[go: up one dir, main page]

WO2014192043A1 - Method for press-molding steel pipe and method for producing steel pipe - Google Patents

Method for press-molding steel pipe and method for producing steel pipe Download PDF

Info

Publication number
WO2014192043A1
WO2014192043A1 PCT/JP2013/003435 JP2013003435W WO2014192043A1 WO 2014192043 A1 WO2014192043 A1 WO 2014192043A1 JP 2013003435 W JP2013003435 W JP 2013003435W WO 2014192043 A1 WO2014192043 A1 WO 2014192043A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
open
seam gap
press
steel
Prior art date
Application number
PCT/JP2013/003435
Other languages
French (fr)
Japanese (ja)
Inventor
正之 堀江
征哉 田村
俊博 三輪
宏司 堀際
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201380077095.0A priority Critical patent/CN105246609B/en
Priority to RU2015155551A priority patent/RU2648813C2/en
Priority to PCT/JP2013/003435 priority patent/WO2014192043A1/en
Priority to EP13885877.4A priority patent/EP3006129B1/en
Priority to JP2015519499A priority patent/JP5967302B2/en
Publication of WO2014192043A1 publication Critical patent/WO2014192043A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/01Bending sheet metal along straight lines, e.g. to form simple curves between rams and anvils or abutments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/01Bending sheet metal along straight lines, e.g. to form simple curves between rams and anvils or abutments
    • B21D5/015Bending sheet metal along straight lines, e.g. to form simple curves between rams and anvils or abutments for making tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • B21C37/0815Making tubes with welded or soldered seams without continuous longitudinal movement of the sheet during the bending operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects

Definitions

  • the present invention relates to a method for forming a thick-walled steel pipe by press bending and a method for manufacturing the steel pipe.
  • edge bending bending processing
  • the two dies 1a and 1b of the lower mold are adjusted to a predetermined interval, the steel sheet S is set thereon, and the tip of the punch 2 of the upper mold The punch tip 22 is pushed into a position corresponding to the distance between the two dies 1a and 1b, bending deformation is performed, and then the steel sheet S is moved by a predetermined length in the width direction and the upper die is pushed again. Repeat once.
  • the steel sheet is sequentially formed from the end (A in the figure) on the one side in the width direction of the steel sheet toward the center part (C in the figure) in the width direction of the steel sheet (first half), and formed to the front of the center part in the width direction of the steel sheet.
  • the steel sheet is formed in order from the end (B in the drawing) on the opposite side in the steel plate width direction toward the central portion (C in the drawing) in the steel plate width direction (second half), and finally the central portion in the steel plate width direction (in the drawing).
  • an open pipe is manufactured, which is a tubular body that is formed into a cylindrical shape and whose plate ends facing each other are not welded.
  • the dotted line is the position of the steel sheet S in a state where the punch 2 is not in contact with the steel sheet S.
  • table rollers (not shown) are provided on the left and right sides of the dies 1a and 1b.
  • the table roller can support the points B and C in a dotted line shape in the upper left diagram of FIG. 3 and can convey the steel plate S in the left-right direction in the drawing.
  • Fig. 4 is a schematic diagram of an open tube.
  • the open tube 3 is a tube in which a plate material as a material is formed into a cylindrical shape, and plate end portions (open seam edges) 31 a and 31 b facing each other are not welded. .
  • a gap g between facing open seam edges is a seam gap.
  • the tube axis direction L of the open tube 3 coincides with the longitudinal direction of the punch.
  • the open pipe is then transported in the longitudinal direction of the steel pipe (the direction perpendicular to the paper surface) and sent to the next process. For this reason, after the final pass forming, which is the final bending process, the seam gap g of the open tube 3 must be wider than the thickness of the punch beam 21 that supports the punch tip 22 of the upper mold.
  • the above-mentioned seam gap g of the open pipe 3 is constrained by a reduction device, and in this state, the abutted open seam edges are welded by a welding machine to obtain a straight seam welded steel pipe. If necessary, the cylindrical shape is corrected by expanding or reducing the diameter of the welded steel pipe.
  • a press die provided with a mechanism for adjusting the interval between the dies of the lower die disclosed in Patent Document 1 can be used.
  • the seam gap is required to be as small as possible in the final press at the bending press.
  • the final press adjusts the open pipe seam gap by gradually increasing the amount of punch reduction.
  • the punch press amount of the final press is increased, the seam gap amount is decreased. Conversely, when the punch press amount is small, the seam gap amount is increased.
  • the punch reduction amount is increased, and even after the open seam edge contacts the punch support portion, the punch reduction amount is further increased. There is a technology to bend the open pipe.
  • the yield strength of the steel sheet also affects the seam gap. This is because when the steel sheet is subjected to bending deformation, the amount of springback after the bending deformation varies depending on the yield strength of the steel sheet. For example, when the final pass press molding is performed under the same pressing conditions and the press load is completely removed, the seam gap is small when the yield strength of the steel sheet S is low, and the seam gap is high when the yield strength of the steel sheet S is high. Becomes larger.
  • the seam gap tends to be large because it is usually noted that the amount of punch reduction is not excessive.
  • the variation in the seam gap is also increased. If the seam gap is too large, the restraining force required to close and restrain the seam gap during welding becomes large, so that the reduction device becomes large. Further, in order to cope with variations in the seam gap, it takes a lot of time to manually adjust the reduction amount of the reduction device in the welding machine.
  • the bending shape can be adjusted by adjusting the die interval of the lower mold.
  • the second step adjusts the die interval of the lower mold and performs correction processing. .
  • the unloaded state that is, the bending shape in the state where the spring back is generated is measured, and according to the measurement result
  • the correction process as the second step is performed. Therefore, in order to reset the die interval of the lower mold, it takes time for the resetting.
  • an object of the present invention is to provide a method for press forming a steel pipe with little variation in seam gap.
  • the gist of the present invention is as follows.
  • the open pipe as the molding material is subjected to the specific seam gap during the final press bending process.
  • the method of press forming a steel pipe characterized in that the open pipe is subjected to processing of the additional reduction amount based on the above relationship from the state.
  • [3] A method for manufacturing a steel pipe, characterized in that an open seam edge of an open pipe formed by the press forming method according to [1] or [2] is butted and welded.
  • FIG. 1 is a diagram showing the relationship between the yield strength difference and the seam gap according to the present invention.
  • FIG. 2 is a diagram showing the relationship between the yield strength difference and the seam gap according to the prior art.
  • FIG. 3 is a schematic diagram for explaining a forming process in the steel pipe manufacturing process.
  • FIG. 4 is a schematic diagram of an open tube.
  • FIG. 5 is a schematic diagram for explaining the end bending molding process, FIG. 5A shows a set state during end bending, FIG. 5B shows a state after end bending load, and FIG. 5C shows a state after end bending unloading.
  • FIG. 6 is a schematic diagram for explaining the press forming process, FIG. 6A shows a loaded state, FIG. 6B shows a state after unloading, and FIG. 6C shows a tube cross-sectional shape after press forming.
  • the range from the upper limit to the lower limit of the yield strength of welded steel pipes of X80 grade is 138 MPa.
  • the yield strength range is about the same in the steel plate.
  • the steel sheet as a raw material is manufactured by the TMCP method, and therefore the yield strength is likely to vary due to variations in the component conditions, rolling conditions, and cooling conditions.
  • end bending was performed as shown in FIG.
  • 41 is an end bending lower mold
  • 42 is an end bending upper mold.
  • End bending was performed so that the end bending angle j (FIG. 5B) was 28 degrees during press loading in a range h (FIG. 5A) having a width of 240 mm at the end in the width direction of the steel plate.
  • the bending angle k (FIG. 5C) at the end in the width direction of the steel plate after the unloading of the press load was 23 degrees.
  • the punch 2 (upper die) having a radius R of the punch tip 22 shown in FIG. 6A was bent 11 times sequentially from the steel plate width direction end to the steel plate width direction.
  • the molding method at this time is shown in FIG.
  • the punch 2 (upper die) is composed of a punch beam 21 and a punch tip 22 and the lower die is composed of dies 1a and 1b.
  • the total value of the eleven bending angles and the bending angle of the end bending are combined to obtain the entire bending angle (f in FIG. 6C) excluding the seam gap.
  • the amount of bending is generally adjusted by directly controlling the amount of movement of the punch 2 with a press device.
  • the amount by which the punch 2 is lowered from the state in which the punch tip 22 is in contact with the upper surface position of the steel plate (hereinafter, the amount by which the punch 2 is lowered from a certain reference point is referred to as the amount of reduction, and unless otherwise specified, the upper surface of the steel plate. Processing was performed with a fixed position).
  • FIG. 2 shows the relationship between the yield strength difference, which is the difference in the yield strength of the steel plate with respect to 640 MPa, which is the standard value of the yield strength of the steel plate, and the seam gap when unloaded after pressing.
  • the bending process in the intermediate process is performed by the conventional forming method, and the relationship between the yield strength difference when the amount of reduction in the final forming pass (11th) is changed and the seam gap in the unloaded state after pressing. Is shown in FIG. In FIG. 1, the result (graph b) of the prior art shown in FIG. 2 is entered for reference.
  • Graph c is an example of the present invention, in which the open seam edge is further reduced by 9 mm after contacting the punch beam 21 of the upper mold so that the deformation amount in the final forming pass (the 11th time) is the same.
  • the difference in seam gap in the unloaded state after pressing is as small as 20 mm, and it can be seen that a substantially uniform seam gap can be obtained regardless of the yield strength of the steel sheet.
  • Graph a is an example where the open seam edge is rolled down until it touches the punch beam part of the upper mold. Compared to the prior art (graph b, constant reduction), the deviation of the seam gap in the unloaded state after pressing is smaller, but the seam gap in the unloaded state is larger than in the above-described example of the present invention. .
  • both of the open seam edges are in contact with the two punch beams 21 as seam gaps as an index of a specific shape in the middle of the final press in which the amount of reduction to be further added is constant.
  • the time point was adopted.
  • the amount of reduction to be further added is preliminarily preformed or refer to past production results. To grasp and decide.
  • the seam gap is the punch beam 21.
  • the present invention is not limited to this.
  • the determination that the seam gap has reached a specific value can be made by using, for example, a detector that can measure the end position of the plate at any time or a simple detector that determines that a certain position has been reached. Is possible.
  • a light emitter and a light receiver are provided in the punch beam 21, and the amount of light received by the light receiver changes due to the open seam edge of the open tube blocking the route from the light projector to the light receiver.
  • the position of the edge can be detected. Further, if the time point when the open seam edge comes into contact with the punch beam 21 of the upper mold 2 is detected, the position of the plate end portion is not always measured. For example, it can be realized by changing the electrical continuity state due to the contact between the open seam edge and the punch beam 21 or by providing a piezoelectric element in the planned contact portion in advance to confirm the presence or absence of the contact. .
  • a signal may be sent to the reduction control device of the press forming apparatus, and the additional reduction amount determined in advance may be separately processed using this signal as a trigger.
  • the additional reduction amount can be measured by measuring the movement amount of the punch 2.
  • the specific seam gap is the same as the thickness of the punch beam 21, that is, when the time point when the open seam edge contacts the punch beam 21 is used as a reference, the open seam edge that contacts the punch beam 21 is the punch beam 21. It is also possible to detect the amount of sliding up 21 and control the amount of additional reduction based on the amount of sliding up.
  • the open seam gap of the open pipe is continuously tack-welded using the continuous tack welding apparatus, and then the inner surface is welded and then the outer surface is welded.
  • the main welding may be performed in the order of welding.
  • the roundness of the steel pipe can be improved by expanding the pipe with the pipe expanding apparatus using the pipe expanding apparatus.
  • the pipe expansion ratio ratio of the outer diameter change amount before and after the pipe expansion to the outer diameter of the pipe before the pipe expansion
  • the tube expansion rate is preferably in the range of 0.5% to 1.2%.
  • the upper die punch 2 uses a punch tip 22 having a radius of R415 mm, and the lower die 1 has an R100 mm die interval of 540 mm (the interval is two dice 1a of the lower die, 1b), and was divided into 11 times.
  • the thickness of the punch beam 21 is 100 mm.
  • Table 1 shows the width direction set position from the first pass to the tenth pass (distance from the center of the plate width at the center of the two dies of the lower mold) and the amount of reduction.
  • the amount of reduction was determined such that when the yield strength of the steel sheet was 615 MPa, the bending at the entire circumference excluding the seam gap portion was the sum of the end bending and the 11 press formings.
  • passes 1 to 5 mean the first half process
  • passes 6 to 10 mean the second half process.
  • Passes 1 to 5 corresponding to the first half of the process are sequentially formed from one end in the width direction of the steel sheet toward the center in the width direction of the steel sheet, and are formed to the front by the width of one press at the center in the width direction of the steel sheet.
  • the passes 6 to 10 corresponding to the latter half process are sequentially formed from the opposite end of the steel plate in the width direction toward the center portion in the steel plate width direction.
  • rolling is applied to the central part in the width direction of the steel sheet.
  • the steel plate width direction position shown in Table 1 (the steel plate width direction position in the table is the distance in the A direction from the center C of the steel plate +, the B direction)
  • the steel plate was pressed for 10 passes, and then the 11th pass was pressed to measure the seam gap in the unloaded state after pressing.
  • the results (relationship between steel plate yield strength and seam gap after pressing) are shown in Table 2.
  • the center of the plate width is set to be the center of the lower die, and in the present invention example, the width of the steel plate is set so that the seam gap after pressing is 125 mm with a steel plate having a yield strength of 615 MPa.
  • the reduction amount which is the amount by which the punch 2 is lowered from the upper surface position of the steel plate so as to have a seam gap of 100 mm in the unloaded state after pressing with a 560 MPa steel plate having the lowest yield strength, is 48. It was 6 mm.
  • Comparative Example 2 first, the oven seam edge of the open tube is rolled down until it comes into contact with the punch beam 21, and the seam gap in the unloaded state after the press is confirmed. After adjusting the interval, the reduction was repeated again.
  • Comparative Example 1 although the time required for press forming is slightly shorter, in the steel plate J having the lowest yield strength, the open seam edge is in a state of sandwiching the punch beam 21, so that the forming material (open tube) is taken out. Since it was necessary to stop the line, it was difficult to adopt as industrial production.
  • Comparative Example 2 although the shape is stable, the required time is 1.4 times that of the present invention example, and the production efficiency is inferior.
  • the steel pipe press forming method and the steel pipe manufacturing method of the present invention are not limited to the manufacturing of large-diameter and thick-walled steel pipes, and can be applied to all methods of manufacturing steel pipes by performing a three-point bending press. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

