WO2014192228A1 - シリコン系基板、半導体装置、及び、半導体装置の製造方法 - Google Patents
シリコン系基板、半導体装置、及び、半導体装置の製造方法 Download PDFInfo
- Publication number
- WO2014192228A1 WO2014192228A1 PCT/JP2014/002405 JP2014002405W WO2014192228A1 WO 2014192228 A1 WO2014192228 A1 WO 2014192228A1 JP 2014002405 W JP2014002405 W JP 2014002405W WO 2014192228 A1 WO2014192228 A1 WO 2014192228A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silicon
- impurity concentration
- substrate
- based substrate
- atoms
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02658—Pretreatments
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
- C30B23/02—Epitaxial-layer growth
- C30B23/025—Epitaxial-layer growth characterised by the substrate
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/186—Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02441—Group 14 semiconducting materials
- H01L21/0245—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/22—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
- H01L21/225—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
- H01L21/2251—Diffusion into or out of group IV semiconductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/22—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
- H01L21/225—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
- H01L21/2258—Diffusion into or out of AIIIBV compounds
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/015—Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/475—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/60—Impurity distributions or concentrations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
- H01L21/02595—Microstructure polycrystalline
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
- H01L21/02598—Microstructure monocrystalline
Definitions
- the present invention relates to a silicon-based substrate, a semiconductor device, and a method for manufacturing the semiconductor device, and in particular, a silicon-based substrate for forming a nitride-based compound semiconductor layer thereon, a semiconductor device using the silicon-based substrate, and The present invention relates to a method for manufacturing the semiconductor device.
- the nitride compound semiconductor layer is generally formed on an inexpensive silicon substrate or sapphire substrate, but the stress applied to the silicon substrate in the process of growing the group III nitride semiconductor layer thickly on the silicon substrate. As a result, slips and defects are introduced into the silicon substrate. As a result, there is a problem that the warpage of the substrate produced by these slips and defects is not stable.
- the thickness of the substrate As a means for improving the problem of warping of the substrate, there is a method of increasing the thickness of the silicon substrate.
- the thickness of the substrate that can be generally manufactured is about 1 mm. Fabrication of a substrate having a thickness greater than this is difficult due to limitations on the production process of the substrate and the devices and jigs used in the production line for producing the device.
- the method for example, there is a report that the strength of the silicon substrate increases when the boron concentration in the silicon substrate is set to 1 ⁇ 10 19 atoms / cm 3 or more (see Patent Document 1).
- Patent Document 2 discloses that the warpage of the silicon substrate is reduced by controlling the oxygen concentration in the silicon substrate.
- FIG. 3 is a graph showing the relationship between the amount of warpage (maximum value) of the substrate, the crystallinity of the upper nitride compound semiconductor layer, and the impurity concentration of the substrate. As shown in FIG. 3, the amount of warpage (maximum value) of the substrate and the crystallinity of the upper nitride-based compound semiconductor layer show opposite characteristics with respect to the impurity concentration of the substrate.
- the impurity concentration of the substrate is increased, the warp amount (maximum value) of the substrate is reduced, but the crystallinity of the upper nitride-based compound semiconductor layer is deteriorated.
- the impurity concentration of the substrate is lowered, the crystallinity of the upper nitride-based compound semiconductor layer is improved, but the warpage amount (maximum value) of the substrate is increased.
- Patent Document 2 when it is attempted to control the oxygen concentration in the silicon substrate, it is necessary to use a silicon substrate having an oxygen concentration within a predetermined range, which increases the material cost. Moreover, this method is not sufficient to improve warpage.
- the present invention has been made in view of the above problems, and can improve the warpage of the substrate and maintain the crystallinity of the nitride-based compound semiconductor layer formed on the upper layer, and a semiconductor device. And it aims at providing the manufacturing method of a semiconductor device.
- the present invention provides a silicon-based substrate for forming a nitride-based compound semiconductor layer on a surface, the first portion on the surface side having a first impurity concentration, A second impurity concentration higher than one impurity concentration, a second portion inside the first portion, and the first impurity concentration is 1 ⁇ 10 14 atoms / atoms cm 3 or more, 1 There is provided a silicon-based substrate characterized by being less than ⁇ 10 19 atoms / cm 3 .
- the first portion on the surface side of the silicon-based substrate has a lower impurity concentration than the second portion inside the silicon-based substrate, and the impurity concentration of the first portion is 1 ⁇ 10 14 atoms. / Atoms cm 3 or more and less than 1 ⁇ 10 19 atoms / cm 3 , the crystallinity of the nitride-based compound semiconductor layer formed thereon can be favorably maintained, and the inner second portion Since the impurity concentration of is high, the warp of the silicon substrate generated when the nitride compound semiconductor layer is formed can be improved.
- the second impurity concentration is 1 ⁇ 10 19 atoms / cm 3 or more and 1 ⁇ 10 20 atoms / cm 3 or less.
- the second portion inside the silicon-based substrate is 1 ⁇ 10 19 atoms / cm 3 or more and 1 ⁇ 10 20 atoms / cm 3 or less, so that the silicon-based substrate can be more effectively warped. Can be improved.
- the thickness of said 1st part is 1 micrometer or more and 10 micrometers or less, and the thickness of said 1st part is thinner than the thickness of said 2nd part.
- the thickness of the first portion on the surface side of the silicon-based substrate is 1 ⁇ m or more and 10 ⁇ m or less, even when a nitride-based compound semiconductor layer is formed thereon, Since the impurity concentration on the surface of the silicon-based substrate does not increase due to the diffusion of impurities from the second portion, the crystallinity of the nitride-based compound semiconductor layer formed thereon can be reliably improved. Furthermore, since the thickness of the first portion is thinner than the thickness of the second portion, the thickness of the second portion can be sufficiently secured, and the warpage of the silicon-based substrate can be improved reliably.
- the impurity may be any one or more of boron, phosphorus, aluminum, gallium, arsenic, nitrogen, oxygen, and carbon.
- the impurities doped in the silicon-based substrate the above elements can be preferably used, and the strength of the substrate can be reliably increased.
