WO2014189010A1 - Single-crystal silicon carbide and process for producing same - Google Patents
Single-crystal silicon carbide and process for producing same Download PDFInfo
- Publication number
- WO2014189010A1 WO2014189010A1 PCT/JP2014/063230 JP2014063230W WO2014189010A1 WO 2014189010 A1 WO2014189010 A1 WO 2014189010A1 JP 2014063230 W JP2014063230 W JP 2014063230W WO 2014189010 A1 WO2014189010 A1 WO 2014189010A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- crystal
- raw material
- sic
- growth
- seed crystal
- Prior art date
Links
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 104
- 229910021421 monocrystalline silicon Inorganic materials 0.000 title abstract 2
- 238000000034 method Methods 0.000 title description 26
- 239000013078 crystal Substances 0.000 claims description 178
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 102
- 239000002994 raw material Substances 0.000 claims description 78
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 56
- 229910052799 carbon Inorganic materials 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 229910052723 transition metal Inorganic materials 0.000 claims description 9
- 229910002804 graphite Inorganic materials 0.000 description 43
- 239000010439 graphite Substances 0.000 description 43
- 239000010936 titanium Substances 0.000 description 30
- 239000007789 gas Substances 0.000 description 13
- 238000005259 measurement Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 230000005499 meniscus Effects 0.000 description 7
- 239000011651 chromium Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 239000011261 inert gas Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 238000001069 Raman spectroscopy Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000005092 sublimation method Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910008332 Si-Ti Inorganic materials 0.000 description 2
- 229910008458 Si—Cr Inorganic materials 0.000 description 2
- 229910006749 Si—Ti Inorganic materials 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 229910021357 chromium silicide Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910021341 titanium silicide Inorganic materials 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- 229910008071 Si-Ni Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910006300 Si—Ni Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- LKTZODAHLMBGLG-UHFFFAOYSA-N alumanylidynesilicon;$l^{2}-alumanylidenesilylidenealuminum Chemical compound [Si]#[Al].[Si]#[Al].[Al]=[Si]=[Al] LKTZODAHLMBGLG-UHFFFAOYSA-N 0.000 description 1
- -1 block Chemical compound 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- UFGZSIPAQKLCGR-UHFFFAOYSA-N chromium carbide Chemical compound [Cr]#C[Cr]C#[Cr] UFGZSIPAQKLCGR-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 229910003470 tongbaite Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/36—Carbides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/14—Heating of the melt or the crystallised materials
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/20—Controlling or regulating
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/30—Mechanisms for rotating or moving either the melt or the crystal
Definitions
- the present invention relates to a silicon carbide single crystal and a method for producing the same.
- SiC silicon carbide
- a semiconductor substrate made of SiC is superior to a semiconductor substrate made of silicon (Si) in that it has a wide band gap, a high thermal conductivity, and a large dielectric breakdown electric field. Therefore, a semiconductor substrate made of SiC can be advantageously applied to applications such as power devices. Since SiC is a compound semiconductor that does not coincide with melting (a phenomenon in which a solid dissolves into a solution having the same composition), a SiC single crystal is generally formed by a method called a sublimation method.
- Patent Document 1 As a technique for growing a crystal having a higher quality than that of the sublimation method (for example, the proportion of polycrystal contained in the crystal is small), a method of forming a SiC single crystal by a liquid phase growth method has been studied (for example, Patent Document 1).
- a transition metal element such as Ti is generally added to the Si melt in order to improve the crystal growth rate.
- the added transition metal element is taken into the obtained SiC single crystal.
- the incorporation of residual nitrogen in the atmospheric gas into the SiC crystal is promoted, and as a result, the n-type carrier density in the SiC single crystal is increased, which greatly affects the performance as a semiconductor. There is a risk of giving.
- an object of the present invention is to provide a SiC single crystal having a reduced n-type carrier density while containing a transition metal element such as Ti, and a method for producing the same.
- the present invention provides a silicon carbide single crystal containing Ti at a concentration of 1.0 ⁇ 10 16 (cm ⁇ 3 ) or more and having an n-type carrier density of 3.0 ⁇ 10 18 (cm ⁇ 3 ) or less. provide.
- the present invention uses a raw material solution in which at least one transition metal element is dissolved in a Si melt and a carbon source, and heats the raw material solution in a state where the silicon carbide seed crystal is in contact with the raw material solution,
- a method for producing a silicon carbide single crystal in which a temperature gradient of 1.0 to 2.0 ° C./cm is generated in the vicinity of a silicon carbide seed crystal and crystal growth is performed at a growth temperature of 2050 ° C. or higher.
- the present invention it is possible to provide a SiC single crystal having a reduced n-type carrier density while containing a transition metal element such as Ti, and a method for producing the same.
- the pressure unit in this embodiment is a gauge pressure.
- the SiC single crystal manufacturing method includes a preparatory step for preparing crystal growth, a meltback step for removing a work-affected layer remaining on the surface of the polished SiC seed crystal, and growing the SiC single crystal.
- the growth process is provided.
- an SiC crystal growth apparatus shown in FIGS. 1 and 2 is used.
- FIG. 1 and FIG. 2 are main part sectional views showing the overall structure of the crystal growth apparatus used in the method for producing an SiC single crystal according to the present embodiment, and show the state of the crystal growth apparatus in the growth process and the preparation process, respectively. Yes.
- the SiC crystal growth apparatus shown in FIG. 1 includes a graphite raw material container 1 (carbon source) filled with a raw material solution 2 and a graphite container support 8 that supports the graphite raw material container 1, and a lower end face of the graphite seed crystal support 4.
- the SiC seed crystal 3 held in is immersed in the raw material solution 2 and heated by the graphite heater 6 to form the SiC growth crystal 5.
- These are covered with a heat insulating structural member 7 for heat insulation, and the whole is housed in a sealed container body 11 having an inert gas inlet 9 and a gas exhaust 10.
- a radiation thermometer 12 for measuring the temperature of the graphite raw material container 1 and the like, and a DC voltage application power source 14 and an ammeter 13 connected to the electrode 15 are provided outside the sealed container body 11. Yes.
- the graphite raw material container 1 is used as the carbon source, but a container made of another material may be used.
- the other material is not particularly limited as long as it is a non-consumable material that can withstand the heating in the growth process, and may be a material other than graphite that can supply carbon to the raw material solution 2, and a material that does not supply carbon to the raw material solution 2 It may be.
- a container made of a material that does not supply carbon is used as the raw material solution 2
- a solid carbon source is put into the container, or a gaseous carbon source is blown into the raw material solution 2 or mixed with an atmospheric gas, thereby Carbon can be supplied to the solution 2.
- graphite such as block, rod, granule and powder, metal carbide, SiC and the like can be used.
- the carbon source gas can be a hydrocarbon gas such as CH 4.
- the raw material solution 2 a solution in which a transition metal element such as Ti, Cr, Ni or the like is dissolved in Si melt (that is, Si—Ti solution, Si—Cr solution, Si—Ni solution, etc.) is used.
- the raw material solution 2 is preferably a Si—Ti solution or a Si—Cr solution.
- alkali metal elements; alkaline earth metals; rare earth elements such as Sc and Y may be dissolved.
- Examples of the Si source contained in the raw material solution 2 include Si, SiC, titanium silicide, chromium silicide, and aluminum silicide. Further, examples of the Ti source and the Cr source in the case where the raw material solution 2 contains Ti and Cr include the following. Ti source: metal Ti, titanium carbide, titanium silicide. Cr source: metal Cr, chromium carbide, chromium silicide.
- the content of the transition metal element in the raw material solution 2 is preferably 10 to 25 at%, more preferably 15 to 23 at%, based on the total amount of the raw material solution 2, and 20 to More preferably, it is 23 at%.
- Cr it is preferably 20 to 60 at%, more preferably 30 to 50 at%, further preferably 35 to 45 at%, based on the total amount of the raw material solution 2.
- the content of each atom in the raw material solution 2 can be calculated as follows. For example, when the composition of the raw material solution 2 is Si x Ti y , consider the case where Si and metal Ti are used as raw materials as the Si source and the Ti source, respectively.
- the SiC seed crystal 3 for example, a wafer that is manufactured by a sublimation method and whose surface is polished can be used.
- the shape of the SiC seed crystal 3 may be a plate shape such as a disc shape, a hexagonal flat plate shape, a rectangular flat plate or the like, or a cubic shape, but a plate shape is preferable.
- size is disk shape, for example, a diameter of 0.1 cm or more is preferable, 0.5 cm or more is more preferable, and 1 cm or more is still more preferable.
- a preferable upper limit of the diameter is not particularly limited, and may be adjusted according to the capacity of the crystal growth apparatus, and may be, for example, 10 cm.
- the crystal structure of the SiC seed crystal 3 can be appropriately selected according to the type of the target SiC growth crystal, and for example, 2H type, 3C type, 4H type, 6H type and the like can be used.
- 2H type, 3C type, 4H type, 6H type and the like can be used in order to obtain a 2H type SiC grown crystal.
- 4H-type SiC seed crystal 3 (4H—SiC single crystal wafer) manufactured by a vapor phase method or the like as SiC seed crystal 3.
- the SiC seed crystal 3 Since the SiC single crystal has a structure in which Si and C are laminated in layers, the SiC seed crystal 3 has an exposed C surface where C is aligned on the crystal surface and an Si surface where Si is aligned. There is a surface that is. In the present embodiment, either plane in the SiC seed crystal 3 can be used, but a crystal having a better surface morphology can be produced by starting crystal growth from the C plane.
- the growth surface of the SiC seed crystal 3 may be either a ⁇ 0001 ⁇ plane (on-axis plane) or a plane inclined from the ⁇ 0001 ⁇ plane (off-axis plane).
- a resistance heating type heating device can be used.
- the graphite raw material container 1 and the DC voltage application power source 14 are electrically connected, and a current is directly supplied to the graphite raw material container 1. (Current path 16 in FIG. 2), a method of generating resistance heat is conceivable.
- a graphite heater 6 disposed around the graphite raw material container 1.
- the graphite seed crystal support 4 is excessively heated by the heat of the graphite heater 6, and the surface of the graphite seed crystal support 4 holding the SiC seed crystal 3 and the temperature of the SiC seed crystal 3 are From the viewpoint of suppressing the temperature from becoming higher than the temperature of the raw material solution 2, as shown in FIGS. 1 and 2, in the region where the inner surface of the graphite heater 6 and the graphite seed crystal support 4 are opposed, It is preferable to interpose a graphite raw material container 1.
- the growth atmosphere gas is not particularly limited, but is preferably an inert gas such as He, Ne, or Ar in order to prevent oxidation of the SiC crystal and the solution.