Provided are: a method for press-molding a steel pipe having a low variability of the seam gap at an abutted section; and a method for producing a steel pipe. The method molds a steel pipe by subjecting a steel plate to a plurality of repetitions of press bending processing to mold the steel plate and is characterized in that, from the state in which an open pipe that is the molded member has a specific seam gap during the final repetition of press bending processing, in accordance with a predetermined relationship between the specific seam gap and a further needed additional rolling reduction, subjects the open pipe to additional rolling reduction processing that is on the basis of the relationship from the state in which the open pipe that is the molded member has the specific seam gap during the final repetition of press bending processing.

Description

鋼管のプレス成形方法および鋼管の製造方法Steel pipe press forming method and steel pipe manufacturing method
 本発明は、プレス曲げ加工による厚肉鋼管の成形方法および鋼管の製造方法に関するものである。 The present invention relates to a method for forming a thick-walled steel pipe by press bending and a method for manufacturing the steel pipe.
 厚肉鋼管の成形方法として、図3に示す上下金型を用いたプレス成形方法(以下、ベンディングプレス(bending press)とも呼ぶ)がある。 As a method for forming a thick-walled steel pipe, there is a press forming method using an upper and lower mold shown in FIG. 3 (hereinafter also referred to as a bending press).
 該成形方法は、所定の幅、長さを有する鋼板を、長さ方向を管軸方向とする鋼管に成形する際に、前記鋼板の幅端部に曲げ加工(以下端曲げ(edge crimping)と呼ぶ)を行い、続いて鋼板幅方向に複数回の曲げ加工を行い円筒に成形する方法である。 In the forming method, when a steel plate having a predetermined width and length is formed into a steel pipe whose length direction is the pipe axis direction, bending processing (hereinafter referred to as edge bending) is performed on the width end portion of the steel plate. And then bending it a plurality of times in the width direction of the steel sheet to form a cylinder.
 端曲げに引き続く本成形工程では、図3に示すように下金型の2つのダイス1a、1bを所定間隔に調整し、その上に鋼板Sをセットし、上金型のパンチ2の先端部であるパンチ先端部22を2つのダイス1a、1b間に相当する位置に押し込むことで曲げ変形を加え、次に鋼板Sを幅方向に所定長さ移動し、再度上金型を押し込むことを複数回繰り返す。 In the main forming step subsequent to the end bending, as shown in FIG. 3, the two dies 1a and 1b of the lower mold are adjusted to a predetermined interval, the steel sheet S is set thereon, and the tip of the punch 2 of the upper mold The punch tip 22 is pushed into a position corresponding to the distance between the two dies 1a and 1b, bending deformation is performed, and then the steel sheet S is moved by a predetermined length in the width direction and the upper die is pushed again. Repeat once.
 通常は、鋼板の幅方向一方側の端部(図中A)から該鋼板の幅方向中央部(図中C)に向かって順次成形し(前半)、前記鋼板幅方向中央部の手前まで成形した後、前記鋼板幅方向反対側の端部(図中B)から前記鋼板幅方向中央部(図中C)に向かって順次成形し(後半)、最後に前記鋼板幅方向中央部(図中C)に圧下を加える(最終)。このようにして、円筒状に成形して互いに向かい合う板端部が溶接されていない状態の管体であるオープン管が製造される。なお、図3において、点線は、パンチ2が鋼板Sに接触していない状態の鋼板Sの位置である。図3において、ダイス1a、1bの左右には図示しないテーブルローラが設けられている。テーブルローラは、例えば図3の左上図の点線状にB点やC点を支持するとともに、鋼板Sを図中の左右方向に搬送することが可能である。 Usually, the steel sheet is sequentially formed from the end (A in the figure) on the one side in the width direction of the steel sheet toward the center part (C in the figure) in the width direction of the steel sheet (first half), and formed to the front of the center part in the width direction of the steel sheet. After that, the steel sheet is formed in order from the end (B in the drawing) on the opposite side in the steel plate width direction toward the central portion (C in the drawing) in the steel plate width direction (second half), and finally the central portion in the steel plate width direction (in the drawing). Apply a reduction to C) (final). In this way, an open pipe is manufactured, which is a tubular body that is formed into a cylindrical shape and whose plate ends facing each other are not welded. In FIG. 3, the dotted line is the position of the steel sheet S in a state where the punch 2 is not in contact with the steel sheet S. In FIG. 3, table rollers (not shown) are provided on the left and right sides of the dies 1a and 1b. For example, the table roller can support the points B and C in a dotted line shape in the upper left diagram of FIG. 3 and can convey the steel plate S in the left-right direction in the drawing.
 図4はオープン管の模式図である。図4に示すようにオープン管3は素材である板材を円筒状に成形して、互いに向かい合う板端部(オープンシームエッジ(open seam edges))31a、31bが溶接されていない状態の管である。向かい合うオープンシームエッジの間隔gがシームギャップ(seam gap)である。オープン管3の管軸方向Lは、パンチの長手方向と一致する。 Fig. 4 is a schematic diagram of an open tube. As shown in FIG. 4, the open tube 3 is a tube in which a plate material as a material is formed into a cylindrical shape, and plate end portions (open seam edges) 31 a and 31 b facing each other are not welded. . A gap g between facing open seam edges is a seam gap. The tube axis direction L of the open tube 3 coincides with the longitudinal direction of the punch.
 オープン管は、この後、鋼管長手方向(紙面垂直方向)に搬送し、次工程に送られる。このため、最終回の曲げ加工である最終パス成形の後には、オープン管3のシームギャップgは上金型のパンチ先端部22を支えるパンチビーム21の厚さより広くしなければならない。 The open pipe is then transported in the longitudinal direction of the steel pipe (the direction perpendicular to the paper surface) and sent to the next process. For this reason, after the final pass forming, which is the final bending process, the seam gap g of the open tube 3 must be wider than the thickness of the punch beam 21 that supports the punch tip 22 of the upper mold.
 そして、オープン管3の前記シームギャップgを閉じるように圧下装置で拘束し、その状態で、突き合わされたオープンシームエッジを溶接機で溶接し、ストレートシームの溶接鋼管とする。なお、必要に応じて、溶接鋼管に拡径や縮径加工を加えることによって円筒形状の矯正を行う。 Then, the above-mentioned seam gap g of the open pipe 3 is constrained by a reduction device, and in this state, the abutted open seam edges are welded by a welding machine to obtain a straight seam welded steel pipe. If necessary, the cylindrical shape is corrected by expanding or reducing the diameter of the welded steel pipe.
 この際のプレス条件の調整や設定には特許文献1に開示されている下金型のダイスの間隔の調整機構を設けたプレス金型を用いることができる。 For the adjustment and setting of the pressing conditions at this time, a press die provided with a mechanism for adjusting the interval between the dies of the lower die disclosed in Patent Document 1 can be used.
日本国特開平11-129031号公報Japanese Unexamined Patent Publication No. 11-129031
 オープン管のシームギャップを閉じるように圧下装置で拘束し、その状態で突き合わされたオープンシームエッジを溶接機で溶接するにあたり、圧下装置の拘束力には上限がある。このため、鋼管サイズによって決められた一定量以上のシームギャップを有するオープン管を拘束してオープンシームエッジを突き合わせることができない。その結果、突き合わさせたオープンシームエッジを溶接することもできない。 ¡When the open seam edge is constrained by a reduction device so as to close the seam gap of the open pipe and the open seam edge that is butted in that state is welded by a welding machine, there is an upper limit on the restraining force of the reduction device. For this reason, it is impossible to restrain the open seam edge by restraining the open pipe having a seam gap of a certain amount or more determined by the steel pipe size. As a result, the abutted open seam edges cannot be welded.
 そのため、ベンディングプレス時の最終プレスではできるだけシームギャップを小さくすることが求められている。 Therefore, the seam gap is required to be as small as possible in the final press at the bending press.