- the first portion on the surface side having the first impurity concentration and the inner portion of the first portion having the second impurity concentration higher than the first impurity concentration A silicon-based substrate having a second portion; a nitride-based compound semiconductor layer formed so as to be in contact with the surface of the silicon-based substrate; and a surface of the nitride-based semiconductor layer opposite to the silicon-based substrate.
- the first portion has a thickness of 1 ⁇ m or more and 10 ⁇ m or less, and the first impurity concentration gradually decreases toward the surface, and the silicon-based substrate
- the semiconductor device is characterized in that the first impurity concentration on the surface of the semiconductor device is 1 ⁇ 10 14 atoms / cm 3 or more and less than 1 ⁇ 10 19 atoms / cm 3 .
- the first portion on the surface side of the silicon substrate has a lower impurity concentration than the second portion inside the silicon substrate, and the first portion has a thickness of 1 ⁇ m or more and 10 ⁇ m or less.
- the impurity concentration of the first portion gradually decreases toward the surface, the impurity concentration of the first portion, 1 ⁇ 10 14 atoms / atomscm 3 or more, is less than 1 ⁇ 10 19 atoms / cm 3
- the crystallinity of the nitride-based compound semiconductor layer formed thereon can be maintained well, and the impurity concentration of the inner second portion is high, so the nitride-based compound semiconductor layer was formed.
- the warp of the silicon-based substrate that sometimes occurs can be improved.
- the second impurity concentration is 1 ⁇ 10 19 atoms / cm 3 or more and 1 ⁇ 10 20 atoms / cm 3 or less.
- the second portion inside the silicon-based substrate is 1 ⁇ 10 19 atoms / cm 3 or more and 1 ⁇ 10 20 atoms / cm 3 or less, so that the strength of the substrate is more reliably improved. The warpage of the silicon-based substrate can be improved more effectively.
- the impurity may be any one or more of boron, phosphorus, aluminum, gallium, arsenic, nitrogen, oxygen, and carbon.
- the above-mentioned elements can be suitably used as impurities doped in the silicon substrate.
- a first portion on the surface side having a first impurity concentration, and a second impurity concentration higher than the first impurity concentration and inside the first portion.
- the first impurity concentration is 1 ⁇ 10 14 atoms / cm 3 or more and less than 1 ⁇ 10 19 atoms / cm 3
- the thickness of the second portion is the first portion.
- a method for manufacturing a semiconductor device includes a step of manufacturing a silicon-based substrate thicker than the thickness of the portion, and a step of forming a nitride-based semiconductor layer on the surface of the silicon-based substrate.
- the semiconductor device of the present invention can be manufactured by such a method.
- the method includes a step of forming a nitride-based semiconductor layer on the surface of the silicon-based substrate, the silicon-based substrate is formed from the second portion inside the silicon-based substrate by a thermal history when forming the nitride-based semiconductor layer. Since the impurities are thermally diffused in the first portion on the surface side of the substrate, the first impurity concentration gradually decreases toward the surface.
- the concentration of the second impurity is 1 ⁇ 10 19 atoms / cm 3 or more and 1 ⁇ 10 20 atoms / cm 3 or less.
- the substrate strength can be increased more reliably and more effectively.
- the warpage of the silicon-based substrate can be improved.
- the step of producing the silicon-based substrate includes a step of preparing a silicon-based substrate having the second impurity concentration as a whole, and a silicon-based semiconductor layer having the first impurity concentration on the silicon-based substrate. Forming the layer by epitaxial growth.
- a silicon-based substrate having a first portion on the surface side having a first impurity concentration and an inner second portion having a second impurity concentration can be suitably produced.
- the step of manufacturing the silicon-based substrate includes a step of preparing a silicon-based substrate having the second impurity concentration as a whole, and heat-treating the silicon-based substrate to outwardly diffuse impurities on the substrate surface. Stages can be included.
- a silicon-based substrate having a first portion on the surface side having a first impurity concentration and an inner second portion having a second impurity concentration can be suitably produced.
- the thickness of the first portion is 1 ⁇ m or more and 10 ⁇ m or less.
- the second compound inside the silicon-based substrate is formed when the nitride-based compound semiconductor layer is formed. Since the impurity concentration on the surface of the silicon-based substrate does not increase due to the thermal diffusion of impurities from this portion, the crystallinity of the nitride-based compound semiconductor layer can be reliably improved.
- any one or more of boron, phosphorus, aluminum, gallium, arsenic, nitrogen, oxygen, and carbon can be suitably used as impurities doped in the silicon substrate.
- a silicon-based substrate that can satisfactorily maintain the crystallinity of the nitride-based compound semiconductor layer formed on the upper layer while improving the warpage of the substrate, a semiconductor device using the silicon-based substrate, and A method for manufacturing a semiconductor device can be provided.
- the present inventors have made extensive studies on a silicon-based substrate that can maintain the crystallinity of the nitride-based compound semiconductor layer formed on the upper layer while improving the warpage of the substrate.
- the impurity concentration of the first portion on the surface side of the silicon-based substrate is made lower than that of the second portion inside the silicon-based substrate, and the impurity concentration of this first portion is set to 1 ⁇ 10 14 atoms.
- the crystallinity of the nitride-based compound semiconductor layer formed thereon can be favorably maintained, and the inner second portion Therefore, the present inventors have found that it is possible to improve the warp of the silicon-based substrate that occurs when the nitride-based compound semiconductor layer is formed.
- FIG. 1 is a schematic sectional view showing an example of a silicon-based substrate of the present invention.
- FIG. 1A shows a silicon-based substrate when a silicon-based semiconductor layer having a first impurity concentration is formed by epitaxial growth on a silicon-based substrate having a second impurity concentration as a whole.
- FIG. 1B shows a silicon-based substrate formed by out-diffusion of impurities on the surface of the substrate by heat-treating the silicon-based substrate as a whole having the second impurity concentration.
- the silicon-based substrate 12 has a first portion 14 on the surface side and a second portion 13 inside the first portion 14.
- the first portion 14 is provided only on one surface side of the silicon-based substrate 12 (in the drawing, the upper surface side: only the side on which the nitride-based compound semiconductor layer is formed).
- the silicon-based substrate 12 is made of, for example, Si or SiC.