- a gas such as N 2 , H 2 , or CH 4 mixed with the inert gas may be used as the growth atmosphere gas.
- the pressure in the sealed container body 11 is increased to the growth pressure, for example, to about 1950 ° C.
- the pressure is preferably 0.1 MPa or more, and more preferably, for example, about 0.8 MPa.
- the graphite seed crystal support 4 and the SiC seed crystal 3 are slowly lowered toward the surface of the raw material solution 2, and the descent is stopped when the lower surface of the SiC seed crystal 3 comes into contact with the raw material solution 2. From the position, only the SiC seed crystal 3 comes into contact with the raw material solution 2, and the graphite seed crystal support 4 is held at a position not in contact with the raw material solution 2.
- the graphite seed crystal support 4 is in contact with the raw material solution 2, the following adverse effects may occur. That is, during crystal growth, the raw material solution 2 rises to the side surface of the graphite seed crystal support 4 due to surface tension and forms a meniscus. And in the area
- the SiC seed crystal 3 after contacting the raw material solution 2 so that the graphite seed crystal support 4 does not contact the raw material solution 2.
- the distance between the meniscus formed on the SiC seed crystal 3 and the SiC growth crystal 5 is preferably 5 mm or less, more preferably 3 mm or less, and more preferably 1 mm or less. More preferably, the distance is such that When the distance to be raised is within the above range, the above-described adverse effects can be easily prevented.
- the growth temperature is set at a temperature at which the liquidus line in the phase diagram is the boundary between the liquid phase and the liquid + SiC phase, but is 2050 ° C. or higher from the viewpoint of reducing n-type carriers derived from nitrogen in the SiC single crystal. . From the same viewpoint, the growth temperature is preferably 2100 ° C. or higher. On the other hand, the upper limit of the growth temperature is not particularly limited, but is, for example, 2300 ° C. or lower.
- the growth temperature in this embodiment means the temperature of the lower surface of the bottom of the graphite raw material container 1 and is measured by the radiation thermometer 12.
- a method of forming a supersaturated state by forming a temperature gradient so that the temperature in the vicinity of the seed crystal is lower than that of the raw material solution allows stable crystal growth for a long time. Because it is general. Also in this embodiment, it is preferable to implement by the temperature gradient method.
- a method (supercooling method) in which a supersaturated state is formed by lowering the temperature of the entire solution in which the seed crystal is immersed is performed. In the slow cooling method, crystals are grown by repeatedly performing heating and cooling. However, since the temperature changes during growth and the growth conditions are not stable, it is not preferable for the production of high quality crystals.
- the mechanism of crystal growth is described as follows. That is, since the heat of the raw material solution 2 in the vicinity of the SiC seed crystal 3 is transferred to the outside through the SiC seed crystal 3 and the graphite seed crystal support 4, the temperature of the raw material solution 2 in the vicinity of the SiC seed crystal 3 decreases. To do. For this reason, a temperature gradient is generated in the raw material solution 2 in the vicinity of the SiC seed crystal 3. In the region where the temperature is low, the carbon in the raw material solution 2 is supersaturated, so that the SiC growth crystal 5 is deposited on the surface of the SiC seed crystal 3.
- the temperature gradient in this embodiment is more specifically the temperature at the lower surface (referred to as “point A”) at the bottom of the graphite raw material container 1 as T A (° C.), the melt surface (“point”).
- the temperature at ( B ) is defined as T B (° C.) as follows.
- Temperature gradient (° C./cm) (T A ⁇ T B ) / (Distance between points A and B (cm))
- the T A and T B can be measured by a radiation thermometer and a thermocouple (measuring perform another experiment not during the growth was measured).
- the temperature gradient is preferably 1.0 to 10 ° C./cm, more preferably 1.0 to 5.0 ° C./cm, and further preferably 1.0 to 3.0 ° C./cm. It is preferably 1.0 to 2.0 ° C./cm.
- the temperature gradient can be controlled, for example, by changing the upper / lower output ratio of the heater.
- the solution growth method is generally performed while rotating the seed crystal and the crucible during crystal growth.
- the rotation axis of this rotation is a rotation axis parallel to the seed crystal holding axis and the crucible holding axis parallel thereto.
- the rotation direction of the seed crystal and the crucible may be the same or reversed. Further, the rotational speed may be constant, for example, in the range of about 2 to 70 rpm, or may be changed periodically.
- the SiC single crystal of the present embodiment contains Ti at a concentration of 1.0 ⁇ 10 16 (cm ⁇ 3 ) or more.
- the upper limit of the Ti concentration is not particularly limited, but is, for example, 5.0 ⁇ 10 16 (cm ⁇ 3 ) or less.
- Ti may be either a Ti atom or a Ti ion.
- the n-type carrier density in the SiC crystal of the present embodiment is 3.0 ⁇ 10 18 (cm ⁇ 3 ) or less, preferably 2.0 ⁇ 10 18 (cm ⁇ 3 ) or less. More preferably, it is 0.0 ⁇ 10 18 (cm ⁇ 3 ) or less.
- the lower limit of the n-type carrier density is not particularly limited, but can be, for example, 5.0 ⁇ 10 17 (cm ⁇ 3 ) or more.
- the Ti concentration can be measured, for example, by SIMS analysis of the obtained single crystal.
- the n-type carrier density can be measured, for example, by performing Raman analysis on the obtained crystal.
- the measurement conditions for Raman analysis for example, the measurement surface: the surface of the obtained crystal ((000-1) plane), the measurement laser wavelength: 514.5 nm, and the backscattering conditions of normal incidence and vertical scattering. it can.
- the SiC single crystal of the present embodiment is an ingot-shaped or wafer-shaped SiC single crystal.
- the ingot-shaped SiC single crystal can be obtained by separating the cylindrical SiC growth crystal 5 obtained by the above-described manufacturing method from the SiC seed crystal 3.
- the SiC growth crystal 5 can be separated from the interface between the SiC seed crystal 3 and the SiC growth crystal 5 at a position of about 0.3 mm toward the SiC growth crystal 5.
- the wafer-like SiC single crystal can be obtained by slicing the resulting ingot-like SiC single crystal to a desired thickness.
- the diameter of the SiC single crystal of this embodiment is preferably 0.1 cm or more, more preferably 0.5 cm or more, and still more preferably 1 cm or more.
- the preferable upper limit of the diameter is not particularly limited, and can be, for example, 10 cm.
- ⁇ Meltback process> After this, the pressure is increased to 800 kPa, which is the growth pressure, and the temperature is raised to a temperature lower by 50 ° C. than the growth temperature. Immediately, the seed crystal was moved 1 mm upward from the position of the seed crystal. By raising the temperature to 2050 ° C., which is the growth temperature, at this seed crystal position, a part of the seed crystal including the seed crystal surface was melted. In consideration of the thermal expansion of the graphite seed crystal support accompanying the temperature rise to 2050 ° C., the distance between the seed crystal surface and the liquid surface at the growth temperature of 2050 ° C. is estimated to be about 0.5 mm (meniscus height: 0.5 mm).
- the growth was started by pulling the seed crystal upward at a speed of 50 ⁇ m / h.
- the temperature gradient was 1.5 ° C./cm and the gas flow rate was 0.5 L / min.
- the seed crystal and the raw material container were rotated in opposite directions, and the rotational speed of the seed crystal was 50 rpm, and the rotational speed of the raw material container was 10 rpm.
- the seed crystal was immersed in the raw material solution for 24 hours and then pulled up from the raw material solution to obtain a single crystal A.
- the thickness of the obtained single crystal A was 290 ⁇ m.
- the Ti concentration was measured by SIMS analysis of the crystal surface after growth.
- the Ti concentration in the single crystal A was 3.0 ⁇ 10 16 (cm ⁇ 3 ).
- n-type carrier density After the raw material solution solidified material adhering to the crystal surface after growth was removed with an acid, Raman spectroscopic measurement was performed from the crystal surface side. Specifically, the measurement was carried out under the conditions of measurement of the measurement surface: the surface of the obtained crystal ((000-1) plane), the measurement laser wavelength: 514.5 nm, and normal incidence and backscattering conditions of vertical scattering.
- the n-type carrier density was calculated by performing fitting calculation on the longitudinal optical phonon mode of the measured Raman spectrum.
- the n-type carrier density in the single crystal A was 2.3 ⁇ 10 18 (cm ⁇ 3 ).
- Example 2 A SiC single crystal B was produced in the same manner as in Example 1 except that the growth temperature was changed to 2100 ° C. The meniscus height at the growth temperature was 0.5 mm, the temperature gradient was 1.9 ° C./cm, and the thickness of the obtained single crystal B was 320 ⁇ m. The Ti concentration in the single crystal B was 3.2 ⁇ 10 16 (cm ⁇ 3 ), and the n-type carrier density was 1.7 ⁇ 10 18 (cm ⁇ 3 ).
- a SiC single crystal C was produced in the same manner as in Example 1 except that the growth temperature was changed to 2000 ° C.
- the meniscus height at the growth temperature was 0.5 mm
- the temperature gradient was 1.4 ° C./cm
- the thickness of the obtained single crystal B was 655 ⁇ m.
- the Ti concentration in the single crystal C was 2.0 ⁇ 10 16 (cm ⁇ 3 )
- the n-type carrier density was 3.8 ⁇ 10 18 (cm ⁇ 3 ).
- a SiC single crystal D was produced in the same manner as in the comparative example except that the initial composition of the raw material solution was changed to only Si.
- the meniscus height at the growth temperature was 0.5 mm, the temperature gradient was 6.7 ° C./cm, and the thickness of the obtained single crystal D was 400 ⁇ m. Further, the Ti concentration in the single crystal D was below the detection limit, and the n-type carrier density was 9.8 ⁇ 10 17 (cm ⁇ 3 ).
- FIG. 3 shows the relationship between the growth temperature and the n-type carrier density for the single crystals A, B, C and D. As shown in FIG. 3, the n-type carrier density is increased by adding Ti to the raw material solution, but it can be seen that the n-type carrier density can be reduced by increasing the growth temperature.
- SYMBOLS 1 Graphite raw material container, 2 ... Raw material solution, 3 ... SiC seed crystal, 4 ... Graphite seed crystal support body, 5 ... SiC growth crystal, 6 ... Graphite heater, 7 ... Thermal insulation structural material, 8 ... Graphite container Support: 9 ... Inert gas introduction port, 10 ... Gas exhaust port, 11 ... Sealed container body, 12 ... Radiation thermometer, 13 ... Ammeter, 14 ... DC voltage application power source, 15 ... Electrode, 16 ... Current path.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
The present invention provides single-crystal silicon carbide which contains Ti in a concentration of 1.0×1016 (cm-3) or higher and has an n-type carrier density of 3.0×1018 (cm-3) or less.
