WO2014180622A1 - Polyoxyalkylene mit seitenständigen langkettigen acyloxyresten und verfahren zu ihrer herstellung mittels dmc-katalysatoren - Google Patents
Polyoxyalkylene mit seitenständigen langkettigen acyloxyresten und verfahren zu ihrer herstellung mittels dmc-katalysatoren Download PDFInfo
- Publication number
- WO2014180622A1 WO2014180622A1 PCT/EP2014/057238 EP2014057238W WO2014180622A1 WO 2014180622 A1 WO2014180622 A1 WO 2014180622A1 EP 2014057238 W EP2014057238 W EP 2014057238W WO 2014180622 A1 WO2014180622 A1 WO 2014180622A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyoxyalkylenes
- reaction
- optionally
- chain
- long
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/32—Polymers modified by chemical after-treatment
- C08G65/329—Polymers modified by chemical after-treatment with organic compounds
- C08G65/331—Polymers modified by chemical after-treatment with organic compounds containing oxygen
- C08G65/332—Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof
- C08G65/3322—Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof acyclic
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/66—Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
- C07C69/67—Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids
- C07C69/708—Ethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/04—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
- C08G65/22—Cyclic ethers having at least one atom other than carbon and hydrogen outside the ring
- C08G65/24—Epihalohydrins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/26—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
- C08G65/2642—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
- C08G65/2645—Metals or compounds thereof, e.g. salts
- C08G65/2663—Metal cyanide catalysts, i.e. DMC's
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/32—Polymers modified by chemical after-treatment
- C08G65/329—Polymers modified by chemical after-treatment with organic compounds
- C08G65/331—Polymers modified by chemical after-treatment with organic compounds containing oxygen
- C08G65/332—Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/02—Polyalkylene oxides
- C08L71/03—Polyepihalohydrins
Definitions
- the invention relates to polyoxyalkylenes having pendant long chain acyloxy radicals and to a process for their preparation by an alkoxylation reaction using double metal cyanide (DMC) catalysts.
- DMC double metal cyanide
- polyether alcohols often also referred to briefly as polyethers or polyetherols.
- polyethers or polyetherols have been known for a long time and are produced in large quantities. They are used inter alia by reaction with polyisocyanates as starting compounds for the preparation of polyurethanes or else for the preparation of surfactants.
- a hydroxy-functional initiator such as butanol, allyl alcohol, propylene glycol or glycerol is reacted in the presence of a suitable catalyst with alkylene oxides such as ethylene oxide, propylene oxide or butylene oxide in an alkoxylation reaction to form an alkoxylation product or polyether.
- alkylene oxides such as ethylene oxide, propylene oxide or butylene oxide
- alkoxylation products make use of basic catalysts such as, for example, the alkali metal hydroxides and the alkali methylates.
- KOH alkaline catalysis is not always applicable, for example in the presence of base-labile functional groups in the educts.
- the achievable molecular weights of the polyether are also relatively low compared to other catalysts due to chain terminations and side reactions.
- DMC double metal cyanide
- the DMC-catalyzed alkoxylation is very selective and rapid and allows the preparation of polyethers with high molecular weights and comparatively low polydispersity.
- the preparation and use of double metal cyanide complexes as alkoxylation catalysts has been known since the 1960's and is illustrated, for example, in US 3,427,256, US 3,427,334, US 3,427,335, US 3,278,457, US 3,278,458, US 3,278,459.
- polyethers which are prepared starting from an OH-functional starter.
- the polyethers obtained from these in turn have terminal OH groups.
- polyethers having one, two or three chain terminal hydroxyl groups e.g. when using butanol, hexanediol or glycerol, polyethers having one, two or three chain terminal hydroxyl groups.
- polyethers which, after the alkoxylation, are prepared by esterification of the terminal OH groups with carboxylic acids, for example fatty acids.
- carboxylic acids for example fatty acids.
- Polyethylene or polypropylene glycols are thus converted in a subsequent reaction with elimination of water in the corresponding esters.
- the esterification can take place at one or both OH groups.
- products obtained in this way are mixtures of mono- and di-esterified compounds.
- the number of hydrophobic units per surfactant molecule obtainable in this way is limited by the number of OH functions of the starting material.
- JP 2009062448 describes the copolymerization of C1-C6 alkyl glycidyl esters with ethylene oxide and allyglycidyl ether to vulcanizable polymers.
- DE 1250421 describes the Lewis acid-catalyzed alkoxylation of C16-C30 fatty acid glycidyl esters to wax-like polymers which are solid at room temperature and are used as constituents of polishes in car and furniture care.
- JC Ronda uses, as in J. Polym. Be. Part A, Polym. Chem. Vol. 42, 326-340 (2004), alkali metal salts of aromatic carboxylic acids in order to esterify polyepichlorohydrin with partial Cl substitution.
- the modified polyepichlorohydrins with aromatic ester groups thus obtained are distinguished by liquid-crystalline properties.
- Halogen-substituted polyethers obtained using DMC catalysts and epihalohydrins are known from document US Pat. No. 7,423,112.
- the halogenated polyethers described therein are converted in a further reaction with amines in the sense of a substitution reaction to amine-functional polyether.
- BF 3 , SnCl 4 and SbCl 5 are also used as catalysts for the polyaddition of epichlorohydrine.
- the disadvantage is that only polymers with low molecular weights can be obtained by way of this approach. It was an object of the present invention to provide novel pendant ester-bearing alkoxylation products which do not have at least one disadvantage of the prior art, and a process for their preparation.
- the object is achieved by alkoxylation products having pendant long chain acyloxy, as shown in the claims, preparable in a process which at least partially converts lateral chloromethyl groups of the corresponding polyoxyalkylenes directly into long-chain acyloxy carrying methylene groups.
- the present invention therefore relates to polyoxyalkylenes having pendant long-chain acyloxy radicals which have at least the structural unit [-CH 2 -CH (CH 2 O (acyl radical)) - O-] and the structural unit [-CH 2 -CH (CH 3 ) -O-] ,
- An advantage of the compounds according to the invention is that they have no methylidene groups.
- Another advantage of the compounds of the invention is that they are free of pendant hydroxymethyl groups.
- Another advantage of the compounds of the invention may be that they have no halogen atoms, in particular no chlorine atoms.
- a further subject of the present invention is a process for the preparation of the polyoxyalkylenes with pendant long-chain acyloxy radicals according to the invention comprising a first step (i) in which a starting compound is catalytically reacted with epoxides, wherein the epoxides comprise at least epichlorohydrin and propylene oxide, a second step (ii in which chloromethyl groups are reacted with long-chain carboxylates to give long-chain acyloxy radicals, optionally a third step (iii) in which the reaction mixture is neutralized and the salts formed are removed, and optionally in step (iii) solvents can optionally be removed.
- An advantage of the method according to the invention is that the chloromethyl groups are not hydrolyzed to the hydroxymethyl group.
- the product according to the invention is free from pendant hydroxymethyl groups.
- Another advantage of the method according to the invention is that the second step (ii) does not lead to elimination.
- the product according to the invention is free from methylidene groups.
- An advantage of the method of the invention is further that it provides access to polyoxyalkylenes having pendant long chain acyloxy groups which have great structural diversity.
- the process according to the invention is particularly economical, since no complicated epoxides which have long-chain acyloxy radicals have to be prepared.
- the polyoxyalkylenes according to the invention with pendant long-chain acyloxy radicals as surface-active polymers.
- the invention thus relates to polyoxyalkylenes having pendant long-chain acyloxy radicals which have at least the structural unit [-CH 2 -CH (CH 2 O (acyl radical)) - O-] and the structural unit [-CH CH (CH 3 ) -O-].
- the polyoxyalkylenes according to the invention having pendant long-chain acyloxy radicals are characterized in that they correspond to the formula (I)
- A is either hydrogen or an organic radical of an organic starting compound and in this case a radical having at least one carbon atom, R is independently of one another either hydrogen, an alkyl group having 2-18 C
- the aromatic radical is preferably a phenyl radical
- mi is 1 to 50 , preferably greater than 1 up to 30, more preferably 2 up to 20,
- m 3 is 0 to 10, preferably 0 to 6, particularly preferably greater 0 to 4, in particular less than 2,
- n is 0 up to 200, preferably 0 up to 150, more preferably 0 up to 100.
- o is 1 to 1,000, preferably 5 to 800, more preferably 8 to 500, and most preferably 10 to 400.
- a is 1 to 8, preferably greater than 1 to 6, more preferably 1, 2, 3 or 4.
- the rest Z thus corresponds to the acyl radical. Together with the oxygen, the group OZ forms the claimed acyloxy radicals.
- the radical R is preferably H, ethyl or phenyl, preferably exclusively H.
- the polyoxyalkylenes according to the invention having pendant long-chain acyloxy radicals have a weight-average molar mass of from 400 to 50,000 g / mol, preferably from 800 to 35,000 g / mol and more preferably from 1,200 to 25,000 g / mol.
- the organic radical A is preferably a radical of the compound of the formula (II) described in the process.
- A is thus the a valent residue of an organic compound.
- Preferred radicals A are those derived from compounds of the group of mono- or polyhydric monomeric alcohols, where the alcohols may also be oligomeric or polymeric, the alcohols also include phenols and carbohydrate derivatives. Particularly preferred are the radicals which are derived from allyl alcohol, butanol, octanol, dodecanol, stearyl alcohol, 2-ethylhexanol, cyclohexanol, benzyl alcohol, ethylene glycol, propylene glycol, di-, tri- and polyethylene glycol, 1, 2-propylene glycol, di- and polypropylene glycol, 1, 4-butanediol, 1, 6-hexanediol, trimethylolpropane, glycerol, pentaerythritol, sorbitol or natural compounds based, hydroxyl-bearing compounds derive.
