[go: up one dir, main page]

WO2014192841A1 - Method for producing optically active isoxazoline compound - Google Patents

Method for producing optically active isoxazoline compound Download PDF

Info

Publication number
WO2014192841A1
WO2014192841A1 PCT/JP2014/064204 JP2014064204W WO2014192841A1 WO 2014192841 A1 WO2014192841 A1 WO 2014192841A1 JP 2014064204 W JP2014064204 W JP 2014064204W WO 2014192841 A1 WO2014192841 A1 WO 2014192841A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
substituent
phenyl
mmol
Prior art date
Application number
PCT/JP2014/064204
Other languages
French (fr)
Japanese (ja)
Inventor
維奇 王
宮本 隆史
崇 三木
池本 哲哉
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2014192841A1 publication Critical patent/WO2014192841A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D261/00Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings
    • C07D261/02Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings
    • C07D261/04Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member

Definitions

  • the present invention relates to a method for producing an optically active isoxazoline compound.
  • the compound represented by the formula (2) (wherein each symbol is as described below)
  • WO2010 / 090344 it is known to be useful as an active ingredient of a pest control agent and an intermediate for the production thereof.
  • WO2009 / 063910 and Angewante Chemie, International Edition (2010), 49 (33), 5762-5766 a compound represented by the formula (1) and a hydroxyamine are mixed between a chiral phase in a solvent in the presence of a base and water. It has been shown that an optically active compound represented by the formula (2) can be produced by adding a transfer catalyst and reacting it.
  • the present invention provides a novel method for producing an optically active compound represented by the formula (2).
  • the compound represented by the formula (1) and hydroxyamine are reacted with any one selected from the compounds described in group 1 described later and enantiomers thereof and carbonate.
  • an optically active compound represented by the formula (2) can be produced.
  • Ar has a phenyl group which may have a substituent, a naphthyl group which may have a substituent, an indanyl group which may have a substituent, or a substituent.
  • Ar 1 and Ar 2 represent a phenyl group which may have a substituent
  • R 1 and R 2 are the same or different and represent a phenyl group which may have a substituent.
  • R 1 and R 2 together represent — (CH 2 ) u —
  • u represents an integer of 2 to 6
  • R 3 and R 4 are the same or different
  • R 3 and R 4 together represent — (CH 2 ) v —
  • v is an integer of any one of 2 to 6
  • R 5 and R 6 are the same or different and may have a phenyl group.
  • Ar 3 represents an optionally substituted quinolyl group, and the hydrogen atom bonded to the carbon atom of the compound described in Group 1 may be substituted). Or an enantiomeric compound thereof.
  • the halogen atom is a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • examples of the C1-C12 alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an isopentyl group, and a neopentyl group.
  • a C1-C6 alkyl group is preferable and a C1-C4 alkyl group is more preferable.
  • examples of the C1-C6 alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an isopentyl group, and a neopentyl group.
  • C1-C4 alkyl Group 1-ethylpropyl group, hexyl group, isohexyl group, 1,1-dimethylbutyl group, 2,2-dimethylbutyl group, 3,3-dimethylbutyl group and 2-ethylbutyl group, C1-C4 alkyl Group is preferable, and a methyl group and an ethyl group are more preferable.
  • examples of the C1-C4 alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • examples of the C1-C3 alkyl group optionally having a phenyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a 3-phenylpropyl group, and a 3-phenylpropyl group.
  • examples of the C3-C8 cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group, and a C3-C6 cycloalkyl group is preferable.
  • examples of the C3-C6 cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
  • examples of the C2-C12 alkoxycarbonyl group include a methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group, isopropoxycarbonyl group, butoxycarbonyl group, isobutoxycarbonyl group, sec-butoxycarbonyl group, tert- Examples thereof include a butoxycarbonyl group, a pentyloxycarbonyl group, an isopentyloxycarbonyl group, a neopentyloxycarbonyl group, and a hexyloxycarbonyl group, and a C2-C6 alkoxycarbonyl group is preferable.
  • examples of the C2-C6 alkoxycarbonyl group include a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, an isopropoxycarbonyl group, a butoxycarbonyl group, an isobutoxycarbonyl group, a sec-butoxycarbonyl group, and a tert- Examples include butoxycarbonyl group and pentyloxycarbonyl group.
  • examples of the C2-C12 alkylcarbonyl group include acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, pivaloyl group, lauroyl group and the like, and C2-C6 alkylcarbonyl group Is preferred.
  • examples of the C2-C6 alkylcarbonyl group include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a valeryl group, an invaleryl group, and a pivaloyl group.
  • examples of the C6-C14 aryl group include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, an acenaphthylenyl group, and a biphenylyl group, and a C6-C10 aryl group is preferable.
  • examples of the C6-C10 aryl group include a phenyl group and a naphthyl group.
  • examples of the benzyl group optionally having a substituent on the benzene ring include a benzyl group and a 4-methoxybenzyl group, and a benzyl group is preferable.
  • examples of the phenyl group optionally having one or more halogen atoms include a phenyl group, a 3,5-dichlorophenyl group, and a 3,5-dichloro-4-fluorophenyl group.
  • a 3,5-dichlorophenyl group is preferred.
  • examples of the substituent in the phenyl group, naphthyl group, indanyl group or indolizinyl group which may have a substituent include the following substituent B.
  • the following substituent B is mentioned also as a substituent of the phenyl group which may have a substituent, and the quinolyl group which may have a substituent.
  • Y represents any one group in group 1 (provided that the hydrogen atom bonded to the carbon atom of the group in group 1 may be substituted), and the substituent B is as follows: Is mentioned.
  • [Substituent B] C1-C6 alkyl group, C2-C6 alkenyl group, C2-C6 alkynyl group, C3-C8 cycloalkyl group, C3-C8 cycloalkenyl group, C4-C8 cycloalkadienyl group, C6-C14 aryl group, C7-C16 An aralkyl group, a heterocyclic group; Hydroxy group, C1-C6 alkoxy group, C2-C6 alkenyloxy group, C2-C6 alkynyloxy group, C3-C8 cycloalkyloxy group, C3-C8 cycloalkenyloxy group, C4-C8 cycloalkadienyloxy group, C6 -C14 aryl
  • the number of substituents is not particularly limited as long as it is a substitutable number, but is preferably 1 to 5, more preferably 1 to 3. When a plurality of substituents are present, each substituent may be the same or different.
  • the above substituent may further have a substituent A.
  • Ar is preferably a phenyl group which may have one or more selected from the group consisting of a halogen atom and the following group.
  • R 7 represents a C 3-8 cycloalkyl group
  • R 8 and R 9 are the same or different and each represents a hydrogen atom, a formyl group, a C1-C12 alkyl group, a C2-C12 alkoxycarbonyl group
  • a C2- represents a C12 alkylcarbonyl group or a C6-C14 aryl group
  • X 1 and X 2 are the same or different and each represents a hydrogen atom, a formyl group, a C2-C12 alkylcarbonyl group, a C2-C12 alkoxycarbonyl group, an allyloxycarbonyl group, A benzyloxycarbonyl group or a benzyl group optionally having a substituent on the benzene ring, and * represents a binding site).
  • R 7 is a C3-C8 cycloalkyl group
  • R 8 and R 9 are a hydrogen atom, a C1-C12 alkyl group or a C2-C12 alkoxycarbonyl group
  • X 1 and X 2 In which is a hydrogen atom.
  • Particularly preferred examples of Ar are 4-chlorophenyl group and 3- (2-cyclopropanecarbohydrazino) -4-chlorophenyl group.
  • Ar 1 is preferably a phenyl group which may have one or more selected from the group consisting of a halogen atom and a trifluoromethyl group, and particularly preferably 3,5-dichlorophenyl group, 3-chloro-5-triphenyl.
  • Ar 2 is preferably a phenyl group which may have one or more selected from the group consisting of a nitro group and a trifluoromethyl group.
  • Ar 2 is more preferably a phenyl group optionally having one or more trifluoromethyl groups, and particularly preferably a 3,5-ditrifluoromethylphenyl group.
  • a compound represented by the formula (1) and a hydroxyamine are combined with any one selected from the compounds described in Group 1 and enantiomers thereof and a carbonate.
  • an optically active compound represented by the formula (2) is synthesized (isoxazoline ring formation reaction).
  • the optical activity means that a compound having an asymmetric carbon contains one enantiomer in excess relative to the other enantiomer, or only one enantiomer is included. Represents the state of being.
  • Specific examples of the compounds described in Group 1 and their enantiomeric compounds include the following compounds. Among these, the following compounds are preferable because a product having high optical purity can be obtained.
  • the compounds described in Group 1 and their enantiomeric compounds may be commercially available products, or may be produced according to known methods. For example, it can manufacture according to the method as described in USP7632970 or OrganicLetters 14 (2012) 3296-3299.
  • the amount of the compound described in Group 1 and its enantiomeric compound is usually 0.1% with respect to the compound represented by formula (1) from the viewpoint of yield and economy. It is ⁇ 50 mol%, preferably 0.5 to 20 mol%.
  • the compound represented by the formula (1) used as a raw material may be a commercially available product, or may be produced according to a known method. For example, it can be produced according to the method described in EP2716628.
  • Examples of the hydroxylamine used in the isoxazoline ring formation reaction include hydroxylamine and its salt with a mineral acid such as hydrochloric acid. Hydroxylamine may be used as it is or in the form of an aqueous solution. The amount of hydroxylamine to be used is usually 1 to 20 moles, preferably 1 to 10 moles, relative to the compound represented by the formula (1) from the viewpoint of yield and economy.
  • Examples of the carbonate used in the isoxazoline ring formation reaction include alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate, and cesium carbonate, and alkaline earth metal carbonates such as magnesium carbonate, calcium carbonate, and barium carbonate. Can be mentioned.
  • alkali metal carbonates are preferable, and cesium carbonate is particularly preferable.
  • the amount of the carbonate used is usually 1 to 10 mol times, preferably 1 to 5 mol times based on the compound represented by the formula (1).
  • the isoxazoline ring formation reaction may be performed by adding an inorganic oxide.
  • the inorganic oxide include aluminum oxide (alumina), magnesium oxide, calcium oxide, and the like. Aluminum oxide and magnesium oxide are preferable, and aluminum oxide is particularly preferable.
  • the amount of the inorganic oxide used is usually 0.1 to 10 times by weight, preferably 0.1 to 2 times by weight, relative to the compound represented by the formula (1).
  • the isoxazoline ring formation reaction is usually performed in a solvent.
  • the solvent examples include aliphatic hydrocarbon solvents such as hexane, cyclohexane and heptane; aromatic hydrocarbon solvents such as toluene, xylene and mesitylene; aliphatic halogenated hydrocarbon solvents such as chloroform, dichloromethane and butane chloride; chlorobenzene, Aromatic halogenated hydrocarbon solvents such as dichlorobenzene, fluorobenzene and trifluoromethylbenzene; ether solvents such as tert-butyl methyl ether, tetrahydrofuran and cyclopentyl methyl ether; nitrile solvents such as acetonitrile; N, N-dimethylformamide and the like Amide solvents and mixed solvents thereof are preferable, and from the viewpoint of reactivity and selectivity, aliphatic halogenated hydrocarbon solvents, aromatic halogenated hydrocarbon solvents, and aromatic hydrocarbon solvents are preferable, and chloro
  • the amount of the solvent used is usually 1 to 100 times by weight, preferably 1 to 30 times by weight with respect to the compound represented by the formula (1).
  • the isoxazoline ring formation reaction is preferably performed within a range of ⁇ 30 to 60 ° C., more preferably within a range of ⁇ 10 to 30 ° C., and the reaction time is preferably 0.5 to 100 hours, more preferably 1 to 48 hours.
  • the progress of the isoxazoline ring formation reaction can be confirmed by analytical means such as thin layer chromatography, gas chromatography, high performance liquid chromatography and the like.
  • the post-treatment of the isoxazolinization reaction can be performed by subjecting the reaction mixture to conventional methods (for example, neutralization, extraction, washing with water, distillation, crystallization, etc.). Further, the purification is performed by subjecting the optically active compound represented by the formula (2) to recrystallization treatment, extraction purification treatment, distillation treatment, adsorption treatment of activated carbon, silica gel, alumina and the like, and chromatography treatment such as silica gel column chromatography. It can be carried out.
  • Example 5 The HPLC analysis of Example 5 was performed under the following conditions. Yield analysis conditions: The measurement was performed according to the HPLC conditions described in Examples 1 to 4. Retention time Compound 1b 6.7 min, Compound 2b 7.1 min The yield was calculated as the area of the compound 2b percentage / (area percent area percent + Compound 2b of compound 1b).
  • Example 9 Synthesis of Compound 2b (2- ⁇ 2-chloro-5- [3- (3,5-dichlorophenyl) 4,5-dihydro-5- (trifluoromethyl) -3-isoxazoyl] phenyl ⁇ cyclopropanecarbohydrazide)
  • Compound 1b (2- ⁇ 2-chloro-5- [3- (3,5-dichlorophenyl) -4,4,4-trifluoro-1-oxo-2-buten-1-yl] phenyl ⁇ cyclopropanecarbohydrazide ) (48 mg, 0.1 mmol), compound (S) -C- 5 (8 mg, 0.02 mmol), cesium carbonate (98 mg, 0.3 mmol), and chlorobenzene (2 mL) are mixed, and the temperature of
  • Example 12 Compound A Synthesis of ethyl 2-( ⁇ 2-chloro-5- [5- (3,5-dichlorophenyl) -4,5-dihydro-5-trifluoromethyl-3-isoxazolyl] phenyl ⁇ hydrazono) propionate
  • Compound a 2-( ⁇ 2-chloro-5- [3- (3,5-dichlorophenyl) -4,4,4-trifluoro-1-oxo-2-buten-1-yl] phenyl ⁇ hydrazono) propionic acid Mix ethyl (50 mg, 0.10 mmol), (9R) -CINN-TC (11 mg, 0.02 mmol), cesium carbonate (96 mg, 0.30 mmol) and chlorobenzene (1 mL) and adjust the temperature of the mixture to 0 ° C.
  • Example 14 Compound C 2-( ⁇ 2-chloro-5- [5- (3,5-dichlorophenyl) -4,5-dihydro-5-trifluoromethyl-3-isoxazolyl] phenyl ⁇ hydrazono) -3-phenylpropionate Synthesis of Compound c 2-( ⁇ 2-chloro-5- [3- (3,5-dichlorophenyl) -4,4,4-trifluoro-1-oxo-2-buten-1-yl] phenyl ⁇ hydrazono) -3 -Ethyl phenylpropionate (48 mg, 0.083 mmol), (9R) -CINN-TC (9 mg, 0.016 mmol), cesium carbonate (84 mg, 0.26 mmol) and chlorobenzene (1 mL) were mixed and the temperature of the mixture was After adjusting to 0 ° C., 50% aqueous hydroxyamine solution (34 mg, 0.51 mmol) was added.
  • Example 15 Compound D 2-( ⁇ 2-chloro-5- [5- (3,4,5-trichlorophenyl) -4,5-dihydro-5-trifluoromethyl-3-isoxazolyl] phenyl ⁇ hydrazono) ethyl propionate
  • Composition Compound d 2-( ⁇ 2-chloro-5- [3- (3,4,5-trichlorophenyl) -4,4,4-trifluoro-1-oxo-2-buten-1-yl] phenyl ⁇ hydrazono )
  • Ethyl propionate (137 mg, 0.25 mmol), (9R) -CINN-TC (29 mg, 0.05 mmol), cesium carbonate (163 mg, 0.50 mmol) and chlorobenzene (1.76 g) were mixed and the temperature of the mixture was adjusted to 20-25 ° C., and 50% aqueous hydroxyamine solution (50 mg, 0.75 mmol) was added.
  • An optically active isoxazoline compound can be produced by the method of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