Description
本発明は、炭化珪素単結晶及びその製造方法に関するものである。
The present invention relates to a silicon carbide single crystal and a method for producing the same.
近年、半導体デバイスを構成する材料として、炭化珪素(SiC)が注目されている。SiCからなる半導体基板は、シリコン(Si)からなる半導体基板と比較して、バンドギャップが広い、熱伝導率が高い、及び絶縁破壊電界が大きいという点で優れている。そのため、SiCからなる半導体基板は、例えばパワーデバイス等の用途に有利に適用することができる。SiCは、一致溶融(固体が溶けてこれと同じ組成をもつ溶液になる現象)しない化合物半導体であるため、SiC単結晶は、一般に、昇華法と呼ばれる方法で形成される。
In recent years, silicon carbide (SiC) has attracted attention as a material constituting semiconductor devices. A semiconductor substrate made of SiC is superior to a semiconductor substrate made of silicon (Si) in that it has a wide band gap, a high thermal conductivity, and a large dielectric breakdown electric field. Therefore, a semiconductor substrate made of SiC can be advantageously applied to applications such as power devices. Since SiC is a compound semiconductor that does not coincide with melting (a phenomenon in which a solid dissolves into a solution having the same composition), a SiC single crystal is generally formed by a method called a sublimation method.
また、昇華法よりも高品質な(例えば結晶中に含まれる多結晶の割合が少ない)結晶を成長させる技術として、液相成長法によりSiC単結晶を形成する方法が検討されている(例えば、特許文献1参照)。
In addition, as a technique for growing a crystal having a higher quality than that of the sublimation method (for example, the proportion of polycrystal contained in the crystal is small), a method of forming a SiC single crystal by a liquid phase growth method has been studied (for example, Patent Document 1).
液相成長法では、結晶成長速度を向上させるために、Si融液にTi等の遷移金属元素を添加するのが一般的である。この場合、得られるSiC単結晶中に、添加した遷移金属元素が取り込まれる。さらに、遷移金属を添加することによって、雰囲気ガス中の残存窒素のSiC結晶中への取り込みが促進され、その結果、SiC単結晶中のn型キャリア密度が高くなり、半導体としての性能に大きな影響を与えるおそれがある。
In the liquid phase growth method, a transition metal element such as Ti is generally added to the Si melt in order to improve the crystal growth rate. In this case, the added transition metal element is taken into the obtained SiC single crystal. Furthermore, by adding a transition metal, the incorporation of residual nitrogen in the atmospheric gas into the SiC crystal is promoted, and as a result, the n-type carrier density in the SiC single crystal is increased, which greatly affects the performance as a semiconductor. There is a risk of giving.
そこで、本発明は、Ti等の遷移金属元素を含有していながら、n型キャリア密度が低減されたSiC単結晶、及びその製造方法を提供することを目的とする。
Therefore, an object of the present invention is to provide a SiC single crystal having a reduced n-type carrier density while containing a transition metal element such as Ti, and a method for producing the same.
本発明は、1.0×1016(cm-3)以上の濃度でTiを含有し、かつn型キャリア密度が3.0×1018(cm-3)以下である、炭化珪素単結晶を提供する。
The present invention provides a silicon carbide single crystal containing Ti at a concentration of 1.0 × 10 16 (cm −3 ) or more and having an n-type carrier density of 3.0 × 10 18 (cm −3 ) or less. provide.
また、本発明は、Si融液に少なくとも1種の遷移金属元素を溶解させた原料溶液と、炭素源とを用い、原料溶液に炭化珪素種結晶を接触させた状態で原料溶液を加熱し、炭化珪素種結晶近傍に1.0~2.0℃/cmの温度勾配を生じさせ、成長温度2050℃以上にて結晶成長を行う、炭化珪素単結晶の製造方法を提供する。
Further, the present invention uses a raw material solution in which at least one transition metal element is dissolved in a Si melt and a carbon source, and heats the raw material solution in a state where the silicon carbide seed crystal is in contact with the raw material solution, Provided is a method for producing a silicon carbide single crystal, in which a temperature gradient of 1.0 to 2.0 ° C./cm is generated in the vicinity of a silicon carbide seed crystal and crystal growth is performed at a growth temperature of 2050 ° C. or higher.
本発明によれば、Ti等の遷移金属元素を含有していながら、n型キャリア密度が低減されたSiC単結晶、及びその製造方法を提供することができる。
According to the present invention, it is possible to provide a SiC single crystal having a reduced n-type carrier density while containing a transition metal element such as Ti, and a method for producing the same.
以下、図面を参照しながら本発明の好適な実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、本実施形態における圧力単位はゲージ圧である。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted. Moreover, the pressure unit in this embodiment is a gauge pressure.
[SiC単結晶の製造]
本実施形態に係るSiC単結晶の製造方法は、結晶成長準備を行う準備工程、表面研磨したSiC種結晶表面に残留している加工変質層を除去するメルトバック工程、及び、SiC単結晶を成長する成長工程を備える。SiC単結晶の製造にあたっては、例えば図1及び図2に示すSiC結晶成長装置を用いる。 [Production of SiC single crystal]
The SiC single crystal manufacturing method according to the present embodiment includes a preparatory step for preparing crystal growth, a meltback step for removing a work-affected layer remaining on the surface of the polished SiC seed crystal, and growing the SiC single crystal. The growth process is provided. In manufacturing the SiC single crystal, for example, an SiC crystal growth apparatus shown in FIGS. 1 and 2 is used.
本実施形態に係るSiC単結晶の製造方法は、結晶成長準備を行う準備工程、表面研磨したSiC種結晶表面に残留している加工変質層を除去するメルトバック工程、及び、SiC単結晶を成長する成長工程を備える。SiC単結晶の製造にあたっては、例えば図1及び図2に示すSiC結晶成長装置を用いる。 [Production of SiC single crystal]
The SiC single crystal manufacturing method according to the present embodiment includes a preparatory step for preparing crystal growth, a meltback step for removing a work-affected layer remaining on the surface of the polished SiC seed crystal, and growing the SiC single crystal. The growth process is provided. In manufacturing the SiC single crystal, for example, an SiC crystal growth apparatus shown in FIGS. 1 and 2 is used.
(結晶成長装置の概要)
図1及び図2は、本実施形態に係るSiC単結晶の製造方法で用いる結晶成長装置の全体構造を示す要部断面図であり、それぞれ成長工程及び準備工程における結晶成長装置の状態を示している。 (Outline of crystal growth equipment)
FIG. 1 and FIG. 2 are main part sectional views showing the overall structure of the crystal growth apparatus used in the method for producing an SiC single crystal according to the present embodiment, and show the state of the crystal growth apparatus in the growth process and the preparation process, respectively. Yes.
図1及び図2は、本実施形態に係るSiC単結晶の製造方法で用いる結晶成長装置の全体構造を示す要部断面図であり、それぞれ成長工程及び準備工程における結晶成長装置の状態を示している。 (Outline of crystal growth equipment)
FIG. 1 and FIG. 2 are main part sectional views showing the overall structure of the crystal growth apparatus used in the method for producing an SiC single crystal according to the present embodiment, and show the state of the crystal growth apparatus in the growth process and the preparation process, respectively. Yes.
図1に示すSiC結晶成長装置は、原料溶液2が充填された黒鉛製原料容器1(炭素源)及びそれを支持する黒鉛製容器支持体8を備え、黒鉛製種結晶支持体4の下方端面に保持されたSiC種結晶3を原料溶液2に浸漬し、黒鉛製ヒーター6で加熱することによって、SiC成長結晶5を形成する装置である。これらは、保温のために、断熱構造材7で覆われており、さらに全体が、不活性ガス導入口9及びガス排気口10を備える密閉容器本体11に収容されている。さらに、密閉容器本体11の外部には、黒鉛製原料容器1等の温度を測定するための放射温度計12、並びに、電極15に接続された直流電圧印加電源14及び電流計13が備えられている。
The SiC crystal growth apparatus shown in FIG. 1 includes a graphite raw material container 1 (carbon source) filled with a raw material solution 2 and a graphite container support 8 that supports the graphite raw material container 1, and a lower end face of the graphite seed crystal support 4. The SiC seed crystal 3 held in is immersed in the raw material solution 2 and heated by the graphite heater 6 to form the SiC growth crystal 5. These are covered with a heat insulating structural member 7 for heat insulation, and the whole is housed in a sealed container body 11 having an inert gas inlet 9 and a gas exhaust 10. Furthermore, a radiation thermometer 12 for measuring the temperature of the graphite raw material container 1 and the like, and a DC voltage application power source 14 and an ammeter 13 connected to the electrode 15 are provided outside the sealed container body 11. Yes.
本実施形態においては、炭素源として黒鉛製原料容器1を用いているが、他の材料からなる容器を用いてもよい。他の材料とは、成長工程における加熱に耐え得る非消耗性の材料であれば特に制限されず、原料溶液2に炭素を供給できる黒鉛以外の材料でもよく、原料溶液2に炭素を供給しない材料であってもよい。原料溶液2に炭素を供給しない材料からなる容器を用いる場合には、固体の炭素源を容器中に投入する、又は気体の炭素源を原料溶液2に吹き込む若しくは雰囲気ガスに混入させることによって、原料溶液2に炭素を供給することができる。固体の炭素源としては、ブロック状、棒状、顆粒状、粉体状等の黒鉛、金属の炭化物、SiCなどを用いることができる。また、気体の炭素源としては、CH4等の炭化水素ガスを用いることができる。
In the present embodiment, the graphite raw material container 1 is used as the carbon source, but a container made of another material may be used. The other material is not particularly limited as long as it is a non-consumable material that can withstand the heating in the growth process, and may be a material other than graphite that can supply carbon to the raw material solution 2, and a material that does not supply carbon to the raw material solution 2 It may be. When a container made of a material that does not supply carbon is used as the raw material solution 2, a solid carbon source is put into the container, or a gaseous carbon source is blown into the raw material solution 2 or mixed with an atmospheric gas, thereby Carbon can be supplied to the solution 2. As the solid carbon source, graphite such as block, rod, granule and powder, metal carbide, SiC and the like can be used. As the carbon source gas can be a hydrocarbon gas such as CH 4.
原料溶液2としては、Si融液にTi、Cr、Ni等の遷移金属元素を溶解した溶液(すなわち、Si-Ti溶液、Si-Cr溶液、Si-Ni溶液等)を用いる。これらの中でも、原料溶液2は、Si-Ti溶液、Si-Cr溶液であることが好ましい。原料溶液2には、その他に例えば、アルカリ金属元素;アルカリ土類金属;Sc、Y等の希土類元素が溶解していてもよい。
As the raw material solution 2, a solution in which a transition metal element such as Ti, Cr, Ni or the like is dissolved in Si melt (that is, Si—Ti solution, Si—Cr solution, Si—Ni solution, etc.) is used. Among these, the raw material solution 2 is preferably a Si—Ti solution or a Si—Cr solution. In the raw material solution 2, for example, alkali metal elements; alkaline earth metals; rare earth elements such as Sc and Y may be dissolved.