 最終プレスでは徐々にパンチ圧下量を増やすことで、オープン管のシームギャップ量の調整を行なっている。最終プレスのパンチ圧下量を大きくするとシームギャップ量は少なくなり、逆にパンチ圧下量が小さいとシームギャップ量は大きい状態となる。 The final press adjusts the open pipe seam gap by gradually increasing the amount of punch reduction. When the punch press amount of the final press is increased, the seam gap amount is decreased. Conversely, when the punch press amount is small, the seam gap amount is increased.
 パンチ圧下を開放すると、スプリングバックが発生するので、圧下開放後のオープン管のシームギャップは圧下中のオープン管のシームギャップよりも大きくなる。このため、圧下開放後のスプリングバックを小さくすることを目的として、最終プレスにおいて、パンチ圧下量を増加させていってオープンシームエッジがパンチ支持部に接触してからもさらにパンチ圧下量を増やしてオープン管に曲げ加工を加える技術がある。 When the punch pressure is released, spring back occurs, so the open pipe seam gap after the reduction is larger than the open pipe seam gap under reduction. For this reason, in order to reduce the spring back after the release of the reduction, in the final press, the punch reduction amount is increased, and even after the open seam edge contacts the punch support portion, the punch reduction amount is further increased. There is a technology to bend the open pipe.
 ところが、パンチ圧下量が過剰であると、オープン管のオープンシームエッジがパンチ支持部を強く挟み込み、管を除去するためには管を全長にわたって切断しなければならない、というトラブルが発生するおそれがある。 However, if the amount of punch reduction is excessive, the open seam edge of the open pipe strongly sandwiches the punch support portion, and there is a possibility that the pipe must be cut over the entire length in order to remove the pipe. .
 このようなトラブルを避けるため、通常は、パンチ圧下量が過剰とならないように留意されるが、その結果、シームギャップは大きくなりがちである。 In order to avoid such troubles, it is usually noted that the amount of punch reduction does not become excessive, but as a result, the seam gap tends to be large.
 これに加えて、鋼板の降伏強度もシームギャップに影響を及ぼす。これは、鋼板に曲げ変形を加えた場合、曲げ変形後のスプリングバック量は、鋼板の降伏強度によって異なるからである。たとえば、同一のプレス条件で最終パスのプレス成形を実施してプレス荷重を完全に除去した場合、鋼板Sの降伏強度が低い場合はシームギャップが小さく、鋼板Sの降伏強度が高い場合はシームギャップが大きくなる。 In addition to this, the yield strength of the steel sheet also affects the seam gap. This is because when the steel sheet is subjected to bending deformation, the amount of springback after the bending deformation varies depending on the yield strength of the steel sheet. For example, when the final pass press molding is performed under the same pressing conditions and the press load is completely removed, the seam gap is small when the yield strength of the steel sheet S is low, and the seam gap is high when the yield strength of the steel sheet S is high. Becomes larger.
 前述のように、通常は、パンチ圧下量が過剰にならないように留意されるので、シームギャップは大きくなりがちである。ここで、さらに鋼板の降伏強度の影響が重なることにより、シームギャップのばらつきも大きくなる。前記シームギャップが大きすぎると、溶接時に前記シームギャップを閉じて拘束するのに必要な拘束力が大きくなるため圧下装置が大型となる。また、シームギャップのばらつきに対応するためには、前記溶接機において、手動により圧下装置の圧下量を調整する場合には多大な時間が必要となる。 As mentioned above, the seam gap tends to be large because it is usually noted that the amount of punch reduction is not excessive. Here, when the influence of the yield strength of the steel plate is further overlapped, the variation in the seam gap is also increased. If the seam gap is too large, the restraining force required to close and restrain the seam gap during welding becomes large, so that the reduction device becomes large. Further, in order to cope with variations in the seam gap, it takes a lot of time to manually adjust the reduction amount of the reduction device in the welding machine.
 そこで、プレス後のシームギャップのばらつきを抑えるために、鋼板毎にプレス条件を調整するか、予め鋼板の降伏強度とプレス条件の関係をテーブル化して、該テーブルに基づいてプレス条件を定める技術がある。 Therefore, in order to suppress the variation in the seam gap after pressing, there is a technique for adjusting the pressing conditions for each steel sheet, or by previously creating a table of the relationship between the yield strength of the steel sheet and the pressing conditions, and determining the pressing conditions based on the table. is there.
 特許文献1に記載の技術では、下金型のダイス間隔を調整することにより、曲げ形状を調整できるようになっている。スプリングバック量のばらつきに対しては、第1ステップで鋼板を鋼管に成形した後の形状を計測した後、第2ステップで下金型のダイス間隔を調整し修正加工を施すようになっている。言い換えれば、特許文献1に記載の技術によれば、前記第1ステップの成形加工の後、除荷された状態、すなわちスプリングバックが発生した状態における曲げ形状を計測し、その計測結果に応じて、圧下量や荷重や下金型のダイス間隔などのプレス条件を調整することにより、第2ステップである修正加工が実施される。そのため、下金型のダイス間隔を再設定する場合には前記再設定するための時間が必要となる。特に1本の鋼管の成形に複数回の修正加工を行う場合は、形状計測の回数も複数回となるため生産能率が大きく低下するという問題がある。そして、このような修正加工の条件の設定は、鋼板ごとに実施する必要があるため、スプリングバック量にばらつきを有する多数の鋼板から鋼管を製造する場合には、生産能率の大幅な低下が避けられない。 In the technique described in Patent Document 1, the bending shape can be adjusted by adjusting the die interval of the lower mold. For variations in the amount of springback, after measuring the shape after forming the steel plate into the steel pipe in the first step, the second step adjusts the die interval of the lower mold and performs correction processing. . In other words, according to the technique described in Patent Document 1, after the molding process of the first step, the unloaded state, that is, the bending shape in the state where the spring back is generated is measured, and according to the measurement result By adjusting the pressing conditions such as the amount of rolling, the load and the die interval of the lower die, the correction process as the second step is performed. Therefore, in order to reset the die interval of the lower mold, it takes time for the resetting. In particular, when a plurality of correction processes are performed for forming a single steel pipe, there is a problem that the production efficiency is greatly reduced because the number of shape measurements is also multiple. And since it is necessary to set the conditions for such correction processing for each steel plate, when manufacturing steel pipes from a large number of steel plates having variations in the amount of springback, a significant reduction in production efficiency is avoided. I can't.
 そこで、本発明は、シームギャップのばらつきが少ない鋼管のプレス成形方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for press forming a steel pipe with little variation in seam gap.
 本発明の要旨は、以下の通りである。 The gist of the present invention is as follows.
 [1]鋼板に複数回のプレス曲げ加工を加えて鋼板を成形して鋼管を成形する方法であって、被成形材であるオープン管が最終回のプレス曲げ加工中に特定のシームギャップとなった状態からさらに必要とされる追加圧下量と前記特定のシームギャップとの間について、あらかじめ求められた関係に従い、被成形材であるオープン管が最終回のプレス曲げ加工中に前記特定のシームギャップとなった状態から前記の関係に基づく前記追加圧下量の加工を前記オープン管に施すことを特徴とする鋼管のプレス成形方法。 [1] A method of forming a steel pipe by applying a plurality of press bending processes to a steel sheet to form a steel pipe, and the open pipe as a molding material has a specific seam gap during the final press bending process. In accordance with a predetermined relationship between the additional reduction amount further required from the state of the steel and the specific seam gap, the open pipe as the molding material is subjected to the specific seam gap during the final press bending process. The method of press forming a steel pipe, characterized in that the open pipe is subjected to processing of the additional reduction amount based on the above relationship from the state.
 [2]前記特定のシームギャップが、鋼板のオープンシームエッジが上金型のパンチビームに接触した時点のシームギャップであることを特徴とする[1]記載の鋼管のプレス成形方法。 [2] The steel pipe press forming method according to [1], wherein the specific seam gap is a seam gap at the time when the open seam edge of the steel plate contacts the punch beam of the upper mold.
 [3]前記[1]または[2]に記載のプレス成形方法で成形されたオープン管のオープンシームエッジを突き合わせて溶接することを特徴とする鋼管の製造方法。 [3] A method for manufacturing a steel pipe, characterized in that an open seam edge of an open pipe formed by the press forming method according to [1] or [2] is butted and welded.
