperature is preferably 950 to 1200 ° C.
- a region of the outer surface of the support substrate that is not covered with the seed crystal film is covered with a material insoluble in the molten alkali metal.
- insoluble in molten alkali metal is defined as follows.
- the rate at which the surface of a substance is eroded when it is brought into contact with a molten alkali metal molten alkali metal used when growing a gallium nitride crystal
- a molten alkali metal molten alkali metal used when growing a gallium nitride crystal heated to the growth temperature for growing a gallium nitride crystal by the flux method. Is 0.4 ⁇ m or less per hour, it is determined that the substance does not dissolve in the molten alkali metal used as the flux.
- the material insoluble in the molten alkali metal is a group 13 element nitride.
- group 13 element nitride include those listed for the seed crystal film.
- the material insoluble in the molten alkali metal is a corrosion-resistant ceramic.
- a corrosion-resistant ceramic dense alumina, yttria or silicon carbide is preferable.
- the material insoluble in the molten alkali metal is a refractory metal.
- the refractory metal is a metal having a melting point of 2000 ° C. or higher. This refractory metal is preferably tantalum or tungsten.
- a vapor phase growth method is preferable, but an MOCVD method, an HVPE method, a PXD method, an MBE method, and a sublimation method can be exemplified.
- a gallium nitride crystal is grown on the seed crystal film by a flux method.
- a gallium raw material is mixed in the melt.
- the gallium source material a single metal, an alloy, or a compound can be applied, but a single metal of gallium is preferable from the viewpoint of handling.
- a single crystal is grown in an atmosphere containing a gas containing nitrogen atoms.
- This gas is preferably nitrogen gas, but may be ammonia.
- the gas other than the gas containing nitrogen atoms in the atmosphere is not limited, but an inert gas is preferable, and argon, helium, and neon are particularly preferable.
- Temperature and pressure during growth can be selected as appropriate.
- the pressure during growth is preferably 1 MPa to 10 MPa, more preferably 3 MPa to 5 MPa.
- the temperature during growth is preferably 750 to 950 ° C., more preferably 800 to 900 ° C.
- the ratio (mol ratio) of gallium / molten alkali metal in the melt is preferably increased from the viewpoint of the present invention, preferably 18 mol% or more, and more preferably 25 mol% or more. However, if this ratio becomes too large, the crystal quality tends to deteriorate, so 40 mol% or less is preferable.
- a functional layer can be provided on the obtained gallium nitride crystal. As functions, it can be used for white LEDs with high luminance and high color rendering, blue-violet laser disks for high-speed and high-density optical memories, power devices for inverters for hybrid vehicles, and the like.
- the material of the functional layer is preferably a group 13 element nitride.
- Group 13 elements are Group 13 elements according to the periodic table established by IUPAC.
- the group 13 element is specifically gallium, aluminum, indium, thallium, or the like.
- the light-emitting element for example, an n-type semiconductor layer, a light-emitting region provided on the n-type semiconductor layer, and a p-type semiconductor layer provided on the light-emitting region are provided.
- the light-emitting element can be further provided with an electrode for an n-type semiconductor layer, an electrode for a p-type semiconductor layer, a conductive adhesive layer, a buffer layer, a conductive support, and the like (not shown).
- the film forming temperature of the n-type semiconductor layer is preferably 950 ° C. or higher, and more preferably 1000 ° C. or higher, from the viewpoint of the film forming speed. Further, from the viewpoint of suppressing defects, the film formation temperature of the functional layer is preferably 1200 ° C. or lower, and more preferably 1150 ° C. or lower.
- the translucent electrode is a translucent electrode made of a metal thin film or a transparent conductive film formed on almost the entire surface of the p-type semiconductor layer.
- the material of the semiconductor constituting the n-type semiconductor layer and the p-type semiconductor layer is made of a III-V group compound semiconductor, and examples thereof are as follows.
- Examples of the doping material for imparting n-type conductivity include silicon, germanium, and oxygen.
- magnesium and zinc can be illustrated as a dope material for providing p-type conductivity.
- MOCVD method metal organic chemical vapor deposition method
- MBE method molecular beam epitaxy method
- HVPE method hydride vapor phase epitaxy method
- the MOCVD method can obtain a semiconductor layer with good crystallinity and flatness.
- alkyl metal compounds such as TMG (trimethyl gallium) and TEG (triethyl gallium) are often used as the Ga source, and gases such as ammonia and hydrazine are used as the nitrogen source.
- the atmosphere gas hydrogen gas, nitrogen gas, or the like is used.
- the light emitting region includes a quantum well structure including a barrier layer and a well layer.
- the material of the well layer is designed so that the band gap is smaller than the materials of the n-type semiconductor layer and the p-type semiconductor layer.
- the quantum well structure may be a single quantum well (SQW) structure or a multiple quantum well (MQW) structure.
- SQW single quantum well
- MQW multiple quantum well
- the material of a quantum well structure can illustrate the following.
- Example 1 A composite substrate was produced according to the procedure shown in FIGS. That is, the following procedure was used to produce a uniaxially oriented gallium nitride substrate using a zinc oxide polycrystalline substrate as a support substrate.
- a c-plane plate-like crystal of zinc oxide was produced by a solution method. Specifically, 173 parts by weight of zinc sulfate heptahydrate (manufactured by Kojundo Chemical Laboratory) and 0.45 parts by weight of sodium gluconate (manufactured by Wako Pure Chemical Industries, Ltd.) were dissolved in 300 parts by weight of ion-exchanged water. The solution thus obtained was placed in a beaker and dissolved by heating to 90 ° C. while stirring with a magnetic stirrer. This solution was kept at 90 ° C., and 49 parts by weight of 25% ammonium water was added dropwise with a microtube pump while stirring. After completion of dropping, the solution was kept at 90 ° C.
- the temperature schedule at the time of calcination was raised from room temperature to 900 ° C. at a rate of temperature increase of 100 ° C./h, and then kept at 900 ° C. for 30 minutes to allow natural cooling.
- a binder polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.
- a plasticizer DOP: di (2-ethylhexyl) phthalate
- a dispersant product name Leodol SP-O30, Kao Corporation
- a dispersion medium 2-ethylhexanol
- the slurry thus prepared was formed into a sheet shape on a PET film by a doctor blade method so that the thickness after drying was 20 ⁇ m.
- the obtained tape was cut into a sheet having a diameter of 2 inches, 50 pieces of cutting tape were laminated, placed on an aluminum plate having a thickness of 10 mm, and then vacuum packed. This vacuum pack was hydrostatically pressed at a pressure of 100 kgf / cm 2 in 85 ° C. warm water to produce a plate-like molded body.
- the obtained molded body was placed in a degreasing furnace and degreased at 600 ° C. for 20 hours.
- the obtained degreased body was fired at 1400 ° C. for 5 hours under normal pressure in nitrogen to prepare a plate-like ZnO oriented sintered body substrate.
- the (002) orientation degree F (002) of the obtained sintered body was measured by XRD.
- an XRD apparatus product name “RINT-TTR III” manufactured by Rigaku Corporation
- the (002) orientation degree of the support substrate measured in this way was 80%. Further, when the material of the support substrate was brought into contact with molten sodium at 850 ° C., the rate at which the surface of the material of the support substrate was eroded was 50 ⁇ m per hour.
- a seed crystal film 2 made of gallium nitride having a thickness of 3 ⁇ m was formed at 800 ° C. in a nitrogen atmosphere on the main surface 1a of the support substrate 1 by MOCVD. Further, the side surface not covered with the seed crystal film 2 and the second main surface were coated with the protective films 3A and 3B made of dense alumina by sputtering, and the seed substrate 4 was obtained. When this dense alumina was brought into contact with molten sodium at 850 ° C., the rate at which the surface of the material was eroded was 0.05 ⁇ m per hour.
- the obtained seed substrate 4 was placed on the bottom portion of a cylindrical flat bottom alumina crucible having an inner diameter of 80 mm and a height of 45 mm, and then the melt composition was filled in the crucible in a glove box.
- the composition of the melt composition is as follows. ⁇ Metal Ga: 60g ⁇ Metal Na: 60g ⁇ Germanium tetrachloride: 1.85 g
- the alumina crucible was placed on a table that can rotate the crystal growth furnace.
- the gallium nitride crystal was grown with stirring by rotating the solution while maintaining the temperature for 24 hours after heating and pressurizing to 850 ° C. and 4.0 MPa in a nitrogen atmosphere. After completion of the crystal growth, it was gradually cooled to room temperature over 3 hours, and the growth vessel was taken out of the crystal growth furnace.
- the melt composition remaining in the crucible was removed using ethanol, and the sample on which the gallium nitride crystal was grown was collected.
- a Ge-doped gallium nitride crystal was grown on a gallium nitride film formed by MOCVD on the zinc oxide substrate, and the thickness of the crystal was about 0.1 mm. Cracks were not confirmed.
- the surface of the sample thus obtained on the gallium nitride crystal side was flattened by grinding with a # 600 and # 2000 grindstone, and then smoothed by lapping using diamond abrasive grains. In the smoothing process, the flatness was improved while gradually reducing the size of the abrasive grains from 3 ⁇ m to 0.1 ⁇ m.
- the average surface roughness Ra of the processed gallium nitride was 0.2 nm and the thickness was 15 ⁇ m. In this way, a composite substrate made of gallium nitride and zinc oxide was produced.
- n-GaN layer doped with an Si atom concentration of 5 ⁇ 10 18 / cm 3 at 1050 ° C. was deposited as an n-type layer on the composite substrate by MOCVD.
- a multiple quantum well structure was deposited at 800 ° C. as a light emitting layer. Specifically, five pairs of InGaN well layers having a thickness of 2.5 nm and GaN barrier layers having a thickness of 10 nm were stacked.
- a p-GaN layer doped to have a Mg atom concentration of 1 ⁇ 10 19 / cm 3 at 950 ° C. was deposited as a p-type layer at 200 nm. After that, it was taken out from the MOCVD apparatus and subjected to a heat treatment at 800 ° C. for 10 minutes in a nitrogen atmosphere as an activation process for Mg ions in the p-type layer.
- a photolithography process and a vacuum deposition method were used for forming the LED element structure. After forming the electrode, a heat treatment at 700 ° C. in a nitrogen atmosphere was performed for 30 seconds in order to improve the ohmic contact characteristics. The wafer thus obtained was cut into chips and further mounted on a lead frame to obtain a light emitting device having a vertical structure.
- a large-diameter and high-quality gallium nitride composite substrate for manufacturing a high-luminance LED was realized.
