WO2014192634A1 - Cellulose nanofiber material and cellulose film - Google Patents
Cellulose nanofiber material and cellulose film Download PDFInfo
- Publication number
- WO2014192634A1 WO2014192634A1 PCT/JP2014/063586 JP2014063586W WO2014192634A1 WO 2014192634 A1 WO2014192634 A1 WO 2014192634A1 JP 2014063586 W JP2014063586 W JP 2014063586W WO 2014192634 A1 WO2014192634 A1 WO 2014192634A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cellulose
- polyacrylamide resin
- mass
- cellulose nanofiber
- parts
- Prior art date
Links
- 229920002678 cellulose Polymers 0.000 title claims abstract description 330
- 239000001913 cellulose Substances 0.000 title claims abstract description 330
- 239000002121 nanofiber Substances 0.000 title claims abstract description 216
- 239000000463 material Substances 0.000 title claims abstract description 34
- 229920002401 polyacrylamide Polymers 0.000 claims abstract description 238
- 239000011347 resin Substances 0.000 claims abstract description 233
- 229920005989 resin Polymers 0.000 claims abstract description 233
- 125000000129 anionic group Chemical group 0.000 claims description 15
- 239000002657 fibrous material Substances 0.000 claims 1
- 238000000034 method Methods 0.000 description 50
- 230000000052 comparative effect Effects 0.000 description 36
- 239000006185 dispersion Substances 0.000 description 35
- 239000000178 monomer Substances 0.000 description 32
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 25
- 101000959121 Xenopus laevis Peptidyl-alpha-hydroxyglycine alpha-amidating lyase A Proteins 0.000 description 19
- 239000002994 raw material Substances 0.000 description 19
- 238000002360 preparation method Methods 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 238000002156 mixing Methods 0.000 description 17
- 238000006116 polymerization reaction Methods 0.000 description 15
- 229920002451 polyvinyl alcohol Polymers 0.000 description 14
- 239000004372 Polyvinyl alcohol Substances 0.000 description 13
- 150000003839 salts Chemical class 0.000 description 13
- 239000003054 catalyst Substances 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 239000002253 acid Substances 0.000 description 11
- 239000002612 dispersion medium Substances 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 11
- 101000959126 Xenopus laevis Peptidyl-alpha-hydroxyglycine alpha-amidating lyase B Proteins 0.000 description 10
- -1 alkali metal salt Chemical class 0.000 description 10
- 238000004448 titration Methods 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium peroxydisulfate Substances [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 9
- VAZSKTXWXKYQJF-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)OOS([O-])=O VAZSKTXWXKYQJF-UHFFFAOYSA-N 0.000 description 9
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 9
- 239000000835 fiber Substances 0.000 description 9
- SZHIIIPPJJXYRY-UHFFFAOYSA-M sodium;2-methylprop-2-ene-1-sulfonate Chemical compound [Na+].CC(=C)CS([O-])(=O)=O SZHIIIPPJJXYRY-UHFFFAOYSA-M 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- GDOPTJXRTPNYNR-UHFFFAOYSA-N methyl-cyclopentane Natural products CC1CCCC1 GDOPTJXRTPNYNR-UHFFFAOYSA-N 0.000 description 8
- 238000002834 transmittance Methods 0.000 description 8
- WHNPOQXWAMXPTA-UHFFFAOYSA-N 3-methylbut-2-enamide Chemical compound CC(C)=CC(N)=O WHNPOQXWAMXPTA-UHFFFAOYSA-N 0.000 description 7
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 239000003431 cross linking reagent Substances 0.000 description 6
- 238000000691 measurement method Methods 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 5
- 239000005708 Sodium hypochlorite Substances 0.000 description 5
- 125000002091 cationic group Chemical group 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000007800 oxidant agent Substances 0.000 description 5
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 5
- 125000001302 tertiary amino group Chemical group 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- AQEDFGUKQJUMBV-UHFFFAOYSA-N copper;ethane-1,2-diamine Chemical compound [Cu].NCCN AQEDFGUKQJUMBV-UHFFFAOYSA-N 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 229920000742 Cotton Polymers 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 229920002201 Oxidized cellulose Polymers 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- WQHCGPGATAYRLN-UHFFFAOYSA-N chloromethane;2-(dimethylamino)ethyl prop-2-enoate Chemical compound ClC.CN(C)CCOC(=O)C=C WQHCGPGATAYRLN-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229940107304 oxidized cellulose Drugs 0.000 description 3
- 239000005022 packaging material Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 2
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 2
- PMNLUUOXGOOLSP-UHFFFAOYSA-N 2-mercaptopropanoic acid Chemical compound CC(S)C(O)=O PMNLUUOXGOOLSP-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- GZUXJHMPEANEGY-UHFFFAOYSA-N bromomethane Chemical compound BrC GZUXJHMPEANEGY-UHFFFAOYSA-N 0.000 description 2
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 229940050176 methyl chloride Drugs 0.000 description 2
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 2
- 210000001724 microfibril Anatomy 0.000 description 2
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 2
- OMNKZBIFPJNNIO-UHFFFAOYSA-N n-(2-methyl-4-oxopentan-2-yl)prop-2-enamide Chemical compound CC(=O)CC(C)(C)NC(=O)C=C OMNKZBIFPJNNIO-UHFFFAOYSA-N 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000003505 polymerization initiator Substances 0.000 description 2
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 2
- 238000007127 saponification reaction Methods 0.000 description 2
- 238000001542 size-exclusion chromatography Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- CWERGRDVMFNCDR-UHFFFAOYSA-N thioglycolic acid Chemical compound OC(=O)CS CWERGRDVMFNCDR-UHFFFAOYSA-N 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- GPECWDAWQNNPNX-UHFFFAOYSA-N (1-$l^{1}-oxidanyl-2,2,6,6-tetramethylpiperidin-4-yl) dihydrogen phosphate Chemical compound CC1(C)CC(OP(O)(O)=O)CC(C)(C)N1[O] GPECWDAWQNNPNX-UHFFFAOYSA-N 0.000 description 1
- KOMNUTZXSVSERR-UHFFFAOYSA-N 1,3,5-tris(prop-2-enyl)-1,3,5-triazinane-2,4,6-trione Chemical compound C=CCN1C(=O)N(CC=C)C(=O)N(CC=C)C1=O KOMNUTZXSVSERR-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- FYBFGAFWCBMEDG-UHFFFAOYSA-N 1-[3,5-di(prop-2-enoyl)-1,3,5-triazinan-1-yl]prop-2-en-1-one Chemical compound C=CC(=O)N1CN(C(=O)C=C)CN(C(=O)C=C)C1 FYBFGAFWCBMEDG-UHFFFAOYSA-N 0.000 description 1
- ZQXIMYREBUZLPM-UHFFFAOYSA-N 1-aminoethanethiol Chemical compound CC(N)S ZQXIMYREBUZLPM-UHFFFAOYSA-N 0.000 description 1
- KGRVJHAUYBGFFP-UHFFFAOYSA-N 2,2'-Methylenebis(4-methyl-6-tert-butylphenol) Chemical compound CC(C)(C)C1=CC(C)=CC(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O KGRVJHAUYBGFFP-UHFFFAOYSA-N 0.000 description 1
- VUZNLSBZRVZGIK-UHFFFAOYSA-N 2,2,6,6-Tetramethyl-1-piperidinol Chemical group CC1(C)CCCC(C)(C)N1O VUZNLSBZRVZGIK-UHFFFAOYSA-N 0.000 description 1
- SYENVBKSVVOOPS-UHFFFAOYSA-N 2,2-bis(hydroxymethyl)butyl prop-2-enoate Chemical compound CCC(CO)(CO)COC(=O)C=C SYENVBKSVVOOPS-UHFFFAOYSA-N 0.000 description 1
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 description 1
- DPBJAVGHACCNRL-UHFFFAOYSA-N 2-(dimethylamino)ethyl prop-2-enoate Chemical compound CN(C)CCOC(=O)C=C DPBJAVGHACCNRL-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- FPBFWDHYZMVTJD-UHFFFAOYSA-N 2-methyl-2-(prop-2-enoylamino)propanoic acid Chemical compound OC(=O)C(C)(C)NC(=O)C=C FPBFWDHYZMVTJD-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- JHUFGBSGINLPOW-UHFFFAOYSA-N 3-chloro-4-(trifluoromethoxy)benzoyl cyanide Chemical compound FC(F)(F)OC1=CC=C(C(=O)C#N)C=C1Cl JHUFGBSGINLPOW-UHFFFAOYSA-N 0.000 description 1
- DKIDEFUBRARXTE-UHFFFAOYSA-N 3-mercaptopropanoic acid Chemical compound OC(=O)CCS DKIDEFUBRARXTE-UHFFFAOYSA-N 0.000 description 1
- UXBLSWOMIHTQPH-UHFFFAOYSA-N 4-acetamido-TEMPO Chemical compound CC(=O)NC1CC(C)(C)N([O])C(C)(C)C1 UXBLSWOMIHTQPH-UHFFFAOYSA-N 0.000 description 1
- XWNSFEAWWGGSKJ-UHFFFAOYSA-N 4-acetyl-4-methylheptanedinitrile Chemical compound N#CCCC(C)(C(=O)C)CCC#N XWNSFEAWWGGSKJ-UHFFFAOYSA-N 0.000 description 1
- CYQGCJQJIOARKD-UHFFFAOYSA-N 4-carboxy-TEMPO Chemical compound CC1(C)CC(C(O)=O)CC(C)(C)N1[O] CYQGCJQJIOARKD-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 241000609240 Ambelania acida Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 229920002749 Bacterial cellulose Polymers 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 241001474374 Blennius Species 0.000 description 1
- NYHQFRCIQSEKTN-UHFFFAOYSA-N CC(CCN(C)C)C.C(C=C)(=O)N Chemical compound CC(CCN(C)C)C.C(C=C)(=O)N NYHQFRCIQSEKTN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 238000006683 Mannich reaction Methods 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000004153 Potassium bromate Substances 0.000 description 1
- 229920001131 Pulp (paper) Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 241000251555 Tunicata Species 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910001513 alkali metal bromide Inorganic materials 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229920006321 anionic cellulose Polymers 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000005016 bacterial cellulose Substances 0.000 description 1
- 239000010905 bagasse Substances 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- AGEZXYOZHKGVCM-UHFFFAOYSA-N benzyl bromide Chemical compound BrCC1=CC=CC=C1 AGEZXYOZHKGVCM-UHFFFAOYSA-N 0.000 description 1
- KCXMKQUNVWSEMD-UHFFFAOYSA-N benzyl chloride Chemical compound ClCC1=CC=CC=C1 KCXMKQUNVWSEMD-UHFFFAOYSA-N 0.000 description 1
- 229940073608 benzyl chloride Drugs 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001851 biosynthetic effect Effects 0.000 description 1
- SXDBWCPKPHAZSM-UHFFFAOYSA-M bromate Chemical class [O-]Br(=O)=O SXDBWCPKPHAZSM-UHFFFAOYSA-M 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000012986 chain transfer agent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- BHDFTVNXJDZMQK-UHFFFAOYSA-N chloromethane;2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound ClC.CN(C)CCOC(=O)C(C)=C BHDFTVNXJDZMQK-UHFFFAOYSA-N 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 229940018557 citraconic acid Drugs 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 description 1
- 150000002013 dioxins Chemical class 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethyl mercaptane Natural products CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 239000011121 hardwood Substances 0.000 description 1
- 229940079826 hydrogen sulfite Drugs 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 229940102396 methyl bromide Drugs 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 1
- PJUIMOJAAPLTRJ-UHFFFAOYSA-N monothioglycerol Chemical compound OCC(O)CS PJUIMOJAAPLTRJ-UHFFFAOYSA-N 0.000 description 1
- QNILTEGFHQSKFF-UHFFFAOYSA-N n-propan-2-ylprop-2-enamide Chemical compound CC(C)NC(=O)C=C QNILTEGFHQSKFF-UHFFFAOYSA-N 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L persulfate group Chemical group S(=O)(=O)([O-])OOS(=O)(=O)[O-] JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 229940094037 potassium bromate Drugs 0.000 description 1
- 235000019396 potassium bromate Nutrition 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- AZIQALWHRUQPHV-UHFFFAOYSA-N prop-2-eneperoxoic acid Chemical compound OOC(=O)C=C AZIQALWHRUQPHV-UHFFFAOYSA-N 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000007870 radical polymerization initiator Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- XUXNAKZDHHEHPC-UHFFFAOYSA-M sodium bromate Chemical compound [Na+].[O-]Br(=O)=O XUXNAKZDHHEHPC-UHFFFAOYSA-M 0.000 description 1
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- CRWJEUDFKNYSBX-UHFFFAOYSA-N sodium;hypobromite Chemical compound [Na+].Br[O-] CRWJEUDFKNYSBX-UHFFFAOYSA-N 0.000 description 1
- 239000011122 softwood Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 230000019635 sulfation Effects 0.000 description 1
- 238000005670 sulfation reaction Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229940035024 thioglycerol Drugs 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- NJRXVEJTAYWCQJ-UHFFFAOYSA-N thiomalic acid Chemical compound OC(=O)CC(S)C(O)=O NJRXVEJTAYWCQJ-UHFFFAOYSA-N 0.000 description 1
- NBOMNTLFRHMDEZ-UHFFFAOYSA-N thiosalicylic acid Chemical compound OC(=O)C1=CC=CC=C1S NBOMNTLFRHMDEZ-UHFFFAOYSA-N 0.000 description 1
- 229940103494 thiosalicylic acid Drugs 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/24—Homopolymers or copolymers of amides or imides
- C08L33/26—Homopolymers or copolymers of acrylamide or methacrylamide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B15/00—Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
- C08B15/02—Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B15/00—Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
- C08B15/08—Fractionation of cellulose, e.g. separation of cellulose crystallites
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L1/00—Compositions of cellulose, modified cellulose or cellulose derivatives
- C08L1/02—Cellulose; Modified cellulose
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L1/00—Compositions of cellulose, modified cellulose or cellulose derivatives
- C08L1/02—Cellulose; Modified cellulose
- C08L1/04—Oxycellulose; Hydrocellulose, e.g. microcrystalline cellulose
Definitions
- the present invention relates to a cellulose nanofiber material and a cellulose film, and particularly relates to a cellulose nanofiber material and a cellulose film made of the cellulose nanofiber material.
- a gas barrier property is required in a packaging material used in various industrial fields, for example, a metal foil made of a metal such as aluminum, a vinylidene chloride film, or the like is used.
- metal foil made of a metal such as aluminum, a vinylidene chloride film, or the like is used.
- transparent packaging material cannot be obtained, so the contents cannot be confirmed through the packaging material, and it must be treated as non-combustible when discarded.
- dioxins are generated during incineration.
- a material derived from a natural product that does not contain metal or chlorine and has a low environmental load has attracted attention.
- a cellulose nanofiber material made of cellulose nanofiber has been proposed. It is also known to use such a cellulose nanofiber material as a sheet.
- the cellulose nanofiber is provided with a film composed of cellulose nanofibers and is located in the vicinity of at least one surface in the film.
- a sheet oriented substantially parallel to the film surface has been proposed (see Patent Document 1).
- Patent Document 1 Although the sheet described in Patent Document 1 is excellent in transparency and gas barrier properties, there is a problem that mechanical properties such as strength are not sufficient.
- An object of the present invention is to provide a cellulose nanofiber material having excellent mechanical properties and a cellulose film comprising the cellulose nanofiber material.
- the cellulose nanofiber material of the present invention is characterized by containing cellulose nanofiber and a polyacrylamide resin having a charge of +1.00 meq / g or less.
- the content ratio of the polyacrylamide resin is preferably 30 parts by mass or less with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. It is.
- the total of the charge of the cellulose nanofiber and the charge of the polyacrylamide resin is 0.90 or less.
- the cellulose nanofiber material of the present invention it is preferable that the cellulose nanofiber and the polyacrylamide resin are both anionic.
- the cellulose film of the present invention is characterized by comprising a cellulose nanofiber material.
- the cellulose nanofiber material and the cellulose film of the present invention contain cellulose nanofibers and a polyacrylamide resin having a charge of +1.00 meq / g or less, they have excellent mechanical properties.
- FIG. 1 shows the tensile strength and Young's modulus of the films obtained in Examples 2 to 4 and Comparative Examples 1 to 6.
- FIG. 2 shows the tensile strength and Young's modulus of the films obtained in Examples 3, 6, 8, 10, 12, 14, 16 and Comparative Example 9.
- FIG. 3 shows the relative values of the tensile strength of the films obtained in Examples 1 to 16 and Comparative Examples 1, 9 and 10.
- FIG. 4 shows the relative values of the tensile strength of the films obtained in Examples 17 to 30 and Comparative Example 7.
- FIG. 5 shows the relative values of tensile strength of the films obtained in Examples 31 to 50 and Comparative Examples 8, 11 and 12.
- the cellulose nanofiber material of the present invention contains cellulose nanofiber (CNF) and polyacrylamide resin (PAM).
- Cellulose nanofibers are obtained by defibrating a cellulose raw material that is a bundle of microfibrils (nanofibers).
- cellulose raw material examples include purified cellulose isolated from cellulose biosynthetic systems such as plants, animals, and bacteria-producing gels. Specifically, for example, coniferous pulp, hardwood pulp, cotton pulp ( For example, cotton linter, cotton lint, etc.), pulps such as non-wood pulp (eg, straw pulp, bagasse pulp, etc.), bacterial cellulose, cellulose isolated from sea squirt, cellulose isolated from seaweed, etc. It is done.
- These cellulose raw materials can be used alone or in combination of two or more.
- pulps are preferable, and coniferous pulp is more preferable.
- the method for defibrating the cellulose raw material is not particularly limited, and a known method can be adopted.
- a method of using a N-oxyl compound as a catalyst and oxidizing the cellulose raw material to defibrate can be mentioned.
- a method described in JP 2008-1728 A, International Publication WO 2009/069641 and the like can be used.
- the cellulose raw material is dispersed in water to prepare a dispersion, and the cellulose raw material is oxidized in the presence of the N-oxyl compound in the dispersion.
- the concentration of the cellulose raw material in the dispersion is not particularly limited, but is set to, for example, about 5% by mass with respect to the total amount of the dispersion.
- a material stored in a never dry state (undried state) after isolation and purification is preferably used as the cellulose raw material.
- a never-dry state it is possible to keep the microfibril bundle in an easily swellable state, so that the cellulose raw material can be efficiently defibrated and cellulose nanofibers having a small fiber diameter can be obtained. it can.
- the cellulose raw material can be beaten in advance to increase its surface area. Thereby, a cellulose raw material can be defibrated efficiently and productivity can be improved.
- N-oxyl compound examples include 2,2,6,6-tetramethylpiperidine-N-oxyl (hereinafter abbreviated as TEMPO) and derivatives thereof.
- TEMPO 2,2,6,6-tetramethylpiperidine-N-oxyl
- TEMPO derivatives include 4-acetamido-TEMPO, 4-carboxy-TEMPO, 4-phosphonooxy-TEMPO, and the like.
- N-oxyl compounds can be used alone or in combination of two or more.
- TEMPO is preferable.
- the blending ratio of the N-oxyl compound is, for example, 0.1 mmol / L or more, for example, 4 mmol / L or less, preferably 2 mmol / L or less with respect to the cellulose raw material dispersion.
- a co-oxidant can be added to oxidize the reduced form of the N-oxyl compound.
- co-oxidant examples include hypohalous acid or a salt thereof (for example, alkali metal salt, etc.), halous acid or a salt thereof, perhalogen acid or a salt thereof, hydrogen peroxide, a perorganic acid, or the like.
- hypohalous acid or a salt thereof for example, alkali metal salt, etc.
- halous acid or a salt thereof perhalogen acid or a salt thereof, hydrogen peroxide, a perorganic acid, or the like.
- an alkali metal salt of hypohalous acid is used.
- alkali metal salt of hypohalous acid examples include sodium hypochlorite and sodium hypobromite, and preferably sodium hypochlorite.
- These cooxidants can be used alone or in combination of two or more.
- the mixing ratio of the co-oxidant is, for example, 0.5 mmol or more, and, for example, 10 mmol or less, preferably 8 mmol or less with respect to 1 g of the cellulose raw material.
- a cocatalyst can also be added.
- the cocatalyst can be selected, for example, depending on the co-oxidant. Specifically, for example, when an alkali metal salt of hypohalous acid is used as the co-oxidant, And alkali metal bromides such as sodium bromide and potassium bromide.
- the addition amount of the cocatalyst is, for example, 1-fold molar amount or more, preferably 10-fold molar amount or more, for example, 40-fold molar amount or less, preferably 20-fold mole, relative to the N-oxyl compound. Less than the amount.
- the pH of the dispersion is maintained in a neutral to alkaline range, for example. Specifically, for example, it is 7 or more, preferably 8 or more, and for example, 11 or less.
- the pH of the dispersion can be adjusted, for example, by adding a known acid or alkali to the dispersion at an appropriate ratio.
- a known buffer can be added to the dispersion at an appropriate ratio. It can also be adjusted by doing.
- the temperature condition, pressure condition, and treatment time in the oxidation treatment of the cellulose raw material are not particularly limited, and are appropriately set.
- the oxidized cellulose can be obtained. Further, in this method, if necessary, the oxidized cellulose can be purified by removing the catalyst and the like out of the system by a filtration method, a centrifugal separation method, or the like.
- the oxidized cellulose obtained as described above is dispersed in a dispersion medium using a dispersing device and defibrated. Thereby, the dispersion liquid of a cellulose nanofiber is obtained.
- Examples of the dispersion medium include water and hydrophilic organic solvents.
- hydrophilic organic solvent examples include alcohols having 1 to 4 carbon atoms (for example, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, sec-butanol, tert-butanol, methyl cellosolve, ethyl cellosolve, ethylene glycol, Glycerin, etc.), ethers (eg, ethylene glycol dimethyl ether, 1,4-dioxane, tetrahydrofuran, etc.), ketones (eg, acetone, methyl ethyl ketone, etc.), N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfo Examples include killide. These dispersion media can be used alone or in combination of two or more.
- the dispersion medium is preferably water.
- a dispersion device for example, a household mixer, an ultrasonic homogenizer, a high-pressure homogenizer, a biaxial kneader, a stone mill and the like, and a defibrating apparatus generally used for household and industrial production can be used.
- cellulose nanofibers having a small fiber diameter can be obtained more efficiently by using a strong and defibrating device such as various homogenizers and various refiners.
- the dispersion condition is not particularly limited, and is appropriately set according to the type of apparatus.
- coarse substances such as undelivered cellulose raw materials can be removed from the resulting dispersion of cellulose nanofibers.
- the cellulose nanofibers thus obtained have a maximum fiber diameter of, for example, 3 nm or more, and for example, 1000 nm or less, preferably 500 nm or less, more preferably 30 nm or less.
- the number average fiber diameter is, for example, 2 nm or more, and for example, 150 nm or less, preferably 100 nm or less, more preferably 10 nm or less.
- the maximum fiber diameter and the number average fiber diameter can be determined by observing with a scanning electron microscope (SEM) or a transmission electron microscope (TEM), for example.
- SEM scanning electron microscope
- TEM transmission electron microscope
- the degree of polymerization of the cellulose nanofibers obtained by the above method is, for example, 200 or more, preferably 500 or more, and for example, 1200 or less, preferably 800 or less.
- the degree of polymerization can be measured in accordance with the method of Examples described later.
- cellulose nanofibers when obtaining the cellulose nanofibers using a TEMPO catalyst as described above, CH 2 OH groups in the cellulose molecule is oxidized, COO - for reduction, cellulose nanofibers shows anionic.