原料溶液2に含まれるSi源としては、例えばSi、SiC、チタンシリサイド、クロムシリサイド、アルミシリサイドが挙げられる。また、原料溶液2がTi、Crを含む場合のTi源、Cr源としては、それぞれ例えば下記のものが挙げられる。
Ti源:金属Ti、炭化チタン、チタンシリサイド。
Cr源:金属Cr、炭化クロム、クロムシリサイド。 Examples of the Si source contained in theraw material solution 2 include Si, SiC, titanium silicide, chromium silicide, and aluminum silicide. Further, examples of the Ti source and the Cr source in the case where the raw material solution 2 contains Ti and Cr include the following.
Ti source: metal Ti, titanium carbide, titanium silicide.
Cr source: metal Cr, chromium carbide, chromium silicide.
Ti源:金属Ti、炭化チタン、チタンシリサイド。
Cr源:金属Cr、炭化クロム、クロムシリサイド。 Examples of the Si source contained in the
Ti source: metal Ti, titanium carbide, titanium silicide.
Cr source: metal Cr, chromium carbide, chromium silicide.
原料溶液2中の遷移金属元素の含有量は、Tiの場合には、原料溶液2全量を基準として、10~25at%であることが好ましく、15~23at%であることがより好ましく、20~23at%であることが更に好ましい。また、Crの場合には、原料溶液2全量を基準として、20~60at%であることが好ましく、30~50at%であることがより好ましく、35~45at%であることが更に好ましい。なお、原料溶液2中の各原子の含有量は次のようにして算出できる。例えば、原料溶液2の組成がSixTiyである場合において、Si源及びTi源としてそれぞれSi及び金属Tiを原料として用いたときを考える。このとき、各原料の重量から算出したSi及びTiのモル数をそれぞれMSi及びMTiとし、これらの各モル数をMSi及びMTiの合計モル数で割ることにより、x及びyがそれぞれ算出される。
In the case of Ti, the content of the transition metal element in the raw material solution 2 is preferably 10 to 25 at%, more preferably 15 to 23 at%, based on the total amount of the raw material solution 2, and 20 to More preferably, it is 23 at%. In the case of Cr, it is preferably 20 to 60 at%, more preferably 30 to 50 at%, further preferably 35 to 45 at%, based on the total amount of the raw material solution 2. The content of each atom in the raw material solution 2 can be calculated as follows. For example, when the composition of the raw material solution 2 is Si x Ti y , consider the case where Si and metal Ti are used as raw materials as the Si source and the Ti source, respectively. At this time, the number of moles of Si and Ti which is calculated from the weight of each raw material and M Si and M Ti respectively, by dividing these respective number of moles in the total number of moles of M Si and M Ti, x and y are respectively Calculated.
SiC種結晶3としては、例えば昇華法により作製されたものであり、表面研磨されているウエハを利用することができる。SiC種結晶3の形状は、円盤形状、六角形平板形状、四角形平板等の板状でも、立方体状でもよいが、板状が好ましい。また、その大きさは、例えば円盤形状であれば、直径0.1cm以上が好ましく、0.5cm以上がより好ましく、1cm以上が更に好ましい。直径の好ましい上限は特に制限されるものでなく、結晶成長装置の容量に合わせて調整すればよく、例えば10cmでも構わない。
As the SiC seed crystal 3, for example, a wafer that is manufactured by a sublimation method and whose surface is polished can be used. The shape of the SiC seed crystal 3 may be a plate shape such as a disc shape, a hexagonal flat plate shape, a rectangular flat plate or the like, or a cubic shape, but a plate shape is preferable. Moreover, if the magnitude | size is disk shape, for example, a diameter of 0.1 cm or more is preferable, 0.5 cm or more is more preferable, and 1 cm or more is still more preferable. A preferable upper limit of the diameter is not particularly limited, and may be adjusted according to the capacity of the crystal growth apparatus, and may be, for example, 10 cm.
SiC種結晶3の結晶構造は、目的とするSiC成長結晶の種類に合わせて適宜選択でき、例えば2H型、3C型、4H型、6H型等を用いることができる。例えば、2H型のSiC成長結晶を得ようとする場合には、2H型のSiC種結晶3を用いることが好ましい。なお、本実施形態においては、SiC種結晶3として、気相法等で作製された4H型のSiC種結晶3(4H-SiC単結晶ウエハ)を用いることが好ましい。
The crystal structure of the SiC seed crystal 3 can be appropriately selected according to the type of the target SiC growth crystal, and for example, 2H type, 3C type, 4H type, 6H type and the like can be used. For example, in order to obtain a 2H type SiC grown crystal, it is preferable to use a 2H type SiC seed crystal 3. In the present embodiment, it is preferable to use 4H-type SiC seed crystal 3 (4H—SiC single crystal wafer) manufactured by a vapor phase method or the like as SiC seed crystal 3.
SiC単結晶はSiとCとが層状に積層した構造であるため、SiC種結晶3は、結晶表面にCが並んだC面が露出している面と、Siが並んだSi面が露出している面とが存在する。本実施形態において、SiC種結晶3中のどちらの面も使用可能であるが、C面から結晶成長を開始することで、より表面モフォロジーの良好な結晶を作製することができる。
Since the SiC single crystal has a structure in which Si and C are laminated in layers, the SiC seed crystal 3 has an exposed C surface where C is aligned on the crystal surface and an Si surface where Si is aligned. There is a surface that is. In the present embodiment, either plane in the SiC seed crystal 3 can be used, but a crystal having a better surface morphology can be produced by starting crystal growth from the C plane.
また、本実施形態において、SiC種結晶3の成長面としては、{0001}面(オンアクシズ面)及び{0001}面から傾いた面(オフアクシズ面)のいずれを用いてもよい。
In the present embodiment, the growth surface of the SiC seed crystal 3 may be either a {0001} plane (on-axis plane) or a plane inclined from the {0001} plane (off-axis plane).
黒鉛製ヒーター6には、抵抗加熱方式の加熱装置を用いることができる。抵抗加熱方式で黒鉛製原料容器1を加熱する方法の別の実施態様として、黒鉛製原料容器1と直流電圧印加電源14とを電気的に接続し、黒鉛製原料容器1に直接電流を供給して(図2の電流経路16)、抵抗熱を発生させる方式が考えられる。ただしこの場合、黒鉛製原料容器1を介して原料溶液2に大電流が流れ、その電流により原料溶液2の対流が阻害される懸念がある。したがって、図1及び図2に示すように、黒鉛製原料容器1の周囲に配置した黒鉛製ヒーター6により加熱することが好ましい。
As the graphite heater 6, a resistance heating type heating device can be used. As another embodiment of the method of heating the graphite raw material container 1 by the resistance heating method, the graphite raw material container 1 and the DC voltage application power source 14 are electrically connected, and a current is directly supplied to the graphite raw material container 1. (Current path 16 in FIG. 2), a method of generating resistance heat is conceivable. However, in this case, there is a concern that a large current flows through the raw material solution 2 through the graphite raw material container 1, and the convection of the raw material solution 2 is hindered by the current. Therefore, as shown in FIGS. 1 and 2, it is preferable to heat by a graphite heater 6 disposed around the graphite raw material container 1.
また、黒鉛製ヒーター6の熱により、黒鉛製種結晶支持体4が過剰に加熱され、黒鉛製種結晶支持体4のSiC種結晶3を保持している面、及びSiC種結晶3の温度が原料溶液2の温度よりも高くなることを抑制する観点から、図1及び図2に示すように、黒鉛製ヒーター6の内面と黒鉛製種結晶支持体4が対向する領域では、それらの間に黒鉛製原料容器1を介在させることが好ましい。
Further, the graphite seed crystal support 4 is excessively heated by the heat of the graphite heater 6, and the surface of the graphite seed crystal support 4 holding the SiC seed crystal 3 and the temperature of the SiC seed crystal 3 are From the viewpoint of suppressing the temperature from becoming higher than the temperature of the raw material solution 2, as shown in FIGS. 1 and 2, in the region where the inner surface of the graphite heater 6 and the graphite seed crystal support 4 are opposed, It is preferable to interpose a graphite raw material container 1.
次に、図1及び2を適宜参照しながら、本実施形態に係るSiC単結晶の製造方法について説明する。
Next, a method for manufacturing the SiC single crystal according to the present embodiment will be described with reference to FIGS. 1 and 2 as appropriate.
(準備工程)
まず、黒鉛製原料容器1に原料溶液2の原料を充填し、黒鉛製種結晶支持体4の下方端面に保持されたSiC種結晶3を、原料溶液2の液面から上方に離して配置する。次いで、密閉容器本体11内を真空引きした後、真空排気を続けながら昇温する。 (Preparation process)
First, the raw material of theraw material solution 2 is filled in the graphite raw material container 1, and the SiC seed crystal 3 held on the lower end face of the graphite seed crystal support 4 is disposed away from the liquid surface of the raw material solution 2. . Next, after the inside of the sealed container body 11 is evacuated, the temperature is raised while continuing the vacuum evacuation.
まず、黒鉛製原料容器1に原料溶液2の原料を充填し、黒鉛製種結晶支持体4の下方端面に保持されたSiC種結晶3を、原料溶液2の液面から上方に離して配置する。次いで、密閉容器本体11内を真空引きした後、真空排気を続けながら昇温する。 (Preparation process)
First, the raw material of the
その後、成長雰囲気ガスを導入する。成長雰囲気ガスは、特に制限はないが、SiC結晶及び溶液の酸化を防止するために、He、Ne、Ar等の不活性ガスであることが好ましい。または、該不活性ガスにN2、H2、CH4等のガスを混合したものを成長雰囲気ガスとして用いてもよい。
Thereafter, a growth atmosphere gas is introduced. The growth atmosphere gas is not particularly limited, but is preferably an inert gas such as He, Ne, or Ar in order to prevent oxidation of the SiC crystal and the solution. Alternatively, a gas such as N 2 , H 2 , or CH 4 mixed with the inert gas may be used as the growth atmosphere gas.