- the impurity concentration of the first portion 14 is 1 ⁇ 10 14 atoms / cm 3 or more and less than 1 ⁇ 10 19 atoms / cm 3 . If the impurity concentration is less than 1 ⁇ 10 19 atoms / cm 3 , the crystallinity of the nitride-based compound semiconductor layer formed thereon can be maintained satisfactorily. Further, if the impurity concentration is 1 ⁇ 10 14 atoms / cm 3 or more, the impurity concentration can be easily controlled.
- the impurity concentration of the first portion 14 is lower than the impurity concentration of the second portion 13. That is, the impurity concentration of the second portion 13 is higher than the impurity concentration of the first portion 14. Thereby, the intensity
- the impurity concentration of the second portion 13 is preferably 1 ⁇ 10 19 atoms / cm 3 or more and 1 ⁇ 10 20 atoms / cm 3 or less.
- the impurity concentration is 1 ⁇ 10 19 atoms / cm 3 or more, the warpage of the silicon-based substrate can be more effectively improved.
- the impurity concentration is 1 ⁇ 10 20 atoms / cm 3 or less, the crystallinity of the silicon-based substrate 12 can be maintained satisfactorily, whereby the nitride-based compound semiconductor layer formed thereon is formed. The crystallinity of can be maintained well.
- the thickness of the 1st part 14 is 1 micrometer or more and 10 micrometers or less, and the thickness of the 1st part 14 is thinner than the thickness of said 2nd part 13. If the thickness of the first portion 14 is 1 ⁇ m or more, even when a nitride-based compound semiconductor layer is formed as an upper layer, the diffusion of impurities from the second portion inside the silicon-based substrate causes the silicon-based Since the impurity concentration on the surface of the substrate does not increase, the crystallinity of the nitride-based compound semiconductor layer formed thereon can be reliably improved. Further, if the thickness of the first portion 14 is 10 ⁇ m or less, the thickness of the silicon-based substrate 12 will not be increased more than necessary. Further, since the thickness of the first portion 14 is thinner than the thickness of the second portion 13, the warpage of the silicon-based substrate can be reliably improved.
- the impurity doped into the silicon-based substrate 12 can be, for example, one or more of boron, phosphorus, aluminum, gallium, arsenic, nitrogen, oxygen, and carbon.
- the impurities doped in the silicon-based substrate 12 the above elements can be suitably used.
- the silicon-based substrate 12 ′ shown in FIG. 1B is the same as the silicon-based substrate 12 shown in FIG. 1A, but the first portion 14 ′ on the surface side is the silicon-based substrate 12 ′. The difference is that they are provided on the entire surface (that is, the upper surface, the lower surface, and the side surfaces). This is because the first portion 14 'is formed by outward diffusion by heat treatment. The bulk portion of the substrate becomes the second portion 13 ′.
- FIG. 2 is a schematic sectional view showing an example of the semiconductor device of the present invention.
- the semiconductor device 11 of the present invention shown in FIG. 2 includes a silicon substrate 12 of FIG. 1A, an initial layer 15 provided on the silicon substrate 12, and a buffer layer 16 provided on the initial layer 15. And an operation layer 22 provided on the buffer layer 16.
- the operation layer 22 includes a channel layer 19 and a barrier layer 20 provided on the channel layer 19.
- the first portion 14 on the surface side of the silicon-based substrate 12 has a lower impurity concentration than the second portion 13 inside the silicon-based substrate, and the first portion has a thickness of 1 ⁇ m or more and 10 ⁇ m or less,
- the impurity concentration of the first portion gradually decreases toward the surface, and the impurity concentration of the first portion becomes 1 ⁇ 10 14 atoms / cm 3 or more and less than 1 ⁇ 10 19 atoms / cm 3. Yes.
- the semiconductor device 11 further includes a first electrode 26, a second electrode 28, and a control electrode 30 provided on the operation layer 22.
- the first electrode 26 and the second electrode 28 are arranged so that a current flows from the first electrode 26 to the second electrode 28 via the two-dimensional electron gas 24 formed in the channel layer 19. Has been.
- the current flowing between the first electrode 26 and the second electrode 28 can be controlled by the potential applied to the control electrode 30.
- the buffer layer 16 has a multilayer structure in which first layers 17 and second layers 18 having different compositions from the first layers 17 are alternately stacked.
- the initial layer 15, the buffer layer 16, and the operation layer 22 constitute a nitride-based compound semiconductor layer 25.
- the silicon substrate 12 shown in FIG. 1A is used as the silicon substrate, but the silicon substrate 12 ′ shown in FIG. 1B can also be used as the silicon substrate. .
- the crystallinity of the nitride-based compound semiconductor layer formed on the upper layer of the substrate can be favorably maintained while improving the warpage of the substrate.
- a silicon-based substrate is produced. Specifically, the silicon substrate 12 shown in FIG. 1A or the silicon substrate 12 ′ shown in FIG.
- a silicon single crystal ingot having a second impurity concentration is produced by the CZ method or the like, and this is sliced to perform surface processing.
- a silicon-based substrate having a second impurity concentration as a whole is prepared, and a silicon-based semiconductor layer having a first impurity concentration lower than the second impurity concentration is epitaxially grown on the silicon-based substrate. it can.
- the first impurity concentration can be controlled by the concentration of dopant gas introduced during epitaxial growth.
- the thickness of the first portion 14 can be controlled by adjusting the thickness of the epitaxial layer to be grown.
- a silicon substrate having the second impurity concentration as a whole manufactured in the same manner as described above is prepared, and this silicon substrate is heat-treated. It can be produced by outward diffusion of impurities on the substrate surface.
- the first impurity concentration and the thickness of the first portion 14 ′ can be controlled by adjusting the temperature and time of the heat treatment for outward diffusion.
- the first portion on the surface side having the first impurity concentration, the second portion having the second impurity concentration higher than the first impurity concentration and inside the first portion The first impurity concentration is 1 ⁇ 10 14 atoms / cm 3 or more and less than 1 ⁇ 10 19 atoms / cm 3 , and the thickness of the second portion is thicker than the thickness of the first portion A substrate can be produced.