- the charge of the cellulose nanofiber is, for example, ⁇ 2.00 meq / g or more, preferably ⁇ 1.60 meq / g or more, more preferably ⁇ 1.50 meq / g or more. , Less than 0.00 meq / g, preferably less than ⁇ 0.10 meq / g, and more preferably ⁇ 1.00 meq / g or less.
- the charge of the cellulose nanofiber can be measured according to the method of Examples described later.
- the amount of carboxy groups of the cellulose nanofibers obtained using the TEMPO catalyst with respect to the mass of the cellulose raw material is, for example, 1.00 mmol / g or more, preferably 1.30 mmol / g or more. 0.000 mmol / g or less, preferably 1.85 mmol / g or less.
- carboxy group amount of the cellulose nanofiber with respect to the mass of the cellulose raw material is measured according to the method of Examples described later.
- the method for obtaining cellulose nanofibers is not limited to the above-described method, and other methods, for example, a method of treating with the above dispersion apparatus without using a TEMPO catalyst to form nanofibers, for example, acid A hydrolysis method or the like can also be employed.
- polyacrylamide resin examples include acrylamide homopolymers (polyacrylamide) and copolymers mainly composed of acrylamide.
- a copolymer containing acrylamide as a main component means that, among the units constituting the copolymer, the unit derived from acrylamide is 50% by mass or more, preferably 80% by mass or more, and the remainder is copolymerized with acrylamide. Defined as a copolymer that is a unit derived from a possible monomer.
- Examples of monomers copolymerizable with acrylamide include nonionic monomers, anionic monomers, and cationic monomers.
- nonionic monomers examples include diacetone acrylamide, alkyl acrylate, hydroxy acrylate, vinyl acetate, styrene, ⁇ -methyl styrene, and the like.
- anionic monomers examples include monocarboxylic acid monomers (eg, acrylic acid, methacrylic acid, crotonic acid, etc.), dicarboxylic acid monomers (eg, maleic acid, fumaric acid, itaconic acid, citraconic acid, etc.), vinyl groups And organic acid monomers such as sulfonic acid monomers having vinyl (for example, vinyl sulfonic acid, styrene sulfonic acid, 2-acrylamido-2-methylpropanoic acid, etc.). Further, salts of these organic acid monomers such as sodium salt and potassium salt can also be used.
- monocarboxylic acid monomers eg, acrylic acid, methacrylic acid, crotonic acid, etc.
- dicarboxylic acid monomers eg, maleic acid, fumaric acid, itaconic acid, citraconic acid, etc.
- organic acid monomers such as sulfonic acid monomers having vinyl (for example, vinyl sulfonic acid,
- Examples of the cationic monomer include a monomer having a tertiary amino group.
- a (meth) acrylic acid ester derivative having a tertiary amino group for example, dialkylaminoethyl (meth)
- Acrylate for example, dimethylaminoethyl acrylate, etc.
- dialkylaminopropyl (meth) acrylate, etc. (meth) acrylamide derivative having tertiary amino group (for example, dialkylaminoethyl (meth) acrylamide, dialkylaminopropyl (meth))
- Acrylamide for example, dialkylaminoethyl (meth) acrylamide, dialkylaminopropyl (meth)
- the salt of the monomer which has the said tertiary amino group can also be used.
- the salt include inorganic salts such as hydrochloride and sulfate, and organic salts such as formate and acetate.
- organic salts such as formate and acetate.
- a quaternary salt in which a tertiary amino group is quaternized with methyl chloride (methyl chloride), methyl bromide, benzyl chloride, benzyl bromide, dimethyl sulfate, epichlorohydrin, or the like can be mentioned.
- copolymerizable monomers can be used alone or in combination of two or more.
- a nonionic monomer is used as a monomer to be copolymerized with acrylamide
- a nonionic polyacrylamide resin can be obtained
- an anionic monomer is used, an anionic polyacrylamide resin can be obtained.
- an anionic monomer and a cationic monomer are used in combination as monomers to be copolymerized with acrylamide
- an amphoteric polyacrylamide resin can be obtained.
- an anionic monomer is used to obtain an anionic polyacrylamide resin.
- Polyacrylamide obtained without using a copolymerizable monomer is also classified as a nonionic polyacrylamide resin.
- a polyacrylamide resin for example, acrylamide and, if necessary, a monomer copolymerizable with the acrylamide are blended and polymerized by a known method such as emulsion polymerization.
- a polyacrylamide resin can be obtained by charging the above-mentioned various monomers and water in a predetermined reaction vessel, and appropriately mixing and polymerizing a catalyst, a crosslinking agent, a chain transfer agent, and the like.
- the catalyst is not particularly limited as long as it is a radical polymerization initiator usually used in a polymerization reaction in an aqueous solution as a polymerization initiator.
- a peroxide for example, hydrogen peroxide, benzoyl peroxide, t- Butyl peroxide
- persulfates eg, ammonium persulfate, sodium persulfate, potassium persulfate, etc.
- bromates eg, sodium bromate, potassium bromate, etc.
- perborates eg, perboron
- a redox catalyst or an azo catalyst in which these are combined with a reducing agent such as sulfite, hydrogen sulfite, transition metal salt, organic amine, or the like can also be used.
- a reducing agent such as sulfite, hydrogen sulfite, transition metal salt, organic amine, or the like.
- the mixing ratio of these catalysts is, for example, 0.01% by mass or more, preferably 0.05% by mass or more, and for example, 10% by mass or less, preferably, based on the total mass of the monomers used. 4% by mass or less.
- the catalyst may be charged all at once, but may be dividedly added in a plurality of times.
- crosslinking agent examples include bifunctional crosslinking agents (for example, methylene bis (meth) acrylamide, ethylene bis (meth) acrylamide, ethylene glycol di (meth) acrylamide, diethylene glycol di (meth) acrylamide, triethylene glycol di (meth)).
- bifunctional crosslinking agents for example, methylene bis (meth) acrylamide, ethylene bis (meth) acrylamide, ethylene glycol di (meth) acrylamide, diethylene glycol di (meth) acrylamide, triethylene glycol di (meth)).
- the blending ratio of these crosslinking agents is, for example, 0.005 mol% or more, preferably 0.01 mol% or more, and for example, 1 mol% or less, preferably, based on the total amount of monomers used. It is 0.2 mol% or less.
- chain transfer agents in addition to isopropyl alcohol, mercaptos (for example, mercaptoethanol, thiourea, thioglycolic acid, mercaptopropionic acid, thiosalicylic acid, thiolactic acid, aminoethanethiol, thioglycerol, thiomalic acid, etc.), allyls (For example, allyl alcohol, sodium allyl sulfonate, sodium methallyl sulfonate, etc.). These chain transfer agents can be used alone or in combination of two or more.
- the mixing ratio of these chain transfer agents is, for example, 0.01 mol% or more, preferably 0.02 mol% or more, for example, 10 mol% or less, preferably, based on the total amount of monomers used. 4 mol% or less.
- Polymerization temperature is, for example, 40 ° C. or higher, and for example, 100 ° C. or lower.
- the polymerization time is, for example, 0.5 hours or longer, and for example, 8 hours or shorter.
- the obtained polyacrylamide-based resin can also be modified. Specifically, first, polyacrylamide is synthesized, and then the Mannich reaction is performed on the obtained polyacrylamide by a known method.
- the polyacrylamide obtained by the above method may be subjected to a Hofmann decomposition reaction by a known method to be cation-modified.
- the charge of the polyacrylamide resin thus obtained varies depending on the type and blending amount of the monomer used, but is, for example, -2.00 meq / g or more, preferably -1.20 meq / g or more.
- +1.00 meq / g or less preferably +0.60 meq / g or less, more preferably +0.10 meq / g or less, further preferably 0.00 meq / g or less, and particularly preferably ⁇ 0.50 meq. / G or less, particularly preferably ⁇ 1.00 meq / g or less.
- the polyacrylamide resin thus obtained has a weight average molecular weight of, for example, 100,000 or more, preferably 500,000 or more, and, for example, 8 million or less, preferably 5 million or less.
- a weight average molecular weight can be measured based on the method of the Example mentioned later.
- the shape and structure of the cellulose nanofiber material composed of the cellulose nanofiber and the acrylamide resin are not particularly limited and can be appropriately selected.
- cellulose film examples include a cellulose film, a cellulose sheet, a sponge-like structure, a gel-like structure, and preferably a cellulose film.
- the cellulose nanofibers and the polyacrylamide resin are dispersed in a dispersion medium to prepare a dispersion.
- dispersion medium examples include water and the above-described hydrophilic organic solvent. These dispersion media can be used alone or in combination of two or more.
- the dispersion medium is preferably water.
- the cellulose nanofiber and the polyacrylamide resin are appropriately selected according to the purpose and application.
- the total of the charge of the cellulose nanofiber and the charge of the polyacrylamide resin is, for example, 0. 90 or less, preferably 0.50 or less, more preferably 0.00 or less, still more preferably -0.10 or less, particularly preferably -1.00 or less, particularly preferably -1.50 or less. Particularly preferred is ⁇ 2.00 or less, and usually ⁇ 4.00 or more.
- the total charge is the sum of the charge value of the cellulose nanofiber (dimensionless) and the charge value of the polyacrylamide resin (dimensionless), and their blending ratio Without depending on the type of cellulose nanofiber and polyacrylamide resin used.
- the cellulose nanofiber and the polyacrylamide resin to be used are selected so that the sum of their charges falls within the above range.
- the cellulose nanofiber and the polyacrylamide resin are both anionic. That is, in this method, an anionic cellulose nanofiber is preferably used as the cellulose nanofiber, and an anionic polyacrylamide resin is used as the polyacrylamide resin.
- the cellulose nanofiber and the polyacrylamide resin are both anionic, the cellulose nanofiber and the polyacrylamide resin are repelled by negative charges, so that the dispersibility can be improved and the mechanical properties can be improved. Can be obtained.
- the blending ratio of the cellulose nanofiber and the polyacrylamide resin in the dispersion is such that the blending ratio of the cellulose nanofiber is, for example, 50 parts by mass or more, preferably 100 parts by mass of the total mass. 60 parts by mass or more, more preferably 70 parts by mass or more, still more preferably 75 parts by mass or more, and for example, 99 parts by mass or less, preferably 97 parts by mass or less, more preferably 95 parts by mass or less. It is.
- the blending ratio of the polyacrylamide resin is, for example, 1 part by mass or more, preferably 3 parts by mass or more, more preferably 5 parts by mass or more, and for example, 50 parts by mass or less, preferably 40 parts by mass. It is 30 parts by mass or less, more preferably 25 parts by mass or less.
- the blending ratio of the cellulose nanofiber and the polyacrylamide resin is within the above range, a cellulose film having excellent mechanical properties can be obtained.
- the method for dispersing the cellulose nanofibers and the polyacrylamide resin in a dispersion medium is not particularly limited, and may be stirred by a known method, and a dispersing device can also be used.
- Examples of such a dispersing device include a home mixer, an ultrasonic homogenizer, and a high-pressure homogenizer.
- the dispersion condition is not particularly limited, and is set as appropriate according to the type of apparatus.
- the pH of the obtained dispersion is, for example, 4 or more, preferably 6 or more, and for example, 10 or less, preferably 8 or less.
- the obtained dispersion is dried in a container.
- drying method examples include a freeze-drying method when the dispersion medium is water, and a drum dryer drying method when the dispersion medium is a mixed liquid of water and a hydrophilic organic solvent. And spray drying using a spray dryer.
- the drying conditions are not particularly limited and can be set as appropriate.
- the above-described dispersion liquid is coated on one surface or both surfaces of the base material by coating and drying on the surface of the base material (for example, paper, resin film (for example, polyethylene terephthalate)).
- a cellulose nanofiber layer made of a film can also be formed.
- the coating can be performed using a known coating machine such as a roll coater or a bar coater.
- a known drying method a known dryer can be used.
- a cellulose nanofiber layer having excellent mechanical properties can be formed as a gas barrier layer with respect to the substrate, and a gas barrier material having excellent mechanical properties, which is composed of the substrate and the cellulose nanofiber layer, can be obtained.
- Such a cellulose nanofiber material and a cellulose film have excellent mechanical properties because they contain cellulose nanofiber and a polyacrylamide resin having a charge of +1.00 meq / g or less.
- the content ratio of the cellulose nanofibers and the polyacrylamide resin in the cellulose film is such that the content ratio of the cellulose nanofibers is 50 parts by mass or more, preferably 60 masses with respect to the total mass of 100 parts by mass. Part or more, more preferably 70 parts by weight or more, still more preferably 75 parts by weight or more, and for example 99 parts by weight or less, preferably 97 parts by weight or less, more preferably 95 parts by weight or less. .
- the content of the polyacrylamide resin is, for example, 1 part by mass or more, preferably 3 parts by mass or more, more preferably 5 parts by mass or more, and for example, 50 parts by mass or less, preferably 40 parts by mass. It is 30 parts by mass or less, more preferably 25 parts by mass or less.
- the cellulose film exhibits excellent mechanical properties, in particular, excellent tensile strength and Young's modulus.
- the tensile strength of the cellulose film is, for example, 50 MPa or more, preferably 150 MPa or more, more preferably 200 MPa or more, further preferably 250 MPa or more, and usually 500 MPa or less.
- the tensile strength can be measured in accordance with a method of an example described later.
- the Young's modulus of the cellulose film is, for example, 4 GPa or more, preferably 10 GPa or more, more preferably 12 GPa or more, still more preferably 14 GPa or more, and usually 20 GPa or less.
- the Young's modulus can be measured in accordance with the method of the example described later.
- the thickness of the cellulose film is, for example, 1 ⁇ m or more, preferably 2 ⁇ m or more, more preferably 5 ⁇ m or more, and for example, less than 100 ⁇ m, preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, and further preferably. Is 15 ⁇ m or less.
- the thickness is 100 micrometers or more, for example, Preferably, it is 200 micrometers or more, for example, is 5 mm or less.
- the cellulose film or the cellulose sheet may be a single layer, or a plurality of layers may be laminated.
- the obtained cellulose film is excellent in transparency.
- the light transmittance of the cellulose film at a wavelength of 600 nm is, for example, 50% or more, preferably 65% or more, more preferably 75% or more, and further preferably 85% or more. % Or less.
- the light transmittance of a cellulose film can be measured based on the method of the Example mentioned later.
- CNF-A cellulose nanofiber A
- Preparation Example 2 (Preparation of cellulose nanofiber B) Cellulose nanofiber B (hereinafter abbreviated as CNF-B) was obtained in the same manner as in Preparation Example 1, except that 10 mmol of sodium hypochlorite was added instead of 5 mmol of sodium hypochlorite.
- Preparation Example 3 (Preparation of cellulose nanofiber C) Cellulose nanofiber C (hereinafter abbreviated as CNF-C) was obtained in the same manner as in Preparation Example 1 except that the fiber was disentangled only by mechanical treatment without being oxidized.
- Table 1 shows the physical properties (degree of polymerization, amount of carboxy group, charge) of each cellulose nanofiber.
- the degree of polymerization, the amount of carboxy groups, and the charge were measured by the following methods.
- Intrinsic viscosity [ ⁇ ] ( ⁇ / ⁇ 0 ) / ⁇ c (1 + A ⁇ ⁇ / ⁇ 0 ) ⁇
- c is the concentration of cellulose nanofibers (g / dL)
- A is a value determined by the type of solution 1
- a when a 0.5 M copper ethylenediamine solution is used is 0.28. is there.
- the degree of polymerization DP is obtained from the following formula.
- K and a are values determined by the type of polymer and the solvent used. In the case of cellulose dissolved in copper ethylenediamine, K is 5.7 ⁇ 10 ⁇ 3 and a is 1.
- the viscometer is preferably a capillary viscometer, examples of which include a Canon-Fenske viscometer.
- ⁇ Measurement method of carboxy group amount Using the cellulose nanofibers obtained in each preparation example, 60 mL of a 0.5 to 1% by mass dispersion was prepared. Next, the pH was adjusted to about 2.5 with a 0.1 M aqueous hydrochloric acid solution, and then a 0.05 M aqueous sodium hydroxide solution was added dropwise to measure the electrical conductivity. Thereafter, the dropping was stopped when the pH of the dispersion reached 11. And the amount of carboxy groups was computed using the following formula from the amount (V) of sodium hydroxide consumed in the neutralization step of the weak acid where the change in electrical conductivity is gradual.
- Carboxy group amount (mmol / g) V (mL) ⁇ 0.05 (mmol / mL) / mass of cellulose nanofiber (g) ⁇ Method for measuring charge> Measurement was performed by a titration apparatus (PCD-04 and PCD-T3, manufactured by Mutek) using a streaming potential method. That is, an aqueous dispersion of cellulose nanofibers 0.01% by mass and pH 7 was prepared as a sample. Next, 10 g of the dispersion was placed in a dedicated cell, the cell was set in a measuring instrument, and the switch was turned on.
- the dispersion has a cationic charge
- the dispersion has a cationic charge
- the dispersion The liquid was judged to have an anionic charge.
- a titration liquid showing a charge opposite to the charge shown by the above-mentioned flow potential before titration that is, a dispersion liquid in which the flow potential before titration shows a cationic charge
- an anion titrant is used and the flow potential before titration is used.
- titration was performed using a cation titrant until the streaming potential became zero. From the titration amount when the streaming potential became 0, the charge was calculated by the following formula.
- 0.0025N Poly (dialydimethylammonium Chloride) Solution (manufactured by Wako) was used as the cation titrant
- 0.0025N Potassium Polyvinyl Sulfation Solution (manufactured by Wako Corporation) was used as the anion titrant.
- the charge was measured by the same procedure as the method for measuring the charge of cellulose nanofibers, except that an aqueous dispersion of 0.05% by mass of polyacrylamide resin and pH 7 was used as a sample.
- the weight average molecular weight was measured by the following method (the same applies hereinafter). ⁇ Measurement method of weight average molecular weight> The weight average molecular weight was measured by the SEC (size exclusion chromatography) method.
- POLY ETHYLENE OXIDE
- TDA302 one guard column, two columns, concentration detector, optical detector
- a scattering detector and a viscosity detector were mounted, and measurement was performed using a VISCOTEK company).
- (Preparation Example 5) 68.9 g of acrylamide, 10.2 g of itaconic acid, 0.10 g of dimethylacrylamide, 0.25 g of sodium methallyl sulfonate, and 0.10 g of ammonium persulfate are blended and copolymerized in water to obtain a charge of 1.-1.
- a polyacrylamide resin B (hereinafter abbreviated as PAM-B) having 64 meq / g and a weight average molecular weight of 1.9 million was obtained.
- Table 2 shows the physical properties (ionicity, charge) of each polyacrylamide resin.
- Example 1 Manufacture of cellulose film
- CNF-A as the cellulose nanofiber
- PAM-A as the polyacrylamide resin
- a cellulose film containing at a ratio was produced.
- a 0.15% by mass aqueous dispersion of CNF-A and a 0.15% by mass aqueous dispersion of PAM-A were prepared, and these were added to the total amount of CNF-A and PAM-A.
- PAM-A was mixed at a ratio of 5 parts by mass with respect to 100 parts by mass.
- the obtained mixed solution was poured into a petri dish and dried to produce a cellulose film having a thickness of about 10 ⁇ m.
- Example 2 Using CNF-A as the cellulose nanofiber and PAM-A as the polyacrylamide resin, the polyacrylamide resin is 10 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin.
- Example 3 A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 3 Using CNF-A as the cellulose nanofiber and PAM-A as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin.
- a cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 4 Using CNF-A as the cellulose nanofiber and PAM-A as the polyacrylamide resin, the polyacrylamide resin is 40 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin.
- a cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 5 Using CNF-A as the cellulose nanofiber and PAM-B as the polyacrylamide resin, the polyacrylamide resin is 10 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin.
- a cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 6 Using CNF-A as the cellulose nanofiber and PAM-B as the polyacrylamide resin, 25 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 7 Using CNF-A as the cellulose nanofiber and PAM-C as the polyacrylamide resin, the polyacrylamide resin is 10 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 8 Using CNF-A as the cellulose nanofiber and PAM-C as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 9 Using CNF-A as the cellulose nanofiber and PAM-D as the polyacrylamide resin, the polyacrylamide resin is 10 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 10 Using CNF-A as the cellulose nanofiber and PAM-D as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 11 Using CNF-A as the cellulose nanofiber and PAM-F as the polyacrylamide resin, the polyacrylamide resin is 10 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 12 Using CNF-A as the cellulose nanofiber and PAM-F as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 13 Using CNF-A as the cellulose nanofiber and PAM-G as the polyacrylamide resin, 10 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 14 Using CNF-A as the cellulose nanofiber and PAM-G as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 15 Using CNF-A as the cellulose nanofiber and PAM-H as the polyacrylamide resin, 10 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 16 Using CNF-A as the cellulose nanofiber and PAM-H as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 17 Using CNF-B as the cellulose nanofiber and PAM-A as the polyacrylamide resin, 5 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 18 Using CNF-B as the cellulose nanofiber and PAM-A as the polyacrylamide resin, the polyacrylamide resin is 10 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 19 Using CNF-B as the cellulose nanofiber and PAM-A as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 20 Using CNF-B as the cellulose nanofiber and PAM-A as the polyacrylamide resin, the polyacrylamide resin is 40 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 21 Using CNF-B as the cellulose nanofiber and PAM-B as the polyacrylamide resin, 5 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 22 Using CNF-B as the cellulose nanofiber and PAM-B as the polyacrylamide resin, 10 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 23 Using CNF-B as the cellulose nanofiber and PAM-B as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 24 Using CNF-B as the cellulose nanofiber and PAM-D as the polyacrylamide resin, the polyacrylamide resin is 5 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 25 Using CNF-B as the cellulose nanofiber and PAM-D as the polyacrylamide resin, the polyacrylamide resin is 10 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 26 Using CNF-B as the cellulose nanofiber and PAM-D as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 27 Using CNF-B as the cellulose nanofiber and PAM-G as the polyacrylamide resin, 10 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 28 Using CNF-B as the cellulose nanofiber and PAM-G as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 29 Using CNF-B as the cellulose nanofiber and PAM-H as the polyacrylamide resin, 10 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 30 Using CNF-B as the cellulose nanofiber and PAM-H as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 31 Using CNF-C as the cellulose nanofiber and PAM-A as the polyacrylamide resin, 5 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 32 Using CNF-C as the cellulose nanofiber and PAM-A as the polyacrylamide resin, 10 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 33 Using CNF-C as the cellulose nanofiber and PAM-A as the polyacrylamide resin, the polyacrylamide resin is 15 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 34 Using CNF-C as the cellulose nanofiber and PAM-A as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 35 Using CNF-C as the cellulose nanofiber and PAM-A as the polyacrylamide resin, the polyacrylamide resin is 40 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 36 Using CNF-C as the cellulose nanofiber and PAM-B as the polyacrylamide resin, 5 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 37 Using CNF-C as the cellulose nanofiber and PAM-B as the polyacrylamide resin, 10 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 38 Using CNF-C as the cellulose nanofiber and PAM-B as the polyacrylamide resin, the polyacrylamide resin is 15 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 39 Using CNF-C as the cellulose nanofiber and PAM-B as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 40 Using CNF-C as the cellulose nanofiber and PAM-D as the polyacrylamide resin, the polyacrylamide resin is 5 parts by mass with respect to 100 parts by mass of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 41 Using CNF-C as the cellulose nanofiber and PAM-D as the polyacrylamide resin, 10 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 42 Using CNF-C as the cellulose nanofiber and PAM-D as the polyacrylamide resin, 15 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 43 Using CNF-C as the cellulose nanofiber and PAM-D as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 44 Using CNF-C as the cellulose nanofiber and PAM-F as the polyacrylamide resin, 5 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 45 Using CNF-C as the cellulose nanofiber and PAM-F as the polyacrylamide resin, the polyacrylamide resin is 10 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 46 Using CNF-C as the cellulose nanofiber and PAM-F as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 47 Using CNF-C as the cellulose nanofiber and PAM-G as the polyacrylamide resin, 10 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 48 Using CNF-C as the cellulose nanofiber and PAM-G as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 49 Using CNF-C as the cellulose nanofiber and PAM-H as the polyacrylamide resin, 10 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Example 50 Using CNF-C as the cellulose nanofiber and PAM-H as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin.