- crystallographically oriented zinc oxide instead of sapphire for the support substrate, cost reduction of the gallium nitride substrate was realized.
- the flux method to produce gallium nitride crystals on zinc oxide contamination of impurities into the gallium nitride crystals was suppressed.
- Example 2 A light emitting device was fabricated according to the method described with reference to FIGS. Specifically, first, in the same manner as in Example 1, an oriented zinc oxide substrate (supporting substrate 1) having an orientation degree of 80% was produced. Next, a seed crystal film 2 made of gallium nitride having a thickness of 3 ⁇ m was formed at 800 ° C. in a nitrogen atmosphere on the first main surface of the support substrate 1 by MOCVD, thereby obtaining a seed substrate. Next, as shown in FIG. 5, the seed substrate was attached to the dissolution preventing jig 11.
- the dissolution preventing jig 11 is made of alumina and includes a bottom surface covering portion 12 and a side surface covering portion (ring) 13. When this alumina was brought into contact with molten sodium at 850 ° C., the rate at which the surface of the material was eroded was 0.2 ⁇ m per hour.
- the seed substrate placed on the dissolution preventing jig 11 was placed on the bottom portion of a cylindrical flat bottom alumina crucible 15 having an inner diameter of 80 mm and a height of 45 mm.
- crystal growth by a flux method, polishing, and formation of a light emitting functional layer by a MOCVD method were performed to manufacture a vertical light emitting device.
- current was passed between the cathode electrode and the anode electrode and IV measurement was performed rectification was confirmed. Further, when a forward current was passed, light emission with a wavelength of 450 nm was confirmed.
- Example 3 A light emitting element was fabricated in the same manner as in Example 2. However, the support substrate 1 made of 6-inch Si single crystal was used. A seed crystal film 2 made of gallium nitride having a thickness of 3 ⁇ m was formed at 800 ° C. in a nitrogen atmosphere on the first main surface 1a of the substrate of the support substrate 1 in a nitrogen atmosphere, thereby producing a seed substrate. This seed substrate was attached to an alumina ceramic dissolution preventing jig 11 similar to that used in Example 2. When this Si single crystal was brought into contact with molten sodium at 850 ° C., the speed at which the surface of the material was eroded was 1 mm or more per hour.
- the seed substrate attached to the dissolution preventing jig 11 is placed on the bottom portion of a cylindrical flat bottom alumina crucible 15 having an inner diameter of 200 mm and a height of 45 mm.
- crystal growth by the flux method, polishing processing, and light emission by the MOCVD method was formed to fabricate a vertical light emitting device.
- current was passed between the cathode electrode and the anode electrode and IV measurement was performed rectification was confirmed. Further, when a forward current was passed, light emission with a wavelength of 450 nm was confirmed.
- the flux method can be applied to the formation of the gallium nitride film on the Si single crystal substrate, and a low-defect gallium nitride film can be formed.
- the present invention it is possible to apply a Si single crystal, which is a material soluble in molten alkali metal, to the base substrate of the flux method, realizing a large diameter and low cost of the gallium nitride substrate.
- Example 4 A light emitting device was manufactured in the same manner as in Example 1. However, in this example, a support substrate made of Si single crystal was used. After forming an aluminum nitride film and an aluminum gallium nitride film at about 1000 ° C. in a hydrogen and nitrogen atmosphere on the main surface 1a of the support substrate made of Si single crystal by MOCVD, a seed crystal film 2 made of gallium nitride is formed. A thickness of 3 ⁇ m was formed.
- a seed substrate 4 was produced by coating the outer surface of the support substrate 1 other than the main surface on which the seed crystal film 2 was formed with the protective films 3A and 3B made of alumina by sputtering. Next, this seed substrate was placed in a crucible together with Ga raw material and Na raw material.
- gallium nitride crystal growth was performed on the seed substrate by the flux method. Specifically, it was heated at 850 ° C. for 24 hours in a 4 MPa nitrogen atmosphere. The grown gallium nitride crystal was collected together with the seed substrate, and a composite substrate having a seed substrate and a gallium nitride crystal layer by a flux method was obtained. The surface of the gallium nitride crystal was mirror polished.
- a light emitting functional layer was fabricated on the composite substrate by MOCVD. Specifically, 1 ⁇ m of an n-GaN layer was deposited at 1050 ° C., then five pairs of quantum well structures were deposited as a light emitting layer at 800 ° C., and a p-GaN layer was deposited at 200 nm at 950 ° C. After the activation treatment of the p-type layer, an LED element structure was formed by photolithography, formed into a chip, and subjected to an energization test. As a result, light emission with a wavelength of 450 nm was confirmed.
- a large-diameter and high-quality gallium nitride substrate for manufacturing a high-brightness LED was realized.
- Si single crystal for the base substrate
- the cost reduction of the gallium nitride substrate was realized.
- the flux method to produce gallium nitride crystals on Si single crystals impurities in the gallium nitride layer were suppressed.
- gallium nitride crystal contamination of the light emitting layer with impurities was suppressed.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
- Led Devices (AREA)
Abstract
Description
本発明は、窒化ガリウム結晶の育成方法、複合基板、発光素子の製造方法、および溶解防止治具に関するものである。 The present invention relates to a method for growing a gallium nitride crystal, a composite substrate, a method for manufacturing a light emitting element, and a dissolution preventing jig.
各種光源の白色LED化が進んでいる。バックライトや電球などの低輝度LEDはすでに普及が進んでおり、近年はプロジェクターやヘッドライトなどの高輝度LEDへの適用検討が活発化している。現在主流の白色LEDはサファイア下地基板上に有機金属気相成長(MOCVD: Metal Organic Chemical Vapor Deposition)法で13族元素窒化物からなる発光層を形成したものである。
白色 White LEDs are being used for various light sources. Low-brightness LEDs such as backlights and light bulbs are already in widespread use, and in recent years, studies on application to high-brightness LEDs such as projectors and headlights have become active. Currently, the mainstream white LEDs are formed by forming a light emitting layer made of a
現在主流のサファイア下地基板上に作製する白色LEDは、下地基板であるサファイアと発光層である窒化ガリウムの材料特性差が大きいため、発光層内部に欠陥が多く、高輝度LEDで求められる高出力・高効率の実現は困難である。 White LEDs fabricated on the current mainstream sapphire base substrate have a large difference in material properties between sapphire, which is the base substrate, and gallium nitride, which is the light-emitting layer.・ It is difficult to achieve high efficiency.
自立した窒化ガリウム基板の製法として、ハイドライト気相成長法(HVPE法)がある。下地基板として、HVPE法で作製した窒化ガリウム基板を用いる場合、LEDの性能向上は期待できるが、HVPE法による窒化ガリウム基板はコストが高く、また大口径化が困難であるため、LED用途での採用が進んでいない。 There is a hydride vapor phase epitaxy (HVPE method) as a method for producing a self-supporting gallium nitride substrate. When using a gallium nitride substrate fabricated by the HVPE method as the underlying substrate, LED performance can be expected to improve, but the cost of the HVPE method gallium nitride substrate is high and it is difficult to increase the diameter, so it is difficult for LED applications. Adoption is not progressing.
酸化亜鉛(ZnO)は、安全、安価な化合物半導体であり、化学的にも安定で、透明性にも優れた材料として知られている。主に焼結体、粉末の形態で用いられ、スパッタリングターゲット、バリスタ、ゴムへの添加剤、化粧品などに利用されている。窒化ガリウムと同じ六方晶ウルツ型の結晶構造を持ち、格子定数や熱膨張率が窒化ガリウムに近い酸化亜鉛基板も、発光層の欠陥が低減し、LEDの性能向上が期待されるため、下地基板としての研究開発が行われている。 Zinc oxide (ZnO) is a safe and inexpensive compound semiconductor, and is known as a material that is chemically stable and excellent in transparency. It is mainly used in the form of sintered bodies and powders, and is used for sputtering targets, varistors, additives to rubber, cosmetics and the like. The zinc oxide substrate, which has the same hexagonal wurtzite crystal structure as gallium nitride and has a lattice constant and thermal expansion coefficient close to that of gallium nitride, is expected to improve the LED performance by reducing defects in the light emitting layer. As a research and development.
酸化亜鉛を焼結体として用いる場合、その結晶方位を配向させることで特性が変化することが知られている。例えば、特許文献1には、(101)結晶配向の配向比率が所定範囲内の結晶配向性酸化亜鉛焼結体がスパッタリングターゲットとして開示されている。特許文献2には、(110)結晶配向性酸化亜鉛焼結体が開示されている。
When using zinc oxide as a sintered body, it is known that the characteristics change by orienting the crystal orientation. For example,
また、LEDのコストを下げるという観点からは、各種半導体用途で8インチを超える大口径基板が流通しているSiを下地基板に用いることも検討されている。 Also, from the viewpoint of reducing the cost of LEDs, it is also considered to use Si, which has a large-diameter substrate exceeding 8 inches, in various semiconductor applications.
下地基板として酸化亜鉛基板を用いる場合、酸化亜鉛の格子定数や熱膨張係数は窒化ガリウムに近いため、発光層の欠陥が低減され、LEDの性能が向上することが期待される。しかし、実際にLED構造を作製すると、酸化亜鉛に由来する不純物が機能層に取り込まれるため、キャリア制御が難しく、性能のよいLEDは作製できていない。 When a zinc oxide substrate is used as the base substrate, the lattice constant and thermal expansion coefficient of zinc oxide are close to those of gallium nitride, so that defects in the light emitting layer are reduced, and LED performance is expected to be improved. However, when an LED structure is actually manufactured, impurities derived from zinc oxide are taken into the functional layer, so that carrier control is difficult and a high-performance LED cannot be manufactured.
また、現在作製されている酸化亜鉛基板は水熱法によるものであるが、大口径化・低コスト化が進んでいない。 In addition, the zinc oxide substrate currently produced is based on the hydrothermal method, but its diameter and cost have not been reduced.
一方、下地基板としてSi単結晶を用いる場合は、サファイア下地基板を用いた場合と同様、Siと発光層である窒化ガリウムの材料特性差が大きいため、発光層内部に欠陥が多く、高輝度LEDで求められる高出力・高効率の実現は困難である。 On the other hand, when using a Si single crystal as the base substrate, as in the case of using a sapphire base substrate, the material property difference between Si and gallium nitride, which is the light emitting layer, is large. It is difficult to achieve the high output and high efficiency required by the company.