- the initial layer 15 is formed on the silicon substrate 12. Specifically, the initial layer 15 made of AlN is grown to 10 to 300 nm by MOVPE (metal organic chemical vapor deposition). Next, the buffer layer 16 is formed on the initial layer 15. Specifically, the first layer 17 made of AlN and the second layer 18 made of GaN are alternately grown by the MOVPE method. The film thickness of the first layer 17 is, for example, 3 to 7 nm, and the film thickness of the second layer 18 is, for example, 2 to 7 nm. This is repeated, for example, 1 to 15 times.
- MOVPE metal organic chemical vapor deposition
- the operation layer 22 is formed on the buffer layer 16. Specifically, a channel layer 19 made of GaN and a barrier layer 20 made of AlGaN are sequentially grown on the buffer layer 16 by the MOVPE method.
- the channel layer 19 has a film thickness of, for example, 1000 to 4000 nm
- the barrier layer 20 has a film thickness of, for example, 10 to 50 nm.
- the first electrode 26, the second electrode 28, and the control electrode 30 are formed on the barrier layer 20.
- the first electrode 26 and the second electrode 28 can be formed of, for example, a Ti / Al laminated film
- the control electrode 30 is formed of a lower layer film made of a metal oxide such as SiO or SiN, and Ni, Au, Mo, It can be formed of a laminated film of an upper film made of a metal such as Pt.
- the semiconductor device 11 shown in FIG. 2 is obtained by the manufacturing method described above.
- Example 1 As the silicon-based substrate, the silicon substrate 12 in which the boron concentration in the first portion 14 is 3 ⁇ 10 18 atoms / cm 3 and the boron concentration in the second portion 13 is 2 ⁇ 10 19 atoms / cm 3 is used.
- a semiconductor device was manufactured by the manufacturing method described above.
- the crystallinity of the upper nitride compound semiconductor layer and the amount of warpage of the substrate were measured. The crystallinity was measured by the half width (arcsec) of the peak waveform of XRD (X-ray diffraction). Further, as shown in FIG.
- the amount of warpage of the substrate was defined as the amount of warpage x as the difference between the height of the central portion of the substrate and the height of the outermost periphery of the substrate.
- warping in a convex shape means that when the nitride-based compound semiconductor layer is on the upper side, as shown in FIG. 4, the center of the substrate is warped so as to be higher.
- Table 1 The measurement results are shown in Table 1.
- Comparative Example 1 A semiconductor device was manufactured in the same manner as in Example 1. However, a single-layer silicon substrate having a boron concentration of 2 ⁇ 10 19 atoms / cm 3 was used as the silicon substrate. For the semiconductor device of Comparative Example 1, the crystallinity of the upper nitride compound semiconductor layer and the amount of warpage of the substrate were measured in the same manner as in Example 1. The measurement results are shown in Table 1.
- Comparative Example 2 A semiconductor device was manufactured in the same manner as in Example 1. However, a single-layer silicon substrate having a boron concentration of 3 ⁇ 10 18 atoms / cm 3 was used as the silicon substrate. For the semiconductor device of Comparative Example 2, the crystallinity of the upper nitride compound semiconductor layer and the amount of warpage of the substrate were measured in the same manner as in Example 1. The measurement results are shown in Table 1.
- Example 1 Referring to FIG. 3 reflecting the results of Table 1, in Comparative Example 1 and Comparative Example 2 having a single layer structure, the variation in the amount of warpage of the substrate is reduced and the crystallinity of the upper nitride-based compound semiconductor layer is improved. However, in Example 1, it can be seen that the reduction in variation in the amount of warpage of the substrate and the improvement in crystallinity of the upper nitride-based compound semiconductor layer are compatible.