- a cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
- Comparative Example 1 Using CNF-A as the cellulose nanofiber, a cellulose film was produced from CNF-A alone.
- a 0.15 mass% aqueous dispersion of CNF-A was prepared, and the obtained dispersion was poured into a petri dish and dried to produce a cellulose film having a thickness of about 10 ⁇ m.
- Comparative Example 2 Using PAM-A as the polyacrylamide resin, a polyacrylamide resin film was produced from PAM-A alone in the same manner as in Comparative Example 1.
- CNF-A is used as cellulose nanofiber, and polyvinyl alcohol (polymerization degree 1700, VF-17, charge: -0.02 meq / g, complete saponification type: saponification degree (DS) instead of polyacrylamide resin > 98%, (Nippon Vinegar-Poval)) (hereinafter abbreviated as PVA), and 10 parts by mass of polyvinyl alcohol with respect to 100 parts by mass of cellulose nanofibers and polyvinyl alcohol in total.
- PVA Korean-Poval
- Example 4 CNF-A is used as the cellulose nanofiber, and PVA is used in place of the polyacrylamide-based resin, and polyvinyl alcohol is contained in a proportion of 25 parts by mass with respect to 100 parts by mass of the total amount of cellulose nanofiber and polyvinyl alcohol.
- a cellulose film was produced in the same manner as in Example 1 except that the above procedure was performed.
- CNF-A is used as the cellulose nanofiber, and PVA is used in place of the polyacrylamide-based resin, and polyvinyl alcohol is contained in a proportion of 50 parts by mass with respect to 100 parts by mass of the total amount of cellulose nanofiber and polyvinyl alcohol.
- a cellulose film was produced in the same manner as in Example 1 except that the above procedure was performed.
- Comparative Example 6 A polyvinyl alcohol film was produced in the same manner as in Comparative Example 1 from PVA alone using PVA instead of the polyacrylamide resin.
- Comparative Example 7 Using CNF-B as the cellulose nanofiber, a cellulose film was produced in the same manner as in Comparative Example 1 from CNF-B alone.
- Tables 3 to 7 show the formulation of each example and comparative example.
- Evaluation 1 Relationship between blending ratio of polyacrylamide resin and mechanical properties
- the film of each Example and Comparative Example was cut into a length of 30 mm, a width of 2 mm, and a thickness of 10 ⁇ m to obtain a test piece.
- EZ-S load cell capacity: 500 N, pulling speed: 1 mm / min, distance between grips: 10 mm, manufactured by Shimadzu Corporation
- N force
- ⁇ thickness cross-sectional area (m 2 )
- Tables 3 to 7 show the tensile strength and Young's modulus obtained with the films of Examples 1 to 50 and Comparative Examples 1 to 12.
- Evaluation 6 Light Transmittance of Cellulose Film at a Wavelength of 600 nm
- the light transmittance of the films obtained in Examples 1 to 50 and Comparative Examples 1 to 12 was measured by the following method. As representative of the obtained measurement results, the light transmittance at a wavelength of 600 nm is shown in Tables 3 to 7.
- ⁇ Measurement method of light transmittance> The light transmittance in the wavelength region of 400 nm to 800 nm was measured using an ultraviolet-visible near-infrared spectrophotometer V-670 (manufactured by JASCO Corporation). Specifically, the films obtained in each Example and Comparative Example were sandwiched and set in a dedicated holder, and the light transmittance in the wavelength region of 400 nm to 800 nm was continuously measured at a scanning speed of 100 nm / min.
- the cellulose nanofiber material and the cellulose film of the present invention are suitably used as packing materials in various industrial fields.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Analytical Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
A cellulose nanofiber material containing a polyacrylamide resin having a charge of +1.00 mEq/g or lower, and cellulose nanofibers.
Description
本発明は、セルロースナノファイバー材料およびセルロースフィルムに関し、詳しくは、セルロースナノファイバー材料、および、そのセルロースナノファイバー材料からなるセルロースフィルムに関する。
The present invention relates to a cellulose nanofiber material and a cellulose film, and particularly relates to a cellulose nanofiber material and a cellulose film made of the cellulose nanofiber material.
従来、各種産業分野において用いられる梱包材料において、ガスバリア性が要求される場合には、例えば、アルミニウムなどの金属からなる金属箔や、塩化ビニリデンフィルムなどが用いられている。しかし、金属箔を用いると、透明な梱包材料を得ることができないため、梱包材料を透過して内容物を確認できず、また、廃棄の際には不燃物として処理しなければならないなどの不具合がある。また、例えば、塩化ビニリデンフィルムを用いると、焼却時にダイオキシン類を生じるなどの不具合がある。
Conventionally, when a gas barrier property is required in a packaging material used in various industrial fields, for example, a metal foil made of a metal such as aluminum, a vinylidene chloride film, or the like is used. However, when metal foil is used, transparent packaging material cannot be obtained, so the contents cannot be confirmed through the packaging material, and it must be treated as non-combustible when discarded. There is. Further, for example, when a vinylidene chloride film is used, there is a problem that dioxins are generated during incineration.
そこで、金属や塩素を含まず、さらに環境負荷の少ない天然物由来の材料が注目されており、そのような材料として、例えば、セルロースナノファイバーからなるセルロースナノファイバー材料が提案されている。また、そのようなセルロースナノファイバー材料をシートとして用いることも知られており、具体的には、セルロースナノファイバーから構成される膜を備え、膜内の少なくとも一方の表面近傍に位置したセルロースナノファイバーが、膜表面に対して略平行に配向しているシートが提案されている(特許文献1参照。)。
Therefore, a material derived from a natural product that does not contain metal or chlorine and has a low environmental load has attracted attention. As such a material, for example, a cellulose nanofiber material made of cellulose nanofiber has been proposed. It is also known to use such a cellulose nanofiber material as a sheet. Specifically, the cellulose nanofiber is provided with a film composed of cellulose nanofibers and is located in the vicinity of at least one surface in the film. However, a sheet oriented substantially parallel to the film surface has been proposed (see Patent Document 1).
一方、特許文献1に記載されるシートは、透明性およびガスバリア性には優れるものの、強度などの機械物性が十分ではないという不具合がある。
On the other hand, although the sheet described in Patent Document 1 is excellent in transparency and gas barrier properties, there is a problem that mechanical properties such as strength are not sufficient.
本発明の目的は、優れた機械物性を備えるセルロースナノファイバー材料、および、そのセルロースナノファイバー材料からなるセルロースフィルムを提供することにある。
An object of the present invention is to provide a cellulose nanofiber material having excellent mechanical properties and a cellulose film comprising the cellulose nanofiber material.
本発明のセルロースナノファイバー材料は、セルロースナノファイバーと、電荷が+1.00meq/g以下のポリアクリルアミド系樹脂とを含有することを特徴としている。
The cellulose nanofiber material of the present invention is characterized by containing cellulose nanofiber and a polyacrylamide resin having a charge of +1.00 meq / g or less.
また、本発明のセルロースナノファイバー材料では、前記セルロースナノファイバーと前記ポリアクリルアミド系樹脂との総量100質量部に対して、前記ポリアクリルアミド系樹脂の含有割合が、30質量部以下であることが好適である。
In the cellulose nanofiber material of the present invention, the content ratio of the polyacrylamide resin is preferably 30 parts by mass or less with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. It is.
また、本発明のセルロースナノファイバー材料では、前記セルロースナノファイバーの電荷と、前記ポリアクリルアミド系樹脂の電荷との合計が0.90以下であることが好適である。
In the cellulose nanofiber material of the present invention, it is preferable that the total of the charge of the cellulose nanofiber and the charge of the polyacrylamide resin is 0.90 or less.
また、本発明のセルロースナノファイバー材料では、前記セルロースナノファイバーと、前記ポリアクリルアミド系樹脂とが、ともにアニオン性であることが好適である。
In the cellulose nanofiber material of the present invention, it is preferable that the cellulose nanofiber and the polyacrylamide resin are both anionic.
また、本発明のセルロースフィルムは、セルロースナノファイバー材料からなることを特徴としている。
The cellulose film of the present invention is characterized by comprising a cellulose nanofiber material.
本発明のセルロースナノファイバー材料およびセルロースフィルムは、セルロースナノファイバーと、電荷が+1.00meq/g以下のポリアクリルアミド系樹脂とを含有するため、優れた機械物性を備える。
Since the cellulose nanofiber material and the cellulose film of the present invention contain cellulose nanofibers and a polyacrylamide resin having a charge of +1.00 meq / g or less, they have excellent mechanical properties.
本発明のセルロースナノファイバー材料は、セルロースナノファイバー(CNF)と、ポリアクリルアミド系樹脂(PAM)とを含有する。
The cellulose nanofiber material of the present invention contains cellulose nanofiber (CNF) and polyacrylamide resin (PAM).
セルロースナノファイバーは、ミクロフィブリル(ナノファイバー)の集束体であるセルロース原料を、解繊することにより得られる。
Cellulose nanofibers are obtained by defibrating a cellulose raw material that is a bundle of microfibrils (nanofibers).
セルロース原料としては、例えば、植物、動物、バクテリア産生ゲルなどのセルロースの生合成系から単離した精製セルロースが挙げられ、具体的には、例えば、針葉樹系パルプ、広葉樹系パルプ、綿系パルプ(例えば、コットンリンター、コットンリントなど)、非木材系パルプ(例えば、麦わらパルプ、バガスパルプなど)などのパルプ類、さらには、バクテリアセルロース、ホヤから単離されるセルロース、海草から単離されるセルロースなどが挙げられる。
Examples of the cellulose raw material include purified cellulose isolated from cellulose biosynthetic systems such as plants, animals, and bacteria-producing gels. Specifically, for example, coniferous pulp, hardwood pulp, cotton pulp ( For example, cotton linter, cotton lint, etc.), pulps such as non-wood pulp (eg, straw pulp, bagasse pulp, etc.), bacterial cellulose, cellulose isolated from sea squirt, cellulose isolated from seaweed, etc. It is done.
これらのセルロース原料は、単独使用または2種類以上併用することができる。
These cellulose raw materials can be used alone or in combination of two or more.
セルロース原料として、好ましくは、パルプ類、より好ましくは、針葉樹系パルプが挙げられる。
As the cellulose raw material, pulps are preferable, and coniferous pulp is more preferable.
セルロース原料を解繊する方法としては、特に制限されず、公知の方法を採用することができ、例えば、N-オキシル化合物を触媒として用い、セルロース原料を酸化させて解繊する方法が挙げられる。このような方法では、例えば、特開2008-1728号公報、国際公開WO2009/069641などに記載の方法に準拠することができる。
The method for defibrating the cellulose raw material is not particularly limited, and a known method can be adopted. For example, a method of using a N-oxyl compound as a catalyst and oxidizing the cellulose raw material to defibrate can be mentioned. In such a method, for example, a method described in JP 2008-1728 A, International Publication WO 2009/069641 and the like can be used.
具体的には、この方法では、まず、水に上記のセルロース原料を分散させ、分散液を調製するとともに、分散液中において、N-オキシル化合物の存在下、セルロース原料を酸化させる。
Specifically, in this method, first, the cellulose raw material is dispersed in water to prepare a dispersion, and the cellulose raw material is oxidized in the presence of the N-oxyl compound in the dispersion.
分散液中において、セルロース原料の濃度は、特に制限されないが、例えば、分散液の総量に対して、5質量%程度に設定される。
The concentration of the cellulose raw material in the dispersion is not particularly limited, but is set to, for example, about 5% by mass with respect to the total amount of the dispersion.
また、この方法では、セルロース原料として、好ましくは、単離および精製の後、ネバードライ状態(未乾燥状態)で保存したものが用いられる。ネバードライ状態で保存することで、ミクロフィブリルの集束体を膨潤しやすい状態に保持することができるので、セルロース原料を効率よく解繊することができ、繊維径の小さいセルロースナノファイバーを得ることができる。
Further, in this method, as the cellulose raw material, a material stored in a never dry state (undried state) after isolation and purification is preferably used. By storing in a never-dry state, it is possible to keep the microfibril bundle in an easily swellable state, so that the cellulose raw material can be efficiently defibrated and cellulose nanofibers having a small fiber diameter can be obtained. it can.
また、必要により、上記セルロース原料を、予め叩解処理し、その表面積を拡大することもできる。これにより、セルロース原料を効率よく解繊することができ、生産性を高めることができる。
If necessary, the cellulose raw material can be beaten in advance to increase its surface area. Thereby, a cellulose raw material can be defibrated efficiently and productivity can be improved.
N-オキシル化合物としては、例えば、2,2,6,6-テトラメチルピペリジン-N-オキシル(以下、TEMPOと略する。)およびその誘導体が挙げられる。
Examples of the N-oxyl compound include 2,2,6,6-tetramethylpiperidine-N-oxyl (hereinafter abbreviated as TEMPO) and derivatives thereof.
TEMPO誘導体としては、例えば、4-アセトアミド-TEMPO、4-カルボキシ-TEMPO、4-フォスフォノオキシ-TEMPOなどが挙げられる。
Examples of TEMPO derivatives include 4-acetamido-TEMPO, 4-carboxy-TEMPO, 4-phosphonooxy-TEMPO, and the like.
これらN-オキシル化合物は、単独使用または2種類以上併用することができる。
These N-oxyl compounds can be used alone or in combination of two or more.
また、N-オキシル化合物として、好ましくは、TEMPOが挙げられる。
Further, as the N-oxyl compound, TEMPO is preferable.
N-オキシル化合物の配合割合は、セルロース原料分散液に対して、例えば、0.1mmol/L以上であり、また、例えば、4mmol/L以下、好ましくは、2mmol/L以下である。
The blending ratio of the N-oxyl compound is, for example, 0.1 mmol / L or more, for example, 4 mmol / L or less, preferably 2 mmol / L or less with respect to the cellulose raw material dispersion.
また、この方法では、N-オキシル化合物の還元体を酸化させるため、共酸化剤を添加することができる。
In this method, a co-oxidant can be added to oxidize the reduced form of the N-oxyl compound.
共酸化剤としては、例えば、次亜ハロゲン酸またはその塩(例えば、アルカリ金属塩など。以下同様。)、亜ハロゲン酸またはその塩、過ハロゲン酸またはその塩、過酸化水素、過有機酸などが挙げられ、好ましくは、次亜ハロゲン酸のアルカリ金属塩が挙げられる。
Examples of the co-oxidant include hypohalous acid or a salt thereof (for example, alkali metal salt, etc.), halous acid or a salt thereof, perhalogen acid or a salt thereof, hydrogen peroxide, a perorganic acid, or the like. Preferably, an alkali metal salt of hypohalous acid is used.
次亜ハロゲン酸のアルカリ金属塩としては、例えば、次亜塩素酸ナトリウム、次亜臭素酸ナトリウムなどが挙げられ、好ましくは、次亜塩素酸ナトリウムが挙げられる。
Examples of the alkali metal salt of hypohalous acid include sodium hypochlorite and sodium hypobromite, and preferably sodium hypochlorite.
これら共酸化剤は、単独使用または2種類以上併用することができる。
These cooxidants can be used alone or in combination of two or more.
共酸化剤の配合割合は、セルロース原料1gに対して、例えば、0.5mmol以上であり、また、例えば、10mmol以下、好ましくは、8mmol以下である。
The mixing ratio of the co-oxidant is, for example, 0.5 mmol or more, and, for example, 10 mmol or less, preferably 8 mmol or less with respect to 1 g of the cellulose raw material.
また、この方法では、さらに、助触媒を添加することもできる。
In this method, a cocatalyst can also be added.
助触媒は、例えば、共酸化剤に応じて選択することができ、具体的には、例えば、共酸化剤として、次亜ハロゲン酸のアルカリ金属塩が使用される場合、助触媒としては、例えば、臭化ナトリウム、臭化カリウムなどの臭化アルカリ金属などが挙げられる。
The cocatalyst can be selected, for example, depending on the co-oxidant. Specifically, for example, when an alkali metal salt of hypohalous acid is used as the co-oxidant, And alkali metal bromides such as sodium bromide and potassium bromide.
助触媒の添加量は、N-オキシル化合物に対して、例えば、1倍モル量以上、好ましくは、10倍モル量以上であり、また、例えば、40倍モル量以下、好ましくは、20倍モル量以下である。
The addition amount of the cocatalyst is, for example, 1-fold molar amount or more, preferably 10-fold molar amount or more, for example, 40-fold molar amount or less, preferably 20-fold mole, relative to the N-oxyl compound. Less than the amount.
また、分散液のpHは、例えば、中性からアルカリ性の範囲で維持される。具体的には、例えば、7以上、好ましくは、8以上であり、また、例えば、11以下である。
Also, the pH of the dispersion is maintained in a neutral to alkaline range, for example. Specifically, for example, it is 7 or more, preferably 8 or more, and for example, 11 or less.
なお、分散液のpHは、例えば、分散液に公知の酸、アルカリを適宜の割合で添加することにより調整することができ、また、例えば、分散液に公知の緩衝液を適宜の割合で添加することにより調整することもできる。
The pH of the dispersion can be adjusted, for example, by adding a known acid or alkali to the dispersion at an appropriate ratio. For example, a known buffer can be added to the dispersion at an appropriate ratio. It can also be adjusted by doing.
また、セルロース原料の酸化処理における、温度条件、圧力条件および処理時間は、特に制限されず、適宜設定される。
Further, the temperature condition, pressure condition, and treatment time in the oxidation treatment of the cellulose raw material are not particularly limited, and are appropriately set.
これにより、酸化セルロースを得ることができる。また、この方法では、必要に応じて、例えば、ろ過法、遠心分離法などにより触媒などを、系外へ除去し、酸化セルロースを精製することもできる。
Thereby, oxidized cellulose can be obtained. Further, in this method, if necessary, the oxidized cellulose can be purified by removing the catalyst and the like out of the system by a filtration method, a centrifugal separation method, or the like.
次いで、この方法では、上記により得られた酸化セルロースを、分散装置を用いて分散媒中に分散させるとともに、解繊させる。これにより、セルロースナノファイバーの分散液を得る。
Next, in this method, the oxidized cellulose obtained as described above is dispersed in a dispersion medium using a dispersing device and defibrated. Thereby, the dispersion liquid of a cellulose nanofiber is obtained.
分散媒としては、例えば、水、親水性有機溶媒などが挙げられる。
Examples of the dispersion medium include water and hydrophilic organic solvents.
親水性有機溶媒としては、例えば、炭素数1~4のアルコール類(例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、sec-ブタノール、tert-ブタノール、メチルセロソルブ、エチルセロソルブ、エチレングリコール、グリセリンなど)、エーテル類(例えば、エチレングリコールジメチルエーテル、1,4-ジオキサン、テトラヒドロフランなど)、ケトン類(例えば、アセトン、メチルエチルケトンなど)、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキサイドなどが挙げられる。これら分散媒は、単独使用または2種類以上併用することができる。分散媒として、好ましくは、水が挙げられる。
Examples of the hydrophilic organic solvent include alcohols having 1 to 4 carbon atoms (for example, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, sec-butanol, tert-butanol, methyl cellosolve, ethyl cellosolve, ethylene glycol, Glycerin, etc.), ethers (eg, ethylene glycol dimethyl ether, 1,4-dioxane, tetrahydrofuran, etc.), ketones (eg, acetone, methyl ethyl ketone, etc.), N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfo Examples include killide. These dispersion media can be used alone or in combination of two or more. The dispersion medium is preferably water.
分散装置(解繊装置)としては、種々のものを使用することができる。例えば、家庭用ミキサー、超音波ホモジナイザー、高圧ホモジナイザー、二軸混練り装置、石臼などが挙げられ、さらに、家庭用、工業生産用に汎用的に用いられる解繊装置などが挙げられる。また、各種ホモジナイザー、各種レファイナーなどのような強力で叩解能力のある解繊装置を用いることにより、より効率的に繊維径の小さいセルロースナノファイバーを得ることができる。
Various devices can be used as a dispersion device (defibration device). For example, a household mixer, an ultrasonic homogenizer, a high-pressure homogenizer, a biaxial kneader, a stone mill and the like, and a defibrating apparatus generally used for household and industrial production can be used. In addition, cellulose nanofibers having a small fiber diameter can be obtained more efficiently by using a strong and defibrating device such as various homogenizers and various refiners.
なお、分散条件は、特に制限されず、装置の種類に応じて適宜設定される。また、必要により、得られるセルロースナノファイバーの分散液から、未解繊のセルロース原料などの粗大物を除去することもできる。
Note that the dispersion condition is not particularly limited, and is appropriately set according to the type of apparatus. In addition, if necessary, coarse substances such as undelivered cellulose raw materials can be removed from the resulting dispersion of cellulose nanofibers.
このようにして得られるセルロースナノファイバーは、最大繊維径が、例えば、3nm以上であり、また、例えば、1000nm以下、好ましくは、500nm以下、より好ましくは、30nm以下である。
The cellulose nanofibers thus obtained have a maximum fiber diameter of, for example, 3 nm or more, and for example, 1000 nm or less, preferably 500 nm or less, more preferably 30 nm or less.
また、数平均繊維径が、例えば、2nm以上であり、また、例えば、150nm以下、好ましくは、100nm以下、より好ましくは10nm以下である。
Further, the number average fiber diameter is, for example, 2 nm or more, and for example, 150 nm or less, preferably 100 nm or less, more preferably 10 nm or less.
最大繊維径および数平均繊維径が、上記範囲であれば、機械物性および透明性に優れたセルロースナノファイバー材料を得ることができる。
If the maximum fiber diameter and the number average fiber diameter are in the above ranges, a cellulose nanofiber material having excellent mechanical properties and transparency can be obtained.
なお、最大繊維径および数平均繊維径は、例えば、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)により観察して求めることができる。
In addition, the maximum fiber diameter and the number average fiber diameter can be determined by observing with a scanning electron microscope (SEM) or a transmission electron microscope (TEM), for example.
また、上記方法により得られるセルロースナノファイバーの重合度は、例えば、200以上、好ましくは、500以上であり、また、例えば、1200以下、好ましくは、800以下である。
Further, the degree of polymerization of the cellulose nanofibers obtained by the above method is, for example, 200 or more, preferably 500 or more, and for example, 1200 or less, preferably 800 or less.
なお、重合度は、後述する実施例の方法に準拠して、測定することができる。
The degree of polymerization can be measured in accordance with the method of Examples described later.
また、上記したようにTEMPO触媒を用いてセルロースナノファイバーを得る場合、セルロース分子内のCH2OH基が酸化され、COO-化するため、セルロースナノファイバーは、アニオン性を示す。
Also, when obtaining the cellulose nanofibers using a TEMPO catalyst as described above, CH 2 OH groups in the cellulose molecule is oxidized, COO - for reduction, cellulose nanofibers shows anionic.
具体的には、セルロースナノファイバーの電荷は、例えば、-2.00meq/g以上、好ましくは、-1.60meq/g以上、より好ましくは、-1.50meq/g以上であり、また、例えば、0.00meq/g未満、好ましくは、-0.10meq/g未満、より好ましくは、-1.00meq/g以下である。
Specifically, the charge of the cellulose nanofiber is, for example, −2.00 meq / g or more, preferably −1.60 meq / g or more, more preferably −1.50 meq / g or more. , Less than 0.00 meq / g, preferably less than −0.10 meq / g, and more preferably −1.00 meq / g or less.