また、発光層内部の欠陥を抑制するために、発光層と応力緩和層の間のn型窒化物層を厚くすることが効果的であるが(非特許文献1)、MOCVD法では成膜速度が遅く、生産性が著しく低下する。 In order to suppress defects inside the light emitting layer, it is effective to increase the thickness of the n-type nitride layer between the light emitting layer and the stress relaxation layer (Non-Patent Document 1). Is slow and productivity is significantly reduced.
さらに、酸化亜鉛やSiは、フラックス法に用いる溶融アルカリ金属には容易に溶解するため、フラックス法を適用して窒化ガリウム膜を形成することは検討されてこなかった。 Furthermore, since zinc oxide and Si are easily dissolved in the molten alkali metal used in the flux method, it has not been studied to form a gallium nitride film by applying the flux method.
本発明は、溶融アルカリ金属に溶解する物質からなる支持基板、およびこの支持基板の外表面上に形成されている13族元素窒化物からなる種結晶膜を備える種基板を用い、前記支持基板の前記外表面のうち前記種結晶膜によって被覆されていない領域を前記溶融アルカリ金属に不溶な材料によって被覆し、次いでフラックス法によって前記種結晶膜上に窒化ガリウム結晶を成長させることを特徴とする、窒化ガリウム結晶の育成方法に係るものである。
The present invention uses a seed substrate comprising a support substrate made of a substance that dissolves in a molten alkali metal and a seed crystal film made of a
また、本発明は、溶融アルカリ金属に溶解する物質からなる支持基板、
この支持基板の外表面上に形成されている13族元素窒化物からなる種結晶膜、
前記支持基板の前記外表面のうち前記13族元素窒化物膜によって被覆されていない領域を被覆する、前記溶融アルカリ金属に不溶な材料からなる保護膜、および
フラックス法によって前記種結晶膜上に形成されている窒化ガリウム結晶
を備えている、複合基板に係るものである。
The present invention also provides a support substrate made of a substance that dissolves in a molten alkali metal,
A seed crystal film made of a
A protective film made of a material insoluble in the molten alkali metal that covers a region of the outer surface of the support substrate that is not covered with the
また、本発明は、前記複合基板、および前記窒化ガリウム層上に形成された発光層を有する、発光素子に係るものである。 The present invention also relates to a light emitting device having the light emitting layer formed on the composite substrate and the gallium nitride layer.
また、本発明は、前記複合基板上に、有機金属気相成長法または分子線エピタキシー法により発光層を形成する、発光素子の製造方法に係るものである。 The present invention also relates to a method for manufacturing a light-emitting element, in which a light-emitting layer is formed on the composite substrate by metal organic vapor phase epitaxy or molecular beam epitaxy.
また、本発明は、溶融アルカリ金属に溶解する物質からなる支持基板、およびこの支持基板の外表面上に形成されている13族元素窒化物からなる種結晶膜を備える種基板をフラックス法に供するための溶解防止治具であって、
前記支持基板の前記外表面のうち前記種結晶膜によって被覆されていない領域に密着し、前記支持基板が前記溶融アルカリ金属と直接接触することを防止する、溶解防止治具に係るものである。
The present invention also provides a seed substrate comprising a support substrate made of a substance that dissolves in a molten alkali metal and a seed crystal film made of a
The dissolution preventing jig is in close contact with a region of the outer surface of the support substrate that is not covered with the seed crystal film, and prevents the support substrate from coming into direct contact with the molten alkali metal.
本発明によれば、溶融アルカリ金属に溶解する物質からなる支持基板の外表面上に、13族元素窒化物からなる種結晶膜を形成すると共に、支持基板の外表面のうち種結晶膜によって被覆されていない領域を、溶融アルカリ金属に不溶な材料によって被覆し、フラックス法によって種結晶膜上に窒化ガリウム結晶を成長させる。これによって、窒化ガリウム結晶の育成時に、融液と支持基板との接触による支持基板の溶解を防止し、窒化ガリウム結晶の育成の阻害やコンタミネーションを防止できる。この結果、従来は使用できなかった、溶融アルカリ金属に溶解する物質からなる支持基板を用いてフラックス法で窒化ガリウム結晶を量産可能となったものであり、産業上の利用性は大きい。
According to the present invention, a seed crystal film made of a
以下、適宜図面を参照しつつ、本発明を更に説明する。
図1(a)に示すように、溶融アルカリ金属に溶解する物質からなる支持基板1を準備する。本例では、支持基板1の外表面は、第一の主面1a、主面1aの反対側にある第二の主面1b、および主面1aと1bとの間に形成される側面1cを含む。基板1の平面形態は図示していないが、特に限定されず、ウェハー形状や多角形、円形など任意の形態を有していて良い。
The present invention will be further described below with reference to the drawings as appropriate.
As shown to Fig.1 (a), the
次いで、図1(b)に示すように、第一の主面1a上に、13族元素窒化物からなる種結晶膜2を形成する。種結晶膜2は、主面1aの全面にわたって形成されていることが好ましいが、主面1aの外縁部に種結晶膜2が形成されず、支持基板の主面が露出していてもよい。
Next, as shown in FIG. 1B, a
次いで、図1(c)に示すように、支持基板1のうち、種結晶膜2によって被覆されていない第二の主面1bおよび側面1cには、溶融アルカリ金属に不溶な材料からなる保護膜3A、3Bを被覆する。これによって、支持基板1の外表面が直接露出しないようにし、種基板4を得る。
Next, as shown in FIG. 1C, a protective film made of a material insoluble in molten alkali metal is formed on the second
次いで、種基板4を融液に浸漬し、フラックス法によって、図1(d)に示すように窒化ガリウム結晶5を育成する。この際、支持基板1は融液に接触しないので、その溶解が防止されることから、窒化ガリウム結晶の成長が阻害されず、またコンタミネーションも生じない。また、本例では、支持基板を溶解防止治具にセットする必要はない。
Next, the
こうして得られた複合基板を使用して、その上に発光層を形成することができる。しかし、好適な実施形態においては、窒化ガリウム結晶の表面を研磨加工することによって、図2(a)に示すように、研磨された窒化ガリウム結晶5Aを形成することができる。このようにして複合基板6の反りを調整すると共に窒化ガリウム結晶の表面の平坦性を改善することができる。この場合には、研磨された窒化ガリウム結晶5A上に、図2(b)に示すように発光層7を形成することによって、発光素子を得る。
Using the composite substrate thus obtained, a light emitting layer can be formed thereon. However, in a preferred embodiment, the polished
また、他の実施形態においては、支持基板の外表面のうち種結晶膜によって被覆されていない領域を、溶融アルカリ金属に不溶な材料からなる溶解防止治具によって被覆し、支持基板の融液への接触を防止する。この場合には、支持基板の外表面のうち種結晶膜によって被覆されていない領域を、溶融アルカリ金属に不溶な材料からなる保護膜によって被覆する必要はなく、支持基板の外表面が露出していても本発明の効果が得られる。 In another embodiment, a region of the outer surface of the support substrate that is not covered with the seed crystal film is covered with a dissolution preventing jig made of a material insoluble in the molten alkali metal, so that the support substrate is melted. To prevent contact. In this case, it is not necessary to cover a region of the outer surface of the support substrate that is not covered with the seed crystal film with a protective film made of a material insoluble in molten alkali metal, and the outer surface of the support substrate is exposed. However, the effect of the present invention can be obtained.
たとえば、図3(a)に示すように、溶融アルカリ金属に溶解する物質からなる支持基板1を準備する。次いで、図3(b)に示すように、第一の主面1a上に、13族元素窒化物からなる種結晶膜2を形成する。この種基板の場合には、支持基板の第二の主面1bおよび側面1cが露出している。
For example, as shown in FIG. 3A, a
次いで、図3(b)の種基板を融液に浸漬し、フラックス法によって、図3(c)に示すように窒化ガリウム結晶5を育成する。この際、図3(b)の種基板においては、支持基板の外表面が露出している。この種基板をそのままで融液に浸漬すると、支持基板の第二の主面1bおよび側面1cが融液中の溶融アルカリ金属に溶解し、窒化ガリウム結晶の成長を阻害し、また窒化ガリウム結晶のコンタミネーションが発生するため、この種基板を用いる場合は溶解防止治具を使用する。
Next, the seed substrate of FIG. 3B is immersed in the melt, and the
こうして得られた複合基板を使用して、その上に発光層を形成することができる。しかし、好適な実施形態においては、窒化ガリウム結晶の表面を研磨加工することによって、図4(a)に示すように、研磨された窒化ガリウム結晶5Aを形成し、複合基板9を得ることができる。そして、図4(b)に示すように、研磨された窒化ガリウム結晶5A上に発光層7を形成することによって、発光素子を得る。
Using the composite substrate thus obtained, a light emitting layer can be formed thereon. However, in a preferred embodiment, by polishing the surface of the gallium nitride crystal, as shown in FIG. 4A, a polished
ここで、溶解防止治具の一例について述べる。
たとえば、図5の例では、種基板を溶解防止治具11にセットしている。溶解防止治具11は、第二の主面を被覆する主面被覆部12と、側面を被覆する側面被覆部13aと、種結晶膜2の外縁を被覆する外縁被覆部13bを有している。本例では、主面被覆部12が側面被覆部13aと分離された別部材となっており、側面被覆部13aと外縁被覆部13bとは一体の部材を構成している。
Here, an example of the dissolution preventing jig will be described.
For example, in the example of FIG. 5, the seed substrate is set on the
次いで、図6に示すように、図5の溶解防止治具および種基板を、ルツボ15内の融液16に浸漬する。融液16は空隙14に進入する。この際、溶解防止治具11および種結晶膜2によって支持基板1の外表面の全体を被覆しているので、支持基板の融液への接触を防止できる。
Next, as shown in FIG. 6, the dissolution preventing jig and the seed substrate of FIG. 5 are immersed in the
なお、治具に外縁被覆部13bを設けることによって、融液が支持基板1の側面1cまで到達するまでの沿面距離を長くし、融液の支持基板への接触を更に抑制できる。ただし、外縁被覆部13bは必ずしも必要ない。
In addition, by providing the outer
また、図7に示す溶解防止治具11Aは、第二の主面を被覆する主面被覆部17aと、側面を被覆する側面被覆部17bと、種結晶膜2の外縁を被覆する外縁被覆部18を有している。本例では、主面被覆部17aと側面被覆部17bとが一体の部材を構成しており、外縁被覆部18は別部材となっている。
Further, the
また、好適な実施形態においては、融液を収容するためのルツボが溶解防止治具として機能している。これによって、ルツボと別体の治具を設けることが不要になる。 In a preferred embodiment, a crucible for containing the melt functions as a dissolution preventing jig. This eliminates the need to provide a separate jig from the crucible.