 本発明により、予め定められた条件でプレスすることで、シームギャップのばらつきの少ないプレス材が得られるため、修正加工や下金型のダイス間隔の設定調整の必要がなく生産効率が大きく向上する。 According to the present invention, by pressing under a predetermined condition, a press material with little variation in seam gap can be obtained, so that there is no need for correction processing and setting adjustment of the die interval of the lower die, and the production efficiency is greatly improved. .
図1は本発明による降伏強度差とシームギャップとの関係を示す図である。FIG. 1 is a diagram showing the relationship between the yield strength difference and the seam gap according to the present invention. 図2は従来技術による降伏強度差とシームギャップとの関係を示す図である。FIG. 2 is a diagram showing the relationship between the yield strength difference and the seam gap according to the prior art. 図3は鋼管製造工程のうち成形工程を説明する模式図である。FIG. 3 is a schematic diagram for explaining a forming process in the steel pipe manufacturing process. 図4はオープン管の模式図である。FIG. 4 is a schematic diagram of an open tube. 図5は端曲げ成形工程を説明する模式図であり、図5Aは端曲げ時のセット状態、図5Bは端曲げ負荷終了時の状態、図5Cは端曲げ除荷後の状態を示す。FIG. 5 is a schematic diagram for explaining the end bending molding process, FIG. 5A shows a set state during end bending, FIG. 5B shows a state after end bending load, and FIG. 5C shows a state after end bending unloading. 図6はプレス成形工程を説明する模式図であり、図6Aは荷重負荷状態、図6Bは荷重除荷後の状態、図6Cはプレス成形後の管断面形状を示す。FIG. 6 is a schematic diagram for explaining the press forming process, FIG. 6A shows a loaded state, FIG. 6B shows a state after unloading, and FIG. 6C shows a tube cross-sectional shape after press forming.
 ストレートシーム溶接鋼管の主たる用途であるラインパイプの一般的な規格であるAPI規格において、X80グレードの溶接鋼管の降伏強度の上限から下限までのレンジは、138MPaとなっており、溶接鋼管の素材となる鋼板でも降伏強度のレンジは同程度の範囲となっている。特に、降伏強度の高い鋼管を製造する場合には、素材となる鋼板は、TMCP法により製造されるので、成分条件、圧延条件や冷却条件のばらつきによりその降伏強度もばらつきやすくなる。 In the API standard, which is a general standard for line pipes, which are the main applications of straight seam welded steel pipes, the range from the upper limit to the lower limit of the yield strength of welded steel pipes of X80 grade is 138 MPa. The yield strength range is about the same in the steel plate. In particular, when manufacturing a steel pipe having a high yield strength, the steel sheet as a raw material is manufactured by the TMCP method, and therefore the yield strength is likely to vary due to variations in the component conditions, rolling conditions, and cooling conditions.
 以下、外径1219mm、管厚31.8mmのAPI X80グレード鋼管を、成形する場合について説明するが、本発明は、以下に説明する実施形態に限定されるものではない。 Hereinafter, a case where an API X80 grade steel pipe having an outer diameter of 1219 mm and a pipe thickness of 31.8 mm is formed will be described, but the present invention is not limited to the embodiment described below.
 初めに、成形方法を図5に示すように、端曲げを実施した。図5において、41は端曲げ下金型であり、42は端曲げ上金型である。鋼板幅方向端部の幅240mmの範囲h(図5A)にプレス負荷時に端曲げ角度j(図5B)が28度となるように端曲げを行った。プレス荷重除荷後の鋼板幅方向端部の曲げ角度k(図5C)は23度であった。 First, end bending was performed as shown in FIG. In FIG. 5, 41 is an end bending lower mold, and 42 is an end bending upper mold. End bending was performed so that the end bending angle j (FIG. 5B) was 28 degrees during press loading in a range h (FIG. 5A) having a width of 240 mm at the end in the width direction of the steel plate. The bending angle k (FIG. 5C) at the end in the width direction of the steel plate after the unloading of the press load was 23 degrees.
 次いで図6Aに示すパンチ先端部22の半径Rが415mmのパンチ2(上金型)により鋼板幅方向端部から鋼板幅方向に順次11回の曲げ加工を行った。このときの成形方法を図6に示す。図6Aでパンチ2(上金型)は、パンチビーム21とパンチ先端部22からなり、下金型はダイス1a、1bから成り立っている。この11回の曲げ角度の合計値と、前記端曲げの曲げ角度とを合わせて全体でシームギャップを除いた全体の曲げ角度(図6Cのf)となる。具体的には、降伏強度640MPaの鋼板で、除荷後の曲げ角度(図6Bのe)が29度となるように、曲げ加工1回あたりの負荷時の曲げ角度(図6Aのd)を35度として曲げ加工を行った。鋼板Sの曲げ範囲は、図6Aの範囲aが前回までの曲げ範囲、図6Aの範囲bが今回の曲げ範囲、図6Aの範囲cが次回以降の曲げ範囲を示す。このような曲げ加工において、曲げ加工量の調整は、パンチ2の移動量をプレス装置で直接制御する方式が一般的である。ここでは鋼板の上面位置にパンチ先端部22が接触した状態からパンチ2が下降した量(以下、ある基準点からのパンチ2の下降量を圧下量と称し、特に断りがない場合は鋼板の上面位置を基準とする)を一定として加工を行った。 Next, the punch 2 (upper die) having a radius R of the punch tip 22 shown in FIG. 6A was bent 11 times sequentially from the steel plate width direction end to the steel plate width direction. The molding method at this time is shown in FIG. In FIG. 6A, the punch 2 (upper die) is composed of a punch beam 21 and a punch tip 22 and the lower die is composed of dies 1a and 1b. The total value of the eleven bending angles and the bending angle of the end bending are combined to obtain the entire bending angle (f in FIG. 6C) excluding the seam gap. Specifically, with a steel plate having a yield strength of 640 MPa, the bending angle (d in FIG. 6A) at the time of bending per bending process is set so that the bending angle after unloading (e in FIG. 6B) is 29 degrees. Bending was performed at 35 degrees. As for the bending range of the steel sheet S, the range a in FIG. 6A indicates the bending range up to the previous time, the range b in FIG. 6A indicates the current bending range, and the range c in FIG. In such bending, the amount of bending is generally adjusted by directly controlling the amount of movement of the punch 2 with a press device. Here, the amount by which the punch 2 is lowered from the state in which the punch tip 22 is in contact with the upper surface position of the steel plate (hereinafter, the amount by which the punch 2 is lowered from a certain reference point is referred to as the amount of reduction, and unless otherwise specified, the upper surface of the steel plate. Processing was performed with a fixed position).
 鋼板の降伏強度の基準値である640MPaに対する鋼板の降伏強度の差である降伏強度差とプレス後に除荷した状態のシームギャップの関係を図2に示す。 FIG. 2 shows the relationship between the yield strength difference, which is the difference in the yield strength of the steel plate with respect to 640 MPa, which is the standard value of the yield strength of the steel plate, and the seam gap when unloaded after pressing.
 曲げ負荷時すなわち圧下中の状態における曲げ形状が同一形状でも、降伏強度が高い素材では、スプリングバック量が大きくなる。そのため、成形後の曲げ角度が小さくなり、除荷した状態でのシームギャップが大きくなる。図2に示すように、素材鋼板の降伏強度が160MPa異なるとプレス後の除荷した状態でのシームギャップの差は170mmとなる。これは外径の14%に相当し、非常に大きな値である。 Even if the bending shape is the same when bent, that is, during the rolling, the amount of springback is large for materials with high yield strength. Therefore, the bending angle after forming becomes small, and the seam gap in the unloaded state becomes large. As shown in FIG. 2, when the yield strengths of the raw steel plates differ by 160 MPa, the difference in seam gap in the unloaded state after pressing becomes 170 mm. This corresponds to 14% of the outer diameter, which is a very large value.
 そこで、途中工程での曲げ加工は、従来の成形方法で行い、最終成形パス(11回目)での圧下量を変更した場合の降伏強度差とプレス後の除荷した状態でのシームギャップの関係を図1に示す。なお、図1には、参考として図2に示した従来技術の結果(グラフb)を記入している。 Therefore, the bending process in the intermediate process is performed by the conventional forming method, and the relationship between the yield strength difference when the amount of reduction in the final forming pass (11th) is changed and the seam gap in the unloaded state after pressing. Is shown in FIG. In FIG. 1, the result (graph b) of the prior art shown in FIG. 2 is entered for reference.