なお、セルロースナノファイバーの電荷は、後述する実施例の方法に準拠して、測定することができる。
The charge of the cellulose nanofiber can be measured according to the method of Examples described later.
また、セルロース原料の質量に対する、TEMPO触媒を用いて得たセルロースナノファイバーのカルボキシ基量は、例えば、1.00mmol/g以上、好ましくは、1.30mmol/g以上であり、また、例えば、2.00mmol/g以下、好ましくは、1.85mmol/g以下である。
Moreover, the amount of carboxy groups of the cellulose nanofibers obtained using the TEMPO catalyst with respect to the mass of the cellulose raw material is, for example, 1.00 mmol / g or more, preferably 1.30 mmol / g or more. 0.000 mmol / g or less, preferably 1.85 mmol / g or less.
なお、セルロース原料の質量に対するセルロースナノファイバーのカルボキシ基量は、後述する実施例の方法に準拠して、測定される。
In addition, the carboxy group amount of the cellulose nanofiber with respect to the mass of the cellulose raw material is measured according to the method of Examples described later.
また、セルロースナノファイバーを得る方法としては、上記方法に限定されず、その他の方法、例えば、TEMPO触媒を用いることなく、上記分散装置を用いて処理し、ナノファイバー化する方法や、例えば、酸加水分解法などを採用することもできる。
In addition, the method for obtaining cellulose nanofibers is not limited to the above-described method, and other methods, for example, a method of treating with the above dispersion apparatus without using a TEMPO catalyst to form nanofibers, for example, acid A hydrolysis method or the like can also be employed.
ポリアクリルアミド系樹脂としては、例えば、アクリルアミドの単独重合体(ポリアクリルアミド)、アクリルアミドを主成分とする共重合体などが挙げられる。
Examples of the polyacrylamide resin include acrylamide homopolymers (polyacrylamide) and copolymers mainly composed of acrylamide.
アクリルアミドを主成分とする共重合体とは、共重合体を構成するユニットのうち、アクリルアミドに由来するユニットが、50質量%以上、好ましくは、80質量%以上であり、残部がアクリルアミドと共重合可能なモノマー由来のユニットである共重合体と定義される。
A copolymer containing acrylamide as a main component means that, among the units constituting the copolymer, the unit derived from acrylamide is 50% by mass or more, preferably 80% by mass or more, and the remainder is copolymerized with acrylamide. Defined as a copolymer that is a unit derived from a possible monomer.
アクリルアミドと共重合可能なモノマーとしては、例えば、ノニオン性モノマー、アニオン性モノマー、カチオン性モノマーが挙げられる。
Examples of monomers copolymerizable with acrylamide include nonionic monomers, anionic monomers, and cationic monomers.
ノニオン性モノマーとしては、例えば、ジアセトンアクリルアミド、アルキルアクリレート、ヒドロキシアクリレート、酢酸ビニル、スチレン、α-メチルスチレンなどが挙げられる。
Examples of nonionic monomers include diacetone acrylamide, alkyl acrylate, hydroxy acrylate, vinyl acetate, styrene, α-methyl styrene, and the like.
アニオン性モノマーとしては、例えば、モノカルボン酸系モノマー(例えば、アクリル酸、メタクリル酸、クロトン酸など)、ジカルボン酸系モノマー(例えば、マレイン酸、フマル酸、イタコン酸、シトラコン酸など)、ビニル基を有するスルホン酸系モノマー(例えば、ビニルスルホン酸、スチレンスルホン酸、2-アクリルアミド-2-メチルプロパン酸など)などの有機酸系モノマーなどが挙げられる。また、これらの有機酸系モノマーのナトリウム塩、カリウム塩などの塩も用いることができる。
Examples of anionic monomers include monocarboxylic acid monomers (eg, acrylic acid, methacrylic acid, crotonic acid, etc.), dicarboxylic acid monomers (eg, maleic acid, fumaric acid, itaconic acid, citraconic acid, etc.), vinyl groups And organic acid monomers such as sulfonic acid monomers having vinyl (for example, vinyl sulfonic acid, styrene sulfonic acid, 2-acrylamido-2-methylpropanoic acid, etc.). Further, salts of these organic acid monomers such as sodium salt and potassium salt can also be used.
カチオン性モノマーとしては、例えば、第三級アミノ基を有するモノマーが挙げられ、具体的には、例えば、第三級アミノ基を有する(メタ)アクリル酸エステル誘導体(例えば、ジアルキルアミノエチル(メタ)アクリレート(例えば、ジメチルアミノエチルアクリレートなど)、ジアルキルアミノプロピル(メタ)アクリレートなど)、第三級アミノ基を有する(メタ)アクリルアミド誘導体(例えば、ジアルキルアミノエチル(メタ)アクリルアミド、ジアルキルアミノプロピル(メタ)アクリルアミド、(メタ)アクリルアミド-3-メチルブチルジメチルアミンなど)などが挙げられる。また、上記第三級アミノ基を有するモノマーの塩も用いることができる。塩としては、例えば、塩酸塩、硫酸塩などの無機塩、例えば、ギ酸塩、酢酸塩などの有機塩が挙げられる。さらに、例えば、メチルクロリド(塩化メチル)、メチルブロミド、ベンジルクロリド、ベンジルブロミド、ジメチル硫酸、エピクロルヒドリンなどで第三級アミノ基を四級化した第四級塩も挙げられる。
Examples of the cationic monomer include a monomer having a tertiary amino group. Specifically, for example, a (meth) acrylic acid ester derivative having a tertiary amino group (for example, dialkylaminoethyl (meth)) is used. Acrylate (for example, dimethylaminoethyl acrylate, etc.), dialkylaminopropyl (meth) acrylate, etc.) (meth) acrylamide derivative having tertiary amino group (for example, dialkylaminoethyl (meth) acrylamide, dialkylaminopropyl (meth)) Acrylamide, (meth) acrylamide-3-methylbutyldimethylamine, etc.). Moreover, the salt of the monomer which has the said tertiary amino group can also be used. Examples of the salt include inorganic salts such as hydrochloride and sulfate, and organic salts such as formate and acetate. Furthermore, for example, a quaternary salt in which a tertiary amino group is quaternized with methyl chloride (methyl chloride), methyl bromide, benzyl chloride, benzyl bromide, dimethyl sulfate, epichlorohydrin, or the like can be mentioned.
これら共重合可能なモノマーは、単独使用または2種類以上併用することができる。
These copolymerizable monomers can be used alone or in combination of two or more.
例えば、アクリルアミドと共重合させるモノマーとして、ノニオン性モノマーを用いれば、ノニオン性のポリアクリルアミド系樹脂が得られ、また、アニオン性モノマーを用いれば、アニオン性のポリアクリルアミド系樹脂が得られる。さらに、アクリルアミドと共重合させるモノマーとして、アニオン性モノマーおよびカチオン性モノマーを併用すれば、両イオン性のポリアクリルアミド系樹脂が得られる。好ましくは、アニオン性モノマーを用い、アニオン性ポリアクリルアミド系樹脂を得る。なお、共重合可能なモノマーを用いずに得られるポリアクリルアミドも、ノニオン性のポリアクリルアミド系樹脂に分類される。
For example, if a nonionic monomer is used as a monomer to be copolymerized with acrylamide, a nonionic polyacrylamide resin can be obtained, and if an anionic monomer is used, an anionic polyacrylamide resin can be obtained. Furthermore, when an anionic monomer and a cationic monomer are used in combination as monomers to be copolymerized with acrylamide, an amphoteric polyacrylamide resin can be obtained. Preferably, an anionic monomer is used to obtain an anionic polyacrylamide resin. Polyacrylamide obtained without using a copolymerizable monomer is also classified as a nonionic polyacrylamide resin.
ポリアクリルアミド系樹脂を得るには、例えば、アクリルアミド、さらには、必要に応じて、上記アクリルアミドと共重合可能なモノマーを配合して、それらを乳化重合などの公知の方法により重合させる。
In order to obtain a polyacrylamide resin, for example, acrylamide and, if necessary, a monomer copolymerizable with the acrylamide are blended and polymerized by a known method such as emulsion polymerization.
具体的には、例えば、所定の反応容器に上記各種モノマーおよび水を仕込み、触媒、架橋剤、連鎖移動剤などを適宜配合し、重合することにより、ポリアクリルアミド系樹脂を得ることができる。
Specifically, for example, a polyacrylamide resin can be obtained by charging the above-mentioned various monomers and water in a predetermined reaction vessel, and appropriately mixing and polymerizing a catalyst, a crosslinking agent, a chain transfer agent, and the like.
なお、この方法では、モノマーの一部または全部を反応容器中に滴下しながら重合させることもできる。
In this method, it is possible to perform polymerization while dropping a part or all of the monomer into the reaction vessel.
触媒は、重合開始剤として水溶液での重合反応に通常用いられるラジカル重合開始剤であれば、特に制限されるものはなく、例えば、過酸化物(例えば、過酸化水素、過酸化ベンゾイル、t-ブチルパーオキシドなど)、過硫酸塩(例えば、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウムなど)、臭素酸塩(例えば、臭素酸ナトリウム、臭素酸カリウムなど)、過ホウ素酸塩(例えば、過ホウ素酸ナトリウムなど)などが挙げられる。また、これらと、還元剤である、亜硫酸塩、亜硫酸水素塩、遷移金属塩、有機アミンなどとを組み合わせたレドックス系触媒、または、アゾ系触媒も用いることができる。これら重合開始剤は、単独使用または2種類以上併用することができる。
The catalyst is not particularly limited as long as it is a radical polymerization initiator usually used in a polymerization reaction in an aqueous solution as a polymerization initiator. For example, a peroxide (for example, hydrogen peroxide, benzoyl peroxide, t- Butyl peroxide), persulfates (eg, ammonium persulfate, sodium persulfate, potassium persulfate, etc.), bromates (eg, sodium bromate, potassium bromate, etc.), perborates (eg, perboron) Acid sodium). In addition, a redox catalyst or an azo catalyst in which these are combined with a reducing agent such as sulfite, hydrogen sulfite, transition metal salt, organic amine, or the like can also be used. These polymerization initiators can be used alone or in combination of two or more.
これらの触媒の配合割合は、用いられるモノマーの総質量に対し、例えば、0.01質量%以上、好ましくは、0.05質量%以上であり、また、例えば、10質量%以下、好ましくは、4質量%以下である。なお、触媒は一括投入してもよいが、複数回に分けて分割投入してもよい。
The mixing ratio of these catalysts is, for example, 0.01% by mass or more, preferably 0.05% by mass or more, and for example, 10% by mass or less, preferably, based on the total mass of the monomers used. 4% by mass or less. The catalyst may be charged all at once, but may be dividedly added in a plurality of times.
架橋剤としては、例えば、2官能性架橋剤(例えば、メチレンビス(メタ)アクリルアミド、エチレンビス(メタ)アクリルアミド、エチレングリコールジ(メタ)アクリルアミド、ジエチレングリコールジ(メタ)アクリルアミド、トリエチレングリコールジ(メタ)アクリルアミド、ジビニルベンゼン、ジアリルアクリルアミドなど)、多官能性架橋剤(例えば、1,3,5-トリアクリロイルヘキサヒドロ-S-トリアジン、トリアリルイソシアヌレート、トリアクリル酸ペンタエリスリトール、トリメチロールプロパンアクリレート、ジアクリロイルイミドなど)、N-置換アクリルアミド系モノマー(例えば、ジメチルアクリルアミド、ダイアセトンアクリルアミド、イソプロピルアクリルアミド)などが挙げられる。これら架橋剤は、単独使用または2種類以上併用することができる。
Examples of the crosslinking agent include bifunctional crosslinking agents (for example, methylene bis (meth) acrylamide, ethylene bis (meth) acrylamide, ethylene glycol di (meth) acrylamide, diethylene glycol di (meth) acrylamide, triethylene glycol di (meth)). Acrylamide, divinylbenzene, diallylacrylamide, etc.), multifunctional crosslinking agents (eg 1,3,5-triacryloylhexahydro-S-triazine, triallyl isocyanurate, pentaerythritol triacrylate, trimethylolpropane acrylate, di And acryloylimide) and N-substituted acrylamide monomers (for example, dimethylacrylamide, diacetone acrylamide, isopropylacrylamide) and the like. These crosslinking agents can be used alone or in combination of two or more.
これらの架橋剤の配合割合は、用いられるモノマーの総量に対し、例えば、0.005モル%以上、好ましくは、0.01モル%以上であり、また、例えば、1モル%以下、好ましくは、0.2モル%以下である。
The blending ratio of these crosslinking agents is, for example, 0.005 mol% or more, preferably 0.01 mol% or more, and for example, 1 mol% or less, preferably, based on the total amount of monomers used. It is 0.2 mol% or less.
連鎖移動剤としては、イソプロピルアルコールのほか、メルカプト類(例えば、メルカプトエタノール、チオ尿素、チオグリコール酸、メルカプトプロピオン酸、チオサリチル酸、チオ乳酸、アミノエタンチオール、チオグリセロール、チオリンゴ酸など)、アリル類(例えば、アリルアルコール、アリルスルホン酸ソーダ、メタアリルスルホン酸ソーダなど)などが挙げられる。これら連鎖移動剤は、単独使用または2種類以上併用することができる。
As chain transfer agents, in addition to isopropyl alcohol, mercaptos (for example, mercaptoethanol, thiourea, thioglycolic acid, mercaptopropionic acid, thiosalicylic acid, thiolactic acid, aminoethanethiol, thioglycerol, thiomalic acid, etc.), allyls (For example, allyl alcohol, sodium allyl sulfonate, sodium methallyl sulfonate, etc.). These chain transfer agents can be used alone or in combination of two or more.
これらの連鎖移動剤の配合割合は、用いられるモノマーの総量に対し、例えば、0.01モル%以上、好ましくは、0.02モル%以上であり、また、例えば、10モル%以下、好ましくは、4モル%以下である。
The mixing ratio of these chain transfer agents is, for example, 0.01 mol% or more, preferably 0.02 mol% or more, for example, 10 mol% or less, preferably, based on the total amount of monomers used. 4 mol% or less.
重合温度は、例えば、40℃以上であり、また、例えば、100℃以下である。重合時間は、例えば、0.5時間以上であり、また、例えば、8時間以下である。
Polymerization temperature is, for example, 40 ° C. or higher, and for example, 100 ° C. or lower. The polymerization time is, for example, 0.5 hours or longer, and for example, 8 hours or shorter.
これにより、ポリアクリルアミド系樹脂を得ることができる。
Thereby, a polyacrylamide resin can be obtained.
また、この方法では、得られたポリアクリルアミド系樹脂を変性させることもでき、具体的には、まず、ポリアクリルアミドを合成し、次いで、得られたポリアクリルアミドに対して、公知の方法でマンニッヒ反応させ、カチオン変性させてもよく、さらに、上記の方法により得られたポリアクリルアミドに対して、公知の方法でホフマン分解反応させ、カチオン変性させてもよい。
In this method, the obtained polyacrylamide-based resin can also be modified. Specifically, first, polyacrylamide is synthesized, and then the Mannich reaction is performed on the obtained polyacrylamide by a known method. The polyacrylamide obtained by the above method may be subjected to a Hofmann decomposition reaction by a known method to be cation-modified.
このようにして得られるポリアクリルアミド系樹脂の電荷は、用いられるモノマーの種類および配合量により異なるが、例えば、-2.00meq/g以上、好ましくは、-1.20meq/g以上であり、また、例えば、+1.00meq/g以下、好ましくは、+0.60meq/g以下、より好ましくは、+0.10meq/g以下、さらに好ましくは、0.00meq/g以下、特に好ましくは、-0.50meq/g以下、とりわけ好ましくは、-1.00meq/g以下である。
The charge of the polyacrylamide resin thus obtained varies depending on the type and blending amount of the monomer used, but is, for example, -2.00 meq / g or more, preferably -1.20 meq / g or more. For example, +1.00 meq / g or less, preferably +0.60 meq / g or less, more preferably +0.10 meq / g or less, further preferably 0.00 meq / g or less, and particularly preferably −0.50 meq. / G or less, particularly preferably −1.00 meq / g or less.
ポリアクリルアミド系樹脂の電荷が上記範囲内であれば、優れた機械物性を備えるセルロースナノファイバー材料を得ることができる。
If the charge of the polyacrylamide resin is within the above range, a cellulose nanofiber material having excellent mechanical properties can be obtained.
また、このようにして得られるポリアクリルアミド系樹脂の重量平均分子量は、例えば、10万以上、好ましくは、50万以上であり、また、例えば、800万以下、好ましくは、500万以下である。
The polyacrylamide resin thus obtained has a weight average molecular weight of, for example, 100,000 or more, preferably 500,000 or more, and, for example, 8 million or less, preferably 5 million or less.
なお、重量平均分子量は、後述する実施例の方法に準拠して、測定することができる。
In addition, a weight average molecular weight can be measured based on the method of the Example mentioned later.
上記セルロースナノファイバーおよび上記アクリルアミド系樹脂からなるセルロースナノファイバー材料の形状や構造などには、特に制限がなく、適宜選択することができる。
The shape and structure of the cellulose nanofiber material composed of the cellulose nanofiber and the acrylamide resin are not particularly limited and can be appropriately selected.
具体的には、例えば、セルロースフィルム、セルロースシート、スポンジ状の構造体、ゲル状の構造体などが挙げられ、好ましくは、セルロースフィルムが挙げられる。
Specific examples include a cellulose film, a cellulose sheet, a sponge-like structure, a gel-like structure, and preferably a cellulose film.
以下において、セルロースフィルムの製造方法について、詳述する。
Hereinafter, a method for producing a cellulose film will be described in detail.
本発明のセルロースフィルムの製造では、まず、上記セルロースナノファイバーと、上記ポリアクリルアミド系樹脂とを分散媒に分散させ、分散液を調製する。
In the production of the cellulose film of the present invention, first, the cellulose nanofibers and the polyacrylamide resin are dispersed in a dispersion medium to prepare a dispersion.
分散媒としては、例えば、水、上記した親水性有機溶媒などが挙げられる。これら分散媒は、単独使用または2種類以上併用することができる。分散媒として、好ましくは、水が挙げられる。
Examples of the dispersion medium include water and the above-described hydrophilic organic solvent. These dispersion media can be used alone or in combination of two or more. The dispersion medium is preferably water.
また、この方法において、セルロースナノファイバーおよびポリアクリルアミド系樹脂は、目的および用途に応じて適宜選択されるが、セルロースナノファイバーの電荷と、ポリアクリルアミド系樹脂の電荷との合計が、例えば、0.90以下、好ましくは、0.50以下、より好ましくは、0.00以下、さらに好ましくは、-0.10以下、特に好ましくは、-1.00以下、殊に好ましくは、-1.50以下、とりわけ好ましくは、-2.00以下であり、また、通常、-4.00以上であることが挙げられる。
In this method, the cellulose nanofiber and the polyacrylamide resin are appropriately selected according to the purpose and application. The total of the charge of the cellulose nanofiber and the charge of the polyacrylamide resin is, for example, 0. 90 or less, preferably 0.50 or less, more preferably 0.00 or less, still more preferably -0.10 or less, particularly preferably -1.00 or less, particularly preferably -1.50 or less. Particularly preferred is −2.00 or less, and usually −4.00 or more.
なお、ここで、電荷の合計とは、セルロースナノファイバーの電荷の数値(無次元)と、ポリアクリルアミド系樹脂の電荷の数値(無次元)とを和算した値であって、それらの配合割合に依存することなく、用いられるセルロースナノファイバーおよびポリアクリルアミド系樹脂の種類により決定される。
Here, the total charge is the sum of the charge value of the cellulose nanofiber (dimensionless) and the charge value of the polyacrylamide resin (dimensionless), and their blending ratio Without depending on the type of cellulose nanofiber and polyacrylamide resin used.
すなわち、この方法では、好ましくは、用いられる上記セルロースナノファイバーおよび上記ポリアクリルアミド系樹脂は、それらの電荷の合計が、上記範囲となるように選択される。
That is, in this method, preferably, the cellulose nanofiber and the polyacrylamide resin to be used are selected so that the sum of their charges falls within the above range.
上記セルロースナノファイバーの電荷と、上記ポリアクリルアミド系樹脂の電荷との合計が、上記範囲にあれば、機械物性に優れるセルロースフィルムを得ることができる。
If the sum of the charge of the cellulose nanofiber and the charge of the polyacrylamide resin is within the above range, a cellulose film having excellent mechanical properties can be obtained.
また、この方法において、好ましくは、上記セルロースナノファイバーと、上記ポリアクリルアミド系樹脂とが、両方ともアニオン性であることが挙げられる。すなわち、この方法では、好ましくは、上記セルロースナノファイバーとしてアニオン性のセルロースナノファイバーが用いられるとともに、上記ポリアクリルアミド系樹脂としてアニオン性のポリアクリルアミド系樹脂が用いられる。
In this method, preferably, the cellulose nanofiber and the polyacrylamide resin are both anionic. That is, in this method, an anionic cellulose nanofiber is preferably used as the cellulose nanofiber, and an anionic polyacrylamide resin is used as the polyacrylamide resin.
上記セルロースナノファイバーおよび上記ポリアクリルアミド系樹脂が、ともにアニオン性であれば、セルロースナノファイバーと、ポリアクリルアミド系樹脂とが、負電荷により反発するため、分散性の向上を図ることができ、機械物性に優れるセルロースフィルムを得ることができる。
If the cellulose nanofiber and the polyacrylamide resin are both anionic, the cellulose nanofiber and the polyacrylamide resin are repelled by negative charges, so that the dispersibility can be improved and the mechanical properties can be improved. Can be obtained.
また、分散液中の上記セルロースナノファイバーおよび上記ポリアクリルアミド系樹脂の配合割合は、それらの総質量100質量部に対して、セルロースナノファイバーの配合割合が、例えば、50質量部以上、好ましくは、60質量部以上、より好ましくは、70質量部以上、さらに好ましくは、75質量部以上であり、また、例えば、99質量部以下、好ましくは、97質量部以下、より好ましくは、95質量部以下である。また、ポリアクリルアミド系樹脂の配合割合が、例えば、1質量部以上、好ましくは、3質量部以上、より好ましくは、5質量部以上であり、また、例えば、50質量部以下、好ましくは、40質量部以下、より好ましくは、30質量部以下、さらに好ましくは、25質量部以下である。
The blending ratio of the cellulose nanofiber and the polyacrylamide resin in the dispersion is such that the blending ratio of the cellulose nanofiber is, for example, 50 parts by mass or more, preferably 100 parts by mass of the total mass. 60 parts by mass or more, more preferably 70 parts by mass or more, still more preferably 75 parts by mass or more, and for example, 99 parts by mass or less, preferably 97 parts by mass or less, more preferably 95 parts by mass or less. It is. The blending ratio of the polyacrylamide resin is, for example, 1 part by mass or more, preferably 3 parts by mass or more, more preferably 5 parts by mass or more, and for example, 50 parts by mass or less, preferably 40 parts by mass. It is 30 parts by mass or less, more preferably 25 parts by mass or less.
セルロースナノファイバーおよびポリアクリルアミド系樹脂の配合割合が、上記範囲にあれば、機械物性に優れたセルロースフィルムを得ることができる。
If the blending ratio of the cellulose nanofiber and the polyacrylamide resin is within the above range, a cellulose film having excellent mechanical properties can be obtained.
上記セルロースナノファイバーと、上記ポリアクリルアミド系樹脂とを分散媒に分散させる方法としては、特に制限されず、公知の方法で撹拌すればよく、また、分散装置を用いることもできる。
The method for dispersing the cellulose nanofibers and the polyacrylamide resin in a dispersion medium is not particularly limited, and may be stirred by a known method, and a dispersing device can also be used.