たとえば、図8の例では、ルツボ20内に融液16が収容されている。ルツボ20の底部20c上に支持基板1の第二の主面1bが載置されており、第二の主面1bが底面20aに接触している。また、ルツボ20の基板収容部20dの内側に種基板が収容されており、基板収容部20dの内壁面20bが種基板の側面に接触している。
For example, in the example of FIG. 8, the
そして、基板収容部20d上に融液収容部20fが設けられており、融液収容部20f内に融液16を収容するようになっている。この結果、種結晶膜2上に融液16が存在し、種結晶膜上に窒化ガリウム結晶が育成される。これと共に、支持基板1の第二の主面1bがルツボの底面20aと接触すると共に、支持基板1の側面1bが基板収容部の内壁面20bと接触しているので、支持基板の融液への接触が防止される。
And the
なお、本例では、基板収容部20dと融液収容部20fとの間に段差面20eが形成されており、段差面20e上に外縁被覆部21が設けられている。外縁被覆部21は種結晶膜2の外縁を被覆しており、これによって融液の支持基板側面への沿面距離を大きくし、融液の支持基板への接触をいっそう確実に防止する。
In this example, a
以下、本発明の各要素について更に詳細に説明する。
溶融アルカリ金属に溶解する材質とは、フラックス法で用いる融液を構成する溶融アルカリ金属に溶解する材質である。アルカリ金属は周期表に規定するアルカリ金属であるが、ナトリウムが特に好ましい。また、溶融アルカリ金属に溶解するとは、以下のことを意味する。
Hereinafter, each element of the present invention will be described in more detail.
The material that dissolves in the molten alkali metal is a material that dissolves in the molten alkali metal constituting the melt used in the flux method. The alkali metal is an alkali metal specified in the periodic table, and sodium is particularly preferable. Moreover, dissolving in a molten alkali metal means the following.
本明細書においては、ある物質を、フラックス法で窒化ガリウム結晶を育成する際の育成温度まで加熱した溶融アルカリ金属(窒化ガリウム結晶の育成時に用いる溶融アルカリ金属)に接触させたとき、前記物質の表面が12μm/時間以上の速度で溶融アルカリ金属に侵食される場合、前記物質はフラックスとして用いる溶融アルカリ金属に溶解する、と定める。 In the present specification, when a substance is brought into contact with a molten alkali metal (molten alkali metal used for growing a gallium nitride crystal) heated to a growth temperature for growing a gallium nitride crystal by a flux method, When the surface is eroded by molten alkali metal at a rate of 12 μm / hour or more, the substance is determined to be dissolved in molten alkali metal used as a flux.
溶融アルカリ金属に溶解する物質は、酸化亜鉛、あるいはSiであることが特に好ましい。 The substance that dissolves in the molten alkali metal is particularly preferably zinc oxide or Si.
酸化亜鉛からなる支持基板の好適形態について更に述べる。
好適な実施形態においては、支持基板は、配向多結晶酸化亜鉛焼結体から構成される。酸化亜鉛結晶は、六方晶ウルツ鉱型構造を有しており、配向多結晶酸化亜鉛焼結体は無数の酸化亜鉛結晶粒子が配向された状態で焼結により互いに結合されてなる固体である。
A preferred embodiment of the support substrate made of zinc oxide will be further described.
In a preferred embodiment, the support substrate is composed of an oriented polycrystalline zinc oxide sintered body. The zinc oxide crystal has a hexagonal wurtzite structure, and the oriented polycrystalline zinc oxide sintered body is a solid formed by bonding innumerable zinc oxide crystal particles to each other by sintering.
酸化亜鉛結晶粒子は酸化亜鉛を含んで構成される粒子であり、他の元素として、ドーパント及び不可避不純物を含んでいてもよいし、酸化亜鉛及び不可避不純物からなるものであってもよい。そのような他の元素は六方晶ウルツ鉱型構造のZnサイトやOサイトに置換されていてもよいし、結晶構造を構成しない添加元素として含まれていてもよいし、あるいは粒界に存在するものであってもよい。また、酸化亜鉛焼結体も、酸化亜鉛結晶粒子以外に他の相又は上述したような他の元素を含んでいてもよいが、好ましくは酸化亜鉛結晶粒子及び不可避不純物からなる。 Zinc oxide crystal particles are particles composed of zinc oxide, and may contain dopants and inevitable impurities as other elements, or may be composed of zinc oxide and inevitable impurities. Such other elements may be substituted with hexagonal wurtzite structure Zn sites or O sites, may be included as additive elements that do not constitute a crystal structure, or exist at grain boundaries. It may be a thing. The zinc oxide sintered body may also contain other phases or other elements as described above in addition to the zinc oxide crystal particles, but preferably comprises zinc oxide crystal particles and inevitable impurities.
もっとも、配向多結晶酸化亜鉛焼結体は、MgO、CdO、ZnS、ZnSe及びZnTeからなる群から選択される1種以上の結晶と混晶化されたZnOからなるものであってもよい。 However, the oriented polycrystalline zinc oxide sintered body may be composed of ZnO mixed with at least one crystal selected from the group consisting of MgO, CdO, ZnS, ZnSe, and ZnTe.
配向酸化亜鉛焼結体を得るため熱間等方圧加圧法(HIP)、ホットプレス法(HP)を用いることができる。 In order to obtain an oriented zinc oxide sintered body, a hot isostatic pressing method (HIP) or a hot press method (HP) can be used.
配向多結晶酸化亜鉛焼結体を構成する酸化亜鉛単結晶粒子の平均粒径は、1~100μmであるのが好ましく、より好ましくは10~80μmであり、さらに好ましくは20~50μmである。これらの範囲内であると発光効率、機械強度、光散乱性、反射性等に優れる。なお、本発明における焼結体粒子の平均粒径は以下の方法により測定されるものである。すなわち、板状焼結体より、適切なサイズの試料を切り出し、板面と垂直な面を研磨し、濃度0.3Mの硝酸にて10秒間エッチングを行った後、走査電子顕微鏡にて画像を撮影する。視野範囲は、板面に平行及び垂直な直線を引いた場合に、いずれの直線も10個から30個の粒子と交わるような直線が引けるような視野範囲とする。板面に平行に引いた3本の直線において、直線が交わる全ての粒子に対し、個々の粒子の内側の線分の長さを平均したものに1.5を乗じた値をa1とし、同様に、板面に垂直に引いた3本の直線において、直線が交わる全ての粒子に対し、個々の粒子の内側の線分の長さを平均したものに1.5を乗じた値をa2とし、(a1+a2)/2を平均粒径とする。 The average particle diameter of the zinc oxide single crystal particles constituting the oriented polycrystalline zinc oxide sintered body is preferably 1 to 100 μm, more preferably 10 to 80 μm, and still more preferably 20 to 50 μm. Within these ranges, the light emission efficiency, mechanical strength, light scattering properties, reflectivity, etc. are excellent. The average particle size of the sintered particles in the present invention is measured by the following method. That is, a sample of an appropriate size is cut out from the plate-shaped sintered body, the surface perpendicular to the plate surface is polished, etched with nitric acid having a concentration of 0.3 M for 10 seconds, and then an image is obtained with a scanning electron microscope. Take a picture. The visual field range is a visual field range in which straight lines intersecting 10 to 30 particles can be drawn when straight lines parallel and perpendicular to the plate surface are drawn. In three straight lines drawn parallel to the plate surface, the value obtained by multiplying the average of the lengths of the inner line segments of each particle by 1.5 for all particles intersecting with the straight line is defined as a1. In addition, in three straight lines drawn perpendicularly to the plate surface, a value obtained by multiplying the average length of the line segments inside the individual particles by 1.5 for all the particles intersecting the straight lines is a2. , (A1 + a2) / 2 is the average particle size.
配向多結晶酸化亜鉛焼結体の配向面方位は特に限定されるものではなく、(002)面であってもよいし、(100)面であってもよいし、(110)面であってもよいし、(101)面であってもよいし、他の面であってもよい。
配向度については、例えば、基板表面における配向度が50%以上であるのが好ましく、より好ましくは65%以上、さらに好ましくは75%以上である。この配向度は、XRD装置(例えば、株式会社リガク製、製品名「RINT-TTR III」)を用い、板状酸化亜鉛の表面に対してX線を照射したときのXRDプロファイルを測定し、例えば、(110)面以外に配向させた焼結体を評価する場合には以下の式により算出することにより得られるものである。
The orientation plane orientation of the oriented polycrystalline zinc oxide sintered body is not particularly limited, and may be a (002) plane, a (100) plane, or a (110) plane. Alternatively, it may be the (101) plane or another plane.
As for the degree of orientation, for example, the degree of orientation on the substrate surface is preferably 50% or more, more preferably 65% or more, and further preferably 75% or more. This degree of orientation was measured using an XRD apparatus (for example, product name “RINT-TTR III” manufactured by Rigaku Corporation) and measuring the XRD profile when the surface of the plate-like zinc oxide was irradiated with X-rays. In the case of evaluating a sintered body oriented other than the (110) plane, it can be obtained by calculation according to the following formula.
なお、上記式は(110)面を考慮しなくてよい場合を想定した式であるが、(110)面を考慮する必要がある場合、即ち(110)面に配向させた焼結体を評価する場合には、上記2番目及び3番目の式の分母に、(110)面の回折強度に相当するI0(110)とIs(110)をそれぞれ加えればよい。すなわち、I0(110)はICDDNo.361451における(110)面の回折強度(積分値)であり、Is(110)は試料における(110)面の回折強度(積分値)である。 The above formula is an equation assuming that the (110) plane need not be considered. However, when the (110) plane needs to be considered, that is, the sintered body oriented in the (110) plane is evaluated. In this case, I0 (110) and Is (110) corresponding to the diffraction intensity of the (110) plane may be added to the denominators of the second and third expressions, respectively. That is, I0 (110) is ICDDNo. This is the diffraction intensity (integrated value) of the (110) plane in 361451, and Is (110) is the diffraction intensity (integrated value) of the (110) plane in the sample.
結晶配向技術を適用することにより、大口径かつ高配向のZnO(酸化亜鉛)多結晶基板を作製することに成功した。この結果、6インチ以上の大口径酸化亜鉛基板を低コストで作製することが可能となった。 By applying crystal orientation technology, we succeeded in producing a large-diameter and highly-oriented ZnO (zinc oxide) polycrystalline substrate. As a result, a large-diameter zinc oxide substrate of 6 inches or more can be produced at low cost.