- the radicals A preferably have a molecular weight of 15 to 4983 g / mol, in particular 83 to 3983 g / mol.
- the preferred molar masses are to be understood as weight-average molar masses.
- the index a may also be subject to a statistical distribution.
- the molecular weight Mw of the polyoxyalkylenes according to the invention with pendant long-chain acyloxy radicals is variable over a wide range.
- the molecular weight Mw is from 400 to 50,000 g / mol, preferably from 800 to 35,000 g / mol, and more preferably from 1200 to 25,000 g / mol.
- acyloxy radicals of the polyoxyalkylenes according to the invention are radicals of organic acids, as described in the process according to the invention.
- the polyoxyalkylenes having pendant long-chain acyloxy groups according to the invention or prepared according to the invention are preferably colorless to yellow-orange products which may be clear or opaque. Depending on the structure of the polyoxyalkylene chain and ester functionality, the products are either liquid at room temperature, waxy or solid.
- the polyoxyalkylenes according to the invention with pendant long-chain carboxylate radicals which are rich in oxyethylene groups and / or whose radicals S E have long-chain saturated alkyl groups have the advantage that they are usually waxy or solid, partly crystalline.
- such products whose oxyethylene group content is low and / or in which the radicals S E represent branched aliphatic or unsaturated aliphatic hydrocarbon radicals have the advantage that they are usually liquid.
- the polyoxyalkylenes according to the invention having pendant long-chain acyloxy radicals preferably have no halogen atoms, in particular no chlorine atoms. Particularly preferably, the polyoxyalkylenes according to the invention have no terminal chloromethyl groups.
- polyoxyalkylenes according to the invention having pendant long-chain acyloxy radicals have no terminal structural unit with a long-chain acyloxy radical.
- the absence of methylidene groups in the polyoxyalkylenes of the invention having pendant long chain acyloxy groups has the advantage that the possibility of side reactions on these methylidene groups is impossible.
- the person skilled in such side reactions are known, for example, be mentioned oxidation reactions, for example by oxygen and polymerizations or crosslinks.
- index numbers reproduced here and the value ranges of the specified indices can be understood as mean values of the possible statistical distribution of the actual structures present and / or their mixtures. This also applies to structural formulas which are exactly reproduced as such per se, as for example for formula (I), (II) and (III).
- n, mi, m 3 and o can optionally be mixed randomly or else in blocks in the chain.
- the index numbers m1, m2, m3, a, n, o given in formulas (I), (II), (III) and the value ranges of the specified indices are understood as the average values of the possible statistical distribution of the structures actually present and / or their mixtures. This also applies to structural formulas which are exactly reproduced as such.
- the evidence of the halogen-free invention and the absence of methylidene groups are familiar to the expert. In the scope of the present invention, halogen-free and free of methylidene groups mean that the corresponding resonance signals are not detectable in the C-NMR spectra.
- the skilled person is aware of the position and multiplicity of the signals, in particular the signals of the methylidene groups can be reliably assigned in 13 C-NMR.
- Statistical distributions can be constructed block by block with an arbitrary number of blocks and an arbitrary sequence or a randomized distribution, they can also be of alternating construction or also form a gradient over the chain, in particular they can also form all mixed forms in which optionally groups of different Distributions can follow one another. Special designs may cause statistical distributions to be constrained by execution. For all areas that are not affected by the restriction, the statistical distribution does not change.
- the polyoxyalkylenes having pendant long-chain carboxylate groups of the present invention can be prepared by the methods known in the art, preferably prepared by the following process of the present invention.
- the process according to the invention comprises a first step (i) in which a starting compound is catalytically reacted with epoxides, wherein the epoxides comprise at least epichlorohydrin and propylene oxide, a second step (ii) in which chloromethyl groups are reacted with long-chain carboxylates to long-chain acyloxy, optionally a third step (iii) in which the reaction mixture is neutralized and the resulting salts are removed, in addition, in the third step (iii) optionally solvents can be removed.
- reaction products of the second step (ii) a) are optionally neutralized with an inorganic or organic acid, b) optionally distilled off solvent, c) optionally formed salts removed, preferably by filtration or by phase separation.
- a [-OH] a (II) can be used.
- the organic radical has at least one carbon atom.
- starting compounds are understood as meaning substances which form the beginning (start) of the polyether or alkoxylation product to be produced, which is obtained by the addition of alkylene oxides.
- the starting compound is preferably selected from the group of alcohols, polyetherols or phenols.
- the starting compound containing the group A is preferably a monohydric or polyhydric polyether alcohol and / or monohydric or polyhydric alcohol, or any desired mixtures thereof.
- the OH-functional starting compounds of the formula (II) used are preferably compounds having molar masses of from 32 to 5000 g / mol, in particular from 100 to 4000 g / mol. These initiators have 1 to 8, preferably 1 to 4 hydroxyl groups.
- Examples include allyl alcohol, butanol, octanol, dodecanol, stearyl alcohol, 2-ethylhexanol, cyclohexanol, benzyl alcohol, ethylene glycol, propylene glycol, di-, tri- and polyethylene glycol, 1, 2-propylene glycol, di- and polypropylene glycol, 1, 4-butanediol, 1 , 6-hexanediol, trimethylolpropane, glycerol, pentaerythritol, sorbitol or natural compounds based, hydroxyl-bearing compounds called.
- low molecular weight polyetherols having 1 to 8 hydroxyl groups and weight average molecular weights of 100 to 5000 g / mol, preferably in turn before by DMC-catalyzed alkoxylation were prepared, used as starting compounds.
- Particularly suitable are polypropylene glycols, polyethylene glycols, poly (ethylene) -co- (propylene) glycols, polybutylene glycols, poly (propylene) -co- (butylene) glycols, poly (butylene) -co- (ethylene) glycols which have at least one OH Have group.
- polyalkylene glycols especially those compounds are advantageous which are derived from butanol, allyl alcohol, octanol, decanol, dodecanol, butanediol, hexanediol, glycerol.
- the products of the first step (i) of the process according to the invention can also be used again as starting compounds in the process according to the invention, if higher molar masses are to be achieved.
- the starters which can be used also include halogenated compounds, including epichlorohydrin-derived polyetherols.
- the halogens bound to the initiator can also be converted into pendant ester groups.
- suitable compounds of the formula (II) are also any compounds having 1 to 8 phenolic OH functions. These include, for example, phenol, alkyl and aryl phenols, bisphenol A and novolacs.
- propylene oxide is always used in addition to epichlorohydrin.
- other epoxide compounds can be used, in particular alkylene oxides having 2 to 18 C atoms, preferably ethylene oxide, 1, 2-butylene oxide and styrene oxide.
- the different monomers can be used in pure form or mixed.
- the metered addition of another epoxide to an epoxide already present in the reaction mixture can be continuous over time so that an increasing concentration gradient of the continuously added epoxide is produced.
- the resulting polyoxyalkylenes are thus subject to a statistical distribution in the final product. Whereby restrictions can be determined by the dosage.
- a structure gradient can then be expected over the chain length. The relationships between dosage and product structure are known in the art.
- the molar ratio of epichlorohydrin relative to the OH groups of the starting compounds is preferably from 50 to 1 to 1 to 1, preferably from 40 to 1 to 2 to 1, particularly preferably from 25 to 1 to 3 to 1.
- the molar ratio of epichlorohydrin to the other alkylene oxides is variable within wide limits and is preferably from 1 to 1000 to 1 to 0.1, preferably from 1 to 200 to 1 to 0.5, particularly preferably from 1 to 100 to 1 to 1.5.
- the structural units of the formula (I) denoted by the index n and o are therefore preferably present in a molar excess based on the monomer unit derived from epichlorohydrin and designated by the index m-i.
- DMC catalyst in the alkoxylation reaction it is possible to use all known DMC catalysts, preferably those which contain zinc and cobalt, particularly preferably those which have zinc hexacyanocobaltate (III).
- the DMC catalysts described in US 5,158,922, US 2003 0119663, WO 01/80994 or in the above-mentioned documents are used.
- the catalysts may be amorphous or crystalline.
- the catalyst concentration is preferably greater than 0 to 2,000 ppm by weight (ppm by mass), preferably from 30 to 1,500 ppm by weight, based on the total mass of the reaction mixture.
- the catalyst is dosed only once in the reactor.
- the amount of catalyst should preferably be adjusted to provide sufficient catalytic activity for the process.
- the catalyst can be metered in as a solid or in the form of a catalyst suspension.
- the catalyst may be advantageous to activate the catalyst first with a portion of alkylene oxide, preferably with propylene oxide.
- the epichlorohydrin / alkylene oxide copolymerization can be started.
- the addition of epichlorohydrin / alkylene oxide can be interrupted once or several times by addition of exclusively alkylene oxide. It is particularly preferred to add further alkylene oxide, preferably propylene oxide or ethylene oxide, after the end of the epichlorohydrin / alkylene oxide dosage.
- the reaction temperature of the first step (i) is preferably 60 to 250 ° C, more preferably 90 to 160 ° C, and particularly preferably 100 to 130 ° C.
- the pressure of the first step (i) is preferably 0.02 bar to 100 bar, preferably 0.05 to 20 bar (absolute).
- the first step (i) of the process according to the invention is carried out at a temperature of 100 to 130 ° C. and a pressure of 0.05 to 20 bar.