そのような分散装置としては、例えば、家庭用ミキサー、超音波ホモジナイザー、高圧ホモジナイザーなどが挙げられる。なお、分散条件は、特に制限されず、装置の種類に応じて適宜設定される。
Examples of such a dispersing device include a home mixer, an ultrasonic homogenizer, and a high-pressure homogenizer. The dispersion condition is not particularly limited, and is set as appropriate according to the type of apparatus.
また、得られる分散液のpHは、例えば、4以上、好ましくは、6以上であり、また、例えば、10以下、好ましくは、8以下である。
The pH of the obtained dispersion is, for example, 4 or more, preferably 6 or more, and for example, 10 or less, preferably 8 or less.
次いで、この方法では、得られた分散液を容器中において乾燥させる。
Next, in this method, the obtained dispersion is dried in a container.
乾燥方法としては、例えば、分散媒が水である場合には、凍結乾燥法が挙げられ、また、例えば、分散媒が水と親水性有機溶媒の混合液である場合には、ドラムドライヤー乾燥法や、スプレイドライヤーによる噴霧乾燥法などが挙げられる。なお、乾燥条件は、特に制限されず、適宜設定することができる。
Examples of the drying method include a freeze-drying method when the dispersion medium is water, and a drum dryer drying method when the dispersion medium is a mixed liquid of water and a hydrophilic organic solvent. And spray drying using a spray dryer. The drying conditions are not particularly limited and can be set as appropriate.
これにより、セルロースフィルムを得ることができる。
Thereby, a cellulose film can be obtained.
また、上記した分散液を、例えば、基材(例えば、紙、樹脂フィルム(例えば、ポリエチレンテレフタレートなど)など)の表面に、塗工して乾燥することにより、基材の片面または両面に、セルロースフィルムからなるセルロースナノファイバー層を形成することもできる。
In addition, the above-described dispersion liquid is coated on one surface or both surfaces of the base material by coating and drying on the surface of the base material (for example, paper, resin film (for example, polyethylene terephthalate)). A cellulose nanofiber layer made of a film can also be formed.
塗工する方法としては、例えば、ロールコーターや、バーコーターなどの公知の塗工機を用いて塗工することができる。また、乾燥する方法としては、公知の乾燥機を用いることができる。
As a coating method, for example, the coating can be performed using a known coating machine such as a roll coater or a bar coater. Moreover, as a drying method, a known dryer can be used.
これにより、機械物性に優れるセルロースナノファイバー層を、基材に対するガスバリア層として形成することができ、基材とセルロースナノファイバー層とからなる、機械物性に優れるガスバリア材料を得ることができる。
Thereby, a cellulose nanofiber layer having excellent mechanical properties can be formed as a gas barrier layer with respect to the substrate, and a gas barrier material having excellent mechanical properties, which is composed of the substrate and the cellulose nanofiber layer, can be obtained.
このようなセルロースナノファイバー材料およびセルロースフィルムは、セルロースナノファイバーと、電荷が+1.00meq/g以下のポリアクリルアミド系樹脂とを含有するため、優れた機械物性を備える。
Such a cellulose nanofiber material and a cellulose film have excellent mechanical properties because they contain cellulose nanofiber and a polyacrylamide resin having a charge of +1.00 meq / g or less.
また、上記セルロースフィルムにおける上記セルロースナノファイバーおよび上記ポリアクリルアミド系樹脂の含有割合は、それらの総質量100質量部に対して、セルロースナノファイバーの含有割合が、50質量部以上、好ましくは、60質量部以上、より好ましくは、70質量部以上、さらに好ましくは、75質量部以上であり、また、例えば、99質量部以下、好ましくは、97質量部以下、より好ましくは、95質量部以下である。また、ポリアクリルアミド系樹脂の含有割合が、例えば、1質量部以上、好ましくは、3質量部以上、より好ましくは、5質量部以上であり、また、例えば、50質量部以下、好ましくは、40質量部以下、より好ましくは、30質量部以下、さらに好ましくは、25質量部以下である。
In addition, the content ratio of the cellulose nanofibers and the polyacrylamide resin in the cellulose film is such that the content ratio of the cellulose nanofibers is 50 parts by mass or more, preferably 60 masses with respect to the total mass of 100 parts by mass. Part or more, more preferably 70 parts by weight or more, still more preferably 75 parts by weight or more, and for example 99 parts by weight or less, preferably 97 parts by weight or less, more preferably 95 parts by weight or less. . The content of the polyacrylamide resin is, for example, 1 part by mass or more, preferably 3 parts by mass or more, more preferably 5 parts by mass or more, and for example, 50 parts by mass or less, preferably 40 parts by mass. It is 30 parts by mass or less, more preferably 25 parts by mass or less.
セルロースナノファイバーおよびポリアクリルアミド系樹脂の配合割合が、上記範囲にあれば、セルロースフィルムは、優れた機械物性、とりわけ、優れた引張り強度およびヤング率を示す。
If the blending ratio of the cellulose nanofiber and the polyacrylamide resin is within the above range, the cellulose film exhibits excellent mechanical properties, in particular, excellent tensile strength and Young's modulus.
具体的には、セルロースフィルムの引張り強度は、例えば、50MPa以上、好ましくは、150MPa以上、より好ましくは、200MPa以上、さらに好ましくは、250MPa以上であり、通常、500MPa以下である。
Specifically, the tensile strength of the cellulose film is, for example, 50 MPa or more, preferably 150 MPa or more, more preferably 200 MPa or more, further preferably 250 MPa or more, and usually 500 MPa or less.
なお、引張り強度は後述する実施例の方法に準拠して、測定することができる。
In addition, the tensile strength can be measured in accordance with a method of an example described later.
また、具体的には、セルロースフィルムのヤング率は、例えば、4GPa以上、好ましくは、10GPa以上、より好ましくは、12GPa以上、さらに好ましくは、14GPa以上であり、通常、20GPa以下である。
Further, specifically, the Young's modulus of the cellulose film is, for example, 4 GPa or more, preferably 10 GPa or more, more preferably 12 GPa or more, still more preferably 14 GPa or more, and usually 20 GPa or less.
なお、ヤング率は後述する実施例の方法に準拠して、測定することができる。
The Young's modulus can be measured in accordance with the method of the example described later.
また、セルロースフィルムの厚みは、例えば、1μm以上、好ましくは、2μm以上、より好ましくは、5μm以上であり、また、例えば、100μm未満、好ましくは、50μm以下、より好ましくは、30μm以下、さらに好ましくは、15μm以下である。
The thickness of the cellulose film is, for example, 1 μm or more, preferably 2 μm or more, more preferably 5 μm or more, and for example, less than 100 μm, preferably 50 μm or less, more preferably 30 μm or less, and further preferably. Is 15 μm or less.
なお、セルロースナノファイバー材料をセルロースシートとして製造する場合、その厚みは、例えば、100μm以上、好ましくは、200μm以上であり、また、例えば、5mm以下である。
In addition, when manufacturing a cellulose nanofiber material as a cellulose sheet, the thickness is 100 micrometers or more, for example, Preferably, it is 200 micrometers or more, for example, is 5 mm or less.
また、上記セルロースフィルムまたは上記セルロースシートは、単層であってもよく、また、複数の層が積層されていてもよい。
Further, the cellulose film or the cellulose sheet may be a single layer, or a plurality of layers may be laminated.
また、得られたセルロースフィルムは、透明性に優れている。具体的には、波長600nmにおけるセルロースフィルムの光透過率は、例えば、50%以上、好ましくは、65%以上、より好ましくは、75%以上、さらに好ましくは、85%以上であり、通常、100%以下である。
Moreover, the obtained cellulose film is excellent in transparency. Specifically, the light transmittance of the cellulose film at a wavelength of 600 nm is, for example, 50% or more, preferably 65% or more, more preferably 75% or more, and further preferably 85% or more. % Or less.
なお、セルロースフィルムの光透過率は、後述する実施例の方法に準拠して、測定することができる。
In addition, the light transmittance of a cellulose film can be measured based on the method of the Example mentioned later.
(調製例1)
(セルロースナノファイバーAの調製)
(酸化処理)
市販の針葉樹漂白パルプの1質量%スラリー(蒸留水100ml)に、TEMPO0.1mmolおよび臭化ナトリウム1mmolを溶かし、その後、次亜塩素酸ナトリウム5mmolを加えて反応させた。 (Preparation Example 1)
(Preparation of cellulose nanofiber A)
(Oxidation treatment)
0.1 mmol of TEMPO and 1 mmol of sodium bromide were dissolved in a 1% by mass slurry (100 ml of distilled water) of commercially available softwood bleached pulp, and then 5 mmol of sodium hypochlorite was added and reacted.
(セルロースナノファイバーAの調製)
(酸化処理)
市販の針葉樹漂白パルプの1質量%スラリー(蒸留水100ml)に、TEMPO0.1mmolおよび臭化ナトリウム1mmolを溶かし、その後、次亜塩素酸ナトリウム5mmolを加えて反応させた。 (Preparation Example 1)
(Preparation of cellulose nanofiber A)
(Oxidation treatment)
0.1 mmol of TEMPO and 1 mmol of sodium bromide were dissolved in a 1% by mass slurry (100 ml of distilled water) of commercially available softwood bleached pulp, and then 5 mmol of sodium hypochlorite was added and reacted.
反応中には、0.5Mの水酸化ナトリウムを適宜添加して、pHを10に保ち続け、pHの低下が観察されなくなった時点で反応を終わらせた。
During the reaction, 0.5 M sodium hydroxide was appropriately added to keep the pH at 10, and the reaction was terminated when no pH decrease was observed.
その後、水で十分に洗浄し、pH7程度のTEMPO触媒酸化パルプを得た。
(解繊処理)
上記操作で得られたTEMPO触媒酸化パルプの0.15質量%スラリーを機械処理し、解繊させた。その後、遠心分離によって、未解繊パルプなどの粗大物を除去して、セルロースナノファイバーA(以下、CNF-Aと略する。)を得た。
(調製例2)
(セルロースナノファイバーBの調製)
次亜塩素酸ナトリウム5mmolに代えて、次亜塩素酸ナトリウム10mmolを加えた以外は、調製例1と同様にして、セルロースナノファイバーB(以下、CNF-Bと略する。)を得た。
(調製例3)
(セルロースナノファイバーCの調製)
酸化処理することなく、機械処理のみで解繊した以外は、調製例1と同様にして、セルロースナノファイバーC(以下、CNF-Cと略する。)を得た。 Thereafter, it was sufficiently washed with water to obtain a TEMPO-catalyzed oxidized pulp having a pH of about 7.
(Defibration processing)
The 0.15 mass% slurry of the TEMPO catalyst oxidized pulp obtained by the above operation was mechanically processed and defibrated. Thereafter, coarse materials such as undefibrated pulp were removed by centrifugation to obtain cellulose nanofiber A (hereinafter abbreviated as CNF-A).
(Preparation Example 2)
(Preparation of cellulose nanofiber B)
Cellulose nanofiber B (hereinafter abbreviated as CNF-B) was obtained in the same manner as in Preparation Example 1, except that 10 mmol of sodium hypochlorite was added instead of 5 mmol of sodium hypochlorite.
(Preparation Example 3)
(Preparation of cellulose nanofiber C)
Cellulose nanofiber C (hereinafter abbreviated as CNF-C) was obtained in the same manner as in Preparation Example 1 except that the fiber was disentangled only by mechanical treatment without being oxidized.
(解繊処理)
上記操作で得られたTEMPO触媒酸化パルプの0.15質量%スラリーを機械処理し、解繊させた。その後、遠心分離によって、未解繊パルプなどの粗大物を除去して、セルロースナノファイバーA(以下、CNF-Aと略する。)を得た。
(調製例2)
(セルロースナノファイバーBの調製)
次亜塩素酸ナトリウム5mmolに代えて、次亜塩素酸ナトリウム10mmolを加えた以外は、調製例1と同様にして、セルロースナノファイバーB(以下、CNF-Bと略する。)を得た。
(調製例3)
(セルロースナノファイバーCの調製)
酸化処理することなく、機械処理のみで解繊した以外は、調製例1と同様にして、セルロースナノファイバーC(以下、CNF-Cと略する。)を得た。 Thereafter, it was sufficiently washed with water to obtain a TEMPO-catalyzed oxidized pulp having a pH of about 7.
(Defibration processing)
The 0.15 mass% slurry of the TEMPO catalyst oxidized pulp obtained by the above operation was mechanically processed and defibrated. Thereafter, coarse materials such as undefibrated pulp were removed by centrifugation to obtain cellulose nanofiber A (hereinafter abbreviated as CNF-A).
(Preparation Example 2)
(Preparation of cellulose nanofiber B)
Cellulose nanofiber B (hereinafter abbreviated as CNF-B) was obtained in the same manner as in Preparation Example 1, except that 10 mmol of sodium hypochlorite was added instead of 5 mmol of sodium hypochlorite.
(Preparation Example 3)
(Preparation of cellulose nanofiber C)
Cellulose nanofiber C (hereinafter abbreviated as CNF-C) was obtained in the same manner as in Preparation Example 1 except that the fiber was disentangled only by mechanical treatment without being oxidized.
各セルロースナノファイバーの物性(重合度、カルボキシ基量、電荷)について、表1に示す。
Table 1 shows the physical properties (degree of polymerization, amount of carboxy group, charge) of each cellulose nanofiber.
なお、重合度、カルボキシ基量および電荷は、以下の方法により測定した。
<重合度の測定方法>
重合度は、次に示す銅エチレンジアミン溶液を用いた粘度法で求めた。真空乾燥などの処理によって絶乾状態にしたセルロースナノファイバーを銅エチレンジアミン溶液1に溶解して溶液2を調製し、粘度計を用いて粘度を測定する。溶液2の粘度をη、溶液1の粘度をη0として、下記計算式によりセルロースナノファイバー溶液の極限粘度[η]を求めた。 The degree of polymerization, the amount of carboxy groups, and the charge were measured by the following methods.
<Measurement method of degree of polymerization>
The degree of polymerization was determined by the viscosity method using the following copper ethylenediamine solution. Cellulose nanofibers that have been completely dried by treatment such as vacuum drying are dissolved in the copper ethylenediamine solution 1 to prepare a solution 2, and the viscosity is measured using a viscometer. The viscosity of the solution 2 eta, the viscosity of the solution 1 as eta 0, was determined intrinsic viscosity of the cellulose nanofiber solution [eta] by the following equation.
<重合度の測定方法>
重合度は、次に示す銅エチレンジアミン溶液を用いた粘度法で求めた。真空乾燥などの処理によって絶乾状態にしたセルロースナノファイバーを銅エチレンジアミン溶液1に溶解して溶液2を調製し、粘度計を用いて粘度を測定する。溶液2の粘度をη、溶液1の粘度をη0として、下記計算式によりセルロースナノファイバー溶液の極限粘度[η]を求めた。 The degree of polymerization, the amount of carboxy groups, and the charge were measured by the following methods.
<Measurement method of degree of polymerization>
The degree of polymerization was determined by the viscosity method using the following copper ethylenediamine solution. Cellulose nanofibers that have been completely dried by treatment such as vacuum drying are dissolved in the copper ethylenediamine solution 1 to prepare a solution 2, and the viscosity is measured using a viscometer. The viscosity of the solution 2 eta, the viscosity of the solution 1 as eta 0, was determined intrinsic viscosity of the cellulose nanofiber solution [eta] by the following equation.
極限粘度[η]=(η/η0)/{c(1+A×η/η0)}
ここでcは、セルロースナノファイバーの濃度(g/dL)であり、Aは、溶液1の種類によって決定される値であり、0.5M銅エチレンジアミン溶液を用いた場合のAは0.28である。 Intrinsic viscosity [η] = (η / η 0 ) / {c (1 + A × η / η 0 )}
Here, c is the concentration of cellulose nanofibers (g / dL), A is a value determined by the type of solution 1, and A when a 0.5 M copper ethylenediamine solution is used is 0.28. is there.
ここでcは、セルロースナノファイバーの濃度(g/dL)であり、Aは、溶液1の種類によって決定される値であり、0.5M銅エチレンジアミン溶液を用いた場合のAは0.28である。 Intrinsic viscosity [η] = (η / η 0 ) / {c (1 + A × η / η 0 )}
Here, c is the concentration of cellulose nanofibers (g / dL), A is a value determined by the type of solution 1, and A when a 0.5 M copper ethylenediamine solution is used is 0.28. is there.
さらに、重合度DPを以下の式より求める。
Further, the degree of polymerization DP is obtained from the following formula.
DPa=[η]/K
ここでKとaは高分子と用いている溶媒の種類によって決まる値であり、銅エチレンジアミンに溶解したセルロースの場合、Kは5.7×10-3、aは1である。 DP a = [η] / K
Here, K and a are values determined by the type of polymer and the solvent used. In the case of cellulose dissolved in copper ethylenediamine, K is 5.7 × 10 −3 and a is 1.
ここでKとaは高分子と用いている溶媒の種類によって決まる値であり、銅エチレンジアミンに溶解したセルロースの場合、Kは5.7×10-3、aは1である。 DP a = [η] / K
Here, K and a are values determined by the type of polymer and the solvent used. In the case of cellulose dissolved in copper ethylenediamine, K is 5.7 × 10 −3 and a is 1.
粘度計は毛細管粘度計が好ましく、その例にはキャノン・フェンスケ粘度計が含まれる。
<カルボキシ基量の測定方法>
各調製例において得られたセルロースナノファイバーを用いて、0.5~1質量%分散液を60mL調製した。次いで、0.1Mの塩酸水溶液によりpHを約2.5とした後に、0.05Mの水酸化ナトリウム水溶液を滴下して電気伝導度を測定した。その後、分散液のpHが11になるところで、滴下を止めた。そして、電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(V)から、下記式を用いてカルボキシ基量を算出した。 The viscometer is preferably a capillary viscometer, examples of which include a Canon-Fenske viscometer.
<Measurement method of carboxy group amount>
Using the cellulose nanofibers obtained in each preparation example, 60 mL of a 0.5 to 1% by mass dispersion was prepared. Next, the pH was adjusted to about 2.5 with a 0.1 M aqueous hydrochloric acid solution, and then a 0.05 M aqueous sodium hydroxide solution was added dropwise to measure the electrical conductivity. Thereafter, the dropping was stopped when the pH of the dispersion reached 11. And the amount of carboxy groups was computed using the following formula from the amount (V) of sodium hydroxide consumed in the neutralization step of the weak acid where the change in electrical conductivity is gradual.
<カルボキシ基量の測定方法>
各調製例において得られたセルロースナノファイバーを用いて、0.5~1質量%分散液を60mL調製した。次いで、0.1Mの塩酸水溶液によりpHを約2.5とした後に、0.05Mの水酸化ナトリウム水溶液を滴下して電気伝導度を測定した。その後、分散液のpHが11になるところで、滴下を止めた。そして、電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(V)から、下記式を用いてカルボキシ基量を算出した。 The viscometer is preferably a capillary viscometer, examples of which include a Canon-Fenske viscometer.
<Measurement method of carboxy group amount>
Using the cellulose nanofibers obtained in each preparation example, 60 mL of a 0.5 to 1% by mass dispersion was prepared. Next, the pH was adjusted to about 2.5 with a 0.1 M aqueous hydrochloric acid solution, and then a 0.05 M aqueous sodium hydroxide solution was added dropwise to measure the electrical conductivity. Thereafter, the dropping was stopped when the pH of the dispersion reached 11. And the amount of carboxy groups was computed using the following formula from the amount (V) of sodium hydroxide consumed in the neutralization step of the weak acid where the change in electrical conductivity is gradual.
カルボキシ基量(mmol/g)=V(mL)×0.05(mmol/mL)/セルロースナノファイバーの質量(g)
<電荷の測定方法>
流動電位法を用いた滴定装置(PCD-04およびPCD-T3、Mutek社製)により測定した。すなわち、試料として、セルロースナノファイバー0.01質量%、pH7の水分散液を調製した。次いで、その分散液10gを専用のセルに入れ、セルを測定器にセットし、スイッチを入れた。この時に示されている値が滴定前の流動電位(単位mV)であって、数値が+であれば、上記分散液がカチオン電荷を持っており、一方、数値が-であれば、上記分散液がアニオン電荷を持っていると判断した。次いで、上記滴定前の流動電位が示す電荷と逆の電荷を示す滴定液、すなわち、滴定前の流動電位がカチオン電荷を示す分散液の場合には、アニオン滴定液を用い、滴定前の流動電位がアニオン電荷を示す分散液の場合には、カチオン滴定液を用い、流動電位が0になるまで滴定した。流動電位が0になったときの滴定量から、電荷を下記式により計算した。 Carboxy group amount (mmol / g) = V (mL) × 0.05 (mmol / mL) / mass of cellulose nanofiber (g)
<Method for measuring charge>
Measurement was performed by a titration apparatus (PCD-04 and PCD-T3, manufactured by Mutek) using a streaming potential method. That is, an aqueous dispersion of cellulose nanofibers 0.01% by mass andpH 7 was prepared as a sample. Next, 10 g of the dispersion was placed in a dedicated cell, the cell was set in a measuring instrument, and the switch was turned on. If the value shown at this time is the streaming potential before titration (unit: mV) and the value is +, the dispersion has a cationic charge, while if the value is-, the dispersion The liquid was judged to have an anionic charge. Next, in the case of a titration liquid showing a charge opposite to the charge shown by the above-mentioned flow potential before titration, that is, a dispersion liquid in which the flow potential before titration shows a cationic charge, an anion titrant is used and the flow potential before titration is used. In the case of a dispersion having an anionic charge, titration was performed using a cation titrant until the streaming potential became zero. From the titration amount when the streaming potential became 0, the charge was calculated by the following formula.
<電荷の測定方法>
流動電位法を用いた滴定装置(PCD-04およびPCD-T3、Mutek社製)により測定した。すなわち、試料として、セルロースナノファイバー0.01質量%、pH7の水分散液を調製した。次いで、その分散液10gを専用のセルに入れ、セルを測定器にセットし、スイッチを入れた。この時に示されている値が滴定前の流動電位(単位mV)であって、数値が+であれば、上記分散液がカチオン電荷を持っており、一方、数値が-であれば、上記分散液がアニオン電荷を持っていると判断した。次いで、上記滴定前の流動電位が示す電荷と逆の電荷を示す滴定液、すなわち、滴定前の流動電位がカチオン電荷を示す分散液の場合には、アニオン滴定液を用い、滴定前の流動電位がアニオン電荷を示す分散液の場合には、カチオン滴定液を用い、流動電位が0になるまで滴定した。流動電位が0になったときの滴定量から、電荷を下記式により計算した。 Carboxy group amount (mmol / g) = V (mL) × 0.05 (mmol / mL) / mass of cellulose nanofiber (g)
<Method for measuring charge>
Measurement was performed by a titration apparatus (PCD-04 and PCD-T3, manufactured by Mutek) using a streaming potential method. That is, an aqueous dispersion of cellulose nanofibers 0.01% by mass and
なお、カチオン滴定液として、0.0025N Poly(diallyldimethylammonium Chloride) Solution(Wako社製)を用い、アニオン滴定液として、0.0025N Potassium Polyvinyl Sulfate Titration Solution(Wako社製)を用いた。
In addition, 0.0025N Poly (dialydimethylammonium Chloride) Solution (manufactured by Wako) was used as the cation titrant, and 0.0025N Potassium Polyvinyl Sulfation Solution (manufactured by Wako Corporation) was used as the anion titrant.