さらに、高配向酸化亜鉛基板上に、フラックス法で窒化ガリウム(GaN)結晶を作製することにより、大口径窒化ガリウム基板を実現した。 Furthermore, a large-diameter gallium nitride substrate was realized by producing a gallium nitride (GaN) crystal on a highly oriented zinc oxide substrate by a flux method.
サファイアと比較して、酸化亜鉛の格子定数・熱膨張係数は窒化ガリウムに近いため、窒化ガリウムの結晶性が向上し、欠陥密度は低減する。フラックス法による窒化ガリウム結晶成長温度(たとえば約850℃)はMOCVD法の窒化ガリウム成膜温度(1000℃以上)と比較して低いため、酸化亜鉛の分解による窒化ガリウムへの不純物混入は抑制される。
この大口径窒化ガリウム基板を下地として、MOCVD法で発光層を形成することで、高輝度・高効率なLEDの作製が可能となる。
Compared to sapphire, zinc oxide has a lattice constant and thermal expansion coefficient close to that of gallium nitride, so that the crystallinity of gallium nitride is improved and the defect density is reduced. Since the growth temperature of gallium nitride crystals by the flux method (for example, about 850 ° C) is lower than the gallium nitride film formation temperature of 1000 ° C or more by the MOCVD method, contamination of gallium nitride due to decomposition of zinc oxide is suppressed. .
By using this large-diameter gallium nitride substrate as a base and forming a light-emitting layer by MOCVD, it becomes possible to fabricate high-brightness and high-efficiency LEDs.
各種半導体用途で8インチを超える大口径基板が流通しているSiを下地基板に用いることにより、窒化ガリウム基板のコストの大幅な低減が期待できる。 A large reduction in the cost of the gallium nitride substrate can be expected by using Si, which has a large-diameter substrate exceeding 8 inches in various semiconductor applications, as the base substrate.
Si単結晶基板上への窒化ガリウムの成膜にフラックス法を用いることで、低欠陥な窒化ガリウム膜を高速に形成が可能となる。
なお、Siは、フラックス法に用いる溶融Na等には容易に溶解するため、フラックス法に適用することができなかった。しかし、本発明によれば、Si単結晶基板上の窒化ガリウム膜形成にフラックス法を適用することが可能となり、低欠陥な窒化ガリウム膜を形成することが可能となる。
By using a flux method for forming gallium nitride on a Si single crystal substrate, a low-defect gallium nitride film can be formed at high speed.
Since Si is easily dissolved in molten Na used for the flux method, it could not be applied to the flux method. However, according to the present invention, the flux method can be applied to the formation of the gallium nitride film on the Si single crystal substrate, and a low-defect gallium nitride film can be formed.
支持基板の外表面上に、13族元素窒化物からなる種結晶膜を設けることで、種基板が得られる。種結晶膜は、一層であってよく、あるいは支持基板側にバッファ層を含んでいて良い。
A seed substrate is obtained by providing a seed crystal film made of a
なお、13族元素とは、IUPACが策定した周期律表による第13族元素のことである。13族元素は、具体的にはガリウム、アルミニウム、インジウム、タリウム等である。13族元素窒化物は、特に好ましくは、GaN、AlN、InN、GaAlNである。また、添加剤としては、炭素や、低融点金属(錫、ビスマス、銀、金)、高融点金属(鉄、マンガン、チタン、クロムなどの遷移金属)が挙げられる。
The
種結晶膜の形成方法は気相成長法が好ましいが、MOCVD法、ハイドライド気相成長(HVPE)法、パルス励起堆積(PXD)法、分子線エピタキシー(MBE)法、昇華法を例示できる。有機金属化学気相成長法が特に好ましい。また、成長温度は、950~1200℃が好ましい。 The method for forming the seed crystal film is preferably a vapor phase growth method, but examples include a MOCVD method, a hydride vapor phase growth (HVPE) method, a pulsed excitation deposition (PXD) method, a molecular beam epitaxy (MBE) method, and a sublimation method. Metalorganic chemical vapor deposition is particularly preferred. The growth temperature is preferably 950 to 1200 ° C.
本発明においては、支持基板の外表面のうち、種結晶膜によって被覆されていない領域を、溶融アルカリ金属に不溶な材料によって被覆する。溶融アルカリ金属に不溶とは、以下のように定義されるものである。 In the present invention, a region of the outer surface of the support substrate that is not covered with the seed crystal film is covered with a material insoluble in the molten alkali metal. The term “insoluble in molten alkali metal” is defined as follows.
ある物質を、フラックス法で窒化ガリウム結晶を育成する際の育成温度まで加熱した溶融アルカリ金属(窒化ガリウム結晶の育成時に用いる溶融アルカリ金属)に接触させたとき、前記物質の表面が侵食される速度が1時間あたり0.4μm以下の場合、前記物質はフラックスとして用いる溶融アルカリ金属に溶解しない、と定める。 The rate at which the surface of a substance is eroded when it is brought into contact with a molten alkali metal (molten alkali metal used when growing a gallium nitride crystal) heated to the growth temperature for growing a gallium nitride crystal by the flux method. Is 0.4 μm or less per hour, it is determined that the substance does not dissolve in the molten alkali metal used as the flux.
好適な実施形態においては、溶融アルカリ金属に不溶な材料は、13族元素窒化物である。13族元素窒化物としては、上記の種結晶膜用に列挙したものを例示できる。
In a preferred embodiment, the material insoluble in the molten alkali metal is a
また、好適な実施形態においては、溶融アルカリ金属に不溶な材料が耐蝕セラミックスである。こうしたセラミックスとしては、緻密質のアルミナ、イットリアまたは炭化珪素が好ましい。 In a preferred embodiment, the material insoluble in the molten alkali metal is a corrosion-resistant ceramic. As such ceramics, dense alumina, yttria or silicon carbide is preferable.
また、好適な実施形態においては、溶融アルカリ金属に不溶な材料が高融点金属である。高融点金属とは、融点が2000℃以上の金属である。この高融点金属は、好ましくはタンタルまたはタングステンである。 In a preferred embodiment, the material insoluble in the molten alkali metal is a refractory metal. The refractory metal is a metal having a melting point of 2000 ° C. or higher. This refractory metal is preferably tantalum or tungsten.
また、溶融アルカリ金属に不溶な材料からなる保護膜の形成方法は、気相成長法が好ましいが、MOCVD法、HVPE法、PXD法、MBE法、昇華法を例示できる。 Further, as a method for forming a protective film made of a material insoluble in molten alkali metal, a vapor phase growth method is preferable, but an MOCVD method, an HVPE method, a PXD method, an MBE method, and a sublimation method can be exemplified.
次いで、フラックス法によって、種結晶膜上に窒化ガリウム結晶を育成する。
融液には、溶融アルカリ金属に加えて、ガリウム原料を混合する。このガリウム原料物質としては、単体金属、合金、化合物を適用できるが、ガリウムの単体金属が取扱いの上からも好適である。
Next, a gallium nitride crystal is grown on the seed crystal film by a flux method.
In addition to molten alkali metal, a gallium raw material is mixed in the melt. As the gallium source material, a single metal, an alloy, or a compound can be applied, but a single metal of gallium is preferable from the viewpoint of handling.
フラックス法では、窒素原子を含む気体を含む雰囲気下で単結晶を育成する。このガスは窒素ガスが好ましいが、アンモニアでもよい。
雰囲気中の窒素原子を含む気体以外のガスは限定されないが、不活性ガスが好ましく、アルゴン、ヘリウム、ネオンが特に好ましい。
In the flux method, a single crystal is grown in an atmosphere containing a gas containing nitrogen atoms. This gas is preferably nitrogen gas, but may be ammonia.
The gas other than the gas containing nitrogen atoms in the atmosphere is not limited, but an inert gas is preferable, and argon, helium, and neon are particularly preferable.
育成時の温度や圧力は、適宜選択できる。好適な実施形態においては、育成時の圧力は、1MPa~10MPaが好ましく、3MPa~5MPaが更に好ましい。また,育成時の温度は、750~950℃が好ましく、800~900℃が更に好ましい。 ∙ Temperature and pressure during growth can be selected as appropriate. In a preferred embodiment, the pressure during growth is preferably 1 MPa to 10 MPa, more preferably 3 MPa to 5 MPa. The temperature during growth is preferably 750 to 950 ° C., more preferably 800 to 900 ° C.
融液におけるガリウム/溶融アルカリ金属の比率(mol比率)は、本発明の観点からは、高くすることが好ましく、18mol%以上が好ましく、25mol%以上が更に好ましい。ただし、この割合が大きくなり過ぎると結晶品質が落ちる傾向があるので、40mol%以下が好ましい。 The ratio (mol ratio) of gallium / molten alkali metal in the melt is preferably increased from the viewpoint of the present invention, preferably 18 mol% or more, and more preferably 25 mol% or more. However, if this ratio becomes too large, the crystal quality tends to deteriorate, so 40 mol% or less is preferable.
得られた窒化ガリウム結晶上に機能層を設けることができる。機能としては、高輝度・高演色性の白色LEDや高速高密度光メモリ用青紫レーザディスク、ハイブリッド自動車用のインバータ用のパワーデバイスなどに用いることができる。 A functional layer can be provided on the obtained gallium nitride crystal. As functions, it can be used for white LEDs with high luminance and high color rendering, blue-violet laser disks for high-speed and high-density optical memories, power devices for inverters for hybrid vehicles, and the like.
機能層の材質は、13族元素窒化物が好ましい。13族元素とは、IUPACが策定した周期律表による第13族元素のことである。13族元素は、具体的にはガリウム、アルミニウム、インジウム、タリウム等である。
The material of the functional layer is preferably a
機能層としての発光素子の構造には、例えば、n型半導体層、このn型半導体層上に設けられた発光領域およびこの発光領域上に設けられたp型半導体層を設ける。また、発光素子には、更に、図示しないn型半導体層用の電極、p型半導体層用の電極、導電性接着層、バッファ層、導電性支持体などを設けることができる。
n型半導体層の成膜温度は、成膜速度の観点から、950℃以上が好ましく、1000℃以上が更に好ましい。また、欠陥を抑制するという観点からは、機能層の成膜温度は、1200℃以下が好ましく、1150℃以下が更に好ましい。
In the structure of the light-emitting element as the functional layer, for example, an n-type semiconductor layer, a light-emitting region provided on the n-type semiconductor layer, and a p-type semiconductor layer provided on the light-emitting region are provided. In addition, the light-emitting element can be further provided with an electrode for an n-type semiconductor layer, an electrode for a p-type semiconductor layer, a conductive adhesive layer, a buffer layer, a conductive support, and the like (not shown).