An optically active isoxazoline compound represented by formula (2) can be produced by reacting a compound represented by formula (1) with hydroxyamine in the presence of both at least one compound selected from compounds mentioned in Group 1 and enantiomeric compounds thereof and a carbonate salt. (In the formulae, Ar represents a phenyl group which may have a substituent or the like; Ar1 and Ar2 independently represent a phenyl group which may have a substituent; R1 and R2 are the same as or different from each other and independently represent a phenyl group which may have a substituent or the like; R3 and R4 are the same as or different from each other and independently represent a C1-C3 alkyl group which may have a phenyl group or the like; R5 and R6 are the same as or different from each other and independently represent a C1-C3 alkyl group which may have a phenyl group; and Ar3 represents a quinolyl group which may have a substituent.) AA Group 1

Description

光学活性なイソキサゾリン化合物の製造方法Method for producing optically active isoxazoline compound
 本発明は、光学活性なイソキサゾリン化合物の製造方法に関する。 The present invention relates to a method for producing an optically active isoxazoline compound.
 式(2)で示される化合物(式中の各記号は後述の通りである。)は、
Figure JPOXMLDOC01-appb-I000006
例えば、WO2010/090344に示されるように、有害生物防除剤の有効成分及びその製造中間体として有用であることが知られている。
 WO2009/063910及びAngewandte Chemie,International Edition(2010),49(33),5762−5766には、式(1)で示される化合物とヒドロキシアミンとを、溶媒中、塩基及び水の存在下でキラル相間移動触媒を加えて反応させることにより、光学活性な式(2)で示される化合物が製造できることが示されている。
The compound represented by the formula (2) (wherein each symbol is as described below)
Figure JPOXMLDOC01-appb-I000006
For example, as shown in WO2010 / 090344, it is known to be useful as an active ingredient of a pest control agent and an intermediate for the production thereof.
In WO2009 / 063910 and Angewante Chemie, International Edition (2010), 49 (33), 5762-5766, a compound represented by the formula (1) and a hydroxyamine are mixed between a chiral phase in a solvent in the presence of a base and water. It has been shown that an optically active compound represented by the formula (2) can be produced by adding a transfer catalyst and reacting it.
 本発明は、光学活性な式(2)で示される化合物を製造する新規な方法を提供する。
 本発明によれば、式(1)で示される化合物とヒドロキシアミンとを、後述のグループ1中に記載された化合物及びその鏡像異性の化合物より選ばれるいずれか1つと炭酸塩との存在下で反応させることにより、光学活性な式(2)で示される化合物を製造することができる。
[グループ1]
Figure JPOXMLDOC01-appb-I000007
(式中、Arは、置換基を有していてもよいフェニル基、置換基を有していてもよいナフチル基、置換基を有していてもよいインダニル基又は置換基を有していてもよいインドリジニル基を表し、Ar及びArは置換基を有していてもよいフェニル基を表し、R及びRは同一又は相異なり、置換基を有していてもよいフェニル基を表すか、RとRとが一緒になって−(CH−を表し、uは2~6のいずれか1つの整数を表し、R及びRは同一又は相異なり、フェニル基を有していてもよいC1−C3アルキル基を表すか、RとRとが一緒になって、−(CH−を表し、vは2~6のいずれか1つの整数を表し、R及びRは同一又は相異なり、フェニル基を有していてもよいC1−C3アルキル基を表し、Arは置換基を有していてもよいキノリル基を表し、グループ1中に記載された化合物の炭素原子に結合した水素原子は、置換されていてもよい)。
又はその鏡像異性の化合物である。
The present invention provides a novel method for producing an optically active compound represented by the formula (2).
According to the present invention, the compound represented by the formula (1) and hydroxyamine are reacted with any one selected from the compounds described in group 1 described later and enantiomers thereof and carbonate. By reacting, an optically active compound represented by the formula (2) can be produced.
[Group 1]
Figure JPOXMLDOC01-appb-I000007
(In the formula, Ar has a phenyl group which may have a substituent, a naphthyl group which may have a substituent, an indanyl group which may have a substituent, or a substituent. Represents an indolizinyl group, Ar 1 and Ar 2 represent a phenyl group which may have a substituent, and R 1 and R 2 are the same or different and represent a phenyl group which may have a substituent. Or R 1 and R 2 together represent — (CH 2 ) u —, u represents an integer of 2 to 6, and R 3 and R 4 are the same or different, Represents a C1-C3 alkyl group which may have a group, or R 3 and R 4 together represent — (CH 2 ) v —, and v is an integer of any one of 2 to 6 R 5 and R 6 are the same or different and may have a phenyl group. Ar 3 represents an optionally substituted quinolyl group, and the hydrogen atom bonded to the carbon atom of the compound described in Group 1 may be substituted).
Or an enantiomeric compound thereof.
 以下、本発明について詳細に説明する。
 本明細書中、ハロゲン原子はフッ素原子、塩素原子、臭素原子又はヨウ素原子である。
 本明細書中、C1−C12アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、1−エチルプロピル基、ヘキシル基、イソヘキシル基、1,1−ジメチルブチル基、2,2−ジメチルブチル基、3,3−ジメチルブチル基、2−エチルブチル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基及びドデシル基が挙げられ、C1−C6アルキル基が好ましく、C1−C4アルキル基がより好ましい。
 本明細書中、C1−C6アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、1−エチルプロピル基、ヘキシル基、イソヘキシル基、1,1−ジメチルブチル基、2,2−ジメチルブチル基、3,3−ジメチルブチル基及び2−エチルブチル基が挙げられ、C1−C4アルキル基が好ましく、メチル基及びエチル基がより好ましい。
 本明細書中、C1−C4アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基及びtert−ブチル基が挙げられる。
 本明細書中、フェニル基を有していてもよいC1−C3アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基及び3−フェニルプロピル基が挙げられ、3−フェニルプロピル基が好ましい。
 本明細書中、C3−C8シクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基及びシクロオクチル基が挙げられ、C3−C6シクロアルキル基が好ましい。
 本明細書中、C3−C6シクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基及びシクロヘキシル基等が挙げられる。
 本明細書中、C2−C12アルコキシカルボニル基としては、例えば、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、sec−ブトキシカルボニル基、tert−ブトキシカルボニル基、ペンチルオキシカルボニル基、イソペンチルオキシカルボニル基、ネオペンチルオキシカルボニル基及びヘキシルオキシカルボニル基が挙げられ、C2−C6アルコキシカルボニル基が好ましい。
 本明細書中、C2−C6アルコキシカルボニル基としては、例えば、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、sec−ブトキシカルボニル基、tert−ブトキシカルボニル基及びペンチルオキシカルボニル基が挙げられる。
 本明細書中、C2−C12アルキルカルボニル基としては、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ピバロイル基、ラウロイル基等が挙げられ、C2−C6アルキルカルボニル基が好ましい。
 本明細書中、C2−C6アルキルカルボニル基としては、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、インバレリル基及びピバロイル基が挙げられる。
 本明細書中、C6−C14アリール基としては、例えば、フェニル基、ナフチル基、アントリル基、フェナントリル基、アセナフチレニル基及びビフェニリル基が挙げられ、C6−C10アリール基が好ましい。
 本明細書中、C6−C10アリール基としては、例えば、フェニル基及びナフチル基が挙げられる。
 本明細書中、ベンゼン環上に置換基を有していてもよいベンジル基としては、例えば、ベンジル基及び4−メトキシベンジル基が挙げられ、ベンジル基が好ましい。
 本明細書中、1個以上のハロゲン原子を有していてもよいフェニル基としては、例えば、フェニル基、3,5−ジクロロフェニル基及び3,5−ジクロロ−4−フルオロフェニル基が挙げられ、3,5−ジクロロフェニル基が好ましい。
 本明細書中、置換基を有していてもよいフェニル基、ナフチル基、インダニル基又はインドリジニル基における置換基としては、以下の置換基Bが挙げられる。また、置換基を有していてもよいフェニル基及び置換基を有していてもよいキノリル基の置換基としても、以下の置換基Bが挙げられる。さらに、Yはグループ1中のいずれか1つの基を表す(但し、グループ1中の基の炭素原子に結合した水素原子は、置換されていてもよい)における置換基も、以下の置換基Bが挙げられる。
[置換基B]
C1−C6アルキル基、C2−C6アルケニル基、C2−C6アルキニル基、C3−C8シクロアルキル基、C3−C8シクロアルケニル基、C4−C8シクロアルカジエニル基、C6−C14アリール基、C7−C16アラルキル基、複素環基;
ヒドロキシ基、C1−C6アルコキシ基、C2−C6アルケニルオキシ基、C2−C6アルキニルオキシ基、C3−C8シクロアルキルオキシ基、C3−C8シクロアルケニルオキシ基、C4−C8シクロアルカジエニルオキシ基、C6−C14アリールオキシ基、C7−C16アラルキルオキシ基、複素環オキシ基;
ホルミル基、C1−C6アルキルカルボニル基、C2−C6アルケニルカルボニル基、C2−C6アルキニルカルボニル基、C3−C8シクロアルキルカルボニル基、C3−C8シクロアルケニルカルボニル基、C4−C8シクロアルカジエニルカルボニル基、C6−C14アリールカルボニル基、C7−C16アラルキルカルボニル基、複素環カルボニル基;
カルボキシ基、C1−C6アルコキシC1−C6アルコキシカルボニル基、C2−C6アルケニルオキシカルボニル基、C2−C6アルキニルオキシカルボニル基、C3−C8シクロアルコキシカルボニル基、C3−C8シクロアルケニルオキシカルボニル基、C4−C8シクロアルカジエニルオキシカルボニル基、C6−C14アリールオキシカルボニル基、C7−C16アラルキルオキシカルボニル基、複素環オキシカルボニル基;
C1−C6アルキルカルボニルオキシ基、C2−C6アルケニルカルボニルオキシ基、C2−C6アルキニルカルボニルオキシ基、C3−C8シクロアルキルカルボニルオキシ基、C3−C8シクロアルケニルカルボニルオキシ基、C4−C8シクロアルカジエニルカルボニルオキシ基、C6−C14アリールカルボニルオキシ基、C7−C16アラルキルカルボニルオキシ基、複素環カルボニルオキシ基;
スルファニル基、C1−C6アルキルスルファニル基、C2−C6アルケニルスルファニル基、C2−C6アルキニルスルファニル基、C3−C8シクロアルキルスルファニル基、C3−C8シクロアルケニルスルファニル基、C4−C8シクロアルカジエニルスルファニル基、C6−C14アリールスルファニル基、C7−C16アラルキルスルファニル基、複素環スルファニル基;
スルフィニル基、C1−C6アルキルスルフィニル基、C2−C6アルケニルスルフィニル基、C2−C6アルキニルスルフィニル基、C3−C8シクロアルキルスルフィニル基、C3−C8シクロアルケニルスルフィニル基、C4−C8シクロアルカジエニルスルフィニル基、C6−C14アリールスルフィニル基、C7−C16アラルキルスルフィニル基、複素環スルフィニル基;
スルホ基、C1−C6アルキルスルホニル基、C2−C6アルケニルスルホニル基、C2−C6アルキニルスルホニル基、C3−C8シクロアルキルスルホニル基、C3−C8シクロアルケニルスルホニル基、C4−C8シクロアルカジエニルスルホニル基、C6−C14アリールスルホニル基、C7−C16アラルキルスルホニル基、複素環スルホニル基;
C1−C6アルキルスルホニルオキシ基、C2−C6アルケニルスルホニルオキシ基、C2−C6アルキニルスルホニルオキシ基、C3−C8シクロアルキルスルホニルオキシ基、C3−C8シクロアルケニルスルホニルオキシ基、C4−C8シクロアルカジエニルスルホニルオキシ基、C6−C14アリールスルホニルオキシ基、C7−C16アラルキルスルホニルオキシ基、複素環スルホニルオキシ基;
アミノ基、モノ又はジ−C1−C6アルキルアミノ基、モノ又はジ−C2−C6アルケニルアミノ基、モノ又はジ−C2−C6アルキニルアミノ基、モノ又はジ−C3−C8シクロアルキルアミノ基、モノ又はジ−C3−C8シクロアルケニルアミノ基、モノ又はジ−C4−C8シクロアルカジエニルアミノ基、モノ又はジ−C6−C14アリールアミノ基、モノ又はジ−C7−C16アラルキルアミノ基、モノ又はジ−複素環アミノ基;
カルバモイル基、モノ又はジ−C1−C6アルキルカルバモイル基、モノ又はジ−C2−C6アルケニルカルバモイル基、モノ又はジ−C2−C6アルキニルカルバモイル基、モノ又はジ−C3−C8シクロアルキルカルバモイル基、モノ又はジ−C3−C8シクロアルケニルカルバモイル基、モノ又はジ−C4−C8シクロアルカジエニルカルバモイル基、モノ又はジ−C6−C14アリールカルバモイル基、モノ又はジ−C7−C16アラルキルカルバモイル基、モノ又はジ−複素環カルバモイル基;
チオカルバモイル基、モノ又はジ−C1−C6アルキルチオカルバモイル基、モノ又はジ−C2−C6アルケニルチオカルバモイル基、モノ又はジ−C2−C6アルキニルチオカルバモイル基、モノ又はジ−C3−C8シクロアルキルチオカルバモイル基、モノ又はジ−C3−C8シクロアルケニルチオカルバモイル基、モノ又はジ−C4−C8シクロアルカジエニルチオカルバモイル基、モノ又はジ−C6−C14アリールチオカルバモイル基、モノ又はジ−C7−C16アラルキルチオカルバモイル基、モノ又はジ−複素環チオカルバモイル基;
ハロゲン原子;
シアノ基;
ニトロ基;
オキソ基;及び
チオキソ基。
 置換基の数は、置換可能な数であれば特に限定されないが、好ましくは1~5個、より好ましくは1~3個である。複数の置換基が存在する場合、各置換基は、同一でも異なっていてもよい。上記の置換基は、置換基Aをさらに有していてもよい。
 Arは、好ましくは、ハロゲン原子及び下記の基からなる群より選ばれる1以上を有していてもよいフェニル基である。
Figure JPOXMLDOC01-appb-I000008
(式中、RはC3−8シクロアルキル基を表し、R及びRは各々同一又は相異なり、水素原子、ホルミル基、C1−C12アルキル基、C2−C12アルコキシカルボニル基、C2−C12アルキルカルボニル基又はC6−C14アリール基を表し、X及びXは各々同一又は相異なり、水素原子、ホルミル基、C2−C12アルキルカルボニル基、C2−C12アルコキシカルボニル基、アリルオキシカルボニル基、ベンジルオキシカルボニル基又はベンゼン環上に置換基を有していてもよいベンジル基を表し、*は結合部位を表す)。
 Arのより好ましい具体例としては、RがC3−C8シクロアルキル基であり、R及びRが水素原子、C1−C12アルキル基又はC2−C12アルコキシカルボニル基であり、X及びXが水素原子であるものが挙げられる。
 Arの特に好ましい例は、4−クロロフェニル基及び3−(2−シクロプロパンカルボヒドラジノ)−4−クロロフェニル基である。
 Arは、好ましくはハロゲン原子及びトリフルオロメチル基からなる群より選ばれる1以上を有していてもよいフェニル基であり、特に好ましくは3,5−ジクロロフェニル基、3−クロロ−5−トリフルオロメチルフェニル基又は3,5−ジクロロ−4−フルオロフェニル基である。
 Arは、好ましくはニトロ基及びトリフルオロメチル基からなる群より選ばれる1以上を有していてもよいフェニル基である。
 Arは、さらに好ましくは、1個以上のトリフルオロメチル基を有していてもよいフェニル基であり、特に好ましくは、3,5−ジトリフルオロメチルフェニル基である。
 本発明の製造方法では、式(1)で示される化合物と、ヒドロキシアミンとを、グループ1中に記載された化合物及びその鏡像異性の化合物より選ばれるいずれか1つと炭酸塩との存在下、反応させることにより、光学活性な式(2)で示される化合物を合成する(イソキサゾリン環形成反応)。
 本明細書中、光学活性とは、不斉炭素を有する化合物において一方の鏡像異性体が他方の鏡像異性体に対して過剰に含まれている状態、又は一方の鏡像異性体のみが含まれている状態を表す。
 グループ1中に記載された化合物及びその鏡像異性の化合物の具体例としては以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
 なかでも、高い光学純度を有する生成物が得られることから以下の化合物が好ましい。
Figure JPOXMLDOC01-appb-I000011
 グループ1中に記載された化合物及びその鏡像異性の化合物は、市販品を使用してもよく、また公知の方法に準じて製造してもよい。例えば、USP7632970、又はOrganicLetters 14(2012)3296−3299に記載の方法に準じて製造できる。
 イソキサゾリン環形成反応において、グループ1中に記載された化合物及びその鏡像異性の化合物の使用量は、収率及び経済性の点から、式(1)で示される化合物に対して、通常0.1~50モル%、好ましくは0.5~20モル%である。
 原料として使用される式(1)で示される化合物は、市販品を使用してもよく、また公知の方法に準じて製造してもよい。例えば、EP2716628に記載の方法に準じて製造できる。
 イソキサゾリン環形成反応において、使用されるヒドロキシルアミンとしてはヒドロキシルアミン及びその塩酸等との鉱酸との塩が挙げられる。ヒドロキシルアミンはそのまま用いてもよく、水溶液の状態で用いてもよい。ヒドロキシルアミンの使用量は、収率及び経済性の点から、式(1)で示される化合物に対して、通常1~20モル倍、好ましくは1~10モル倍である。
 イソキサゾリン環形成反応において使用される炭酸塩としては、例えば、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム等のアルカリ金属炭酸塩及び炭酸マグネシウム、炭酸カルシウム、炭酸バリウム等のアルカリ土類金属炭酸塩が挙げられる。なかでも、アルカリ金属炭酸塩が好ましく、炭酸セシウムが特に好ましい。
 上記炭酸塩の使用量は、式(1)で示される化合物に対して、通常1~10モル倍、好ましくは1~5モル倍である。
 イソキサゾリン環形成反応は、無機酸化物を加えて反応を行ってもよい。無機酸化物としては、酸化アルミニウム(アルミナ)、酸化マグネシウム、酸化カルシウム等が挙げられ、酸化アルミニウム及び酸化マグネシウムが好ましく、酸化アルミニウムが特に好ましい。
 上記無機酸化物の使用量は、式(1)で示される化合物に対して、通常0.1~10重量倍、好ましくは0.1~2重量倍である。
 イソキサゾリン環形成反応は、通常は溶媒中で行われる。溶媒の例としては、ヘキサン、シクロヘキサン、ヘプタン等の脂肪族炭化水素溶媒;トルエン、キシレン、メシチレン等の芳香族炭化水素溶媒;クロロホルム、ジクロロメタン、塩化ブタン等の脂肪族ハロゲン化炭化水素溶媒;クロロベンゼン、ジクロロベンゼン、フルオロベンゼン、トリフルオロメチルベンゼン等の芳香族ハロゲン化炭化水素溶媒;tert−ブチルメチルエーテル、テトラヒドロフラン、シクロペンチルメチルエーテル等のエーテル溶媒;アセトニトリル等のニトリル溶媒;N,N−ジメチルホルムアミド等のアミド溶媒及びこれらの混合溶媒が挙げられ、反応性及び選択性の点から、脂肪族ハロゲン化炭化水素溶媒、芳香族ハロゲン化炭化水素溶媒、芳香族炭化水素溶媒が好ましく、特にクロロホルム、クロロベンゼン、トルエンが好ましい。
 上記溶媒の使用量は、式(1)で示される化合物に対して、通常1~100重量倍、好ましくは1~30重量倍である。