電荷(meq/g)=滴定量(mL)×滴定液濃度(N)/(分散液量(g)×分散液濃度(%))×100
Charge (meq / g) = Titration volume (mL) × Titration liquid concentration (N) / (Dispersion volume (g) × Dispersion liquid concentration (%)) × 100
(調製例4)
(ポリアクリルアミド系樹脂の調製)
アクリルアミド68.0gと、アクリル酸6.6gと、ジメチルアクリルアミド0.05gと、メタアリルスルホン酸ソーダ0.25gと、過硫酸アンモニウム0.05gを配合して水中で共重合させ、電荷-1.06meq/g、重量平均分子量206万のポリアクリルアミド系樹脂A(以下、PAM-Aと略する。)を得た。 (Preparation Example 4)
(Preparation of polyacrylamide resin)
68.0 g of acrylamide, 6.6 g of acrylic acid, 0.05 g of dimethyl acrylamide, 0.25 g of sodium methallylsulfonate and 0.05 g of ammonium persulfate were blended and copolymerized in water to obtain a charge of −1.06 meq. / G, a polyacrylamide resin A (hereinafter abbreviated as PAM-A) having a weight average molecular weight of 2,060,000 was obtained.
(ポリアクリルアミド系樹脂の調製)
アクリルアミド68.0gと、アクリル酸6.6gと、ジメチルアクリルアミド0.05gと、メタアリルスルホン酸ソーダ0.25gと、過硫酸アンモニウム0.05gを配合して水中で共重合させ、電荷-1.06meq/g、重量平均分子量206万のポリアクリルアミド系樹脂A(以下、PAM-Aと略する。)を得た。 (Preparation Example 4)
(Preparation of polyacrylamide resin)
68.0 g of acrylamide, 6.6 g of acrylic acid, 0.05 g of dimethyl acrylamide, 0.25 g of sodium methallylsulfonate and 0.05 g of ammonium persulfate were blended and copolymerized in water to obtain a charge of −1.06 meq. / G, a polyacrylamide resin A (hereinafter abbreviated as PAM-A) having a weight average molecular weight of 2,060,000 was obtained.
なお、電荷は、試料として、ポリアクリルアミド系樹脂0.05質量%、pH7の水分散液を用いた以外は、セルロースナノファイバーの電荷の測定方法と同様の手順で測定した。また、重量平均分子量は、以下の方法により測定した(以下同様。)。
<重量平均分子量の測定方法>
重量平均分子量は、SEC(サイズ排除クロマトグラフィー)法によって測定した。標準物質として、POLY(ETHYLENE OXIDE)(TSK Standard、SE-8(重量平均分子量10万)、東ソー社製)を用い、検出器にTDA302(ガードカラム1本、カラム2本、濃度検出器、光散乱検出器および粘度検出器を搭載、VISCOTEK社製)を用いて測定した。
(調製例5)
アクリルアミド68.9gと、イタコン酸10.2gと、ジメチルアクリルアミド0.10gと、メタアリルスルホン酸ソーダ0.25gと、過硫酸アンモニウム0.10gとを配合して水中で共重合させ、電荷-1.64meq/g、重量平均分子量198万のポリアクリルアミド系樹脂B(以下、PAM-Bと略する。)を得た。
(調製例6)
アクリルアミド71.3gと、アクリル酸3.3gと、メチレンビスアクリルアミド0.05gと、メタアリルスルホン酸ソーダ0.20gと、過硫酸アンモニウム0.10gとを配合して水中で共重合させ、電荷-0.77meq/g、重量平均分子量211万のポリアクリルアミド系樹脂C(以下、PAM-Cと略する。)を得た。
(調製例7)
アクリルアミド74.5gと、ジメチルアクリルアミド0.05gと、メタアリルスルホン酸ソーダ0.25gと、過硫酸アンモニウム0.10gとを配合して水中で共重合させ、電荷0.00meq/g、重量平均分子量205万のポリアクリルアミド系樹脂D(以下、PAM-Dと略する。)を得た。
(調製例8)
アクリルアミド67.6gと、ジメチルアミノエチルメタクリレート塩化メチル四級塩18.7gと、ジメチルアクリルアミド0.05gと、メタアリルスルホン酸ソーダ0.20gと、過硫酸アンモニウム0.10gとを配合して水中で共重合させ、電荷+1.27meq/g、重量平均分子量189万のポリアクリルアミド系樹脂E(以下、PAM-Eと略する。)を得た。
(調製例9)
アクリルアミド66.9gと、ジメチルアミノエチルアクリレート塩化メチル四級塩10.8gと、アクリル酸3.8gと、メチレンビスアクリルアミド0.10gとメタアリルスルホン酸ソーダ0.25gと、過硫酸アンモニウム0.10gとを配合して水中で共重合させ、電荷-0.06meq/g、重量平均分子量201万のポリアクリルアミド系樹脂F(以下、PAM-Fと略する。)を得た。
(調製例10)
アクリルアミド74.0gと、ジメチルアミノエチルアクリレート塩化メチル四級塩2.1gと、ジメチルアクリルアミド0.05gと、メタアリルスルホン酸ソーダ0.25gと、過硫酸アンモニウム0.10gとを配合して水中で共重合させ、電荷+0.09meq/g、重量平均分子量210万のポリアクリルアミド系樹脂G(以下、PAM-Gと略する。)を得た。
(調製例11)
アクリルアミド70.3gと、ジメチルアミノエチルアクリレート塩化メチル四級塩10.5gと、ジメチルアクリルアミド0.05gと、メタアリルスルホン酸ソーダ0.25gと、過硫酸アンモニウム0.10gとを配合して水中で共重合させ、電荷+0.52meq/g、重量平均分子量204万のポリアクリルアミド系樹脂H(以下、PAM-Hと略する。)を得た。 The charge was measured by the same procedure as the method for measuring the charge of cellulose nanofibers, except that an aqueous dispersion of 0.05% by mass of polyacrylamide resin andpH 7 was used as a sample. The weight average molecular weight was measured by the following method (the same applies hereinafter).
<Measurement method of weight average molecular weight>
The weight average molecular weight was measured by the SEC (size exclusion chromatography) method. POLY (ETHYLENE OXIDE) (TSK Standard, SE-8 (weight average molecular weight 100,000), manufactured by Tosoh Corporation) was used as a standard substance, and TDA302 (one guard column, two columns, concentration detector, optical detector) was used as a detector. A scattering detector and a viscosity detector were mounted, and measurement was performed using a VISCOTEK company).
(Preparation Example 5)
68.9 g of acrylamide, 10.2 g of itaconic acid, 0.10 g of dimethylacrylamide, 0.25 g of sodium methallyl sulfonate, and 0.10 g of ammonium persulfate are blended and copolymerized in water to obtain a charge of 1.-1. A polyacrylamide resin B (hereinafter abbreviated as PAM-B) having 64 meq / g and a weight average molecular weight of 1.9 million was obtained.
(Preparation Example 6)
71.3 g of acrylamide, 3.3 g of acrylic acid, 0.05 g of methylenebisacrylamide, 0.20 g of sodium methallyl sulfonate, and 0.10 g of ammonium persulfate were blended and copolymerized in water to give a charge of −0. A polyacrylamide resin C (hereinafter abbreviated as PAM-C) having a molecular weight of 0.77 meq / g and a weight average molecular weight of 210,000 was obtained.
(Preparation Example 7)
74.5 g of acrylamide, 0.05 g of dimethylacrylamide, 0.25 g of sodium methallyl sulfonate, and 0.10 g of ammonium persulfate were blended and copolymerized in water to have a charge of 0.00 meq / g and a weight average molecular weight of 205. Of polyacrylamide resin D (hereinafter abbreviated as PAM-D).
(Preparation Example 8)
A mixture of 67.6 g of acrylamide, 18.7 g of dimethylaminoethyl methacrylate methyl chloride quaternary salt, 0.05 g of dimethylacrylamide, 0.20 g of sodium methallyl sulfonate, and 0.10 g of ammonium persulfate was used together in water. Polymerization was performed to obtain a polyacrylamide resin E (hereinafter abbreviated as PAM-E) having a charge of +1.27 meq / g and a weight average molecular weight of 1.89 million.
(Preparation Example 9)
66.9 g of acrylamide, 10.8 g of dimethylaminoethyl acrylate methyl chloride quaternary salt, 3.8 g of acrylic acid, 0.10 g of methylenebisacrylamide, 0.25 g of sodium methallylsulfonate, 0.10 g of ammonium persulfate, And copolymerized in water to obtain a polyacrylamide resin F (hereinafter abbreviated as PAM-F) having a charge of -0.06 meq / g and a weight average molecular weight of 2,100,000.
(Preparation Example 10)
A mixture of 74.0 g of acrylamide, 2.1 g of dimethylaminoethyl acrylate methyl chloride quaternary salt, 0.05 g of dimethylacrylamide, 0.25 g of sodium methallylsulfonate, and 0.10 g of ammonium persulfate was used together in water. Polymerization was performed to obtain a polyacrylamide resin G (hereinafter abbreviated as PAM-G) having a charge of +0.09 meq / g and a weight average molecular weight of 2.1 million.
(Preparation Example 11)
70.3 g of acrylamide, 10.5 g of dimethylaminoethyl acrylate methyl chloride quaternary salt, 0.05 g of dimethylacrylamide, 0.25 g of sodium methallylsulfonate, and 0.10 g of ammonium persulfate were blended together in water. Polymerization was performed to obtain a polyacrylamide resin H (hereinafter abbreviated as PAM-H) having a charge of +0.52 meq / g and a weight average molecular weight of 2,040,000.
<重量平均分子量の測定方法>
重量平均分子量は、SEC(サイズ排除クロマトグラフィー)法によって測定した。標準物質として、POLY(ETHYLENE OXIDE)(TSK Standard、SE-8(重量平均分子量10万)、東ソー社製)を用い、検出器にTDA302(ガードカラム1本、カラム2本、濃度検出器、光散乱検出器および粘度検出器を搭載、VISCOTEK社製)を用いて測定した。
(調製例5)
アクリルアミド68.9gと、イタコン酸10.2gと、ジメチルアクリルアミド0.10gと、メタアリルスルホン酸ソーダ0.25gと、過硫酸アンモニウム0.10gとを配合して水中で共重合させ、電荷-1.64meq/g、重量平均分子量198万のポリアクリルアミド系樹脂B(以下、PAM-Bと略する。)を得た。
(調製例6)
アクリルアミド71.3gと、アクリル酸3.3gと、メチレンビスアクリルアミド0.05gと、メタアリルスルホン酸ソーダ0.20gと、過硫酸アンモニウム0.10gとを配合して水中で共重合させ、電荷-0.77meq/g、重量平均分子量211万のポリアクリルアミド系樹脂C(以下、PAM-Cと略する。)を得た。
(調製例7)
アクリルアミド74.5gと、ジメチルアクリルアミド0.05gと、メタアリルスルホン酸ソーダ0.25gと、過硫酸アンモニウム0.10gとを配合して水中で共重合させ、電荷0.00meq/g、重量平均分子量205万のポリアクリルアミド系樹脂D(以下、PAM-Dと略する。)を得た。
(調製例8)
アクリルアミド67.6gと、ジメチルアミノエチルメタクリレート塩化メチル四級塩18.7gと、ジメチルアクリルアミド0.05gと、メタアリルスルホン酸ソーダ0.20gと、過硫酸アンモニウム0.10gとを配合して水中で共重合させ、電荷+1.27meq/g、重量平均分子量189万のポリアクリルアミド系樹脂E(以下、PAM-Eと略する。)を得た。
(調製例9)
アクリルアミド66.9gと、ジメチルアミノエチルアクリレート塩化メチル四級塩10.8gと、アクリル酸3.8gと、メチレンビスアクリルアミド0.10gとメタアリルスルホン酸ソーダ0.25gと、過硫酸アンモニウム0.10gとを配合して水中で共重合させ、電荷-0.06meq/g、重量平均分子量201万のポリアクリルアミド系樹脂F(以下、PAM-Fと略する。)を得た。
(調製例10)
アクリルアミド74.0gと、ジメチルアミノエチルアクリレート塩化メチル四級塩2.1gと、ジメチルアクリルアミド0.05gと、メタアリルスルホン酸ソーダ0.25gと、過硫酸アンモニウム0.10gとを配合して水中で共重合させ、電荷+0.09meq/g、重量平均分子量210万のポリアクリルアミド系樹脂G(以下、PAM-Gと略する。)を得た。
(調製例11)
アクリルアミド70.3gと、ジメチルアミノエチルアクリレート塩化メチル四級塩10.5gと、ジメチルアクリルアミド0.05gと、メタアリルスルホン酸ソーダ0.25gと、過硫酸アンモニウム0.10gとを配合して水中で共重合させ、電荷+0.52meq/g、重量平均分子量204万のポリアクリルアミド系樹脂H(以下、PAM-Hと略する。)を得た。 The charge was measured by the same procedure as the method for measuring the charge of cellulose nanofibers, except that an aqueous dispersion of 0.05% by mass of polyacrylamide resin and
<Measurement method of weight average molecular weight>
The weight average molecular weight was measured by the SEC (size exclusion chromatography) method. POLY (ETHYLENE OXIDE) (TSK Standard, SE-8 (weight average molecular weight 100,000), manufactured by Tosoh Corporation) was used as a standard substance, and TDA302 (one guard column, two columns, concentration detector, optical detector) was used as a detector. A scattering detector and a viscosity detector were mounted, and measurement was performed using a VISCOTEK company).
(Preparation Example 5)
68.9 g of acrylamide, 10.2 g of itaconic acid, 0.10 g of dimethylacrylamide, 0.25 g of sodium methallyl sulfonate, and 0.10 g of ammonium persulfate are blended and copolymerized in water to obtain a charge of 1.-1. A polyacrylamide resin B (hereinafter abbreviated as PAM-B) having 64 meq / g and a weight average molecular weight of 1.9 million was obtained.
(Preparation Example 6)
71.3 g of acrylamide, 3.3 g of acrylic acid, 0.05 g of methylenebisacrylamide, 0.20 g of sodium methallyl sulfonate, and 0.10 g of ammonium persulfate were blended and copolymerized in water to give a charge of −0. A polyacrylamide resin C (hereinafter abbreviated as PAM-C) having a molecular weight of 0.77 meq / g and a weight average molecular weight of 210,000 was obtained.
(Preparation Example 7)
74.5 g of acrylamide, 0.05 g of dimethylacrylamide, 0.25 g of sodium methallyl sulfonate, and 0.10 g of ammonium persulfate were blended and copolymerized in water to have a charge of 0.00 meq / g and a weight average molecular weight of 205. Of polyacrylamide resin D (hereinafter abbreviated as PAM-D).
(Preparation Example 8)
A mixture of 67.6 g of acrylamide, 18.7 g of dimethylaminoethyl methacrylate methyl chloride quaternary salt, 0.05 g of dimethylacrylamide, 0.20 g of sodium methallyl sulfonate, and 0.10 g of ammonium persulfate was used together in water. Polymerization was performed to obtain a polyacrylamide resin E (hereinafter abbreviated as PAM-E) having a charge of +1.27 meq / g and a weight average molecular weight of 1.89 million.
(Preparation Example 9)
66.9 g of acrylamide, 10.8 g of dimethylaminoethyl acrylate methyl chloride quaternary salt, 3.8 g of acrylic acid, 0.10 g of methylenebisacrylamide, 0.25 g of sodium methallylsulfonate, 0.10 g of ammonium persulfate, And copolymerized in water to obtain a polyacrylamide resin F (hereinafter abbreviated as PAM-F) having a charge of -0.06 meq / g and a weight average molecular weight of 2,100,000.
(Preparation Example 10)
A mixture of 74.0 g of acrylamide, 2.1 g of dimethylaminoethyl acrylate methyl chloride quaternary salt, 0.05 g of dimethylacrylamide, 0.25 g of sodium methallylsulfonate, and 0.10 g of ammonium persulfate was used together in water. Polymerization was performed to obtain a polyacrylamide resin G (hereinafter abbreviated as PAM-G) having a charge of +0.09 meq / g and a weight average molecular weight of 2.1 million.
(Preparation Example 11)
70.3 g of acrylamide, 10.5 g of dimethylaminoethyl acrylate methyl chloride quaternary salt, 0.05 g of dimethylacrylamide, 0.25 g of sodium methallylsulfonate, and 0.10 g of ammonium persulfate were blended together in water. Polymerization was performed to obtain a polyacrylamide resin H (hereinafter abbreviated as PAM-H) having a charge of +0.52 meq / g and a weight average molecular weight of 2,040,000.
各ポリアクリルアミド系樹脂の物性(イオン性、電荷)について、表2に示す。
Table 2 shows the physical properties (ionicity, charge) of each polyacrylamide resin.
(実施例1)
(セルロースフィルムの製造)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂としてPAM-Aを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を5質量部となる割合で含有するセルロースフィルムを製造した。 (Example 1)
(Manufacture of cellulose film)
Using CNF-A as the cellulose nanofiber and PAM-A as the polyacrylamide resin, 5 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film containing at a ratio was produced.
(セルロースフィルムの製造)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂としてPAM-Aを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を5質量部となる割合で含有するセルロースフィルムを製造した。 (Example 1)
(Manufacture of cellulose film)
Using CNF-A as the cellulose nanofiber and PAM-A as the polyacrylamide resin, 5 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film containing at a ratio was produced.
具体的には、まず、CNF-Aの0.15質量%水分散液と、PAM-Aの0.15質量%水分散液とを調製し、それらを、CNF-AおよびPAM-Aの総量100質量部に対して、PAM-Aが5質量部となる割合で混合した。次いで、得られた混合液をシャーレに注ぎ、乾燥させることによって、厚み約10μmのセルロースフィルムを製造した。
(実施例2)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂としてPAM-Aを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例3)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂としてPAM-Aを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例4)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂としてPAM-Aを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を40質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例5)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂としてPAM-Bを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例6)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂としてPAM-Bを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例7)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂としてPAM-Cを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例8)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂としてPAM-Cを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例9)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂としてPAM-Dを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例10)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂としてPAM-Dを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例11)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂としてPAM-Fを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例12)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂としてPAM-Fを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例13)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂としてPAM-Gを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例14)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂としてPAM-Gを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例15)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂としてPAM-Hを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例16)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂としてPAM-Hを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例17)
セルロースナノファイバーとしてCNF-Bを用い、また、ポリアクリルアミド系樹脂としてPAM-Aを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を5質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例18)
セルロースナノファイバーとしてCNF-Bを用い、また、ポリアクリルアミド系樹脂としてPAM-Aを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例19)
セルロースナノファイバーとしてCNF-Bを用い、また、ポリアクリルアミド系樹脂としてPAM-Aを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例20)
セルロースナノファイバーとしてCNF-Bを用い、また、ポリアクリルアミド系樹脂としてPAM-Aを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を40質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例21)
セルロースナノファイバーとしてCNF-Bを用い、また、ポリアクリルアミド系樹脂としてPAM-Bを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を5質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例22)
セルロースナノファイバーとしてCNF-Bを用い、また、ポリアクリルアミド系樹脂としてPAM-Bを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例23)
セルロースナノファイバーとしてCNF-Bを用い、また、ポリアクリルアミド系樹脂としてPAM-Bを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例24)
セルロースナノファイバーとしてCNF-Bを用い、また、ポリアクリルアミド系樹脂としてPAM-Dを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を5質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例25)
セルロースナノファイバーとしてCNF-Bを用い、また、ポリアクリルアミド系樹脂としてPAM-Dを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例26)
セルロースナノファイバーとしてCNF-Bを用い、また、ポリアクリルアミド系樹脂としてPAM-Dを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例27)
セルロースナノファイバーとしてCNF-Bを用い、また、ポリアクリルアミド系樹脂としてPAM-Gを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例28)
セルロースナノファイバーとしてCNF-Bを用い、また、ポリアクリルアミド系樹脂としてPAM-Gを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例29)
セルロースナノファイバーとしてCNF-Bを用い、また、ポリアクリルアミド系樹脂としてPAM-Hを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例30)
セルロースナノファイバーとしてCNF-Bを用い、また、ポリアクリルアミド系樹脂としてPAM-Hを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例31)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Aを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を5質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例32)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Aを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例33)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Aを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を15質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例34)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Aを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例35)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Aを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を40質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例36)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Bを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を5質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例37)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Bを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例38)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Bを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を15質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例39)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Bを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例40)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Dを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を5質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例41)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Dを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例42)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Dを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を15質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例43)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Dを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例44)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Fを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を5質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例45)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Fを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例46)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Fを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例47)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Gを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例48)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Gを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例49)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Hを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例50)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Hを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(比較例1)
セルロースナノファイバーとしてCNF-Aを用いて、CNF-Aのみからセルロースフィルムを製造した。 Specifically, first, a 0.15% by mass aqueous dispersion of CNF-A and a 0.15% by mass aqueous dispersion of PAM-A were prepared, and these were added to the total amount of CNF-A and PAM-A. PAM-A was mixed at a ratio of 5 parts by mass with respect to 100 parts by mass. Next, the obtained mixed solution was poured into a petri dish and dried to produce a cellulose film having a thickness of about 10 μm.
(Example 2)
Using CNF-A as the cellulose nanofiber and PAM-A as the polyacrylamide resin, the polyacrylamide resin is 10 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 3)
Using CNF-A as the cellulose nanofiber and PAM-A as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
Example 4
Using CNF-A as the cellulose nanofiber and PAM-A as the polyacrylamide resin, the polyacrylamide resin is 40 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 5)
Using CNF-A as the cellulose nanofiber and PAM-B as the polyacrylamide resin, the polyacrylamide resin is 10 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 6)
Using CNF-A as the cellulose nanofiber and PAM-B as the polyacrylamide resin, 25 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 7)
Using CNF-A as the cellulose nanofiber and PAM-C as the polyacrylamide resin, the polyacrylamide resin is 10 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 8)
Using CNF-A as the cellulose nanofiber and PAM-C as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
Example 9
Using CNF-A as the cellulose nanofiber and PAM-D as the polyacrylamide resin, the polyacrylamide resin is 10 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 10)
Using CNF-A as the cellulose nanofiber and PAM-D as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 11)
Using CNF-A as the cellulose nanofiber and PAM-F as the polyacrylamide resin, the polyacrylamide resin is 10 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
Example 12
Using CNF-A as the cellulose nanofiber and PAM-F as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 13)
Using CNF-A as the cellulose nanofiber and PAM-G as the polyacrylamide resin, 10 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 14)
Using CNF-A as the cellulose nanofiber and PAM-G as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 15)
Using CNF-A as the cellulose nanofiber and PAM-H as the polyacrylamide resin, 10 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 16)
Using CNF-A as the cellulose nanofiber and PAM-H as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 17)
Using CNF-B as the cellulose nanofiber and PAM-A as the polyacrylamide resin, 5 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 18)
Using CNF-B as the cellulose nanofiber and PAM-A as the polyacrylamide resin, the polyacrylamide resin is 10 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 19)
Using CNF-B as the cellulose nanofiber and PAM-A as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 20)
Using CNF-B as the cellulose nanofiber and PAM-A as the polyacrylamide resin, the polyacrylamide resin is 40 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 21)
Using CNF-B as the cellulose nanofiber and PAM-B as the polyacrylamide resin, 5 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 22)
Using CNF-B as the cellulose nanofiber and PAM-B as the polyacrylamide resin, 10 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 23)
Using CNF-B as the cellulose nanofiber and PAM-B as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 24)
Using CNF-B as the cellulose nanofiber and PAM-D as the polyacrylamide resin, the polyacrylamide resin is 5 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 25)
Using CNF-B as the cellulose nanofiber and PAM-D as the polyacrylamide resin, the polyacrylamide resin is 10 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 26)
Using CNF-B as the cellulose nanofiber and PAM-D as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 27)
Using CNF-B as the cellulose nanofiber and PAM-G as the polyacrylamide resin, 10 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 28)
Using CNF-B as the cellulose nanofiber and PAM-G as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 29)
Using CNF-B as the cellulose nanofiber and PAM-H as the polyacrylamide resin, 10 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 30)
Using CNF-B as the cellulose nanofiber and PAM-H as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 31)
Using CNF-C as the cellulose nanofiber and PAM-A as the polyacrylamide resin, 5 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 32)
Using CNF-C as the cellulose nanofiber and PAM-A as the polyacrylamide resin, 10 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 33)
Using CNF-C as the cellulose nanofiber and PAM-A as the polyacrylamide resin, the polyacrylamide resin is 15 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 34)
Using CNF-C as the cellulose nanofiber and PAM-A as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 35)
Using CNF-C as the cellulose nanofiber and PAM-A as the polyacrylamide resin, the polyacrylamide resin is 40 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 36)
Using CNF-C as the cellulose nanofiber and PAM-B as the polyacrylamide resin, 5 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 37)
Using CNF-C as the cellulose nanofiber and PAM-B as the polyacrylamide resin, 10 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 38)
Using CNF-C as the cellulose nanofiber and PAM-B as the polyacrylamide resin, the polyacrylamide resin is 15 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 39)
Using CNF-C as the cellulose nanofiber and PAM-B as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 40)
Using CNF-C as the cellulose nanofiber and PAM-D as the polyacrylamide resin, the polyacrylamide resin is 5 parts by mass with respect to 100 parts by mass of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 41)
Using CNF-C as the cellulose nanofiber and PAM-D as the polyacrylamide resin, 10 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 42)
Using CNF-C as the cellulose nanofiber and PAM-D as the polyacrylamide resin, 15 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 43)
Using CNF-C as the cellulose nanofiber and PAM-D as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 44)
Using CNF-C as the cellulose nanofiber and PAM-F as the polyacrylamide resin, 5 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 45)
Using CNF-C as the cellulose nanofiber and PAM-F as the polyacrylamide resin, the polyacrylamide resin is 10 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 46)
Using CNF-C as the cellulose nanofiber and PAM-F as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 47)
Using CNF-C as the cellulose nanofiber and PAM-G as the polyacrylamide resin, 10 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 48)
Using CNF-C as the cellulose nanofiber and PAM-G as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 49)
Using CNF-C as the cellulose nanofiber and PAM-H as the polyacrylamide resin, 10 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 50)
Using CNF-C as the cellulose nanofiber and PAM-H as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Comparative Example 1)
Using CNF-A as the cellulose nanofiber, a cellulose film was produced from CNF-A alone.