The film forming temperature of the n-type semiconductor layer is preferably 950 ° C. or higher, and more preferably 1000 ° C. or higher, from the viewpoint of the film forming speed. Further, from the viewpoint of suppressing defects, the film formation temperature of the functional layer is preferably 1200 ° C. or lower, and more preferably 1150 ° C. or lower.
発光素子では、半導体層から注入される正孔と電子の再結合によって発光領域で光が発生すると、その光をp型半導体層上の透光性電極又は窒化ガリウム結晶側から取り出す。なお、透光性電極とは、p型半導体層のほぼ全面に形成された金属薄膜又は透明導電膜からなる光透過性の電極のことである。 In the light-emitting element, when light is generated in the light-emitting region due to recombination of holes and electrons injected from the semiconductor layer, the light is extracted from the translucent electrode or the gallium nitride crystal side on the p-type semiconductor layer. The translucent electrode is a translucent electrode made of a metal thin film or a transparent conductive film formed on almost the entire surface of the p-type semiconductor layer.
n型半導体層、p型半導体層を構成する半導体の材質は、III -V 族系化合物半導体からなり、以下を例示できる。
AlyInxGa1-x-yN(0≦x≦1、0≦y≦1)
n型導電性を付与するためのドープ材としては、珪素、ゲルマニウム、酸素を例示できる。また、p型導電性を付与するためのドープ材としては、マグネシウム、亜鉛を例示できる。
The material of the semiconductor constituting the n-type semiconductor layer and the p-type semiconductor layer is made of a III-V group compound semiconductor, and examples thereof are as follows.
Al y In x Ga 1-xy N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1)
Examples of the doping material for imparting n-type conductivity include silicon, germanium, and oxygen. Moreover, magnesium and zinc can be illustrated as a dope material for providing p-type conductivity.
発光構造を構成する各半導体層の成長方法は、種々の気相成長方法を挙げることができる。例えば、有機金属気相成長法(MOCVD法)、分子線エピタキシー法(MBE法)、ハイドライト気相成長法(HVPE法)等を用いることができる。その中でもMOCVD法によると、各半導体層の結晶性や平坦度の良好なものを得ることができる。MOCVD法では、GaソースとしてTMG(トリメチルガリウム)、TEG(トリエチルガリウム)などのアルキル金属化合物が多く使用され、窒素源としては、アンモニア、ヒドラジンなどのガスが使用される。雰囲気ガスとしては、水素ガス、窒素ガスなどが使用される。 As the growth method of each semiconductor layer constituting the light emitting structure, various vapor phase growth methods can be exemplified. For example, a metal organic chemical vapor deposition method (MOCVD method), a molecular beam epitaxy method (MBE method), a hydride vapor phase epitaxy method (HVPE method), or the like can be used. Among them, the MOCVD method can obtain a semiconductor layer with good crystallinity and flatness. In the MOCVD method, alkyl metal compounds such as TMG (trimethyl gallium) and TEG (triethyl gallium) are often used as the Ga source, and gases such as ammonia and hydrazine are used as the nitrogen source. As the atmosphere gas, hydrogen gas, nitrogen gas, or the like is used.
発光領域は、障壁層と井戸層からなる量子井戸構造を含む。井戸層の材料は、n型半導体層およびp型半導体層の材料よりもバンドギャップが小さくなるように設計される。量子井戸構造は単一量子井戸(SQW)構造であっても多重量子井戸(MQW)構造であってもよい。量子井戸構造の材質は以下を例示できる。 The light emitting region includes a quantum well structure including a barrier layer and a well layer. The material of the well layer is designed so that the band gap is smaller than the materials of the n-type semiconductor layer and the p-type semiconductor layer. The quantum well structure may be a single quantum well (SQW) structure or a multiple quantum well (MQW) structure. The material of a quantum well structure can illustrate the following.
量子井戸構造の好適例として、InxGa1-xN/GaN多層膜(x=0.15)であって、膜厚がそれぞれ2.5nm/10nmであるものを3~10対形成させたMQW構造が挙げられる。 As a preferred example of the quantum well structure, 3 to 10 pairs of In x Ga 1-x N / GaN multilayer films (x = 0.15) each having a film thickness of 2.5 nm / 10 nm were formed. An MQW structure is mentioned.
(実施例1)
図1および図2に示す手順に従い、複合基板を作製した。
すなわち、以下の手順で、酸化亜鉛多結晶基板を支持基板として使用し、一軸に配向した窒化ガリウム基板を作製した。
(Example 1)
A composite substrate was produced according to the procedure shown in FIGS.
That is, the following procedure was used to produce a uniaxially oriented gallium nitride substrate using a zinc oxide polycrystalline substrate as a support substrate.
まず、溶液法により、酸化亜鉛のc面板状結晶を作製した。具体的には、硫酸亜鉛七水和物(高純度化学研究所製)173重量部とグルコン酸ナトリウム(和光純薬工業製)0.45重量部をイオン交換水300重量部に溶解した。こうして得られた溶液をビーカーに入れ、マグネットスターラーで攪拌しながら90℃に加熱して溶解させた。この溶液を90℃に保持し、攪拌しながら25%アンモニウム水49重量部をマイクロチューブポンプで滴下した。滴下終了後、90℃で攪拌しながら4時間保持した後、溶液を多量のイオン交換水に投入し、静置した。容器の底部に堆積した沈殿物をろ過により分離し、更にイオン交換水による洗浄を3回行い、乾燥して白色粉末状の酸化亜鉛前駆物質を得た。得られた酸化亜鉛前駆物質をジルコニア製のセッターに載置し、電気炉にて大気中で仮焼することにより、酸化亜鉛板状多孔質粉末を得た。仮焼時の温度スケジュールは、室温から900℃まで昇温速度100℃/hにて昇温した後、900℃で30分間保持し、自然放冷とした。 First, a c-plane plate-like crystal of zinc oxide was produced by a solution method. Specifically, 173 parts by weight of zinc sulfate heptahydrate (manufactured by Kojundo Chemical Laboratory) and 0.45 parts by weight of sodium gluconate (manufactured by Wako Pure Chemical Industries, Ltd.) were dissolved in 300 parts by weight of ion-exchanged water. The solution thus obtained was placed in a beaker and dissolved by heating to 90 ° C. while stirring with a magnetic stirrer. This solution was kept at 90 ° C., and 49 parts by weight of 25% ammonium water was added dropwise with a microtube pump while stirring. After completion of dropping, the solution was kept at 90 ° C. with stirring for 4 hours, and then the solution was poured into a large amount of ion-exchanged water and allowed to stand. The precipitate deposited on the bottom of the container was separated by filtration, further washed with ion-exchanged water three times, and dried to obtain a white powdered zinc oxide precursor. The obtained zinc oxide precursor was placed on a zirconia setter and calcined in the air in an electric furnace to obtain a zinc oxide plate-like porous powder. The temperature schedule at the time of calcination was raised from room temperature to 900 ° C. at a rate of temperature increase of 100 ° C./h, and then kept at 900 ° C. for 30 minutes to allow natural cooling.
得られた酸化亜鉛板状粒子100重量部に対し、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)15重量部と、可塑剤(DOP:ジ(2-エチルヘキシル)フタレート、黒金化成株式会社製)10重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)3重量部と、分散媒(2-エチルヘキサノール)とを混合した。分散媒の量はスラリー粘度が10000cPとなるように調整した。こうして調製されたスラリーを、ドクターブレード法により、PETフィルムの上に、乾燥後の厚さが20μmとなるようにシート状に成形した。得られたテープを直径2インチのシートに切断し、50枚の切断テープ片を積層し、厚さ10mmのアルミニウム板の上に載置した後、真空パックを行った。この真空パックを85℃の温水中で、100kgf/cm2の圧力にて静水圧プレスを行い、板状の成形体を作製した。得られた成形体を脱脂炉中に配置し、600℃で20時間の条件で脱脂を行った。得られた脱脂体を窒素中、1400℃で5時間の条件で常圧焼成して、板状のZnO配向焼結体基板を作製した。 With respect to 100 parts by weight of the obtained zinc oxide plate-like particles, 15 parts by weight of a binder (polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.), a plasticizer (DOP: di (2-ethylhexyl) phthalate, black 10 parts by weight of Kinkasei Co., Ltd., 3 parts by weight of a dispersant (product name Leodol SP-O30, Kao Corporation) and a dispersion medium (2-ethylhexanol) were mixed. The amount of the dispersion medium was adjusted so that the slurry viscosity was 10,000 cP. The slurry thus prepared was formed into a sheet shape on a PET film by a doctor blade method so that the thickness after drying was 20 μm. The obtained tape was cut into a sheet having a diameter of 2 inches, 50 pieces of cutting tape were laminated, placed on an aluminum plate having a thickness of 10 mm, and then vacuum packed. This vacuum pack was hydrostatically pressed at a pressure of 100 kgf / cm 2 in 85 ° C. warm water to produce a plate-like molded body. The obtained molded body was placed in a degreasing furnace and degreased at 600 ° C. for 20 hours. The obtained degreased body was fired at 1400 ° C. for 5 hours under normal pressure in nitrogen to prepare a plate-like ZnO oriented sintered body substrate.
得られた焼結体の(002)配向度F(002)をXRDにより測定した。この測定は、XRD装置(株式会社リガク製、製品名「RINT-TTR III」)を用い、板状酸化亜鉛の表面に対してX線を照射したときのXRDプロファイルを測定し、以下の式によって評価した。
こうして測定した支持基板の(002)配向度は80%であった。
また、支持基板の材質を850℃の溶融ナトリウムに接触させた場合には、支持基板の材質の表面が侵食される速度は、1時間あたり50μmであった。
The (002) orientation degree F (002) of the obtained sintered body was measured by XRD. For this measurement, an XRD apparatus (product name “RINT-TTR III” manufactured by Rigaku Corporation) was used to measure the XRD profile when the surface of the plate-like zinc oxide was irradiated with X-rays. evaluated.
The (002) orientation degree of the support substrate measured in this way was 80%.
Further, when the material of the support substrate was brought into contact with molten sodium at 850 ° C., the rate at which the surface of the material of the support substrate was eroded was 50 μm per hour.