 イソキサゾリン環形成反応は、好ましくは−30~60℃の範囲内、より好ましくは−10~30℃の範囲内で行われ、反応時間は、好ましくは0.5~100時間、より好ましくは1~48時間である。
 イソキサゾリン環形成反応の進行度合いは、薄層クロマトグラフィー、ガスクロマトグラフィー、高速液体クロマトグラフィー等の分析手段により確認することができる。
 イソキサゾリン化反応の後処理は、反応混合物を常法(例えば、中和、抽出、水洗、蒸留、結晶化等)に付すことにより行うことができる。またその精製は光学活性な式(2)で示される化合物を再結晶処理、抽出精製処理、蒸留処理、活性炭、シリカゲル、アルミナ等の吸着処理、シリカゲルカラムクロマトグラフィー等のクロマトグラフィー処理に付すことにより行うことができる。
Hereinafter, the present invention will be described in detail.
In the present specification, the halogen atom is a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
In the present specification, examples of the C1-C12 alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an isopentyl group, and a neopentyl group. Group, 1-ethylpropyl group, hexyl group, isohexyl group, 1,1-dimethylbutyl group, 2,2-dimethylbutyl group, 3,3-dimethylbutyl group, 2-ethylbutyl group, heptyl group, octyl group, nonyl Group, a decyl group, an undecyl group, and a dodecyl group are mentioned, A C1-C6 alkyl group is preferable and a C1-C4 alkyl group is more preferable.
In the present specification, examples of the C1-C6 alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an isopentyl group, and a neopentyl group. Group, 1-ethylpropyl group, hexyl group, isohexyl group, 1,1-dimethylbutyl group, 2,2-dimethylbutyl group, 3,3-dimethylbutyl group and 2-ethylbutyl group, C1-C4 alkyl Group is preferable, and a methyl group and an ethyl group are more preferable.
In the present specification, examples of the C1-C4 alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
In the present specification, examples of the C1-C3 alkyl group optionally having a phenyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a 3-phenylpropyl group, and a 3-phenylpropyl group. Is preferred.
In the present specification, examples of the C3-C8 cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group, and a C3-C6 cycloalkyl group is preferable.
In the present specification, examples of the C3-C6 cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
In the present specification, examples of the C2-C12 alkoxycarbonyl group include a methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group, isopropoxycarbonyl group, butoxycarbonyl group, isobutoxycarbonyl group, sec-butoxycarbonyl group, tert- Examples thereof include a butoxycarbonyl group, a pentyloxycarbonyl group, an isopentyloxycarbonyl group, a neopentyloxycarbonyl group, and a hexyloxycarbonyl group, and a C2-C6 alkoxycarbonyl group is preferable.
In the present specification, examples of the C2-C6 alkoxycarbonyl group include a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, an isopropoxycarbonyl group, a butoxycarbonyl group, an isobutoxycarbonyl group, a sec-butoxycarbonyl group, and a tert- Examples include butoxycarbonyl group and pentyloxycarbonyl group.
In the present specification, examples of the C2-C12 alkylcarbonyl group include acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, pivaloyl group, lauroyl group and the like, and C2-C6 alkylcarbonyl group Is preferred.
In the present specification, examples of the C2-C6 alkylcarbonyl group include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a valeryl group, an invaleryl group, and a pivaloyl group.
In the present specification, examples of the C6-C14 aryl group include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, an acenaphthylenyl group, and a biphenylyl group, and a C6-C10 aryl group is preferable.
In the present specification, examples of the C6-C10 aryl group include a phenyl group and a naphthyl group.
In the present specification, examples of the benzyl group optionally having a substituent on the benzene ring include a benzyl group and a 4-methoxybenzyl group, and a benzyl group is preferable.
In the present specification, examples of the phenyl group optionally having one or more halogen atoms include a phenyl group, a 3,5-dichlorophenyl group, and a 3,5-dichloro-4-fluorophenyl group. A 3,5-dichlorophenyl group is preferred.
In the present specification, examples of the substituent in the phenyl group, naphthyl group, indanyl group or indolizinyl group which may have a substituent include the following substituent B. Moreover, the following substituent B is mentioned also as a substituent of the phenyl group which may have a substituent, and the quinolyl group which may have a substituent. Furthermore, Y represents any one group in group 1 (provided that the hydrogen atom bonded to the carbon atom of the group in group 1 may be substituted), and the substituent B is as follows: Is mentioned.
[Substituent B]
C1-C6 alkyl group, C2-C6 alkenyl group, C2-C6 alkynyl group, C3-C8 cycloalkyl group, C3-C8 cycloalkenyl group, C4-C8 cycloalkadienyl group, C6-C14 aryl group, C7-C16 An aralkyl group, a heterocyclic group;
Hydroxy group, C1-C6 alkoxy group, C2-C6 alkenyloxy group, C2-C6 alkynyloxy group, C3-C8 cycloalkyloxy group, C3-C8 cycloalkenyloxy group, C4-C8 cycloalkadienyloxy group, C6 -C14 aryloxy group, C7-C16 aralkyloxy group, heterocyclic oxy group;
Formyl group, C1-C6 alkylcarbonyl group, C2-C6 alkenylcarbonyl group, C2-C6 alkynylcarbonyl group, C3-C8 cycloalkylcarbonyl group, C3-C8 cycloalkenylcarbonyl group, C4-C8 cycloalkadienylcarbonyl group, A C6-C14 arylcarbonyl group, a C7-C16 aralkylcarbonyl group, a heterocyclic carbonyl group;
Carboxy group, C1-C6 alkoxy C1-C6 alkoxycarbonyl group, C2-C6 alkenyloxycarbonyl group, C2-C6 alkynyloxycarbonyl group, C3-C8 cycloalkoxycarbonyl group, C3-C8 cycloalkenyloxycarbonyl group, C4-C8 A cycloalkadienyloxycarbonyl group, a C6-C14 aryloxycarbonyl group, a C7-C16 aralkyloxycarbonyl group, a heterocyclic oxycarbonyl group;
C1-C6 alkylcarbonyloxy group, C2-C6 alkenylcarbonyloxy group, C2-C6 alkynylcarbonyloxy group, C3-C8 cycloalkylcarbonyloxy group, C3-C8 cycloalkenylcarbonyloxy group, C4-C8 cycloalkadienylcarbonyl An oxy group, a C6-C14 arylcarbonyloxy group, a C7-C16 aralkylcarbonyloxy group, a heterocyclic carbonyloxy group;
Sulfanyl group, C1-C6 alkylsulfanyl group, C2-C6 alkenylsulfanyl group, C2-C6 alkynylsulfanyl group, C3-C8 cycloalkylsulfanyl group, C3-C8 cycloalkenylsulfanyl group, C4-C8 cycloalkadienylsulfanyl group, A C6-C14 arylsulfanyl group, a C7-C16 aralkylsulfanyl group, a heterocyclic sulfanyl group;
Sulfinyl group, C1-C6 alkylsulfinyl group, C2-C6 alkenylsulfinyl group, C2-C6 alkynylsulfinyl group, C3-C8 cycloalkylsulfinyl group, C3-C8 cycloalkenylsulfinyl group, C4-C8 cycloalkadienylsulfinyl group, A C6-C14 arylsulfinyl group, a C7-C16 aralkylsulfinyl group, a heterocyclic sulfinyl group;
Sulfo group, C1-C6 alkylsulfonyl group, C2-C6 alkenylsulfonyl group, C2-C6 alkynylsulfonyl group, C3-C8 cycloalkylsulfonyl group, C3-C8 cycloalkenylsulfonyl group, C4-C8 cycloalkadienylsulfonyl group, A C6-C14 arylsulfonyl group, a C7-C16 aralkylsulfonyl group, a heterocyclic sulfonyl group;
C1-C6 alkylsulfonyloxy group, C2-C6 alkenylsulfonyloxy group, C2-C6 alkynylsulfonyloxy group, C3-C8 cycloalkylsulfonyloxy group, C3-C8 cycloalkenylsulfonyloxy group, C4-C8 cycloalkadienylsulfonyl An oxy group, a C6-C14 arylsulfonyloxy group, a C7-C16 aralkylsulfonyloxy group, a heterocyclic sulfonyloxy group;
Amino group, mono- or di-C1-C6 alkylamino group, mono- or di-C2-C6 alkenylamino group, mono- or di-C2-C6 alkynylamino group, mono- or di-C3-C8 cycloalkylamino group, mono- or Di-C3-C8 cycloalkenylamino group, mono- or di-C4-C8 cycloalkadienylamino group, mono- or di-C6-C14 arylamino group, mono- or di-C7-C16 aralkylamino group, mono- or di- A heterocyclic amino group;
Carbamoyl group, mono- or di-C1-C6 alkylcarbamoyl group, mono- or di-C2-C6 alkenylcarbamoyl group, mono- or di-C2-C6 alkynylcarbamoyl group, mono- or di-C3-C8 cycloalkylcarbamoyl group, mono- or Di-C3-C8 cycloalkenylcarbamoyl group, mono- or di-C4-C8 cycloalkadienylcarbamoyl group, mono- or di-C6-C14 arylcarbamoyl group, mono- or di-C7-C16 aralkylcarbamoyl group, mono- or di- A heterocyclic carbamoyl group;
Thiocarbamoyl group, mono- or di-C1-C6 alkylthiocarbamoyl group, mono- or di-C2-C6 alkenylthiocarbamoyl group, mono- or di-C2-C6 alkynylthiocarbamoyl group, mono- or di-C3-C8 cycloalkylthiocarbamoyl group Mono- or di-C3-C8 cycloalkenylthiocarbamoyl group, mono- or di-C4-C8 cycloalkadienylthiocarbamoyl group, mono- or di-C6-C14 arylthiocarbamoyl group, mono- or di-C7-C16 aralkylthio A carbamoyl group, a mono- or di-heterocyclic thiocarbamoyl group;
A halogen atom;
A cyano group;
A nitro group;
An oxo group; and a thioxo group.
The number of substituents is not particularly limited as long as it is a substitutable number, but is preferably 1 to 5, more preferably 1 to 3. When a plurality of substituents are present, each substituent may be the same or different. The above substituent may further have a substituent A.
Ar is preferably a phenyl group which may have one or more selected from the group consisting of a halogen atom and the following group.
Figure JPOXMLDOC01-appb-I000008
(Wherein R 7 represents a C 3-8 cycloalkyl group, and R 8 and R 9 are the same or different and each represents a hydrogen atom, a formyl group, a C1-C12 alkyl group, a C2-C12 alkoxycarbonyl group, a C2- Represents a C12 alkylcarbonyl group or a C6-C14 aryl group, and X 1 and X 2 are the same or different and each represents a hydrogen atom, a formyl group, a C2-C12 alkylcarbonyl group, a C2-C12 alkoxycarbonyl group, an allyloxycarbonyl group, A benzyloxycarbonyl group or a benzyl group optionally having a substituent on the benzene ring, and * represents a binding site).
As a more preferred specific example of Ar, R 7 is a C3-C8 cycloalkyl group, R 8 and R 9 are a hydrogen atom, a C1-C12 alkyl group or a C2-C12 alkoxycarbonyl group, and X 1 and X 2 In which is a hydrogen atom.
Particularly preferred examples of Ar are 4-chlorophenyl group and 3- (2-cyclopropanecarbohydrazino) -4-chlorophenyl group.
Ar 1 is preferably a phenyl group which may have one or more selected from the group consisting of a halogen atom and a trifluoromethyl group, and particularly preferably 3,5-dichlorophenyl group, 3-chloro-5-triphenyl. A fluoromethylphenyl group or a 3,5-dichloro-4-fluorophenyl group;
Ar 2 is preferably a phenyl group which may have one or more selected from the group consisting of a nitro group and a trifluoromethyl group.
Ar 2 is more preferably a phenyl group optionally having one or more trifluoromethyl groups, and particularly preferably a 3,5-ditrifluoromethylphenyl group.
In the production method of the present invention, a compound represented by the formula (1) and a hydroxyamine are combined with any one selected from the compounds described in Group 1 and enantiomers thereof and a carbonate. By reacting, an optically active compound represented by the formula (2) is synthesized (isoxazoline ring formation reaction).
In this specification, the optical activity means that a compound having an asymmetric carbon contains one enantiomer in excess relative to the other enantiomer, or only one enantiomer is included. Represents the state of being.