 グラフcが本発明例で、最終成形パス(11回目)での変形量が同一となるように、オープンシームエッジが上金型のパンチビーム21に接触後更に9mm圧下した場合である。プレス後の除荷した状態でのシームギャップの差は20mmと小さく、鋼板の降伏強度によらずほぼ一様のシームギャップが得られることがわかる。 Graph c is an example of the present invention, in which the open seam edge is further reduced by 9 mm after contacting the punch beam 21 of the upper mold so that the deformation amount in the final forming pass (the 11th time) is the same. The difference in seam gap in the unloaded state after pressing is as small as 20 mm, and it can be seen that a substantially uniform seam gap can be obtained regardless of the yield strength of the steel sheet.
 グラフaはオープンシームエッジが上金型のパンチビーム部に接触するまで圧下した例である。従来技術(グラフb、圧下一定)に比較するとプレス後の除荷した状態でのシームギャップの偏差は小さくなっているが、除荷した状態でのシームギャップが前述の本発明例に比べて大きい。 Graph a is an example where the open seam edge is rolled down until it touches the punch beam part of the upper mold. Compared to the prior art (graph b, constant reduction), the deviation of the seam gap in the unloaded state after pressing is smaller, but the seam gap in the unloaded state is larger than in the above-described example of the present invention. .
 オープンシームエッジが上金型のパンチビーム21と接触してからさらに9mm圧下したのは、次のような技術思想に基づくものである。 The reason why the open seam edge is further reduced by 9 mm after contacting the punch beam 21 of the upper die is based on the following technical idea.
 同一サイズの鋼管を複数製造する場合には、まず、同一サイズの複数のオープン管を成形する。ここで、そのプレス条件は、基本的に一定であるので、素材である鋼板からオープン管への変形様式も基本的に同一である。よって、最終プレスの途中の或る特定の形状を基準として、その状態からさらに追加すべき圧下量を一定にすれば、最終プレス後に除荷した状態でのシームギャップも一定になる。 When manufacturing a plurality of steel pipes of the same size, first, a plurality of open pipes of the same size are formed. Here, since the pressing conditions are basically constant, the deformation mode from the steel plate as the material to the open pipe is basically the same. Therefore, if the amount of reduction to be further added is made constant from a certain shape in the middle of the final press, the seam gap in the state of unloading after the final press becomes constant.
 前述のように、2つのダイス1a、1bと1つのパンチ2を用いて鋼板からオープン管を成形する場合には、前記のさらに追加すべき圧下量を一定とする最終プレスの途中のある特定の形状の指標として、シームギャップを採用することが、簡便であり、かつ有効である。 As described above, when an open tube is formed from a steel plate using two dies 1a and 1b and one punch 2, a certain specific partway through the final press in which the reduction amount to be further added is constant. Adopting a seam gap as a shape index is simple and effective.
 前述の例では、かかる、さらに追加すべき圧下量を一定とする最終プレスの途中のある特定の形状の指標であるシームギャップとして、両側のオープンシームエッジが2のパンチビーム21に両方ともに接触した時点を採用した。ここで、両側のオープンシームエッジが上金型2のパンチビーム21に両方ともに接触した時点から、さらに追加すべき圧下量は、事前に予備成形を実施したり、あるいは、過去の製造実績を参照したりすることにより把握・決定しておく。 In the above-described example, both of the open seam edges are in contact with the two punch beams 21 as seam gaps as an index of a specific shape in the middle of the final press in which the amount of reduction to be further added is constant. The time point was adopted. Here, from the point when both open seam edges come into contact with the punch beam 21 of the upper die 2, the amount of reduction to be further added is preliminarily preformed or refer to past production results. To grasp and decide.
 なお、さらに追加すべき圧下量を一定とする形状の指標であるシームギャップの基準を、両側のオープンシームエッジが2の21に両方ともに接触した時点とした場合、すなわち、シームギャップがパンチビーム21の厚さと一致した場合について説明したが、本発明は、これに限定されるものではない。たとえば、シームギャップが特定の値に達したことの判定は、たとえば、板端位置を随時測定できる形式の検出器や、ある位置に到達したことを判定する形式の簡易な検出器を用いることにより可能である。 It should be noted that when the reference of the seam gap, which is an index of a shape with a constant reduction amount to be added, is set at a point in time when both open seam edges are in contact with 2 21, that is, the seam gap is the punch beam 21. However, the present invention is not limited to this. For example, the determination that the seam gap has reached a specific value can be made by using, for example, a detector that can measure the end position of the plate at any time or a simple detector that determines that a certain position has been reached. Is possible.
 具体的には、例えば、パンチビーム21に投光器と受光器を設け、投光器から受光器への航路をオープン管のオープンシームエッジが遮ることにより受光器における受光光量が変化することに基づき、オープンシームエッジの位置を検出することができる。また、オープンシームエッジが上金型2のパンチビーム21に接触した時点を検知するのであれば、板端部の位置を必ずしも随時測定することはない。たとえば、オープンシームエッジとパンチビーム21とが接触することにより、電気的導通状態が変化することや、あるいは、接触予定部に圧電素子をあらかじめ設けて接触有無を確認したりすることにより、実現できる。 Specifically, for example, a light emitter and a light receiver are provided in the punch beam 21, and the amount of light received by the light receiver changes due to the open seam edge of the open tube blocking the route from the light projector to the light receiver. The position of the edge can be detected. Further, if the time point when the open seam edge comes into contact with the punch beam 21 of the upper mold 2 is detected, the position of the plate end portion is not always measured. For example, it can be realized by changing the electrical continuity state due to the contact between the open seam edge and the punch beam 21 or by providing a piezoelectric element in the planned contact portion in advance to confirm the presence or absence of the contact. .
 最終プレスの圧下中にオープン管が特定のシームギャップになった状態から、さらに必要とされる追加圧下量の加工を施す制御方法としては、たとえば、前記特定のシームギャップ量になった時点で、プレス成形装置の圧下制御装置に信号を送り、この信号をトリガーとして、別途、事前に決定されている追加圧下量の加工を実施すればよい。追加圧下量の測定は、パンチ2の移動量を測定することにより可能である。なお、前記特定のシームギャップがパンチビーム21の厚さと同じ場合、すなわち、オープンシームエッジがパンチビーム21に接触した時点を基準とする場合には、パンチビーム21に接触したオープンシームエッジがパンチビーム21上を摺り上っていく量を検知して、この摺り上る量を基準にして追加圧下量を制御することも可能である。 From the state in which the open pipe has a specific seam gap during the reduction of the final press, as a control method for processing the additional reduction amount required, for example, when the specific seam gap amount is reached, A signal may be sent to the reduction control device of the press forming apparatus, and the additional reduction amount determined in advance may be separately processed using this signal as a trigger. The additional reduction amount can be measured by measuring the movement amount of the punch 2. When the specific seam gap is the same as the thickness of the punch beam 21, that is, when the time point when the open seam edge contacts the punch beam 21 is used as a reference, the open seam edge that contacts the punch beam 21 is the punch beam 21. It is also possible to detect the amount of sliding up 21 and control the amount of additional reduction based on the amount of sliding up.
 上記のプレス成形方法により製造されたオープン管を用いて鋼管を製造するには、前記連続仮付け溶接装置を用いてオープン管のオープンシームギャップを連続仮付け溶接し、その後、内面溶接、ついで外面溶接、の順番で本溶接を実施すればよい。本溶接を実施した鋼管に対して、拡管装置を用いて拡管することにより、鋼管の真円度を向上させることができるので好ましい。拡管工程において拡管率(拡管前の管の外径に対する拡管前後の外径変化量の比)は、通常、0.3%~1.5%の範囲で実施される。真円度改善効果と拡管装置に要求される能力とのバランスの観点から、拡管率は0.5%~1.2%の範囲であることが好ましい。 In order to manufacture a steel pipe using the open pipe manufactured by the above press forming method, the open seam gap of the open pipe is continuously tack-welded using the continuous tack welding apparatus, and then the inner surface is welded and then the outer surface is welded. The main welding may be performed in the order of welding. It is preferable that the roundness of the steel pipe can be improved by expanding the pipe with the pipe expanding apparatus using the pipe expanding apparatus. In the pipe expansion process, the pipe expansion ratio (ratio of the outer diameter change amount before and after the pipe expansion to the outer diameter of the pipe before the pipe expansion) is usually performed in the range of 0.3% to 1.5%. From the viewpoint of a balance between the roundness improvement effect and the capacity required for the tube expansion device, the tube expansion rate is preferably in the range of 0.5% to 1.2%.