- the reaction in the first step (i) may, for. B. for the purpose of viscosity reduction in an inert solvent.
- the post-reaction can z.
- reaction conditions i.e., maintaining temperature and pressure, for example
- the post-reaction preferably takes place with thorough mixing of the reaction mixture, in particular with stirring.
- the DMC catalyst usually remains in the reaction mixture or in the chlorine-containing alkoxylation products of the first step (i).
- Unreacted epoxides and possibly further volatile constituents can be added directly at the end of the first step (i) or after the second step (ii) in the optional third step (ii), for example. B. by vacuum distillation, steam or gas stripping or other methods of deodorization are removed.
- reaction products of the first step (i) of the process according to the invention are characterized by monomer units of the type [-CH 2 -CH (CH 2 Cl) -O-].
- the reaction products according to the invention are preferably compounds of the formula (III)
- A, R, n, o and a have the meanings defined above, and m 2 is 1 to 50, preferably greater than 1 to 30, more preferably 2 to 20.
- the alkoxylation products of the first step (i) have one or more chemically bonded chlorine atoms, preferably from 2 to 50, more preferably from more than 2 to 40, most preferably from 3 to 25 chlorine atoms.
- the weight average molecular weight of the alkoxylation products of the first step (i) is preferably from 200 to 50,000 g / mol, preferably 800 to 35,000 g / mol, more preferably 1200 to 25,000 g / mol.
- Particularly preferred alkoxylation products of the first step (i) of the process according to the invention have 3 to 25 chlorine atoms and have a weight average molecular weight of 1200 to 25,000 g / mol.
- High molecular weight products which are rich in units chemically bound from ethylene oxide and / or epichlorohydrin after ring opening, tend to crystallize on cooling and may be opaque.
- a quantitative analysis of the chlorine content in the alkoxylation product can be carried out, for example, using 13 C NMR spectroscopy.
- GPC measurements allow determination of polydispersity and average molecular weights.
- reactors for the alkoxylation in the first process step in principle, all suitable reactor types can be used, which can dominate the reaction and its heat of reaction.
- the first process step can be carried out in a manner known in the process from a continuous, semi-continuous or batchwise manner.
- jet loop reactors with gas phase and external heat exchangers as described for example in EP-A-0 419 419, or internal heat exchanger tubes, as described in WO 01/62826, can also be used.
- gas-phase-free loop reactors can be used.
- the chlorine-containing alkoxylation products of the first step (i) contain monomer units of the type [-CH 2 -CH (CH 2 Cl) -O-] and are, depending on the molar mass, low to high viscous or even solid.
- the process according to the invention is preferably carried out in the first step (i) in such a way that propylene oxide or ethylene oxide is metered in as the last monomer.
- the intermediate intermediates according to the method are thus distinguished by the fact that they have terminally an oxypropylene group or oxyethylene group.
- reaction conditions of the second step (ii) of the method according to the invention e.g. Temperature, use of solvent, amount of carboxylate used, reaction time influence the reaction rate and the conversion in the substitution reaction.
- the acyloxy radicals of the polyoxyalkylenes according to the invention are radicals of organic acids which, in their anionic form, are present as carboxylate with at least one or more metallic counterions or / and as ammonium salts.
- carboxylates in this invention, such compounds are designated which have at least one attached to an organic radical COO "group.
- carboxylate compounds particularly preferred are, preferably, alkali metal, ammonium and alkaline earth metal carboxylates, sodium and potassium carboxylates.
- the organic radical attached to the carboxylate group is a linear or branched, saturated or unsaturated aliphatic hydrocarbon radical or an aromatic hydrocarbon radical having 6 to 21 C atoms, preferably having 6 to 17 C atoms.
- Preferred carboxylates are the salts of aliphatic carboxylic acids having 7 to 18 carbon atoms, for example the carboxylates of 2-ethylhexanoic, isotridecylcarboxylic, capric, lauric, myristic, palmitic, stearic, oleic, linoleic, linolenic, isostearic, ricinoleic, undecylenic and mixtures thereof.
- These include the fatty acid mixtures of native origin such as derived from palm oil, coconut oil, olive oil, rapeseed oil, soybean oil, sunflower oil, thistle oil, linseed oil, peanut oil, castor oil, tall oil.
- sodium and potassium salts of mixtures produced by dimerization and trimerization of unsaturated fatty acids which on average have more than one carboxyl group per molecule.
- Further preferred carboxylates are the sodium and potassium salts of aromatic carboxylic acids having 7 to 22 carbon atoms, for example benzoic acid, naphthalenecarboxylic acid, salicylic acid.
- Carboxylates are the salts of liquid carboxylic acids such as oleic acid, linoleic acid, 2-ethylhexanoic acid, isostearic acid, isotridecylcarboxylic acid and the salts of liquid fatty acid mixtures.
- carboxylates are the sodium and potassium salts of the liquid carboxylic acids and liquid fatty acid mixtures, and mixtures of said salts.
- Carboxylates which can be used in the second step (ii) of the process according to the invention and mixtures thereof can optionally be employed in solid form, as aqueous solutions or dispersions.
- Suitable solvents and dispersants are e.g. Alcohols such as ethanol or methanol.
- the concentration of the solutions is basically freely selectable, but depends on the solubility of the carboxylate in the particular solvent. 10 to 80 weight percent solutions are preferred.
- inert conditions such as, for example, an inert gas such as nitrogen or argon.
- inert gas for example, side reactions such as oxidation are avoided.
- the products which have been produced under protective gas may be free from dark discoloration.
- the amount of carboxylate used depends on the chlorine content of the product of the first process step (i) and can be used in a substoichiometric, stoichiometric and superstoichiometric manner with reference to Cl.
- to 1 mol of chlorine preferably 0.5 to 10 mol of carboxylate, more preferably 0.8 mol to 4 mol of carboxylate, more preferably 0.9 mol to 2 mol of carboxylate, in particular 0.95 mol to 1, 3 mol of carboxylate.
- the second step (ii) of the process according to the invention can be carried out with or without solvent.
- Suitable solvents are in particular polar or protic compounds or their mixtures tailored to the solubility of the polyether and the miscibility with the carboxylate.
- Preferred solvents are water or organic solvents such as dimethyl sulfoxide, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, or ethers such as tetrahydrofuran or alcohols such as methanol, ethanol, isopropanol, n-propanol, butanol, ethylene glycol, dipropylene glycol; the use of water as a solvent is also possible.
- the reaction mixture may be present in both dissolved and dispersed form therein.
- the solvent content in the mixture with the alkoxylation product in the second step (ii) is preferably 5 to 80 wt .-%, preferably 10 to 60 wt .-% based on the total mixture.
- phase transfer catalysts When using water as solvent in the second step (ii) of the process according to the invention, it may be advantageous to add phase transfer catalysts. Optionally, this accelerates the reaction.
- Suitable phase transfer catalysts are known to the person skilled in the art. Preferred phase transfer catalysts are, for. B. quaternary ammonium and phosphonium compounds.
- the second step (ii) of the process according to the invention is carried out at a temperature of 60 ° C to 300 ° C, preferably from 80 ° C to 250 ° C, more preferably at 120 ° C to 220 ° C.
- the process according to the invention has the advantage that the choice of temperature in the second step (ii) has a decisive influence on the degree of substitution.
- the degree of substitution is understood to mean the molar ratio of the acyloxy groups in the end product to the chlorine content of the intermediate before the second step (ii) is carried out.
- the degree of substitution greater than or equal to 0.95 means complete conversion, if at the same time no more chlorine can be detected in the product mixture. At lower temperatures, a lower degree of substitution is achieved.
- the reaction can be carried out at the reflux temperature of the boiling solvent. It is preferred to increase the reaction temperature during the reaction while removing the solvent by distillation. Preferably, the temperature is increased to 120 ° C to 300 ° C. With particular preference, the solvent is removed more than 95%, 96%, 97%, 98%, in particular more than 99%, during the temperature increase. Complete removal of the solvent is determined by methods well known to those skilled in the art, e.g. determined by Karl Fischer.
- the order of reactant addition in the second step (ii) of the method according to the invention is arbitrary. It is both possible to introduce the chlorinated alkoxylation products in the reaction vessel and to add with stirring the respective carboxylate or the mixture of carboxylic acid and metal hydroxide, and vice versa, the carboxylate or the Mixture of carboxylic acid and metal hydroxide and then to add the epichlorohydrin polyether or the epichlorohydrin alkoxylation product. Solvents can optionally be presented as well as also be supplied separately with the second reactant or.
- the addition of the second reactant can be done either continuously in the feed process or in portions.
- an organic solvent or water it can be initially charged with the first reaction component in the reactor.
- the solvent may also be supplied with the second reaction component continuously or discontinuously.
- the second reactant in dissolved form.
- the addition of the second reactant can be accomplished within a few minutes but also slowly within e.g. several hours.
- post-reaction time By a subsequent sufficiently long stirring time (post-reaction time) can be ensured that the chlorine substitution is complete.
- the duration of the post-reaction can be determined by simple preliminary tests.
- the addition and post-reaction takes a total of about 2 hours to 8 hours.
- the chloride of the particular metal of the carboxylate used is formed.
- the metal chlorides e.g. NaCl or KCl are only partially soluble in the reaction mixture and are partially precipitated as solids.
- the carboxylate is generated in situ.
- the carboxylic acid with the solution of the metal hydroxide, preferably NaOH or KOH as aqueous liquor or as an alcoholic solution, brought together.
- water or the organic solvent can be removed by distillation.