Specific examples of the compounds described in Group 1 and their enantiomeric compounds include the following compounds.
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
Among these, the following compounds are preferable because a product having high optical purity can be obtained.
Figure JPOXMLDOC01-appb-I000011
The compounds described in Group 1 and their enantiomeric compounds may be commercially available products, or may be produced according to known methods. For example, it can manufacture according to the method as described in USP7632970 or OrganicLetters 14 (2012) 3296-3299.
In the isoxazoline ring formation reaction, the amount of the compound described in Group 1 and its enantiomeric compound is usually 0.1% with respect to the compound represented by formula (1) from the viewpoint of yield and economy. It is ˜50 mol%, preferably 0.5 to 20 mol%.
The compound represented by the formula (1) used as a raw material may be a commercially available product, or may be produced according to a known method. For example, it can be produced according to the method described in EP2716628.
Examples of the hydroxylamine used in the isoxazoline ring formation reaction include hydroxylamine and its salt with a mineral acid such as hydrochloric acid. Hydroxylamine may be used as it is or in the form of an aqueous solution. The amount of hydroxylamine to be used is usually 1 to 20 moles, preferably 1 to 10 moles, relative to the compound represented by the formula (1) from the viewpoint of yield and economy.
Examples of the carbonate used in the isoxazoline ring formation reaction include alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate, and cesium carbonate, and alkaline earth metal carbonates such as magnesium carbonate, calcium carbonate, and barium carbonate. Can be mentioned. Of these, alkali metal carbonates are preferable, and cesium carbonate is particularly preferable.
The amount of the carbonate used is usually 1 to 10 mol times, preferably 1 to 5 mol times based on the compound represented by the formula (1).
The isoxazoline ring formation reaction may be performed by adding an inorganic oxide. Examples of the inorganic oxide include aluminum oxide (alumina), magnesium oxide, calcium oxide, and the like. Aluminum oxide and magnesium oxide are preferable, and aluminum oxide is particularly preferable.
The amount of the inorganic oxide used is usually 0.1 to 10 times by weight, preferably 0.1 to 2 times by weight, relative to the compound represented by the formula (1).
The isoxazoline ring formation reaction is usually performed in a solvent. Examples of the solvent include aliphatic hydrocarbon solvents such as hexane, cyclohexane and heptane; aromatic hydrocarbon solvents such as toluene, xylene and mesitylene; aliphatic halogenated hydrocarbon solvents such as chloroform, dichloromethane and butane chloride; chlorobenzene, Aromatic halogenated hydrocarbon solvents such as dichlorobenzene, fluorobenzene and trifluoromethylbenzene; ether solvents such as tert-butyl methyl ether, tetrahydrofuran and cyclopentyl methyl ether; nitrile solvents such as acetonitrile; N, N-dimethylformamide and the like Amide solvents and mixed solvents thereof are preferable, and from the viewpoint of reactivity and selectivity, aliphatic halogenated hydrocarbon solvents, aromatic halogenated hydrocarbon solvents, and aromatic hydrocarbon solvents are preferable, and chloroform, chlorobenze are particularly preferable. , Toluene is preferred.
The amount of the solvent used is usually 1 to 100 times by weight, preferably 1 to 30 times by weight with respect to the compound represented by the formula (1).
The isoxazoline ring formation reaction is preferably performed within a range of −30 to 60 ° C., more preferably within a range of −10 to 30 ° C., and the reaction time is preferably 0.5 to 100 hours, more preferably 1 to 48 hours.
The progress of the isoxazoline ring formation reaction can be confirmed by analytical means such as thin layer chromatography, gas chromatography, high performance liquid chromatography and the like.
The post-treatment of the isoxazolinization reaction can be performed by subjecting the reaction mixture to conventional methods (for example, neutralization, extraction, washing with water, distillation, crystallization, etc.). Further, the purification is performed by subjecting the optically active compound represented by the formula (2) to recrystallization treatment, extraction purification treatment, distillation treatment, adsorption treatment of activated carbon, silica gel, alumina and the like, and chromatography treatment such as silica gel column chromatography. It can be carried out.
 以下、実施例により本発明をさらに詳細に説明する。
実施例1~4
化合物2a 3−(4−クロロフェニル)−5−(3,5−ジクロロフェニル)−4,5−ジヒドロ−5−トリフルオロメチルイソキサゾリンの合成
Figure JPOXMLDOC01-appb-I000012
 化合物1a (1−(4−クロロフェニル)−3−(3,5−ジクロロフェニル)−4,4,4−トリフルオロ−2−ブテン−1−オン)(99mg、0.25mmol)、化合物(S,S)−C−(21mg、0.05mmol)、炭酸セシウム(163mg、0.50mmol)及び表1に記載の溶媒(1mL)を混合し、混合物の温度を−10℃に調整後、50%ヒドロキシアミン水溶液(50mg、0.75mmol)を滴下した。同温度で22時間攪拌後、HPLC分析により化合物2aの収率と光学純度を求めた。結果は表1に示す。
実施例1~4のHPLC分析は以下の条件下で行った。
収率分析条件:
 カラム L−column−2 ODS(250mm*4.6mm、5μm)
  カラム温度 40℃
 移動相 アセトニトリル:イオン交換水 70:30(v/v)
 流速 1.5mL/min
 検出波長 220nm
 保持時間 化合物1a 15.4min、化合物2a 19.0min
 収率は、化合物2aの面積百分率/(化合物1aの面積百分率+化合物2aの面積百分率)として算出した。
光学純度分析条件:
 カラム CHIRAPAK OJ−H(250mm*4.6mm、5μm)
  カラム温度 30℃
 移動層 ヘキサン:2−プロパノール 98:2(v/v)、
 流速 1.2mL/min
 検出波長 254nm
 保持時間 化合物2a 鏡像体1 9.7min、鏡像体2 14.6min
Figure JPOXMLDOC01-appb-T000013
実施例5
化合物2b 2−{2−クロロ−5−[3−(3,5−ジクロロフェニル)4,5−ジヒドロ−5−(トリフルオロメチル)−3−イソキサゾイル]フェニル}シクロプロパンカルボヒドラジドの合成
Figure JPOXMLDOC01-appb-I000014
 化合物1b (2−{2−クロロ−5−[3−(3,5−ジクロロフェニル)−4,4,4−トリフルオロ−1−オキソ−2−ブテン−1−イル]フェニル}シクロプロパンカルボヒドラジド)(49mg、0.1mmol)、化合物(S)−C−(8mg,0.02mmol)、炭酸セシウム(98mg、0.3mmol)及びクロロベンゼン(2mL)を混合し、混合物の温度を20℃に調整後、50%ヒドロキシアミン水溶液(27mg、0.4mmol)を滴下した。同温度で30時間攪拌した後、HPLC分析により化合物2bの収率と光学純度を求めた。収率は38.8%、光学純度は59%ee(R体)であった。
実施例5のHPLC分析は以下の条件下で行った。
収率分析条件:
 実施例1~4に記載されているHPLC条件に従い、測定した。
 保持時間 化合物1b 6.7min、化合物2b 7.1min
 収率は、化合物2bの面積百分率/(化合物1bの面積百分率+化合物2bの面積百分率)として算出した。
光学純度分析条件:
 カラム CHIRALCELL AD−H(250mm*4.6mm、5μm)
  カラム温度 30℃
 移動層 ヘキサン:2−プロパノール 85:15(v/v)、
 流速 1.0mL/min
 検出波長 254nm
 保持時間 化合物2b (S)体鏡像体3 13.2min、(R)体鏡像体4 16.9min
実施例6
化合物2b (2−{2−クロロ−5−[3−(3,5−ジクロロフェニル)4,5−ジヒドロ−5−(トリフルオロメチル)−3−イソキサゾイル]フェニル}シクロプロパンカルボヒドラジド)の合成
Figure JPOXMLDOC01-appb-I000015
 化合物1b (2−{2−クロロ−5−[3−(3,5−ジクロロフェニル)−4,4,4−トリフルオロ−1−オキソ−2−ブテン−1−イル]フェニル}シクロプロパンカルボヒドラジド)(24mg、0.05mmol)、化合物(S)−C−(4mg、0.01mmol)、炭酸セシウム(49mg、0.15mmol)及びクロロベンゼン(1mL)を混合し、混合物の温度を25℃に調整後、50%ヒドロキシアミン水溶液(20mg、0.3mmol)を滴下した。同温度で20時間攪拌した後、実施例5に記載されたHPLC分析条件に従って化合物2bの収率と光学純度を求めた。収率は52.3%、光学純度は57%ee(R体)であった。
実施例7及び8
 化合物2b (2−{2−クロロ−5−[3−(3,5−ジクロロフェニル)4,5−ジヒドロ−5−(トリフルオロメチル)−3−イソキサゾイル]フェニル}シクロプロパンカルボヒドラジド)の合成
Figure JPOXMLDOC01-appb-I000016
 化合物1b (2−{2−クロロ−5−[3−(3,5−ジクロロフェニル)−4,4,4−トリフルオロ−1−オキソ−2−ブテン−1−イル]フェニル}シクロプロパンカルボヒドラジド)(24mg、0.05mmol)、化合物(S)−C−(7mg、0.018mmol)、炭酸セシウム(49mg、0.15mmol)、表2に記載の添加剤(25mg)及びクロロベンゼン(1mL)を混合し、混合物の温度を20℃に調整後、50%ヒドロキシアミン水溶液(20mg、0.3mmol)を滴下した。同温度で表2に記載の時間攪拌した後、実施例5に記載されたHPLC分析条件に従って化合物2bの収率と光学純度を求めた。結果は表2に示す。
Figure JPOXMLDOC01-appb-T000017
実施例9
化合物2b (2−{2−クロロ−5−[3−(3,5−ジクロロフェニル)4,5−ジヒドロ−5−(トリフルオロメチル)−3−イソキサゾイル]フェニル}シクロプロパンカルボヒドラジド)の合成
Figure JPOXMLDOC01-appb-I000018
 化合物1b (2−{2−クロロ−5−[3−(3,5−ジクロロフェニル)−4,4,4−トリフルオロ−1−オキソ−2−ブテン−1−イル]フェニル}シクロプロパンカルボヒドラジド)(48mg、0.1mmol)、化合物(S)−C−(8mg、0.02mmol)、炭酸セシウム(98mg、0.3mmol)、及びクロロベンゼン(2mL)を混合し、混合物の温度を20℃に調整後、50%ヒドロキシアミン水溶液(27mg、0.4mmol)を滴下した。同温度で29時間攪拌後、実施例5に記載されたHPLC分析条件に従って化合物2bの収率と光学純度を分析した。収率は51.4%、光学純度は58%ee(R体)であった。
実施例10
化合物2b (2−{2−クロロ−5−[3−(3,5−ジクロロフェニル)4,5−ジヒドロ−5−(トリフルオロメチル)−3−イソキサゾイル]フェニル}シクロプロパンカルボヒドラジド)の合成
Figure JPOXMLDOC01-appb-I000019
 化合物1b (2−{2−クロロ−5−[3−(3,5−ジクロロフェニル)−4,4,4−トリフルオロ−1−オキソ−2−ブテン−1−イル]フェニル}シクロプロパンカルボヒドラジド)(49mg、0.1mmol)、化合物(S)−C−(8mg、0.02mmol)、炭酸セシウム(98mg、0.3mmol)及びクロロベンゼン(2mL)を混合し、混合物の温度を20℃に調整後、50%ヒドロキシアミン水溶液(40mg、0.6mmol)を滴下した。同温度で67時間攪拌後、実施例5に記載されたHPLC分析条件に従って化合物2bの収率と光学純度を分析した。収率は95.2%、光学純度は50%ee(R体)であった。
実施例11
化合物2b (2−{2−クロロ−5−[3−(3,5−ジクロロフェニル)4,5−ジヒドロ−5−(トリフルオロメチル)−3−イソキサゾイル]フェニル}シクロプロパンカルボヒドラジド)の合成
Figure JPOXMLDOC01-appb-I000020
 化合物1b (2−{2−クロロ−5−[3−(3,5−ジクロロフェニル)−4,4,4−トリフルオロ−1−オキソ−2−ブテン−1−イル]フェニル}シクロプロパンカルボヒドラジド)(2.87g、6.0mmol)、化合物(S)−C−(0.46g、0.12mmol)、アルミナ(Merck社、クロマトグラフィー用、2.0g)及びクロロベンゼン(86mL)を混合し、混合物の温度を13~15℃に調整後、50%ヒドロキシアミン水溶液(2.38g、36mmol)及び炭酸セシウム(5.86g、18mmol)を添加した。同温度で78時間攪拌後、無水硫酸マグネシウム(約10g)を添加して乾燥した。この混合物をろ過し、ろ液を濃縮した残渣をシリカゲルクロマトグラフィーで精製して、黄色のフォーム状固体の化合物2b(2.71g)を得た。また、実施例5に記載されたHPLC分析条件に従って化合物2bの光学純度を分析した。光学純度は54%ee(R体)であった。
実施例12
化合物 2−({2−クロロ−5−[5−(3,5−ジクロロフェニル)−4,5−ジヒドロ−5−トリフルオロメチル−3−イソキサゾリル]フェニル}ヒドラゾノ)プロピオン酸エチルの合成
Figure JPOXMLDOC01-appb-I000021
 化合物 2−({2−クロロ−5−[3−(3,5−ジクロロフェニル)−4,4,4−トリフルオロ−1−オキソ−2−ブテン−1−イル]フェニル}ヒドラゾノ)プロピオン酸エチル(50mg、0.10mmol)、(9R)−CINN−TC(11mg、0.02mmol)、炭酸セシウム(96mg、0.30mmol)及びクロロベンゼン(1mL)を混合し、混合物の温度を0℃に調整後、50%ヒドロキシアミン水溶液(39mg、0.59mmol)を加えた。同温度で20時間撹拌後、HPLC分析により化合物の収率と光学純度を求めた。収率は97.7%、光学純度は75%ee(S体)であった。
実施例13
化合物 2−({2−クロロ−5−[5−(3,5−ジクロロフェニル)−4,5−ジヒドロ−5−トリフルオロメチル−3−イソキサゾリル]フェニル}ヒドラゾノ)マロン酸ジエチルの合成
Figure JPOXMLDOC01-appb-I000022
 化合物 2−({2−クロロ−5−[3−(3,5−ジクロロフェニル)−4,4,4−トリフルオロ−1−オキソ−2−ブテン−1−イル]フェニル}ヒドラゾノ)マロン酸ジエチル(51mg、0.091mmol)、(9R)−CINN−TC(10mg、0.017mmol)、炭酸セシウム(91mg、0.28mmol)及びクロロベンゼン(1mL)を混合し、混合物の温度を0℃に調整後、50%ヒドロキシアミン水溶液(36mg、0.54mmol)を加えた。同温度で29時間撹拌後、HPLC分析により化合物の収率と光学純度を求めた。収率は92.6%、光学純度は74%ee(S体)であった。
実施例14
化合物 2−({2−クロロ−5−[5−(3,5−ジクロロフェニル)−4,5−ジヒドロ−5−トリフルオロメチル−3−イソキサゾリル]フェニル}ヒドラゾノ)−3−フェニルプロピオン酸エチルの合成
Figure JPOXMLDOC01-appb-I000023
 化合物 2−({2−クロロ−5−[3−(3,5−ジクロロフェニル)−4,4,4−トリフルオロ−1−オキソ−2−ブテン−1−イル]フェニル}ヒドラゾノ)−3−フェニルプロピオン酸エチル(48mg、0.083mmol)、(9R)−CINN−TC(9mg、0.016mmol)、炭酸セシウム(84mg、0.26mmol)及びクロロベンゼン(1mL)を混合し、混合物の温度を0℃に調整後、50%ヒドロキシアミン水溶液(34mg、0.51mmol)を加えた。同温度で48.5時間撹拌後、HPLC分析により化合物の収率と光学純度を求めた。収率は98.5%、光学純度は70%ee(S体)であった。
実施例12~14のHPLC分析は以下の条件下で行った。
 カラム CHIRALCEL OZ−RH(4.6*250mm、10μm)
  カラム温度 30℃
 移動相 A:水、B:アセトニトリル
  0min A/B=50/50、20min A/B=30/70、35min A/B=30/70
 流速 1mL/min
 検出波長 254nm
 保持時間
  化合物、20.8min、化合物、22.1min、22.9min
  化合物、24.5min、化合物、26.2min、27.1min
  化合物、26.5min、化合物、28.4min、29.7min
 収率は、それぞれ、化合物の面積百分率/(化合物の面積百分率+化合物の面積百分率)、化合物の面積百分率/(化合物の面積百分率+化合物の面積百分率)、化合物の面積百分率/(化合物の面積百分率+化合物の面積百分率)として算出した。
実施例15
化合物 2−({2−クロロ−5−[5−(3,4,5−トリクロロフェニル)−4,5−ジヒドロ−5−トリフルオロメチル−3−イソキサゾリル]フェニル}ヒドラゾノ)プロピオン酸エチルの合成
Figure JPOXMLDOC01-appb-I000024
 化合物 2−({2−クロロ−5−[3−(3,4,5−トリクロロフェニル)−4,4,4−トリフルオロ−1−オキソ−2−ブテン−1−イル]フェニル}ヒドラゾノ)プロピオン酸エチル(137mg、0.25mmol)、(9R)−CINN−TC(29mg、0.05mmol)、炭酸セシウム(163mg、0.50mmol)及びクロロベンゼン(1.76g)を混合し、混合物の温度を20~25℃に調整後、50%ヒドロキシアミン水溶液(50mg、0.75mmol)を加えた。同温度で4時間撹拌後、HPLC分析により化合物の収率と光学純度を求めた。収率は99.9%、光学純度は62%ee(鏡像体2)であった。
実施例16
化合物の合成
Figure JPOXMLDOC01-appb-I000025
 (9R)−CINN−TC(0.54g、0.96mmol)、トルエン(27.7g)、炭酸セシウム(6.01g、18.4mmol)、50%ヒドロキシアミン水溶液(1.7mL、28mmol)を混合し、混合物の温度を20~25℃に調整した。ここへトルエン(103.5g)に溶解した2−({2−クロロ−5−[3−(3,4,5−トリクロロフェニル)−4,4,4−トリフルオロ−1−オキソ−2−ブテン−1−イル]フェニル}ヒドラゾノ)プロピオン酸エチル(5.00g、9.2mmol)を20~25℃で2.5時間かけて滴下した。同温度で2.5時間撹拌後、HPLC分析により化合物の収率と光学純度を求めた。収率は99.3%、光学純度は62%ee(鏡像体2)であった。