- the present invention is not limited to the above embodiment.
- the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Recrystallisation Techniques (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
Description
他の手段として、シリコン基板の強度を高めることが考えられる。その方法として、例えばシリコン基板中のボロン濃度を1×1019atoms/cm3以上にするとシリコン基板の強度が増すとの報告がある(特許文献1を参照)。
すなわち、特許文献1で開示されているように、シリコン基板中のボロン濃度を高めると、シリコン基板上に成長した窒化物系化合物半導体層の結晶性が悪化するという問題が生じる。
図3は、基板の反り量(最大値)及び上層の窒化物系化合物半導体層の結晶性と、基板の不純物濃度との関係を表すグラフである。図3に示すように、基板の反り量(最大値)と、上層の窒化物系化合物半導体層の結晶性とは、基板の不純物濃度に対して、正反対の特性を示している。
すなわち、基板の不純物濃度を高くすると、基板の反り量(最大値)は低減する一方で、上層の窒化物系化合物半導体層の結晶性は悪くなる。逆に、基板の不純物濃度を低くすると、上層の窒化物系化合物半導体層の結晶性は良くなる一方で、基板の反り量(最大値)は増大する。
このように、シリコン系基板の内側の第二の部分が、1×1019atoms/cm3以上、1×1020atoms/cm3以下であることで、より効果的にシリコン系基板の反りを改善することができる。
このように、シリコン系基板の表面側の第一の部分の厚さが、1μm以上、10μm以下であれば、その上層に窒化物系化合物半導体層を形成した場合でも、シリコン系基板の内側の第二の部分からの不純物の拡散によって、シリコン系基板表面の不純物濃度が高くなることがないので、その上層に形成される窒化物系化合物半導体層の結晶性を確実に良くすることができる。
さらに、第一の部分の厚さが第二の部分の厚さより薄いことで、第二の部分の厚さを十分確保することができ、シリコン系基板の反りを確実に改善することができる。
シリコン系基板にドープされる不純物として、上記のような元素を好適に用いることができ、基板の強度を確実に高めることができる。
このように、シリコン系基板の内側の第二の部分が、1×1019atoms/cm3以上、1×1020atoms/cm3以下であることで、より確実に基板の強度が向上し、より効果的にシリコン系基板の反りを改善することができる。
シリコン系基板にドープされる不純物として、上記のような元素を好適に用いることができる。
このように、シリコン系基板の内側の第二の部分を、1×1019atoms/cm3以上、1×1020atoms/cm3以下とすることで、より確実に基板強度を上げ、より効果的にシリコン系基板の反りを改善することができる。
このような方法により、第一の不純物濃度を有する表面側の第一の部分と、第二の不純物濃度を有する内側の第二の部分とを有するシリコン系基板を好適に作製することができる。
このような方法により、第一の不純物濃度を有する表面側の第一の部分と、第二の不純物濃度を有する内側の第二の部分とを有するシリコン系基板を好適に作製することができる。
このように、シリコン系基板の表面側の第一の部分の厚さを、1μm以上、10μm以下とすることで、窒化物系化合物半導体層を形成する際に、シリコン系基板の内側の第二の部分からの不純物の熱拡散によって、シリコン系基板表面の不純物濃度が高くなることがないので、窒化物系化合物半導体層の結晶性を確実に良くすることができる。
シリコン系基板にドープされる不純物として、上記のような元素を好適に用いることができる。
前述のように、シリコン基板の反りを改善するためにシリコン基板中のボロン濃度を高めると、シリコン基板上に成長した窒化物系化合物半導体層の結晶性が悪化するという問題があった。
その結果、シリコン系基板の表面側の第一の部分を、シリコン系基板の内側の第二の部分より不純物濃度を低くし、かつ、この第一の部分の不純物濃度を、1×1014atoms/atomscm3以上、1×1019atoms/cm3未満とすることで、その上層に形成される窒化物系化合物半導体層の結晶性を良好に維持することができるとともに、内側の第二の部分の不純物濃度は高いので、窒化物系化合物半導体層を形成した時に発生するシリコン系基板の反りを改善することができることを見出し、本発明をなすに至った。
図1(a)は、全体が第二の不純物濃度を有するシリコン系基板上に、第一の不純物濃度を有するシリコン系半導体層をエピタキシャル成長することによって形成した場合のシリコン系基板を示している。
図1(b)は、全体が第二の不純物濃度を有するシリコン系基板を熱処理することによって、基板表面の不純物を外方拡散させることによって形成した場合のシリコン系基板を示している。
図1(a)に示すように、シリコン系基板12は、表面側の第一の部分14と、第一の部分14より内側の第二の部分13を有している。第一の部分14は、シリコン系基板12の一方の面側のみ(図中では、上面側:窒化物系化合物半導体層を形成する側のみ)に設けられている。
ここで、シリコン系基板12は、例えば、SiまたはSiCからなる。
不純物濃度が1×1019atoms/cm3未満であれば、その上層に形成される窒化物系化合物半導体層の結晶性を良好に維持することができる。
また、不純物濃度が1×1014atoms/cm3以上であれば、容易に不純物濃度を制御することができる。
第一の部分14の厚さが、1μm以上であれば、その上層に窒化物系化合物半導体層を形成した場合でも、シリコン系基板の内側の第二の部分からの不純物の拡散によって、シリコン系基板表面の不純物濃度が高くなることがないので、その上層に形成される窒化物系化合物半導体層の結晶性を確実に良くすることができる。
また、第一の部分14の厚さが、10μm以下であれば、シリコン系基板12の厚さが必要以上に厚くなることがなくなる。
さらに、第一の部分14の厚さが第二の部分13の厚さより薄いことで、シリコン系基板の反りを確実に改善することができる。
シリコン系基板12にドープされる不純物として、上記のような元素を好適に用いることができる。
図1(b)に示されるシリコン系基板12’は、図1(a)に示されるシリコン系基板12と同様であるが、表面側の第一の部分14’が、シリコン系基板12’の全表面(すなわち、上面、下面、及び、側面)に設けられている点が異なっている。
これは、熱処理による外方拡散により第一の部分14’を形成しているからである。そして、基板のバルク部が第二の部分13’となる。
図2は本発明の半導体装置の一例を示す概略断面図である。
図2に示される本発明の半導体装置11は、図1(a)のシリコン系基板12と、シリコン系基板12上に設けられた初期層15と、初期層15上に設けられたバッファ層16と、バッファ層16上に設けられた動作層22を有している。
動作層22は、チャネル層19と、チャネル層19上に設けられたバリア層20を有している。
半導体装置11において、第一電極26及び第二電極28は、第一電極26から、チャネル層19内に形成された二次元電子ガス24を介して、第二電極28に電流が流れるように配置されている。
第一電極26と第二電極28との間に流れる電流は、制御電極30に印可される電位によってコントロールすることができる。
また、初期層15、バッファ層16、動作層22は、窒化物系化合物半導体層25を構成している。
まず、シリコン系基板を作製する。具体的には図1(a)に示すシリコン系基板12、または、図1(b)に示すシリコン系基板12’を作製する。
図1(a)に示すシリコン系基板12を作製する場合は、例えば、CZ法等で第二の不純物濃度を有するシリコン単結晶インゴットを作製し、これをスライスして表面加工を施すことで、全体が第二の不純物濃度を有するシリコン系基板を準備し、このシリコン系基板上に、第二の不純物濃度より低い第一の不純物濃度を有するシリコン系半導体層をエピタキシャル成長させることによって作製することができる。
第一の不純物濃度は、エピタキシャル成長中に導入するドーパントガスの濃度によりコントロールすることができる。また、第一の部分14の厚さは、成長するエピタキシャル層の厚さを調整することによってコントロールすることができる。