(実施例2)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂としてPAM-Aを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例3)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂としてPAM-Aを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例4)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂としてPAM-Aを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を40質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例5)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂としてPAM-Bを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例6)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂としてPAM-Bを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例7)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂としてPAM-Cを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例8)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂としてPAM-Cを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例9)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂としてPAM-Dを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例10)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂としてPAM-Dを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例11)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂としてPAM-Fを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例12)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂としてPAM-Fを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例13)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂としてPAM-Gを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例14)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂としてPAM-Gを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例15)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂としてPAM-Hを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例16)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂としてPAM-Hを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例17)
セルロースナノファイバーとしてCNF-Bを用い、また、ポリアクリルアミド系樹脂としてPAM-Aを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を5質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例18)
セルロースナノファイバーとしてCNF-Bを用い、また、ポリアクリルアミド系樹脂としてPAM-Aを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例19)
セルロースナノファイバーとしてCNF-Bを用い、また、ポリアクリルアミド系樹脂としてPAM-Aを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例20)
セルロースナノファイバーとしてCNF-Bを用い、また、ポリアクリルアミド系樹脂としてPAM-Aを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を40質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例21)
セルロースナノファイバーとしてCNF-Bを用い、また、ポリアクリルアミド系樹脂としてPAM-Bを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を5質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例22)
セルロースナノファイバーとしてCNF-Bを用い、また、ポリアクリルアミド系樹脂としてPAM-Bを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例23)
セルロースナノファイバーとしてCNF-Bを用い、また、ポリアクリルアミド系樹脂としてPAM-Bを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例24)
セルロースナノファイバーとしてCNF-Bを用い、また、ポリアクリルアミド系樹脂としてPAM-Dを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を5質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例25)
セルロースナノファイバーとしてCNF-Bを用い、また、ポリアクリルアミド系樹脂としてPAM-Dを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例26)
セルロースナノファイバーとしてCNF-Bを用い、また、ポリアクリルアミド系樹脂としてPAM-Dを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例27)
セルロースナノファイバーとしてCNF-Bを用い、また、ポリアクリルアミド系樹脂としてPAM-Gを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例28)
セルロースナノファイバーとしてCNF-Bを用い、また、ポリアクリルアミド系樹脂としてPAM-Gを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例29)
セルロースナノファイバーとしてCNF-Bを用い、また、ポリアクリルアミド系樹脂としてPAM-Hを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例30)
セルロースナノファイバーとしてCNF-Bを用い、また、ポリアクリルアミド系樹脂としてPAM-Hを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例31)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Aを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を5質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例32)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Aを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例33)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Aを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を15質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例34)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Aを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例35)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Aを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を40質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例36)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Bを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を5質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例37)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Bを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例38)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Bを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を15質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例39)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Bを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例40)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Dを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を5質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例41)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Dを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例42)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Dを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を15質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例43)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Dを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例44)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Fを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を5質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例45)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Fを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例46)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Fを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例47)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Gを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例48)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Gを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例49)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Hを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(実施例50)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Hを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(比較例1)
セルロースナノファイバーとしてCNF-Aを用いて、CNF-Aのみからセルロースフィルムを製造した。 Specifically, first, a 0.15% by mass aqueous dispersion of CNF-A and a 0.15% by mass aqueous dispersion of PAM-A were prepared, and these were added to the total amount of CNF-A and PAM-A. PAM-A was mixed at a ratio of 5 parts by mass with respect to 100 parts by mass. Next, the obtained mixed solution was poured into a petri dish and dried to produce a cellulose film having a thickness of about 10 μm.
(Example 2)
Using CNF-A as the cellulose nanofiber and PAM-A as the polyacrylamide resin, the polyacrylamide resin is 10 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 3)
Using CNF-A as the cellulose nanofiber and PAM-A as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
Example 4
Using CNF-A as the cellulose nanofiber and PAM-A as the polyacrylamide resin, the polyacrylamide resin is 40 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 5)
Using CNF-A as the cellulose nanofiber and PAM-B as the polyacrylamide resin, the polyacrylamide resin is 10 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 6)
Using CNF-A as the cellulose nanofiber and PAM-B as the polyacrylamide resin, 25 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 7)
Using CNF-A as the cellulose nanofiber and PAM-C as the polyacrylamide resin, the polyacrylamide resin is 10 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 8)
Using CNF-A as the cellulose nanofiber and PAM-C as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
Example 9
Using CNF-A as the cellulose nanofiber and PAM-D as the polyacrylamide resin, the polyacrylamide resin is 10 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 10)
Using CNF-A as the cellulose nanofiber and PAM-D as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 11)
Using CNF-A as the cellulose nanofiber and PAM-F as the polyacrylamide resin, the polyacrylamide resin is 10 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
Example 12
Using CNF-A as the cellulose nanofiber and PAM-F as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 13)
Using CNF-A as the cellulose nanofiber and PAM-G as the polyacrylamide resin, 10 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 14)
Using CNF-A as the cellulose nanofiber and PAM-G as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 15)
Using CNF-A as the cellulose nanofiber and PAM-H as the polyacrylamide resin, 10 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 16)
Using CNF-A as the cellulose nanofiber and PAM-H as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 17)
Using CNF-B as the cellulose nanofiber and PAM-A as the polyacrylamide resin, 5 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 18)
Using CNF-B as the cellulose nanofiber and PAM-A as the polyacrylamide resin, the polyacrylamide resin is 10 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 19)
Using CNF-B as the cellulose nanofiber and PAM-A as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 20)
Using CNF-B as the cellulose nanofiber and PAM-A as the polyacrylamide resin, the polyacrylamide resin is 40 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 21)
Using CNF-B as the cellulose nanofiber and PAM-B as the polyacrylamide resin, 5 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 22)
Using CNF-B as the cellulose nanofiber and PAM-B as the polyacrylamide resin, 10 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 23)
Using CNF-B as the cellulose nanofiber and PAM-B as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 24)
Using CNF-B as the cellulose nanofiber and PAM-D as the polyacrylamide resin, the polyacrylamide resin is 5 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 25)
Using CNF-B as the cellulose nanofiber and PAM-D as the polyacrylamide resin, the polyacrylamide resin is 10 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 26)
Using CNF-B as the cellulose nanofiber and PAM-D as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 27)
Using CNF-B as the cellulose nanofiber and PAM-G as the polyacrylamide resin, 10 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 28)
Using CNF-B as the cellulose nanofiber and PAM-G as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 29)
Using CNF-B as the cellulose nanofiber and PAM-H as the polyacrylamide resin, 10 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 30)
Using CNF-B as the cellulose nanofiber and PAM-H as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 31)
Using CNF-C as the cellulose nanofiber and PAM-A as the polyacrylamide resin, 5 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 32)
Using CNF-C as the cellulose nanofiber and PAM-A as the polyacrylamide resin, 10 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 33)
Using CNF-C as the cellulose nanofiber and PAM-A as the polyacrylamide resin, the polyacrylamide resin is 15 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 34)
Using CNF-C as the cellulose nanofiber and PAM-A as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 35)
Using CNF-C as the cellulose nanofiber and PAM-A as the polyacrylamide resin, the polyacrylamide resin is 40 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 36)
Using CNF-C as the cellulose nanofiber and PAM-B as the polyacrylamide resin, 5 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 37)
Using CNF-C as the cellulose nanofiber and PAM-B as the polyacrylamide resin, 10 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 38)
Using CNF-C as the cellulose nanofiber and PAM-B as the polyacrylamide resin, the polyacrylamide resin is 15 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 39)
Using CNF-C as the cellulose nanofiber and PAM-B as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 40)
Using CNF-C as the cellulose nanofiber and PAM-D as the polyacrylamide resin, the polyacrylamide resin is 5 parts by mass with respect to 100 parts by mass of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 41)
Using CNF-C as the cellulose nanofiber and PAM-D as the polyacrylamide resin, 10 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 42)
Using CNF-C as the cellulose nanofiber and PAM-D as the polyacrylamide resin, 15 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 43)
Using CNF-C as the cellulose nanofiber and PAM-D as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 44)
Using CNF-C as the cellulose nanofiber and PAM-F as the polyacrylamide resin, 5 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 45)
Using CNF-C as the cellulose nanofiber and PAM-F as the polyacrylamide resin, the polyacrylamide resin is 10 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 46)
Using CNF-C as the cellulose nanofiber and PAM-F as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 47)
Using CNF-C as the cellulose nanofiber and PAM-G as the polyacrylamide resin, 10 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 48)
Using CNF-C as the cellulose nanofiber and PAM-G as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 49)
Using CNF-C as the cellulose nanofiber and PAM-H as the polyacrylamide resin, 10 parts by mass of the polyacrylamide resin with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Example 50)
Using CNF-C as the cellulose nanofiber and PAM-H as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Comparative Example 1)
Using CNF-A as the cellulose nanofiber, a cellulose film was produced from CNF-A alone.
具体的には、まず、CNF-Aの0.15質量%水分散液を調製し、得られた分散液をシャーレに注ぎ、乾燥させることによって、厚み約10μmのセルロースフィルムを製造した。
(比較例2)
ポリアクリルアミド系樹脂としてPAM-Aを用いて、PAM-Aのみから、比較例1と同様にして、ポリアクリルアミド系樹脂のフィルムを製造した。
(比較例3)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂の代わりにポリビニルアルコール(重合度1700、VF-17、電荷:-0.02meq/g、完全ケン化タイプ:ケン化度(DS)>98%、(日本酢ビ・ポバール社製))(以下、PVAと略する。)を用いて、セルロースナノファイバーおよびポリビニルアルコールの総量100質量部に対して、ポリビニルアルコールを10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(比較例4)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂の代わりにPVAを用いて、セルロースナノファイバーおよびポリビニルアルコールの総量100質量部に対して、ポリビニルアルコールを25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(比較例5)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂の代わりにPVAを用いて、セルロースナノファイバーおよびポリビニルアルコールの総量100質量部に対して、ポリビニルアルコールを50質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(比較例6)
ポリアクリルアミド系樹脂の代わりにPVAを用いて、PVAのみから、比較例1と同様にして、ポリビニルアルコールのフィルムを製造した。
(比較例7)
セルロースナノファイバーとしてCNF-Bを用いて、CNF-Bのみから、比較例1と同様にして、セルロースフィルムを製造した。
(比較例8)
セルロースナノファイバーとしてCNF-Cを用いて、CNF-Cのみから、比較例1と同様にして、セルロースフィルムを製造した。
(比較例9)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂としてPAM-Eを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(比較例10)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂としてPAM-Eを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を40質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(比較例11)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Eを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(比較例12)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Eを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。 Specifically, first, a 0.15 mass% aqueous dispersion of CNF-A was prepared, and the obtained dispersion was poured into a petri dish and dried to produce a cellulose film having a thickness of about 10 μm.
(Comparative Example 2)
Using PAM-A as the polyacrylamide resin, a polyacrylamide resin film was produced from PAM-A alone in the same manner as in Comparative Example 1.
(Comparative Example 3)
CNF-A is used as cellulose nanofiber, and polyvinyl alcohol (polymerization degree 1700, VF-17, charge: -0.02 meq / g, complete saponification type: saponification degree (DS) instead of polyacrylamide resin > 98%, (Nippon Vinegar-Poval)) (hereinafter abbreviated as PVA), and 10 parts by mass of polyvinyl alcohol with respect to 100 parts by mass of cellulose nanofibers and polyvinyl alcohol in total. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Comparative Example 4)
CNF-A is used as the cellulose nanofiber, and PVA is used in place of the polyacrylamide-based resin, and polyvinyl alcohol is contained in a proportion of 25 parts by mass with respect to 100 parts by mass of the total amount of cellulose nanofiber and polyvinyl alcohol. A cellulose film was produced in the same manner as in Example 1 except that the above procedure was performed.
(Comparative Example 5)
CNF-A is used as the cellulose nanofiber, and PVA is used in place of the polyacrylamide-based resin, and polyvinyl alcohol is contained in a proportion of 50 parts by mass with respect to 100 parts by mass of the total amount of cellulose nanofiber and polyvinyl alcohol. A cellulose film was produced in the same manner as in Example 1 except that the above procedure was performed.
(Comparative Example 6)
A polyvinyl alcohol film was produced in the same manner as in Comparative Example 1 from PVA alone using PVA instead of the polyacrylamide resin.
(Comparative Example 7)
Using CNF-B as the cellulose nanofiber, a cellulose film was produced in the same manner as in Comparative Example 1 from CNF-B alone.
(Comparative Example 8)
Using CNF-C as the cellulose nanofiber, a cellulose film was produced in the same manner as in Comparative Example 1 from CNF-C alone.
(Comparative Example 9)
Using CNF-A as the cellulose nanofiber and PAM-E as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Comparative Example 10)
Using CNF-A as the cellulose nanofiber and PAM-E as the polyacrylamide resin, the polyacrylamide resin is 40 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Comparative Example 11)
Using CNF-C as the cellulose nanofiber and PAM-E as the polyacrylamide resin, the polyacrylamide resin is 10 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Comparative Example 12)
Using CNF-C as the cellulose nanofiber and PAM-E as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(比較例2)
ポリアクリルアミド系樹脂としてPAM-Aを用いて、PAM-Aのみから、比較例1と同様にして、ポリアクリルアミド系樹脂のフィルムを製造した。
(比較例3)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂の代わりにポリビニルアルコール(重合度1700、VF-17、電荷:-0.02meq/g、完全ケン化タイプ:ケン化度(DS)>98%、(日本酢ビ・ポバール社製))(以下、PVAと略する。)を用いて、セルロースナノファイバーおよびポリビニルアルコールの総量100質量部に対して、ポリビニルアルコールを10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(比較例4)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂の代わりにPVAを用いて、セルロースナノファイバーおよびポリビニルアルコールの総量100質量部に対して、ポリビニルアルコールを25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(比較例5)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂の代わりにPVAを用いて、セルロースナノファイバーおよびポリビニルアルコールの総量100質量部に対して、ポリビニルアルコールを50質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(比較例6)
ポリアクリルアミド系樹脂の代わりにPVAを用いて、PVAのみから、比較例1と同様にして、ポリビニルアルコールのフィルムを製造した。
(比較例7)
セルロースナノファイバーとしてCNF-Bを用いて、CNF-Bのみから、比較例1と同様にして、セルロースフィルムを製造した。
(比較例8)
セルロースナノファイバーとしてCNF-Cを用いて、CNF-Cのみから、比較例1と同様にして、セルロースフィルムを製造した。
(比較例9)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂としてPAM-Eを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(比較例10)
セルロースナノファイバーとしてCNF-Aを用い、また、ポリアクリルアミド系樹脂としてPAM-Eを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を40質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(比較例11)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Eを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を10質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。
(比較例12)
セルロースナノファイバーとしてCNF-Cを用い、また、ポリアクリルアミド系樹脂としてPAM-Eを用いて、セルロースナノファイバーおよびポリアクリルアミド系樹脂の総量100質量部に対して、ポリアクリルアミド系樹脂を25質量部となる割合で含有させた以外は、実施例1と同様にして、セルロースフィルムを製造した。 Specifically, first, a 0.15 mass% aqueous dispersion of CNF-A was prepared, and the obtained dispersion was poured into a petri dish and dried to produce a cellulose film having a thickness of about 10 μm.
(Comparative Example 2)
Using PAM-A as the polyacrylamide resin, a polyacrylamide resin film was produced from PAM-A alone in the same manner as in Comparative Example 1.
(Comparative Example 3)
CNF-A is used as cellulose nanofiber, and polyvinyl alcohol (polymerization degree 1700, VF-17, charge: -0.02 meq / g, complete saponification type: saponification degree (DS) instead of polyacrylamide resin > 98%, (Nippon Vinegar-Poval)) (hereinafter abbreviated as PVA), and 10 parts by mass of polyvinyl alcohol with respect to 100 parts by mass of cellulose nanofibers and polyvinyl alcohol in total. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Comparative Example 4)
CNF-A is used as the cellulose nanofiber, and PVA is used in place of the polyacrylamide-based resin, and polyvinyl alcohol is contained in a proportion of 25 parts by mass with respect to 100 parts by mass of the total amount of cellulose nanofiber and polyvinyl alcohol. A cellulose film was produced in the same manner as in Example 1 except that the above procedure was performed.
(Comparative Example 5)
CNF-A is used as the cellulose nanofiber, and PVA is used in place of the polyacrylamide-based resin, and polyvinyl alcohol is contained in a proportion of 50 parts by mass with respect to 100 parts by mass of the total amount of cellulose nanofiber and polyvinyl alcohol. A cellulose film was produced in the same manner as in Example 1 except that the above procedure was performed.
(Comparative Example 6)
A polyvinyl alcohol film was produced in the same manner as in Comparative Example 1 from PVA alone using PVA instead of the polyacrylamide resin.
(Comparative Example 7)
Using CNF-B as the cellulose nanofiber, a cellulose film was produced in the same manner as in Comparative Example 1 from CNF-B alone.
(Comparative Example 8)
Using CNF-C as the cellulose nanofiber, a cellulose film was produced in the same manner as in Comparative Example 1 from CNF-C alone.
(Comparative Example 9)
Using CNF-A as the cellulose nanofiber and PAM-E as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Comparative Example 10)
Using CNF-A as the cellulose nanofiber and PAM-E as the polyacrylamide resin, the polyacrylamide resin is 40 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Comparative Example 11)
Using CNF-C as the cellulose nanofiber and PAM-E as the polyacrylamide resin, the polyacrylamide resin is 10 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
(Comparative Example 12)
Using CNF-C as the cellulose nanofiber and PAM-E as the polyacrylamide resin, the polyacrylamide resin is 25 parts by mass with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. A cellulose film was produced in the same manner as in Example 1 except that it was contained in a proportion.
各実施例および各比較例における配合処方を表3~7に示す。
(評価1)ポリアクリルアミド系樹脂の配合割合と機械物性との関連について
実施例2~4および比較例1~6において得られたフィルムの、引張り強度およびヤング率を、下記の方法により測定した。その結果を図1に示す。
<引張り強度の測定方法>
各実施例および比較例のフィルムを、縦30mm、横2mm、厚さ10μmに裁断し、試験片とした。次いで、小型卓上試験機EZ-S(ロードセル容量:500N、引張り速度:1mm/min、つかみ具間距離:10mm、島津製作所製)を用いて、縦長の方向に試験片を挟み、測定開始と同時に、試験片を上方向へ引張った。この試験において、試験片の破断時にかかっていた力(N)とフィルムの形状(幅×厚さ=断面積(m2))から、応力(引張り強度)を下記式により算出した。各実施例および比較例について10回測定を行い、その平均値を引張り強度の値とした。 Tables 3 to 7 show the formulation of each example and comparative example.
(Evaluation 1) Relationship between blending ratio of polyacrylamide resin and mechanical properties The tensile strength and Young's modulus of the films obtained in Examples 2 to 4 and Comparative Examples 1 to 6 were measured by the following methods. The result is shown in FIG.
<Measurement method of tensile strength>
The film of each Example and Comparative Example was cut into a length of 30 mm, a width of 2 mm, and a thickness of 10 μm to obtain a test piece. Next, using a small desktop testing machine EZ-S (load cell capacity: 500 N, pulling speed: 1 mm / min, distance between grips: 10 mm, manufactured by Shimadzu Corporation) The test piece was pulled upward. In this test, the stress (tensile strength) was calculated from the following formula using the force (N) applied when the test piece was broken and the shape of the film (width × thickness = cross-sectional area (m 2 )). Each example and comparative example were measured 10 times, and the average value was taken as the value of tensile strength.
(評価1)ポリアクリルアミド系樹脂の配合割合と機械物性との関連について
実施例2~4および比較例1~6において得られたフィルムの、引張り強度およびヤング率を、下記の方法により測定した。その結果を図1に示す。
<引張り強度の測定方法>
各実施例および比較例のフィルムを、縦30mm、横2mm、厚さ10μmに裁断し、試験片とした。次いで、小型卓上試験機EZ-S(ロードセル容量:500N、引張り速度:1mm/min、つかみ具間距離:10mm、島津製作所製)を用いて、縦長の方向に試験片を挟み、測定開始と同時に、試験片を上方向へ引張った。この試験において、試験片の破断時にかかっていた力(N)とフィルムの形状(幅×厚さ=断面積(m2))から、応力(引張り強度)を下記式により算出した。各実施例および比較例について10回測定を行い、その平均値を引張り強度の値とした。 Tables 3 to 7 show the formulation of each example and comparative example.
(Evaluation 1) Relationship between blending ratio of polyacrylamide resin and mechanical properties The tensile strength and Young's modulus of the films obtained in Examples 2 to 4 and Comparative Examples 1 to 6 were measured by the following methods. The result is shown in FIG.
<Measurement method of tensile strength>
The film of each Example and Comparative Example was cut into a length of 30 mm, a width of 2 mm, and a thickness of 10 μm to obtain a test piece. Next, using a small desktop testing machine EZ-S (load cell capacity: 500 N, pulling speed: 1 mm / min, distance between grips: 10 mm, manufactured by Shimadzu Corporation) The test piece was pulled upward. In this test, the stress (tensile strength) was calculated from the following formula using the force (N) applied when the test piece was broken and the shape of the film (width × thickness = cross-sectional area (m 2 )). Each example and comparative example were measured 10 times, and the average value was taken as the value of tensile strength.