実施例15~16のHPLC分析は以下の条件下で行った。
収率分析条件:
 カラム Sumipax ODS Z−CLUE(4.6*150mm、5μm)
  カラム温度 40℃
 移動相 A:0.1%リン酸水溶液、B:アセトニトリル
  0min A/B=70/30、15min A/B=10/90、30min A/B=10/90
 流速 1mL/min
 検出波長 254nm
 保持時間 化合物 21.0min、化合物 21.4min
 収率は、化合物の面積百分率/(化合物の面積百分率+化合物の面積百分率)として算出した。
光学純度分析条件:
 カラム CHIRALCEL OZ−RH(4.6*150mm、5μm)
  カラム温度 40℃
 移動相 A:0.1%リン酸水溶液、B:アセトニトリル
  0min A/B=50/50、20min A/B=30/70、35min A/B=30/70
 流速 0.8mL/min
 検出波長 254nm
 保持時間 化合物 24.7min、25.5min
実施例17
化合物 2−({2−クロロ−5−[5−(3,4,5−トリクロロフェニル)−4,5−ジヒドロ−5−トリフルオロメチル−3−イソキサゾリル]フェニル}ヒドラゾノ)マロン酸ジエチルの合成
Figure JPOXMLDOC01-appb-I000026
 化合物 2−({2−クロロ−5−[3−(3,4,5−トリクロロフェニル)−4,4,4−トリフルオロ−1−オキソ−2−ブテン−1−イル]フェニル}ヒドラゾノ)マロン酸ジエチル(151mg、0.25mmol)、(9R)−CINN−TC(14mg、0.025mmol)、炭酸セシウム(187mg、0.57mmol)及びクロロベンゼン(1.80g)を混合し、混合物の温度を20~25℃に調整後、50%ヒドロキシアミン水溶液(50mg、0.75mmol)を加えた。同温度で4時間撹拌後、HPLC分析により化合物の収率を求めた。収率は99.7%であった。
実施例18
化合物 2−({2−クロロ−5−[5−(3,5−ジクロロ−4−フルオロフェニル)−4,5−ジヒドロ−5−トリフルオロメチル−3−イソキサゾリル]フェニル}ヒドラゾノ)プロピオン酸エチルの合成
Figure JPOXMLDOC01-appb-I000027
 化合物 2−({2−クロロ−5−[3−(3,5−ジクロロ−4−フルオロフェニル)−4,4,4−トリフルオロ−1−オキソ−2−ブテン−1−イル]フェニル}ヒドラゾノ)プロピオン酸エチル(131mg、0.25mmol)、(9R)−CINN−TC(14mg、0.025mmol)、炭酸セシウム(168mg、0.52mmol)及びトルエン(1.65g)を混合し、混合物の温度を20~25℃に調整後、50%ヒドロキシアミン水溶液(50mg、0.75mmol)を加えた。同温度で6時間撹拌後、HPLC分析により化合物の収率を分析した。収率は100%であった。
実施例17~18のHPLC分析は以下の条件下で行った。
 カラム Sumipax ODS Z−CLUE(4.6*150mm、5μm)
  カラム温度 40℃
 移動相 A:0.1%リン酸水溶液、B:アセトニトリル
  0min A/B=70/30、15min A/B=10/90、30min A/B=10/90
 流速 1mL/min
 検出波長 254nm
 保持時間  化合物 22.4min、化合物 23.4min
       化合物 20.0min、化合物 20.4min
 収率は、それぞれ、化合物の面積百分率/(化合物の面積百分率+化合物の面積百分率)、化合物の面積百分率/(化合物の面積百分率+化合物の面積百分率)として算出した。
実施例19~20
化合物 (3−{−4−クロロ−3−[2−(プロパ−2−イリデン)ヒドラジニル]フェニル}−5−(3,5−ジクロロフェニル)−5−(トリフルオロメチル)−4,5−ジヒドロ−1,2−オキサゾール)の合成
Figure JPOXMLDOC01-appb-I000028
 化合物 ((2Z)−1−{4−クロロ—3−[(2Z)−1—{4—クロロ−−3−[2−(プロパン—2—イリデン)ヒドラジニル]フェニル}—3−(3,5−ジクロロフェニル)—4,4,4−トリフルオロブト—2—エン−1—オン)(45mg、0.1mmol)、表3に記載された触媒化合物、アルミナ(Merck社、クロマトグラフィー用、45mg)、炭酸セシウム(98mg、0.3mmol)及びクロロベンゼン(1mL)を混合し、混合物の温度を10℃に調整後、50%ヒドロキシアミン水溶液(40mg、0.6mmol)を添加した。同温度で表3に記載された時間攪拌した後、HPLC分析により、化合物の収率と光学純度を求めた。HPLC分析は以下の条件下で行った。
収率分析条件:
 カラム L−column ODS(150mm*4.6mm、5μm)
  カラム温度 40℃
 移動相 アセトニトリル−0.1w%リン酸水
  アセトニトリル濃度:15%→90%/0min→15min;90%/10min(保持)
 流速 1.5mL/min
 検出波長 230nm
 保持時間 化合物 17.3min、化合物 17.6min
 収率は、化合物の面積百分率/(化合物の面積百分率+化合物の面積百分率)として算出した。
光学純度分析条件:
 カラム CHIRALCELL OZ−RH(150mm*4.6mm、5μm)
  カラム温度 30℃
 移動層 アセトニトリル−イオン交換水
  アセトニトリル濃度:50%→70%/0min→20min;70%/5min(保持)
 流速 1.0mL/min
 検出波長 254nm
 保持時間 生成物6b 鏡像体1 20.1min、鏡像体2 20.8min
Figure JPOXMLDOC01-appb-T000029
実施例21~23
Figure JPOXMLDOC01-appb-I000030
化合物 2−({2−クロロ−5−[3−(3,5−ジクロロフェニル)−4,4,4−トリフルオロ−1−オキソ−2−ブテン−1−イル]フェニル}ヒドラゾノ)プロピオン酸エチル(51mg、0.1mmol)、表4に記載された触媒化合物、アルミナ(Merck社、クロマトグラフィー用、45mg)、炭酸セシウム(98mg、0.3mmol)及びクロロベンゼン(1mL)を混合し、混合物の温度を10℃に調整後、50%ヒドロキシアミン水溶液(40mg、0.6mmol)を添加した。同温度で表4に記載された時間攪拌した後、HPLC分析により、化合物Aの収率と光学純度を求めた。
Figure JPOXMLDOC01-appb-T000031
参考製造例1
(S)−C−5 1−[(3S)−1−アザビシクロ[2.2.2]オクト−3−イル]−3−[3,5−ビス(トリフルオロメチル)フェニル]チオウレアの合成
Figure JPOXMLDOC01-appb-I000032
(S)−(−)−3−アミノキヌクリジン二塩酸塩(1.0g、5.0mmol)、トリエチルアミン(4.0g、39mmol)、及びテトラヒドロフラン(5mL)を混合し、混合物の温度を20~30℃に調整後、3,5−ジトリフルオロメチルフェニルイソチオシアン酸(1.34g、5mmol)を滴下し、同じ温度で5時間攪拌した。反応終了後、反応混合物を減圧下で濃縮し、残渣をフラッシュシリカゲルクロマトグラフィーで精製して、類白色固体の化合物(S)−C−(1.52g)を得た。
H NMR(400MHz,DMSO−d6)δppm:1.40(1H,br.s),1.57~1.63(2H,br.s)、1.63~1.70(1H,br.s)、1.98(1H、dd、J=6、3Hz),2.58(1H、m)、2.60~2.80(4H,m)、3.17~3.30(1H,m),4.23(1H,br.s)、7.72(1H,s)、8.26(2H,s)、8.41(1H,br,s)、9.91(1H,br,s)
Hereinafter, the present invention will be described in more detail with reference to examples.
Examples 1-4
Compound 2a Synthesis of 3- (4-chlorophenyl) -5- (3,5-dichlorophenyl) -4,5-dihydro-5-trifluoromethylisoxazoline
Figure JPOXMLDOC01-appb-I000012
Compound 1a (1- (4-chlorophenyl) -3- (3,5-dichlorophenyl) -4,4,4-trifluoro-2-buten-1-one) (99 mg, 0.25 mmol), compound (S, S) -C- 1 (21 mg, 0.05 mmol), cesium carbonate (163 mg, 0.50 mmol) and the solvent described in Table 1 (1 mL) were mixed, and the temperature of the mixture was adjusted to −10 ° C., and then 50% Hydroxyamine aqueous solution (50 mg, 0.75 mmol) was added dropwise. After stirring at the same temperature for 22 hours, the yield and optical purity of compound 2a were determined by HPLC analysis. The results are shown in Table 1.
The HPLC analysis of Examples 1 to 4 was performed under the following conditions.
Yield analysis conditions:
Column L-column-2 ODS (250 mm * 4.6 mm, 5 μm)
Column temperature 40 ° C
Mobile phase Acetonitrile: Ion exchange water 70:30 (v / v)
Flow rate 1.5mL / min
Detection wavelength 220nm
Retention time Compound 1a 15.4 min, Compound 2a 19.0 min
The yield was calculated as the area percentage of Compound 2a / (area percent area percent + compound 2a compound 1a).
Optical purity analysis conditions:
Column CHIRAPAK OJ-H (250 mm * 4.6 mm, 5 μm)
Column temperature 30 ° C
Moving bed hexane: 2-propanol 98: 2 (v / v),
Flow rate 1.2mL / min
Detection wavelength 254nm
Retention time Compound 2a Enantiomer 1 9.7 min, Enantiomer 2 14.6 min
Figure JPOXMLDOC01-appb-T000013
Example 5
Compound 2b Synthesis of 2- {2-chloro-5- [3- (3,5-dichlorophenyl) 4,5-dihydro-5- (trifluoromethyl) -3-isoxazoyl] phenyl} cyclopropanecarbohydrazide
Figure JPOXMLDOC01-appb-I000014
Compound 1b (2- {2-chloro-5- [3- (3,5-dichlorophenyl) -4,4,4-trifluoro-1-oxo-2-buten-1-yl] phenyl} cyclopropanecarbohydrazide ) (49 mg, 0.1 mmol), compound (S) -C- 5 (8 mg, 0.02 mmol), cesium carbonate (98 mg, 0.3 mmol) and chlorobenzene (2 mL) are mixed, and the temperature of the mixture is brought to 20 ° C. After the adjustment, 50% aqueous hydroxyamine solution (27 mg, 0.4 mmol) was added dropwise. After stirring at the same temperature for 30 hours, the yield and optical purity of compound 2b were determined by HPLC analysis. The yield was 38.8%, and the optical purity was 59% ee (R form).
The HPLC analysis of Example 5 was performed under the following conditions.
Yield analysis conditions:
The measurement was performed according to the HPLC conditions described in Examples 1 to 4.
Retention time Compound 1b 6.7 min, Compound 2b 7.1 min
The yield was calculated as the area of the compound 2b percentage / (area percent area percent + Compound 2b of compound 1b).
Optical purity analysis conditions:
Column CHIRALCELL AD-H (250 mm * 4.6 mm, 5 μm)
Column temperature 30 ° C
Moving bed hexane: 2-propanol 85:15 (v / v),
Flow rate 1.0mL / min
Detection wavelength 254nm
Retention time Compound 2b (S) enantiomer 3 13.2 min, (R) enantiomer 4 16.9 min
Example 6
Synthesis of Compound 2b (2- {2-chloro-5- [3- (3,5-dichlorophenyl) 4,5-dihydro-5- (trifluoromethyl) -3-isoxazoyl] phenyl} cyclopropanecarbohydrazide)
Figure JPOXMLDOC01-appb-I000015
Compound 1b (2- {2-chloro-5- [3- (3,5-dichlorophenyl) -4,4,4-trifluoro-1-oxo-2-buten-1-yl] phenyl} cyclopropanecarbohydrazide ) (24 mg, 0.05 mmol), compound (S) -C- 5 (4 mg, 0.01 mmol), cesium carbonate (49 mg, 0.15 mmol) and chlorobenzene (1 mL), and the temperature of the mixture is brought to 25 ° C. After the adjustment, 50% aqueous hydroxyamine solution (20 mg, 0.3 mmol) was added dropwise. After stirring at the same temperature for 20 hours, the yield and optical purity of compound 2b were determined according to the HPLC analysis conditions described in Example 5. The yield was 52.3% and the optical purity was 57% ee (R form).
Examples 7 and 8
Synthesis of Compound 2b (2- {2-chloro-5- [3- (3,5-dichlorophenyl) 4,5-dihydro-5- (trifluoromethyl) -3-isoxazoyl] phenyl} cyclopropanecarbohydrazide)
Figure JPOXMLDOC01-appb-I000016
Compound 1b (2- {2-chloro-5- [3- (3,5-dichlorophenyl) -4,4,4-trifluoro-1-oxo-2-buten-1-yl] phenyl} cyclopropanecarbohydrazide ) (24 mg, 0.05 mmol), Compound (S) -C- 5 (7 mg, 0.018 mmol), Cesium carbonate (49 mg, 0.15 mmol), Additives listed in Table 2 (25 mg) and chlorobenzene (1 mL) After adjusting the temperature of the mixture to 20 ° C., 50% aqueous hydroxyamine solution (20 mg, 0.3 mmol) was added dropwise. After stirring at the same temperature for the time described in Table 2, the yield and optical purity of Compound 2b were determined according to the HPLC analysis conditions described in Example 5. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000017
Example 9
Synthesis of Compound 2b (2- {2-chloro-5- [3- (3,5-dichlorophenyl) 4,5-dihydro-5- (trifluoromethyl) -3-isoxazoyl] phenyl} cyclopropanecarbohydrazide)
Figure JPOXMLDOC01-appb-I000018
Compound 1b (2- {2-chloro-5- [3- (3,5-dichlorophenyl) -4,4,4-trifluoro-1-oxo-2-buten-1-yl] phenyl} cyclopropanecarbohydrazide ) (48 mg, 0.1 mmol), compound (S) -C- 5 (8 mg, 0.02 mmol), cesium carbonate (98 mg, 0.3 mmol), and chlorobenzene (2 mL) are mixed, and the temperature of the mixture is adjusted to 20 ° C. After adjustment, 50% aqueous hydroxyamine solution (27 mg, 0.4 mmol) was added dropwise. After stirring at the same temperature for 29 hours, the yield and optical purity of compound 2b were analyzed according to the HPLC analysis conditions described in Example 5. The yield was 51.4% and the optical purity was 58% ee (R form).
Example 10
Synthesis of Compound 2b (2- {2-chloro-5- [3- (3,5-dichlorophenyl) 4,5-dihydro-5- (trifluoromethyl) -3-isoxazoyl] phenyl} cyclopropanecarbohydrazide)
Figure JPOXMLDOC01-appb-I000019
Compound 1b (2- {2-chloro-5- [3- (3,5-dichlorophenyl) -4,4,4-trifluoro-1-oxo-2-buten-1-yl] phenyl} cyclopropanecarbohydrazide ) (49 mg, 0.1 mmol), compound (S) -C- 5 (8 mg, 0.02 mmol), cesium carbonate (98 mg, 0.3 mmol) and chlorobenzene (2 mL) are mixed, and the temperature of the mixture is brought to 20 ° C. After the adjustment, a 50% hydroxyamine aqueous solution (40 mg, 0.6 mmol) was added dropwise. After stirring at the same temperature for 67 hours, the yield and optical purity of compound 2b were analyzed according to the HPLC analysis conditions described in Example 5. The yield was 95.2%, and the optical purity was 50% ee (R form).
Example 11
Synthesis of Compound 2b (2- {2-chloro-5- [3- (3,5-dichlorophenyl) 4,5-dihydro-5- (trifluoromethyl) -3-isoxazoyl] phenyl} cyclopropanecarbohydrazide)
Figure JPOXMLDOC01-appb-I000020
Compound 1b (2- {2-chloro-5- [3- (3,5-dichlorophenyl) -4,4,4-trifluoro-1-oxo-2-buten-1-yl] phenyl} cyclopropanecarbohydrazide ) (2.87 g, 6.0 mmol), Compound (S) -C- 5 (0.46 g, 0.12 mmol), Alumina (Merck, for chromatography, 2.0 g) and chlorobenzene (86 mL) were mixed. After adjusting the temperature of the mixture to 13 to 15 ° C., 50% aqueous hydroxyamine solution (2.38 g, 36 mmol) and cesium carbonate (5.86 g, 18 mmol) were added. After stirring at the same temperature for 78 hours, anhydrous magnesium sulfate (about 10 g) was added and dried. The mixture was filtered, and the residue obtained by concentrating the filtrate was purified by silica gel chromatography to obtain Compound 2b (2.71 g) as a yellow foam-like solid. In addition, the optical purity of Compound 2b was analyzed according to the HPLC analysis conditions described in Example 5. The optical purity was 54% ee (R form).
Example 12