(メルトバック工程)
上記準備工程に続いて、密閉容器本体11内の圧力を成長圧力まで昇圧し、例えば1950℃程度まで昇温する。なお、不活性ガス雰囲気であれば加圧雰囲気及び減圧雰囲気のいずれの雰囲気でも構わない。原料溶液2の蒸発を抑制する観点から、0.1MPa以上であることが好ましく、例えば0.8MPa程度であることがより好ましい。 (Meltback process)
Subsequent to the above preparation step, the pressure in the sealedcontainer body 11 is increased to the growth pressure, for example, to about 1950 ° C. Note that any atmosphere of a pressurized atmosphere and a decompressed atmosphere may be used as long as it is an inert gas atmosphere. From the viewpoint of suppressing evaporation of the raw material solution 2, the pressure is preferably 0.1 MPa or more, and more preferably, for example, about 0.8 MPa.
上記準備工程に続いて、密閉容器本体11内の圧力を成長圧力まで昇圧し、例えば1950℃程度まで昇温する。なお、不活性ガス雰囲気であれば加圧雰囲気及び減圧雰囲気のいずれの雰囲気でも構わない。原料溶液2の蒸発を抑制する観点から、0.1MPa以上であることが好ましく、例えば0.8MPa程度であることがより好ましい。 (Meltback process)
Subsequent to the above preparation step, the pressure in the sealed
次いで、黒鉛製種結晶支持体4及びSiC種結晶3を、原料溶液2表面に向けてゆっくり降下させ、SiC種結晶3の下方表面が原料溶液2に接触するところで降下を停止し、すぐにその位置から上昇させ、SiC種結晶3のみが原料溶液2に接触し、黒鉛製種結晶支持体4は原料溶液2に接触しない位置で保持する。
Next, the graphite seed crystal support 4 and the SiC seed crystal 3 are slowly lowered toward the surface of the raw material solution 2, and the descent is stopped when the lower surface of the SiC seed crystal 3 comes into contact with the raw material solution 2. From the position, only the SiC seed crystal 3 comes into contact with the raw material solution 2, and the graphite seed crystal support 4 is held at a position not in contact with the raw material solution 2.
黒鉛製種結晶支持体4が原料溶液2に接触していると、以下のような弊害が生じる可能性がある。すなわち、結晶成長時に、表面張力により原料溶液2が黒鉛製種結晶支持体4の側面に這い上がり、メニスカスを形成する。そしてメニスカスが形成された領域では、原料溶液2の体積が小さくなるので、原料溶液2の温度が局所的に急激に冷やされて結晶が形成される。黒鉛製種結晶支持体4の側面に結晶が形成されると、それがSiC成長結晶5の成長方向前方に回り込み、結晶成長を阻害する。また、この現象により形成される結晶は多結晶となる可能性があり好ましくない。
If the graphite seed crystal support 4 is in contact with the raw material solution 2, the following adverse effects may occur. That is, during crystal growth, the raw material solution 2 rises to the side surface of the graphite seed crystal support 4 due to surface tension and forms a meniscus. And in the area | region in which the meniscus was formed, since the volume of the raw material solution 2 becomes small, the temperature of the raw material solution 2 is rapidly cooled locally and a crystal | crystallization is formed. When a crystal is formed on the side surface of the graphite seed crystal support 4, it moves forward in the growth direction of the SiC growth crystal 5 and inhibits crystal growth. Further, the crystal formed by this phenomenon is not preferable because it may become polycrystalline.
したがって、黒鉛製種結晶支持体4が原料溶液2に接触しないように、上述のとおり、SiC種結晶3を原料溶液2に接触させた後に上昇させることが好ましいが、上昇させる距離は、結晶成長時にSiC種結晶3及びSiC成長結晶5に形成されるメニスカスの高さが、5mm以下となるような距離であることが好ましく、3mm以下となるような距離であることがより好ましく、1mm以下となるような距離であることが更に好ましい。上昇させる距離が上記の範囲内であることによって、上述の弊害を防止しやすくなる。
Therefore, as described above, it is preferable to raise the SiC seed crystal 3 after contacting the raw material solution 2 so that the graphite seed crystal support 4 does not contact the raw material solution 2. Sometimes the distance between the meniscus formed on the SiC seed crystal 3 and the SiC growth crystal 5 is preferably 5 mm or less, more preferably 3 mm or less, and more preferably 1 mm or less. More preferably, the distance is such that When the distance to be raised is within the above range, the above-described adverse effects can be easily prevented.
その後、成長温度まで昇温させることで、SiC種結晶3の表面を含む一部が溶融される。成長温度は、状態図における液相線がliquid相とliquid+SiC相の境界となっている温度において設定するが、SiC単結晶中の窒素由来のn型キャリアを低減させる観点から、2050℃以上である。また、同様の観点から、成長温度は、2100℃以上であることが好ましい。一方、成長温度の上限は、特に制限されないが、例えば2300℃以下である。なお、本実施形態における成長温度は、黒鉛製原料容器1底部の下方表面の温度を意味し、放射温度計12により測定される。
Thereafter, by raising the temperature to the growth temperature, a part including the surface of the SiC seed crystal 3 is melted. The growth temperature is set at a temperature at which the liquidus line in the phase diagram is the boundary between the liquid phase and the liquid + SiC phase, but is 2050 ° C. or higher from the viewpoint of reducing n-type carriers derived from nitrogen in the SiC single crystal. . From the same viewpoint, the growth temperature is preferably 2100 ° C. or higher. On the other hand, the upper limit of the growth temperature is not particularly limited, but is, for example, 2300 ° C. or lower. The growth temperature in this embodiment means the temperature of the lower surface of the bottom of the graphite raw material container 1 and is measured by the radiation thermometer 12.
なお、SiC種結晶3を原料溶液2に接触させた後、結晶成長を開始する前にエッチバック工程を設けることが好ましい。これは、結晶成長開始時に種結晶の成長面が汚染されていると、成長した結晶の品質が著しく低下するためである。これにより、表面研磨したSiC種結晶3の表面に残留している加工変質層を除去することができる。
It should be noted that it is preferable to provide an etch back step after the SiC seed crystal 3 is brought into contact with the raw material solution 2 and before crystal growth is started. This is because if the growth surface of the seed crystal is contaminated at the start of crystal growth, the quality of the grown crystal is significantly reduced. Thereby, the work-affected layer remaining on the surface of the surface-polished SiC seed crystal 3 can be removed.
(成長工程)
溶液成長法では、種結晶近傍が原料溶液に比べて温度が低くなるように温度勾配を形成することで過飽和状態を作り出し結晶成長させる方法(温度勾配法)が、長時間安定に結晶成長を行えるため一般的である。本実施形態においても温度勾配法により実施することが好ましい。なお、別の方法として、種結晶を浸漬した溶液全体の温度を下げることで過飽和状態を形成し、結晶成長を行う方法(徐冷法)も挙げられる。徐冷法では加熱と冷却とを繰り返し行うことで結晶成長させるが、成長中に温度が変化して成長条件が安定しないため、高品質結晶の作製には好ましくない。 (Growth process)
In the solution growth method, a method of forming a supersaturated state by forming a temperature gradient so that the temperature in the vicinity of the seed crystal is lower than that of the raw material solution (temperature gradient method) allows stable crystal growth for a long time. Because it is general. Also in this embodiment, it is preferable to implement by the temperature gradient method. In addition, as another method, a method (supercooling method) in which a supersaturated state is formed by lowering the temperature of the entire solution in which the seed crystal is immersed is performed. In the slow cooling method, crystals are grown by repeatedly performing heating and cooling. However, since the temperature changes during growth and the growth conditions are not stable, it is not preferable for the production of high quality crystals.
溶液成長法では、種結晶近傍が原料溶液に比べて温度が低くなるように温度勾配を形成することで過飽和状態を作り出し結晶成長させる方法(温度勾配法)が、長時間安定に結晶成長を行えるため一般的である。本実施形態においても温度勾配法により実施することが好ましい。なお、別の方法として、種結晶を浸漬した溶液全体の温度を下げることで過飽和状態を形成し、結晶成長を行う方法(徐冷法)も挙げられる。徐冷法では加熱と冷却とを繰り返し行うことで結晶成長させるが、成長中に温度が変化して成長条件が安定しないため、高品質結晶の作製には好ましくない。 (Growth process)
In the solution growth method, a method of forming a supersaturated state by forming a temperature gradient so that the temperature in the vicinity of the seed crystal is lower than that of the raw material solution (temperature gradient method) allows stable crystal growth for a long time. Because it is general. Also in this embodiment, it is preferable to implement by the temperature gradient method. In addition, as another method, a method (supercooling method) in which a supersaturated state is formed by lowering the temperature of the entire solution in which the seed crystal is immersed is performed. In the slow cooling method, crystals are grown by repeatedly performing heating and cooling. However, since the temperature changes during growth and the growth conditions are not stable, it is not preferable for the production of high quality crystals.
本実施形態において、結晶成長のメカニズムは以下のように説明される。すなわち、SiC種結晶3近傍の原料溶液2の熱が、SiC種結晶3及び黒鉛製種結晶支持体4を介して外部に伝達されるので、SiC種結晶3近傍の原料溶液2の温度が低下する。このため、SiC種結晶3近傍の原料溶液2内には温度勾配が生じる。そして、温度が低い領域では、原料溶液2中の炭素が過飽和状態となるため、SiC種結晶3の表面にSiC成長結晶5が析出する。
In this embodiment, the mechanism of crystal growth is described as follows. That is, since the heat of the raw material solution 2 in the vicinity of the SiC seed crystal 3 is transferred to the outside through the SiC seed crystal 3 and the graphite seed crystal support 4, the temperature of the raw material solution 2 in the vicinity of the SiC seed crystal 3 decreases. To do. For this reason, a temperature gradient is generated in the raw material solution 2 in the vicinity of the SiC seed crystal 3. In the region where the temperature is low, the carbon in the raw material solution 2 is supersaturated, so that the SiC growth crystal 5 is deposited on the surface of the SiC seed crystal 3.
ここで、本実施形態における温度勾配とは、より具体的には、黒鉛製原料容器1底部の下方表面(「点A」とする)における温度をTA(℃)、融液表面(「点B」とする)における温度をTB(℃)として、以下のように定義される。
温度勾配(℃/cm)=(TA-TB)/(点A-B間の距離(cm))
なお、上記TA及びTBは、放射温度計及び熱伝対(成長中は測定しておらず別実験を行い測定)によって測定することができる。 Here, the temperature gradient in this embodiment is more specifically the temperature at the lower surface (referred to as “point A”) at the bottom of the graphiteraw material container 1 as T A (° C.), the melt surface (“point”). The temperature at ( B ) is defined as T B (° C.) as follows.
Temperature gradient (° C./cm)=(T A −T B ) / (Distance between points A and B (cm))
Incidentally, the T A and T B can be measured by a radiation thermometer and a thermocouple (measuring perform another experiment not during the growth was measured).