次に、MOCVD法により、支持基板1の主面1aに、窒素雰囲気にて800℃で厚さ3μmの窒化ガリウムからなる種結晶膜2を形成した。さらに、スパッタ法により、種結晶膜2によって被覆されていない側面および第二の主面を緻密質アルミナからなる保護膜3A、3Bで被覆し、種基板4を得た。この緻密質アルミナを850℃の溶融ナトリウムに接触させると、材質の表面が侵食される速度は、1時間あたり0.05μmであった。
Next, a
得られた種基板4を、内径80mm、高さ45mmの円筒平底のアルミナ坩堝の底部分に設置し、次いで融液組成物をグローブボックス内で坩堝内に充填した。融液組成物の組成は以下のとおりである。
・金属Ga:60g
・金属Na:60g
・四塩化ゲルマニウム:1.85g
The obtained
・ Metal Ga: 60g
・ Metal Na: 60g
・ Germanium tetrachloride: 1.85 g
このアルミナ坩堝を耐熱金属製の容器に入れて密閉した後、結晶育成炉の回転が可能な台上に設置した。窒素雰囲気中で850℃、4.0MPaまで昇温加圧後、24時間保持しつつ溶液を回転することで、撹拌しながら窒化ガリウム結晶を成長させた。結晶成長終了後、3時間かけて室温まで徐冷し、結晶育成炉から育成容器を取り出した。エタノールを用いて、坩堝内に残った融液組成物を除去し、窒化ガリウム結晶が成長した試料を回収した。前記酸化亜鉛基板の上にMOCVD法で形成した窒化ガリウム膜上にGeドープ窒化ガリウム結晶が成長しており、結晶の厚さは約0.1mmであった。クラックは確認されなかった。 After placing this alumina crucible in a refractory metal container and sealing it, the alumina crucible was placed on a table that can rotate the crystal growth furnace. The gallium nitride crystal was grown with stirring by rotating the solution while maintaining the temperature for 24 hours after heating and pressurizing to 850 ° C. and 4.0 MPa in a nitrogen atmosphere. After completion of the crystal growth, it was gradually cooled to room temperature over 3 hours, and the growth vessel was taken out of the crystal growth furnace. The melt composition remaining in the crucible was removed using ethanol, and the sample on which the gallium nitride crystal was grown was collected. A Ge-doped gallium nitride crystal was grown on a gallium nitride film formed by MOCVD on the zinc oxide substrate, and the thickness of the crystal was about 0.1 mm. Cracks were not confirmed.
こうして得られた試料の窒化ガリウム結晶側の表面を#600及び#2000の砥石によって研削して平坦にし、次いでダイヤモンド砥粒を用いたラップ加工により、平滑化した。平滑化加工においては、砥粒のサイズを3μmから0.1μmまで段階的に小さくしつつ、平坦性を高めた。加工後の窒化ガリウムの平均表面粗さRaは0.2nm、厚さは15μmであった。このようにして、窒化ガリウムと酸化亜鉛からなる複合基板を作製した。 The surface of the sample thus obtained on the gallium nitride crystal side was flattened by grinding with a # 600 and # 2000 grindstone, and then smoothed by lapping using diamond abrasive grains. In the smoothing process, the flatness was improved while gradually reducing the size of the abrasive grains from 3 μm to 0.1 μm. The average surface roughness Ra of the processed gallium nitride was 0.2 nm and the thickness was 15 μm. In this way, a composite substrate made of gallium nitride and zinc oxide was produced.
次いで、MOCVD法を用いて、前記複合基板上にn型層として1050℃でSi原子濃度が5×1018/cm3になるようにドーピングしたn-GaN層を1μm堆積した。次に発光層として800℃で多重量子井戸構造を堆積した。具体的にはInGaNによる井戸層を2.5nm、GaNによる障壁層を10nmの厚さとして5対積層した。次にp型層として950℃でMg原子濃度が1×1019/cm3になるようにドーピングしたp-GaN層を200nm堆積した。その後、MOCVD装置から取り出し、p型層のMgイオンの活性化処理として、窒素雰囲気中で800℃の熱処理を10分間行った。 Next, 1 μm of an n-GaN layer doped with an Si atom concentration of 5 × 10 18 / cm 3 at 1050 ° C. was deposited as an n-type layer on the composite substrate by MOCVD. Next, a multiple quantum well structure was deposited at 800 ° C. as a light emitting layer. Specifically, five pairs of InGaN well layers having a thickness of 2.5 nm and GaN barrier layers having a thickness of 10 nm were stacked. Next, a p-GaN layer doped to have a Mg atom concentration of 1 × 10 19 / cm 3 at 950 ° C. was deposited as a p-type layer at 200 nm. After that, it was taken out from the MOCVD apparatus and subjected to a heat treatment at 800 ° C. for 10 minutes in a nitrogen atmosphere as an activation process for Mg ions in the p-type layer.
LED素子構造形成のためにフォトリソグラフィープロセスと真空蒸着法とを用いた。電極を形成した後、オーム性接触特性を良好なものとするために、窒素雰囲気中での700℃の熱処理を30秒間行った。こうして得られたウェハーを切断してチップ化し、さらにリードフレームに実装して、縦型構造の発光素子を得た。 A photolithography process and a vacuum deposition method were used for forming the LED element structure. After forming the electrode, a heat treatment at 700 ° C. in a nitrogen atmosphere was performed for 30 seconds in order to improve the ohmic contact characteristics. The wafer thus obtained was cut into chips and further mounted on a lead frame to obtain a light emitting device having a vertical structure.
カソード電極とアノード電極間に通電し、I-V測定を行ったところ、整流性が確認された。また、順方向の電流を流したところ、波長450nmの発光が確認された。 When electricity was passed between the cathode electrode and the anode electrode and IV measurement was performed, rectification was confirmed. Further, when a forward current was passed, light emission with a wavelength of 450 nm was confirmed.
このように、本発明によって、高輝度LED作製用の、大口径かつ高品質な窒化ガリウム複合基板を実現した。
支持基板にサファイアに代えて結晶配向酸化亜鉛を用いることで、窒化ガリウム基板の低コスト化を実現した。
酸化亜鉛上の窒化ガリウム結晶作製にフラックス法を用いることで、窒化ガリウム結晶への不純物混入を抑制した。
Thus, according to the present invention, a large-diameter and high-quality gallium nitride composite substrate for manufacturing a high-luminance LED was realized.
By using crystallographically oriented zinc oxide instead of sapphire for the support substrate, cost reduction of the gallium nitride substrate was realized.
By using the flux method to produce gallium nitride crystals on zinc oxide, contamination of impurities into the gallium nitride crystals was suppressed.
(実施例2)
図3~図6を参照しつつ説明した方法に従って、発光素子を作製した。
具体的には、まず実施例1と同様にして、配向度80%の配向酸化亜鉛基板(支持基板1)を作製した。次に、MOCVD法により、支持基板1の第一の主面に、窒素雰囲気中にて800℃で厚さ3μmの窒化ガリウムからなる種結晶膜2を形成し、種基板を得た。次いで、図5に示すように、種基板を溶解防止治具11に取り付けた。溶解防止治具11はアルミナ製で、底面被覆部12と側面被覆部(リング)13よりなる。
このアルミナを850℃の溶融ナトリウムに接触させると、材質の表面が侵食される速度は、1時間あたり0.2μmであった。
(Example 2)
A light emitting device was fabricated according to the method described with reference to FIGS.
Specifically, first, in the same manner as in Example 1, an oriented zinc oxide substrate (supporting substrate 1) having an orientation degree of 80% was produced. Next, a
When this alumina was brought into contact with molten sodium at 850 ° C., the rate at which the surface of the material was eroded was 0.2 μm per hour.
溶解防止治具11に設置した種基板を、図6に示すように、内径80mm、高さ45mmの円筒平底のアルミナ坩堝15の底部分に設置した。以後は、実施例1と同様にして、フラックス法による結晶成長、研磨加工、MOCVD法による発光機能層形成を行い、縦型発光素子を作製した。カソード電極とアノード電極間に通電し、I-V測定を行ったところ、整流性が確認された。また、順方向の電流を流したところ、波長450nmの発光が確認された。
As shown in FIG. 6, the seed substrate placed on the
(実施例3)
実施例2と同様にして発光素子を作製した。
ただし、6インチのSi単結晶からなる支持基板1を用いた。支持基板1の基板の第一の主面1aに、MOCVD法により、窒素雰囲気中にて800℃で厚さ3μmの窒化ガリウムからなる種結晶膜2を形成し、種基板を作製した。この種基板を、実施例2で用いたものと同様なアルミナセラミックス製溶解防止治具11に取り付けた。
このSi単結晶を850℃の溶融ナトリウムに接触させると、材質の表面が侵食される速度は、1時間あたり1mm以上であった。
(Example 3)
A light emitting element was fabricated in the same manner as in Example 2.
However, the
When this Si single crystal was brought into contact with molten sodium at 850 ° C., the speed at which the surface of the material was eroded was 1 mm or more per hour.
溶解防止治具11に取り付けた種基板を内径200mm、高さ45mmの円筒平底のアルミナ坩堝15の底部分に設置し、実施例1と同様にフラックス法による結晶成長、研磨加工、MOCVD法による発光機能層形成を行い、縦型発光素子を作製した。カソード電極とアノード電極間に通電し、I-V測定を行ったところ、整流性が確認された。また、順方向の電流を流したところ、波長450nmの発光が確認された。
The seed substrate attached to the
このように、本発明によって、高輝度LED作製用の、大口径かつ高品質な窒化ガリウム基板を実現した。なお、Siはフラックス法に用いる溶融アルカリ金属には容易に溶解するため、通常はフラックス法に適用することができない。しかし、本発明によれば、Si単結晶基板上の窒化ガリウム膜形成にフラックス法を適用することが可能となり、低欠陥な窒化ガリウム膜を形成することが可能となる。 Thus, according to the present invention, a large-diameter and high-quality gallium nitride substrate for manufacturing a high-brightness LED was realized. Since Si is easily dissolved in the molten alkali metal used in the flux method, it cannot usually be applied to the flux method. However, according to the present invention, the flux method can be applied to the formation of the gallium nitride film on the Si single crystal substrate, and a low-defect gallium nitride film can be formed.
本発明により、溶融アルカリ金属に可溶な材料であるSi単結晶をフラックス法の下地基板に適用することが可能となり、窒化ガリウム基板の大口径化と低コスト化を実現した。 According to the present invention, it is possible to apply a Si single crystal, which is a material soluble in molten alkali metal, to the base substrate of the flux method, realizing a large diameter and low cost of the gallium nitride substrate.