- the chlorine-containing polyether is then added continuously or in portions over a period of 30 minutes to 2 hours with stirring.
- a reaction temperature of 150 ° C to 220 ° C, more preferably 180 ° C to 210 ° C. After a post-reaction time of about 4 hours usually a complete conversion is achieved.
- Analysis for ester content and residual chlorine bound to the polyether or alkoxylation product can be performed by C-NMR analysis.
- reaction mixture (a composition) is obtained, which / which is the inventive Having polyoxyalkylene with pendant long-chain acyloxy, preferably the polyoxyalkylenes of the formula (I).
- Example B9 shows that the reaction of the second step (ii) with short-chain carboxylates is unsuccessful. There is no exchange of chlorine atoms. In the product, no corresponding short-chain acyloxy radicals were detectable by C-NMR spectroscopy.
- carboxylic acids such as lactic acid and aqueous mineral acids
- preferred mineral acid is phosphoric acid. It is preferably added so much acid that sets an approximately neutral pH of 6 to 8 in the reaction mixture.
- the neutralization can optionally be carried out before or after an optionally carried out solvent or water distillation.
- the most anhydrous reaction mixture of the second step (ii) may optionally be dissolved in a solvent, freed by filtration of salts.
- a partial amount of salt can be removed beforehand by means of a phase separation.
- the reaction mixture of the second step (ii) is mixed with water and stirred to dissolve undissolved chloride.
- the resulting brine is separated from the organic phase after a certain Absitzzeit.
- the still residual salt-containing organic phase can then z. B. anhydrous distilled or filtered.
- polyoxyalkylenes according to the invention having pendant long-chain acyloxy radicals in particular those of the formula (I), can be used as precursors for a further chemical reaction Reaction or directly used to prepare compositions containing these polyoxyalkylenes.
- the inventive method can also be used to prepare the compositions according to the invention comprising the alkoxylation products of the formula (I) and mixtures thereof.
- polyoxyalkylenes according to the invention with pendant long-chain acyloxy radicals are versatile in use, preferably as surface-active polymers such as surfactants, emulsifiers, defoamers, deaerators, wetting agents, dispersants, cleaning agents, paint leveling agents, Lubricants, as cosmetic additives and as foam stabilizers, especially in polyurethane foam.
- surface-active polymers such as surfactants, emulsifiers, defoamers, deaerators, wetting agents, dispersants, cleaning agents, paint leveling agents, Lubricants, as cosmetic additives and as foam stabilizers, especially in polyurethane foam.
- the compounds of the formula (I) according to the invention can be used as chemical precursors for a large number of possible chemical reactions.
- Suitable catalysts for the hydrosilylation reaction are transition-group metal catalysts of the d-elements of the 8th to 10th subgroups of the Periodic Table of Elements, in particular platinum compounds such as hexachloroplatinic acid, cis-platinum, bis (cyclooctene) platinum dichloride, carbo-platinum, platinum (O) - (divinyltetramethyldisiloxane) complexes, so-called Karstedt catalysts, or complexed with different olefins platinum (0) complexes.
- platinum compounds such as hexachloroplatinic acid, cis-platinum, bis (cyclooctene) platinum dichloride, carbo-platinum, platinum (O) - (divinyltetramethyldisiloxane) complexes, so-called Karstedt catalysts, or complexed with different olefins platinum (0) complexes.
- rhodium, iridium and ruthenium compounds such as tris (triphenylphosphine) rhodium (l) chloride or tris (triphenylphosphine) ruthenium (II) dichloride are suitable.
- Preferred catalysts for the purposes of the process according to the invention are platinum (O) complexes, particular preference being given to modified Karstedt catalysts which are prepared, for example, according to EP-A-1 520 870.
- GPC measurements for determination of polydispersity and average molecular weights Mw were carried out under the following measurement conditions: column combination SDV 1000/10000 ⁇ (length 65 cm), temperature 30 ° C., THF as mobile phase, flow rate 1 ml / min, sample concentration 10 g / l, Rl detector, evaluation against polypropylene glycol standard.
- the content of chlorine and vinyl groups was determined by 13 C NMR spectroscopy. A Bruker Avance 400 NMR spectrometer was used. The samples were dissolved in CDCl 3 for this purpose.
- Hydroxyl numbers were determined according to the method DGF C-V 17 a (53) of the German Society for Fat Science.
- the samples were acetylated with acetic anhydride in the presence of pyridine and the consumption of acetic anhydride by titration with 0.5 N potassium hydroxide in ethanol against phenolphthalein determined.
- the iodine numbers [g iodine / 100 g sample] are determined by the method according to Hanus, known as method DGF C-V 11 a (53) of the German Society of Fats.
- the nearly colorless, low viscosity chlorinated alkoxylation product was cooled to below 90 ° C and drained from the reactor.
- the product had by GPC a weight average molecular weight of 2700 g / mol, a polydispersity MJM n of 1, 37 and contained by C-NMR analysis 5.7 moles of Cl per molecule.
- the product had, according to GPC, a weight-average molar mass of 2754 g / mol, a polydispersity MJM n of 1.28 and, according to 13 C-NMR analysis, contained 6.0 mol of Cl per molecule.
- the iodine value was 6.9 g iodine / 100 g.
- the end product was yellowish, slightly cloudy and had, according to C-NMR spectrum, on average per molecule 3.0 pendant Palmitinester phenomenon and still 2.7 moles of organically bound chlorine.
- a linear polydimethylsiloxane having an average of 32 Si units and SiH terminal functionalized and the precursor from Example B8 was heated to 50 ° C in a four-necked flask equipped with a KPG stirrer, an internal thermometer and a reflux condenser with stirring.
- the excess of allyl groups of the polyether compared to SiH groups on the siloxane was 35 mol%.
- a total of 30 ppm of platinum in the form of a platinum (0) catalyst modified according to EP 1520870 was added in portions over a period of 8.5 hours with a syringe. During the reaction, the temperature was first raised to 70 ° C, then to 100 ° C. The gas volumetric determined conversion was quantitative after 20 hours. The resulting polyethersiloxane was cloudy.
- Example C2 Example C2:
- a linear polydimethylsiloxane having an average of 35 Si units and an average of 5 -O-Si (CH 3 ) H units in the chain and the precursor of Example B8 was in a four-necked flask equipped with a KPG stirrer, an internal thermometer and a reflux condenser heated to 50 ° C with stirring.
- the excess of allyl groups of the polyether compared to SiH groups on the siloxane was 35 mol%.
- the resulting polyethersiloxane was cloudy.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- General Chemical & Material Sciences (AREA)
- Toxicology (AREA)
- Polyethers (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2911152A CA2911152A1 (en) | 2013-05-07 | 2014-04-10 | Polyoxyalkylenes with pendant long-chain acyloxy groups and method for producing same using dmc catalysts |
CN201480025679.8A CN105209518A (zh) | 2013-05-07 | 2014-04-10 | 具有长链酰氧基基团侧链的聚氧化烯和通过dmc催化剂制备其的方法 |
US14/888,872 US9783635B2 (en) | 2013-05-07 | 2014-04-10 | Polyoxyalkylenes with pendant long-chain acyloxy groups and method for producing same using DMC catalysts |
BR112015027746A BR112015027746A2 (pt) | 2013-05-07 | 2014-04-10 | Polioxialquilenos com radicais aciloxi de cadeia longa pendentes e processo para a sua preparação com catalisadores de dmc |