第一の不純物濃度及び第一の部分14’の厚さは、外方拡散させる熱処理の温度と時間を調整することによりコントロールすることができる。
次に、初期層15上に、バッファ層16を形成する。具体的には、MOVPE法によって、AlNからなる第一の層17と、GaNからなる第二の層18とを交互に成長させる。第一の層17の膜厚は例えば、3~7nmであり、第二の層18の膜厚は例えば、2~7nmである。これを例えば、1~15回繰り返す。
シリコン系基板として、第一の部分14のボロン濃度が3×1018atoms/cm3で、第二の部分13のボロン濃度が2×1019atoms/cm3のシリコン基板12を用いて、上述した製造方法で半導体装置を作製した。
実施例1の半導体装置について、上層の窒化物系化合物半導体層の結晶性と、基板の反り量を測定した。
なお、結晶性は、XRD(X線回折)のピーク波形の半値幅(arcsec)により測定した。また、基板の反り量は、図4に示すように、基板の中央部の高さと、基板の最外周の高さの差を、反り量xと定義した。ここで、凸状に反るとは、窒化物系化合物半導体層が上になるようにした場合に、図4に示すように、基板中央部が高くなるように反ることを指している。
測定結果を表1に示す。
実施例1と同様にして、半導体装置を作製した。ただし、シリコン系基板として、ボロン濃度が2×1019atoms/cm3の単層のシリコン基板を用いた。
比較例1の半導体装置について、実施例1と同様にして、上層の窒化物系化合物半導体層の結晶性と、基板の反り量を測定した。
測定結果を表1に示す。
実施例1と同様にして、半導体装置を作製した。ただし、シリコン系基板として、ボロン濃度が3×1018atoms/cm3の単層のシリコン基板を用いた。
比較例2の半導体装置について、実施例1と同様にして、上層の窒化物系化合物半導体層の結晶性と、基板の反り量を測定した。
測定結果を表1に示す。
また、基板中のボロン濃度が全体的に低い比較例2は、上層の窒化物系化合物半導体層の結晶性は良好である一方で、基板の反り量のばらつき大きくなっている。
上記に対して、実施例1では、基板の反り量のばらつきを低減させつつ、上層の窒化物系化合物半導体層の結晶性を良好に維持している。
Claims (13)
- 表面に窒化物系化合物半導体層を形成させるためのシリコン系基板であって、
第一の不純物濃度を有する表面側の第一の部分と、
前記第一の不純物濃度より高い第二の不純物濃度を有し、前記第一の部分より内側の第二の部分とを有し、
前記第一の不純物濃度は1×1014atoms/cm3以上、1×1019atoms/cm3未満であることを特徴とするシリコン系基板。 - 前記第二の不純物濃度が、1×1019atoms/cm3以上、1×1020atoms/cm3以下であることを特徴とする請求項1に記載のシリコン系基板。
- 前記第一の部分の厚さが1μm以上、10μm以下であり、
前記第一の部分の厚さが前記第二の部分の厚さより薄いことを特徴とする請求項1又は請求項2に記載のシリコン系基板。 - 前記不純物が、ボロン、リン、アルミニウム、ガリウム、ヒ素、窒素、酸素、炭素のいずれか1つ以上であることを特徴とする請求項1乃至請求項3のいずれか一項に記載のシリコン系基板。
- 第一の不純物濃度を有する表面側の第一の部分と、前記第一の不純物濃度よりも高い第二の不純物濃度を有する前記第一の部分より内側の第二の部分とを有するシリコン系基板と、
前記シリコン系基板の表面に接するように形成された窒化物系化合物半導体層と、
前記窒化物系半導体層の前記シリコン系基板と反対側の面上に形成された電極とを有し、
前記第1の部分は1μm以上、10μm以下の厚さを有し、
前記第一の不純物濃度は、表面に向かって徐々に減少するとともに、前記シリコン系基板の表面における前記第一の不純物濃度は、1×1014atoms/cm3以上、1×1019atoms/cm3未満であることを特徴とする半導体装置。 - 前記第二の不純物濃度が、1×1019atoms/cm3以上、1×1020atoms/cm3以下であることを特徴とする請求項5に記載の半導体装置。
- 前記不純物が、ボロン、リン、アルミニウム、ガリウム、ヒ素、窒素、酸素、炭素のいずれか1つ以上であることを特徴とする請求項5又は請求項6に記載の半導体装置。
- 第一の不純物濃度を有する表面側の第一の部分と、前記第一の不純物濃度より高い第二の不純物濃度を有し前記第一の部分より内側の第二の部分とを有し、前記第一の不純物濃度が1×1014/cm3以上、1×1019/cm3未満であり、前記第二の部分の厚さが前記第一の部分の厚さより厚いシリコン系基板を作製する工程と、
前記シリコン系基板の表面に窒化物系半導体層を形成する工程とを有する半導体装置の製造方法。 - 前記第二の不純物濃度を1×1019atoms/cm3以上、1×1020atoms/cm3以下とすることを特徴とする請求項8に記載の半導体装置の製造方法。
- 前記シリコン系基板を作製する工程は、
全体が前記第二の不純物濃度を有するシリコン系基板を準備する段階と、
該シリコン系基板上に、前記第一の不純物濃度を有するシリコン系半導体層をエピタキシャル成長することによって形成する段階とを含むことを特徴とする請求項8又は請求項9に記載の半導体装置の製造方法。 - 前記シリコン系基板を作製する工程は、
全体が前記第二の不純物濃度を有するシリコン系基板を準備する段階と、
該シリコン系基板を熱処理することによって、基板表面の不純物を外方拡散させる段階を含むことを特徴とする請求項8又は請求項9に記載の半導体装置の製造方法。 - 前記第1の部分の厚さを、1μm以上、10μm以下とすることを特徴とする請求項8乃至11のいずれか一項に記載の半導体装置の製造方法。
- 前記不純物として、ボロン、リン、アルミニウム、ガリウム、ヒ素、窒素、酸素、炭素のいずれか1つ以上を用いることを特徴とする請求項8乃至請求項12のいずれか一項に記載の半導体装置の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480031035.XA CN105264644B (zh) | 2013-05-31 | 2014-05-02 | 硅系基板、半导体装置及半导体装置的制造方法 |
US14/892,373 US9673052B2 (en) | 2013-05-31 | 2014-05-02 | Silicon-based substrate having first and second portions |
US15/585,518 US9966259B2 (en) | 2013-05-31 | 2017-05-03 | Silicon-based substrate, semiconductor device, and method for manufacturing semiconductor device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013116208A JP2014236093A (ja) | 2013-05-31 | 2013-05-31 | シリコン系基板、半導体装置、及び、半導体装置の製造方法 |
JP2013-116208 | 2013-05-31 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/892,373 A-371-Of-International US9673052B2 (en) | 2013-05-31 | 2014-05-02 | Silicon-based substrate having first and second portions |
US15/585,518 Division US9966259B2 (en) | 2013-05-31 | 2017-05-03 | Silicon-based substrate, semiconductor device, and method for manufacturing semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014192228A1 true WO2014192228A1 (ja) | 2014-12-04 |
Family
ID=51988283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/002405 WO2014192228A1 (ja) | 2013-05-31 | 2014-05-02 | シリコン系基板、半導体装置、及び、半導体装置の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (2) | US9673052B2 (ja) |
JP (1) | JP2014236093A (ja) |
CN (1) | CN105264644B (ja) |
TW (1) | TWI569328B (ja) |