(実施例4)
実施例1と同様にして発光素子を作製した。
ただし、本例では、Si単結晶からなる支持基板を使用した。
MOCVD法により、Si単結晶からなる支持基板の主面1aに、水素および窒素雰囲気中にて約1000℃で窒化アルミニウム膜、窒化アルミニウムガリウム膜を形成した後、窒化ガリウムからなる種結晶膜2を厚さ3μm形成した。
Example 4
A light emitting device was manufactured in the same manner as in Example 1.
However, in this example, a support substrate made of Si single crystal was used.
After forming an aluminum nitride film and an aluminum gallium nitride film at about 1000 ° C. in a hydrogen and nitrogen atmosphere on the
次いで、スパッタ法により、支持基板1の外表面のうち、種結晶膜2を形成した主面以外の面をアルミナからなる保護膜3A、3Bで被覆することによって、種基板4を作製した。次いで、この種基板を、Ga原料、Na原料と共に坩堝内に設置した。
Next, a
次いで、種基板上に、フラックス法による窒化ガリウム結晶成長を実施した。具体的には、4MPaの窒素雰囲気中で、850℃で24時間加熱した。成長した窒化ガリウム結晶を種基板ごと回収し、種基板とフラックス法による窒化ガリウム結晶層とを有する複合基板を得た。この窒化ガリウム結晶の表面を鏡面研磨加工した。 Next, gallium nitride crystal growth was performed on the seed substrate by the flux method. Specifically, it was heated at 850 ° C. for 24 hours in a 4 MPa nitrogen atmosphere. The grown gallium nitride crystal was collected together with the seed substrate, and a composite substrate having a seed substrate and a gallium nitride crystal layer by a flux method was obtained. The surface of the gallium nitride crystal was mirror polished.
複合基板上にMOCVD法で発光機能層を作製した。具体的には1050℃でn-GaN層を1μm堆積し、次に発光層として800℃で量子井戸構造を5対堆積し、950℃でp-GaN層を200nm堆積した。p型層の活性化処理後、フォトリソグラフィーによりLED素子構造を形成し、チップ化した後、通電試験を行ったところ、波長450nmの発光を確認した。 A light emitting functional layer was fabricated on the composite substrate by MOCVD. Specifically, 1 μm of an n-GaN layer was deposited at 1050 ° C., then five pairs of quantum well structures were deposited as a light emitting layer at 800 ° C., and a p-GaN layer was deposited at 200 nm at 950 ° C. After the activation treatment of the p-type layer, an LED element structure was formed by photolithography, formed into a chip, and subjected to an energization test. As a result, light emission with a wavelength of 450 nm was confirmed.
このように、本発明によって、高輝度LED作製用の、大口径かつ高品質な窒化ガリウム基板を実現した。
下地基板にSi単結晶を用いることで、窒化ガリウム基板の低コスト化を実現した。
Si単結晶上の窒化ガリウム結晶作製にフラックス法を用いることで、窒化ガリウム層への不純物混入を抑制した。
フラックス法窒化ガリウム結晶上に13族元素窒化物発光層を作製することで、発光層への不純物混入を抑制した。
Thus, according to the present invention, a large-diameter and high-quality gallium nitride substrate for manufacturing a high-brightness LED was realized.
By using Si single crystal for the base substrate, the cost reduction of the gallium nitride substrate was realized.
By using the flux method to produce gallium nitride crystals on Si single crystals, impurities in the gallium nitride layer were suppressed.
By producing a
Claims (16)
この支持基板の外表面上に形成されている13族元素窒化物からなる種結晶膜、
前記支持基板の前記外表面のうち前記種結晶膜によって被覆されていない領域を被覆する、前記溶融アルカリ金属に不溶な材料からなる保護膜、および
フラックス法によって前記種結晶膜上に形成されている窒化ガリウム結晶
を備えていることを特徴とする、複合基板。 A support substrate made of a substance that dissolves in molten alkali metal,
A seed crystal film made of a group 13 element nitride formed on the outer surface of the support substrate;
A protective film made of a material insoluble in the molten alkali metal that covers a region of the outer surface of the support substrate that is not covered with the seed crystal film, and is formed on the seed crystal film by a flux method. A composite substrate comprising a gallium nitride crystal.
前記支持基板の前記外表面のうち前記種結晶膜によって被覆されていない領域に密着し、前記支持基板が前記溶融アルカリ金属と直接接触することを防止する、溶解防止治具。 A dissolution preventing jig for subjecting a seed substrate comprising a support substrate made of a substance dissolved in molten alkali metal and a seed crystal film made of a group 13 element nitride formed on the outer surface of the support substrate to the flux method Because
A dissolution preventing jig that adheres to a region of the outer surface of the support substrate that is not covered with the seed crystal film and prevents the support substrate from coming into direct contact with the molten alkali metal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015519951A JP6339069B2 (en) | 2013-05-31 | 2014-05-30 | Gallium nitride crystal growth method, composite substrate, light emitting element manufacturing method, and crystal growth apparatus |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-115753 | 2013-05-31 | ||
JP2013115753 | 2013-05-31 | ||
US201361845866P | 2013-07-12 | 2013-07-12 | |
US61/845,866 | 2013-07-12 | ||
US201361856799P | 2013-07-22 | 2013-07-22 | |
US61/856,799 | 2013-07-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014192904A1 true WO2014192904A1 (en) | 2014-12-04 |
Family
ID=51988926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/064373 WO2014192904A1 (en) | 2013-05-31 | 2014-05-30 | Method for growing gallium nitride crystal, composite substrate, method for manufacturing light emitting element, and dissolution preventing jig |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6339069B2 (en) |
WO (1) | WO2014192904A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017026183A1 (en) * | 2015-08-10 | 2017-02-16 | 株式会社リコー | Production method for group 13 nitride single crystal and production apparatus for group 13 nitride single crystal |
JP2017165596A (en) * | 2016-03-14 | 2017-09-21 | パナソニックIpマネジメント株式会社 | Method for manufacturing group iii nitride crystal and ramo4 containing substrate |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03228897A (en) * | 1989-12-19 | 1991-10-09 | Mitsubishi Cable Ind Ltd | Liquid phase epitaxy device |
JP2004307227A (en) * | 2003-04-02 | 2004-11-04 | Hitachi Cable Ltd | Method for producing compound semiconductor single crystal |
JP2007126315A (en) * | 2005-11-02 | 2007-05-24 | Toyoda Gosei Co Ltd | Method for manufacturing semiconductor crystal |
JP2009073710A (en) * | 2007-09-25 | 2009-04-09 | Panasonic Corp | Method for manufacturing gallium nitride substrate, gallium nitride substrate and semiconductor device |
JP2011121815A (en) * | 2009-12-10 | 2011-06-23 | Sumitomo Electric Ind Ltd | Single crystal production method |
JP2013006739A (en) * | 2011-06-24 | 2013-01-10 | Fujikura Ltd | Method for producing single crystal |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013010117A1 (en) * | 2011-07-13 | 2013-01-17 | The Regents Of The University Of California | Growing a group-iii nitride crystal using a flux growth and then using the group-iii nitride crystal as a seed for an ammonothermal re-growth |
-
2014
- 2014-05-30 JP JP2015519951A patent/JP6339069B2/en active Active
- 2014-05-30 WO PCT/JP2014/064373 patent/WO2014192904A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03228897A (en) * | 1989-12-19 | 1991-10-09 | Mitsubishi Cable Ind Ltd | Liquid phase epitaxy device |
JP2004307227A (en) * | 2003-04-02 | 2004-11-04 | Hitachi Cable Ltd | Method for producing compound semiconductor single crystal |
JP2007126315A (en) * | 2005-11-02 | 2007-05-24 | Toyoda Gosei Co Ltd | Method for manufacturing semiconductor crystal |
JP2009073710A (en) * | 2007-09-25 | 2009-04-09 | Panasonic Corp | Method for manufacturing gallium nitride substrate, gallium nitride substrate and semiconductor device |
JP2011121815A (en) * | 2009-12-10 | 2011-06-23 | Sumitomo Electric Ind Ltd | Single crystal production method |
JP2013006739A (en) * | 2011-06-24 | 2013-01-10 | Fujikura Ltd | Method for producing single crystal |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017026183A1 (en) * | 2015-08-10 | 2017-02-16 | 株式会社リコー | Production method for group 13 nitride single crystal and production apparatus for group 13 nitride single crystal |
US20180163323A1 (en) * | 2015-08-10 | 2018-06-14 | Takashi Satoh | Method for producing group 13 nitride single crystal and apparatus for producing group 13 nitride single crystal |
JP2017165596A (en) * | 2016-03-14 | 2017-09-21 | パナソニックIpマネジメント株式会社 | Method for manufacturing group iii nitride crystal and ramo4 containing substrate |
CN107190324A (en) * | 2016-03-14 | 2017-09-22 | 松下知识产权经营株式会社 | Group III-nitride crystallization manufacture method and containing RAMO4Substrate |
Also Published As
Publication number | Publication date |
---|---|
JP6339069B2 (en) | 2018-06-06 |
JPWO2014192904A1 (en) | 2017-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5770905B1 (en) | Gallium nitride free-standing substrate, light emitting device, and manufacturing method thereof | |
JP6480398B2 (en) | Polycrystalline gallium nitride free-standing substrate and light emitting device using the same | |
JP6474734B2 (en) | COMPOSITE SUBSTRATE FOR LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF | |
US10707373B2 (en) | Polycrystalline gallium nitride self-supported substrate and light emitting element using same | |
US20220209062A1 (en) | Composite Substrate, Light Emitting Element, and Methods for Manufacturing Composite Substrate and Light Emitting Element | |
CN108779578B (en) | Self-supporting substrate containing polycrystalline Group 13 element nitride and light-emitting element using the self-supporting substrate | |
WO2014192911A1 (en) | Free-standing gallium nitride substrate, light emitting element, method for producing free-standing gallium nitride substrate, and method for manufacturing light emitting element | |
KR102172356B1 (en) | Gallium nitride self-supported substrate, light-emitting device and manufacturing method therefor | |
CN108025979A (en) | Epitaxial growth orientation aluminum oxide substrate | |
JP6339069B2 (en) | Gallium nitride crystal growth method, composite substrate, light emitting element manufacturing method, and crystal growth apparatus | |
JP6684815B2 (en) | Oriented alumina substrate for epitaxial growth |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14804470 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015519951 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14804470 Country of ref document: EP Kind code of ref document: A1 |