KR1020157031689A KR20160006175A (ko) | 2013-05-07 | 2014-04-10 | 펜던트 장쇄 아실옥시 기를 갖는 폴리옥시알킬렌 및 dmc 촉매를 사용한 그의 제조 방법 |
EP14716334.9A EP2994497A1 (de) | 2013-05-07 | 2014-04-10 | Polyoxyalkylene mit seitenständigen langkettigen acyloxyresten und verfahren zu ihrer herstellung mittels dmc-katalysatoren |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102013208328.9A DE102013208328A1 (de) | 2013-05-07 | 2013-05-07 | Polyoxyalkylene mit seitenständigen langkettigen Acyloxyresten und Verfahren zu ihrer Herstellung mittels DMC-Katalysatoren |
DE102013208328.9 | 2013-05-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014180622A1 true WO2014180622A1 (de) | 2014-11-13 |
Family
ID=50473316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2014/057238 WO2014180622A1 (de) | 2013-05-07 | 2014-04-10 | Polyoxyalkylene mit seitenständigen langkettigen acyloxyresten und verfahren zu ihrer herstellung mittels dmc-katalysatoren |
Country Status (8)
Country | Link |
---|---|
US (1) | US9783635B2 (de) |
EP (1) | EP2994497A1 (de) |
KR (1) | KR20160006175A (de) |
CN (1) | CN105209518A (de) |
BR (1) | BR112015027746A2 (de) |
CA (1) | CA2911152A1 (de) |
DE (1) | DE102013208328A1 (de) |
WO (1) | WO2014180622A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10287448B2 (en) | 2016-07-08 | 2019-05-14 | Evonik Degussa Gmbh | Universal pigment preparation |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014209355A1 (de) | 2014-05-16 | 2015-11-19 | Evonik Degussa Gmbh | Guanidinhaltige Polyoxyalkylene und Verfahren zur Herstellung |
DE102014213507A1 (de) | 2014-07-11 | 2016-01-14 | Evonik Degussa Gmbh | Platin enthaltende Zusammensetzung |
DE102014215384A1 (de) | 2014-08-05 | 2016-02-11 | Evonik Degussa Gmbh | Stickstoffhaltige Verbindungen, geeignet zur Verwendung bei der Herstellung von Polyurethanen |
PL3168273T3 (pl) | 2015-11-11 | 2018-10-31 | Evonik Degussa Gmbh | Polimery utwardzalne |
US10370493B2 (en) * | 2016-01-29 | 2019-08-06 | Evonik Degussa Gmbh | Polyglycerol alkoxylate esters and preparation and use thereof |
PL3321304T3 (pl) | 2016-11-15 | 2019-11-29 | Evonik Degussa Gmbh | Mieszaniny cyklicznych, rozgałęzionych siloksanów typu D/T i ich dalszych produktów |
EP3415548B1 (de) | 2017-06-13 | 2020-03-25 | Evonik Operations GmbH | Verfahren zur herstellung sic-verknüpfter polyethersiloxane |
EP3415547B1 (de) | 2017-06-13 | 2020-03-25 | Evonik Operations GmbH | Verfahren zur herstellung sic-verknüpfter polyethersiloxane |
EP3424967A1 (de) * | 2017-07-07 | 2019-01-09 | Covestro Deutschland AG | Verfahren zur herstellung von funktionalisierten polyoxyalkylenpolyolen |
EP3438158B1 (de) | 2017-08-01 | 2020-11-25 | Evonik Operations GmbH | Herstellung von sioc-verknüpften polyethersiloxanen |
EP3461864A1 (de) | 2017-09-28 | 2019-04-03 | Evonik Degussa GmbH | Härtbare zusammensetzung auf basis von polysiloxanen |
EP3467006B1 (de) | 2017-10-09 | 2022-11-30 | Evonik Operations GmbH | Mischungen zyklischer-verzweigter siloxane vom d/t-typ und deren folgeprodukte |
EP3492513B1 (de) | 2017-11-29 | 2021-11-03 | Evonik Operations GmbH | Verfahren zur herstellung von im siloxanteil verzweigten sioc-verknüpften polyethersiloxanen |
EP3794060A1 (de) | 2018-05-17 | 2021-03-24 | Evonik Operations GmbH | Lineare polydimethylsiloxan-polyoxyalkylen-blockcopolymere des strukturtyps aba |
CA3099860A1 (en) | 2018-05-17 | 2019-11-21 | Evonik Operations Gmbh | Linear polydimethylsiloxane-polyoxyalkylene block copolymers of the structural type aba |
EP3611215A1 (de) | 2018-08-15 | 2020-02-19 | Evonik Operations GmbH | Verfahren zur herstellung acetoxygruppen-tragender siloxane |
EP3611214A1 (de) | 2018-08-15 | 2020-02-19 | Evonik Operations GmbH | Sioc-verknüpfte, lineare polydimethylsiloxan-polyoxyalkylen-blockcopolymere |
EP3663346B1 (de) | 2018-12-04 | 2023-11-15 | Evonik Operations GmbH | Reaktivsiloxane |
ES2998233T3 (en) | 2019-05-28 | 2025-02-19 | Evonik Operations Gmbh | Method for producing siloxanes bearing acetoxy groups |
EP3744760A1 (de) | 2019-05-28 | 2020-12-02 | Evonik Operations GmbH | Verfahren zur herstellung von im siloxanteil verzweigten sioc-verknüpften polyethersiloxanen |
ES2913783T3 (es) | 2019-05-28 | 2022-06-06 | Evonik Operations Gmbh | Procedimiento para la purificación de acetoxisiloxanos |
ES2988517T3 (es) | 2019-05-28 | 2024-11-20 | Evonik Operations Gmbh | Sistemas acetoxi |
EP3744762B1 (de) | 2019-05-28 | 2024-12-04 | Evonik Operations GmbH | Verfahren zur herstellung von polyoxyalkylen polysiloxan blockpolymerisaten |
EP3744763B1 (de) | 2019-05-28 | 2024-08-14 | Evonik Operations GmbH | Massgeschneiderte sioc basierte polyethersiloxane |
EP3744774B1 (de) | 2019-05-28 | 2021-09-01 | Evonik Operations GmbH | Verfahren zum recycling von silikonen |
EP3744754B1 (de) | 2019-05-28 | 2024-10-02 | Evonik Operations GmbH | Verfahren zur herstellung acetoxygruppen-tragender siloxane |
EP3744759B1 (de) | 2019-05-28 | 2024-07-17 | Evonik Operations GmbH | Verfahren zur herstellung von im siloxanteil verzweigten sioc-verknüpften polyethersiloxanen |
EP3885096B1 (de) | 2020-03-27 | 2024-02-14 | Evonik Operations GmbH | Stoffliche wiederverwertung silikonisierter flächengebilde |
EP3954740A1 (de) | 2020-08-14 | 2022-02-16 | Evonik Operations GmbH | Entschäumerzusammensetzung auf basis von organofunktionell modifizierten polysiloxanen |
Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3278457A (en) | 1963-02-14 | 1966-10-11 | Gen Tire & Rubber Co | Method of making a polyether using a double metal cyanide complex compound |
US3278459A (en) | 1963-02-14 | 1966-10-11 | Gen Tire & Rubber Co | Method of making a polyether using a double metal cyanide complex compound |
US3278458A (en) | 1963-02-14 | 1966-10-11 | Gen Tire & Rubber Co | Method of making a polyether using a double metal cyanide complex compound |
US3285870A (en) | 1964-09-17 | 1966-11-15 | Hercules Inc | Copolymers of epihalohydrins and glycidyl esters of ethylenically unsaturated acids |
DE1250421B (de) | 1965-08-25 | 1967-09-21 | Farbwerke Hoechst Aktiengesellschaft vormals Meister Lucius &. Brunmg Frankfurt/M | Verfahren zur Herstellung von wachsartigen löslichen Polyestern |
US3427256A (en) | 1963-02-14 | 1969-02-11 | Gen Tire & Rubber Co | Double metal cyanide complex compounds |
US3427334A (en) | 1963-02-14 | 1969-02-11 | Gen Tire & Rubber Co | Double metal cyanides complexed with an alcohol aldehyde or ketone to increase catalytic activity |
US3427335A (en) | 1963-02-14 | 1969-02-11 | Gen Tire & Rubber Co | Double metal cyanides complexed with an acyclic aliphatic saturated monoether,an ester and a cyclic ether and methods for making the same |
US3775452A (en) | 1971-04-28 | 1973-11-27 | Gen Electric | Platinum complexes of unsaturated siloxanes and platinum containing organopolysiloxanes |
EP0075703A1 (de) | 1981-08-27 | 1983-04-06 | Th. Goldschmidt AG | Verfahren zur Addition von organischen Siliciumverbindungen mit SiH-Gruppen an Verbindungen mit olefinischen Doppelbindungen |
EP0419419A1 (de) | 1989-09-22 | 1991-03-27 | Buss Ag, Basel | Verfahren zur sicheren und umweltschonenden Herstellung hochreiner Alkylenoxid-Addukte |
US5158922A (en) | 1992-02-04 | 1992-10-27 | Arco Chemical Technology, L.P. | Process for preparing metal cyanide complex catalyst |
US5470813A (en) | 1993-11-23 | 1995-11-28 | Arco Chemical Technology, L.P. | Double metal cyanide complex catalysts |
US5482908A (en) | 1994-09-08 | 1996-01-09 | Arco Chemical Technology, L.P. | Highly active double metal cyanide catalysts |
US5777013A (en) * | 1997-01-24 | 1998-07-07 | Arizona Chemical Company | Dispersion and adhesion of silica in elastomeric materials |
EP1031603A2 (de) | 1999-02-24 | 2000-08-30 | Goldschmidt AG | Synergistisches Katalysatorsystem und Verfahren zur Durchführung von Hydrosilylierungsreaktionen |