 外径1219mm、管厚31.8mm、長さ12mの鋼管を製造するためにAPI X80グレードで長さ24mの鋼板を10枚準備し、各鋼板を長手方向に3分割して、試験材を10枚/組×3組準備した。これらの鋼板の板幅を3693mmに機械加工し、鋼板幅方向両端部の各々について、幅180mmの範囲をR380mmの金型で端曲げを行った後にプレス成形を実施した。 In order to manufacture a steel pipe having an outer diameter of 1219 mm, a pipe thickness of 31.8 mm, and a length of 12 m, ten steel plates having an API X80 grade and a length of 24 m are prepared, and each steel plate is divided into three in the longitudinal direction to obtain 10 test materials. Three sheets / group x 3 groups were prepared. The plate width of these steel plates was machined to 3,693 mm, and each of both end portions in the width direction of the steel plate was subjected to press forming after end-bending a range of 180 mm width with a R380 mm mold.
 プレス成形は、上金型のパンチ2はパンチ先端部22の半径がR415mmのものを用い、下金型のダイス1はR100mmの金型を間隔540mm(間隔は下金型の2つのダイス1a、1bの頂点部間の距離)にセットし、11回に分けて行った。なお、パンチビーム21の厚みは100mmである。 In press molding, the upper die punch 2 uses a punch tip 22 having a radius of R415 mm, and the lower die 1 has an R100 mm die interval of 540 mm (the interval is two dice 1a of the lower die, 1b), and was divided into 11 times. The thickness of the punch beam 21 is 100 mm.
 1パス目から10パス目までの幅方向セット位置(下金型の2つのダイスの中心の板幅中央からの距離)と圧下量を表1に示す。圧下量は鋼板の降伏強度615MPaの時に端曲げと11回のプレス成形との合計でシームギャップ部を除いたほぼ全周の曲げになるように定めた。  Table 1 shows the width direction set position from the first pass to the tenth pass (distance from the center of the plate width at the center of the two dies of the lower mold) and the amount of reduction. The amount of reduction was determined such that when the yield strength of the steel sheet was 615 MPa, the bending at the entire circumference excluding the seam gap portion was the sum of the end bending and the 11 press formings. *
Figure JPOXMLDOC01-appb-T000001
  本成形工程の成形順序としては、図3のプレス工程図に示すように、パス1~5が前半工程、パス6~10が後半工程を意味する。前半工程にあたるパス1~5は、鋼板の幅方向一方側の端部から該鋼板の幅方向中央部に向かって順次成形し、該鋼板幅方向中央部でプレス1回分の幅だけ手前まで成形する。次に、後半工程にあたるパス6~10は、前記鋼板の幅方向反対側の端部から前記鋼板幅方向中央部に向かって順次成形する。最後(11パス目)に前記鋼板幅方向中央部に圧下を加える。
Figure JPOXMLDOC01-appb-T000001
As the forming sequence of the main forming process, as shown in the press process diagram of FIG. 3, passes 1 to 5 mean the first half process, and passes 6 to 10 mean the second half process. Passes 1 to 5 corresponding to the first half of the process are sequentially formed from one end in the width direction of the steel sheet toward the center in the width direction of the steel sheet, and are formed to the front by the width of one press at the center in the width direction of the steel sheet. . Next, the passes 6 to 10 corresponding to the latter half process are sequentially formed from the opposite end of the steel plate in the width direction toward the center portion in the steel plate width direction. Lastly (11th pass), rolling is applied to the central part in the width direction of the steel sheet.
 降伏強度の異なる10枚の鋼板(鋼板No.A~J)を使って、表1で示した鋼板幅方向位置(表中鋼板幅方向位置は鋼板幅中央CからA方向距離を+、B方向距離を-で表示した)で、各々の鋼板について10パスのプレスを行い、その後11パス目のプレスを行ってプレス後の除荷した状態でのシームギャップを測定した。その結果(鋼板降伏強度とプレス後のシームギャップの関係)を表2に示す。 Using 10 steel plates with different yield strengths (steel Nos. A to J), the steel plate width direction position shown in Table 1 (the steel plate width direction position in the table is the distance in the A direction from the center C of the steel plate +, the B direction) In each case, the steel plate was pressed for 10 passes, and then the 11th pass was pressed to measure the seam gap in the unloaded state after pressing. The results (relationship between steel plate yield strength and seam gap after pressing) are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 最終パス(11パス目)では、板幅中央が下金型中心となるようにセットし、本発明例では、降伏強度615MPaの鋼板でプレス後のシームギャップが125mmとなるように、鋼板の幅端部、すなわちオープン管のオーブンシームエッジがパンチビーム21に接触した後、更に9mm圧下した。比較例1では、降伏強度が最も低い560MPaの鋼板でプレス後の除荷した状態でのシームギャップが100mmとなるように、鋼板の上面位置からパンチ2を下降させる量である圧下量を48.6mmとした。比較例2では、まず、オープン管のオーブンシームエッジがパンチビーム21に接触するまで圧下し、そのプレス後の除荷した状態でのシームギャップを確認して、下金型のダイス1a、1bの間隔を調整後、再度圧下を繰り返した。
Figure JPOXMLDOC01-appb-T000002
In the final pass (11th pass), the center of the plate width is set to be the center of the lower die, and in the present invention example, the width of the steel plate is set so that the seam gap after pressing is 125 mm with a steel plate having a yield strength of 615 MPa. After the end, that is, the oven seam edge of the open tube, contacted the punch beam 21, it was further reduced by 9 mm. In Comparative Example 1, the reduction amount, which is the amount by which the punch 2 is lowered from the upper surface position of the steel plate so as to have a seam gap of 100 mm in the unloaded state after pressing with a 560 MPa steel plate having the lowest yield strength, is 48. It was 6 mm. In Comparative Example 2, first, the oven seam edge of the open tube is rolled down until it comes into contact with the punch beam 21, and the seam gap in the unloaded state after the press is confirmed. After adjusting the interval, the reduction was repeated again.
 本発明例は10本の鋼管のプレス後のシームギャップのばらつき(=最大値―最小値)も小さく、プレス成形の所要時間も短く、良好な鋼管形状と高い作業能率が両立している。
一方、比較例1ではプレス成形の所要時間は若干小さいものの、最も降伏強度の低い鋼板Jでは、オープンシームエッジがパンチビーム21を挟み込んだ状態となったため、成形材(オープン管)を取り出すためにラインを停止する必要が発生したため、工業生産としての採用は困難であった。また、比較例2では、形状は安定しているものの所要時間が本発明例の1.4倍かかっており生産能率が劣っている。
The present invention example has a small variation in seam gap (= maximum value−minimum value) after pressing of 10 steel pipes, a short time required for press forming, and a good steel pipe shape and high working efficiency are compatible.
On the other hand, in Comparative Example 1, although the time required for press forming is slightly shorter, in the steel plate J having the lowest yield strength, the open seam edge is in a state of sandwiching the punch beam 21, so that the forming material (open tube) is taken out. Since it was necessary to stop the line, it was difficult to adopt as industrial production. In Comparative Example 2, although the shape is stable, the required time is 1.4 times that of the present invention example, and the production efficiency is inferior.
 本発明の鋼管のプレス成形方法、鋼管の製造方法は、大径厚肉の鋼管の製造に限定されるものではなく、3点曲げプレスを行なって鋼管を製造する方法の全てに適用することができる。 The steel pipe press forming method and the steel pipe manufacturing method of the present invention are not limited to the manufacturing of large-diameter and thick-walled steel pipes, and can be applied to all methods of manufacturing steel pipes by performing a three-point bending press. it can.
 1a、1b   ダイス
 2       パンチ
 21      パンチビーム
 22      パンチ先端部
 3       オープン管
 31a、31b 板端部
 41      端曲げ下金型
 42      端曲げ上金型
DESCRIPTION OF SYMBOLS 1a, 1b Dies 2 Punch 21 Punch beam 22 Punch tip part 3 Open pipe 31a, 31b Plate edge part 41 End bending lower mold 42 End bending upper mold