WO (1) | WO2014192228A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024116511A1 (ja) * | 2022-11-28 | 2024-06-06 | 信越半導体株式会社 | ヘテロエピタキシャル用単結晶シリコン基板、エピタキシャル基板、半導体装置、及び、ヘテロエピタキシャル用単結晶シリコン基板の製造方法 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5756830B2 (ja) * | 2013-05-31 | 2015-07-29 | サンケン電気株式会社 | 半導体基板、半導体装置、及び、半導体装置の製造方法 |
US10526728B2 (en) * | 2014-06-02 | 2020-01-07 | Sumco Corporation | Silicon wafer and method for manufacturing same |
US10026816B2 (en) * | 2015-03-30 | 2018-07-17 | Infineon Technologies Ag | Semiconductor wafer and manufacturing method |
CN105762247A (zh) * | 2016-03-02 | 2016-07-13 | 厦门乾照光电股份有限公司 | 一种具有复合结构的氮化物缓冲层制作方法 |
CN105609603A (zh) | 2016-03-02 | 2016-05-25 | 厦门乾照光电股份有限公司 | 一种具有复合结构的氮化物缓冲层 |
CN108780235B (zh) * | 2016-03-18 | 2021-12-14 | 日本电信电话株式会社 | 光调制器 |
KR102374879B1 (ko) * | 2017-12-19 | 2022-03-15 | 가부시키가이샤 사무코 | Ⅲ족 질화물 반도체 기판의 제조 방법 |
US10644142B2 (en) * | 2017-12-22 | 2020-05-05 | Nxp Usa, Inc. | Semiconductor devices with doped regions functioning as enhanced resistivity regions or diffusion barriers, and methods of fabrication therefor |
JP2020098839A (ja) * | 2018-12-17 | 2020-06-25 | 信越半導体株式会社 | 窒化物半導体ウェーハの製造方法および窒化物半導体ウェーハ |
CN111863590B (zh) * | 2019-04-24 | 2023-05-16 | 世界先进积体电路股份有限公司 | 衬底结构及包含其半导体结构的制造方法 |
JP6863423B2 (ja) * | 2019-08-06 | 2021-04-21 | 信越半導体株式会社 | 電子デバイス用基板およびその製造方法 |
US11183563B2 (en) * | 2019-10-04 | 2021-11-23 | Vanguard International Semiconductor Corporation | Substrate structure and method for fabricating semiconductor structure including the substrate structure |
JP7487726B2 (ja) * | 2021-11-30 | 2024-05-21 | 信越半導体株式会社 | 窒化物半導体基板及びその製造方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2713310B2 (ja) * | 1989-08-24 | 1998-02-16 | 富士通株式会社 | 高強度シリコンウェハの製造方法 |
JP2000174034A (ja) * | 1998-12-09 | 2000-06-23 | Furukawa Electric Co Ltd:The | ヘテロ接合型窒化物半導体装置 |
JP2005158846A (ja) * | 2003-11-21 | 2005-06-16 | Sanken Electric Co Ltd | 半導体素子形成用板状基体及びその製造方法 |
JP2010153817A (ja) * | 2008-11-27 | 2010-07-08 | Dowa Electronics Materials Co Ltd | 電子デバイス用エピタキシャル基板およびその製造方法 |
JP2011103380A (ja) * | 2009-11-11 | 2011-05-26 | Covalent Materials Corp | 化合物半導体基板 |
JP2012051774A (ja) * | 2010-09-03 | 2012-03-15 | Covalent Materials Corp | 化合物半導体基板 |
JP2013084913A (ja) * | 2012-08-15 | 2013-05-09 | Toshiba Corp | 窒化物半導体ウェーハ、窒化物半導体装置及び窒化物半導体結晶の成長方法 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3249831A (en) * | 1963-01-04 | 1966-05-03 | Westinghouse Electric Corp | Semiconductor controlled rectifiers with a p-n junction having a shallow impurity concentration gradient |
JPH0518935A (ja) * | 1991-07-11 | 1993-01-26 | Kobe Steel Ltd | ダイヤモンド薄膜イオンセンサ |
JP3354717B2 (ja) * | 1994-06-22 | 2002-12-09 | 日清製粉株式会社 | 麺用粉および麺類 |
US6803243B2 (en) * | 2001-03-15 | 2004-10-12 | Cree, Inc. | Low temperature formation of backside ohmic contacts for vertical devices |
US20040053326A1 (en) * | 2001-03-14 | 2004-03-18 | Emmert-Buck Michael R. | Transfer microdessection |
CN100453712C (zh) | 2003-08-28 | 2009-01-21 | 日立电线株式会社 | Ⅲ-ⅴ族氮化物系半导体衬底及其制造方法 |
JP2005101475A (ja) | 2003-08-28 | 2005-04-14 | Hitachi Cable Ltd | Iii−v族窒化物系半導体基板及びその製造方法 |
US7411218B2 (en) * | 2004-03-19 | 2008-08-12 | Fairchild Semiconductor Corporation | Method and device with durable contact on silicon carbide |
JP2007242853A (ja) * | 2006-03-08 | 2007-09-20 | Sanken Electric Co Ltd | 半導体基体及びこれを使用した半導体装置 |
JP4528986B2 (ja) * | 2006-03-31 | 2010-08-25 | 国立大学法人北海道大学 | カーボンナノチューブ電界効果トランジスタおよびその製造方法 |
CN101340784A (zh) * | 2007-07-04 | 2009-01-07 | 深圳富泰宏精密工业有限公司 | 电子装置机壳及其制造方法 |
JP2009034926A (ja) * | 2007-08-02 | 2009-02-19 | Sumitomo Electric Ind Ltd | 樹脂パターン形成方法 |
KR101287787B1 (ko) | 2007-09-12 | 2013-07-18 | 쇼와 덴코 가부시키가이샤 | 에피택셜 SiC 단결정 기판 및 에피택셜 SiC 단결정 기판의 제조 방법 |
US7989329B2 (en) | 2007-12-21 | 2011-08-02 | Applied Materials, Inc. | Removal of surface dopants from a substrate |