温度勾配(℃/cm)=(TA-TB)/(点A-B間の距離(cm))
なお、上記TA及びTBは、放射温度計及び熱伝対(成長中は測定しておらず別実験を行い測定)によって測定することができる。 Here, the temperature gradient in this embodiment is more specifically the temperature at the lower surface (referred to as “point A”) at the bottom of the graphite
Temperature gradient (° C./cm)=(T A −T B ) / (Distance between points A and B (cm))
Incidentally, the T A and T B can be measured by a radiation thermometer and a thermocouple (measuring perform another experiment not during the growth was measured).
温度勾配は、1.0~10℃/cmであることが好ましく、1.0~5.0℃/cmであることがより好ましく、1.0~3.0℃/cmであることが更に好ましく、1.0~2.0℃/cmであることが特に好ましい。温度勾配を上記範囲内にすることによって、結晶成長面を比較的高品質に保ちつつ長時間の結晶成長を行うことができる。温度勾配は、例えばヒーターの上下出力比を変えることによって制御することができる。
The temperature gradient is preferably 1.0 to 10 ° C./cm, more preferably 1.0 to 5.0 ° C./cm, and further preferably 1.0 to 3.0 ° C./cm. It is preferably 1.0 to 2.0 ° C./cm. By setting the temperature gradient within the above range, it is possible to perform crystal growth for a long time while maintaining a relatively high quality crystal growth surface. The temperature gradient can be controlled, for example, by changing the upper / lower output ratio of the heater.
原料溶液2に浸漬したSiC種結晶3を、成長速度と同程度の速度で上方に引き上げながら、必要なSiC成長結晶5の厚さに応じた時間だけ、SiC種結晶3上にSiC成長結晶5を形成し、その後、SiC種結晶3を原料溶液2から切り離す。以上により、SiC単結晶が得られる。なお、溶液成長法では、一般に結晶成長時に種結晶及び坩堝を回転させながら行う。この回転の回転軸は、種結晶保持軸及びそれに平行な坩堝保持軸に対して平行な回転軸となっている。種結晶及び坩堝の回転方向は同じでもよいし逆になってもよい。また、その回転数は、例えば2~70rpm程度の範囲で一定にしてもよく、周期的に変化させてもよい。
While the SiC seed crystal 3 immersed in the raw material solution 2 is pulled upward at a rate similar to the growth rate, the SiC grown crystal 5 is formed on the SiC seed crystal 3 for a time corresponding to the required thickness of the SiC grown crystal 5. Then, the SiC seed crystal 3 is separated from the raw material solution 2. Thus, a SiC single crystal is obtained. The solution growth method is generally performed while rotating the seed crystal and the crucible during crystal growth. The rotation axis of this rotation is a rotation axis parallel to the seed crystal holding axis and the crucible holding axis parallel thereto. The rotation direction of the seed crystal and the crucible may be the same or reversed. Further, the rotational speed may be constant, for example, in the range of about 2 to 70 rpm, or may be changed periodically.
[SiC単結晶]
本実施形態のSiC単結晶は、1.0×1016(cm-3)以上の濃度でTiを含有する。なお、Tiの濃度の上限は特に制限されないが、例えば5.0×1016(cm-3)以下である。ここでいう「Ti」とは、Ti原子及びTiイオンのいずれであってもよい。また、本実施形態のSiC結晶中のn型キャリア密度は3.0×1018(cm-3)以下であるが、2.0×1018(cm-3)以下であることが好ましく、1.0×1018(cm-3)以下であることがより好ましい。なお、n型キャリア密度の下限は特に制限されないが、例えば5.0×1017(cm-3)以上とすることができる。 [SiC single crystal]
The SiC single crystal of the present embodiment contains Ti at a concentration of 1.0 × 10 16 (cm −3 ) or more. The upper limit of the Ti concentration is not particularly limited, but is, for example, 5.0 × 10 16 (cm −3 ) or less. Here, “Ti” may be either a Ti atom or a Ti ion. In addition, the n-type carrier density in the SiC crystal of the present embodiment is 3.0 × 10 18 (cm −3 ) or less, preferably 2.0 × 10 18 (cm −3 ) or less. More preferably, it is 0.0 × 10 18 (cm −3 ) or less. The lower limit of the n-type carrier density is not particularly limited, but can be, for example, 5.0 × 10 17 (cm −3 ) or more.
本実施形態のSiC単結晶は、1.0×1016(cm-3)以上の濃度でTiを含有する。なお、Tiの濃度の上限は特に制限されないが、例えば5.0×1016(cm-3)以下である。ここでいう「Ti」とは、Ti原子及びTiイオンのいずれであってもよい。また、本実施形態のSiC結晶中のn型キャリア密度は3.0×1018(cm-3)以下であるが、2.0×1018(cm-3)以下であることが好ましく、1.0×1018(cm-3)以下であることがより好ましい。なお、n型キャリア密度の下限は特に制限されないが、例えば5.0×1017(cm-3)以上とすることができる。 [SiC single crystal]
The SiC single crystal of the present embodiment contains Ti at a concentration of 1.0 × 10 16 (cm −3 ) or more. The upper limit of the Ti concentration is not particularly limited, but is, for example, 5.0 × 10 16 (cm −3 ) or less. Here, “Ti” may be either a Ti atom or a Ti ion. In addition, the n-type carrier density in the SiC crystal of the present embodiment is 3.0 × 10 18 (cm −3 ) or less, preferably 2.0 × 10 18 (cm −3 ) or less. More preferably, it is 0.0 × 10 18 (cm −3 ) or less. The lower limit of the n-type carrier density is not particularly limited, but can be, for example, 5.0 × 10 17 (cm −3 ) or more.
上記Ti濃度は、例えば得られた単結晶についてSIMS分析することによって測定できる。また、n型キャリア密度は、例えば得られた結晶についてラマン分析することによって測定できる。ラマン分析の測定条件としては、例えば、測定面:得られた結晶の表面((000-1)面)、測定レーザー波長:514.5nmとし、垂直入射、垂直散乱の後方散乱条件とすることができる。
The Ti concentration can be measured, for example, by SIMS analysis of the obtained single crystal. The n-type carrier density can be measured, for example, by performing Raman analysis on the obtained crystal. As the measurement conditions for Raman analysis, for example, the measurement surface: the surface of the obtained crystal ((000-1) plane), the measurement laser wavelength: 514.5 nm, and the backscattering conditions of normal incidence and vertical scattering. it can.
本実施形態のSiC単結晶は、インゴット状又はウエハ状のSiC単結晶である。インゴット状のSiC単結晶は、上述の製造法により得られる円柱状のSiC成長結晶5をSiC種結晶3から切り離すことにより得ることができる。SiC種結晶3からSiC成長結晶5を切り離す際には、例えばSiC種結晶3とSiC成長結晶5との界面からSiC成長結晶5側に約0.3mmの位置で切り離すことができる。また、ウエハ状のSiC単結晶は、得られるインゴット状のSiC単結晶を、所望の厚さにスライスすることにより得ることができる。
The SiC single crystal of the present embodiment is an ingot-shaped or wafer-shaped SiC single crystal. The ingot-shaped SiC single crystal can be obtained by separating the cylindrical SiC growth crystal 5 obtained by the above-described manufacturing method from the SiC seed crystal 3. When separating the SiC growth crystal 5 from the SiC seed crystal 3, for example, the SiC growth crystal 5 can be separated from the interface between the SiC seed crystal 3 and the SiC growth crystal 5 at a position of about 0.3 mm toward the SiC growth crystal 5. The wafer-like SiC single crystal can be obtained by slicing the resulting ingot-like SiC single crystal to a desired thickness.
本実施形態のSiC単結晶の直径は、0.1cm以上が好ましく、0.5cm以上がより好ましく、1cm以上が更に好ましい。直径の好ましい上限は特に制限されるものでなく、例えば10cmとすることができる。
The diameter of the SiC single crystal of this embodiment is preferably 0.1 cm or more, more preferably 0.5 cm or more, and still more preferably 1 cm or more. The preferable upper limit of the diameter is not particularly limited, and can be, for example, 10 cm.
(実施例1)
[SiC単結晶の作製]
図1に示すSiC結晶成長装置を用いて、SiC単結晶を成長した。 (Example 1)
[Preparation of SiC single crystal]
A SiC single crystal was grown using the SiC crystal growth apparatus shown in FIG.
[SiC単結晶の作製]
図1に示すSiC結晶成長装置を用いて、SiC単結晶を成長した。 (Example 1)
[Preparation of SiC single crystal]
A SiC single crystal was grown using the SiC crystal growth apparatus shown in FIG.
<準備工程>
原料溶液の初期組成がSi/Ti=85/15(単位はat%)となるように、各原料を黒鉛製原料容器(円筒型るつぼ、内径50mm、外径70mm、高さ100mm)に充填した。また、Cは結晶成長中に黒鉛製原料容器から溶液内に供給した。この黒鉛製原料容器を結晶成長装置内に設置し、黒鉛製種結晶支持体の下方端面に存在するSiC種結晶(円盤形状、直径22mm、厚さ0.5mm、成長面:{0001}面(オンアクシズ面))を溶液液面から14.5cm上方に保持した。この状態で、装置内を真空排気しながら所定の温度まで昇温した。 <Preparation process>
Each raw material was filled in a graphite raw material container (cylindrical crucible, inner diameter 50 mm, outer diameter 70 mm, height 100 mm) so that the initial composition of the raw material solution was Si / Ti = 85/15 (unit: at%). . C was supplied from the graphite raw material container into the solution during crystal growth. This graphite raw material container was placed in a crystal growth apparatus, and a SiC seed crystal (disk shape, diameter 22 mm, thickness 0.5 mm, growth surface: {0001} surface (existing) on the lower end face of the graphite seed crystal support. The on-axis surface)) was held 14.5 cm above the solution liquid level. In this state, the temperature was raised to a predetermined temperature while evacuating the inside of the apparatus.
原料溶液の初期組成がSi/Ti=85/15(単位はat%)となるように、各原料を黒鉛製原料容器(円筒型るつぼ、内径50mm、外径70mm、高さ100mm)に充填した。また、Cは結晶成長中に黒鉛製原料容器から溶液内に供給した。この黒鉛製原料容器を結晶成長装置内に設置し、黒鉛製種結晶支持体の下方端面に存在するSiC種結晶(円盤形状、直径22mm、厚さ0.5mm、成長面:{0001}面(オンアクシズ面))を溶液液面から14.5cm上方に保持した。この状態で、装置内を真空排気しながら所定の温度まで昇温した。 <Preparation process>
Each raw material was filled in a graphite raw material container (cylindrical crucible, inner diameter 50 mm, outer diameter 70 mm, height 100 mm) so that the initial composition of the raw material solution was Si / Ti = 85/15 (unit: at%). . C was supplied from the graphite raw material container into the solution during crystal growth. This graphite raw material container was placed in a crystal growth apparatus, and a SiC seed crystal (disk shape, diameter 22 mm, thickness 0.5 mm, growth surface: {0001} surface (existing) on the lower end face of the graphite seed crystal support. The on-axis surface)) was held 14.5 cm above the solution liquid level. In this state, the temperature was raised to a predetermined temperature while evacuating the inside of the apparatus.