Claims (3)

  1.  鋼板に複数回のプレス曲げ加工を加えて鋼板を成形して鋼管を成形する方法であって、被成形材であるオープン管が最終回のプレス曲げ加工中に特定のシームギャップとなった状態からさらに必要とされる追加圧下量と前記特定のシームギャップとの間について、あらかじめ求められた関係に従い、被成形材であるオープン管が最終回のプレス曲げ加工中に前記特定のシームギャップとなった状態から前記の関係に基づく前記追加圧下量の加工を前記オープン管に施すことを特徴とする鋼管のプレス成形方法。 A method of forming a steel pipe by applying multiple times of press bending to a steel sheet to form a steel pipe, from the state where the open pipe, which is the material to be formed, has a specific seam gap during the final press bending process Furthermore, according to a predetermined relationship between the required additional reduction amount and the specific seam gap, the open pipe as the molding material became the specific seam gap during the final press bending process. A press forming method of a steel pipe, wherein the open pipe is subjected to processing of the additional reduction amount based on the relation from the state.
  2.  前記所定のシームギャップが、鋼板のオープンシームエッジが上金型のパンチビームに接触した時点のシームギャップであることを特徴とする請求項1記載の鋼管のプレス成形方法。 2. The steel pipe press forming method according to claim 1, wherein the predetermined seam gap is a seam gap at the time when an open seam edge of a steel plate comes into contact with a punch beam of an upper mold.
  3.  請求項1または2に記載のプレス成形方法で成形されたオープン管のオープンシームエッジを突き合わせて溶接することを特徴とする鋼管の製造方法。 A method for manufacturing a steel pipe, characterized in that an open seam edge of an open pipe formed by the press forming method according to claim 1 or 2 is abutted and welded.
PCT/JP2013/003435 2013-05-30 2013-05-30 Method for press-molding steel pipe and method for producing steel pipe WO2014192043A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380077095.0A CN105246609B (en) 2013-05-30 2013-05-30 The manufacture method of the press-processing method and steel pipe of steel pipe
RU2015155551A RU2648813C2 (en) 2013-05-30 2013-05-30 Method for press-molding steel pipe and method for producing steel pipe
PCT/JP2013/003435 WO2014192043A1 (en) 2013-05-30 2013-05-30 Method for press-molding steel pipe and method for producing steel pipe
EP13885877.4A EP3006129B1 (en) 2013-05-30 2013-05-30 Method for press-molding steel pipe and method for producing steel pipe
JP2015519499A JP5967302B2 (en) 2013-05-30 2013-05-30 Steel pipe press forming method and steel pipe manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/003435 WO2014192043A1 (en) 2013-05-30 2013-05-30 Method for press-molding steel pipe and method for producing steel pipe