応力(Pa)=力(N)/断面積(m2)
<ヤング率の測定方法>
ヤング率は、引張り強度測定時に得られる応力-ひずみ曲線の初期段階における直線部分(例えば、応力20~40MPaの領域)の傾きから、下記の算出式によって求めた。 Stress (Pa) = Force (N) / Cross-sectional area (m 2 )
<Measurement method of Young's modulus>
The Young's modulus was obtained from the slope of the straight line portion (for example, the region ofstress 20 to 40 MPa) in the initial stage of the stress-strain curve obtained at the time of measuring the tensile strength by the following calculation formula.
<ヤング率の測定方法>
ヤング率は、引張り強度測定時に得られる応力-ひずみ曲線の初期段階における直線部分(例えば、応力20~40MPaの領域)の傾きから、下記の算出式によって求めた。 Stress (Pa) = Force (N) / Cross-sectional area (m 2 )
<Measurement method of Young's modulus>
The Young's modulus was obtained from the slope of the straight line portion (for example, the region of
ヤング率(Pa)=傾き×初期の長さ(つかみ具間距離,10mm)/断面積(m2)
(評価2)ポリアクリルアミド系樹脂の電荷と機械物性との関連について
実施例3、6、8、10、12、14、16および比較例9において得られたフィルムの、引張り強度およびヤング率を、評価1と同様にして測定した。その結果を図2に示す。
(評価3)セルロースナノファイバーAを用いた場合におけるポリアクリルアミド系樹脂の電荷および配合割合と機械物性との関連について
実施例1~16比較例1、9および10において得られたフィルムの、引張り強度を、評価1と同様にして測定した。そして、比較例1の引張り強度を100として、各実施例の引張り強度の比較例1に対する相対値(引張り強度インデックス)をそれぞれ算出した。その結果を図3に示す。
(評価4)セルロースナノファイバーBを用いた場合におけるポリアクリルアミド系樹脂の電荷および配合割合と機械物性との関連について
実施例17~30および比較例7において得られたフィルムの、引張り強度を、評価1と同様にして測定した。そして、引張り強度の比較例7に対する相対値を、評価3と同様にして算出した。その結果を図4に示す。
(評価5)セルロースナノファイバーCを用いた場合におけるポリアクリルアミド系樹脂の電荷および配合割合と機械物性との関連について
実施例31~50、比較例8、11および12において得られたフィルムの、引張り強度を、評価1と同様にして測定した。そして、引張り強度の比較例8に対する相対値を、評価3と同様にして算出した。その結果を図5に示す。 Young's modulus (Pa) = tilt × initial length (distance between grips, 10 mm) / cross-sectional area (m 2 )
(Evaluation 2) Relationship between charge and mechanical properties of polyacrylamide resin The tensile strength and Young's modulus of the films obtained in Examples 3, 6, 8, 10, 12, 14, 16 and Comparative Example 9 were Measurement was performed in the same manner as in Evaluation 1. The result is shown in FIG.
(Evaluation 3) Regarding the relationship between the charge and blending ratio of polyacrylamide resin and mechanical properties in the case of using cellulose nanofiber A Examples 1 to 16 Tensile strength of the films obtained in Comparative Examples 1, 9 and 10 Was measured in the same manner as in Evaluation 1. And the relative value (tensile strength index) with respect to the comparative example 1 of the tensile strength of each Example was set to 100 as the tensile strength of the comparative example 1. The result is shown in FIG.
(Evaluation 4) Regarding the relationship between the charge and blending ratio of polyacrylamide resin and mechanical properties when cellulose nanofiber B is used, the tensile strength of the films obtained in Examples 17 to 30 and Comparative Example 7 was evaluated. Measurement was performed in the same manner as in 1. And the relative value with respect to the comparative example 7 of tensile strength was computed similarly to the evaluation 3. FIG. The result is shown in FIG.
(Evaluation 5) Relationship between electric properties and blending ratio of polyacrylamide resin and mechanical properties when cellulose nanofiber C is used Tensile tension of the films obtained in Examples 31 to 50 and Comparative Examples 8, 11 and 12 The strength was measured in the same manner as in Evaluation 1. And the relative value with respect to the comparative example 8 of tensile strength was computed similarly to the evaluation 3. FIG. The result is shown in FIG.
(評価2)ポリアクリルアミド系樹脂の電荷と機械物性との関連について
実施例3、6、8、10、12、14、16および比較例9において得られたフィルムの、引張り強度およびヤング率を、評価1と同様にして測定した。その結果を図2に示す。
(評価3)セルロースナノファイバーAを用いた場合におけるポリアクリルアミド系樹脂の電荷および配合割合と機械物性との関連について
実施例1~16比較例1、9および10において得られたフィルムの、引張り強度を、評価1と同様にして測定した。そして、比較例1の引張り強度を100として、各実施例の引張り強度の比較例1に対する相対値(引張り強度インデックス)をそれぞれ算出した。その結果を図3に示す。
(評価4)セルロースナノファイバーBを用いた場合におけるポリアクリルアミド系樹脂の電荷および配合割合と機械物性との関連について
実施例17~30および比較例7において得られたフィルムの、引張り強度を、評価1と同様にして測定した。そして、引張り強度の比較例7に対する相対値を、評価3と同様にして算出した。その結果を図4に示す。
(評価5)セルロースナノファイバーCを用いた場合におけるポリアクリルアミド系樹脂の電荷および配合割合と機械物性との関連について
実施例31~50、比較例8、11および12において得られたフィルムの、引張り強度を、評価1と同様にして測定した。そして、引張り強度の比較例8に対する相対値を、評価3と同様にして算出した。その結果を図5に示す。 Young's modulus (Pa) = tilt × initial length (distance between grips, 10 mm) / cross-sectional area (m 2 )
(Evaluation 2) Relationship between charge and mechanical properties of polyacrylamide resin The tensile strength and Young's modulus of the films obtained in Examples 3, 6, 8, 10, 12, 14, 16 and Comparative Example 9 were Measurement was performed in the same manner as in Evaluation 1. The result is shown in FIG.
(Evaluation 3) Regarding the relationship between the charge and blending ratio of polyacrylamide resin and mechanical properties in the case of using cellulose nanofiber A Examples 1 to 16 Tensile strength of the films obtained in Comparative Examples 1, 9 and 10 Was measured in the same manner as in Evaluation 1. And the relative value (tensile strength index) with respect to the comparative example 1 of the tensile strength of each Example was set to 100 as the tensile strength of the comparative example 1. The result is shown in FIG.
(Evaluation 4) Regarding the relationship between the charge and blending ratio of polyacrylamide resin and mechanical properties when cellulose nanofiber B is used, the tensile strength of the films obtained in Examples 17 to 30 and Comparative Example 7 was evaluated. Measurement was performed in the same manner as in 1. And the relative value with respect to the comparative example 7 of tensile strength was computed similarly to the evaluation 3. FIG. The result is shown in FIG.
(Evaluation 5) Relationship between electric properties and blending ratio of polyacrylamide resin and mechanical properties when cellulose nanofiber C is used Tensile tension of the films obtained in Examples 31 to 50 and Comparative Examples 8, 11 and 12 The strength was measured in the same manner as in Evaluation 1. And the relative value with respect to the comparative example 8 of tensile strength was computed similarly to the evaluation 3. FIG. The result is shown in FIG.
また、上記の実施例1~50および比較例1~12のフィルムで得られた引張り強度およびヤング率を表3~7に示す。
(評価6)セルロースフィルムの波長600nmにおける光透過率
実施例1~50および比較例1~12で得られたフィルムの、光透過率を下記の方法により測定した。得られた測定結果を代表し、波長600nmにおける光透過率を、表3~7に示す。
<光透過率の測定方法>
紫外可視近赤外分光光度計V-670(日本分光社製)を用いて、400nm~800nmの波長領域における光透過率を測定した。具体的には、各実施例および比較例で得られたフィルムを専用のホルダーに挟み込んでセットし、400nm~800nmの波長領域における光透過率を走査速度100nm/minで連続的に測定した。 Tables 3 to 7 show the tensile strength and Young's modulus obtained with the films of Examples 1 to 50 and Comparative Examples 1 to 12.
(Evaluation 6) Light Transmittance of Cellulose Film at a Wavelength of 600 nm The light transmittance of the films obtained in Examples 1 to 50 and Comparative Examples 1 to 12 was measured by the following method. As representative of the obtained measurement results, the light transmittance at a wavelength of 600 nm is shown in Tables 3 to 7.
<Measurement method of light transmittance>
The light transmittance in the wavelength region of 400 nm to 800 nm was measured using an ultraviolet-visible near-infrared spectrophotometer V-670 (manufactured by JASCO Corporation). Specifically, the films obtained in each Example and Comparative Example were sandwiched and set in a dedicated holder, and the light transmittance in the wavelength region of 400 nm to 800 nm was continuously measured at a scanning speed of 100 nm / min.
(評価6)セルロースフィルムの波長600nmにおける光透過率
実施例1~50および比較例1~12で得られたフィルムの、光透過率を下記の方法により測定した。得られた測定結果を代表し、波長600nmにおける光透過率を、表3~7に示す。
<光透過率の測定方法>
紫外可視近赤外分光光度計V-670(日本分光社製)を用いて、400nm~800nmの波長領域における光透過率を測定した。具体的には、各実施例および比較例で得られたフィルムを専用のホルダーに挟み込んでセットし、400nm~800nmの波長領域における光透過率を走査速度100nm/minで連続的に測定した。 Tables 3 to 7 show the tensile strength and Young's modulus obtained with the films of Examples 1 to 50 and Comparative Examples 1 to 12.
(Evaluation 6) Light Transmittance of Cellulose Film at a Wavelength of 600 nm The light transmittance of the films obtained in Examples 1 to 50 and Comparative Examples 1 to 12 was measured by the following method. As representative of the obtained measurement results, the light transmittance at a wavelength of 600 nm is shown in Tables 3 to 7.
<Measurement method of light transmittance>
The light transmittance in the wavelength region of 400 nm to 800 nm was measured using an ultraviolet-visible near-infrared spectrophotometer V-670 (manufactured by JASCO Corporation). Specifically, the films obtained in each Example and Comparative Example were sandwiched and set in a dedicated holder, and the light transmittance in the wavelength region of 400 nm to 800 nm was continuously measured at a scanning speed of 100 nm / min.
なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記特許請求の範囲に含まれる。
Although the above invention has been provided as an exemplary embodiment of the present invention, this is merely an example and should not be interpreted in a limited manner. Variations of the present invention that are apparent to one of ordinary skill in the art are within the scope of the following claims.
本発明のセルロースナノファイバー材料およびセルロースフィルムは、各種産業分野おける梱包材料などとして、好適に用いられる。
The cellulose nanofiber material and the cellulose film of the present invention are suitably used as packing materials in various industrial fields.
Claims (5)
- セルロースナノファイバーと、電荷が+1.00meq/g以下のポリアクリルアミド系樹脂とを含有することを特徴とする、セルロースナノファイバー材料。 A cellulose nanofiber material comprising cellulose nanofiber and a polyacrylamide resin having a charge of +1.00 meq / g or less.
- 前記セルロースナノファイバーと前記ポリアクリルアミド系樹脂との総量100質量部に対して、前記ポリアクリルアミド系樹脂の含有割合が、30質量部以下であることを特徴とする、請求項1に記載のセルロースナノファイバー材料。 The cellulose nanofiber according to claim 1, wherein a content ratio of the polyacrylamide resin is 30 parts by mass or less with respect to 100 parts by mass of the total amount of the cellulose nanofiber and the polyacrylamide resin. Fiber material.
- 前記セルロースナノファイバーの電荷と、
前記ポリアクリルアミド系樹脂の電荷との合計が0.90以下であることを特徴とする、請求項1に記載のセルロースナノファイバー材料。 The charge of the cellulose nanofibers;
2. The cellulose nanofiber material according to claim 1, wherein the total of the charges of the polyacrylamide resin is 0.90 or less. - 前記セルロースナノファイバーと、
前記ポリアクリルアミド系樹脂とが、ともにアニオン性であることを特徴とする、請求項1に記載のセルロースナノファイバー材料。 The cellulose nanofibers;
The cellulose nanofiber material according to claim 1, wherein both the polyacrylamide resins are anionic. - セルロースナノファイバーと、電荷が+1.00meq/g以下のポリアクリルアミド系樹脂とを含有するセルロースナノファイバー材料からなることを特徴とする、セルロースフィルム。 A cellulose film comprising a cellulose nanofiber material containing cellulose nanofiber and a polyacrylamide resin having a charge of +1.00 meq / g or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015519822A JP6438392B2 (en) | 2013-05-28 | 2014-05-22 | Cellulose film |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013112304 | 2013-05-28 | ||
JP2013-112304 | 2013-05-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014192634A1 true WO2014192634A1 (en) | 2014-12-04 |
Family
ID=51988667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/063586 WO2014192634A1 (en) | 2013-05-28 | 2014-05-22 | Cellulose nanofiber material and cellulose film |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6438392B2 (en) |
WO (1) | WO2014192634A1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016089077A (en) * | 2014-11-07 | 2016-05-23 | 星光Pmc株式会社 | Manufacturing method of cellulose fiber for resin reinforcement, cellulose fiber for resin reinforcement, resin composition, and resin molded body |
JP2017128630A (en) * | 2016-01-18 | 2017-07-27 | 旭化成株式会社 | Cellulose formulation |
JP2017154327A (en) * | 2016-02-29 | 2017-09-07 | 王子ホールディングス株式会社 | Laminate body |
WO2018123158A1 (en) * | 2016-12-26 | 2018-07-05 | Dic株式会社 | Resin composition for pulp fibrillation, fiber-reinforced material, and molding material |
JP2018527483A (en) * | 2015-09-17 | 2018-09-20 | ストラ エンソ オーワイジェイ | Method for producing a film comprising microfibrillated cellulose and an amphoteric polymer |
KR20180109083A (en) | 2016-02-10 | 2018-10-05 | 오지 홀딩스 가부시키가이샤 | Sheet |
JP2018203860A (en) * | 2017-06-02 | 2018-12-27 | アトミクス株式会社 | Marking sheet forming paint and marking sheet |
JP2019520490A (en) * | 2016-06-22 | 2019-07-18 | ストラ エンソ オーワイジェイ | Microfibrillated film |
KR20190095764A (en) * | 2018-02-07 | 2019-08-16 | 충남대학교산학협력단 | Composition for the preparation of carboxymethylnanocellulose composite film, film and production thereof |
JP2021127425A (en) * | 2020-02-17 | 2021-09-02 | 昭博 西岡 | Ferroelectric composition |
JP2021181667A (en) * | 2020-05-19 | 2021-11-25 | 王子ホールディングス株式会社 | Microfilament-like cellulose, dispersion liquid, sheet, and method for producing microfilament-like cellulose |
CN113748160A (en) * | 2019-04-25 | 2021-12-03 | Dic株式会社 | Resin composition, method for producing resin composition, cellulose fiber composition, reinforcing material, and molded article |
WO2022059705A1 (en) * | 2020-09-16 | 2022-03-24 | 東亞合成株式会社 | Resin composition, resin composition manufacturing method, and resin |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008303361A (en) * | 2007-06-11 | 2008-12-18 | Seiko Pmc Corp | Oxidized cellulose microfiber molded product with suppressed water absorption |
JP2009191197A (en) * | 2008-02-15 | 2009-08-27 | Bridgestone Corp | Rubber composition and method for producing the same |
JP2012162814A (en) * | 2011-02-04 | 2012-08-30 | Oji Paper Co Ltd | Cellulose fiber sheet |
JP2012214943A (en) * | 2011-03-28 | 2012-11-08 | Harima Chemicals Inc | Papermaking method of paper or cardboard, and paper or cardboard made by the papermaking method |
JP2014095008A (en) * | 2012-11-08 | 2014-05-22 | Kao Corp | Method of producing film body |
-
2014
- 2014-05-22 JP JP2015519822A patent/JP6438392B2/en active Active
- 2014-05-22 WO PCT/JP2014/063586 patent/WO2014192634A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008303361A (en) * | 2007-06-11 | 2008-12-18 | Seiko Pmc Corp | Oxidized cellulose microfiber molded product with suppressed water absorption |
JP2009191197A (en) * | 2008-02-15 | 2009-08-27 | Bridgestone Corp | Rubber composition and method for producing the same |
JP2012162814A (en) * | 2011-02-04 | 2012-08-30 | Oji Paper Co Ltd | Cellulose fiber sheet |
JP2012214943A (en) * | 2011-03-28 | 2012-11-08 | Harima Chemicals Inc | Papermaking method of paper or cardboard, and paper or cardboard made by the papermaking method |
JP2014095008A (en) * | 2012-11-08 | 2014-05-22 | Kao Corp | Method of producing film body |
Non-Patent Citations (1)
Title |
---|
TAKANORI KURIHARA ET AL.: "Polyacrylamide to Cellulose-kei Sozai tono Shinki Fukugo Zairyo ni Kansuru Kenkyu", KAMI PULP KENKYU HAPPYOKAI KOEN YOSHISHU, vol. 80, 2013, pages 84 - 87 * |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016089077A (en) * | 2014-11-07 | 2016-05-23 | 星光Pmc株式会社 | Manufacturing method of cellulose fiber for resin reinforcement, cellulose fiber for resin reinforcement, resin composition, and resin molded body |
JP2018527483A (en) * | 2015-09-17 | 2018-09-20 | ストラ エンソ オーワイジェイ | Method for producing a film comprising microfibrillated cellulose and an amphoteric polymer |
JP2017128630A (en) * | 2016-01-18 | 2017-07-27 | 旭化成株式会社 | Cellulose formulation |
EP3415553A4 (en) * | 2016-02-10 | 2019-10-23 | Oji Holdings Corporation | LEAF |
JP7006278B2 (en) | 2016-02-10 | 2022-01-24 | 王子ホールディングス株式会社 | Seat |
KR20180109083A (en) | 2016-02-10 | 2018-10-05 | 오지 홀딩스 가부시키가이샤 | Sheet |
JPWO2017138589A1 (en) * | 2016-02-10 | 2018-12-06 | 王子ホールディングス株式会社 | Sheet |
US11346053B2 (en) | 2016-02-10 | 2022-05-31 | Oji Holdings Corporaton | Sheet |
JP2017154327A (en) * | 2016-02-29 | 2017-09-07 | 王子ホールディングス株式会社 | Laminate body |
JP2019520490A (en) * | 2016-06-22 | 2019-07-18 | ストラ エンソ オーワイジェイ | Microfibrillated film |
WO2018123158A1 (en) * | 2016-12-26 | 2018-07-05 | Dic株式会社 | Resin composition for pulp fibrillation, fiber-reinforced material, and molding material |
CN110114391A (en) * | 2016-12-26 | 2019-08-09 | Dic株式会社 | Paper pulp defibering resin combination, fibre reinforced materials and moulding material |
JP7079461B2 (en) | 2017-06-02 | 2022-06-02 | アトミクス株式会社 | Road marking sheet |
JP2018203860A (en) * | 2017-06-02 | 2018-12-27 | アトミクス株式会社 | Marking sheet forming paint and marking sheet |
KR102065953B1 (en) * | 2018-02-07 | 2020-02-11 | 충남대학교산학협력단 | Composition for the preparation of carboxymethylnanocellulose composite film, film and production thereof |
KR20190095764A (en) * | 2018-02-07 | 2019-08-16 | 충남대학교산학협력단 | Composition for the preparation of carboxymethylnanocellulose composite film, film and production thereof |
CN113748160A (en) * | 2019-04-25 | 2021-12-03 | Dic株式会社 | Resin composition, method for producing resin composition, cellulose fiber composition, reinforcing material, and molded article |
CN113748160B (en) * | 2019-04-25 | 2023-06-30 | Dic株式会社 | Resin composition, method for producing resin composition, cellulose fiber composition, reinforcing material, and molded article |
JP2021127425A (en) * | 2020-02-17 | 2021-09-02 | 昭博 西岡 | Ferroelectric composition |
JP7573806B2 (en) | 2020-02-17 | 2024-10-28 | 昭博 西岡 | Ferroelectric Composition |
JP2021181667A (en) * | 2020-05-19 | 2021-11-25 | 王子ホールディングス株式会社 | Microfilament-like cellulose, dispersion liquid, sheet, and method for producing microfilament-like cellulose |
JP7140165B2 (en) | 2020-05-19 | 2022-09-21 | 王子ホールディングス株式会社 | Fine fibrous cellulose, dispersion, sheet and method for producing fine fibrous cellulose |
WO2022059705A1 (en) * | 2020-09-16 | 2022-03-24 | 東亞合成株式会社 | Resin composition, resin composition manufacturing method, and resin |
JPWO2022059705A1 (en) * | 2020-09-16 | 2022-03-24 | ||
CN116057072A (en) * | 2020-09-16 | 2023-05-02 | 东亚合成株式会社 | Resin composition, method for producing resin composition, and resin |
CN116057072B (en) * | 2020-09-16 | 2024-04-23 | 东亚合成株式会社 | Resin composition, method for producing resin composition, and resin |
Also Published As
Publication number | Publication date |
---|---|
JP6438392B2 (en) | 2018-12-12 |
JPWO2014192634A1 (en) | 2017-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6438392B2 (en) | Cellulose film | |
Kwon et al. | Cellulose nanocrystal-coated TEMPO-oxidized cellulose nanofiber films for high performance all-cellulose nanocomposites | |
Walters et al. | Iridescent cellulose nanocrystal films modified with hydroxypropyl cellulose | |
Hubbe et al. | Green Modification of Surface Characteristics of Cellulosic Materials at the Molecular or Nano Scale: A Review. | |
RU2672648C2 (en) | Oxygen and water vapour barrier films with low moisture sensitivity fabricated from self-cross-linking fibrillated cellulose | |
Sirvio et al. | Strong, self-standing oxygen barrier films from nanocelluloses modified with regioselective oxidative treatments | |
Kalia et al. | Nanofibrillated cellulose: surface modification and potential applications | |
JP4998981B2 (en) | Fine cellulose fiber | |
Saito et al. | Wet strength improvement of TEMPO-oxidized cellulose sheets prepared with cationic polymers | |
Sirvio et al. | Aqueous modification of chitosan with itaconic acid to produce strong oxygen barrier film | |
KR102554518B1 (en) | Dispersion stabilizer for suspension polymerization and method for preparing vinyl polymer using the same | |
Yang et al. | Recycling without fiber degradation—strong paper structures for 3D forming based on nanostructurally tailored wood holocellulose fibers | |
Yang et al. | UV grafting: surface modification of cellulose nanofibers without the use of organic solvents | |
WO2014171502A1 (en) | Vinyl alcohol copolymer and method for producing same | |
Wang et al. | Morphology and flow behavior of cellulose nanofibers dispersed in glycols | |
JP6095504B2 (en) | Resin composition | |
KR20210137113A (en) | Method for making resin modifiers, resin modifiers and composite materials | |
JP2015000935A (en) | Method for producing resin composition containing cellulose nanofiber | |
JP6759542B2 (en) | Cellulose microfiber dispersion liquid, method for producing cellulose microfiber dispersion liquid, and fiber composite resin | |
JP6575128B2 (en) | Method for producing cellulose nanofiber sheet | |
JP2012082395A (en) | Polyvinyl alcohol film | |
Ru et al. | Morphological and property characteristics of surface-quaternized nanofibrillated cellulose derived from bamboo pulp | |
Builes et al. | Unsaturated polyester nanocomposites modified with fibrillated cellulose and PEO-b-PPO-b-PEO block copolymer | |
Cheng et al. | Improving the colloidal stability of Cellulose nano-crystals by surface chemical grafting with polyacrylic acid | |
Christau et al. | Effects of an aqueous surface modification via a grafting-through polymerization approach on the fibrillation and drying of bleached softwood kraft pulp |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14804619 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015519822 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14804619 Country of ref document: EP Kind code of ref document: A1 |