Compound A Synthesis of ethyl 2-({2-chloro-5- [5- (3,5-dichlorophenyl) -4,5-dihydro-5-trifluoromethyl-3-isoxazolyl] phenyl} hydrazono) propionate
Figure JPOXMLDOC01-appb-I000021
Compound a 2-({2-chloro-5- [3- (3,5-dichlorophenyl) -4,4,4-trifluoro-1-oxo-2-buten-1-yl] phenyl} hydrazono) propionic acid Mix ethyl (50 mg, 0.10 mmol), (9R) -CINN-TC (11 mg, 0.02 mmol), cesium carbonate (96 mg, 0.30 mmol) and chlorobenzene (1 mL) and adjust the temperature of the mixture to 0 ° C. Later, 50% aqueous hydroxyamine (39 mg, 0.59 mmol) was added. After stirring at the same temperature for 20 hours, the yield and optical purity of Compound A were determined by HPLC analysis. The yield was 97.7%, and the optical purity was 75% ee (S form).
Example 13
Compound B Synthesis of diethyl 2-({2-chloro-5- [5- (3,5-dichlorophenyl) -4,5-dihydro-5-trifluoromethyl-3-isoxazolyl] phenyl} hydrazono) malonate
Figure JPOXMLDOC01-appb-I000022
Compound b 2-({2-chloro-5- [3- (3,5-dichlorophenyl) -4,4,4-trifluoro-1-oxo-2-buten-1-yl] phenyl} hydrazono) malonic acid Mix diethyl (51 mg, 0.091 mmol), (9R) -CINN-TC (10 mg, 0.017 mmol), cesium carbonate (91 mg, 0.28 mmol) and chlorobenzene (1 mL) and adjust the temperature of the mixture to 0 ° C. Later, 50% aqueous hydroxyamine (36 mg, 0.54 mmol) was added. After stirring at the same temperature for 29 hours, the yield and optical purity of Compound B were determined by HPLC analysis. The yield was 92.6%, and the optical purity was 74% ee (S form).
Example 14
Compound C 2-({2-chloro-5- [5- (3,5-dichlorophenyl) -4,5-dihydro-5-trifluoromethyl-3-isoxazolyl] phenyl} hydrazono) -3-phenylpropionate Synthesis of
Figure JPOXMLDOC01-appb-I000023
Compound c 2-({2-chloro-5- [3- (3,5-dichlorophenyl) -4,4,4-trifluoro-1-oxo-2-buten-1-yl] phenyl} hydrazono) -3 -Ethyl phenylpropionate (48 mg, 0.083 mmol), (9R) -CINN-TC (9 mg, 0.016 mmol), cesium carbonate (84 mg, 0.26 mmol) and chlorobenzene (1 mL) were mixed and the temperature of the mixture was After adjusting to 0 ° C., 50% aqueous hydroxyamine solution (34 mg, 0.51 mmol) was added. After stirring at the same temperature for 48.5 hours, the yield and optical purity of Compound C were determined by HPLC analysis. The yield was 98.5%, and the optical purity was 70% ee (S form).
The HPLC analysis of Examples 12 to 14 was performed under the following conditions.
Column CHIRALCEL OZ-RH (4.6 * 250 mm, 10 μm)
Column temperature 30 ° C
Mobile phase A: Water, B: Acetonitrile 0 min A / B = 50/50, 20 min A / B = 30/70, 35 min A / B = 30/70
Flow rate 1mL / min
Detection wavelength 254nm
Retention time Compound a , 20.8 min, Compound A , 22.1 min, 22.9 min
Compound b , 24.5 min, Compound B , 26.2 min, 27.1 min
Compound c , 26.5 min, Compound C , 28.4 min, 29.7 min
Yield, respectively, (the area percentage of the area percentage + compound a compound A) area percent / compounds A, the area percentage of Compound B / (area percent area percent + compound b Compound B), the area of the compound C It was calculated as percentage / (area percentage of compound C + area percentage of compound c ).
Example 15
Compound D 2-({2-chloro-5- [5- (3,4,5-trichlorophenyl) -4,5-dihydro-5-trifluoromethyl-3-isoxazolyl] phenyl} hydrazono) ethyl propionate Composition
Figure JPOXMLDOC01-appb-I000024
Compound d 2-({2-chloro-5- [3- (3,4,5-trichlorophenyl) -4,4,4-trifluoro-1-oxo-2-buten-1-yl] phenyl} hydrazono ) Ethyl propionate (137 mg, 0.25 mmol), (9R) -CINN-TC (29 mg, 0.05 mmol), cesium carbonate (163 mg, 0.50 mmol) and chlorobenzene (1.76 g) were mixed and the temperature of the mixture Was adjusted to 20-25 ° C., and 50% aqueous hydroxyamine solution (50 mg, 0.75 mmol) was added. After stirring at the same temperature for 4 hours, the yield and optical purity of Compound D were determined by HPLC analysis. The yield was 99.9%, and the optical purity was 62% ee (enantiomer 2).
Example 16
Synthesis of compound D
Figure JPOXMLDOC01-appb-I000025
(9R) -CINN-TC (0.54 g, 0.96 mmol), toluene (27.7 g), cesium carbonate (6.01 g, 18.4 mmol), 50% hydroxyamine aqueous solution (1.7 mL, 28 mmol) were mixed. The temperature of the mixture was adjusted to 20-25 ° C. Here, 2-({2-chloro-5- [3- (3,4,5-trichlorophenyl) -4,4,4-trifluoro-1-oxo-2-) dissolved in toluene (103.5 g). Buten-1-yl] phenyl} hydrazono) ethyl propionate (5.00 g, 9.2 mmol) was added dropwise at 20-25 ° C. over 2.5 hours. After stirring at the same temperature for 2.5 hours, the yield and optical purity of Compound D were determined by HPLC analysis. The yield was 99.3%, and the optical purity was 62% ee (enantiomer 2).
The HPLC analysis of Examples 15 to 16 was performed under the following conditions.
Yield analysis conditions:
Column Sumipax ODS Z-CLUE (4.6 * 150 mm, 5 μm)
Column temperature 40 ° C
Mobile phase A: 0.1% phosphoric acid aqueous solution, B: acetonitrile 0 min A / B = 70/30, 15 min A / B = 10/90, 30 min A / B = 10/90
Flow rate 1mL / min
Detection wavelength 254nm
Retention time Compound d 21.0 min, Compound D 21.4 min
The yield was calculated as the compound D of the area percent / (area percent area percent + compound d Compound D).
Optical purity analysis conditions:
Column CHIRALCEL OZ-RH (4.6 * 150 mm, 5 μm)
Column temperature 40 ° C
Mobile phase A: 0.1% phosphoric acid aqueous solution, B: acetonitrile 0 min A / B = 50/50, 20 min A / B = 30/70, 35 min A / B = 30/70
Flow rate 0.8mL / min
Detection wavelength 254nm
Retention time Compound D 24.7 min, 25.5 min
Example 17
Compound E 2-({2-chloro-5- [5- (3,4,5-trichlorophenyl) -4,5-dihydro-5-trifluoromethyl-3-isoxazolyl] phenyl} hydrazono) of diethyl malonate Composition
Figure JPOXMLDOC01-appb-I000026
Compound e 2-({2-chloro-5- [3- (3,4,5-trichlorophenyl) -4,4,4-trifluoro-1-oxo-2-buten-1-yl] phenyl} hydrazono ) Diethyl malonate (151 mg, 0.25 mmol), (9R) -CINN-TC (14 mg, 0.025 mmol), cesium carbonate (187 mg, 0.57 mmol) and chlorobenzene (1.80 g) were mixed and the temperature of the mixture Was adjusted to 20-25 ° C., and 50% aqueous hydroxyamine solution (50 mg, 0.75 mmol) was added. After stirring at the same temperature for 4 hours, the yield of Compound E was determined by HPLC analysis. The yield was 99.7%.
Example 18
Compound F 2-({2-chloro-5- [5- (3,5-dichloro-4-fluorophenyl) -4,5-dihydro-5-trifluoromethyl-3-isoxazolyl] phenyl} hydrazono) propionic acid Synthesis of ethyl
Figure JPOXMLDOC01-appb-I000027
Compound f 2-({2-chloro-5- [3- (3,5-dichloro-4-fluorophenyl) -4,4,4-trifluoro-1-oxo-2-buten-1-yl] phenyl } Hydrazono) ethyl propionate (131 mg, 0.25 mmol), (9R) -CINN-TC (14 mg, 0.025 mmol), cesium carbonate (168 mg, 0.52 mmol) and toluene (1.65 g) were mixed and the mixture After adjusting the temperature to 20 to 25 ° C., a 50% aqueous hydroxyamine solution (50 mg, 0.75 mmol) was added. After stirring at the same temperature for 6 hours, the yield of Compound F was analyzed by HPLC analysis. The yield was 100%.
The HPLC analysis of Examples 17 to 18 was performed under the following conditions.
Column Sumipax ODS Z-CLUE (4.6 * 150 mm, 5 μm)
Column temperature 40 ° C
Mobile phase A: 0.1% phosphoric acid aqueous solution, B: acetonitrile 0 min A / B = 70/30, 15 min A / B = 10/90, 30 min A / B = 10/90
Flow rate 1mL / min
Detection wavelength 254nm
Retention time Compound e 22.4 min, Compound E 23.4 min
Compound f 20.0 min, Compound F 20.4 min
Yield, respectively, the area of the compound E percentage / (area percent area percent + of compound e Compound E), was calculated as the compound F area percent / (area percent area percent + compound f of the compound F).
Examples 19-20
Compound G (3-{-4-chloro-3- [2- (prop-2-ylidene) hydrazinyl] phenyl} -5- (3,5-dichlorophenyl) -5- (trifluoromethyl) -4,5- Of dihydro-1,2-oxazole)
Figure JPOXMLDOC01-appb-I000028
Compound g ((2Z) -1- {4-chloro-3-[(2Z) -1- {4-chloro-3- [2- (propane-2-ylidene) hydrazinyl] phenyl} -3- (3 , 5-dichlorophenyl) -4,4,4-trifluorobut-2-en-1-one) (45 mg, 0.1 mmol), catalyst compounds listed in Table 3, alumina (Merck, for chromatography, 45 mg), cesium carbonate (98 mg, 0.3 mmol) and chlorobenzene (1 mL) were mixed, the temperature of the mixture was adjusted to 10 ° C., and 50% aqueous hydroxyamine solution (40 mg, 0.6 mmol) was added. After stirring at the same temperature for the time described in Table 3, the yield and optical purity of Compound G were determined by HPLC analysis. HPLC analysis was performed under the following conditions.
Yield analysis conditions:
Column L-column ODS (150 mm * 4.6 mm, 5 μm)
Column temperature 40 ° C
Mobile phase Acetonitrile-0.1 w% phosphoric acid water Acetonitrile concentration: 15% → 90% / 0 min → 15 min; 90% / 10 min (retention)
Flow rate 1.5mL / min
Detection wavelength 230nm
Retention time Compound g 17.3 min, Compound G 17.6 min
The yield was calculated as the area of Compound G a percentage / (area percent area percent + compound g of compound G).
Optical purity analysis conditions:
Column CHIRALCELL OZ-RH (150 mm * 4.6 mm, 5 μm)
Column temperature 30 ° C
Moving bed Acetonitrile-ion exchange water Acetonitrile concentration: 50% → 70% / 0 min → 20 min; 70% / 5 min (retention)
Flow rate 1.0mL / min
Detection wavelength 254nm
Retention time Product 6b Enantiomer 1 20.1 min, Enantiomer 2 20.8 min
Figure JPOXMLDOC01-appb-T000029
Examples 21-23
Figure JPOXMLDOC01-appb-I000030
Compound a 2-({2-chloro-5- [3- (3,5-dichlorophenyl) -4,4,4-trifluoro-1-oxo-2-buten-1-yl] phenyl} hydrazono) propionic acid Ethyl (51 mg, 0.1 mmol), the catalyst compound listed in Table 4, alumina (Merck, for chromatography, 45 mg), cesium carbonate (98 mg, 0.3 mmol) and chlorobenzene (1 mL) were mixed together. After adjusting the temperature to 10 ° C., 50% aqueous hydroxyamine solution (40 mg, 0.6 mmol) was added. After stirring for the time indicated in Table 4 at the same temperature, the yield and optical purity of Compound A were determined by HPLC analysis.
Figure JPOXMLDOC01-appb-T000031
Reference production example 1
Synthesis of (S) -C-5 1-[(3S) -1-Azabicyclo [2.2.2] oct-3-yl] -3- [3,5-bis (trifluoromethyl) phenyl] thiourea
Figure JPOXMLDOC01-appb-I000032
(S)-(−)-3-Aminoquinuclidine dihydrochloride (1.0 g, 5.0 mmol), triethylamine (4.0 g, 39 mmol), and tetrahydrofuran (5 mL) were mixed, and the temperature of the mixture was adjusted to 20. After adjusting to ~ 30 ° C, 3,5-ditrifluoromethylphenylisothiocyanic acid (1.34 g, 5 mmol) was added dropwise and stirred at the same temperature for 5 hours. After completion of the reaction, the reaction mixture was concentrated under reduced pressure, and the residue was purified by flash silica gel chromatography to obtain an off-white solid compound (S) -C- 5 (1.52 g).
1 H NMR (400 MHz, DMSO-d6) δ ppm: 1.40 (1H, br.s), 1.57-1.63 (2H, br.s), 1.63-1.70 (1H, br. s), 1.98 (1H, dd, J = 6, 3 Hz), 2.58 (1H, m), 2.60-2.80 (4H, m), 3.17-3.30 (1H, m), 4.23 (1H, br.s), 7.72 (1H, s), 8.26 (2H, s), 8.41 (1H, br, s), 9.91 (1H, br) , S)
 本発明の方法により、光学活性なイソキサゾリン化合物を製造することができる。 An optically active isoxazoline compound can be produced by the method of the present invention.