WO2001062826A1 (de) | 2000-02-24 | 2001-08-30 | Basf Aktiengesellschaft | Verfahren zur herstellung von polyetherpolyolen in gegenwart eines multimetallcyanidkomplex-katalysators |
WO2001080994A1 (de) | 2000-04-20 | 2001-11-01 | Bayer Aktiengesellschaft | Verfahren zur herstellung von dmc-katalysatoren |
US20030119663A1 (en) | 2001-05-07 | 2003-06-26 | Pieter Ooms | Double-metal cyanide catalysts for preparing polyether polyols |
EP1520870A1 (de) | 2003-10-04 | 2005-04-06 | Goldschmidt GmbH | Verfahren zur Herstellung von organischen Siliciumverbindungen |
DE102004007561B3 (de) | 2004-02-17 | 2005-10-13 | Clariant Gmbh | Verfahren zur Herstellung von Alkylenglykoldiethern |
US7423112B2 (en) | 2004-05-27 | 2008-09-09 | Bayer Materialscience Llc | Polyether polyols containing pendant amine groups and a process for their preparation |
JP2009062448A (ja) | 2007-09-06 | 2009-03-26 | Daiso Co Ltd | ポリエーテル系多元共重合体およびその架橋物 |
EP2316884A1 (de) * | 2008-08-22 | 2011-05-04 | Daiso Co., Ltd. | Vulkanisierbare kautschukzusammensetzung für luftfeder und formartikel aus kautschuk für eine luftfeder |
US20120296125A1 (en) * | 2011-05-18 | 2012-11-22 | Frank Schubert | Alkoxylation products and process for preparing them by means of dmc catalysts |
Family Cites Families (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4092339A (en) * | 1974-05-02 | 1978-05-30 | The Dow Chemical Company | Process for making polyglycidyl esters |
DE4239246C1 (de) | 1992-11-21 | 1993-12-16 | Goldschmidt Ag Th | Verfahren zur Herstellung von SiH-Gruppen aufweisenden Organopolysiloxanen |
DE4415556C1 (de) | 1994-04-27 | 1995-06-01 | Goldschmidt Ag Th | Organosilyl- bzw. Organosiloxanyl-Derivate von Glycerinethern und deren Verwendung |
DE19613366A1 (de) | 1996-04-03 | 1997-10-09 | Goldschmidt Ag Th | Vorrichtung zur Behandlung von Suspensionen |
DE19648637A1 (de) | 1996-11-25 | 1998-06-04 | Goldschmidt Ag Th | Verfahren zur Herstellung von alpha,omega-Alkenolen |
DE19859759C1 (de) | 1998-12-23 | 2000-06-29 | Goldschmidt Ag Th | Verfahren und Vorrichtung zur Durchführung kontinuierlicher Hydrosilylierungsreaktionen |
DE10232115A1 (de) | 2002-07-16 | 2004-02-05 | Goldschmidt Ag | Organopolysiloxane zur Entschäumung wässriger Systeme |
DE10232908A1 (de) | 2002-07-19 | 2004-01-29 | Goldschmidt Ag | Verwendung organfunktionell modifizierter, Phenylderivate enthaltender Polysiloxane als Dispergier- und Netzmittel für Füllstoffe und Pigmente in wässrigen Pigmentpasten und Farb- oder Lackformulierungen |
ATE258179T1 (de) | 2002-09-26 | 2004-02-15 | Goldschmidt Ag Th | Neue siloxanverbindungen und deren verwendung als homogenisierungsmittel in trennmitteln mit mattierungseffekt zur herstellung von formkörpern aus kunststoffen mit mattierten oberflächen |
ATE321087T1 (de) | 2002-12-21 | 2006-04-15 | Goldschmidt Gmbh | Verfahren zur aufbereitung von polyethersiloxanen |
DE10301355A1 (de) | 2003-01-16 | 2004-07-29 | Goldschmidt Ag | Äquilibrierung von Siloxanen |
DE102005001039B4 (de) | 2005-01-07 | 2017-11-09 | Evonik Degussa Gmbh | Verfahren zur Herstellung von Äquilibrierungsprodukten von Organosiloxanen und die so erhältlichen Organopolysiloxane |
DE102005039398A1 (de) | 2005-08-20 | 2007-02-22 | Goldschmidt Gmbh | Verfahren zur Herstellung von Anlagerungsprodukten aus SiH-Gruppen enthaltenden Verbindungen an Olefingruppen aufweisende Reaktionspartner in wässrigen Medien |
DE102005039931A1 (de) | 2005-08-24 | 2007-03-01 | Goldschmidt Gmbh | Verfahren zur Herstellung von SiOC-verknüpften, linearen Polydimethylsiloxan-Polyoxyalkylen-Blockcopolymeren |
DE102005057857A1 (de) | 2005-12-03 | 2010-02-25 | Evonik Goldschmidt Gmbh | Polyethermodifizierte Polysiloxane mit Blockcharakter und deren Verwendung zur Herstellung von kosmetischen Formulierungen |
US20070299242A1 (en) * | 2006-06-21 | 2007-12-27 | Bayer Materialscience Llc | Pendant acrylate and/or methacrylate-containing polyether monols and polyols |
DE102006061351A1 (de) | 2006-12-22 | 2008-06-26 | Evonik Goldschmidt Gmbh | Verfahren zur Herstellung von SiOC-verknüpften, linearen Polydimethylsiloxan-Polyoxyalkylen-Blockcopolymeren und ihre Verwendung |
DE102006061350A1 (de) | 2006-12-22 | 2008-06-26 | Evonik Goldschmidt Gmbh | Verfahren zur Herstellung von SiOC-verknüpften, linearen Polydimethylsiloxan-Polyoxyalkylen-Blockcopolymeren und ihre Verwendung |
DE102006061353A1 (de) | 2006-12-22 | 2008-06-26 | Evonik Goldschmidt Gmbh | Verfahren zur Umsetzung von Polyorganosiloxanen und deren Verwendung |
DE102007035646A1 (de) | 2007-07-27 | 2009-01-29 | Evonik Goldschmidt Gmbh | Über SIC- und über Carbonsäureestergruppen verknüpfte lineare Polydimethylsiloxan-Polyoxyalkylen-Blockcopolymere, ein Verfahren zur ihrer Herstellung und ihre Verwendung |
DE102007055484A1 (de) | 2007-11-21 | 2009-05-28 | Evonik Goldschmidt Gmbh | Verfahren zur Herstellung von Polydimethylsiloxanen an sulfonsauren Kationenaustauscherharzen |
DE102007055485A1 (de) | 2007-11-21 | 2009-06-04 | Evonik Goldschmidt Gmbh | Verfahren zur Herstellung verzweigter SiH-funktioneller Polysiloxane und deren Verwendung zur Herstellung SiC- und SiOC-verknüpfter, verzweigter organomodifizierter Polysiloxane |
DE102007057146A1 (de) | 2007-11-28 | 2009-06-04 | Evonik Goldschmidt Gmbh | Verfahren zur Herstellung von Polyetheralkoholen mit DMC-Katalysatoren unter Verwendung von speziellen Additiven mit aromatischer Hydroxy-Funktionalisierung |
DE102007057145A1 (de) | 2007-11-28 | 2009-06-04 | Evonik Goldschmidt Gmbh | Verfahren zur Herstellung von Polyetheralkoholen mit DMC-Katalysatoren unter Verwendung von SiH-Gruppen tragenden Verbindungen als Additive |
DE102008000266A1 (de) | 2008-02-11 | 2009-08-13 | Evonik Goldschmidt Gmbh | Die Erfindung betrifft die Verwendung von Schaumstabilisatoren, die auf Basis nachwachsender Rohstoffe hergestellt werden, zur Herstellung von Polyurethanschäumen |
DE102008000360A1 (de) | 2008-02-21 | 2009-08-27 | Evonik Goldschmidt Gmbh | Neue Alkoxysilylgruppen tragende Polyetheralkohole durch Alkoxylierung epoxidfunktioneller Alkoxysilane an Doppelmetallcyanid (DMC)-Katalysatoren, sowie Verfahren zu deren Herstellung |
DE102008000903A1 (de) | 2008-04-01 | 2009-10-08 | Evonik Goldschmidt Gmbh | Neue Organosiloxangruppen tragende Polyetheralkohole durch Alkoxylierung epoxidfunktioneller (Poly)Organosiloxane an Doppelmetallcyanid (DMC)-Katalysatoren, sowie Verfahren zu deren Herstellung |
DE102008002713A1 (de) | 2008-06-27 | 2009-12-31 | Evonik Goldschmidt Gmbh | Neue Polyethersiloxane enthaltende Alkoxylierungsprodukte durch direkte Alkoxylierung organomodifizierter alpha, omega-Dihydroxysiloxane an Doppelmetallcyanid (DMC)-Katalysatoren, sowie Verfahren zu deren Herstellung |
DE102008041601A1 (de) | 2008-08-27 | 2010-03-04 | Evonik Goldschmidt Gmbh | Verfahren zur Herstellung verzweigter SiH-funtioneller Polysiloxane und deren Verwendung zur Herstellung flüssiger, SiC- oder SiOC-verknüpfter, verzweigter organomodifizierter Polysiloxane |
DE102008042181B4 (de) | 2008-09-18 | 2020-07-23 | Evonik Operations Gmbh | Äquilibrierung von Siloxanen an wasserhaltigen sulfonsauren Kationenaustauscherharzen |
DE102008043218A1 (de) | 2008-09-24 | 2010-04-01 | Evonik Goldschmidt Gmbh | Polymere Werkstoffe sowie daraus bestehende Kleber- und Beschichtungsmittel auf Basis multialkoxysilylfunktioneller Präpolymerer |
CN101376707A (zh) | 2008-10-07 | 2009-03-04 | 青岛科技大学 | 聚醚型高分子季铵盐的合成方法 |
DE102008043245A1 (de) | 2008-10-29 | 2010-05-06 | Evonik Goldschmidt Gmbh | Siliconpolyether-Copolymersysteme sowie Verfahren zu deren Herstellung durch Alkoxylierungsreaktion |
DE102008043343A1 (de) | 2008-10-31 | 2010-05-06 | Evonik Goldschmidt Gmbh | Silikonpolyetherblock-Copolymere mit definierter Polydispersität im Polyoxyalkylenteil und deren Verwendung als Stabilisatoren zur Herstellung von Polyurethanschäumen |
US8283422B2 (en) | 2008-12-05 | 2012-10-09 | Evonik Goldschmidt Gmbh | Polyethersiloxanes carrying alkoxysilyl groups and method for production thereof |