Publications (1)

Publication Number Publication Date
WO2014192043A1 true WO2014192043A1 (en) 2014-12-04

Family

ID=51988128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003435 WO2014192043A1 (en) 2013-05-30 2013-05-30 Method for press-molding steel pipe and method for producing steel pipe

Country Status (5)

Country Link
EP (1) EP3006129B1 (en)
JP (1) JP5967302B2 (en)
CN (1) CN105246609B (en)
RU (1) RU2648813C2 (en)
WO (1) WO2014192043A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168563A1 (en) 2017-03-15 2018-09-20 Jfeスチール株式会社 Press mold and method for manufacturing steel pipe
WO2020054051A1 (en) 2018-09-14 2020-03-19 Jfeスチール株式会社 Steel pipe manufacturing method and press die
JP2021524382A (en) * 2018-07-09 2021-09-13 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Extended control of JCO forming press

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108994120A (en) * 2018-08-01 2018-12-14 上海锆卓船舶设计有限公司 It is applicable in superhigh intensity, the method for coiling of the small diameter cylinder of ultra-thick steel plates and system
JP7108523B2 (en) * 2018-11-27 2022-07-28 Hoya株式会社 Press molding device, press molding method and press molding program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10166059A (en) * 1996-12-06 1998-06-23 Mitsubishi Heavy Ind Ltd Plate bending method
JPH11129031A (en) 1997-10-29 1999-05-18 Mitsubishi Heavy Ind Ltd Press forming die
JP2003154411A (en) * 2001-09-10 2003-05-27 Chuo Spring Co Ltd Press machine and press mold of press machine
JP2012170977A (en) * 2011-02-21 2012-09-10 Jfe Steel Corp Method of manufacturing steel pipe

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU366009A1 (en) * 1971-04-30 1973-01-16 Научно исследовательский институт асбестоцементной промышленности Rod Mill
FI74414C (en) * 1980-08-18 1988-02-08 Sl Tuotanto Oy Apparatus for making a metal tube.
TW449509B (en) * 1998-11-04 2001-08-11 Kawasaki Steel Co Bending rolls, and pipe formed thereby
CN1738687A (en) * 2003-01-20 2006-02-22 新日本制铁株式会社 Metal foil tube and its manufacturing method and manufacturing device
JP5511760B2 (en) * 2005-07-04 2014-06-04 ホシザキ電機株式会社 Showcase
WO2012092909A1 (en) * 2011-01-07 2012-07-12 Technische Universität Dortmund Method for incrementally forming sheet metal structures, in particular for forming pipes or the like
DE102011009660B4 (en) * 2011-01-27 2013-05-29 Sms Meer Gmbh Apparatus and method for forming flat products in slotted tubes or pipe precursors
EP2529849B1 (en) * 2011-05-31 2021-03-10 SMS group GmbH Device and method for manufacturing slot pipes made of sheet panels
DE102011053676B4 (en) * 2011-09-16 2016-09-08 EISENBAU KRäMER GMBH Tube bending machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10166059A (en) * 1996-12-06 1998-06-23 Mitsubishi Heavy Ind Ltd Plate bending method
JPH11129031A (en) 1997-10-29 1999-05-18 Mitsubishi Heavy Ind Ltd Press forming die
JP2003154411A (en) * 2001-09-10 2003-05-27 Chuo Spring Co Ltd Press machine and press mold of press machine
JP2012170977A (en) * 2011-02-21 2012-09-10 Jfe Steel Corp Method of manufacturing steel pipe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3006129A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168563A1 (en) 2017-03-15 2018-09-20 Jfeスチール株式会社 Press mold and method for manufacturing steel pipe
KR20190124769A (en) 2017-03-15 2019-11-05 제이에프이 스틸 가부시키가이샤 Method of manufacturing press molds and steel pipes
JP2021524382A (en) * 2018-07-09 2021-09-13 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Extended control of JCO forming press
JP7185007B2 (en) 2018-07-09 2022-12-06 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Enhanced control of JCO molding press
WO2020054051A1 (en) 2018-09-14 2020-03-19 Jfeスチール株式会社 Steel pipe manufacturing method and press die
KR20210041032A (en) 2018-09-14 2021-04-14 제이에프이 스틸 가부시키가이샤 Steel pipe manufacturing method and press mold

Also Published As

Publication number Publication date
JP5967302B2 (en) 2016-08-10
EP3006129A1 (en) 2016-04-13
CN105246609B (en) 2017-03-15
EP3006129A4 (en) 2016-06-22
RU2015155551A (en) 2017-07-06
JPWO2014192043A1 (en) 2017-02-23
EP3006129B1 (en) 2019-07-10
CN105246609A (en) 2016-01-13
RU2648813C2 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
JP5967302B2 (en) Steel pipe press forming method and steel pipe manufacturing method
JP6015997B1 (en) Steel pipe manufacturing method and press die used in the method
KR101945091B1 (en) Bending-press forming punch
JP6070967B2 (en) Manufacturing method of welded steel pipe
CN110461488B (en) Press die and method for manufacturing steel pipe
KR101712885B1 (en) Method of producing steel pipe
WO2014188468A1 (en) Bending press device, bending press method, device for producing steel pipe, and method for producing steel pipe
JP5135540B2 (en) Steel pipe manufacturing equipment and steel pipe manufacturing method
EP3778050B1 (en) Method and device for bending edge of steel plate, and steel pipe manufacturing method and equipment
KR20230015974A (en) Steel pipe roundness prediction method, steel pipe roundness control method, steel pipe manufacturing method, steel pipe roundness prediction model generation method, and steel pipe roundness prediction device
JP6028931B2 (en) Steel pipe manufacturing method and manufacturing apparatus thereof
JP6566231B1 (en) Steel plate end bending method and apparatus, and steel pipe manufacturing method and equipment
JP2019177395A (en) Bending method and device of end of steel plate, manufacturing method of steel pipe, and equipment
JP6566232B1 (en) Steel plate end bending method and apparatus, and steel pipe manufacturing method and equipment
JP6282006B2 (en) Steel pipe manufacturing method and manufacturing apparatus thereof
JP3990761B2 (en) Manufacturing method of welded pipe with excellent roundness
JP6272717B2 (en) Bending press molding method for plate material and steel pipe manufacturing method using the bending press molding method
EP3778051B1 (en) Edge bending method and apparatus of steel plate, and method and facility for manufacturing steel pipe
JP2019177398A (en) Bending method of end of steel plate and device, and manufacturing method of steel pipe and equipment
JP2017185528A (en) Steel pipe manufacturing equipment and steel pipe manufacturing method
CN116393566A (en) A device and processing method suitable for corrugated steel pipe production
JP2000117325A (en) Method for producing tube with closed polygonal cross section and apparatus therefor
JPS5897423A (en) Manufacture for large-sized square steel tube

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885877

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015519499

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013885877

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: P1585/2015

Country of ref document: AE

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015155551

Country of ref document: RU

Kind code of ref document: A