Claims (6)

  1.  式(1)で示される化合物と、ヒドロキシアミンとを、グループ1中に記載された化合物及びその鏡像異性の化合物より選ばれるいずれか1つと炭酸塩との存在下に反応させることを特徴とする、光学活性な式(2)で示される化合物の製造方法
    Figure JPOXMLDOC01-appb-I000001
    (式中、Arは、置換基を有していてもよいフェニル基、置換基を有していてもよいナフチル基、置換基を有していてもよいインダニル基又は置換基を有していてもよいインドリジニル基を表し、Ar及びArは置換基を有していてもよいフェニル基を表し、R及びRは同一又は相異なり、置換基を有していてもよいフェニル基を表すか、RとRとが一緒になって−(CH−を表し、uは2~6のいずれか1つの整数を表し、R及びRは同一又は相異なり、フェニル基を有していてもよいC1−C3アルキル基を表すか、RとRとが一緒になって、−(CH−を表し、vは2~6のいずれか1つの整数を表し、R及びRは同一又は相異なり、フェニル基を有していてもよいC1−C3アルキル基を表し、Arは置換基を有していてもよいキノリル基を表し、グループ1中に記載された化合物の炭素原子に結合した水素原子は、置換されていてもよい)。
    The compound represented by the formula (1) is reacted with hydroxyamine in the presence of a carbonate and any one selected from the compounds described in Group 1 and its enantiomeric compounds. , A process for producing an optically active compound represented by formula (2)
    Figure JPOXMLDOC01-appb-I000001
    (In the formula, Ar has a phenyl group which may have a substituent, a naphthyl group which may have a substituent, an indanyl group which may have a substituent, or a substituent. Represents an indolizinyl group, Ar 1 and Ar 2 represent a phenyl group which may have a substituent, and R 1 and R 2 are the same or different and represent a phenyl group which may have a substituent. Or R 1 and R 2 together represent — (CH 2 ) u —, u represents an integer of 2 to 6, and R 3 and R 4 are the same or different, Represents a C1-C3 alkyl group which may have a group, or R 3 and R 4 together represent — (CH 2 ) v —, and v is an integer of any one of 2 to 6 R 5 and R 6 are the same or different and may have a phenyl group. Ar 3 represents an optionally substituted quinolyl group, and the hydrogen atom bonded to the carbon atom of the compound described in Group 1 may be substituted).
  2.  グループ1中に記載された化合物が以下の化合物である請求項1に記載の製造方法。
    Figure JPOXMLDOC01-appb-I000002
    Figure JPOXMLDOC01-appb-I000003
    The production method according to claim 1, wherein the compounds described in Group 1 are the following compounds.
    Figure JPOXMLDOC01-appb-I000002
    Figure JPOXMLDOC01-appb-I000003
  3.  グループ1中に記載された化合物が以下の化合物である請求項1に記載の製造方法。
    Figure JPOXMLDOC01-appb-I000004
    The production method according to claim 1, wherein the compounds described in Group 1 are the following compounds.
    Figure JPOXMLDOC01-appb-I000004
  4.  Arが、ハロゲン原子及び以下に示される基からなる群より選ばれる1以上を有していてもよいフェニル基である請求項1に記載の製造方法。
    Figure JPOXMLDOC01-appb-I000005
    (式中、RはC3−C8シクロアルキル基を表し、R及びRは各々同一又は相異なり、水素原子、ホルミル基、C1−C12アルキル基、C2−C12アルコキシカルボニル基、C2−C12アルキルカルボニル基又はC6−C14アリール基を表し、X及びXは各々同一又は相異なり、水素原子、ホルミル基、C2−C12アルキルカルボニル基、C2−C12アルコキシカルボニル基、アリルオキシカルボニル基、ベンジルオキシカルボニル基又はベンゼン環上に置換基を有していてもよいベンジル基を表し、*は結合部位を表す)。
    The production method according to claim 1, wherein Ar is a phenyl group which may have one or more selected from the group consisting of a halogen atom and a group shown below.
    Figure JPOXMLDOC01-appb-I000005
    (Wherein R 7 represents a C3-C8 cycloalkyl group, and R 8 and R 9 are the same or different and each represents a hydrogen atom, a formyl group, a C1-C12 alkyl group, a C2-C12 alkoxycarbonyl group, a C2-C12). It represents an alkylcarbonyl group or a C6-C14 aryl group, X 1 and X 2 are different each same or different, a hydrogen atom, a formyl group, C2-C12 alkylcarbonyl group, C2-C12 alkoxycarbonyl group, allyloxycarbonyl group, benzyl Represents an oxycarbonyl group or a benzyl group optionally having a substituent on the benzene ring, and * represents a binding site).
  5.  RがC3−C8シクロアルキル基であり、R及びRが水素原子、C1−C12アルキル基又はC2−C12アルコキシカルボニル基であり、X及びXが水素原子である請求項4に記載の製造方法。 5. R 7 is a C3-C8 cycloalkyl group, R 8 and R 9 are hydrogen atoms, C1-C12 alkyl groups or C2-C12 alkoxycarbonyl groups, and X 1 and X 2 are hydrogen atoms. The manufacturing method as described.
  6.  Arが、ハロゲン原子及びトリフルオロメチル基より選ばれる1以上の原子又は基を有していてもよいフェニル基である請求項1~5のいずれかに記載の製造方法。 6. The production method according to claim 1, wherein Ar 1 is a phenyl group optionally having one or more atoms or groups selected from a halogen atom and a trifluoromethyl group.
PCT/JP2014/064204 2013-05-27 2014-05-22 Method for producing optically active isoxazoline compound WO2014192841A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013110637 2013-05-27
JP2013-110637 2013-05-27