DE102009022628A1 (de) | 2008-12-05 | 2010-06-10 | Evonik Goldschmidt Gmbh | Verfahren zur Modifizierung von Oberflächen |
DE102009002371A1 (de) | 2009-04-15 | 2010-10-21 | Evonik Goldschmidt Gmbh | Verfahren zur Herstellung von geruchlosen Polyetheralkoholen mittels DMC-Katalysatoren und deren Verwendung in kosmetischen und/oder dermatologischen Zubereitungen |
DE102009002417A1 (de) | 2009-04-16 | 2010-10-21 | Evonik Goldschmidt Gmbh | Verwendung organomodifizierter, im Siliconteil verzweigter Siloxane zur Herstellung kosmetischer oder pharmazeutischer Zusammensetzungen |
DE102009003274A1 (de) | 2009-05-20 | 2010-11-25 | Evonik Goldschmidt Gmbh | Zusammensetzungen enthaltend Polyether-Polysiloxan-Copolymere |
DE102009022631A1 (de) | 2009-05-25 | 2010-12-16 | Evonik Goldschmidt Gmbh | Härtbare Silylgruppen enthaltende Zusammensetzungen und deren Verwendung |
DE102009022627A1 (de) | 2009-05-25 | 2010-12-02 | Evonik Goldschmidt Gmbh | Reaktive Silylgruppen tragende Hydroxylverbindungen als Keramikbindemittel |
DE102009022630A1 (de) | 2009-05-25 | 2010-12-02 | Evonik Goldschmidt Gmbh | Emulsionen auf Basis Silylgruppen tragender Hydroxylverbindungen |
DE102009034607A1 (de) | 2009-07-24 | 2011-01-27 | Evonik Goldschmidt Gmbh | Neuartige Siliconpolyethercopolymere und Verfahren zu deren Herstellung |
DE102009028636A1 (de) | 2009-08-19 | 2011-02-24 | Evonik Goldschmidt Gmbh | Neuartige Urethangruppen enthaltende silylierte Präpolymere und Verfahren zu deren Herstellung |
DE102009028640A1 (de) | 2009-08-19 | 2011-02-24 | Evonik Goldschmidt Gmbh | Härtbare Masse enthaltend Urethangruppen aufweisende silylierte Polymere und deren Verwendung in Dicht- und Klebstoffen, Binde- und/oder Oberflächenmodifizierungsmitteln |
EP2510043A1 (de) * | 2009-12-09 | 2012-10-17 | Dow Global Technologies LLC | Polyetherderivate aus sekundären hydroxyfettsäuren und derivate daraus |
DE102010001350A1 (de) | 2010-01-29 | 2011-08-04 | Evonik Goldschmidt GmbH, 45127 | Neuartige lineare Polydimethylsiloxan-Polyether-Copolymere mit Amino- und/oder quaternären Ammoniumgruppen und deren Verwendung |
DE102010001531A1 (de) | 2010-02-03 | 2011-08-04 | Evonik Goldschmidt GmbH, 45127 | Neuartige organomodifizierte Siloxane mit primären Aminofunktionen, neuartige organomodifizierte Siloxane mit quaternären Ammoniumfunktionen und das Verfahren zu deren Herstellung |
DE102010001528A1 (de) | 2010-02-03 | 2011-08-04 | Evonik Goldschmidt GmbH, 45127 | Neue Partikel und Kompositpartikel, deren Verwendungen und ein neues Verfahren zu deren Herstellung aus Alkoxysilylgruppen tragenden Alkoxylierungsprodukten |
DE102010002178A1 (de) | 2010-02-22 | 2011-08-25 | Evonik Goldschmidt GmbH, 45127 | Verfahren zur Herstellung von Amin-Amid-funktionellen Siloxanen |
DE102010002180A1 (de) | 2010-02-22 | 2011-08-25 | Evonik Goldschmidt GmbH, 45127 | Stickstoffhaltige silizium-organische Pfropfmischpolymere |
DE102010029235A1 (de) | 2010-05-21 | 2011-11-24 | Evonik Degussa Gmbh | Hydrophile Polyisocyanate |
DE102010029723A1 (de) | 2010-06-07 | 2011-12-08 | Evonik Goldschmidt Gmbh | Verfahren zur Herstellung von organischen Siliciumverbindungen |
DE102010031087A1 (de) | 2010-07-08 | 2012-01-12 | Evonik Goldschmidt Gmbh | Neuartige polyestermodifizierte Organopolysiloxane |
DE102010038768A1 (de) | 2010-08-02 | 2012-02-02 | Evonik Goldschmidt Gmbh | Modifizierte Alkoxylierungsprodukte mit mindestens einer nicht-terminalen Alkoxysilylgruppe mit erhöhter Lagerstabilität und erhöhter Dehnbarkeit der unter deren Verwendung hergestellten Polymere |
DE102010038774A1 (de) | 2010-08-02 | 2012-02-02 | Evonik Goldschmidt Gmbh | Modifizierte Alkoxylierungsprodukte, die zumindest eine nicht-terminale Alkoxysilylgruppe aufweisen, mit erhöhter Lagerstabilität und erhöhter Dehnbarkeit der unter deren Verwendung hergestellten Polymere |
DE102010039140A1 (de) | 2010-08-10 | 2012-02-16 | Evonik Goldschmidt Gmbh | Dispergiermittel und Verfahren zu deren Herstellung |
DE102010062156A1 (de) | 2010-10-25 | 2012-04-26 | Evonik Goldschmidt Gmbh | Polysiloxane mit stickstoffhaltigen Gruppen |
DE102011003150A1 (de) | 2011-01-26 | 2012-07-26 | Evonik Goldschmidt Gmbh | Silikonpolyetherblock-Copolymere mit hochmolekularen Polyetherresten und deren Verwendung als Stabilisatoren zur Herstellung von Polyurethanschäumen |
DE102011109540A1 (de) | 2011-08-03 | 2013-02-07 | Evonik Goldschmidt Gmbh | Alkylcarbonat endverschlossene Polyethersilioxane und Verfahren zu deren Herstellung |
DE102011109614A1 (de) | 2011-08-03 | 2013-02-07 | Evonik Goldschmidt Gmbh | Verfahren zur Herstellung von verzweigten Polyethercarbonaten und ihre Verwendung |
DE102011085492A1 (de) | 2011-10-31 | 2013-05-02 | Evonik Goldschmidt Gmbh | Neue aminogruppenhaltige Siloxane, Verfahren zu deren Herstellung und Anwendung |
DE102011088787A1 (de) | 2011-12-16 | 2013-06-20 | Evonik Industries Ag | Siloxannitrone und deren Anwendung |
DE102012202521A1 (de) | 2012-02-20 | 2013-08-22 | Evonik Goldschmidt Gmbh | Verzweigte Polysiloxane und deren Verwendung |
DE102012202527A1 (de) | 2012-02-20 | 2013-08-22 | Evonik Goldschmidt Gmbh | Zusammensetzungen enthaltend Polymere und Metallatome oder -ionen und deren Verwendung |
DE102012203737A1 (de) | 2012-03-09 | 2013-09-12 | Evonik Goldschmidt Gmbh | Modifizierte Alkoxylierungsprodukte, die zumindest eine nicht-terminale Alkoxysilylgruppe aufweisen und mehrere Urethangruppen enthalten und deren Verwendung |
DE102012210553A1 (de) | 2012-06-22 | 2013-12-24 | Evonik Industries Ag | Siliconpolyether und Verfahren zu deren Herstellung aus Methylidengruppen tragenden Polyethern |
DE102013206175A1 (de) | 2013-04-09 | 2014-10-09 | Evonik Industries Ag | Polysiloxan-Polyether-Copolymere mit Amino- und/oder quaternären Ammoniumgruppen im Polyetherteil und Verfahren zu deren Herstellung |
DE102013106905A1 (de) | 2013-07-01 | 2015-01-08 | Evonik Industries Ag | Siloxan-Polymere mit zentralem Polysiloxan-Polymerblock mit organofunktionellen Resten mit jeweils mindestens zwei bivalenten Gruppen ausgewählt aus Harnstoff- und/oder Carbamat-Gruppen und mindestens einem UV/Vis-Chromophor als Rest |
DE102013106906A1 (de) | 2013-07-01 | 2015-01-08 | Evonik Industries Ag | Siloxan-Polymere mit zentralem Polysiloxan-Polymerblock mit terminalen organofunktionellen Resten umfassend Harnstoff- und/oder Carbamat-Gruppen sowie Aminosäure-Reste |
DE102013214081A1 (de) | 2013-07-18 | 2015-01-22 | Evonik Industries Ag | Neue aminosäuremodifizierte Siloxane, Verfahren zu ihrer Herstellung und Anwendung |
DE102013216787A1 (de) | 2013-08-23 | 2015-02-26 | Evonik Degussa Gmbh | Guanidingruppen aufweisende semi-organische Siliciumgruppen enthaltende Verbindungen |
DE102013216751A1 (de) | 2013-08-23 | 2015-02-26 | Evonik Industries Ag | Modifizierte Alkoxylierungsprodukte, die Alkoxysilylgruppen aufweisen und Urethangruppen enthalten und deren Verwendung |
-
2013
- 2013-05-07 DE DE102013208328.9A patent/DE102013208328A1/de not_active Withdrawn
-
2014
- 2014-04-10 CA CA2911152A patent/CA2911152A1/en not_active Abandoned
- 2014-04-10 KR KR1020157031689A patent/KR20160006175A/ko not_active Withdrawn
- 2014-04-10 BR BR112015027746A patent/BR112015027746A2/pt not_active IP Right Cessation
- 2014-04-10 EP EP14716334.9A patent/EP2994497A1/de not_active Withdrawn
- 2014-04-10 WO PCT/EP2014/057238 patent/WO2014180622A1/de active Application Filing
- 2014-04-10 CN CN201480025679.8A patent/CN105209518A/zh active Pending
- 2014-04-10 US US14/888,872 patent/US9783635B2/en not_active Expired - Fee Related
Patent Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3278457A (en) | 1963-02-14 | 1966-10-11 | Gen Tire & Rubber Co | Method of making a polyether using a double metal cyanide complex compound |
US3278459A (en) | 1963-02-14 | 1966-10-11 | Gen Tire & Rubber Co | Method of making a polyether using a double metal cyanide complex compound |