その後、成長雰囲気ガスとしてHeガスを装置内に導入した。この時点で黒鉛製原料容器内の溶液原料は融解し溶液化した。
Thereafter, He gas was introduced into the apparatus as a growth atmosphere gas. At this time, the solution raw material in the graphite raw material container was melted to form a solution.
<メルトバック工程>
この後、成長圧力である800kPaまで昇圧、成長温度よりも50℃低い温度まで昇温し、種結晶を溶液液面に向けてゆっくり下降させ、種結晶表面が溶液にちょうど接触するところで下降を停止し、すぐに、その種結晶位置から1mm上方に種結晶を移動させた。この種結晶位置で、成長温度である2050℃まで昇温させることで、種結晶表面を含む種結晶の一部を溶融させた。なお、2050℃への昇温にともなう黒鉛製種結晶支持体の熱膨張を考慮すると、成長温度2050℃における種結晶表面と液面間の距離は0.5mm程度と見積もられる(メニスカス高さ:0.5mm)。 <Meltback process>
After this, the pressure is increased to 800 kPa, which is the growth pressure, and the temperature is raised to a temperature lower by 50 ° C. than the growth temperature. Immediately, the seed crystal was moved 1 mm upward from the position of the seed crystal. By raising the temperature to 2050 ° C., which is the growth temperature, at this seed crystal position, a part of the seed crystal including the seed crystal surface was melted. In consideration of the thermal expansion of the graphite seed crystal support accompanying the temperature rise to 2050 ° C., the distance between the seed crystal surface and the liquid surface at the growth temperature of 2050 ° C. is estimated to be about 0.5 mm (meniscus height: 0.5 mm).
この後、成長圧力である800kPaまで昇圧、成長温度よりも50℃低い温度まで昇温し、種結晶を溶液液面に向けてゆっくり下降させ、種結晶表面が溶液にちょうど接触するところで下降を停止し、すぐに、その種結晶位置から1mm上方に種結晶を移動させた。この種結晶位置で、成長温度である2050℃まで昇温させることで、種結晶表面を含む種結晶の一部を溶融させた。なお、2050℃への昇温にともなう黒鉛製種結晶支持体の熱膨張を考慮すると、成長温度2050℃における種結晶表面と液面間の距離は0.5mm程度と見積もられる(メニスカス高さ:0.5mm)。 <Meltback process>
After this, the pressure is increased to 800 kPa, which is the growth pressure, and the temperature is raised to a temperature lower by 50 ° C. than the growth temperature. Immediately, the seed crystal was moved 1 mm upward from the position of the seed crystal. By raising the temperature to 2050 ° C., which is the growth temperature, at this seed crystal position, a part of the seed crystal including the seed crystal surface was melted. In consideration of the thermal expansion of the graphite seed crystal support accompanying the temperature rise to 2050 ° C., the distance between the seed crystal surface and the liquid surface at the growth temperature of 2050 ° C. is estimated to be about 0.5 mm (meniscus height: 0.5 mm).
<成長工程>
その後、種結晶を50μm/hの速度で上方に引き上げることで成長を開始した。成長中は、温度勾配を1.5℃/cm、ガス流量を0.5L/minとした。また、種結晶と原料容器は互いに逆方向に回転させており、種結晶の回転数を50rpm、原料容器の回転数を10rpmとした。種結晶を原料溶液に24時間浸漬した後、原料溶液から引き上げて単結晶Aを得た。得られた単結晶Aの厚さは290μmであった。 <Growth process>
Then, the growth was started by pulling the seed crystal upward at a speed of 50 μm / h. During the growth, the temperature gradient was 1.5 ° C./cm and the gas flow rate was 0.5 L / min. Further, the seed crystal and the raw material container were rotated in opposite directions, and the rotational speed of the seed crystal was 50 rpm, and the rotational speed of the raw material container was 10 rpm. The seed crystal was immersed in the raw material solution for 24 hours and then pulled up from the raw material solution to obtain a single crystal A. The thickness of the obtained single crystal A was 290 μm.
その後、種結晶を50μm/hの速度で上方に引き上げることで成長を開始した。成長中は、温度勾配を1.5℃/cm、ガス流量を0.5L/minとした。また、種結晶と原料容器は互いに逆方向に回転させており、種結晶の回転数を50rpm、原料容器の回転数を10rpmとした。種結晶を原料溶液に24時間浸漬した後、原料溶液から引き上げて単結晶Aを得た。得られた単結晶Aの厚さは290μmであった。 <Growth process>
Then, the growth was started by pulling the seed crystal upward at a speed of 50 μm / h. During the growth, the temperature gradient was 1.5 ° C./cm and the gas flow rate was 0.5 L / min. Further, the seed crystal and the raw material container were rotated in opposite directions, and the rotational speed of the seed crystal was 50 rpm, and the rotational speed of the raw material container was 10 rpm. The seed crystal was immersed in the raw material solution for 24 hours and then pulled up from the raw material solution to obtain a single crystal A. The thickness of the obtained single crystal A was 290 μm.
[Ti濃度の測定]
Ti濃度は、成長後の結晶表面のSIMS分析によって測定した。単結晶A中のTi濃度は3.0×1016(cm-3)であった。 [Measurement of Ti concentration]
The Ti concentration was measured by SIMS analysis of the crystal surface after growth. The Ti concentration in the single crystal A was 3.0 × 10 16 (cm −3 ).
Ti濃度は、成長後の結晶表面のSIMS分析によって測定した。単結晶A中のTi濃度は3.0×1016(cm-3)であった。 [Measurement of Ti concentration]
The Ti concentration was measured by SIMS analysis of the crystal surface after growth. The Ti concentration in the single crystal A was 3.0 × 10 16 (cm −3 ).
[n型キャリア密度の測定]
成長後の結晶表面に付着した原料溶液固化物を酸によって除去した後に、結晶表面側からラマン分光測定を行った。具体的には、測定面:得られた結晶の表面((000-1)面)、測定レーザー波長:514.5nmとし、垂直入射、垂直散乱の後方散乱条件で測定を行った。測定したラマンスペクトルの縦光学フォノンモードに対してフィッティング計算を行うことにより、n型キャリア密度を算出した。単結晶A中のn型キャリア密度は2.3×1018(cm-3)であった。 [Measurement of n-type carrier density]
After the raw material solution solidified material adhering to the crystal surface after growth was removed with an acid, Raman spectroscopic measurement was performed from the crystal surface side. Specifically, the measurement was carried out under the conditions of measurement of the measurement surface: the surface of the obtained crystal ((000-1) plane), the measurement laser wavelength: 514.5 nm, and normal incidence and backscattering conditions of vertical scattering. The n-type carrier density was calculated by performing fitting calculation on the longitudinal optical phonon mode of the measured Raman spectrum. The n-type carrier density in the single crystal A was 2.3 × 10 18 (cm −3 ).
成長後の結晶表面に付着した原料溶液固化物を酸によって除去した後に、結晶表面側からラマン分光測定を行った。具体的には、測定面:得られた結晶の表面((000-1)面)、測定レーザー波長:514.5nmとし、垂直入射、垂直散乱の後方散乱条件で測定を行った。測定したラマンスペクトルの縦光学フォノンモードに対してフィッティング計算を行うことにより、n型キャリア密度を算出した。単結晶A中のn型キャリア密度は2.3×1018(cm-3)であった。 [Measurement of n-type carrier density]
After the raw material solution solidified material adhering to the crystal surface after growth was removed with an acid, Raman spectroscopic measurement was performed from the crystal surface side. Specifically, the measurement was carried out under the conditions of measurement of the measurement surface: the surface of the obtained crystal ((000-1) plane), the measurement laser wavelength: 514.5 nm, and normal incidence and backscattering conditions of vertical scattering. The n-type carrier density was calculated by performing fitting calculation on the longitudinal optical phonon mode of the measured Raman spectrum. The n-type carrier density in the single crystal A was 2.3 × 10 18 (cm −3 ).
(実施例2)
成長温度を2100℃に変更した以外は、実施例1と同様にしてSiC単結晶Bを作製した。なお、成長温度におけるメニスカス高さは0.5mmであり、温度勾配は1.9℃/cmであり、得られた単結晶Bの厚さは320μmであった。また、単結晶B中のTi濃度は3.2×1016(cm-3)であり、n型キャリア密度は1.7×1018(cm-3)であった。 (Example 2)
A SiC single crystal B was produced in the same manner as in Example 1 except that the growth temperature was changed to 2100 ° C. The meniscus height at the growth temperature was 0.5 mm, the temperature gradient was 1.9 ° C./cm, and the thickness of the obtained single crystal B was 320 μm. The Ti concentration in the single crystal B was 3.2 × 10 16 (cm −3 ), and the n-type carrier density was 1.7 × 10 18 (cm −3 ).
成長温度を2100℃に変更した以外は、実施例1と同様にしてSiC単結晶Bを作製した。なお、成長温度におけるメニスカス高さは0.5mmであり、温度勾配は1.9℃/cmであり、得られた単結晶Bの厚さは320μmであった。また、単結晶B中のTi濃度は3.2×1016(cm-3)であり、n型キャリア密度は1.7×1018(cm-3)であった。 (Example 2)
A SiC single crystal B was produced in the same manner as in Example 1 except that the growth temperature was changed to 2100 ° C. The meniscus height at the growth temperature was 0.5 mm, the temperature gradient was 1.9 ° C./cm, and the thickness of the obtained single crystal B was 320 μm. The Ti concentration in the single crystal B was 3.2 × 10 16 (cm −3 ), and the n-type carrier density was 1.7 × 10 18 (cm −3 ).
(比較例)
成長温度を2000℃に変更した以外は、実施例1と同様にしてSiC単結晶Cを作製した。なお、成長温度におけるメニスカス高さは0.5mmであり、温度勾配は1.4℃/cmであり、得られた単結晶Bの厚さは655μmであった。また、単結晶C中のTi濃度は2.0×1016(cm-3)であり、n型キャリア密度は3.8×1018(cm-3)であった。 (Comparative example)
A SiC single crystal C was produced in the same manner as in Example 1 except that the growth temperature was changed to 2000 ° C. The meniscus height at the growth temperature was 0.5 mm, the temperature gradient was 1.4 ° C./cm, and the thickness of the obtained single crystal B was 655 μm. Further, the Ti concentration in the single crystal C was 2.0 × 10 16 (cm −3 ), and the n-type carrier density was 3.8 × 10 18 (cm −3 ).