Publications (1)

Publication Number Publication Date
WO2014192841A1 true WO2014192841A1 (en) 2014-12-04

Family

ID=51988864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064204 WO2014192841A1 (en) 2013-05-27 2014-05-22 Method for producing optically active isoxazoline compound

Country Status (2)

Country Link
JP (1) JP2015007029A (en)
WO (1) WO2014192841A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015122508A1 (en) * 2014-02-14 2015-08-20 住友化学株式会社 Method for manufacturing isoxazoline compound

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005000803A2 (en) * 2003-06-30 2005-01-06 Sumitomo Chemical Co Asymmetric urea compound and process for producing asymmetric compound by asymmetric conjugate addition reaction with the same as catalyst
WO2009063910A1 (en) * 2007-11-12 2009-05-22 Nissan Chemical Industries, Ltd. Method for catalytic asymmetric synthesis of optically active isoxazoline compound
WO2013069731A1 (en) * 2011-11-08 2013-05-16 日産化学工業株式会社 Method for catalytic asymmetric synthesis of optically active isoxazoline compound, and optically active isoxazoline compound

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005000803A2 (en) * 2003-06-30 2005-01-06 Sumitomo Chemical Co Asymmetric urea compound and process for producing asymmetric compound by asymmetric conjugate addition reaction with the same as catalyst
WO2009063910A1 (en) * 2007-11-12 2009-05-22 Nissan Chemical Industries, Ltd. Method for catalytic asymmetric synthesis of optically active isoxazoline compound
WO2013069731A1 (en) * 2011-11-08 2013-05-16 日産化学工業株式会社 Method for catalytic asymmetric synthesis of optically active isoxazoline compound, and optically active isoxazoline compound

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHANDRA BHUSHAN TRIPATHI ET AL.: "Catalytic Asymmetirc Synthesis of alpha,beta-Disubstituted alpha,gamma-Diaminophosphonic Acid Precursors by Michael Addition of alpha-Substituted Nitrophosphonates to Nitroolefins", ORGANIC LETTERS, vol. 14, no. 13, 2012, pages 3296 - 3299 *
KAZUTAKA MATOBA ET AL.: "Enantioselective Synthesis of Trifluoromethyl-Substituted 2-Isoxazolines: Asymmetirc Hydroxylamine/Enone Cascade Reaction", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 49, 2010, pages 5762 - 5766, XP055003070, DOI: doi:10.1002/anie.201002065 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015122508A1 (en) * 2014-02-14 2015-08-20 住友化学株式会社 Method for manufacturing isoxazoline compound

Also Published As

Publication number Publication date
JP2015007029A (en) 2015-01-15

Similar Documents

Publication Publication Date Title
JP5041501B2 (en) Method for producing alcohol using transition metal complex having amide compound as ligand
JP4725977B2 (en) Process for producing 2-dihaloacyl-3-amino-acrylic acid ester and 3-dihalomethyl-pyrazole-4-carboxylic acid ester
TWI460166B (en) New process for the preparation of 2-imino-thiazolidin-4-one derivatives
KR100889937B1 (en) Method of preparing barleyconazole
EP2705028B1 (en) Process for the preparation of a rivaroxaban and intermediates formed in said process
EA018629B1 (en) Phenyl and benzodioxinyl substituted indazoles derivatives
JP2009542752A (en) Substituted isoxazolines, pharmaceutical compositions containing them, methods for preparing them, and uses thereof
KR101582697B1 (en) Methods of preparing 4-phenyl-6-(2,2,2-trifluoro-1-phenylethoxy)pyrimidine-based compounds
US10906871B2 (en) Processes for making, and methods of using, glycopyrronium compounds
WO2020242943A1 (en) Gpr40 agonists
WO2019004114A1 (en) Production method for diamine derivative by flow synthesis
JPWO2014046244A1 (en) Process for producing trifluoromethanesulfonanilide compound
WO2014192841A1 (en) Method for producing optically active isoxazoline compound
JP5735962B2 (en) Novel alkoxy enones and enamino ketones and methods for their preparation
JP2005510479A (en) Process for preparing substituted isoxazoles and substituted 2-isoxazolines
ES2312399T3 (en) PROCEDURE TO PREPARE OPTICALLY ACTIVE 2,3-DIHYDROBENZOFURAN COMPOUNDS.
WO2012107831A1 (en) Method of making a pyridone compound, 5-ethyl-1-phenyl-2-(1h)-pyridone, and intermediates thereof
CZ2003524A3 (en) Catalytic process for preparing thiazole derivatives
US7560549B2 (en) Sulfonyloxy derivatives
JPWO2009142194A1 (en) Method for producing optically active amino alcohol derivative
JP6961595B2 (en) Method for producing 4-alkoxy-3-trifluoromethylbenzyl alcohol
JP2016011275A (en) Process for producing optically active β-hydroxyketone compound
US7078543B2 (en) Methods for producing oxirane carboxylic acids and derivatives thereof
AU2017258665A1 (en) Process for the preparation of herbicidal compounds
JP2021516665A (en) Method for producing 2-chloro-4-nitroimidazole derivative

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14804373

Country of ref document: EP

Kind code of ref document: A1