US3278458A (en) | 1963-02-14 | 1966-10-11 | Gen Tire & Rubber Co | Method of making a polyether using a double metal cyanide complex compound |
US3427256A (en) | 1963-02-14 | 1969-02-11 | Gen Tire & Rubber Co | Double metal cyanide complex compounds |
US3427334A (en) | 1963-02-14 | 1969-02-11 | Gen Tire & Rubber Co | Double metal cyanides complexed with an alcohol aldehyde or ketone to increase catalytic activity |
US3427335A (en) | 1963-02-14 | 1969-02-11 | Gen Tire & Rubber Co | Double metal cyanides complexed with an acyclic aliphatic saturated monoether,an ester and a cyclic ether and methods for making the same |
US3285870A (en) | 1964-09-17 | 1966-11-15 | Hercules Inc | Copolymers of epihalohydrins and glycidyl esters of ethylenically unsaturated acids |
DE1250421B (de) | 1965-08-25 | 1967-09-21 | Farbwerke Hoechst Aktiengesellschaft vormals Meister Lucius &. Brunmg Frankfurt/M | Verfahren zur Herstellung von wachsartigen löslichen Polyestern |
US3775452A (en) | 1971-04-28 | 1973-11-27 | Gen Electric | Platinum complexes of unsaturated siloxanes and platinum containing organopolysiloxanes |
EP0075703A1 (de) | 1981-08-27 | 1983-04-06 | Th. Goldschmidt AG | Verfahren zur Addition von organischen Siliciumverbindungen mit SiH-Gruppen an Verbindungen mit olefinischen Doppelbindungen |
EP0419419A1 (de) | 1989-09-22 | 1991-03-27 | Buss Ag, Basel | Verfahren zur sicheren und umweltschonenden Herstellung hochreiner Alkylenoxid-Addukte |
US5158922A (en) | 1992-02-04 | 1992-10-27 | Arco Chemical Technology, L.P. | Process for preparing metal cyanide complex catalyst |
US5470813A (en) | 1993-11-23 | 1995-11-28 | Arco Chemical Technology, L.P. | Double metal cyanide complex catalysts |
US5482908A (en) | 1994-09-08 | 1996-01-09 | Arco Chemical Technology, L.P. | Highly active double metal cyanide catalysts |
US5777013A (en) * | 1997-01-24 | 1998-07-07 | Arizona Chemical Company | Dispersion and adhesion of silica in elastomeric materials |
EP1031603A2 (de) | 1999-02-24 | 2000-08-30 | Goldschmidt AG | Synergistisches Katalysatorsystem und Verfahren zur Durchführung von Hydrosilylierungsreaktionen |
WO2001062826A1 (de) | 2000-02-24 | 2001-08-30 | Basf Aktiengesellschaft | Verfahren zur herstellung von polyetherpolyolen in gegenwart eines multimetallcyanidkomplex-katalysators |
WO2001080994A1 (de) | 2000-04-20 | 2001-11-01 | Bayer Aktiengesellschaft | Verfahren zur herstellung von dmc-katalysatoren |
US20030119663A1 (en) | 2001-05-07 | 2003-06-26 | Pieter Ooms | Double-metal cyanide catalysts for preparing polyether polyols |
EP1520870A1 (de) | 2003-10-04 | 2005-04-06 | Goldschmidt GmbH | Verfahren zur Herstellung von organischen Siliciumverbindungen |
DE102004007561B3 (de) | 2004-02-17 | 2005-10-13 | Clariant Gmbh | Verfahren zur Herstellung von Alkylenglykoldiethern |
US20070185353A1 (en) | 2004-02-17 | 2007-08-09 | Clariant Produkte (Deutschland) Gmbh | Method for producing alkylene glycol diethers |
US7423112B2 (en) | 2004-05-27 | 2008-09-09 | Bayer Materialscience Llc | Polyether polyols containing pendant amine groups and a process for their preparation |
JP2009062448A (ja) | 2007-09-06 | 2009-03-26 | Daiso Co Ltd | ポリエーテル系多元共重合体およびその架橋物 |
EP2316884A1 (de) * | 2008-08-22 | 2011-05-04 | Daiso Co., Ltd. | Vulkanisierbare kautschukzusammensetzung für luftfeder und formartikel aus kautschuk für eine luftfeder |
US20120296125A1 (en) * | 2011-05-18 | 2012-11-22 | Frank Schubert | Alkoxylation products and process for preparing them by means of dmc catalysts |
Non-Patent Citations (7)
Title |
---|
"Dictionary of Natural Products", 2011, CHAPMAN AND HALL/CRC PRESS, TAYLOR AND FRANCIS GROUP |
A. KAMEYAMA, POLYMER JOUMAL, vol. 28, no. 2, 1996, pages 155 - 158 |
J.A. REINA, MACROMOL. CHEM. PHYS., vol. 198, 1997, pages 581 - 595 |
J.C. RONDA, J. POLYM. SCI. PART A, POLYM. CHEM., vol. 42, 2004, pages 326 - 340 |
N. SCHÖNFELDT: "Surface Active Ethylene Oxide Adducts", 1969, PERGAMON PRESS |
REINA J A ET AL: "CROSSLINKABLE EPICHLOROHYDRIN TERPOLYMERS WITH AROMATIC PENDENT GROUPS", MACROMOLECULAR CHEMISTRY AND PHYSICS, WILEY-VCH VERLAG, WEINHEIM, DE, vol. 198, no. 2, 1 February 1997 (1997-02-01), pages 581 - 595, XP000684249, ISSN: 1022-1352, DOI: 10.1002/MACP.1997.021980230 * |
YAN-HUA JIANG ET AL., YINGYONG HUAXUE, vol. 26, no. 7, 2009, pages 770FF |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10287448B2 (en) | 2016-07-08 | 2019-05-14 | Evonik Degussa Gmbh | Universal pigment preparation |
Also Published As
Publication number | Publication date |
---|---|
BR112015027746A2 (pt) | 2017-08-29 |
CN105209518A (zh) | 2015-12-30 |
KR20160006175A (ko) | 2016-01-18 |
DE102013208328A1 (de) | 2014-11-13 |
US9783635B2 (en) | 2017-10-10 |
EP2994497A1 (de) | 2016-03-16 |
US20160053051A1 (en) | 2016-02-25 |
CA2911152A1 (en) | 2014-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014180622A1 (de) | Polyoxyalkylene mit seitenständigen langkettigen acyloxyresten und verfahren zu ihrer herstellung mittels dmc-katalysatoren | |
DE102011076019A1 (de) | Alkoxylierungsprodukte und Verfahren zu ihrer Herstellung mittels DMC-Katalysatoren | |
EP2739667B1 (de) | Verfahren zur herstellung von verzweigten polyethercarbonaten und ihre verwendung | |
EP3166991B1 (de) | Platin enthaltende zusammensetzung | |
EP2138526B1 (de) | Neue Polyethersiloxane enthaltende Alkoxylierungsprodukte durch direkte Alkoxylierung organomodifizierter alpha, omega-Dihydroxysiloxane an Doppelmetallcyanid (DMC)-Katalysatoren, sowie Verfahren zu deren Herstellung | |
EP2196487B1 (de) | Siliconpolyether-Copolymersysteme sowie Verfahren zu deren Herstellung durch Alkoxylierungsreaktion | |
EP2571922B1 (de) | Verfahren zur herstellung von polyethercarbonatpolyolen | |
EP1228117B1 (de) | Polyester-polyetherblockcopolymere | |
EP2107077B1 (de) | Organosiloxangruppen tragende Polyetheralkohole durch Alkoxylierung epoxidfunktioneller (Poly)Organosiloxane an Doppelmetallcyanid (DMC)-Katalysatoren, sowie Verfahren zu deren Herstellung | |
EP2614102B1 (de) | Verfahren zur herstellung von polyethercarbonatpolyolen | |
EP3027673B1 (de) | Verfahren zur herstellung von polyethercarbonatpolyolen | |
EP2526139B1 (de) | Verfahren zur aktivierung von doppelmetallcyanidkatalysatoren zur herstellung von polyethercarbonatpolyolen | |
DE102011109545A1 (de) | Verfahren zur Herstellung von Polyethersiloxanen enthaltend Polyethercarbonatgrundstrukturen | |
DE102007057145A1 (de) | Verfahren zur Herstellung von Polyetheralkoholen mit DMC-Katalysatoren unter Verwendung von SiH-Gruppen tragenden Verbindungen als Additive | |
EP2678372B1 (de) | Polymere basierend auf glycerincarbonat und einem alkohol | |
WO2010072769A1 (de) | Verfahren zur herstellung von polyether-blockcopolymeren | |
EP3360912B1 (de) | Verfahren zur herstellung hydrosilylierbarer polyoxyalkylenether | |
WO2021249814A1 (de) | Verfahren zur herstellung von polyethercarbonatpolyolen | |
EP3922661A1 (de) | Verfahren zur herstellung von polyoxymethylen-polyoxyalkylen-copolymeren | |
EP4314111A1 (de) | Neue polyether auf basis von 2,3-epoxybutan und verfahren zu deren herstellung | |
EP4004083A1 (de) | Verfahren zur herstellung von polyethercarbonatpolyolen | |
EP3750940A1 (de) | Verfahren zur herstellung von polyethercarbonatpolyolen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14716334 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014716334 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2911152 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14888872 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20157031689 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112015027746 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112015027746 Country of ref document: BR Kind code of ref document: A2 Effective date: 20151103 |