成長温度を2000℃に変更した以外は、実施例1と同様にしてSiC単結晶Cを作製した。なお、成長温度におけるメニスカス高さは0.5mmであり、温度勾配は1.4℃/cmであり、得られた単結晶Bの厚さは655μmであった。また、単結晶C中のTi濃度は2.0×1016(cm-3)であり、n型キャリア密度は3.8×1018(cm-3)であった。 (Comparative example)
A SiC single crystal C was produced in the same manner as in Example 1 except that the growth temperature was changed to 2000 ° C. The meniscus height at the growth temperature was 0.5 mm, the temperature gradient was 1.4 ° C./cm, and the thickness of the obtained single crystal B was 655 μm. Further, the Ti concentration in the single crystal C was 2.0 × 10 16 (cm −3 ), and the n-type carrier density was 3.8 × 10 18 (cm −3 ).
(参考例)
原料溶液の初期組成をSiのみに変更した以外は、比較例と同様にしてSiC単結晶Dを作製した。なお、成長温度におけるメニスカス高さは0.5mmであり、温度勾配は6.7℃/cmであり、得られた単結晶Dの厚さは400μmであった。また、単結晶D中のTi濃度は検出限界以下であり、n型キャリア密度は9.8×1017(cm-3)であった。 (Reference example)
A SiC single crystal D was produced in the same manner as in the comparative example except that the initial composition of the raw material solution was changed to only Si. The meniscus height at the growth temperature was 0.5 mm, the temperature gradient was 6.7 ° C./cm, and the thickness of the obtained single crystal D was 400 μm. Further, the Ti concentration in the single crystal D was below the detection limit, and the n-type carrier density was 9.8 × 10 17 (cm −3 ).
原料溶液の初期組成をSiのみに変更した以外は、比較例と同様にしてSiC単結晶Dを作製した。なお、成長温度におけるメニスカス高さは0.5mmであり、温度勾配は6.7℃/cmであり、得られた単結晶Dの厚さは400μmであった。また、単結晶D中のTi濃度は検出限界以下であり、n型キャリア密度は9.8×1017(cm-3)であった。 (Reference example)
A SiC single crystal D was produced in the same manner as in the comparative example except that the initial composition of the raw material solution was changed to only Si. The meniscus height at the growth temperature was 0.5 mm, the temperature gradient was 6.7 ° C./cm, and the thickness of the obtained single crystal D was 400 μm. Further, the Ti concentration in the single crystal D was below the detection limit, and the n-type carrier density was 9.8 × 10 17 (cm −3 ).
図3には、単結晶A、B、C及びDについて、成長温度とn型キャリア密度との関係を示した。図3に示されるように、原料溶液にTiを添加することでn型キャリア密度が増加するが、成長温度を高くすることにより、n型キャリア密度を低減させられることがわかる。
FIG. 3 shows the relationship between the growth temperature and the n-type carrier density for the single crystals A, B, C and D. As shown in FIG. 3, the n-type carrier density is increased by adding Ti to the raw material solution, but it can be seen that the n-type carrier density can be reduced by increasing the growth temperature.
1…黒鉛製原料容器、2…原料溶液、3…SiC種結晶、4…黒鉛製種結晶支持体、5…SiC成長結晶、6…黒鉛製ヒーター、7…断熱構造材、8…黒鉛製容器支持体、9…不活性ガス導入口、10…ガス排気口、11…密閉容器本体、12…放射温度計、13…電流計、14…直流電圧印加電源、15…電極、16…電流経路。
DESCRIPTION OF SYMBOLS 1 ... Graphite raw material container, 2 ... Raw material solution, 3 ... SiC seed crystal, 4 ... Graphite seed crystal support body, 5 ... SiC growth crystal, 6 ... Graphite heater, 7 ... Thermal insulation structural material, 8 ... Graphite container Support: 9 ... Inert gas introduction port, 10 ... Gas exhaust port, 11 ... Sealed container body, 12 ... Radiation thermometer, 13 ... Ammeter, 14 ... DC voltage application power source, 15 ... Electrode, 16 ... Current path.
Claims (2)
- 1.0×1016(cm-3)以上の濃度でTiを含有し、かつn型キャリア密度が3.0×1018(cm-3)以下である、炭化珪素単結晶。 A silicon carbide single crystal containing Ti at a concentration of 1.0 × 10 16 (cm −3 ) or more and having an n-type carrier density of 3.0 × 10 18 (cm −3 ) or less.
- Si融液に少なくとも1種の遷移金属元素を溶解させた原料溶液と、炭素源とを用い、前記原料溶液に炭化珪素種結晶を接触させた状態で前記原料溶液を加熱し、前記炭化珪素種結晶近傍に1.0~2.0℃/cmの温度勾配を生じさせ、成長温度2050℃以上にて結晶成長を行う、炭化珪素単結晶の製造方法。 Using a raw material solution in which at least one transition metal element is dissolved in a Si melt and a carbon source, the raw material solution is heated in a state where the silicon carbide seed crystal is in contact with the raw material solution, and the silicon carbide species A method for producing a silicon carbide single crystal, wherein a temperature gradient of 1.0 to 2.0 ° C./cm is generated in the vicinity of a crystal, and crystal growth is performed at a growth temperature of 2050 ° C. or higher.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015518238A JP6230031B2 (en) | 2013-05-20 | 2014-05-19 | Method for producing silicon carbide single crystal |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013106601 | 2013-05-20 | ||
JP2013-106601 | 2013-05-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014189010A1 true WO2014189010A1 (en) | 2014-11-27 |
Family
ID=51933563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/063230 WO2014189010A1 (en) | 2013-05-20 | 2014-05-19 | Single-crystal silicon carbide and process for producing same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6230031B2 (en) |
WO (1) | WO2014189010A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015101490A (en) * | 2013-11-21 | 2015-06-04 | トヨタ自動車株式会社 | METHOD OF MANUFACTURING SiC SINGLE CRYSTAL |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010024392A1 (en) * | 2008-08-29 | 2010-03-04 | 住友金属工業株式会社 | Manufacturing method for silicon carbide monocrystals |
WO2011040240A1 (en) * | 2009-09-29 | 2011-04-07 | 富士電機ホールディングス株式会社 | Sic single crystal and method for producing same |
JP2013056807A (en) * | 2011-09-08 | 2013-03-28 | National Institute Of Advanced Industrial Science & Technology | METHOD FOR PRODUCING SiC SINGLE CRYSTAL, AND SiC SINGLE CRYSTAL OBTAINED THEREBY |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4419937B2 (en) * | 2005-09-16 | 2010-02-24 | 住友金属工業株式会社 | Method for producing silicon carbide single crystal |
JP4645499B2 (en) * | 2006-03-28 | 2011-03-09 | 住友金属工業株式会社 | Method for producing silicon carbide single crystal |
JP5521317B2 (en) * | 2008-11-20 | 2014-06-11 | トヨタ自動車株式会社 | p-type SiC semiconductor |
JP2013014469A (en) * | 2011-07-04 | 2013-01-24 | Panasonic Corp | Sic epitaxial substrate and method for manufacturing the same |
-
2014
- 2014-05-19 WO PCT/JP2014/063230 patent/WO2014189010A1/en active Application Filing
- 2014-05-19 JP JP2015518238A patent/JP6230031B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010024392A1 (en) * | 2008-08-29 | 2010-03-04 | 住友金属工業株式会社 | Manufacturing method for silicon carbide monocrystals |
WO2011040240A1 (en) * | 2009-09-29 | 2011-04-07 | 富士電機ホールディングス株式会社 | Sic single crystal and method for producing same |
JP2013056807A (en) * | 2011-09-08 | 2013-03-28 | National Institute Of Advanced Industrial Science & Technology | METHOD FOR PRODUCING SiC SINGLE CRYSTAL, AND SiC SINGLE CRYSTAL OBTAINED THEREBY |
Non-Patent Citations (1)
Title |
---|
JULIEN LEFEBURE ET AL.: "Modeling of the Growth Rate during Top Seeded Solution Growth of SiC Using Pure Silicon as a Solvent", CRYSTAL GROWTH & DESIGN, vol. 12, no. 2, 2011, pages 909 - 913 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015101490A (en) * | 2013-11-21 | 2015-06-04 | トヨタ自動車株式会社 | METHOD OF MANUFACTURING SiC SINGLE CRYSTAL |
US9982365B2 (en) | 2013-11-21 | 2018-05-29 | Toyota Jidosha Kabushiki Kaisha | Method for producing SiC single crystal |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014189010A1 (en) | 2017-02-23 |
JP6230031B2 (en) | 2017-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5304792B2 (en) | Method and apparatus for producing SiC single crystal film | |
EP2857562B1 (en) | Sic single-crystal ingot and production method for same | |
JP6238249B2 (en) | Silicon carbide single crystal and method for producing the same | |
US10428440B2 (en) | SiC single crystal and production method thereof | |
CN104870698B (en) | The manufacture method of n-type SiC monocrystal | |
CN102597337A (en) | Sic single crystal wafer and process for production thereof | |
JP2010089983A (en) | METHOD FOR FORMING SiC SINGLE CRYSTAL | |
EP3040452B1 (en) | N-type sic single crystal and method for producing same | |
JP6249494B2 (en) | Method for producing silicon carbide single crystal | |
CN105408531B (en) | The manufacture method of SiC substrate | |
JP2016172674A (en) | Silicon carbide single crystal and power control device substrate using the same | |
JP6230031B2 (en) | Method for producing silicon carbide single crystal | |
JP2016172677A (en) | Silicon carbide single crystal and method for producing the same | |
CN107532328B (en) | Manufacturing method of SiC single crystal | |
JP6335716B2 (en) | Method for producing silicon carbide single crystal ingot | |
JP5823947B2 (en) | Method for producing SiC single crystal | |
WO2017043215A1 (en) | METHOD FOR PRODUCING SiC SINGLE CRYSTAL | |
JP6452510B2 (en) | Method for producing silicon carbide single crystal | |
JP2014040342A (en) | Method for producing silicon carbide single crystal | |
WO2017086449A1 (en) | SiC SINGLE CRYSTAL PRODUCTION METHOD AND SiC SINGLE CRYSTAL INGOT | |
JP2018188330A (en) | Method for manufacturing SiC single crystal substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14801050 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015518238 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14801050 Country of ref document: EP Kind code of ref document: A1 |