US20110089967A1 (en) * | 2008-04-21 | 2011-04-21 | Sanghee Kim | Mems probe card and manufacturing method thereof |
JP5439675B2 (ja) * | 2010-09-21 | 2014-03-12 | 株式会社シリコンテクノロジー | 窒化物半導体形成用基板及び窒化物半導体 |
US8513703B2 (en) * | 2010-10-20 | 2013-08-20 | National Semiconductor Corporation | Group III-nitride HEMT with multi-layered substrate having a second layer of one conductivity type touching a top surface of a first layers of different conductivity type and a method for forming the same |
TWI414004B (zh) * | 2010-10-25 | 2013-11-01 | Univ Nat Chiao Tung | 具有氮化鎵層的多層結構基板及其製法 |
CN103907049B (zh) * | 2011-10-26 | 2016-09-07 | 株式会社藤仓 | 光学元件以及马赫-曾德型光波导元件 |
JP2013229493A (ja) * | 2012-04-26 | 2013-11-07 | Sharp Corp | Iii族窒化物半導体積層基板およびiii族窒化物半導体電界効果トランジスタ |
JP2014022698A (ja) * | 2012-07-24 | 2014-02-03 | Dowa Holdings Co Ltd | 窒化物半導体成長用Si基板およびそれを用いた電子デバイス用エピタキシャル基板およびそれらの製造方法 |
-
2013
- 2013-05-31 JP JP2013116208A patent/JP2014236093A/ja active Pending
-
2014
- 2014-05-02 US US14/892,373 patent/US9673052B2/en active Active
- 2014-05-02 CN CN201480031035.XA patent/CN105264644B/zh active Active
- 2014-05-02 WO PCT/JP2014/002405 patent/WO2014192228A1/ja active Application Filing
- 2014-05-16 TW TW103117346A patent/TWI569328B/zh active
-
2017
- 2017-05-03 US US15/585,518 patent/US9966259B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2713310B2 (ja) * | 1989-08-24 | 1998-02-16 | 富士通株式会社 | 高強度シリコンウェハの製造方法 |
JP2000174034A (ja) * | 1998-12-09 | 2000-06-23 | Furukawa Electric Co Ltd:The | ヘテロ接合型窒化物半導体装置 |
JP2005158846A (ja) * | 2003-11-21 | 2005-06-16 | Sanken Electric Co Ltd | 半導体素子形成用板状基体及びその製造方法 |
JP2010153817A (ja) * | 2008-11-27 | 2010-07-08 | Dowa Electronics Materials Co Ltd | 電子デバイス用エピタキシャル基板およびその製造方法 |
JP2011103380A (ja) * | 2009-11-11 | 2011-05-26 | Covalent Materials Corp | 化合物半導体基板 |
JP2012051774A (ja) * | 2010-09-03 | 2012-03-15 | Covalent Materials Corp | 化合物半導体基板 |
JP2013084913A (ja) * | 2012-08-15 | 2013-05-09 | Toshiba Corp | 窒化物半導体ウェーハ、窒化物半導体装置及び窒化物半導体結晶の成長方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024116511A1 (ja) * | 2022-11-28 | 2024-06-06 | 信越半導体株式会社 | ヘテロエピタキシャル用単結晶シリコン基板、エピタキシャル基板、半導体装置、及び、ヘテロエピタキシャル用単結晶シリコン基板の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US9673052B2 (en) | 2017-06-06 |
US20160126099A1 (en) | 2016-05-05 |
TWI569328B (zh) | 2017-02-01 |
CN105264644A (zh) | 2016-01-20 |
US20170236711A1 (en) | 2017-08-17 |
US9966259B2 (en) | 2018-05-08 |
TW201519315A (zh) | 2015-05-16 |
JP2014236093A (ja) | 2014-12-15 |
CN105264644B (zh) | 2018-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014192228A1 (ja) | シリコン系基板、半導体装置、及び、半導体装置の製造方法 | |
JP5665676B2 (ja) | Iii族窒化物エピタキシャル基板およびその製造方法 | |
JP5520056B2 (ja) | 中間層構造を有する窒化物半導体構造、及び中間層構造を有する窒化物半導体構造を製造する方法 | |
JP5804768B2 (ja) | 半導体素子及びその製造方法 | |
TWI447959B (zh) | 製造氮化物半導體晶體層的方法 | |
JP5818853B2 (ja) | n型窒化アルミニウム単結晶基板を用いた縦型窒化物半導体デバイス | |
JP2013026321A (ja) | 窒化物系半導体層を含むエピタキシャルウエハ | |
JP6592524B2 (ja) | SiC層を備えた化合物半導体基板 | |
TWI683372B (zh) | 半導體元件及其形成方法 | |
JP6126906B2 (ja) | 窒化物半導体エピタキシャルウェハ | |
WO2016013262A1 (ja) | 窒化ガリウム基板 | |
JP7089176B2 (ja) | 窒化アルミニウム膜の形成方法 | |
JP6089122B2 (ja) | 窒化物半導体積層体およびその製造方法並びに窒化物半導体装置 | |
JP2016195241A (ja) | 窒化物半導体基板 | |
JP5756830B2 (ja) | 半導体基板、半導体装置、及び、半導体装置の製造方法 | |
JP6101565B2 (ja) | 窒化物半導体エピタキシャルウェハ | |
JP6224424B2 (ja) | Iii族窒化物半導体自立基板の製造方法 | |
WO2015198492A1 (ja) | エピタキシャルウェーハの製造方法およびエピタキシャルウェーハ | |
JP6556664B2 (ja) | 窒化物半導体基板 | |
KR101517808B1 (ko) | 크랙 감소를 위한 실리콘 기판 위 GaN 성장방법 | |
JP2014216474A (ja) | 窒化物半導体基板 | |
JP2014192246A (ja) | 半導体基板およびそれを用いた半導体素子 | |
JP7663060B2 (ja) | 窒化物半導体基板の製造方法 | |
TW201513176A (zh) | 半導體晶圓以及生產半導體晶圓的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480031035.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14803715 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14892373 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14803715 Country of ref document: EP Kind code of ref document: A1 |